WorldWideScience

Sample records for examines radiation dose

  1. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  2. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    Kettunen, A.

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose to a

  3. Radiation doses to the unborn child at diagnostic examination in Sweden

    International Nuclear Information System (INIS)

    Helmrot, E.

    2002-01-01

    This report describes methods to estimate fetal radiation doses from radiation diagnostic examinations, based on survey data from 3 hospitals in southern Sweden. The fetal dose has been calculated with available computer programs and verified by dose measurements inside a female human phantom for conventional X-ray and computed tomography (CT) examinations. Measured fetal doses have been correlated to the DAP (Dose Area Product) value or the CTDI (Computer Tomography Dose Index) and DLP (Dose Length Product) values and conversion factors have been evaluated. For nuclear medicine examinations tables for the calculations of fetal doses by administered activity are presented together with information of administered activity for normal and pregnant women in Sweden. For X-ray examinations where the uterus is outside the primary radiation fields the fetal dose is generally below 1-2 mSv. In order to calculate fetal doses documentation of fluoroscopy time and number of X-ray images, scanning parameters for the CT and administered activity for nuclear medicine examinations are necessary

  4. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    Science.gov (United States)

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  5. Radiation doses to the unborn child at diagnostic examinations in Sweden

    International Nuclear Information System (INIS)

    Helmrot, E.; Pettersson, H.; Sandborg, M.; Olsson, S.; Nilsson, J.; Cederlund, T.

    2003-01-01

    The use of ionising radiation in a medical examination of a woman caring a child is not always possible to avoid. The following situations can occur: (1) The pregnancy of the patient is known and the examination has to be performed due to medical reason, (2) The pregnancy of the patient is unknown at the time of examination. Methods to identify pregnant women at radiological departments in Sweden are already in use, but national rules and methods to calculate the individual dose to the unborn child for different examinations are less evaluated. There is a need of standards for the calculations, estimations and documentation of the radiation dose to the unborn child. According to directives from the European Commission, every X-ray examination has to be justified and optimised. The aim of this study is to determine the absorbed dose to the unborn child for common radiation diagnostic examinations used in Sweden and to find a standardised method for dose calculations. (orig.)

  6. Techniques and radiation dose in CT examinations of adult patients

    International Nuclear Information System (INIS)

    Elameen, S. E. A.

    2010-06-01

    The use of CT in medical diagnosis delivers radiation dose to patients that are higher than those from other radiological procedures. Lake of optimized protocols could be an additional source of increased dose. The aim of this study was to measure radiation doses in CT examination of the adults in three Sudanese hospitals. Details were obtained from approximately 160 CT examination carried out in 3 hospitals (3 CT scanners). Effective dose was calculated for each examination using CT dose indices. exposure related parameters and CT D1- to- effective dose conversion factors. CT air kerma index (CT D1) and dose length products (DLP) determined were below the established international reference dose levels. The mean effective doses in this study for the head, chest, and abdomen are 0.82, 3.7 and 5.4 mGy respectively. These values were observed that the effective dose per examination was lower in Sudan than in other countries. The report of a CT survey done in these centers indicates that the mean DLP values for adult patients were ranged from 272-460 mGy cm (head) 195-995 mGy cm (chest), 270-459 mGy cm (abdomen). There are a number of observed parameters that greatly need optimization, such as minimize the scan length, without missing any vital anatomical regions, modulation of exposure parameters (kV, mA, exposure time, and slice thickness) based on patient size and age. Another possible method is through use of contrast media only to optimize diagnostic yield. The last possible method is the use of radio protective materials for protection however, in order to achieve the above optimization strategies: there is great demand to educate CT personnel on the effects of scan parameter settings on radiation dose to patients and image quality required for accurate diagnosis. (Author)

  7. Radiation doses to patients undergoing barium meal and barium enema examinations

    International Nuclear Information System (INIS)

    Delichas, M. G.; Hatziioannou, K.; Papanastassiou, E.; Albanopoulou, P.; Chatzi, E.; Sioundas, A.; Psarrakos, K.

    2004-01-01

    The radiation doses received by patients during 41 barium meal (BM) and 42 barium enema (BE) examinations in two Greek hospitals are presented. Radiation dose was measured in terms of the dose area product (DAP). The effective dose and doses to certain organs were estimated using the ODS-60 software. Mean total DAP values were found to be 25 ± 11 Gy cm 2 for BM and 60 ± 35 Gy cm 2 for BE examinations, whereas the estimated mean values of effective dose were 8.6 ± 4.0 and 24 ± 16 mSv respectively. DAP to effective dose conversion coefficients were estimated to be 0.34 mSv per Gy cm 2 for BM and 0.41 mSv per Gy cm 2 for BE. (authors)

  8. Trends in Radiation Doses to Patients from Medical X-ray Examinations in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Olga Iacob; Irina Anca Popescu [Institute of Public Health, Iassy (Romania); Mihai Radu Iacob [University ' Al. I. Cuza' Iassy (Romania)

    2006-07-01

    Even if the doses received by patients during 2005 survey are lower than those estimated in the 2000 national survey on diagnostic medical radiation exposure by 27 percent, on average, their values still indicate an urgent need to develop radiation protection and optimization activities for X ray examinations, especially in pediatrics radiology. The increasing attention given in last years to radiation protection for conventional examinations, with development of national patient dosimetry protocols and reference doses, new radiation protection legislation and norms have played a significant part in this substantial reduction in effective doses. (N.C.)

  9. Collective radiation dose from diagnostic x-ray examination in nine ...

    African Journals Online (AJOL)

    Background: Medical x-ray exposures have the largest man made source of population exposure to ionizing radiation in different countries. Recent developments in medical imaging have led to rapid increases in a number of high dose xray examinations performed with significant consequences for individual patient doses ...

  10. Radiation absorbed doses at radiographic examination of third molars.

    Science.gov (United States)

    Rehnmark-Larsson, S; Stenström, B; Julin, P; Richter, S

    1982-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. In the maxilla three, and in the mandible four different projections were used; also an extraoral lateral view. The greatest thyroid dose, 35 muGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. the thyroid dose from an extraoral lateral view with high sensitivity screens was 3.7 muGy. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. The corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50%. the Ekta-Speed film required approximately 40% lower exposure than the Ultra-Speed film. Without shielding the gonadal doses from a complete examination of four third molars were of the same order of magnitude as from a full survey with intraoral films, i.e. 3-7 muGy. A horizontal radiation shield reduced the thyroid doses by between 12 and 46% and the gonadal doses by between 50 and 95%. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses by between 15 and 42% and the gonadal doses by two orders of magnitude.

  11. Enteroclysis and small bowel series: Comparison of radiation dose and examination time

    International Nuclear Information System (INIS)

    Thoeni, R.F.; Gould, R.G.

    1991-01-01

    Respective radiation doses and total examination and fluoroscopy times were compared for 50 patients; 25 underwent enteroclysis and 25 underwent small bowel series with (n = 17) and without (n = 8) an examination of the upper gastrointestinal (GI) tract. For enteroclysis, the mean skin entry radiation dose (12.3 rad [123 mGy]) and mean fluoroscopy time (18.4 minutes) were almost 1 1/2 times greater than those for the small bowel series with examination of the upper GI tract (8.4 rad [84 mGy]; 11.4 minutes) and almost three times greater than those for the small bowel series without upper GI examination (4.6 rad [46 mGy]; 6.3 minutes). However, the mean total examination completion time for enteroclysis (31.2 minutes) was almost half that of the small bowel series without upper GI examination (57.5 minutes) and almost four times shorter than that of the small bowel series with upper GI examination (114 minutes). The higher radiation dose of enteroclysis should be considered along with the short examination time, the age and clinical condition of the patient, and the reported higher accuracy when deciding on the appropriate radiographic examination of the small bowel

  12. Evaluation of radiation dose received in skull radiographic examination

    International Nuclear Information System (INIS)

    Omer, Noora Elshiekh

    2014-12-01

    Diagnostic X-ray examination play an important role in the health care of the population. These examinations may involve significant irradiation of the patient and probably represent the largest mam-made source of radiation exposure for the population. This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study was performed to assess the effective dose (ED) received in skull radiographic examination and to analyze effective dose distributions among radiological department under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 50 patients. The following parameters were recorded: age, weight, height, body mass index (BMI) derived from weight (kg) and (height (m)) and exposure factors. The dose was measured for skull x-ray examinations. For effective dose calculation, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for skull AP and lateral examinations. The ED values were then calculated from the obtained ESD values using IAEA calculation methods. Effective doses were calculated from energy imparted using ED conversion factors proposed were within the normal range of exposure. The mean ED values calculated were 3.03±0.08 and 4.23±0.61 for skull AP and lateral examination, respectively. Further studies are recommended with more number of patients and using more than two modalities for comparison. (Author)

  13. The EOS imaging system: Workflow and radiation dose in scoliosis examinations

    DEFF Research Database (Denmark)

    Mussmann, Bo; Torfing, Trine; Jespersen, Stig

    Introduction The EOS imaging system is a biplane slot beam scanner capable of full body scans at low radiation dose and without geometrical distortion. It was implemented in our department primo 2012 and all scoliosis examinations are now performed in EOS. The system offers improved possibility...... to measure rotation of individual vertebrae and vertebral curves can be assessed in 3D. Leg length Discrepancy measurements are performed in one exposure without geometrical distortion and no stitching. Full body scans for sagittal balance are also performed with the equipment after spine surgery. Purpose...... The purpose of the study was to evaluate workflow defined as scheduled time pr. examination and radiation dose in scoliosis examinations in EOS compared to conventional x-ray evaluation. Materials and Methods: The Dose Area Product (DAP) was measured with a dosimeter and a comparison between conventional X...

  14. Radiation absorbed doses at radiographic examination of third molars

    International Nuclear Information System (INIS)

    Rehnmark-Larsson, S.; Stenstroem, B.; Julin, P.; Richter, S.; Huddinge University Hospital

    1981-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. The greatest thyroid dose, 35 μGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. the corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50 %. The Ekta-Speed film requirted approximately 40 % lower exposure than the Ultra-Speed film. A horizontal radiation shield reduced the thyroid doses by between 12 and 46 % and the gonadal doses by between 50 and 95 %. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses between 15 and 42 % and the gonadal doses by two orders of magnitude. (Authors)

  15. Radiation Dose Measurements in Routine X Ray Examinations

    International Nuclear Information System (INIS)

    Osman, H.; Sulieman, A.; Suliman, I.I.; Sam, A.K.

    2011-01-01

    The aim of current study was to evaluate patients radiation dose in routine X-ray examinations in Omdurman teaching hospital Sudan.110 patients was examined (134) radiographs in two X-ray rooms. Entrance surface doses (ESDs) were calculated from patient exposure parameters using DosCal software. The mean ESD for the chest, AP abdomen, AP pelvis, thoracic spine AP, lateral lumber spine, anteroposterior lumber spine, lower limb and for the upper limb were; 231±44 Gy,453± 29 Gy, 567±22 Gy, 311±33 Gy,716±39 Gy, 611±55 Gy,311±23 Gy, and 158±57 Gy, respectively. Data shows asymmetry in distribution. The results of were comparable with previous study in Sudan.

  16. Dose from radiological examinations

    International Nuclear Information System (INIS)

    Imamura, Keiko; Uji, Teruyuki; Sakuyama, Keiko; Fujikawa, Mitsuhiro; Fujii, Masamichi

    1976-01-01

    Relatively high gonad doses, several hundred to one thousand mR, have been observed in case of pelvis, hip-joint, coccyx, lower abdomen and lumber examination. Dose to the ovary is especially high in barium enema and I.V.P. examinations. About 12 per cent of the 4-ray examination are high-dose. The gonad dose is relatively high in examination of abdomen and lower extremities, in infants. The dose to the eyes is especially high, 1.0 to 2.5R per exposure, in temporal bone and nasal sinuses tomography. X-ray doses have been compared with dose limits recommended by ICRP and with the gonad dose from natural radiations. The gonad dose in lumbar examination, barium enema, I.V.P. etc. is as high as the maximum permissible dose per year recommended by ICRP. Several devices have been made for dose reduction in the daily examinations: (1) separating the radiation field from the gonad by one centimeter decreases the gonad dose about one-half. (2) using sensitive screens and films. In pelvimetry and in infant hip-joint examination, the most sensitive screen and film are used. In the I.V.P. examination of adult, use of MS screen in place of FS screen decreases the dose to one-third, in combination with careful setting of radiation field, (3) use of grid increases the dose about 50 percent and the lead rubber protection (0.1mm lead equivalent) decreases the gonad dose to one-thirtieth in the spinal column examination of infant, (4) A lead protector, 1mm thickness and 2.5cm in diameter, on the eyes decreases the dose to about one-eighth in the face and nead examinations. These simple and effective methods for dose reduction. Should be carried out in as many examinations as possible in addition to observing dose limits recommended by ICRP. (Evans, J.)

  17. Radiation doses to patients from x-ray examinations - development from 2005 to 2008

    International Nuclear Information System (INIS)

    Leitz, Wolfram; Almen, Anja

    2010-04-01

    Data has been compiled and analyzed and compared with the earlier reports. Radiation doses were tested for possible links with various parameters (eg type of x-ray equipment, image recording systems, different technique factors). In conventional x-ray examinations radiation doses were, for equipment with direct digital image receivers, in average 30% lower than for those with photo plates. Mammography doses were, with one exception, the same for all types of equipment and video receivers. The CT-examinations had a small trend for higher doses for new equipment as compared to earlier. Use of exposure automation did not affect radiation doses. Compared with 2006, the doses of conventional surveys decreased by an average of 21%. One third of this dose reduction can be attributed the introduction of direct digital system whose use grew by about 30%. Most of the dose reduction can be attributed to the actions carried out to lower the dose of the reference level. Doses for the CT scan showed only a weak downwards trend. Mammography Doses decreased by an average of just over 10% a large part dependent on increased number of Sectra equipment. The system of diagnostic reference levels have again shown to have positive influence on the radiation level at the x-ray examinations, this is most pronounced for conventional radiography. There is still a large potential for dose reduction, and a measure to achieve this is to reduce the current reference levels. Very few diagnostic Standard doses are higher than the reference level. A reduction of the reference levels corresponding to the third quartile of dose distribution could lead further dose decrease of 10-20%. The corresponding reduction in dose should be done also for the DT and mammograms when lowering the reference level, there are few standard doses higher than the current reference levels

  18. Trend of patient radiation doses in medical examination in Japan

    International Nuclear Information System (INIS)

    Suzuki, Shoichi

    2013-01-01

    We have investigated radiation doses to patients in selected types of examinations in Japan since 1974 and have analyzed the trend of patient radiation doses during a period of 37 years. This study covered regular plain X-ray scanning (including mammography) and computed tomography (CT) scanning. Dose evaluation was performed in terms of entrance skin dose (ESD) for regular plain X-ray scanning, average glandular dose (AGD) for mammography, and volume CT dose index (CTDIvol) for CT scanning. Evaluation was performed in 26 orientations at 21 sites for regular plain X-rays, and for cranial, thoracic, and abdominal scans of children and adults for CT scanning. With the exception of chest X-rays, the dose during regular plain X-ray scanning had decreased by approximately 50% compared with scans performed in 1974. The dose during mammography had decreased to less than 10% of its former level. In scans performed in 2011, dose at all sites were within International Atomic Energy Authority (IAEA) guidance levels. The increasing use of multiple detectors in CT scanning devices was evident in CT scanning. A comparison of doses from cranial non-helical scans performed in 2007 and 2011 found that the latter were higher. An examination of changes in doses between 1997 and 2011 revealed that doses had tended to increase in cranial scans of adults, but had hardly changed at all in abdominal scans. Doses during CT scanning of children were around half those for adults in cranial, thoracic, and abdominal scans. We have ascertained changes in the doses to which patients have been exposed during X-ray scanning in Japan. (author)

  19. Study on the evaluation of radiation doses in dental radiography. Doses and risks due to dental full mouth examination

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K [Kanagawa Dental Coll., Yokosuka (Japan)

    1980-09-01

    Radiation doses and possible biological risks due to dental full mouth examination (adult: 10-film technique, child: 6-film technique) were evaluated based on preliminary experiments and statistical surveillance of patients' records. Dosimetrical studies were performed by using head and neck phantoms and a dental x-ray tube. Radiation doses were measured by x-ray films and thermoluminescence dosimeters. For the obtained doses of skin, eyes, thyroid gland and bone marrow, the biological risk of leukemia and thyroid cancer was discussed on the statistical basis of patients at Kanagawa Dental College Hospital. The major findings were as follows: The total number of patients who recieved full mouth x-ray examination at Kanagawa Dental College Hospital in 1978 was 1,099. The number of male patients was 382 (3,804 films) and that of female patients was 717 (7,138 films). In both sexes, the number of patients was the greatest in the group of 8 - 14 years of age. The collective doses of bone marrow due to full mouth 10-film examination performed at Kanagawa Dental College Hospital in 1978 were approximately 6.0 rad, which could induce leukemia with a probability of 1/8,000. The collective doses of thyroid gland were approximately 13 rad, which could induce lethal thyroid cancer with a probability of 1/15,000. The radiation dose due to the dental radiography for examination at Kanagawa Dental College Hospital was proved to be apparently below the level that could actually induce radiation injuries. But the collective radiation doses due to dental examination in Japan as a whole were approximately 8,000 times greater than that in Kanagawa Dental College Hospital.

  20. Establishment of radiation doses for pediatric X-ray examinations in a large pediatric hospital in Turkey

    International Nuclear Information System (INIS)

    Olgar, T.; Sahmaran, T.

    2017-01-01

    Pediatric patients are more sensitive to ionizing radiation when compared with adults. The aim of this study was to evaluate the radiation doses for some common pediatric x-ray examinations performed with various digital radiography systems. Quality control tests of the digital radiography systems were carried out according to international published protocols before the pediatric dose measurements. Radiation dose measurement was performed by using the x-ray tube outputs and thermoluminescent dosimeter dose measurement methods. In the present study, radiation doses were assessed for 247 chest, 230 pelvis, 194 skull and 73 abdomen x-ray examinations and in total 744 pediatric patients doses were measured. Pediatric patients were classified into four age groups 0-1, 1-5, 5-10 and 10-15 years as given by European Commission guidance. Effective doses were determined for each examination using a PCXMC 2.0 Monte Carlo program. The mean measured entrance skin doses for the age interval 1-5 years and AP projection by using tube output measurement methods were 149 μGy for chest, 304 μGy for pelvis, 387 μGy for skull and 199 μGy for abdomen examinations. The radiation dose results obtained in this study were in the range of the published results in the literature. (authors)

  1. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    Science.gov (United States)

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Calculation of radiation dose received in computed tomography examinations

    International Nuclear Information System (INIS)

    Abed Elseed, Eslam Mustafa

    2014-07-01

    Diagnostic computed tomography (CT) examinations play an important role in the health care of the population. These examination may involve significant irradiation of the patient and probably represent the largest man-made source of radiation exposure for the population. This study was performed to assess the effective dose (ED) received in brain CT examination ( base of skull and cerebrum) and to analyze effective dose distributions among radiological departments under study. The study was performed at Elnileen Medical Center, coverage one CT unit and a sample of 51 patients (25 cerebrum sample and 26 base of skull sample). The following parameters were recorded age, weight, height body mass index (BMI) derived from weight (kg) and height ( m) and exposure factor and CTDI voi , DLP value. The effective dose was measured for brain CT examination. The ED values were calculated from the obtained DLP values using AAPM report No 96 calculation methods. The results of ED values calculated showed that patient exposure were within the normal range of exposure. The mean ED values calculated were 0.35±0.15 for base of skull of brain CT examinations and 0.70±0.32 for cerebrum of brain CT examination, respectively. Further studies are recommended with more number of pa.(Author)

  3. Patient radiation doses from enteroclysis examinations

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.F.; Haggett, P.J.; Boardman, P.; Nolan, D.J.

    1994-01-01

    Data relating to patient dose have been acquired for enteroclysis examinations (small bowel enemas) performed at the John Radcliffe Hospital, Oxford, on 23 adult patients. Dose-area products, fluoroscopy times and the number of radiographs taken are used to compare the examination procedure at the Hospital with enteroclysis and barium follow-throughs performed elsewhere. The mean dose-area product for the 23 examinations was 6.8 Gy cm 2 and the mean effective dose was estimated to be 1.5 mSv. These doses are intermediate between those arising from barium meals and barium enemas performed in the same room. (author)

  4. Organ doses from computerized tomography examinations

    Energy Technology Data Exchange (ETDEWEB)

    Janeczek, J.

    1995-12-31

    Estimates of mean organs doses from five typical computerized tomography (CT) examinations were obtained. Measurements were done using Rando-Alderson anthropomorphic phantom and thermoluminescent dosemeters (TLD). Radiation dose distributions within a phantom has been measured for each examination and results were used for organ dose calculation. Doses to organs specified by ICPR 60 Recommendations were measured for five CT scanners (CT/T8800, CT 9800, CT MAX - made by General Electric; CT 1200 SX - made by Picker; SOMATOM 2 - made by Siemens). Dose distributions from scattered radiation were measured and indicate that scattered radiation dose to thyroid and eye lens can be reduced by proper examination limits setting. The lowest mean organ doses were obtained from CT/T8800 scanner. More advanced scanners using high intensity continuous radiation were giving higher organ doses. (author). 23 refs, 6 figs, 13 tabs.

  5. Organ doses from computerized tomography examinations

    International Nuclear Information System (INIS)

    Janeczek, J.

    1995-01-01

    Estimates of mean organs doses from five typical computerized tomography (CT) examinations were obtained. Measurements were done using Rando-Alderson anthropomorphic phantom and thermoluminescent dosemeters (TLD). Radiation dose distributions within a phantom has been measured for each examination and results were used for organ dose calculation. Doses to organs specified by ICPR 60 Recommendations were measured for five CT scanners (CT/T8800, CT 9800, CT MAX - made by General Electric; CT 1200 SX - made by Picker; SOMATOM 2 - made by Siemens). Dose distributions from scattered radiation were measured and indicate that scattered radiation dose to thyroid and eye lens can be reduced by proper examination limits setting. The lowest mean organ doses were obtained from CT/T8800 scanner. More advanced scanners using high intensity continuous radiation were giving higher organ doses. (author). 23 refs, 6 figs, 13 tabs

  6. Evaluation of radiation dose in pediatric head CT examination: a phantom study

    Science.gov (United States)

    Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, Ahmad Taufek Abdul

    2018-01-01

    The aim of this study was to evaluate the radiation dose in pediatric head Computed Tomography examination. It was reported that decreasing tube voltage in CT examination can reduce the dose to patients significantly. A head phantom was scanned with dual-energy CT at 80 kV and 120 kV. The tube current was set using automatic exposure control mode and manual setting. The pitch was adjusted to 1.4, 1.45 and 1.5 while the slice thickness was set at 5 mm. The dose was measured based on CT Dose Index (CTDI). Results from this study have shown that the image noise increases substantially with low tube voltage. The average dose was 2.60 mGy at CT imaging parameters of 80 kV and 10 - 30 mAs. The dose increases up to 17.19 mGy when the CT tube voltage increases to 120 kV. With the reduction of tube voltage from 120 kV to 80 kV, the radiation dose can be reduced by 12.1% to 15.1% without degradation of contrast-to-noise ratio.

  7. Radiation doses to patients receiving computed tomography examinations in British Columbia

    International Nuclear Information System (INIS)

    Aldrich, J.E.; Bilawich, A.-M.; Mayo, J.R.

    2006-01-01

    To estimate the diagnostic reference levels and effective radiation dose to patients from routine computed tomography (CT) examinations in the province of British Columbia, Canada. The patient weight, height and computed tomography dose index or dose linear product (DLP) were recorded on study sheets for 1070 patients who were referred for clinically indicated routine CT examinations at 18 radiology departments in British Columbia. Sixteen of the scanners were multidetector row scanners. The average patient dose varied from hospital to hospital. The largest range was found for CT of the abdomen, for which the dose varied from 3.6 to 26.5 (average 10.1) mSv. For head CT, the range was 1.7 to 4.9 (average 2.8) mSv; for chest CT, it was 3.8 to 26 (average 9.3) mSv; for pelvis CT, it was 3.5 to 15.5 (average 9.0) mSv; and for abdomen/pelvis CT, it was 7.3 to 31.5 (average 16.3) mSv. Reference dose values were calculated for each exam. These DLP values are as follows: head, 1300 mGy cm; chest, 600 mGy cm; abdomen, 920 mGy cm; pelvis, 650 mGy cm; and abdomen/pelvis, 1100 mGy cm. Among hospitals, there was considerable variation in the DLP and patient radiation dose for a specific exam. Reference doses and patient doses were higher than those found in similar recent surveys carried out in the United Kingdom and the European Union. Patient doses were similar to those found in a recent survey in Germany. (author)

  8. Radiation doses from some common paediatric X-ray examinations in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Elshiekh, E.H.A.

    2008-01-01

    Radiation doses to patients from some common paediatric X-ray examinations were studied in three hospitals in Khartoum state (Sudan)). Entrance surface dose (ESD) was determined from exposure settings using DosCal software. Totally, 459 patients were included in this study. Mean ESDs obtained from anteroposterior projection for chest, skull, abdomen and pelvis for neonates falls in the range of 52-100, 115-169, 145-183, 204-242 μGy, respectively. For a 1-y-old infant, mean ESD range was 80-114, 153-202, 204-209, 181-264 μGy, respectively. Some doses for neonates and infants were exceeding the reference doses by >20%. The results highlighted that a good technique has to adhere to guidelines necessarily. As demonstrated elsewhere, patients' doses were high in departments using single-phase generators compared with those using constant potential. The results presented will serve as a baseline data needed for deriving reference doses for paediatric X-ray examinations in Sudan. (authors)

  9. Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.

    Directory of Open Access Journals (Sweden)

    Peter B Noël

    Full Text Available PURPOSE: Evaluation of 15,000 computed tomography (CT examinations to investigate if iterative reconstruction (IR reduces sustainably radiation exposure. METHOD AND MATERIALS: Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. RESULTS: IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01. Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv, or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv the dose reduction effect is significant(p*=0.01. On the contrary for unenhanced low-dose scans of the cranial (for example sinuses the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv. CONCLUSION: The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine

  10. Assessment of patient radiation doses in chest X-ray examinations

    International Nuclear Information System (INIS)

    Orsini, S.; Scribano, V.S.; Merluzzi, F.; Tosca, L.

    1987-01-01

    The paper reports the initial results of a radioprotection programme for diagnostic radiology carried out in a major hospital in Milan. The data cover chest X-ray examinations. The dose values were obtained using different techniques, according to the specific diagnostic requirements in each departement. A wide radiation dose range was observed between the different techniques, with a ratio between maximum and minimum dose > 30 for the skin and the spine. The doses were however lower than those capable of inducing non-stochastic effects by about 10000 and were so low that the probability of a stochastics effect is minimal. Nevertheless, because chest X-rays are performed so frequently, it is recommended that radiologists take greater account of patient dose, as far as compatible with diagnostic requirements. Radiology technicians must strictly observe the regulations for radioprotection of the patient

  11. Evaluation of the radiation doses in newborn patients submitted to CT examinations

    International Nuclear Information System (INIS)

    De Souza Santos, William; Caldas, Linda V.E.; Belinato, Walmir; Pereira Neves, Lucio; Perini, Ana Paula

    2015-01-01

    The number of computed tomography (CT) scans available to the population is increasing, as well as the complexity of such exams. As a result, the radiation doses are increasing as well. Considering the population exposed to CT exams, pediatric patients are considerably more sensitive to radiation than adults. They have a longer life expectancy than adults, and may receive a higher radiation dose than necessary if the CT scan settings are not adjusted for their smaller body size. As a result of these considerations, the risk of developing cancer is of great concern when newborn patients are involved. The objective of this work was to study the radiation doses on radiosensitive organs of newborn patients undergoing a whole body CT examination, utilizing Monte Carlo simulations. The novelty of this work is the use of pediatric virtual anthropomorphic phantoms, developed at the Department of Nuclear Energy at the Federal University of Pernambuco (DEN/UFPE). The CT equipment utilized during the simulations was a Discovery VCT GE PET/CT system, with a tube voltage of 140 kVp. The X-ray spectrum of this CT scanner was generated by the SRS-78 software, which takes into account the X-ray beam energy used in PET/CT procedures. The absorbed organ doses were computed employing the F6 tally (MeV/g). The results were converted to dose coefficients (mGy/100 mA) for all the structures, considering all employed beams. The highest dose coefficients values were obtained for the brain and the thyroid. This work provides useful information regarding the risks involving ionizing radiation in newborn patients, employing a new and reliable technique. (authors)

  12. Evaluation of the radiation doses in newborn patients submitted to CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    De Souza Santos, William; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear (IPENCNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP, (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA, (Brazil); Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG, (Brazil)

    2015-07-01

    The number of computed tomography (CT) scans available to the population is increasing, as well as the complexity of such exams. As a result, the radiation doses are increasing as well. Considering the population exposed to CT exams, pediatric patients are considerably more sensitive to radiation than adults. They have a longer life expectancy than adults, and may receive a higher radiation dose than necessary if the CT scan settings are not adjusted for their smaller body size. As a result of these considerations, the risk of developing cancer is of great concern when newborn patients are involved. The objective of this work was to study the radiation doses on radiosensitive organs of newborn patients undergoing a whole body CT examination, utilizing Monte Carlo simulations. The novelty of this work is the use of pediatric virtual anthropomorphic phantoms, developed at the Department of Nuclear Energy at the Federal University of Pernambuco (DEN/UFPE). The CT equipment utilized during the simulations was a Discovery VCT GE PET/CT system, with a tube voltage of 140 kVp. The X-ray spectrum of this CT scanner was generated by the SRS-78 software, which takes into account the X-ray beam energy used in PET/CT procedures. The absorbed organ doses were computed employing the F6 tally (MeV/g). The results were converted to dose coefficients (mGy/100 mA) for all the structures, considering all employed beams. The highest dose coefficients values were obtained for the brain and the thyroid. This work provides useful information regarding the risks involving ionizing radiation in newborn patients, employing a new and reliable technique. (authors)

  13. Radiation Dose from Voiding Cystourethrography (VCUG) Examination in Children

    International Nuclear Information System (INIS)

    Siriwiladluk, T.; Krisanachinda, A.

    2012-01-01

    Introduction: The purpose of this study is to determine entrance skin dose (ESD) from fluoroscopy and radiography procedures in voiding cystourethrography (VCUG) studies of pediatric patients by dose-area product (DAP) recording. Methods: Radiation doses received by 70 patients underwent VCUG procedures were determined by the DAP Meter, Wellh?fer Dosimetrie GmbH, Germany) directly coupled to the x-ray tube window (Philips Omni Diagnost Eleva) and an electrometer connected to a computer for data collection. The study revealed the radiation dose for VCUG and the baseline data on the entrance skin dose, ESD, dose area-product (DAP) and the effective dose, E, to establish local reference dose levels for VCUG in pediatric patients. Results: The mean(minimum-maximum) ESD, DAP and the effective dose of pediatric patients in 4 age ranges were 3.41(1-9) mGy, 46.58 (21.90-158.90) cGycm 2 and 0.10(0.05-0.33) mSv for 0- 1 years, 6.80(2-16) mGy, 115.55 (20.70-258.70)cGycm 2 and 0.24(0.04-0.54) mSv for >1-5 years, 11.76 (3-23) mGy, 292.28 (88.90-593.50)cGycm 2 and 0.61(0.19-1.25) mSv for >5-10 years, and 20.50(10-42) mGy, 575.98(255.60-1247.80) cGycm 2 and 1.12(0.54-2.62) mSv for >10-15 years respectively. Discussion: The dose levels for VCUG as recommended by the national reference doses (NRDs) of UK are classified at patient age of 0-1 years, 90 cGy.cm 2 , >1-5 years, 110 cGy.cm 2 , >5-10 years, 210 cGy.cm 2 and >10-15 years, 470 cGy.cm 2 respectively. Conclusions: The mean DAP of pediatric patients were higher than the dose level as recommended by NRD at the age range >1-5, >5-10 and >10-15 years. The limitation in this study was the non uniform in the number of patients at the higher age. Attempts could be made to lower the radiation dose to avoid the higher risk of developing radiation-induced cancer in children. (author)

  14. Radiation doses measured by TLD (thermo luminescent dosimeter) in x-ray examination

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hiraki, Motoji; Murakami, Shozo; Nishikawa, Naozo; Yagi, Takayuki

    1977-01-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field. (auth.)

  15. Assessment of patient radiation doses during routine diagnostic radiography examinations

    International Nuclear Information System (INIS)

    Adam, Asim Karam Aldden Adam

    2015-11-01

    Medical applications of radiation represent the largest source of exposure to general population. Accounting for 3.0 mSv against an estimated 2.4 mSv from a natural back ground in United States. The association of ionizing radiation an cancer risk is assumed to be continuos and graded over the entire range of exposure, The objective of this study is to evaluate the patient radiation doses in radiology departments in Khartoum state. A total of 840 patients ? during two in the following hospitals Khartoum Teaching Hospital (260 patients), Fedail specialized hospital ( 261 patients). National Ribat University hospital ( 189 patients) and Engaz hospital (130 patients). Patient doses were measured for 9 procedures. The Entrance surface Air Kerma (ESAK) was quantified using x-ray unit output by Unifiers xi dose rate meter( Un fore inc. Billdal. Sweden) and patient exposure parameters. The mean patient age. Weight and Body Mass index (BMI) were 42.6 year 58/4 kg and 212 kg/m respectively. The mean patient doses, kv and MAS and E.q was 0.35 mGy per procedures 59.9 volt 19.8 Ampere per second 0.32 Sv . Patient doses were comparable with previous studies. Patient radiation doses showed considerable difference between hospitals due to x- ray systems exposure settings and patient weight. Patient are exposed to unnecessary radiation.(Author)

  16. Radiation doses to patients from nuclear medicine examinations

    International Nuclear Information System (INIS)

    Boehm, K.; Boehmova, I.

    2014-01-01

    Public Health Authority of the Slovak Republic, Bratislava The exposure of the population to ionizing radiation is rising rapidly, nearly exclusively due to increasing medical use of radiation, including diagnostic methods of nuclear medicine. In 2012 Public health authority of the Slovak republic (PHA SR) performed a survey about the population exposure from nuclear medicine procedures. The primary objectives of this survey were to assess the frequency of different nuclear medicine procedures, determine the average activities administered by nuclear medicine procedures and compare them with the national diagnostic reference levels and determine the annual collective effective dose to the Slovak population from nuclear medicine. The effective dose calculation was based on the methodology of the ICRP32, ICRP80 and ICRP106. In Slovak republic are 11 nuclear medicine departments. The collected data of activities administered by different procedures correspond to 100 % of nuclear medicine departments. The total number of procedures included in the study was 36 250. The most commonly performed procedure was bone scintigraphy (35.9%), followed by lung perfusion and ventilation scintigraphy (17.0%), static and dynamic renal scintigraphy (13.0%), whole-body positron emission tomography of tumors with PET radiopharmaceuticals (11.6%), myocardial perfusion (8.8%), thyroid scintigraphy (6.2%), parathyroid scintigraphy (2.1%), scintigraphy of tumors (2.1%), scintigraphy of the liver and spleen (0.8%), brain perfusion (0.7%) and examination of the gastrointestinal system (0.3%). (authors)

  17. An investigation into CT radiation dose variations for head examinations on matched equipment

    International Nuclear Information System (INIS)

    Zarb, Francis; Foley, Shane; Toomey, Rachel; Rainford, Louise; Holm, Susanne; Evanoff, Michael G.

    2016-01-01

    This study investigated radiation dose and image quality differences for computed tomography (CT) head examinations across centres with matched CT equipment. Radiation dose records and imaging protocols currently employed across three European university teaching hospitals were collated, compared and coded as Centres A, B and C from specification matched CT equipment models. Patient scans (n = 40) obtained from Centres A and C were evaluated for image quality, based on the visualisation of Commission of European Community (CEC) image quality criteria using visual grading characteristic (VGC) analysis, where American Board of Radiology examiners (n = 11) stated their confidence in identifying anatomical criteria. Mean doses in terms of CT dose index (CTDI vol -mGy) and dose length product (DLP-mGy cm) were as follows: Centre A-33.12 mGy and 461.45 mGy cm; Centre B -101 mGy (base)/32 mGy (cerebrum) and 762 mGy cm and Centre C-71.98 mGy and 1047.26 mGy cm, showing a significant difference (p ≤ 0.05) in DLP across centres. VGC analysis indicated better visualisation of CEC criteria on Centre C images (VGC AUC 0.225). All three imaging protocols are routinely used clinically, and image quality is acceptable in each centre. Clinical centres with identical model CT scanners have variously customised their protocols achieving a range of dose savings and still resulting in clinically acceptable image quality. (authors)

  18. Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.

    Science.gov (United States)

    Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan

    2011-03-01

    Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield

  19. Radiation dose evaluation in patients submitted to conventional radiological examinations

    International Nuclear Information System (INIS)

    Tilly Junior, Joao G.

    1997-01-01

    This work presents the results of the evaluation of radiation dose delivered to the patients undergoing conventional radiological procedures. Based in the realized measurement some indicators are settled to quantitative appraisal of the radiological protection conditions offered to the population. Data assessment was done in the county of Curitiba, in Parana State, Brazil, from 12/95 to 04/96, in ten rooms of three different institutions, under 101 patients, adults with 70 ± 10 kg, during real examinations of chest PA, chest LAT and abdomen AP. (author)

  20. Radiation exposure to examiners and patients during therapeutic ERCP: Dose optimisation and risk estimation

    International Nuclear Information System (INIS)

    Sulieman, A.; Kappas, K.; Theodorou, K.; Paroutoglou, G.; Kapatenakis, A.; Kapsoritakis, A.; Potamianos, S.; Vlychou, M.; Fezoulidis, I.

    2008-01-01

    Aim: This study intended to optimise the radiation dose during therapeutic ERCP, and to estimate the risk for examiners and patients, to compare the doses based on available data obtained by other researchers and reference levels recommended by international organizations, and to evaluate the technique applied in order to reduce patient and examiners doses. Materials and Methods: 153 patients were studied in two Gastroenterology Departments, (group A, 111; group B, 42). Thermoluminescent dosimeters (TLD) were used to measure the staff and patients entrance surface dose (ESD) at different body sites. Results: The mean ESD, exit and thyroid surface dose per procedure was estimated to be 68.75 mGy, 3.45 mGy and 0.67 mGy, respectively. The mean patient effective dose was 3.44 mSv, and the cancer risk per procedure was estimated to be 190 x10 -6 . The effective dose for the first, second and third examiner was 0.4 μSv, 0.2 μSv and 5.0 μSv, respectively. Conclusion: The patient dose can be optimized by the presence of two experienced examiners and reduction of radiographic images. The examiners should use a wrap around lead apron since the highest dose originating from the X-ray tube, is incident on their side and back. The current formulae, which exist, underestimate the effective dose to the examiners, when they are applied for ERCP procedures. For both patients and examiners, our results were up to 60% lower compared to the lowest values found in previous studies. (authors)

  1. A snapshot of patients' awareness of radiation dose and risks associated with medical imaging examinations at an Australian radiology clinic

    International Nuclear Information System (INIS)

    Singh, N.; Mohacsy, A.; Connell, D.A.; Schneider, M.E.

    2017-01-01

    Background: Cumulative radiation exposure is linked to increasing the lifetime attributable risk of cancer. To avoid unnecessary radiation exposure and facilitate shared decision making, patients should be aware of these issues. This paper examines patients' awareness of radiation dose and risks associated with medical imaging examinations. Methods: Consecutive patients attending a private radiology clinic over a nine week period in 2014 in Metropolitan Melbourne were surveyed while waiting to undergo an imaging examination. Patients who were under 18 years of age, did not speak English and/or were referred for interventional imaging procedures were excluded from participation. Survey questions addressed patients' awareness of radiation dose associated with various imaging modalities' and patients' experience and preferences regarding communication of information about radiation. Data was analysed using SPSS (Ver 20.1). Results: A total of 242 surveys were completed. Most participants were male (143/239, 59.8%) and aged between 33 and 52 years (109/242, 45%). Over half of participants were not concerned about radiation from medical imaging (130/238, 54.6%). Only a third of participants (80/234, 34.2%) correctly reported that CT has a higher radiation dose than X-ray. Very few participants correctly identified mammography, DEXA, PET and PET/CT as radiation emitting examinations. The majority of participants (202/236, 85.6%) indicated that they were not informed about radiation dose and risks by their referring doctor in advance. Conclusion: This paper provides information relevant to a single private radiology clinic in Australia. Nevertheless, our results have shown that patients presenting for medical imaging have little awareness of radiation dose and risks associated with these examinations and received little information by their referring physicians or staff at the radiology clinic. - Highlights: • Patients' awareness regarding

  2. A snapshot of patients' awareness of radiation dose and risks associated with medical imaging examinations at an Australian radiology clinic.

    Science.gov (United States)

    Singh, N; Mohacsy, A; Connell, D A; Schneider, M E

    2017-05-01

    Cumulative radiation exposure is linked to increasing the lifetime attributable risk of cancer. To avoid unnecessary radiation exposure and facilitate shared decision making, patients should be aware of these issues. This paper examines patients' awareness of radiation dose and risks associated with medical imaging examinations. Consecutive patients attending a private radiology clinic over a nine week period in 2014 in Metropolitan Melbourne were surveyed while waiting to undergo an imaging examination. Patients who were under 18 years of age, did not speak English and/or were referred for interventional imaging procedures were excluded from participation. Survey questions addressed patients' awareness of radiation dose associated with various imaging modalities' and patients' experience and preferences regarding communication of information about radiation. Data was analysed using SPSS (Ver 20.1). A total of 242 surveys were completed. Most participants were male (143/239, 59.8%) and aged between 33 and 52 years (109/242, 45%). Over half of participants were not concerned about radiation from medical imaging (130/238, 54.6%). Only a third of participants (80/234, 34.2%) correctly reported that CT has a higher radiation dose than X-ray. Very few participants correctly identified mammography, DEXA, PET and PET/CT as radiation emitting examinations. The majority of participants (202/236, 85.6%) indicated that they were not informed about radiation dose and risks by their referring doctor in advance. This paper provides information relevant to a single private radiology clinic in Australia. Nevertheless, our results have shown that patients presenting for medical imaging have little awareness of radiation dose and risks associated with these examinations and received little information by their referring physicians or staff at the radiology clinic. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  3. Comparison of radiation doses using weight-based protocol and dose modulation techniques for patients undergoing biphasic abdominal computed tomography examinations

    Directory of Open Access Journals (Sweden)

    Livingstone Roshan

    2009-01-01

    Full Text Available Computed tomography (CT of the abdomen contributes a substantial amount of man-made radiation dose to patients and use of this modality is on the increase. This study intends to compare radiation dose and image quality using dose modulation techniques and weight- based protocol exposure parameters for biphasic abdominal CT. Using a six-slice CT scanner, a prospective study of 426 patients who underwent abdominal CT examinations was performed. Constant tube potentials of 90 kV and 120 kV were used for all arterial and portal venous phase respectively. The tube current-time product for weight-based protocol was optimized according to patient′s body weight; this was automatically selected in dose modulations. The effective dose using weight-based protocol, angular and z-axis dose modulation was 11.3 mSv, 9.5 mSv and 8.2 mSv respectively for the patient′s body weight ranging from 40 to 60 kg. For patients of body weights ranging 60 to 80 kg, the effective doses were 13.2 mSv, 11.2 mSv and 10.6 mSv respectively. The use of dose modulation technique resulted in a reduction of 16 to 28% in radiation dose with acceptable diagnostic accuracy in comparison to the use of weight-based protocol settings.

  4. Organ doses to atomic bomb survivors from radiological examinations at the Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    Kato, Kazuo; Antoku, Shigetoshi; Sawada, Shozo; Russell, W.J.

    1990-04-01

    When estimating the risks of oncogenesis and cancer mortality as a result of atomic bomb radiation exposure, medical X-ray doses received by the A-bomb survivors must also be estimated and considered. Using a phantom human, we estimated the X-ray doses received by A-bomb survivors during routine biennial medical examinations conducted at RERF as part of the long-term Adult Health Study (AHS), since these examinations may represent about 45 % of the survivors' total medical irradiations. Doses to the salivary glands, thyroid gland, lung, breast, stomach and colon were measured using thermoluminescent dosimeters. The results reported here will aid in estimating organ doses received by individual AHS participants. (author)

  5. Labour cost of radiation dose

    International Nuclear Information System (INIS)

    Cook, A.; Lockett, L.E.

    1978-01-01

    In order to optimise capital expenditure on measures to protect workers against radiation it would be useful to have a means to measure radiation dose in money terms. Because labour has to be employed to perform radiation work there must be some relationship between the wages paid and the doses received. Where the next increment of radiation dose requires additional labour to be recruited the cost will at least equal the cost of the extra labour employed. This paper examines some of the factors which affect the variability of the labour cost of radiation dose and notes that for 'in-plant' exposures the current cost per rem appears to be significantly higher than values quoted in ICRP Publication 22. An example is given showing how this concept may be used to determine the capital it is worth spending on installed plant to prevent regular increments of radiation dose to workers. (author)

  6. The child fluoroscopic examination in the I.I.-DR. Reduction of radiation exposure dose

    International Nuclear Information System (INIS)

    Endo, Takayuki

    2001-01-01

    This examination for I.I.-DR conditions was done for the purpose of reducing radiation exposure dose in child gastrointestinal fluoroscopy. Fluoroscopic apparatus used was Toshiba MAX-1000A with imaging recorder DDX-1000A. Dose was measured with a thimble ionization chamber Radcal Corporation Model 9015. Examinations for conditions were performed with the standard dose determined, the digital value 300, giving the plateau contrast ratio of acryl plate/barium sulfate. Reduction to about 10% dose (57 μGy/min for pulse fluoroscopy and 6.8 μGy/film for filming) relative to the usual method (764 μGy/min and 36.0 μGy/film, respectively) was found attained with additional filter of Al 0.5 mm + Cu 0.2 mm and IRIS diameter 100 with acryl thickness of 10 cm. Actual images of 6 months old baby were presented. (K.H.)

  7. Dose variation in the practice of medical examination

    International Nuclear Information System (INIS)

    Huyskens, C.

    1989-01-01

    A discussion is presented on dose variation in the practice of the x-ray examination and on the desirability of checks in the framework of quality care. It is shown that, roughly speaking, for all examination types the dose distribution per action shows the same character. About 20% of the actions cause about half of the collective dose and the individual radiation burden in this is a factor 3 up to 10 larger than average, the remaining 80%. Insight in the distribution of the use of radiation per action is characterized as a necessary step in the control of patient doses. Radiation protection of patients is of avail mostly when the attention is aimed in first instance at examination categories with an average high dose and at the 2-% group of actions with the relatively highest radiation use. Regularly measuring of the 'actual practice' in relation to the 'good practice' is a logical test which makes part of the general quality assurance of medical action. It is recommended to take in hand the care for radiation protection of the patient in this way, within the own department or institute as well as by means of inter collegial checks on a national level. (author). 2 refs.; 3 figs

  8. Patient radiation doses in upper GI examinations: a comparison between conventional and double-contrast techniques.

    Science.gov (United States)

    Bankvall, G; Owman, T

    1982-01-01

    A total of 60 patients, divided into 3 groups with 20 patients in each, were examined with 3 different techniques: group 1 -- conventional technique, exposure at 120 kV; group 2 -- double-contrast technique (hypotonic gastrography, HG), exposure at 80 kW; group 3 -- HG, exposure at 120 kV. All examinations were performed in the same examination room and by the same radiologist. Absorbed doses to skin, thyroid, breasts, and gonads as well as energy imparted were measured. The only significant dose enhancements found when using double-contrast instead of conventional technique were in the female breasts and then only if the voltage was in the lower range. With exposure at 120 kV there was little difference in absorbed dose, but a significant advantage with respect to energy was imparted when using a double-contrast technique instead of a conventional technique. The testes doses were very low in all 3 types of examinations, and it seems that use of a testes shield is hardly motivated. With regard to both diagnostic accuracy and patient radiation dose, there can be no reason to use a conventional technique for upper GI examinations.

  9. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  10. Radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Cohnen, M.; Kemper, J.; Moedder, U.; Moebes, O.; Pawelzik, J.

    2002-01-01

    The aim of this study was to compare radiation exposure in panoramic radiography (PR), dental CT, and digital volume tomography (DVT). An anthropomorphic Alderson-Rando phantom and two anatomical head phantoms with thermoluminescent dosimeters fixed at appropriate locations were exposed as in a dental examination. In PR and DVT, standard parameters were used while variables in CT included mA, pitch, and rotation time. Image noise was assessed in dental CT and DVT. Radiation doses to the skin and internal organs within the primary beam and resulting from scatter radiation were measured and expressed as maximum doses in mGy. For PR, DVT, and CT, these maximum doses were 0.65, 4.2, and 23 mGy. In dose-reduced CT protocols, radiation doses ranged from 10.9 to 6.1 mGy. Effective doses calculated on this basis showed values below 0.1 mSv for PR, DVT, and dose-reduced CT. Image noise was similar in DVT and low-dose CT. As radiation exposure and image noise of DVT is similar to low-dose CT, this imaging technique cannot be recommended as a general alternative to replace PR in dental radiology. (orig.)

  11. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  12. Radiation doses during chest examinations using dose modulation techniques in multislice CT scanner

    OpenAIRE

    Livingstone Roshan; Pradip Joe; Dinakran Paul; Srikanth B

    2010-01-01

    Objective: To evaluate the radiation dose and image quality using a manual protocol and dose modulation techniques in a 6-slice CT scanner. Materials and Methods: Two hundred and twenty-one patients who underwent contrast-enhanced CT of the chest were included in the study. For the manual protocol settings, constant tube potential (kV) and tube current-time product (mAs) of 140 kV and 120 mAs, respectively, were used. The angular and z-axis dose modulation techniques utilized a constant tu...

  13. Patient surface doses in computerized tomography examinations

    International Nuclear Information System (INIS)

    Vekic, B; Kovacevic, S.; Ranogajec-Komor, M.; Duvnjak, N.; Marusic, P.; Anic, P.; Dolencic, P.

    1996-01-01

    The diagnostic value of computerized tomography has increased due to very rapid technical advances in both equipment and techniques. When the CT scanners were introduced, a significant problem for the specification of the radiation dose imparted to the patient undergoing CT examination has been created. In CT, the conditions of exposure are quite different from those in conventional X-ray imaging. CT procedure involves the continuous tomography of thin layers. Some of these layers touch each other while others overlap. The radiation doses received by patients can vary considerably. In addition to the radiation from the collimated primary beam, patients are exposed to significant scattered doses in unpredictable amounts. Every effort should be made to keep these doses to a reasonable minimum, without sacrificing the image quality. The aims of this work were to determine the surface doses delivered to various organs of patients during various computerized tomography examinations (head, thorax, kidney, abdomen and pelvis). Particular attention was directed to the precise determination of doses received by the eyes (during CT of head) and gonads (during CT of pelvis and lower abdomen) since these organs can be near or even in the primary X-ray beam

  14. Research on the radiation doses to adults receiving from main types of medical X-ray CT examinations

    International Nuclear Information System (INIS)

    Gao Linfeng; Wang Bin; Yao Jie; Qian Aijun; Zheng Junzheng; Zhuo Weihai; Qu Liangyong

    2013-01-01

    To study and master the doses to examinees receiving from the wide spread X-CT examinations, is a key issue for strengthening the medical radiation protection. In the studies of the medical exposure levels during the Eleventh Five-Year Plan period in Shanghai, based on the brands of X-CT scanners and their distributions in different levels of hospitals, a total of 45 sets (about 30% of all) of scanners were selected for the field study. Among the 8 commonly performed examinations, the scan parameters and their relevant dosimetry information for 500 adults were collected, and their typical effective doses were estimated with the dose conversion factors. The results showed that the averages of weighted CT dose index (CTDI w ) were 55.4, 12.5 and 18.4 mGy, and the dose length products (DLP) were averaged to be 603, 294 and 415 mGy·cm, for the skull, chest and abdomen X-CT scans, respectively. The typical effective doses were estimated to be 1.4, 5.3, and 7.5 mSv for adults in the head, chest and abdomen X-CT scans, respectively. The values of CTDI w for skull scans were generally higher than those for the ear canal, eye, or sinus examinations. It is clear that the optimization between the image quality and the radiation dose should be further strengthened. Particular attentions should be paid in selecting the scanning parameters for various types of X-CT scans, and the diagnostic reference levels for X-CT examinations should be continuously improved. (authors)

  15. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  16. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Egeblad, M.; Gottlieb, E.

    1975-01-01

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections [fr

  17. Radiation dose reduction in chest CT—Review of available options

    International Nuclear Information System (INIS)

    Kubo, Takeshi; Ohno, Yoshiharu; Kauczor, Hans Ulrich; Hatabu, Hiroto

    2014-01-01

    Highlights: • The present status of proliferating CT examinations was presented. • Technical improvements of CT scanners for radiation dose reduction were reviewed. • Advantage and disadvantage of methods for CT radiation dose reduction were discussed. • Evidences for safety of CT radiation dose reduction were reviewed. - Abstract: Computed tomography currently accounts for the majority of radiation exposure related to medical imaging. Although technological improvement of CT scanners has reduced the radiation dose of individual examinations, the benefit was overshadowed by the rapid increase in the number of CT examinations. Radiation exposure from CT examination should be kept as low as reasonably possible for patient safety. Measures to avoid inappropriate CT examinations are needed. Principles and information on radiation dose reduction in chest CT are reviewed in this article. The reduction of tube current and tube potential are the mainstays of dose reduction methods. Study results indicate that routine protocols with reduced tube current are feasible with diagnostic results comparable to conventional standard dose protocols. Tube current adjustment is facilitated by the advent of automatic tube current modulation systems by setting the appropriate image quality level for the purpose of the examination. Tube potential reduction is an effective method for CT pulmonary angiography. Tube potential reduction often requires higher tube current for satisfactory image quality, but may still contribute to significant radiation dose reduction. Use of lower tube potential also has considerable advantage for smaller patients. Improvement in image production, especially the introduction of iterative reconstruction methods, is expected to lower radiation dose significantly. Radiation dose reduction in CT is a multifaceted issue. Understanding these aspects leads to an optimal solution for various indications of chest CT

  18. Radiation dose reduction in chest CT—Review of available options

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takeshi, E-mail: tkubo@kuhpkyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Kauczor, Hans Ulrich, E-mail: hu.kauczor@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Clinic Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)

    2014-10-15

    Highlights: • The present status of proliferating CT examinations was presented. • Technical improvements of CT scanners for radiation dose reduction were reviewed. • Advantage and disadvantage of methods for CT radiation dose reduction were discussed. • Evidences for safety of CT radiation dose reduction were reviewed. - Abstract: Computed tomography currently accounts for the majority of radiation exposure related to medical imaging. Although technological improvement of CT scanners has reduced the radiation dose of individual examinations, the benefit was overshadowed by the rapid increase in the number of CT examinations. Radiation exposure from CT examination should be kept as low as reasonably possible for patient safety. Measures to avoid inappropriate CT examinations are needed. Principles and information on radiation dose reduction in chest CT are reviewed in this article. The reduction of tube current and tube potential are the mainstays of dose reduction methods. Study results indicate that routine protocols with reduced tube current are feasible with diagnostic results comparable to conventional standard dose protocols. Tube current adjustment is facilitated by the advent of automatic tube current modulation systems by setting the appropriate image quality level for the purpose of the examination. Tube potential reduction is an effective method for CT pulmonary angiography. Tube potential reduction often requires higher tube current for satisfactory image quality, but may still contribute to significant radiation dose reduction. Use of lower tube potential also has considerable advantage for smaller patients. Improvement in image production, especially the introduction of iterative reconstruction methods, is expected to lower radiation dose significantly. Radiation dose reduction in CT is a multifaceted issue. Understanding these aspects leads to an optimal solution for various indications of chest CT.

  19. PATIENT RADIATION DOSE FROM CHEST X-RAY EXAMINATIONS IN THE WEST BANK-PALESTINE.

    Science.gov (United States)

    Lahham, Adnan; Issa, Ahlam; ALMasri, Hussein

    2018-02-01

    Radiation doses to patients resulting from chest X-ray examinations were evaluated in four medical centers in the West Bank and East Jerusalem-Palestine. Absorbed organ and effective doses were calculated for a total of 428 adult male and female patients by using commercially available Monte Carlo based softwares; CALDOSE-X5 and PCXMC-2.0, and hermaphrodite mathematical adult phantoms. Patients were selected randomly from medical records in the time period from November 2014 to February 2015. A database of surveyed patients and exposure factors has been established and includes: patient's height, weight, age, gender, X-ray tube voltage, electric current (mAs), examination projection (anterior posterior (AP), posterior anterior (PA), lateral), X-ray tube filtration thickness in each X-ray equipment, anode angle, focus to skin distance and X-ray beam size. The average absorbed doses in the whole body from different projections were: 0.06, 0.07 and 0.11 mGy from AP, PA and lateral projections, respectively. The average effective dose for all surveyed patients was 0.14 mSv for all chest X-ray examinations and projections in the four investigated medical centers. The effect of projection geometry was also investigated. The average effective doses for AP, PA and lateral projections were 0.14, 0.07 and 0.22 mSv, respectively. The collective effective dose estimated for the exposed population was ~60 man-mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers.

    Science.gov (United States)

    Paolicchi, F; Miniati, F; Bastiani, L; Faggioni, L; Ciaramella, A; Creonti, I; Sottocornola, C; Dionisi, C; Caramella, D

    2016-04-01

    To evaluate radiation protection basic knowledge and dose assessment for radiological procedures among Italian radiographers A validated questionnaire was distributed to 780 participants with balanced demographic characteristics and geographic distribution. Only 12.1 % of participants attended radiation protection courses on a regular basis. Despite 90 % of radiographers stating to have sufficient awareness of radiation protection issues, most of them underestimated the radiation dose of almost all radiological procedures. About 5 % and 4 % of the participants, respectively, claimed that pelvis magnetic resonance imaging and abdominal ultrasound exposed patients to radiation. On the contrary, 7.0 % of the radiographers stated that mammography does not use ionising radiation. About half of participants believed that radiation-induced cancer is not dependent on age or gender and were not able to differentiate between deterministic and stochastic effects. Young radiographers (with less than 3 years of experience) showed a higher level of knowledge compared with the more experienced radiographers. There is a substantial need for radiographers to improve their awareness of radiation protection issues and their knowledge of radiological procedures. Specific actions such as regular training courses for both undergraduate and postgraduate students as well as for working radiographers must be considered in order to assure patient safety during radiological examinations. • Radiographers should improve their knowledge on radiation protection issues. • Only 12.1 % of participants attended radiation protection courses on a regular basis. • Specific actions must be considered in order to increase knowledge and awareness.

  1. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Gonadal dose in routine diagnostic examinations

    International Nuclear Information System (INIS)

    Weber, J.; Koen, J.A.; Akkermans, J.A.

    1974-01-01

    Gonadal doses caused by stray radiation produced during radiodiagnostic investigations were measured with thermoluminescent dosemeters in various hospitals in the Netherlands. Significantly different gonadal doses were measured depending upon the hospital where the investigations were carried out. The mean dose of an examination type in one country can only be determined with any accuracy if measurements in a large number of hospitals are performed

  3. Energies, health, medicine. Low radiation doses

    International Nuclear Information System (INIS)

    2004-01-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  4. Assessment of medical staff radiation doses received in some interventional examination

    International Nuclear Information System (INIS)

    Oenal, E.

    2006-03-01

    The aim of this work is to suggest a simple method for the estimation of cardiologist extremity doses. The extremity and effective doses The extremity and effective doses of nine cardiologists working at five different angiographic units were measured for 157 interventional examinations. Simultaneous measurement of patient doses were also carried out using a DAP meter separately for each projection. Fluoroscopy time (T f l), number of radiographic frames (N) were recorded on-line during these measurements. A Rando phantom was exposed at similar projections with patient studies and one minute of fluoroscopic exposure (D 1 50 n T f l n ) and one frame of radiographic exposure (D 1 50 n N n ) were determined for each projection. Scatter radiations from these exposures were also measured at 50, 100 and 150 cm above the floor level at the cardiologist positions for the estimation of legs, wrists and thyroid (or eye) doses. Weighting of projections were determined for the patient group of each cardiologist using the recorded values of T f l and N r f. Extremity doses, D x were calculated with the following formula: D 1 50=Σ n D 1 50 n T f l n (T f l n )+Σ n D 1 50 n N n (N n ), n=4, 5, 6, 7, 10. n gives the projection numbert and x is the distance from the floor level. Measured and calculated extremity doses for each cardiologist were in good agreement. The calculated doses for 50cm and 100cm were found within the measured values of left and right legs and wrists. The use of dominant projection data alone still provided comparable results

  5. Patient radiation dose during fluoroscopy examinations in a selected hospital in Sudan

    International Nuclear Information System (INIS)

    Darsalih, Abir Abdelrady Elnoor

    2016-04-01

    The purpose of this study was to assess patient radiation dose during fluoroscopy examinations using contrast media in Sudan. Data was collected from the Department of Radiology of the Military Hospital in Omdurman. The quality control tests on the Fluoroscopy machine indicated that it is performing self-consistently. The patient doses were obtained from measurements made using Kerma Area Product (KAP) meter. Measurements were made on sixty patients. The special examinations considered were hysterosalpinogram (HSG), A sanding (A.S), D.Standing (D.S) , Gastrointestinal (G.I) tract and Sinogram. The KAP meter readings obtained were 2.68 ±1.80 mGy.m 2 ; 5.16 ±3.53 mGy.m 2 ; 9.15 ± 3.53 mGy.m 2 ; 5.80 ±6.22 mGy.m 2 and 10.33 ±10.69 mGy.m 2 respectively. Improved patient protection can be achieved by the adoption of standardized and optimized institutional protocols using equipment with an integrated dose management system. The cumulative reference point air-kerma data, along with KAP, should be routinely recorded in the patient records for trend analysis to provide the means to enhance optimization of patient protection in fluoroscopy practice. (au)

  6. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  7. Radiation doses from paediatric x-ray examinations in some hospitals in Khartoum Area

    International Nuclear Information System (INIS)

    Elshiekh, E.H.A.

    2007-10-01

    The aim of study was to evaluate the entrance surface doses (ESDs) and the effective dose (ED) to patients undergoing some common diagnostic x-ray examinations in large paediatric public hospitals in Khartoum State. ESD per examination was estimated from x-ray tube parameters in three hospitals comprising three units and sample of 449 radiographs. The entrance surface dose (ESD) and the effective dose (ED) were evaluated for chest, skull, abdomen, lumbar spine, and pelvis in antero-posterior (AP), postero-anterior (PA) and lateral (LAT) projections. For each examination, four age groups 0-1, 1-5, 5-10 and 10-15 years were studied. The DoseCal software was used to calculate these doses. In comparison between Sudanese hospitals with NRPB reference levels, all hospitals showed lower doses than reference levels except for the case of chest in A. Gasim and Khartoum hospitals. Wide variations for the chest examination have been detected. These variation were evident, in Sudan, from previous work. ESDs at Omdurman Hospital meet the reference levels for all years range. ESDs at Omdurman hospital were found to be 41μGy and 62 μGy for range 0-1 year, and 1-5 years, respectively, ESDs at A. Gasim Hospital was found found to be 65 μGy and 100 μGy for range 0-1 year, and 1-5 years, respectively. These values are above NRPB reference levels but lower than CEC1996 reference levels, and meet NRPB reference dose levels in range 5-10 years. In Khartoum Hospital the results present higher ESD than NRPB and CEC reference levels. The high ESDs reflect that ALARA principle is not being applied in chest examinations in Sudan. From comparison between results in this work with previous performed for chest cases in these Sudanese Hospitals at 2004, the ESDs in A. Gasim Hospital were above the previous result but meet the reference levels only range 5-10 years. Omdurman Hospital result but meet the reference levels for all years ranges and are lower than 2002 results. Khartoum Hospital

  8. Anthropogenic materials and products containing natural radionuclides. Pt. 2. Examination of radiation doses resulting from occupational exposure

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.H.

    1993-11-01

    The radiation doses are determined on the basis of dosimetric scanning of the materials and products and measurement of the ambient dose rates and inhaled doses at the place of work. For all places and conditions exmined, the average annual effective dose (ICRP) is of the order of 20mSv/annum. The substances and products examined are phosphate fertilizers. thoriated tungsten electrodes, or glass gas hoods, respectively, dental material containing uranium, and dental ceramics containing zirconium sands. The report also gives information on the occupational exposure in drinking-water conditioning plants. (Orig./DG) [de

  9. Computation of thyroid doses and carcinogenic radiation risks to patients undergoing neck CT examinations

    International Nuclear Information System (INIS)

    Huda, W.; Spampinato, M. V.; Tipnis, S. V.; Magill, D.

    2013-01-01

    The aim of the study was to investigate how differences in patient anatomy and CT technical factors in neck CT impact on thyroid doses and the corresponding carcinogenic risks. The CTDI vol and dose-length product used in 11 consecutive neck CT studies, as well as data on automatic exposure control (AEC) tube current variation(s) from the image DICOM header, were recorded. For each CT image that included the thyroid, the mass equivalent water cylinder was estimated based on the patient cross-sectional area and average relative attenuation coefficient (Hounsfield unit, HU). Patient thyroid doses were estimated by accounting for radiation intensity at the location of the patient's thyroid, patient size and the scan length. Thyroid doses were used to estimate thyroid cancer risks as a function of patient demographics using risk factors in BEIR VII. The length of the thyroid glands ranged from 21 to 54 mm with an average length of 42±12 mm. Water cylinder diameters corresponding to the central slice through the patient thyroid ranged from 18 to 32 cm with a mean of 25±5 cm. The average CTDI vol (32-cm phantom) used to perform these scans was 26±6 mGy, but the use of an AEC increased the tube current by an average of 44 % at the thyroid mid-point. Thyroid doses ranged from 29 to 80 mGy, with an average of 55±19 mGy. A 20-y-old female receiving the highest thyroid dose of 80 mGy would have a thyroid cancer risk of nearly 0.1 %, but radiation risks decreased very rapidly with increasing patient age. The key factors that affect thyroid doses in neck CT examinations are the radiation intensity at the thyroid location and the size of the patient. The corresponding patient thyroid cancer risk is markedly influenced by patient sex and age. (authors)

  10. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  11. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  12. Radiation doses to patients from x-ray examinations - development from 2005 to 2008; Patientdoser fraan roentgenundersoekningar i Sverige - utveckling fraan 2005 till 2008

    Energy Technology Data Exchange (ETDEWEB)

    Leitz, Wolfram; Almen, Anja

    2010-04-15

    Data has been compiled and analyzed and compared with the earlier reports. Radiation doses were tested for possible links with various parameters (eg type of x-ray equipment, image recording systems, different technique factors). In conventional x-ray examinations radiation doses were, for equipment with direct digital image receivers, in average 30% lower than for those with photo plates. Mammography doses were, with one exception, the same for all types of equipment and video receivers. The CT-examinations had a small trend for higher doses for new equipment as compared to earlier. Use of exposure automation did not affect radiation doses. Compared with 2006, the doses of conventional surveys decreased by an average of 21%. One third of this dose reduction can be attributed the introduction of direct digital system whose use grew by about 30%. Most of the dose reduction can be attributed to the actions carried out to lower the dose of the reference level. Doses for the CT scan showed only a weak downwards trend. Mammography Doses decreased by an average of just over 10% a large part dependent on increased number of Sectra equipment. The system of diagnostic reference levels have again shown to have positive influence on the radiation level at the x-ray examinations, this is most pronounced for conventional radiography. There is still a large potential for dose reduction, and a measure to achieve this is to reduce the current reference levels. Very few diagnostic Standard doses are higher than the reference level. A reduction of the reference levels corresponding to the third quartile of dose distribution could lead further dose decrease of 10-20%. The corresponding reduction in dose should be done also for the DT and mammograms when lowering the reference level, there are few standard doses higher than the current reference levels

  13. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses

    International Nuclear Information System (INIS)

    Huda, Walter; Lieberman, Kristin A.; Chang, Jack; Roskopf, Marsha L.

    2004-01-01

    We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18x7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186±8 mm and 147±8 mm, respectively, with an average HU value of 209±40. An infant head was found to be equivalent to a water cylinder with a radius of ∼60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is ∼20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors

  14. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    Science.gov (United States)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  15. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  16. Analysis of CT radiation dose based on radiation-dose-structured reports

    International Nuclear Information System (INIS)

    Wang Weipeng; Zhang Yi; Zhang Menglong; Zhang Dapeng; Song Shaojuan

    2014-01-01

    Objective: To analyse the CT radiation dose statistically using the standardized radiation-dose-structured report (RDSR) of digital imaging and communications in medicine (DICOM). Methods: Using the self-designed software, 1230 RDSR files about CT examination were obtained searching on the picture archiving and communication system (PACS). The patient dose database was established by combination of the extracted relevant information with the scanned sites. The patients were divided into adult group (over 10 years) and child groups (0-1 year, 1-5 years, 5-10 years) according to the age. The average volume CT dose index (CTDI vol ) and dose length product (DLP) of all scans were recorded respectively, and then the effective dose (E) was estimated. The DLP value at 75% quantile was calculated and compared with the diagnostic reference level (DRL). Results: In adult group, CTDI vol and DLP values were moderately and positively correlated (r = 0.41), the highest E was observed in upper abdominal enhanced scan, and the DLP value at 75% quantile was 60% higher than DRL. In child group, their CTDI vol in group of 5-10 years was greater than that in groups of 0-1 and 1-5 years (t = 2.42, 2.04, P < 0.05); the DLP value was slightly and positively correlated with the age (r = 0.16), while E was moderately and negatively correlated with the age (r = -0.48). Conclusions: It is a simple and efficient method to use RDSR to obtain the radiation doses of patients. With the popularization of the new equipment and the application of regionalized medical platform, RDSR would become the main tool for the dosimetric level surveying and individual dose recording. (authors)

  17. Trends in doses to some UK radiation workers

    International Nuclear Information System (INIS)

    Best, R.J.; Kendall, G.M.; Pook, E.A.; Saunders, P.J.

    1990-01-01

    The NRPB runs a Personal Monitoring Service which issues dosemeters and keeps radiation dose records for over 10 000 workers. This database is a valuable source of information on occupational exposure to radiation though it is likely that in future the Central Index of Dose Information (CIDI) will provide more comprehensive statistics, albeit restricted to radiation workers in the sense of Ionising Radiation Regulations. This note describes doses incurred to the end of 1987 with some preliminary figures for 1988. It does not cover the same ground as earlier reports but gives more details of the structure of the monitored population by age and sex and examines evidence that mean radiation doses are decreasing with time. (author)

  18. Radiation doses from computed tomography in Australia

    International Nuclear Information System (INIS)

    Thomson, J.E.M.; Tingey, D.R.C.

    1997-11-01

    Recent surveys in various countries have shown that computed tomography (CT) is a significant and growing contributor to the radiation dose from diagnostic radiology. Australia, with 332 CT scanners (18 per million people), is well endowed with CT equipment compared to European countries (6 to 13 per million people). Only Japan, with 8500 units (78 per million people), has a significantly higher proportion of CT scanners. In view of this, a survey of CT facilities, frequency of examinations, techniques and patient doses has been performed in Australia. It is estimated that there are 1 million CT examinations in Australia each year, resulting in a collective effective dose of 7000 Sv and a per caput dose of 0.39 mSv. This per caput dose is much larger than found in earlier studies in the UK and New Zealand but is less than 0.48 mSv in Japan. Using the ICRP risk factors, radiation doses from CT could be inducing about 280 fatal cancers per year in Australia. CT is therefore a significant, if not the major, single contributor to radiation doses and possible risk from diagnostic radiology. (authors)

  19. Radiation doses during chest examinations using dose modulation techniques in multislice CT scanner

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Pradip, Joe; Dinakran, Paul M.; Srikanth, B.

    2010-01-01

    Objectives: To evaluate the radiation dose and image quality using a manual protocol and dose modulation techniques in a 6-slice CT scanner. Materials and Methods: Two hundred and twenty-one patients who underwent contrast-enhanced CT of the chest were included in the study. For the manual protocol settings, constant tube potential (kV) and tube current-time product (mAs) of 140 kV and 120 mAs, respectively, were used. The angular and z-axis dose modulation techniques utilized a constant tube potential of 140 kV; mAs values were automatically selected by the machine. Effective doses were calculated using dose-length product (DLP) values and the image quality was assessed using the signal-to-noise (SNR) ratio values. Mean effective doses using manual protocol for patients of weights 40-60 kg, 61-80 kg, and 81 kg and above were 8.58 mSv, 8.54 mSv, and 9.07 mSv, respectively. Mean effective doses using z-axis dose modulation for patients of weights 40-60 kg, 61-80 kg, and 81 kg and above were 4.95 mSv, 6.87 mSv, and 10.24 mSv, respectively. The SNR at the region of the liver for patients of body weight of 40-60 kg was 5.1 H, 6.2 H, and 8.8 H for manual, angular, and z-axis dose modulation, respectively. Conclusion: Dose reduction of up to 15% was achieved using angular dose modulation and of up to 42% using z-axis dose modulation, with acceptable diagnostic image quality compared to the manual protocol. (author)

  20. Patient doses from diagnostic radiographic examinations in Syria

    International Nuclear Information System (INIS)

    Kharita, M.H.; Khedr, M.; Wannus, K.

    2009-05-01

    The aim of this study is to evaluate radiation doses received by adult patients undergoing 9 routine common types of x-ray examination in Syria covering (chest PA, lumbar spine PA, lumbar spine LAT, Urography, abdomen, pelvis and hip, head, shoulder and extremities). The study consisted of measurements for 1308 x-ray examination for patients in 26 public hospitals. The average effective dose imparted to each patient per examination was computed from measurement of dose area product for the examination and using the X-dose software, the result of the effective dose except for extremities are gradually (0.125, 1.67, 1.23, 2.7, 1.07, 0.85, 0.05 and 0.025) and the average of the DAP for extremities was 0.095 Gy.cm 2 . (author)

  1. Survey of patient doses from conventional diagnostic radiographic examinations in Syria

    International Nuclear Information System (INIS)

    Kharita, M. H.; Khedr, M. S.; Wannus, K. M.

    2010-01-01

    The aim of this study is to evaluate radiation doses received by adult patients undergoing eight routine common types of X-ray examination in Syria. These types cover chest PA, lumbar spine PA, lumbar spine LAT, urography, abdomen, pelvis and hip, head and shoulder. This work consisted of measurements for 926 X-ray examinations for patients in 26 governmental hospitals. The mean and third quartile of the dose area product (DAP) to each patient per examination have been measured. The corresponding average effective doses have been computed from the DAP measurement for each examination using NRPP X-Dose software. Comparison of the results was done with those from similar surveys published by the United Nation Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2000, 2007). The present measurements will provide a useful baseline to establish, for the first time, national diagnostic reference levels. These results can be used in the future to evaluate the collective dose to the population from medical exposure and the radiation risks from the various radiological procedures. (authors)

  2. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  3. Radiation doses and risks to neonates undergoing radiographic examinations in intensive care units in Tunisia

    Directory of Open Access Journals (Sweden)

    Abir Bouaoun

    2015-12-01

    Full Text Available Purpose: To assess the radiation doses to neonates from diagnostic radiography in order to derive the local diagnostic reference levels (LDRLs for optimisation purposes.Methods: This study was carried out in the neonatal intensive care units (NICU of  two hospitals in Tunis. 134 babies, with weights ranging from 635 g to 6680 g, performed chest-abdomen X-ray examinations. Neonates were categorized into groups of birth weight. For each X-ray examination, patient data and exposure parameters were recorded. Dose area product (DAP was measured and entrance surface dose (ESD was estimated. Effective dose was calculated from the Monte Carlo simulation software PCXMC.Results: DAP values increased with neonatal weight and demonstrated a wide variation (5.0 - 43.0 mGy.cm2, mean 23.4 mGy.cm2 for patient weight from 600 g to 4000 g. A wide variation was also observed for ESD (14 - 93 μGy, mean 55.2 μGy. The LDRLs expressed in term of DAP were estimated to be 17.6 mGy.cm2 and 29.1 mGy.cm2 for the first and the second NICU, respectively. In terms of effective dose, the average value was about 31.6 μSv per single radiological examination. The results show the necessity to use a standardized protocol with high voltage technique combined to lower current time product (mAs values and an adapted collimation which could lead to further reductions in the neonatal doses. Conclusion: This study presents the LDRLs and the effective doses for neonates in two NICUs and demonstrates the necessity to optimize patient protection for this category of patient.

  4. Spiral CT and radiation dose

    International Nuclear Information System (INIS)

    Imhof, H.; Schibany, N.; Ba-Ssalamah, A.; Czerny, C.; Hojreh, A.; Kainberger, F.; Krestan, C.; Kudler, H.; Noebauer, I.; Nowotny, R.

    2003-01-01

    Recent studies in the USA and Europe state that computed tomography (CT) scans compromise only 3-5% of all radiological exams, but they contribute 35-45% of total radiation dose to the patient population. These studies lead to concern by several public authorities. Basis of CT-dose measurements is the computed tomography dose index (CTDI), which was established 1981. Nowadays there are several modifications of the CTDI values, which may lead to confusion. It is suggested to use the standardized CTDI-100 w. value together with the dose length product in all CT-examinations. These values should be printed on all CT-images and allows an evaluation of the individualized patient dose. Nowadays, radiologist's aim must be to work at the lowest maximal diagnostic acceptable signal to noise ratio. To decrease radiation dose radiologist should use low kV and mA, but high pitches. Newly developed CT-dose-reduction soft-wares and filters should be installed in all CT-machines. We should critically compare the average dose used for a specific examination with the reference dose used in this country and/or Europe. Greater differences should caution the radiologist. Finally, we as radiologists must check very carefully all indications and recommend alternative imaging methods. But we have also to teach our customers--patients and medical doctors who are non-radiologists--that a 'good' image is not that which show all possible information, but that which visualize 'only' the diagnostic necessary information

  5. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  6. Information about radiation dose and risks in connection with radiological examinations: what patients would like to know

    International Nuclear Information System (INIS)

    Ukkola, Leila; Oikarinen, Heljae; Haapea, Marianne; Tervonen, Osmo; Henner, Anja; Honkanen, Hilkka

    2016-01-01

    To find out patients' wishes for the content and sources of the information concerning radiological procedures. A questionnaire providing quantitative and qualitative data was prepared. It comprised general information, dose and risks of radiation, and source of information. Two tables demonstrating different options to indicate the dose or risks were also provided. Patients could give one or many votes. Altogether, 147 patients (18-85 years) were interviewed after different radiological examinations using these devices. 95 % (139/147) of the patients wished for dose and risk information. Symbols (78/182 votes) and verbal scale (56/182) were preferred to reveal the dose, while verbal (83/164) and numerical scale (55/164) on the risk of fatal cancer were preferred to indicate the risks. Wishes concerning the course, options and purpose of the examination were also expressed. Prescriber (3.9 on a scale 1-5), information letter (3.8) and radiographer (3.3) were the preferred sources. Patients aged 66-85 years were reluctant to choose electronic channels. Apart from general information, patients wish for dose and risk information in connection with radiological examinations. The majority preferred symbols to indicate dose and verbal scales to indicate risks, and the preferred source of information was the prescriber or information letter. (orig.)

  7. Management of pediatric radiation dose using Philips fluoroscopy systems DoseWise: perfect image, perfect sense

    International Nuclear Information System (INIS)

    Stueve, Dick

    2006-01-01

    Although image quality (IQ) is the ultimate goal for accurate diagnosis and treatment, minimizing radiation dose is equally important. This is especially true when pediatric patients are examined, because their sensitivity to radiation-induced cancer is two to three times greater than that of adults. DoseWise is an ALARA-based philosophy within Philips Medical Systems that is active at every level of product design. It encompasses a set of techniques, programs and practices that ensures optimal IQ while protecting people in the X-ray environments. DoseWise methods include management of the X-ray beam, less radiation-on time and more dose information for the operator. Smart beam management provides automatic customization of the X-ray beam spectrum, shape, and pulse frequency. The Philips-patented grid-controlled fluoroscopy (GCF) provides grid switching of the X-ray beam in the X-ray tube instead of the traditional generator switching method. In the examination of pediatric patients, DoseWise technology has been scientifically documented to reduce radiation dose to <10% of the dose of traditional continuous fluoroscopy systems. The result is improved IQ at a significantly lower effective dose, which contributes to the safety of patients and staff. (orig.)

  8. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  9. Male gonadal dose of ionizing radiation delivered during X-ray examinations and monthly probability of pregnancy: a population-based retrospective study

    Directory of Open Access Journals (Sweden)

    Slama Remy

    2006-03-01

    Full Text Available Abstract Background Male gonadal exposure to ionizing radiation may disrupt spermatogenesis, but its influence on the fecundity of couples has been rarely studied. We aimed to characterize the influence of male gonadal dose of ionizing radiation delivered during radiodiagnostic on the monthly probability of pregnancy. Methods We recruited a random sample of women who retrospectively described 1110 periods of unprotected intercourse beginning between 1985 and 1999 and leading either to a live birth or to no pregnancy; their duration was censored after 13 months. The male partner answered a telephone questionnaire on radiodiagnostic examinations. We assigned a mean gonadal dose to each type of radiodiagnostic examination. We defined male dose for each period of unprotected intercourse as the sum of the gonadal doses of the X-ray examinations experienced between 18 years of age and the date of discontinuation of contraception. Time to pregnancy was analysed using a discrete Cox model with random effect allowing to estimate hazard ratios of pregnancy. Results After adjustment for female factors likely to influence fecundity, there was no evidence of an association between male dose and the probability of pregnancy (test of homogeneity, p = 0.55. When compared to couples with a male gonadal dose between 0.01 and 0.20 milligrays (n = 321 periods of unprotected intercourse, couples with a gonadal dose above 10 milligrays had a hazard ratio of pregnancy of 1.44 (95% confidence interval, 0.73–2.86, n = 31. Conclusion Our study provides no evidence of a long-term detrimental effect of male gonadal dose of ionizing radiation delivered during radiodiagnostic on the monthly probability of pregnancy during the year following discontinuation of contraceptive use. Classification errors due to the retrospective assessment of male gonadal exposure may have limited the statistical power of our study.

  10. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  11. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    Science.gov (United States)

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After

  12. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    International Nuclear Information System (INIS)

    Lepej, L.; Messingerova, M.

    1995-01-01

    In this paper the values of mean effective dose equivalents per unit activity (H E/1Bq ) were used for the calculation of mean effective dose equivalents for one examination (H E ). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S ER ) and global collective effective dose equivalent for department for all radiopharmaceuticals (S E ) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H E and S E during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H min ) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H min from all examinations - patient's radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs

  13. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    International Nuclear Information System (INIS)

    Karim, M.K.A.; Hashim, S.; Bradley, D.A; Bakar, K.A.; Haron, M.R.; Kayun, Z.

    2016-01-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDI w ), dose length product (DLP) and effective dose (E). The mean values of CTDI w , DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts. - Highlights: • We investigate radiation doses received by patients from CT scan examinations. • We compare data with current national diagnostic reference levels and other references. • Radiation doses from CT were influenced by CT parameter, scanning techniques and patient characteristics.

  14. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  15. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  16. Radiation exposure of children in pediatric radiology, Pt. 8. Radiation doses during thoracoabdominal babygram and abdominal X-ray examination of the newborn and young infants

    International Nuclear Information System (INIS)

    Schneider, Karl; Seidenbusch, M.C.

    2010-01-01

    Purpose: Reconstruction of radiation doses for the thoracoabdominal babygram and the abdomen X-ray from radiographic settings and exposure data acquired at Dr. von Hauner's Kinderspital (children's hospital of the University of Munich, DvHK) between 1976 and 2007; comparison of these dose values with values reported in the literature; recommendation of a reference dose value for the thoracoabdominal babygram. Materials and Methods: The data from all X-ray examinations performed since 1976 at DvHK were stored electronically in a database. After 30 years of data collection, the database now includes 305 107 radiological examinations (radiographs and fluoroscopies), especially 1493 thoracoabdominal babygrams and 3632 abdomen X-rays of newborns and young infants. With the computer program PAeDOS, a specific dose reconstruction algorithm was developed. Results: the entrance dose values of thoracoabdominal babygrams and abdomen X-rays in DvHK could be reduced in the last 30 years by a factor of 5 to 8. They are far below the entrance dose values reported by other radiology departments in Europe. Nevertheless, a slight increase in the entrance doses that correlates with the introduction of a digital storage phosphor system could be observed in the last years. Conclusion: because nearly all radiosensitive body organs in early life are involved during a thoracoabdominal babygram and because of the high radiation sensitivity of newborns, thoracoabdominal babygrams should be performed in neonatology with caution. A dose value of 1.0 cGy cm 2 could serve as the actual reference dose value for the thoracoabdominal babygram of the newborn. (orig.)

  17. Trends of radiation dose to the Slovak population from diagnostic nuclear medicine examinations during the period from 1985 to 1995

    International Nuclear Information System (INIS)

    Ftacnikova, S.; Ragan, P.

    1998-01-01

    A mathematical formalism was used to evaluate the radiation dose to population from radiodiagnostic procedures. Data for the calculation were obtained from questionnaires sent to the 12 Slovak hospitals which involve nuclear medicine departments. The mean effective dose for a procedure was determined by multiplying the administered radioactivity by the effective dose per unit of applied radiopharmaceutical activity; the latter value was taken from the literature. The values of the collective effective dose, total number of examinations, mean effective dose per examination and per capita and the number of examinations in 1000 inhabitants are tabulated for the 1985-1995 period. A favorable decreasing trend in the mean effective dose per examination after 1991 was observed. This was mainly due to the replacement of 131 I labelled compounds by 99m Tc radiopharmaceuticals. An overview of nuclear medicine diagnostic practice for pediatric and adult patients is also presented. The number of diagnostic procedures per 1000 inhabitants is significantly lower than in the most developed countries, and this unfavorable trend is continuing so far. (P.A.)

  18. Radiation exposure in nucleomedical examinations of children

    International Nuclear Information System (INIS)

    Hahn, K.; Hach, A.; Reber, H.

    1995-01-01

    The problem of radiation exposure must be subjected to particularly careful scrutiny in nuclear diagnostic procedures in children. The contribution provides a survey of factors influencing the radiation exposure of children in the diagnostic use of radionuclides. These include the age of the child examined, the type of radiopharmaceutical used, the dose of the radiopharmaceutical and the procedure followed. Any state-of-the-art renal function study or skeletal examination using radionuclides requires previous measures to ensure that the child is sufficiently hydrated. The tables in the appendix provide estimations of the doses from the individual nucleomedical procedures used in paediatrics. (orig./MG) [de

  19. Reduction of radiation exposure for patient and examiner in interventional angiography

    International Nuclear Information System (INIS)

    Pecher, G.; Pecher, S.; Gosch, D.; Schulz, H.G.; Koenig, H.; Voigt, P.

    1998-01-01

    Purpose: In a retrospective analysis of vascular interventional procedures, relations between parameters of the examination and radiation exposure of patient and medical personnel are examined. Material and Method: 1208 vascular interventional procedures are evaluated. Interventional procedures are divided into three groups: Percutaneous transluminal angioplasty, implantation of a stent, thrombolysis. Results: Mean values of the radiation dose of patient and radiology personnel are reported for these examinations. The mean value of the radiation dose of the physician was 7 μSv (maximum 24 μSv), that of the patient 1548 cGy.cm 2 (maximum 8485 cGy.cm 2 ). Conclusion: The quantity of X-rays to the patient may be lowered by using pulsed fluoroscopy and by reducing the number of radiographs. Reduction of the number of radiographs may be achieved by using the last-image hold and the road mapping mode. The operator's dose can be decreased by using additional radiation protection systems like a MAVIG trademark -radiation protection wall. The radiation dose reduction was 61% for the physician and 17% for the patient. (orig.) [de

  20. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    Science.gov (United States)

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  1. Strategies for dose reduction in ordinary radiographic examinations using CR and DR

    International Nuclear Information System (INIS)

    Willis, C.E.

    2004-01-01

    Uncoupling of display from acquisition in computed radiography (CR) and digital radiography (DR) introduces the potential for systematic overexposure without necessarily compromising image quality. Although the magnitude of radiation doses in general radiography is low compared to computed tomography and fluoroscopy, the dose to the patient is more critical in pediatric examinations than in adults, because of the greater radiosensitivity of children. This manuscript examines a variety of countermeasures for managing radiation doses in pediatric CR and DR examinations, including use of derived exposure indicators, modifications of imaging practice, and development of more efficient radiographic detectors. (orig.)

  2. Calculation of organ doses in X-ray examinations of premature babies

    International Nuclear Information System (INIS)

    Smans, K.

    2009-01-01

    As ionizing radiation has enabled great progress in the diagnostic and therapeutic aspects of medicine, its use is in most cases easily justifiable. General radiation protection principles require additionally that radiation doses of the patients should be as low as reasonably achievable within the medical purposes. In Europe this is stipulated in the directive 97/43/Euratom. This directive also requires that special attention should be given to the patient doses in pediatric examinations, of which premature babies constitute an important sub-group. All babies born before 37 weeks of gestation are defined as being prematurely born. Newborn and prematurely born babies are particularly sensitive to the detrimental effects of X-rays. Risk of cancer induction is believed to be 2 to 3 times higher than that of the average population and 6 to 9 times higher than the risk from an exposure at 60 years of age, for equal dose. A premature born child may be exposed to a large number of diagnostic X-ray examinations. Several of these infants may have underdeveloped lungs, which may lead directly to the respiratory distress syndrome (RDS) or to (lethal) lunghypoplasia/hypertension. Diagnosis and follow-up of the respiratory distress syndrome by means of chest radiography is justified. Risks associated with X-ray examinations are low compared to the other medical risks that these patients face, but even in this case the radiation dose should be kept as low as possible. Knowledge of the radiation dose is a first step in the optimization process. A recent study on 255 premature children in the University Hospital of Gasthuisberg found that they undergo 10 X-ray examinations, on the average. In this sample, the maximum was 78 X-ray examinations

  3. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lepej, L; Messingerova, M [F.D. Rosvelt Hospital, Banska Bystrica (Slovakia). Dept. of Nuclear Medicine; Ftacnikova, S [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper the values of mean effective dose equivalents per unit activity (H{sub E/1Bq}) were used for the calculation of mean effective dose equivalents for one examination (H{sub E}). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S{sub ER}) and global collective effective dose equivalent for department for all radiopharmaceuticals (S{sub E}) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H{sub E} and S{sub E} during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H{sub min}) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H{sub min} from all examinations - patient`s radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs.

  4. Reducing Radiation Doses in Female Breast and Lung during CT Examinations of Thorax: A new Technique in two Scanners

    Directory of Open Access Journals (Sweden)

    Mehnati P.

    2017-09-01

    Full Text Available Background: Chest CT is a commonly used examination for the diagnosis of lung diseases, but a breast within the scanned field is nearly never the organ of interest. Objective: The purpose of this study is to compare the female breast and lung doses using split and standard protocols in chest CT scanning. Materials and Methods: The sliced chest and breast female phantoms were used. CT exams were performed using a single-slice (SS- and a 16 multi-slice (MS- CT scanner at 100 kVp and 120 kVp. Two different protocols, including standard and split protocols, were selected for scanning. The breast and lung doses were measured using thermo-luminescence dosimeters which were inserted into different layers of the chest and breast phantoms. The differences in breast and lung radiation doses in two protocols were studied in two scanners, analyzed by SPSS software and compared by t-test. Results: Breast dose by split scanning technique reduced 11% and 31% in SS- and MS- CT. Also, the radiation dose of lung tissue in this method decreased 18% and 54% in SS- and MS- CT, respectively. Moreover, there was a significant difference (p< 0.0001 in the breast and lung radiation doses between standard and split scanning protocols. Conclusion: The application of a split scan technique instead of standard protocol has a considerable potential to reduce breast and lung doses in SS- and MS- CT scanners. If split scanning protocol is associated with an optimum kV and MSCT, the maximum dose decline will be provided.

  5. Radiation dose measurement in gastrointestinal studies

    International Nuclear Information System (INIS)

    Sulieman, A.; Elzaki, M.; Kappas, C.; Theodorou, K.

    2011-01-01

    Barium studies investigations (barium swallow, barium meal and barium enema) are the basic routine radiological examination, where barium sulphate suspension is introduced to enhance image contrast of gastrointestinal tracts. The aim of this study was to quantify the patients' radiation doses during barium studies and to estimate the organ equivalent dose and effective dose with those procedures. A total of 33 investigations of barium studies were measured by using thermoluminescence dosemeters. The result showed that the patient entrance surface doses were 12.6±10, 44.5±49 and 35.7±50 mGy for barium swallow, barium meal, follow through and enema, respectively. Effective doses were 0.2, 0.35 and 1.4 mSv per procedure for barium swallow, meal and enema respectively. Radiation doses were comparable with the previous studies. A written protocol for each procedure will reduce the inter-operator variations and will help to reduce unnecessary exposure. (authors)

  6. Influence of dose and its distribution in time on dose-response relationships for low-LET radiation

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This book examines the influence of dose rate and magnitude on the genetic and carcinogenic effects of radiation exposure in animals and man. It systematically examines a broad range of biological effects in simple systems, plants, laboratory animals, and man with special attention given to the effects of prenatal irradiation, changes in life span, and tumorigenesis. An enormous volume of data is provided about human tumorigenesis and the data and shortcomings are summarized. There is an extended general discussion of the consideration in quantitative dose and dose rate relationships and of the limitations of the data and analyses which have led to a linear interpolation of risk at low doses and dose rates. An argument is made for dose rate dependence in tumorigenesis as being consistent with all other radiation effects and for the applicability of Dose Rate Effectiveness Factors (DREF) in providing a more realistic assessment of the risk of radiation carcinogenesis. The report is documented with 24 pages of references. There are numerous graphs and tables, all clear and to the point. This book is a superb review and summary of the data on radiation risks

  7. Radiation doses to the staff of a nuclear cardiology department

    International Nuclear Information System (INIS)

    Tsapaki, V.; Koutelou, M.; Theodorakos, A.; Kouzoumi, A.; Kitziri, S.; Tsiblouli, S.; Vardalaki, E.; Kyrozi, E.; Kouttou, S.

    2002-01-01

    The last years, new radiopharmaceuticals are used in a Nuclear Medicine (NM) Department. Nowadays, Single Photon Emission Computed Tomography (SPECT) is a method of routine imaging, a fact that has required increased levels of radioactivity in certain patient examinations. The staff that is more likely to receive the greatest radiation dose in a NM Department is the technologist who deals with performance of patient examination and injection of radioactive material and the nurse who is caring for the patients visiting the Department some of which being totally helpless. The fact that each NM Dept possesses equipment with certain specifications, deals with various kind of patients, has specific design and radiation protection measures which can differ from other NM Depts and uses various examination protocols, makes essential the need to investigate the radiation doses received by each member of the staff, so as to continuously monitor doses and take protective measures if required, control less experienced staff and ensure that radiation dose levels are kept as low as possible at all times. The purpose of the current study was to evaluate radiation dose to the nuclear cardiology department staff by thermoluminescent dosemeters (TLDs) placed on the the skin at thyroid and abdominal region as well as evaluating protection measures taken currently in the Dept

  8. A conceptual framework for managing radiation dose to patients in diagnostic radiology using reference dose levels

    International Nuclear Information System (INIS)

    Almen, Anja; Baath, Magnus

    2016-01-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. (authors)

  9. Patient doses from x-ray examinations in Sweden - follow-up of remedial actions

    International Nuclear Information System (INIS)

    Joensson, Helene; Leitz, W.

    2002-03-01

    In early 1999 the Swedish Radiation Protection Authority (SSI) requested data about patient doses etc. for a number of specified x-ray examinations. The aim was on one hand to get a basis for planned regulations on diagnostic reference levels (DRL) and on the other hand to obtain an overview of how the situation is in the country with respect to patient doses. The licensees who reported dose values exceeding (provisional) DRL were asked to perform investigations about the grounds for the high dose and to take remedial actions for reducing the dose. In this report the outcome is presented. The dose reductions were large: on average between 35 and 60 % for the various examinations. A large proportion of the measures taken were simple and cheap, such as increase of radiation quality, improved examination methodology (smaller radiation fields, use of compression, reduced number of images or fluoroscopy time) and optimising the film processing. This is indicating that the planned regulations on diagnostic reference levels have a good chance to succeed with a large reduction of the patient doses in Sweden

  10. Estimation of patient dose in mammography screening examinations

    International Nuclear Information System (INIS)

    Suzuki, S.; Fujii, S.; Orito, T.; Asada, Y.; Koga, S.; Horita, K.; Kido, C.

    1996-01-01

    Mammography is one of the most effective examinations for detecting breast carcinoma. Although the dose is usually much higher than that in other types of X-ray examination, that is accepted by the patient because for fears of suffering cancer. Benefit of relatively high doses derived from mammographic examinations is considered to well exceed the risk of cancer induction by radiation exposure. The purpose of this study is to investigate patient dose of mammography in Japan by questionnaire sent to 531 institutions selected from whole Japan and direct measurements carried out in 28 hospitals in Aichi Prefecture. The user's guide in mammography published by NCRP and Quality Assurance Program of American College of Radiology were used to assess the exposure and image quality of mammogram. (author)

  11. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2010-01-01

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  12. Securing safe and informative thoracic CT examinations—Progress of radiation dose reduction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takeshi, E-mail: tkubo@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Seo, Joon Beom [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, 207 Uehara, Nishinara, Okinawa 903-0215 (Japan); Kalender, Willi A. [Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen (Germany); Lee, Chang Hyun [Department of Radiology, Seoul National University Hospital, 28 Yeongeon-dong, Jongno-gu, Seoul (Korea, Republic of); Lynch, David A. [Department of Radiology, National Jewish Health, 1400 Jackson St, A330 Denver, Colorado 80206 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)

    2017-01-15

    Highlights: • Various techniques have led to substantial radiation dose reduction of chest CT. • Automatic modulation of tube current has been shown to reduce radiation dose. • Iterative reconstruction makes significant radiation dose reduction possible. • Processing time is a limitation for full iterative reconstruction, currently. • Validation of diagnostic accuracy is desirable for routine use of low dose protocols. - Abstract: The increase in the radiation exposure from CT examinations prompted the investigation on the various dose-reduction techniques. Significant dose reduction has been achieved and the level of radiation exposure of thoracic CT is expected to reach the level equivalent to several chest X-ray examinations. With more scanners with advanced dose reduction capability deployed, knowledge on the radiation dose reduction methods has become essential to clinical practice as well as academic research. This article reviews the history of dose reduction techniques, ongoing changes brought by newer technologies and areas of further investigation.

  13. SU-E-P-57: Radiation Doses Assessment to Paediatric Patients for Some Digital Diagnostic Radiology Examination in Emergency Department in Qatar

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, I; Aly, A; Al Naemi, H [Hamad Medical Corporation, Doha (Qatar)

    2015-06-15

    Purpose: The aim of this study was to evaluate radiation doses to pediatric patients undergoing standard radiographic examinations using Direct Digital Radiography (DDR) in Paediatric emergency center of Hamad General Hospital (HGH) in state of Qatar and compared with regional and international Dose Reference Levels (DRLs). Methods: Entrance Skin Dose (ESD) was measured for 2739 patients for two common X-ray examinations namely: Chest AP/PA, Abdomen. Exposure factors such as kV, mAs and Focal to Skin Distance (FSD) were recorded for each patient. Tube Output was measured for a range of selected kV values. ESD for each individual patient was calculated using the tube output and the technical exposure factors for each examination. The ESD values were compared with the some international Dose Reference Levels (DRL) for all types of examinations. Results: The most performed procedure during the time of this study was chest PA/PA (85%). The mean ESD values obtained from AP chest, PA chest and AP abdomen ranged 91–120, 80–84 and 209 – 659 µGy per radiograph for different age’s groups respectively. Two protocols have been used for chest AP and PA using different radiological parameters, and the different of ESD values for chest PA and were 41% for 1 years old child, 57% for 5 years old for chest AP. Conclusion: The mean ESD were compared with those found in literature and were found to be comparable. The radiation dose can be reduced more for Chest AP and PA examination by optimization of each investigation and hence more studies are required for this task. The results presented will serve as a baseline data needed for deriving local reference doses for pediatric X-ray examinations in this local department and hence it can be applied in the whole Qatar.

  14. Dosimeters examinations in a system of radiation monitoring

    International Nuclear Information System (INIS)

    Polsky, O.; Zaytsev, V.V.

    2008-01-01

    The development of an atomic industry and atomic engineering was accompanied scientifically - are justified by conceptual approaches, directional on security of a radiation safety of the personnel and occupied items, where the serving staff lived. It has allowed receiving the enough complete information on radiation doses, comparative performances of illnesses and is brave origins of stochastic effects. Last years on the foreground began to go out problems of influence on the population of ionizing radiation natural, and also engineering changed hum noise. The probability of origin of negative consequences at origin concerning small doses, characteristic for the term, which has usually to the present time, of an exposure of the population of large industrial canters and cities, depends not only from individual, but also on collective doses considerable on number of groups of the people in view of duration of action of the radiation factor. The generalized material of long-term examinations on medial individual doses obtained by population from natural radionuclide, medical procedures in long-term dynamic is obtained. On the basis of long-term data the calculations of stochastic effects among the population of the Moscow region of Russia are given. These effects come from technological radiances of radiation, medical examinations and procedures, from radiation incidents and other radiances of an exposure of the population. It is shown, that nominal coefficient of probability of aggregate stochastic effect matters 5,9 unities on 0,01 inverse Sv that is compounded with literary data

  15. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  16. Radiation dose and cancer risk from pediatric CT examinations on 64-slice CT: A phantom study

    International Nuclear Information System (INIS)

    Feng Shiting; Law, Martin Wai-Ming; Huang Bingsheng; Ng, Sherry; Li Ziping; Meng Quanfei; Khong, Pek-Lan

    2010-01-01

    Objective: To measure the radiation dose from CT scans in an anthropomorphic phantom using a 64-slice MDCT, and to estimate the associated cancer risk. Materials and methods: Organ doses were measured with a 5-year-old phantom and thermoluminescent dosimeters. Four protocols; head CT, thorax CT, abdomen CT and pelvis CT were studied. Cancer risks, in the form of lifetime attributable risk (LAR) of cancer incidence, were estimated by linear extrapolation using the organ radiation doses and the LAR data. Results: The effective doses for head, thorax, abdomen and pelvis CT, were 0.7 mSv, 3.5 mSv, 3.0 mSv, 1.3 mSv respectively. The organs with the highest dose were; for head CT, salivary gland (22.33 mGy); for thorax CT, breast (7.89 mGy); for abdomen CT, colon (6.62 mGy); for pelvis CT, bladder (4.28 mGy). The corresponding LARs for boys and girls were 0.015-0.053% and 0.034-0.155% respectively. The organs with highest LARs were; for head CT, thyroid gland (0.003% for boys, 0.015% for girls); for thorax CT, lung for boys (0.014%) and breast for girls (0.069%); for abdomen CT, colon for boys (0.017%) and lung for girls (0.016%); for pelvis CT, bladder for both boys and girls (0.008%). Conclusion: The effective doses from these common pediatric CT examinations ranged from 0.7 mSv to 3.5 mSv and the associated lifetime cancer risks were found to be up to 0.16%, with some organs of higher radiosensitivity including breast, thyroid gland, colon and lungs.

  17. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Registration of radiation doses

    International Nuclear Information System (INIS)

    2000-02-01

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  19. A study on the evaluation of radiation doses in dental radiography

    International Nuclear Information System (INIS)

    Sugimoto, Koju

    1980-01-01

    Radiation doses and possible biological risks due to dental full mouth examination (adult: 10-film technique, child: 6-film technique) were evaluated based on preliminary experiments and statistical surveillance of patients' records. Dosimetrical studies were performed by using head and neck phantoms and a dental x-ray tube. Radiation doses were measured by x-ray films and thermoluminescence dosimeters. For the obtained doses of skin, eyes, thyroid gland and bone marrow, the biological risk of leukemia and thyroid cancer was discussed on the statistical basis of patients at Kanagawa Dental College Hospital. The major findings were as follows: The total number of patients who recieved full mouth x-ray examination at Kanagawa Dental College Hospital in 1978 was 1,099. The number of male patients was 382 (3,804 films) and that of female patients was 717 (7,138 films). In both sexes, the number of patients was the greatest in the group of 8 - 14 years of age. The collective doses of bone marrow due to full mouth 10-film examination performed at Kanagawa Dental College Hospital in 1978 were approximately 6.0 rad, which could induce leukemia with a probability of 1/8,000. The collective doses of thyroid gland were approximately 13 rad, which could induce lethal thyroid cancer with a probability of 1/15,000. The radiation dose due to the dental radiography for examination at Kanagawa Dental College Hospital was proved to be apparently below the level that could actually induce radiation injuries. But the collective radiation doses due to dental examination in Japan as a whole were approximately 8,000 times greater than that in Kanagawa Dental College Hospital. (J.P.N.)

  20. Examining a link between SPEs and ground level radiation

    Science.gov (United States)

    Overholt, Andrew

    2015-01-01

    Researchers have previously found a correlation between solar proton events (SPEs) and congenital malformations (CMs). A similar correlation has also been found between long term solar variability and CMs. We examine the ionizing radiation dose from these events as well as the largest events on record to determine whether these events are capable of producing these effects. We show that the total ionizing radiation dose (consisting of neutrons and muons) at ground level is insufficient for production of the observed increases in CM rate under the current paradigm regarding ionizing radiation from muons and neutrons. Current research on the subject shows that our assumptions regarding muonic ionizing radiation may be underestimating their biologic effect. We recommend further experimentation regarding the radiation dose due to muons, as this may prove to be a more substantial contribution to our radiation environment than previously assumed.

  1. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses.

    Science.gov (United States)

    Guberina, Nika; Forsting, Michael; Ringelstein, Adrian; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Theysohn, Jens; Wetter, Axel

    2018-03-28

    To examine radiation dose levels of CT-guided interventional procedures of chest, abdomen, spine and extremities on different CT-scanner generations at a large multicentre institute. 1,219 CT-guided interventional biopsies of different organ regions ((A) abdomen (n=516), (B) chest (n=528), (C) spine (n=134) and (D) extremities (n=41)) on different CT-scanners ((I) SOMATOM-Definition-AS+, (II) Volume-Zoom, (III) Emotion6) were included from 2013-2016. Important CT-parameters and standard dose-descriptors were retrospectively examined. Additionally, effective dose and organ doses were calculated using Monte-Carlo simulation, following ICRP103. Overall, radiation doses for CT interventions are highly dependent on CT-scanner generation: the newer the CT scanner, the lower the radiation dose imparted to patients. Mean effective doses for each of four procedures on available scanners are: (A) (I) 9.3mSv versus (II) 13.9mSv (B) (I) 7.3mSv versus (III) 11.4mSv (C) (I) 6.3mSv versus (II) 7.4mSv (D) (I) 4.3mSv versus (II) 10.8mSv. Standard dose descriptors [standard deviation (SD); CT dose index vol (CTDI vol ); dose-length product (DLP body ); size-specific dose estimate (SSDE)] were also compared. Effective dose, organ doses and SSDE for various CT-guided interventional biopsies on different CT-scanner generations following recommendations of the ICRP103 are provided. New CT-scanner generations involve markedly lower radiation doses versus older devices. • Effective dose, organ dose and SSDE are provided for CT-guided interventional examinations. • These data allow identifying organs at risk of higher radiation dose. • Detailed knowledge of radiation dose may contribute to a better individual risk-stratification. • New CT-scanner generations involve markedly lower radiation doses compared to older devices.

  2. Survey of dental radiographic equipment and radiation doses in Finland

    International Nuclear Information System (INIS)

    Havukainen, R.

    1988-01-01

    The radiation dose exposure, and the faults in about 1 700 dental units inspected at dental surgeries by the Finnish Centre for Radiation and Nuclear Safety in 1981-1985, were analysed. The mean value of skin doses in the bite-wing projection was about 6.2 mGy, the range 0.5 to 151 mGy. The mean energy imparted per bite-wing examination was estimated as 0.68 mJ and that per panoramic examination as 1.2 mJ. That gives a total imparted energy of about 600 J per year for conventional dental examinations and about 420 J per year for panoramic examinations. This gives a total of 0.13 mJ from conventional and 0.089 mJ from panoramic examinations per inhabitant per year. The collective effective dose equivalent was calculated as about 9 manSv for conventional dental examinations and about 6 manSv for panoramic examinations. Twenty per cent of units had some fault which was capable of decreasing radiation safety. Forty per cent of units were served reparation orders or other remarks were made in inspection documents. Large doses were usually accounted for by incorrect film processing and malfunction of the exposure timer. (orig.)

  3. Radiation doses in pediatric radiology: influence of regulations and standards

    International Nuclear Information System (INIS)

    Suleiman, O.H.

    2004-01-01

    The benefits of X-ray examinations contribute to the quality of modern medicine; however the risk of using X-rays, a carcinogen, has always been a concern. This concern is heightened for pediatric patients, who have a much greater sensitivity to the carcinogenic effects of radiation than adults. The principle of as low as reasonably achievable, or ALARA, is essential for minimizing the radiation dose patients receive, especially for pediatric patients. In order to keep radiation doses ALARA, one must know the dose patients receive. The determination of radiation dose in a standard way is therefore necessary so that these doses can be compared with practice, and for meaningful comparison against voluntary standards. In extreme situations, where public health needs may require mandatory standards, or regulations, the quantitative measurement and calculation of radiation dose becomes essential. How some radiation dose metrics and standards have evolved, including the value of different metrics such as entrance air kerma, organ dose, and effective dose will be presented. Recent pediatric X-ray studies, whether or not dedicated pediatric equipment is necessary, and recent initiatives by the Food and Drug Administration for pediatric population will be discussed. (orig.)

  4. Radiation doses to neonates and issues of radiation protection in a special care baby unit

    International Nuclear Information System (INIS)

    Armpilia, C.I.; Fife, I.A.J.; Croasdale, P.L.

    2001-01-01

    Radiographs are most commonly taken in the neonatal period to assist in the diagnosis and management of respiratory difficulties. Frequent accurate radiographic assessment is required and a knowledge of the radiation dose is necessary to make the justification of such exposures. A survey of radiation doses to neonates from diagnostic X-ray examinations (chest and abdomen) has been carried out in the special care baby unit (SCBU) of the Royal Free Hospital. Entrance surface dose (ESD) was calculated from Quality Control measurements on the X-ray set itself. Direct measurement of radiation doses was also performed using highly sensitive thermoluminescence dosimeters (LiF:Mg,Cu,P), calibrated and tested for consistency in sensitivity. The mean ESD per radiograph was calculated to be 36μGy (with a standard deviation of 6μGy), averaged over 95 X-ray examinations. The ESD's as derived from the TLD crystals, ranged from 18μGy to 60μGy. The mean energy imparted (EI) and the mean whole body dose per radiograph were estimated to be 14μJ and 10μGy respectively. Assuming that neonates and foetuses are equally susceptible to carcinogenic effects of radiation (it involves an overestimation of risk), the radiation risk of childhood cancer from a single radiograph was estimated to be of the order (0.3-1.3)x10 -6 . Radiation doses compared favourably with the reference value of 80μGy ESD published by CEC in 1996. (author)

  5. Study of the examination times using radiation equipments and the radiation exposure control

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, Kichiro; Orito, Takeo; Maekawa, Ryuichi; Hiraki, Tatsunosuke [Kanazawa Univ. (Japan). School of Paramedicine; Koga, Sukehiko

    1985-01-01

    The relation between the examination time and the exposure to the personnel was investigated. In order to minimize radiation injury, special exposure dose-rate distribution curves were performed at the maximum exposure condition setting the phantom, and the examination times could be limited from the exprosure dose for the place where the personnel presented. The examination times are possible to be ten times by those with the Medical X-ray Protective Aprons.

  6. Radiation doses to patients in computed tomography including a ready reckoner for dose estimation

    International Nuclear Information System (INIS)

    Szendroe, G.; Axelsson, B.; Leitz, W.

    1995-11-01

    The radiation burden from CT-examinations is still growing in most countries and has reached a considerable part of the total from medical diagnostic x-ray procedures. Efforts for avoiding excess radiation doses are therefore especially well motivated within this field. A survey of CT-examination techniques practised in Sweden showed that standard settings for the exposure variables are used for the vast majority of examinations. Virtually no adjustments to the patient's differences in anatomy have been performed - even for infants and children on average the same settings have been used. The adjustment of the exposure variables to the individual anatomy offers a large potential of dose savings. Amongst the imaging parameters, a change of the radiation dose will primarily influence the noise. As a starting point it is assumed that, irrespective of the patient's anatomy, the same level of noise can be accepted for a certain diagnostic task. To a large extent the noise level is determined by the number of photons that are registered in the detector. Hence, for different patient size and anatomy, the exposure should be adjusted so that the same transmitted photon fluence is achieved. An appendix with a ready reckoner for dose estimation for CT-scanners used in Sweden is attached. 7 refs, 5 figs, 8 tabs

  7. Radiation levels in nuclear diagnostic examinations

    International Nuclear Information System (INIS)

    Vermeulen, A.M.T.I.

    1987-01-01

    To estimate the risks for a pregnant radiological worker, radiation level measurements are executed for common nuclear diagnostic techniques. These measurements are combined with the time which the radiologic worker is present during the performance of the diagnostic techniques. It is concluded that a radiologic worker is receiving less than 5 mSv during pregnancy. This is the case with in vivo determination in a department of nuclear medicine with common diagnostic techniques. Reduction of radiation doses during pregnancy is possible by reduction of heart function examinations, skeletal examinations and brain scans. 1 figure; 13 tabs

  8. Assessment of organ equivalent doses and effective doses from diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Park, Sang Hyun

    2003-02-01

    The MIRD-type adult male, female and age 10 phantoms were constructed to evaluate organ equivalent dose and effective dose of patient due to typical diagnostic X-ray examination. These phantoms were constructed with external and internal dimensions of Korean. The X-ray energy spectra were generated with SPEC78. MCNP4B ,the general-purposed Monte Carlo code, was used. Information of chest PA , chest LAT, and abdomen AP diagnostic X-ray procedures was collected on the protocol of domestic hospitals. The results showed that patients pick up approximate 0.02 to 0.18 mSv of effective dose from a single chest PA examination, and 0.01 to 0.19 mSv from a chest LAT examination depending on the ages. From an abdomen AP examination, patients pick up 0.17 to 1.40 mSv of effective dose. Exposure time, organ depth from the entrance surface and X-ray beam field coverage considerably affect the resulting doses. Deviation among medical institutions is somewhat high, and this indicated that medical institutions should interchange their information and the need of education for medical staff. The methodology and the established system can be applied, with some expansion, to dose assessment for other medical procedures accompanying radiation exposure of patients like nuclear medicine or therapeutic radiology

  9. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  10. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  11. Study of the examination times using radiation equipments and the radiation exposure control

    International Nuclear Information System (INIS)

    Koshida, Kichiro; Orito, Takeo; Maekawa, Ryuichi; Hiraki, Tatsunosuke; Koga, Sukehiko.

    1985-01-01

    It was investigated for the relation between the examination times and the exposure to the personnel. At the purpose to minimize the radiation injury, the special exposure dose-rate distribution curves were performed at the maximum exposure condition setting the phantom, and the examination times could be limited from the exprosure dose for the place where the personnel presented. The examination times are possible to be ten times by those with the Medical X-ray Protective Aprons. (author)

  12. Dose reduction using bismuth shielding during paediatric CT examinations in Slovakia

    International Nuclear Information System (INIS)

    Gbelcova, L.; Nikodemova, D.; Horvathova, M.

    2011-01-01

    Considering the massive increase of computer tomography (CT) examinations in Slovakia during the last 10 y, it can be expected that a higher radiation load may be observed in the Slovak population. Since child population is more sensitive to radiation than adult population, a monitoring has started to see how high the radiation dose is for paediatric patients during CT examinations in chosen departments in Slovakia. The CT examination of the head is one of the most frequently done examinations in Slovakian departments and that is why measurements were done to clarify how usage of bismuth shields for eyes and thyroid can affect the eye and thyroid doses. For simulation, 215 thermoluminescent dosimeters were exposed on anthropomorphic phantom of a child with and without usage of bismuth shields. The result was that only two of the three chosen departments confirmed a reduction. On the other hand, one of the departments confirmed that the reduction can be up to 56-65 %, which is significant. (authors)

  13. Late effects of low-dose ionizing radiation on man

    International Nuclear Information System (INIS)

    Brilliant, M.D.; Vorob'ev, A.I.; Gogin, E.E.

    1987-01-01

    One of the most important problems, being stated before the medicine by the accident, which took place in Chernobyl in 1986- the problem of the so-called ionizing radiation low dose effect on a man's organism, is considered because a lot of people were subjected to low dose action. The concept of low doses of radiaion action and specificity of its immediate action in comparison with high dose action is considered. One of the most important poit while studying low dose action is the necessity to develop a system including all irradiated people and dosimetry, and espicially to study frequencies and periods of tumor appearance in different irradiated tissues. The results obtained when examining people who survived the atomic explosion in Japan and on the Marshall islands are analyzed. They testify to the fact that radiation affets more tissues than the clinical picture about the acute radiation sickness tells, and that tumors developing in them many years after radiation action tell about radiosensitivity in some tissues

  14. Radiation doses to Finns

    International Nuclear Information System (INIS)

    Rantalainen, L.

    1996-01-01

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  15. Utilization of the examinations with ionizing radiation and pregnance

    International Nuclear Information System (INIS)

    Serson, D.; Buchpiguel, C.A.; Scharfstein, M.; Camera, A.J.; Schmilevitch, J.; Oliveira Nunes, J.E. de

    1984-01-01

    The authors reviewed the world literature on the effects of radiation and in this paper alert the clinicians and obstetricians to the use of radiation and the possible damage to the embryo and fetus. A table with absorbed doses in the majority of regular examinations by nuclear medicine and X-ray is presented, including the oppinion of world authorities and explaining how to procede when the use of radiation is unavoidable. They concluded that an indication for abortion must be considered only in cases where a high dose was used. (author) [pt

  16. Radiation doses to children with shunt-treated hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Holmedal, Lise J. [Helse Fonna, Department of Radiology, Stord Hospital, Stord (Norway); Friberg, Eva G.; Boerretzen, Ingelin; Olerud, Hilde [The Norwegian Radiation Protection Authority, Oesteraas (Norway); Laegreid, Liv [Haukeland University Hospital, Department of Paediatrics, Bergen (Norway); Rosendahl, Karen [University of Bergen, Department of Surgical Sciences, Radiology Section, Bergen (Norway); Great Ormond Street Hospital for Children, Department of Diagnostic Radiology, London (United Kingdom)

    2007-12-15

    Children with shunt-treated hydrocephalus are still followed routinely with frequent head CT scans. To estimate the effective dose, brain and lens doses from these examinations during childhood, and to assess dose variation per examination. All children born between 1983 and 1995 and treated for hydrocephalus between 1983 and 2002 were included. We retrospectively registered the number of examinations and the applied scan parameters. The effective dose was calculated using mean conversion factors from the CT dose index measured free in air, while doses to the lens and brain were estimated using tabulated CT dose index values measured in a head phantom. A total of 687 CT examinations were performed in 67 children. The mean effective dose, lens dose and brain dose to children over 6 months of age were 1.2 mSv, 52 mGy and 33 mGy, respectively, and the corresponding doses to younger children were 3.2 mSv, 60 mGy and 48 mGy. The effective dose per CT examination varied by a factor of 64. None of the children was exposed to doses known to cause deterministic effects. However, since the threshold for radiation-induced damage is not known with certainty, alternative modalities such as US and MRI should be used whenever possible. (orig.)

  17. Radiation doses in interventional neuroradiology

    International Nuclear Information System (INIS)

    Theodorakou, C.; Butler, P.; Horrocks, J.A.

    2001-01-01

    Patient radiation doses during interventional radiology (IR) procedures may reach the thresholds for radiation-induced skin and eye lens injuries. This study investigates the radiation doses received by patients undergoing cerebral embolization. Measurements were conducted using thermoluminescent dosimeters. Radiotherapy verification films were used in order to visualise the radiation field. For each procedure the fluoroscopic and digital dose-area product, the fluoroscopic time, the total number of acquired images and entrance-skin dose calculated by the angiographic unit were recorded. In this paper, the skin, eye and thyroid glands doses on a sample of patients are presented. From a preliminary study of 13 patients having undergone cerebral embolization, it was deduced that six of them have received a dose above 1 Gy. Detailed dose data from patients undergoing IR procedures will be collected in the future with the aim of developing a model to allow estimation of the dose prior to the procedure as well as to look at techniques of dose reduction. (author)

  18. Radiation dose evaluation in patients submitted to conventional radiological examinations; Avaliacoes de doses de radiacao em pacientes submetidos a exames radiologicos convencionais

    Energy Technology Data Exchange (ETDEWEB)

    Tilly, Junior, Joao G

    1997-07-01

    This work presents the results of the evaluation of radiation dose delivered to the patients undergoing conventional radiological procedures. Based in the realized measurement some indicators are settled to quantitative appraisal of the radiological protection conditions offered to the population. Data assessment was done in the county of Curitiba, in Parana State, Brazil, from 12/95 to 04/96, in ten rooms of three different institutions, under 101 patients, adults with 70 {+-} 10 kg, during real examinations of chest PA, chest LAT and abdomen AP. (author)

  19. Radiation dose in CT are meeting the challenge

    International Nuclear Information System (INIS)

    Wang Jun

    2003-01-01

    Despite comprising only 2% of all examinations, CT contributed around 20% of the collective dose to the population from diagnostic imaging. An abdominal examination in an adult with an effective dose of 10 mSv has been estimated to increase the lifetime risk of fatal cancer by 1 in 2000. Children are 10 times more sensitive to the effects of radiation than middle aged adults. Girls are more sensitive than boys. Variations in CT practice, ease of using, urgency in multislice CT, unawaring of the 'uncoupling effect' in CT may be contributing to increasing in radiation dose. We must train and have an awareness of emerging materials and the implied changes in practice, with revision of protocols to take account of advances. The 'as low as reasonably achievable (ALARA) ' principle applies just as much to CT as it does to conventional radiography

  20. Investigation of organ dose difference of age phantoms for medical X-ray examinations

    International Nuclear Information System (INIS)

    Park, Sang Hyun; Kim, Woo Ran; Lee, Jai Ki; Lee, Choon Sik

    2003-01-01

    Methodology for calculating the organ equivalent doses and the effective doses of pediatric and adult patients undergoing medical X-ray examinations were established. The MIRD-type mathematical phantoms of 4 age groups were constructed with addition of the esophagus to the same phantoms. Two typical examination procedures, chest PA and abdomen AP, were simulated for the pediatric patients as well as the adult as illustrative examples. The results confirmed that patients pick up approximate 0.03 mSv of effective dose from a single chest PA examination, and 0.4 to 1.7 mSv from an abdomen AP examination depending on the ages. For dose calculations where irradiation is made with a limited field, the details of the position, size and shape of the organs and the organ depth from the entrance surface considerably affect the resulting doses. Therefore, it is important to optimize radiation protection by control of X-ray properties and beam examination field. The calculation result, provided in this study, can be used to implement optimization for medical radiation protection

  1. Dental radiographic units - radiation safety and patient doses

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Varadharajan, Geetha

    2001-01-01

    Three models of dental radiographic machines have been examined for radiation safety. Using TL dosemeters, doses received by the patients at chest level and the gonads have been estimated. Care should be taken to shield gonads during dental radiographic examinations. (author)

  2. Consideration of the usefulness of a size-specific dose estimate in pediatric CT examination.

    Science.gov (United States)

    Tsujiguchi, Takakiyo; Obara, Hideki; Ono, Shuichi; Saito, Yoko; Kashiwakura, Ikuo

    2018-04-05

    Computed tomography (CT) has recently been utilized in various medical settings, and technological advances have resulted in its widespread use. However, medical radiation exposure associated with CT scans accounts for the largest share of examinations using radiation; thus, it is important to understand the organ dose and effective dose in detail. The CT dose index and dose-length product are used to evaluate the organ dose. However, evaluations using these indicators fail to consider the age and body type of patients. In this study, we evaluated the effective dose based on the CT examination data of 753 patients examined at our hospital using the size-specific dose estimate (SSDE) method, which can calculate the exposure dose with consideration of the physique of a patient. The results showed a large correlation between the SSDE conversion factor and physique, with a larger exposure dose in patients with a small physique when a single scan is considered. Especially for children, the SSDE conversion factor was found to be 2 or more. In addition, the patient exposed to the largest dose in this study was a 10-year-old, who received 40.4 mSv (five series/examination). In the future, for estimating exposure using the SSDE method and in cohort studies, the diagnostic reference level of SSDE should be determined and a low-exposure imaging protocol should be developed to predict the risk of CT exposure and to maintain the quality of diagnosis with better radiation protection of patients.

  3. Estimation of patient radiation doses during radiologic examinations in the Republic of Haiti

    International Nuclear Information System (INIS)

    Massillon, J.G.; Borras, C.

    2001-01-01

    The International Commission on Radiological Protection and the international organizations that co-sponsored the International Basic Safety Standards for the Protection against Ionization Radiation and for the Safety of Radiation Sources (BSS) - among them PAHO and WHO - recommended the use of investigation levels to provide guidance for medical exposures. In this work, entrance surface doses for several common diagnostic radiology procedure have been determined from exposure rate measurements and patient technique factors in seven 'World Health Imaging System - Radiography' (WHIS-RAD) units, installed in public health services facilities of the Republic of Haiti. The results show the entrance surface doses below the guidance levels published in the BSS. Concomitant image quality measurements performed, however, indicate serious artifacts in the film processing, calling for the need of additional training of the technologists. (author)

  4. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    International Nuclear Information System (INIS)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young

    2016-01-01

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety

  5. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2016-11-15

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety.

  6. Radiation dosages absorbed by the skin during videofluorographic examination of velopharyngeal function

    International Nuclear Information System (INIS)

    Ohara, Hirotoshi; Ogata, Hisao; Nakajima, Tatsuo; Sone, Kiyoaki

    2008-01-01

    Radiographic assessment has become essential in examining the function of the soft palate and pharyngeal walls in patients with velopharyngeal insufficiency. However, in our search of the literature, there was no report on the exposure dose during videofluorographic examination of velopharyngeal function in Japan. Radiation dosages from videofluorography were measured by attaching a glass dosimeter to the submental skin in 17 patients undergoing examination of velopharyngeal function. Sixteen patients underwent a complete videofluorographic examination. For these 16 patients, the mean time of examination was 96.4 sec; the mean radiation dosage absorbed by the skin was 14.4 mGy, equivalent to approximately 7 standard skull x-rays and lower than that during other fluoroscopic procedures. This dose was also lower than the threshold dose at which the skin damage occurs. In light of increasing concern among the general public over radiation exposure, we consider that these data should provide useful information to patients being asked to give informed consent for this examination. (author)

  7. Measurement of radiation dose to ovaries from CT of the head and trunk

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habdhan, M.A.M.; Kinsara, A.R. [King Abdul Aziz Univ., Nuclear Engineering Dept., Jeddah (Saudi Arabia)

    2001-07-01

    With the rise in concern about doses received by patients over recent years, there has been a growing requirement for information on typical doses and the range of dose received during Computerized Tomography (CT). This study was performed for the assessment of radiation dose to the ovaries from various CT protocols for head and trunk imaging. Thermo luminescent dosimeters (TLD) were used for the dosimetry measurement in an anthropomorphic Rando Alderson phantom. The wanted (obligatory) and unwanted (non-useful) radiation doses delivered to the ovaries during CT examinations of head, facial bone, orbits, abdomen, chest, pelvis, neck, nasopharynx, cervical spine, lumber spine and sacroiliac joint were assessed. The results are compared with the corresponding values published in the literature. A comparison of the received dose from CT examinations and general radiography examinations by the ovaries was made. It is found that relatively high doses of unwanted radiation are delivered with computerized tomography. (author)

  8. Estimation of doses to patients from ''complex'' conventional X-ray examinations

    International Nuclear Information System (INIS)

    Calzado, A.; Vano, E.; Moran, P.; Ruiz, S.; Gonzalez, L.; Castellote, C.

    1991-01-01

    A numerical method has been developed to estimate organ doses and effective dose-equivalent for patients undergoing three 'complex' examinations (barium meal, barium enema and intravenous urography). The separation of radiological procedures into a set of standard numerical views is based on the use of Monte Carlo conversion factors and measurements within a Remab phantom. Radiation doses measured in a phantom for such examinations were compared with predictions of the ''numerical'' method. Dosimetric measurements with thermoluminescent dosemeters attached to the patient's skin along with measurements of the dose-area product during the examination have enabled the derivation of organ doses and to estimate effective dose-equivalent. Mean frequency weighted values of dose-area product, energy imparted to the patient, doses to a set of organs and effective dose-equivalent in the area of Madrid are reported. Comparisons of results with those from similar surveys in other countries were made. (author)

  9. Study of External Radiation Expose Dose on Hands of Nuclear Medicine Workers

    International Nuclear Information System (INIS)

    Park, Jun Chul; Pyo, Sung Jae

    2012-01-01

    The aims of this study are to assess external radiation exposed doses of body and hands of nuclear medicine workers who handle radiation sources, and to measure radiation exposed doses of the hands induced by a whole body bone scan with high frequency and handling a radioactive sources like 99m Tc-HDP and 18 F-FDG in the PET/CT examination. Skillful workers, who directly dispense and inject from radiation sources, were asked to wear a TLD on the chest and ring finger. Then, radiation exposed dose and duration exposed from daily radiation sources for each section were measured by using a pocket dosimeter for the accumulated external doses and the absorbed dose to the hands. In the survey of four medical institutions in Incheon Metropolitan City, only one of four institutions has a radiation dosimeter for local area like hands. Most of institutions uses radiation shielding devices for the purpose of protecting the body trunk, not local area. Even some institutions were revealed not to use such a shielding device. The exposed doses on the hands of nuclear medicine workers who directly handles radioactive sources were approximately twice as much as those on the body. The radiation exposure level for each section of the whole body bone scan with high frequency and that of the PET/CT examination showed that radiation doses were revealed in decreasing order of synthesis of radioactive medicine and installation to a dispensing container, dispensing, administering and transferring. Furthermore, there were statistically significant differences of radiation exposure doses of the hands before and after wearing a syringe shielder in administration of a radioactive sources. In this study, although it did not reach the permissible effective dose for nuclear medicine, the occupational workers were exposed by relatively higher dose level than the non-occupational workers. Therefore, the workers, who closely exposed to radioactive sources should be in compliance with safety

  10. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  11. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  12. Impact of digital imaging on radiation doses to the patient during X-ray examination of the urinary tract.

    Science.gov (United States)

    Sjöholm, B; Geijer, H; Persliden, J

    2005-10-01

    To compare radiation doses given to patients undergoing IVU (intravenous urography) before and after digitalization of our X-ray department. IVU examinations were monitored with dose area product meters before and after the X-ray department changed to digital techniques. The first step was a change from film-screen to storage phosphor plates, while the second step involved changing to a flat panel detector. Forty-two patients were included for the film-screen situation, 69 when using the storage phosphor plates, and 70 using the flat panel detector. A dose reduction from 41.8 Gycm2 to 31.5 Gycm2 was achieved with the first step when the film-screen system was replaced with storage phosphor plates. A further reduction to 12.1 Gycm2 was achieved using the flat panel detector. The introduction of the flat panel detectors made a considerable dose reduction possible.

  13. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  14. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  15. Radiation doses in examination of lower third molars with computed tomography and conventional radiography.

    Science.gov (United States)

    Ohman, A; Kull, L; Andersson, J; Flygare, L

    2008-12-01

    To measure organ doses and calculate effective doses for pre-operative radiographic examination of lower third molars with CT and conventional radiography (CR). Measurements of organ doses were made on an anthropomorphic head phantom with lithium fluoride thermoluminescent dosemeters. The dosemeters were placed in regions corresponding to parotid and submandibular glands, mandibular bone, thyroid gland, skin, eye lenses and brain. The organ doses were used for the calculation of effective doses according to proposed International Commission on Radiological Protection 2005 guidelines. For the CT examination, a Siemens Somatom Plus 4 Volume Zoom was used and exposure factors were set to 120 kV and 100 mAs. For conventional radiographs, a Scanora unit was used and panoramic, posteroanterior, stereographic (scanogram) and conventional spiral tomographic views were exposed. The effective doses were 0.25 mSv, 0.060 mSv and 0.093 mSv for CT, CR without conventional tomography and CR with conventional spiral tomography, respectively. The effective dose is low when CT examination with exposure factors optimized for the examination of bone structures is performed. However, the dose is still about four times as high as for CR without tomography. CT should therefore not be a standard method for the examination of lower third molars. In cases where there is a close relationship between the tooth and the inferior alveolar nerve the advantages of true sectional imaging, such as CT, outweighs the higher effective dose and is recommended. Further reduction in the dose is feasible with further optimization of examination protocols and the development of newer techniques.

  16. Pediatric radiation exposure from diagnostic nuclear medicine examinations in Tehran

    International Nuclear Information System (INIS)

    Neshandar Asli, I.; Tabeie, F.

    2005-01-01

    As a part of a nationwide survey to estimate population exposure to radiation from diagnostic nuclear medicine in Iran, this paper presents the pediatric population radiation exposure due to nuclear medicine examinations in Tehran. Patients and methods: the effective dose equivalent, H E , was used to calculate the collective effective dose in pediatric patients undergoing nuclear medicine procedures, and the corresponding data were obtained from thirty out of thirty seven active nuclear medicine departments in Tehran. Results: annually about 5.26% of nuclear medicine examinations were performed on patients under 15 years of age in Tehran. The most frequent was renal examinations (38.2%), followed y thyroid (27.4%) and bone (26.7%). The annual collective H E for patients under 15 was 19.03 human-Sv, which contributed 3.96% to the collective H E for all patients. The contribution of renal, bone and thyroid examinations to the pediatric collective H E were 24.6% 48.8% and 13.5% respectively. The mean effective dose equivalent per pediatric patient was 3.75 mSv.Conclusion: Among the three most frequent examinations, the bone with a relative frequency of 27.4% constituted 48.8% of the collective H E , which was the highest absorbed dose per examination. The mean effective dose per examination for patients younger than 15 years was 67.9% of the adults

  17. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  18. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  19. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  20. Investigation on radiation doses to patients in digital radiography

    International Nuclear Information System (INIS)

    Qiu Zhengshuai; Deng Daping; Li Quantai; Song Gang; Su Xu

    2014-01-01

    Objective: To investigate the patients' radiation dose received in digital radiography(DR) and provide basic data for developing diagnostic reference levels. Methods: The patient's ESD was estimated using the TLDs and DAP was measured by the dose-area product meter. The E values were then calculated by the DAP using Monte Carlo data and RefDose software. Measurements were made for twelve types of examination: skull PA, skull LAT, chest PA, chest LAT, abdomen AP, pelvis AP, cervix spine PA, cervix spine LAT, thoracic spine PA, thoracic spine LAT, lumber spine PA and lumber spine LAT. Results: Both kV and mAs varied in the same type of examination for ESD, DAP and E(F = 33.47, 24.68, 43.19, P < 0.05). The dose each time for lumber spine LAT was the highest, reached 4.62 mGy in ESD and 2.26 Gy·cm 2 in DAP, respectively. The E of abdomen AP averaged as 0.59 mSv, higher than that of lumber spine LAT. Even for the same type of examination, the dose from each equipment was different. Conclusions: DR has the potential to reduce the patients' radiation doses. The guidance levels suitable for Chinese population should be established as soon as possible. (authors)

  1. The effect of low changes in radiation dose on the hatching data of rainbow trout

    International Nuclear Information System (INIS)

    Buehringer, H.; Kellermann, H.J.

    1993-01-01

    Radiation hormesis hypothesis refers to the occurrence of a biphasic dose-respond relationship in which higher doses cause an inhibitory effect and lower doses cause a stimulatory effect. By extrapolation of this thesis there could be suggested a radiation damage effect below normal background radiation doses. Rainbow trout eggs, which are very radiation sensitive, were fertilized and incubated in environments with abient radiation (Hamburg), increased doses of radiation and decreased level of radiation doses (ASSE II). Hatching data (incubation time, hatching time, hatching success, number and kind of malformations, length of larvae) were examined for a hormesis effect. Only in hatching success a statistically significant effect of radiation dose was noticeable. (orig.) [de

  2. Recent trend of radiation doses of medical workers

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, I [Tokyo Univ. (Japan). Faculty of Medicine; Tanaka, M; Nakamura, S; Nawa, H; Nukazawa, A

    1981-10-01

    Radiation doses of medical workers in Japan between 1976 and 1979 were analysed based on the data provided by a film badge servicing company. Average annual radiation doses between April, 1978 and March, 1979 were 129 mrems for 2556 doctors, 108 mrems for 2074 radiographers, and 60 mrems for 1915 nurses. It was also suggested that the log-normal distribution could provide a good fit to the frequency distribution of radiation doses of these medical staffs. Time series data of monthly average doses during the period between April, 1976 and March, 1979 were analysed using a computer code named EPA that had been developed by the Japanese Economic Planning Agency. The EPA code separated the original time series data into three components, i.e., the trend and cycle factor, the seasonal factor and the irregular factor based on a multiplicative model. The results of analyses strongly suggested that there existed a significant common pattern among the trend factors of doctors, radiographers and nurses. The similar phenomenon was also observed about the seasonal factors. Some specific cases of medical workers who received considerably high radiation doses were studied, and it was pointed out that, in order to lower the doses of medical workers, the factors which are peculiar to each medical facility must be precisely examined in addition to the strengthening of general radiological protective measures.

  3. Assessment of dose in cervical vertebrae radiographic examinations

    International Nuclear Information System (INIS)

    Owrnasir, Wafa Fadol Orsud

    2014-12-01

    Reference dose levels provide a framework to reduce doses variability and aid in the optimization of radiation protection.This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study performed to assess the entrance surface dose ( ESD) received in Cervical Vertebrae radiographic examination and to analyze effective dose distributions among radiological departments under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 64 patients. The following parameter were recorded; age, weight, height, body mass index (BMI) derived from weight (kg) and height (m) and exposure factors. The dose was measured for Cervical Vertebrae x-ray examinations, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for Cervical Vertebrae AP and lateral examinations. The ESD values were then calculated using IAEA calculation methods. The results of ESD values calculated showed than patient exposure were within the normal range of exposure. The mean ED values calculated were ( 3.85 ±0.04) and (4.02 ±0.05) mGy for Cervical Vertebrae AP and lateral examinations, respectively in department Na1 and (3.99± 0.15) and (4.23± 0.34) mGy, for Cervical Vertebrae Ap and lateral examinations respectively in department Na2, the IAEA standard value of ESD for cervical equal (7), (20) mGy AP and LAT, Further studies are recommended with more number of patients and using more than two modalities for comparison. (Author)

  4. Impact of Digital Imaging on Radiation Doses to the Patient During X-ray Examination of the Urinary Tract

    International Nuclear Information System (INIS)

    Sjoeholm, B.; Geijer, H.; Persliden, J.

    2005-01-01

    Purpose: To compare radiation doses given to patients undergoing IVU (intravenous urography) before and after digitalization of our X-ray department. Material and Methods: IVU examinations were monitored with dose area product meters before and after the X-ray department changed to digital techniques. The first step was a change from film-screen to storage phosphor plates, while the second step involved changing to a flat panel detector. Forty-two patients were included for the film-screen situation, 69 when using the storage phosphor plates, and 70 using the flat panel detector. Results: A dose reduction from 41.8 Gycm 2 to 31.5 Gycm 2 was achieved with the first step when the film-screen system was replaced with storage phosphor plates. A further reduction to 12.1 Gycm 2 was achieved using the flat panel detector. Conclusion: The introduction of the flat panel detectors made a considerable dose reduction possible Digital radiography, dosimetry, urinary

  5. Impact of Digital Imaging on Radiation Doses to the Patient During X-ray Examination of the Urinary Tract

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeholm, B. [Oerebro Univ. Hospital (Sweden). Depts. of Medical Physics and Radiology; Geijer, H. [Oerebro Univ. (Sweden). Dept. of Physics; Persliden, J. [Linkoeping Univ. (Sweden). Dept. of Radiation Physics

    2005-10-01

    Purpose: To compare radiation doses given to patients undergoing IVU (intravenous urography) before and after digitalization of our X-ray department. Material and Methods: IVU examinations were monitored with dose area product meters before and after the X-ray department changed to digital techniques. The first step was a change from film-screen to storage phosphor plates, while the second step involved changing to a flat panel detector. Forty-two patients were included for the film-screen situation, 69 when using the storage phosphor plates, and 70 using the flat panel detector. Results: A dose reduction from 41.8 Gycm{sup 2} to 31.5 Gycm{sup 2} was achieved with the first step when the film-screen system was replaced with storage phosphor plates. A further reduction to 12.1 Gycm{sup 2} was achieved using the flat panel detector. Conclusion: The introduction of the flat panel detectors made a considerable dose reduction possible Digital radiography, dosimetry, urinary.

  6. Radiation doses to neonates requiring intensive care

    International Nuclear Information System (INIS)

    Robinson, A.; Dellagrammaticas, H.D.

    1983-01-01

    Radiological investigations have become accepted as an important part of the range of facilities required to support severely ill newborn babies. Since the infants are so small, many of the examinations are virtually ''whole-body'' irradiations and it was thought that the total doses received might be appreciable. A group of such babies admitted to the Neonatal Intensive Care Unit in Sheffield over a six-month period have been studied. X-ray exposure factors used for each examination have been noted and total skin, gonad and bone marrow doses calculated, supplemented by measurements on phantoms. It is concluded that in most cases doses received are of the same order as those received over the same period from natural background radiation and probably less than those received from prenatal obstetric radiography, so that the additional risks from the diagnostic exposure are small. The highest doses are received in CT scans and barium examinations and it is recommended that the need for these should be carefully considered. (author)

  7. Radiation dose to neonates on a Special Care Baby Unit

    International Nuclear Information System (INIS)

    Faulkner, K.; Barry, J.L.; Smalley, P.

    1989-01-01

    The skin entrance dose to neonates on a special care baby unit was estimated from a knowledge of the technique factors, X-ray tube output and backscatter factors. Normalized organ dose data were employed to estimate radiation dose to a number of critical organs. Methods of reducing radiation dose to neonates were investigated. Initially, this involved changing the radiographic technique factors and introducing a lead rubber adjustable collimator, placed on top of the incubator, in addition to light beam diaphragms on the X-ray tube. These modifications to the examination technique appeared to reduce average entrance dose per radiograph from 92 μGy, to 58 μGy, a reduction of 37%. Later, a rare-earth film-screen combination was introduced to replace existing fast calcium tungstate screens. This enabled average entrance dose per radiograph to be reduced to 39 μGy, a further reduction of 33%. The mean radiation dose to a neonate is mainly determined by the number of radiographs. (author)

  8. Radiation dose to neonates on a Special Care Baby Unit

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, K.; Barry, J.L.; Smalley, P.

    1989-03-01

    The skin entrance dose to neonates on a special care baby unit was estimated from a knowledge of the technique factors, X-ray tube output and backscatter factors. Normalized organ dose data were employed to estimate radiation dose to a number of critical organs. Methods of reducing radiation dose to neonates were investigated. Initially, this involved changing the radiographic technique factors and introducing a lead rubber adjustable collimator, placed on top of the incubator, in addition to light beam diaphragms on the X-ray tube. These modifications to the examination technique appeared to reduce average entrance dose per radiograph from 92 ..mu..Gy, to 58 ..mu..Gy, a reduction of 37%. Later, a rare-earth film-screen combination was introduced to replace existing fast calcium tungstate screens. This enabled average entrance dose per radiograph to be reduced to 39 ..mu..Gy, a further reduction of 33%. The mean radiation dose to a neonate is mainly determined by the number of radiographs.

  9. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  10. Effective doses and standardised risk factors from paediatric diagnostic medical radiation exposures: Information for radiation risk communication

    International Nuclear Information System (INIS)

    Bibbo, Giovanni

    2018-01-01

    In the paediatric medical radiation setting, there is no consistency on the radiation risk information conveyed to the consumer (patient/carer). Each communicator may convey different information about the level of risk for the same radiation procedure, leaving the consumer confused and frustrated. There is a need to standardise risks resulting from medical radiation exposures. In this study, paediatric radiographic, fluoroscopic, CT and nuclear medicine examination data have been analysed to provide (i) effective doses and radiation induced cancer risk factors from common radiological and nuclear medicine diagnostic procedures in standardised formats, (II) awareness of the difficulties that may be encountered in communicating risks to the layperson, and (iii) an overview of the deleterious effects of ionising radiation so that the risk communicator can convey with confidence the risks resulting from medical radiation exposures. Paediatric patient dose data from general radiographic, computed tomography, fluoroscopic and nuclear medicine databases have been analysed in age groups 0 to <5 years, 5 to <10 years, 10 to <15 years and 15 to <18 years to determine standardised risk factors. Mean, minimum and maximum effective doses and the corresponding mean lifetime risks for general radiographic, fluoroscopic, CT and nuclear medicine examinations for different age groups have been calculated. For all examinations, the mean lifetime cancer induction risk is provided in three formats: statistical, fraction and category. Standardised risk factors for different radiological and nuclear medicine examinations and an overview of the deleterious effects of ionising radiation and the difficulties encountered in communicating the risks should facilitate risk communication to the patient/carer.

  11. Radiation dose to the lens and cataract formation

    International Nuclear Information System (INIS)

    Henk, J.M.; Whitelocke, R.A.F.; Warrington, A.P.; Bessell, E.M.

    1993-01-01

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab

  12. Senior medical students' awareness of radiation risks from common diagnostic imaging examinations.

    Science.gov (United States)

    Scali, Elena; Mayo, John; Nicolaou, Savvas; Kozoriz, Michael; Chang, Silvia

    2017-12-01

    Senior medical students represent future physicians who commonly refer patients for diagnostic imaging studies that may involve ionizing radiation. The radiology curriculum at the University of British Columbia provides students with broad-based knowledge about common imaging examinations. The purpose of this study was to investigate students' awareness of radiation exposures and risks. An anonymous multiple-choice cross-sectional questionnaire was distributed to final year medical students to assess knowledge of radiation from common diagnostic examinations and radiation-related risks following completion of the longitudinal radiology curriculum, carried out over the four years of medical training. Sixty-three of 192 eligible students participated (33% response rate). The majority felt that knowledge of radiation doses of common imaging examinations is somewhat or very important; however, only 12% (N = 8) routinely discuss radiation-related risks with patients. While all respondents recognized children as most sensitive to the effects of radiation, only 24% (N = 15) correctly identified gonads as the most radiation-sensitive tissue. Almost all respondents recognized ultrasound and MRI as radiation free modalities. Respondents who correctly identified the relative dose of common imaging examinations in chest x-ray equivalents varied from 3-77% (N = 2 - 49); the remaining responses were largely underestimates. Finally, 44% (N = 28) correctly identified the excess risk of a fatal cancer from an abdominal CT in an adult, while the remainder underestimated this risk. Medical students acknowledge the importance of radiation-related issues to patient care. While almost all students are familiar with radiation-free modalities, many are not familiar with, and commonly underestimate, the relative doses and risks of common imaging studies. This may expose patients to increasing imaging investigations and exposure to radiation hazards.

  13. Biological dose assessment of 15 victims in Haerbin radiation accident

    International Nuclear Information System (INIS)

    Liu, Jian-xiang; Huang, Min-yan; Ruan, Jian-lei; Bai, Yu-shu; Xu, Su

    2008-01-01

    Full text: a) On July 5 and 8, 2005, Two patients with bone marrow suppression were successively hospitalized by the First Affiliated Hospital of Haerbin Medical University. Examination results showed that the patients seemed to get suspicious radiation disease. On July 13, 2005, a radioactive source was found in the patients' dwelling. The radiation source is Iridium-192 with 0.5 Ci(1.85 x 10 10 Bq) radioactivity. The radiation source is a metal bar which is a kind of radioactive industrial detection source for welding. The source is currently stored in the urban radioactive waste storehouse of Heilongjiang province. After finding the radioactive source on July 13, The Haerbin municipal government initiated an emergency response plan and developed medical rescue, radioactive source examination and case detection through organizing ministries involving health, environmental protection and public security. After receiving a report at 17:00 on July 14, 2005, Chinese Ministry of Health immediately sent experts to the spot for investigation, dose estimation and direction of patients' rescue. Health authority carried out physical examination twice on 113 residents within 30 meters to the source, among which 4 got radiation sickness, 5 showed abnormal hemotogram, and others showed no abnormal response. Of 4 patients with radiation sickness, one 81 year old patient has died of severe bone marrow form of sub acute radiation sickness coupled with lung infection and prostrate apparatus at 13:00 on Oct., 20. Two children have been treated in Beitaiping Road Hospital in Beijing, another patient has been treated in local hospital. b) Biological dosimetry using conventional chromosome aberration analysis in human peripheral blood lymphocytes has been shown as a reliable and useful tool in medical management of radiation accident victims. Peripheral blood lymphocytes of the victims were cultured using conventional culture medium with colchicine added at the beginning. Chromosome

  14. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    International Nuclear Information System (INIS)

    Hui, Peter K.T.; Goo, Hyun Woo; Du, Jing; Ip, Janice J.K.; Kanzaki, Suzu; Kim, Young Jin; Kritsaneepaiboon, Supika; Lilyasari, Oktavia; Siripornpitak, Suvipaporn

    2017-01-01

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  15. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Peter K.T. [Hong Kong Baptist Hospital, Department of Radiology, Hong Kong, SAR (China); Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Du, Jing [Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Beijing (China); Ip, Janice J.K. [Queen Mary Hospital, Department of Radiology, Hong Kong, SAR (China); Kanzaki, Suzu [National Cerebral and Cardiovascular Center, Department of Radiology, Osaka (Japan); Kim, Young Jin [Yonsei University, Shinchon Severance Hospital, Department of Radiology, Seoul (Korea, Republic of); Kritsaneepaiboon, Supika [Songklanagarind Hospital, Prince of Songkla University, Department of Radiology, Hat Yai (Thailand); Lilyasari, Oktavia [University of Indonesia, National Cardiovascular Center Harapan Kita, Department of Cardiology, Jakarta (Indonesia); Siripornpitak, Suvipaporn [Ramathibodi Hospital, Mahidol University, Department of Radiology, Salaya (Thailand)

    2017-07-15

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  16. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Maliev, V.; Popov, D.; Jones, J.; Gonda, S.; Prasad, K.; Viliam, C.; Haase, G.; Kirchin, V.; Rachael, C.

    2006-01-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  17. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  18. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  19. Patient dose optimisation in cardiology during fluoroscopy examinations

    International Nuclear Information System (INIS)

    Verdun, F.R.; Valley, J.F.; Wicky, S.; Narbel, M.; Schnyder, P.

    2001-01-01

    Data from 1200 cardiac examinations recorded during the past ten months have been analysed. The DAP's obtained for most of the examinations are comparable to the published data. Moreover, an excellent correlation has been found between the high DAP value and the experience of the operator. DAP measurements for 'high dose examinations' are becoming mandatory in several countries, and medical physicists should help the physicians to interpret these measurements in order to improve the safety of the ionising radiation use. In our Centre it appeared that for their first examinations physicians should be more closely guided by seniors. (author)

  20. Radiation doses measured by TLD (thermoluminescent dosimeter) in x-ray examination, especially on the skin area beneath of which female gonads situate

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Hiraki, M; Murakami, S; Nishikawa, N; Yagi, T [Nissei Hospital, Osaka (Japan)

    1977-03-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field.

  1. Cytogenetic examination of cosmonauts for space radiation exposure estimation

    Science.gov (United States)

    Snigiryova, G. P.; Novitskaya, N. N.; Fedorenko, B. S.

    2012-08-01

    PurposeTo evaluate radiation induced chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). Materials and methodsCytogenetic examination which has been performed in the period 1992-2008 included the analysis of chromosome aberrations using conventional Giemsa staining method in 202 blood samples from 48 cosmonauts who participated in flights on Mir Orbital Station and ISS. ResultsSpace flights led to an increase of chromosome aberration frequency. Frequency of dicentrics plus centric rings (Dic+Rc) depend on the space flight duration and accumulated dose value. After the change of space stations (from Mir Orbital Station to ISS) the radiation load of cosmonauts based on data of cytogenetic examination decreased. Extravehicular activity also adds to chromosome aberration frequency in cosmonauts' blood lymphocytes. Average doses after the first flight, estimated by the frequency of Dic+Rc, were 227 and 113 mGy Eq for long-term flights (LTF) and 107 and 53 mGy Eq for short-term flights (STF). ConclusionCytogenetic examination of cosmonauts can be applied to assess equivalent doses.

  2. Radiation doses to Norwegian heart-transplanted patients undergoing annual coronary angiography

    International Nuclear Information System (INIS)

    Seierstad, T.; Friberg, E. G.; Lervag, C.; Widmark, A.; Wilhelmsen, N.; Stranden, E.

    2012-01-01

    Heart-transplanted patients in Norway undergo annual coronary angiography (CA). The aims of this study were to establish a conversion factor between dose-area product and effective dose for these examinations and to use this to evaluate the accumulated radiation dose and risks associated with annual CA. An experienced cardiac interventionist performed a simulated examination on an Alderson phantom loaded with thermoluminescence dosemeters. The simulated CA examination yielded a dose-area product of 17 Gy cm 2 and an effective dose of 3.4 mSv: the conversion factor between dose-area product and effective dose was 0.20 mSv Gy cm -2 . Dose-area product values from 200 heart-transplanted patients that had undergone 906 CA examinations between 2001 and 2008 were retrieved from the institutional database. Mean dose-area product from annual CA was 25 Gy cm 2 , ranging from 2 to 140 Gy cm 2 . Mean number of CA procedure was 8 (range, 1-23). Mean accumulated effective dose for Norwegian heart-transplanted patients between 2001 and 2008 was 34 mSv (range, 5-113 mSv). Doses and radiation risks for heart-transplanted patients are generally low, because most heart transplantations are performed on middle-aged patients with limited life expectancy. Special concern should however be taken to reduce doses for young heart-transplanted patients who are committed to lifelong follow-up of their transplanted heart. (authors)

  3. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  4. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  5. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    Lavoie, Ch.; Rasuli, P.

    2001-01-01

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  6. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  7. Low-dose x-radiation and congenital anomalies

    International Nuclear Information System (INIS)

    Kameyama, Yoshiro

    1983-01-01

    Among radiation effects on developing embryos and fetuses, occurrence of germinal mutation due to exposure of the gonads and postnatal manifestation of neoplasms are considered to be stochastic effects from the aspect of radiation protection. On the other hand, somatic effects such as teratogenic and embryo-toxic effects can be regarded as nonstochastic ones with threshold doses. In experimental teratological studies with mice and rats, the lowest radiation doses for manifestation of the non-stochastic somatic effects which have been recognized so far are:5 rad for resorption of preimplantation embryos; 5-10 rad for acute cytological changes such as pyknosis, cytoplasmic degeneration and mitotic delay; 5 rad for increasing frequency of spontaneous minor anomalies of the skeleton; 15-20 rad for malformations of the eye, brain and spinal cord; 20-25 rad for histogenetic and functional disorders of the central nervous system; and 20-25 rad for impaired fertility. Pregnant women who are subject to X-ray examinations are much concerned about potential hazard of radiation to their offspring in utero. The above experimental findings suggest that the possibility of non-stochastic somatic effects of diagnostic radiation on human embryos and fetuses is extremely low, and probably negligible, given the proper dose control measures. Possible effects which should be considered for risk evaluation of diagnostic exposure are two stochastic effects, carcinogenic and mutagenic. (author)

  8. Reduction of radiation exposure for the examiner in angiography using a direct dosimeter

    International Nuclear Information System (INIS)

    Kamusella, Peter; Wissgott, C.; Scheer, F.; Andresen, R.; Wiggermann, P.

    2013-01-01

    Purpose: To evaluate whether a reduction in radiation exposure can be achieved using a direct dosimeter with an acoustic warning signal (model EDD-30, Unfors Instruments, Billdal, Sweden). Materials and Methods: A total of 183 diagnostic and interventional angiographies of the pelvis and lower limbs using a direct dosimeter were analyzed. The vascular interventions were performed either by an experienced examiner (> 5000 interventions), an intermediate examiner (> 1000 interventions) or by a beginner (< 200 interventions). The measuring sensor of the direct dosimeter was attached to the back of the left hand, below the sterile glove, and was worn throughout the examination. If the limit values set on the dosimeter were exceeded, an acoustic signal sounded. At the end of the examination, the mean dose and the mean dose rate could be read off directly. Results: Exposure is clearly dependent on the experience of the examiner. The highest mean dose rate was found for the beginner, followed by the intermediate examiner. The lowest dose rate was shown by the experienced examiner, even though he mostly performed complex interventions. Over the course of 3 months, an improvement in the average dose rate can be shown in the third month for the intermediate examiner. Conclusion: The use of a direct dosimeter with an acoustic warning signal is a practicable tool for sensitizing interventional radiologists to unavoidable radiation exposure, with the aim of reducing the dose. 'Real-time' dosimetry represents a sensible extension of indirect protection of the radiation-exposed examiner in angiography. (orig.)

  9. Radiation dose in vertebroplasty

    International Nuclear Information System (INIS)

    Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.; Abdo, G.; Martin, J.B.; Viera, J.M.; Ruefenacht, D.A.

    2004-01-01

    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256 mGy outside and 0.01-0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5 mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurements. (orig.)

  10. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bakar, K. A.; Haron, M. R.; Kayun, Z.

    2016-04-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDIw), dose length product (DLP) and effective dose (E). The mean values of CTDIw, DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts.

  11. Interventional Angiography: Radiation Protection for the Examiner by using Lead-free Gloves.

    Science.gov (United States)

    Kamusella, Peter; Scheer, Fabian; Lüdtke, Christopher Wilhelm; Wiggermann, Philipp; Wissgott, Christian; Andresen, Reimer

    2017-07-01

    The radiation exposure to unprotected parts of the body requires special attention for the interventional radiologist. During angiographic procedures, hands are exposed to the direct X-ray beam and scattered radiation. The aim of the study was to evaluate the radiation exposure of examiners hand with the use of lead-free X-ray protective gloves in clinical practice in terms of shielding and sense of touch. The aim of the study was to evaluate the radiation exposure of examiners hand with the use of lead-free X-ray protective gloves in clinical practice in terms of shielding and sense of touch. Phantom measurements were conducted in the direct X-ray beam and the area of scattered radiation with and without shielding. Examiner measurements were determined in interventional angiographies in clinical routine of the lower limb in antegrade puncture technique through the femoral artery. In 24 out of 50 interventions, an elastic natural rubber latex glove with lead-free metal shielding against radiation was used. All measurements were performed with a direct dosimeter. After the intervention, an opinion of the examiner was requested for evaluation of the sense of touch. Phantom measurements; when using the protective glove in the direct X-ray beam, a significant increase of the Dose Area Product (DAP) (1084.2-1603.8 mGy*cm 2 ; 67.6%; pgloves were used, a significant increase of the DAP (6183.2-10462.9 mGy*cm 2 ; 59.1%; pgloves is characterized by a shielding effect against X-ray scattered radiation, without restricting the sense of touch. A significant reduction in radiation doses to the examiner can be accomplished with these gloves in the area of scattered radiation only. If the gloves were used in the direct X-ray beam, especially while the artery puncture was performed, a significant increase of the dose values was observed.

  12. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  13. Cytogenetic dose-response and adaptive response in cells of ungulate species exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Ulsh, B.A.; Miller, S.M.; Mallory, F.F.; Mitchel, R.E.J.; Morrison, D.P.; Boreham, D.R.

    2004-01-01

    In the studies reported here, the micronucleus assay, a common cytogenetic technique, was used to examine the dose-responses in fibroblasts from three ungulate species (white-tailed deer, woodland caribou, and Indian muntjac) exposed to high doses of ionizing radiation (1-4 Gy of 60 Co gamma radiation). This assay was also used to examine the effects of exposure to low doses (1-100 mGy) typical of what these species experience in a year from natural and anthropogenic environmental sources. An adaptive response, defined as the induction of resistance to a stressor by a prior exposure to a small 'adapting' stress, was observed after exposure to low doses. This work indicates that very small doses are protective for the endpoint examined. The same level of protection was seen at all adapting doses, including 1 radiation track per cell, the lowest possible cellular dose. These results are consistent with other studies in a wide variety of organisms that demonstrate a protective effect of low doses at both cellular and whole-organism levels. This implies that environmental regulations predicated on the idea that even the smallest dose of radiation carries a quantifiable risk of direct adverse consequences to the exposed organism require further examination. Cytogenetic assays provide affordable and feasible biological effects-based alternatives that are more biologically relevant than traditional contaminant concentration-based radioecological risk assessment

  14. Radiation exposure of the UK population from medical and dental x-ray examinations

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.F.

    2002-03-01

    Knowledge of recent trends in the radiation doses from x-ray examinations and their distribution for the UK population provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimise the protection of the population in a cost-effective manner. In this report, the results of a recent survey of the frequency of medical and dental x-ray examinations in the UK and contemporary data on the radiation doses typically received by patients, are used to assess trends in the extent and the pattern of the population exposure. Individual patient doses, expressed in terms of the effective dose, range from a few microsieverts for simple radiographic examinations of the teeth, limbs or chest to tens of millisieverts for prolonged fluoroscopic procedures or some computed tomography (CT) examinations. A total of about 41.5 million medical and dental x-ray examinations are now conducted each year in the UK (0.70 examination per head of population) resulting in an annual per caput effective dose of 330 μSv. This is not significantly different from the previous rough estimate of 350 μSv for 1991. However, over the last ten years CT has more than doubled its contribution and is now responsible for 40% of the total dose to the population from medical x-rays. In contrast, the contribution from conventional radiographic and fluoroscopic examinations has nearly halved to about 44%. Interventional and angiographic procedures together contribute the remaining 16%. The annual per caput dose of 330 μSv is low in comparison with other countries having similarly developed systems of health care. This is due to both a lower frequency of x-ray examinations per head of population and generally lower doses in the UK than in other developed countries. However, the much increased contributions of CT, angiography and interventional procedures to the UK population dose indicate an urgent need to develop radiation protection and optimisation activities for

  15. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1997-01-01

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  16. Foetal Radiation Dose and Risk from Diagnostic Radiology Procedures: A Multinational Study

    International Nuclear Information System (INIS)

    Osei, Ernest K.; Darko, Johnson

    2012-01-01

    In diagnostic radiology examinations there is a benefit that the patient derives from the resulting diagnosis. Given that so many examinations are performed each year, it is inevitable that there will be occasions when an examination(s) may be inadvertently performed on pregnant patients or occasionally it may become clinically necessary to perform an examination(s) on a pregnant patient. In all these circumstances it is necessary to request an estimation of the foetal dose and risk. We initiated a study to investigate fetal doses from different countries. Exposure techniques on 367 foetuses from 414 examinations were collected and investigated. The FetDoseV4 program was used for all dose and risk estimations. The radiation doses received by the 367 foetuses ranges: <0.001–21.9 mGy depending on examination and technique. The associated probability of induced hereditary effect ranges: <1 in 200000000 (5 × 10 −9 ) to 1 in 10000 (1 × 10 −4 ) and the risk of childhood cancer ranges <1 in 12500000 (8 × 10 −8 ) to 1 in 500 (2 × 10 −3 ). The data indicates that foetal doses from properly conducted diagnostic radiology examinations will not result in any deterministic effect and a negligible risk of causing radiation induced hereditary effect in the descendants of the unborn child

  17. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  18. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional ...

  19. Variations of Patient Doses in Interventional Examinations at Different Angiographic Units

    International Nuclear Information System (INIS)

    Bor, Dogan; Toklu, Tuerkay; Olgar, Turan; Sancak, Tanzer; Cekirge, Saruhan; Onal, Baran; Bilgic, Sadik

    2006-01-01

    Purpose. We analyzed doses for various angiographic procedures using different X-ray systems in order to assess dose variations. Methods. Dose-area product (DAP), skin doses from thermoluminescent dosimeters and air kerma measurements of 308 patients (239 diagnostic and 69 interventional) were assessed for five different angiographic units. All fluoroscopic and radiographic exposure parameters were recorded online for single and multiprojection studies. Radiation outputs of each X-ray system were also measured for all the modes of exposure using standard protocols for such measurements. Results. In general, the complexity of the angiographic procedure was found to be the most important reason for high radiation doses. Skill of the radiologist, management of the exposure parameters and calibration of the system are the other factors to be considered. Lateral cerebral interventional studies carry the highest risk for deterministic effects on the lens of the eye. Effective doses were calculated from DAP measurements and maximum fatal cancer risk factors were found for carotid studies. Conclusions. Interventional radiologists should measure patient doses for their examinations. If there is a lack of necessary instrumentation for this purpose, then published dose reports should be used in order to predict the dose levels from some of the exposure parameters. Patient dose information should include not only the measured quantity but also the measured radiation output of the X-ray unit and exposure parameters used during radiographic and fluoroscopic exposures

  20. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  1. Measurement of dose received in knee joint x-ray examination

    International Nuclear Information System (INIS)

    Abashar, Basamat Musa Hajo

    2014-11-01

    Diagnostic x-rays examinations play an important role in the health care of the population. These examinations may involve significant irradiation of the patient and probably represent the largest man-made source of radiation exposure for the population. This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study performed to assess the effective dose (ED) received in knee joint radiographic examination and to analyze dose (ed) received in knee joint radiographic examination and to analyze effective dose distribution among radiological departments under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 50 patients. The following parameters were recorded age, weight, height, body mass ines (BMI) derived from weight (Kg) and (Height (M)) and (height (m)) and exposure factors. The dose was measured for knee joint x-rays examination. For effective dose calculation, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for knee joint Ap and lateral examinations. The ED values were then calculated from the obtained ESD values using IAEA calculation methods. Effective doses were then calculated from energy imparted using ED conversion factors proposed by IAEA. The results of ED values calculated showed that patient exposure were within the normal range of exposure. The mean ED values calculated were( 2.49 + 0.03) and (5.60 + 0.22) milli Grey for knee joint AP and lateral examinations, respectively, Further studies are recommended with more number of patients and using more two modalities for comparison.(Author)

  2. Radiation doses and risks from internal emitters

    International Nuclear Information System (INIS)

    Harrison, John; Day, Philip

    2008-01-01

    This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent and effective dose, and that more attention should be paid to uncertainties in dose and risk estimates and their implications. The new ICRP recommendations provide explanations of the calculation and intended purpose of the protection quantities, but further advice on their use would be helpful. The new recommendations refer to the importance of understanding uncertainties in estimates of dose and risk, although methods for doing this are not suggested. Dose coefficients (Sv per Bq intake) for the inhalation or ingestion of radionuclides are published as reference values without uncertainty. The primary purpose of equivalent and effective dose is to enable the summation of doses from different radionuclides and from external sources for comparison with dose limits, constraints and reference levels that relate to stochastic risks of whole-body radiation exposure. Doses are calculated using defined biokinetic and dosimetric models, including reference anatomical data for the organs and tissues of the human body. Radiation weighting factors are used to adjust for the different effectiveness of different radiation types, per unit absorbed dose (Gy), in causing stochastic effects at low doses and dose rates. Tissue weighting factors are used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, providing a simple set of rounded values chosen on the basis of age- and sex-averaged values of relative detriment. While the definition of absorbed dose has the scientific rigour required of a basic physical quantity

  3. Evaluation of awareness on radiation protection and knowledge about radiological examinations in healthcare professionals who use ionized radiation at work.

    Science.gov (United States)

    Yurt, Ayşegül; Cavuşoğlu, Berrin; Günay, Türkan

    2014-06-01

    In this study, we evaluated the knowledge and perception and mitigation of hazards involved in radiological examinations, focusing on healthcare personnel who are not in radiation-related occupations, but who use ionising radiation as a part of their work. A questionnaire was applied to physicians, nurses, technicians and other staff working in different clinics that use radiation in their work, in order to evaluate their knowledge levels about ionizing radiation and their awareness about radiation doses resulting from radiological examinations. The statistical comparisons between the groups were analyzed with the Kruskal Wallis test using the SPSS program. Ninety two participants took part in the study. Their level of knowledge about ionizing radiation and doses in radiological examinations were found to be very weak. The number of correct answers of physicians, nurses, medical technicians and other personnel groups were 15.7±3.7, 13.0±4.0, 10.1±2.9 and 11.8±4.0, respectively. In the statistical comparison between the groups, the level of knowledge of physicians was found to be significantly higher than the level of the other groups (p=0.005). The present study demonstrated that general knowledge in relation to radiation, radiation protection, health risks and doses used for radiological applications are insufficient among health professions using with ionizing radiation in their work.

  4. Image quality and radiation dose of low dose coronary CT angiography in obese patients: Sinogram affirmed iterative reconstruction versus filtered back projection

    International Nuclear Information System (INIS)

    Wang, Rui; Schoepf, U. Joseph; Wu, Runze; Reddy, Ryan P.; Zhang, Chuanchen; Yu, Wei; Liu, Yi; Zhang, Zhaoqi

    2012-01-01

    Purpose: To investigate the image quality and radiation dose of low radiation dose CT coronary angiography (CTCA) using sinogram affirmed iterative reconstruction (SAFIRE) compared with standard dose CTCA using filtered back-projection (FBP) in obese patients. Materials and methods: Seventy-eight consecutive obese patients were randomized into two groups and scanned using a prospectively ECG-triggered step-and-shot (SAS) CTCA protocol on a dual-source CT scanner. Thirty-nine patients (protocol A) were examined using a routine radiation dose protocol at 120 kV and images were reconstructed with FBP (protocol A). Thirty-nine patients (protocol B) were examined using a low dose protocol at 100 kV and images were reconstructed with SAFIRE. Two blinded observers independently assessed the image quality of each coronary segment using a 4-point scale (1 = non-diagnostic, 4 = excellent) and measured the objective parameters image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Radiation dose was calculated. Results: The coronary artery image quality scores, image noise, SNR and CNR were not significantly different between protocols A and B (all p > 0.05), with image quality scores of 3.51 ± 0.70 versus 3.55 ± 0.47, respectively. The effective radiation dose was significantly lower in protocol B (4.41 ± 0.83 mSv) than that in protocol A (8.83 ± 1.74 mSv, p < 0.01). Conclusion: Compared with standard dose CTCA using FBP, low dose CTCA using SAFIRE can maintain diagnostic image quality with 50% reduction of radiation dose.

  5. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    Li Huhou

    1988-01-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  6. Annual radiation dose in thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Huhou, Li [Chinese Academy of Social Sciences, Beijing, BJ (China). Inst. of Archaeology

    1988-11-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned.

  7. Examination of gene expression in mice exposed to low dose radiation using affymetrix cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.; Knox, D.; Lavoie, J.; Lemon, J.; Boreham, D. [McMaster Univ., Hamilton, Ontario (Canada)

    2005-07-01

    'Full text:' Gamma radiation acts via the indirect effect to damage cells by producing reactive oxygen species (ROS). These ROS are capable damaging macromolecules and, altering signal pathways and gene transcription. Cells have evolved enzymes and mechanisms to scavenge ROS and repair oxidative damage. Microarrays allow the survey of the gene transcription activity of thousands of genes simultaneously. Messenger RNA is extracted from cells, hybridized with the complementary DNA (cDNA) of a microarray chip, and examined with a chip reader. Affymetrix microarray chips have been produced by the CSCHAH in Winnipeg containing 26000 murine genes. Groups of female mice have been exposed to low dose whole body chronic gamma radiation exposures of 0,50,100, and 120 mGy, corresponding to 15,30,60, and 75 weeks, respectively. MRNA from mice brain tissue has been extracted, isolated, converted to cDNA and labeled. Gene expression in each irradiated mouse was compared to the pooled expression of the control mice. Analysis of gene expression levels are performed with microarray analytical software, Array Pro by Media Cybernetics, and powerful statistical software, BRB microarray tools. Differences in gene expressions, focusing on genes for cytokines, DNA repair mechanisms, immuno-modulators, apoptosis pathways, and enzymatic anti-oxidant systems, are being examined and will be reported. (author)

  8. Assessment of dose received by organ in lumbosacral examination

    International Nuclear Information System (INIS)

    Eltyeib, Nashwa Kheirallah

    2014-11-01

    The biological damage produced by radiation is closely related to the amount of energy absorbed in the case x- rays. Measurement of produced ionizing provides a useful assessment of the total energy absorbed. This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study was performed to assess the effective dose (ED) received in lumbosacral radiography examination and to analyze effective dose distributions among radiological department under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 50 patients. The following parameters were recorded: age weight, height, body mass index (BMI) derived from mass (kg) and (height. (m)) and exposure factors. The dose was measured for lumbosacral x- rays examination. For effective dose calculation, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for lumbosacral spine A P and lateral examinations. The ED values were then calculated from the obtained ESD values using IAEA calculation methods. Effective doses were than calculated from energy imported using ED conversion factors by IAEA. The results of ED values calculated showed that patient exposures were within the normal range of exposure. The mean ED values calculated were (2.49 ±0.03) mGy and (5.5.60 ± 0.0.22) mGy for Lumbosacral spine A P and lateral examinations, respectively. Further studies are recommended with more number of patients and using more modalities for comparison.(Author)

  9. The estimation of radiation effective dose from diagnostic medical procedures in general population of northern Iran

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Abdi, R.

    2006-01-01

    The risks of low-dose Ionizing radiation from radiology and nuclear medicine are not clearly determined. Effective dose to population is a very important factor in risk estimation. The study aimed to determine the effective dose from diagnostic radiation medicine in a northern province of Iran. Materials and Methods: Data about various radiologic and nuclear medicine procedures were collected from all radiology and nuclear medicine departments In Mazandaran Province (population = 2,898,031); and using the standard dosimetry tables, the total dose, dose per examination, and annual effective dose per capita as well as the annual gonadal dose per capita were estimated. Results: 655,730 radiologic examinations in a year's period, lead to 1.45 mSv, 0.33 mSv and 0.31 mGy as average effective dose per examination, annual average effective dose to member of the public, and annual average gonadal dose per capita, respectively. The frequency of medical radiologic examinations was 2,262 examinations annually per 10,000 members of population. However, the total number of nuclear medicine examinations in the same period was 7074, with 4.37 mSv, 9.6 μSv and 9.8 μGy, as average effective dose per examination, annual average effective dose to member of the public and annual average gonadal dose per caput, respectively. The frequency of nuclear medicine examination was 24 examinations annually per 10,000 members of population. Conclusion: The average effective dose per examination was nearly similar to other studies. However, the average annual effective dose and annual average gonadal dose per capita were less than the similar values in other reports, which could be due to lesser number of radiation medicine examinations in the present study

  10. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  11. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    International Nuclear Information System (INIS)

    Goekce, Senem Divrik; Gekce, Erkan; Coskun, Melek

    2012-01-01

    Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A X 2 -test was used for the evaluation of data obtained. Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period.

  12. Factors affecting radiation doses from dedicated rail transport of spent reactor fuel

    International Nuclear Information System (INIS)

    Martin, J.E.

    1988-01-01

    This paper reports there are two exposure control concerns associated with the shipment of spent reactor fuel in dedicated trains -- compliance with transportation regulations for maximum allowable radiation levels, and minimizing the dose received by the general public. This article examines the methods used to calculate the dose equivalent rates alongside stationary (transport regulations) and moving trains (public exposure) of various lengths. The factors examined include the source term, the effect of overlapping radiation fields, the speed of the train, and the location of the population relative to the train. Trains made up of series of cars that individually meet transport regulations can, as a whole, exceed transport vehicle dose equivalent rate limits by up to 23% due to overlapping radiation fields. For moving trains and the worst case analyzed -- a person located 20 feet from the tracks and a train speed of 5 mph --- 141 rail cars would have to pass by to deliver a dose equivalent of 1 mrem

  13. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  14. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  15. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  16. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  17. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  18. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  19. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  20. Absorbed doses and energy imparted from radiographic examination of velopharyngeal function during speech

    International Nuclear Information System (INIS)

    Isberg, A.; Julin, P.; Kraepelien, T.; Henrikson, C.O.

    1989-01-01

    Absorbed doses of radiation were measured by thermoluminescent dosimeters (TLDs) using a skull phantom during simulated cinefluorographic and videofluorographic examination of velopharyngeal function in frontal and lateral projections. Dosages to the thyroid gland, the parotid gland, the pituitary gland, and ocular lens were measured. Radiation dosage was found to be approximately 10 times less for videofluoroscopy when compared with that of cinefluoroscopy. In addition, precautionary measures were found to reduce further the exposure of radiation-sensitive tissues. Head fixation and shielding resulted in dose reduction for both video- and cinefluoroscopy. Pulsing exposure for cinefluoroscopy also reduced the dosage

  1. Doses from radiation exposure

    International Nuclear Information System (INIS)

    Menzel, H-G.; Harrison, J.D.

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection’s (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP’s 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  2. Determination of the radiation dose to the body due to external radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-01-01

    Section 63 of the Radiation Protection Ordinance defines the basic requirement, determination of radiation dose to the body. The determination of dose equivalents for the body is the basic step in practical monitoring of dose equivalents or dose limits with regard to individuals or population groups, both for constant or varying conditions of exposure. The main field of monitoring activities is the protection of persons occupationally exposed to ionizing radiation. Conversion factors between body doses and radiation quantities are explained. (DG) [de

  3. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  4. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  5. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  6. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012

    International Nuclear Information System (INIS)

    Johnsen, Boel; Fasmer, Kristine Eldevik; Boye, Kjetil; Rosendahl, Karen; Aukland, Stein Magnus; Trovik, Clement; Biermann, Martin

    2017-01-01

    Patients with Ewing sarcoma are subject to various diagnostic procedures that incur exposure to ionising radiation. To estimate the radiation doses received from all radiologic and nuclear imaging episodes during diagnosis and treatment, and to determine whether 18 F-fluorodeoxyglucose positron emission tomography - computed tomography ( 18 F-FDG PET-CT) is a major contributor of radiation. Twenty Ewing sarcoma patients diagnosed in Norway in 2005-2012 met the inclusion criteria (age <30 years, operable disease, uncomplicated chemotherapy and surgery, no metastasis or residual disease within a year of diagnosis). Radiation doses from all imaging during the first year were calculated for each patient. The mean estimated cumulative radiation dose for all patients was 34 mSv (range: 6-70), radiography accounting for 3 mSv (range: 0.2-12), CT for 13 mSv (range: 2-28) and nuclear medicine for 18 mSv (range: 2-47). For the patients examined with PET-CT, the mean estimated cumulative effective dose was 38 mSv, of which PET-CT accounted for 14 mSv (37%). There was large variation in number and type of examinations performed and also in estimated cumulative radiation dose. The mean radiation dose for patients examined with PET-CT was 23% higher than for patients not examined with PET-CT. (orig.)

  7. Effect of breast augmentation after breast-conserving surgery for breast cancer on radiation dose. Silicone prosthesis and changes in radiation dose

    International Nuclear Information System (INIS)

    Tonari, Ayako; Nako, Yasunobu; Ikezaki, Hiromi; Maruyama, Yasushi; Ikeda, Ikuo; Kusuda, Junko; Harii, Kiyonori; Takayama, Makoto

    2008-01-01

    The results of a study simulating postoperative radiation therapy of remaining breast tissue with a silicone bag prosthesis implanted to examine the effects of the prosthesis on radiation dosage and surrounding tissue are reported. The evaluation was conducted in two stages: a water phantom was used to evaluate scattering effects of a prosthesis installed inside the phantom using glass rod detector (GRD) set around the prosthesis. Measurements were conducted on both entrance and rear sides of the prosthesis. A Rand phantom was used to measure radiation doses around the prosthesis. The first evaluation resulted in a less than 5.4% reduction in dose at the rear side of the prosthesis whereas the second evaluation, for opposing portal irradiation used with breast-conserving surgical treatment, showed the effects of the prosthesis on radiation dosage being within ±2%, the permitted treatment range. In conclusion, for treating breast cancer, combining surgical treatment of the cancer with implanting of prosthesis for breast reconstruction followed by radiation treatment appears feasible as no effects on dosage were observed on treatment effectiveness. (author)

  8. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  9. Assessment of absorbed dose to the ovaries of patients undergoing pelvic CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, H.M.B. [Isfahan Univ. of Medical Sciences (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Introduction: Although Computed Tomography (CT) procedures constitute about 5% of the total diagnostic radiology procedures but are responsible for about 40% of the total ionizing radiation dose to the general population. As the dose is high especially in the CT of female pelvis, genetic radiation risk is also considerable. Materials and Methods: Radiation doses to the ovaries of the patients undergoing CT examination of the pelvis were measured from 9 different CT scanners available in Isfahan city. For each CT scanner 20 patients were selected. Measurement of organ dose was performed using TLD method. Results and Discussions: Mean and S.D. of absorbed dose to the ovaries from Shimadzo 2500 were 56.6 2.8; from GE Max 640 were 36.8 1.7; from GE Sytec 3000 were 36.6 1.8; from GE Sytec 4000 were 36.6 2.6; from Piker were 38.4 2.1; from Shimadzo 4500 were 36.4 1.2 and from Shimadzo 7800TE 28.2 1.5. Associated risks due to the measured dose are discussed. (author)

  10. Fallout, radiation doses near Dounreay, and childhood leukaemia

    International Nuclear Information System (INIS)

    Darby, S.C.; Doll, Richard

    1987-01-01

    Possible explanations for the recently reported increased incidence of childhood leukaemia around Dounreay were examined in the light of changes in the national incidence of leukaemia that occurred during the period of exposure to fallout from international testing of nuclear weapons in the atmosphere. It was concluded that the increase could not be accounted for by underestimate of the risk of leukaemia per unit dose of radiation at low doses and low dose rates, nor by underestimate of the relative biological efficiency of high compared with low linear energy transfer radiation. One possible explanation was underestimation of doses to the red bone marrow due to the discharges at Dounreay relative to dose from fallout, though investigation of ways in which this might have occurred did not suggest anything definite. Other explanations included a misconception of the site of origin of childhood leukaemia, outbreaks of an infectious disease and exposure to other, unidentified environmental agents. These findings weigh against the hypothesis that the recent increase in childhood leukaemia near Dounreay might be accounted for by radioactive discharges from nuclear plants, unless the doses to the stem cells from which childhood leukaemia originates have been grossly underestimated. (author)

  11. Estimation of patient dose in abdominal CT examination in some Sudanese hospitals

    International Nuclear Information System (INIS)

    Adam, Ebthal Adam Shikhalden

    2016-04-01

    The use of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. The aim of this study was to estimate radiation doses in abdomen CT examinations of patients in two Sudanese hospitals. Details were obtained from approximately 80 CT examinations and included all age groups ( adults and pediatric). The results from the two hospitals were compared with each other as well as with the IAEA guidance level for this particular investigation. The estimation of radiation doses were carried out by calculating volume dose index (CTD1vol), dose length product (DLP), doses to some organs of interest and effective dose (E) using the software program "CT EXPO V2.1". The study showed that the mean DLP of the one hospitals ASH is 1736.7 mGy.cm which is by far much higher than that for the other hospital NMDC which stands at 185.3 mGy.cm, as well as higher than the IAEA level which is 696 mGy.cm. The study showed that the mean CTD1vol for patients in ASH is 36.2 mGy which again higher than that for the other hospital which is 3.9 mGy and higher than the IAEA level which is 10.9 mGy calculating the effective dose for patients in the two hospitals reveals that the mean effective dose of patient in one hospital (ASH) is 26.25 mSv, which is quite high compared with other hospital (NMDC), which has the mean value of 2.8 mGv and also higher than the IAEA level from this investigation which is 7.6 mSv. Regarding organ doses, the study showed that organ doses in hospital ASH are always higher than that calculated in hospital NMDC and the highest doses in both hospital were delivered to the kidneys with mean values of 50.24 mGy and 5045 mGy for the two hospitals respectively. The study showed that there is an urgent need for optimizing patient doses in such CT examinations. This can be ensured by providing training and retraining for workers and conducting quality control measurements and preventive maintenance regularly so

  12. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  13. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    assessed with sub-μm resolution by utilizing the unique morphology of the retina as a model tissue. The analysis revealed a 1/r 2 dependency of the dose deposition by δ-electrons, which was hitherto only determined with physical approaches in inorganic material. Moreover, the biological measurements indicate the presence of a background dose at larger distances from primary particles, which arises as a result of additive dose contributions from several independent particles. In conclusion, this interdisciplinary project put emphasis on the transition between the physical and the biological radiation effects and provided extensive data for the biological verification of physical measurements and models. Some of these models are used for the planning of tumor treatment with charged particles. The second project built upon previously obtained data and focused on the investigation of the DSB repair efficiency of cells irradiated with low doses. For this project, radiation doses were selected that are comparable to the doses, which are routinely used during diagnostic medical examinations. While a linear induction of DSBs with the applied dose was detected in human fibroblasts, these cells fail to repair DSBs efficiently after very low doses of X-rays. However, the repair efficiency was increased in cells pre-treated with low concentrations of hydrogen peroxide, suggesting that this induces a response, which is required for the repair of radiation-induced DSBs after exposure to low radiation doses (Grudzenski et al., 2010, PNAS 107:14205-10). One interpretation of this finding is that a certain cellular radical level is required to efficiently activate the repair machinery. To test this hypothesis, we asked if the DSB repair capacity at low doses can be further diminished when cells are treated with a radical scavenger prior to irradiation. Indeed, a decreased DSB repair capacity in cells pre-treated with the radical scavenger N-Acetylcystein was observed. Appropriate in vivo

  14. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    Science.gov (United States)

    Divrik Gökçe, Senem; Coşkun, Melek

    2012-01-01

    Objective Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. Materials and Methods A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A χ2-test was used for the evaluation of data obtained. Results Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Conclusion Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period. PMID:22438688

  15. Brachytherapy radiation doses to the neurovascular bundles

    International Nuclear Information System (INIS)

    Di Biase, Steven J.; Wallner, Kent; Tralins, Kevin; Sutlief, Steven

    2000-01-01

    Purpose: To investigate the role of radiation dose to the neurovascular bundles (NVB) in brachytherapy-related impotence. Methods and Materials: Fourteen Pd-103 or I-125 implant patients were studied. For patients treated with implant alone, the prostate and margin (clinical target volume [CTV]) received a prescription dose of 144 Gy for I-125 or 115 Gy for Pd-103. Two patients received Pd-103 (90 Gy) with 46 Gy supplemental external beam radiation (EBRT). Axial CT images were acquired 2 to 4 hours postoperatively for postimplant dosimetry. Because the NVBs cannot be visualized on CT, NVB calculation points were determined according to previously published anatomic descriptions. Bilateral NVB points were considered to lie posterior-laterally, approximately 2 mm from the prostatic capsule. NVB doses were recorded bilaterally, at 0.5-cm intervals from the prostatic base. Results: For Pd-103, the average NVB doses ranged from 150 Gy to 260 Gy, or 130% to 226% of the prescription dose. For I-125, the average NVB dose ranged from 200 Gy to 325 Gy, or 140% to 225% of the prescription dose. These was no consistent relationship between the NVB dose and the distance from the prostatic base. To examine the possible effect of minor deviations of our calculation points from the true NVB location, we performed NVB calculations at points 2 mm medial or lateral from the NVB calculation point in 8 patients. Doses at these alternate calculation points were comparable, although there was greater variability with small changes in the calculation point if sources were located outside the capsule, near the NVB calculation point. Three patients who developed early postimplant impotence had maximal NVB doses that far exceeded the average values. Conclusions: In the next few years, we hope to clarify the role of high NVB radiation doses on potency, by correlating NVB dose calculations with a large number of patients enrolled in an ongoing I-125 versus Pd-103 trial for early-stage patients

  16. Influence of Flat-Panel Fluoroscopic Equipment Variables on Cardiac Radiation Doses

    International Nuclear Information System (INIS)

    Nickoloff, Edward L.; Lu Zhengfeng; Dutta, Ajoy; So, James; Balter, Stephen; Moses, Jeffrey

    2007-01-01

    Purpose. To assess the influence of physician-selectable equipment variables on the potential radiation dose reductions during cardiac catheterization examinations using modern imaging equipment. Materials. A modern bi-plane angiography unit with flat-panel image receptors was used. Patients were simulated with 15-30 cm of acrylic plastic. The variables studied were: patient thickness, fluoroscopy pulse rates, record mode frame rates, image receptor field-of-view (FoV), automatic dose control (ADC) mode, SID/SSD geometry setting, automatic collimation, automatic positioning, and others. Results. Patient radiation doses double for every additional 3.5-4.5 cm of soft tissue. The dose is directly related to the imaging frame rate; a decrease from 30 pps to 15 pps reduces the dose by about 50%. The dose is related to [(FoV) -N ] where 2.0 < N < 3.0. Suboptimal positioning of the patient can nearly double the dose. The ADC system provides three selections that can vary the radiation level by 50%. For pediatric studies (2-5 years old), the selection of equipment variables can result in entrance radiation doses that range between 6 and 60 cGy for diagnostic cases and between 15 and 140 cGy for interventional cases. For adult studies, the equipment variables can produce entrance radiation doses that range between 13 and 130 cGy for diagnostic cases and between 30 and 400 cGy for interventional cases. Conclusions. Overall dose reductions of 70-90% can be achieved with pediatric patients and about 90% with adult patients solely through optimal selection of equipment variables

  17. Estimation of patient dose in 18 F-FDG and 18 F-FDOPA PET/CT examinations

    Directory of Open Access Journals (Sweden)

    Aruna Kaushik

    2013-01-01

    Full Text Available Purpose: To estimate specific organ and effective doses to patients resulting from the 18 F-FDG ( 18 F-2-deoxy-D-glucose and 18 F-FDOPA (6-fluoro-( 18 F-L-3, 4-dihydroxyphenylalanine PET/CT examinations for whole body and brain. Materials and Methods: Three protocols for whole body and three for brain PET/CT were used. The CTDI values were measured using standard head and body CT phantoms and also computed using a software CT-Expo for dose evaluation from the CT component. OLINDA software based on MIRD method was used for estimating doses from the PET component of the PET/CT examination. Results: The organ doses from 18 F-FDG and 18 F-FDOPA whole body and brain PET/CT studies were estimated. The total effective dose from a typical protocol of whole body PET/CT examination was 14.4 mSv for females and 11.8 mSv for male patients from 18 F-FDG, whereas it was 11 mSv for female and 9.1 mSv for male patients from 18 F-FDOPA. The total effective doses from a typical protocol for PET/CT studies of brain was 6.5 mSv for females and 5.1 mSv for males from 18 F-FDG whereas it was 3.7 mSv for females and 2.8 mSv for males from 18 F-FDOPA. Conclusions: The effective radiation doses from whole body PET/CT examination was approximately 4-8 times higher than the background radiation dose from both 18 F-FDG and 18 F-FDOPA scans, while it was 1-3 times the background radiation dose from PET/CT scans of brain.

  18. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    Science.gov (United States)

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  19. Age-specific radiation dose commitment factors for a one-year chronic intake

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Soldat, J.K.

    1977-11-01

    During the licensing process for nuclear facilities, radiation doses and dose commitments must be calculated for people in the environs of a nuclear facility. These radiation doses are determined by examining characteristics of population groups, pathways to people, and radionuclides found in those pathways. The pertinent characteristics, which are important in the sense of contributing a significant portion of the total dose, must then be analyzed in depth. Dose factors are generally available for adults, see Reference 1 for example, however numerous improvements in data on decay schemes and half-lives have been made in recent years. In addition, it is advisable to define parameters for calculation of the radiation dose for ages other than adults since the population surrounding nuclear facilities will be composed of various age groups. Further, since infants, children, and teens may have higher rates of intake per unit body mass, it is conceivable that the maximally exposed individual may not be an adult. Thus, it was necessary to develop new radiation-dose commitment factors for various age groups. Dose commitment factors presented in this report have been calculated for a 50-year time period for four age groups

  20. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  1. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    DEFF Research Database (Denmark)

    Appelt, A. L.; Ploen, J.; Vogelius, I. R.

    2013-01-01

    estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination...... of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect...... of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D-50,D-i, and the normalized dose-response gradient, gamma(50,i). Results: A highly...

  2. Occupational radiation doses during interventional procedures

    International Nuclear Information System (INIS)

    Nuraeni, N; Hiswara, E; Kartikasari, D; Waris, A; Haryanto, F

    2016-01-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits. (paper)

  3. Cancer and low dose responses In Vivo: implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2006-12-15

    This paper discusses the linear no-threshold (LNT) hypothesis, risk prediction and radiation protection. The summary implications for the radiation protection system are that at low doses the conceptual basis of the present system appears to be incorrect. The belief that the current system embodies the precautionary principle and that the LNT assumption is cautious appears incorrect. The concept of dose additivity appears incorrect. Effective dose (Sievert) and the weighting factors on which it is based appear to be invalid. There may be no constant and appropriate value of DDREF for radiological protection dosimetry. The use of dose as a predictor of risk needs to be re-examined. The use of dose limits as a means of limiting risk need to be re-evaluated.

  4. The impact of enteroclysis on patient's radiation doses

    International Nuclear Information System (INIS)

    Nikodemova, D.; Horvathova, M.; Prikaska, M.

    2002-01-01

    EU Directive 97/43 requires from Member States to ensure that appropriate quality assurance programmes are included together with quality control measures in the national legislation. On the basis of this Directive, as well as of the Basic Safety Standards although the New Act of Slovak National Council No.470/2000 Coll. improved the national system of acceptability of radiological examinations by implementation of Guidance Levels, system of education and necessity of introduction of Quality Assurance (QA) and Quality Control (QC) programmes in radiology departments. The knowledge of doses under practical conditions used for variety of diagnostic examinations, serves not only for verification of compliance with recommended guidance levels but also for stimulation of the awareness of medical staff to aspects of radiation protection of the patient, i.e. of variations in doses delivered to patients due to variations in technical conditions of the equipment used and the diagnostic procedures applied. About 14% off all radiological investigations undertaken in SR involve fluoroscopy. Because of the exposure parameters used in these examinations, particularly the screening time, they contribute a substantial proportion of the overall population dose from medical examinations. The objective of our study was to collect data on patient doses obtained during the conventional and digital fluoroscopy examinations of small intestine. In both cases the examinations were performed by the same radiologist, for excluding the individual variations in the used diagnostic methods. Two techniques for small intestine examinations were examined: the barium follow-through and enteroclysis. Our preliminary results are based on the dose-area product measurements and take into account all significant parameters influencing the irradiation dose observed during the two techniques used for diagnostic examinations

  5. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  6. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  7. Total radiation dosage from X-ray examinations in rheumatoid arthritis and other chronic skeletal diseases

    International Nuclear Information System (INIS)

    Baldursson, H.; Gustafsson, M.

    1977-01-01

    Young patients with rheumatoid arthritis and other chronic diseases of the skeleton are increasingly being operated on with replacement of major joints. The great number of associated X-ray examinations performed on these patients has caused some anxiety amongst orthopaedic surgeons. Two patients with juvenile rheumatoid arthritis have been studied. An attempt was made to calculate the total radiation dose to bone marrow and gonads. For lack of recommendations for the maximum permissible radiation dose to patients, the dose calculated has been compared with the maximum permissible dose of radiation workers, and with the dose limit for non-occupational irradiation of individuals. The yearly absorbed dose in these two patients is much lower than the maximum permissible dose of radiation workers and only slightly higher than the dose limit for non-occupational exposure of individuals. (author)

  8. Optimization of patient radiation protection in pelvic X-ray examination in Ghana.

    Science.gov (United States)

    Ofori, Eric K; Antwi, William K; Scutt, Diane N; Ward, Matt

    2012-07-05

    Pelvis X-ray examinations inevitably involve exposure of the gonads to ionizing radiation. In line with the principle of keeping doses as low as reasonably practicable (ALARP), accurate patient dose measurement is vital if we are to ascertain that these exposures are fully optimized. The study aimed to provide patient dose estimates for pelvis examination being undertaken at 10 separate hospitals in Ghana in order to provide an initial quantitative indication of each site's typically achievable radiation safety and quality standards. The method employed was adapted from established methods and peer reviewed literature, such as the International Atomic Energy Agency (IAEA) publications on optimization of the radiological protection of patients undergoing radiography, fluoroscopy, and computed tomography examinations in some countries in Africa, Asia, and Eastern Europe. Dose measurements were calculated on 323 patients (137 (42%) male, 186 (58%) female, ages, 38.56 yr ± 9.0; range 20-68). The entrance surface dose (ESD) was determined by an indirect method, using the patient's anatomical data and exposure parameters utilized for the specific examination. The Quality Assurance Dose Database software (QADDs) developed by Integrated Radiological Services Ltd. in Liverpool, UK was used to generate the ESD values. The study identified variations in the technique factors used compared with the recommendations in the European Commission (EC) quality criteria. Eighty percent of the hospitals recorded lower ESD values below IAEA recommended diagnostic reference levels (10 mGy) and 40% of the hospitals exceeded the UK national reference value (4 mGy). However, one hospital consistently recorded higher ESDs than the other hospitals. The variations in the data recorded demonstrate the importance of creating awareness by the radiographic staff on quality assurance and standardization of protocols to ensure satisfactory standards and optimized radiation dose to patients and

  9. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  10. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Boel [Haukeland University Hospital, Centre for Nuclear Medicine and PET, Department of Radiology, P.O. Box 1400, Bergen (Norway); Fasmer, Kristine Eldevik [Haukeland University Hospital, Department of Oncology, Medical Physics Section, Bergen (Norway); Boye, Kjetil [Norwegian Radium Hospital, Oslo University Hospital, Department of Oncology, Oslo (Norway); Rosendahl, Karen; Aukland, Stein Magnus [Haukeland University Hospital, Department of Radiology, Paediatric Section, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway); Trovik, Clement [University of Bergen, Department of Clinical Medicine, Bergen (Norway); Haukeland University Hospital, Department of Surgery, Orthopaedic Section, Bergen (Norway); Biermann, Martin [Haukeland University Hospital, Centre for Nuclear Medicine and PET, Department of Radiology, P.O. Box 1400, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway)

    2017-01-15

    Patients with Ewing sarcoma are subject to various diagnostic procedures that incur exposure to ionising radiation. To estimate the radiation doses received from all radiologic and nuclear imaging episodes during diagnosis and treatment, and to determine whether {sup 18}F-fluorodeoxyglucose positron emission tomography - computed tomography ({sup 18}F-FDG PET-CT) is a major contributor of radiation. Twenty Ewing sarcoma patients diagnosed in Norway in 2005-2012 met the inclusion criteria (age <30 years, operable disease, uncomplicated chemotherapy and surgery, no metastasis or residual disease within a year of diagnosis). Radiation doses from all imaging during the first year were calculated for each patient. The mean estimated cumulative radiation dose for all patients was 34 mSv (range: 6-70), radiography accounting for 3 mSv (range: 0.2-12), CT for 13 mSv (range: 2-28) and nuclear medicine for 18 mSv (range: 2-47). For the patients examined with PET-CT, the mean estimated cumulative effective dose was 38 mSv, of which PET-CT accounted for 14 mSv (37%). There was large variation in number and type of examinations performed and also in estimated cumulative radiation dose. The mean radiation dose for patients examined with PET-CT was 23% higher than for patients not examined with PET-CT. (orig.)

  11. Radiation assessment to paediatric with F-18-FDG undergo whole-body PET/CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Dhalisa, H., E-mail: dhalisa82@gmail.com; Rafidah, Z. [Kluster Oncology Science and Radiology, Advanced Medical Dental Institute, Universiti Sains Malaysia (USM), Bertam, Penang (Malaysia); Mohamad, A. S. [Department of Nuclear Medicine, National Cancer Institute, No 4 Jalan P7, Presint 7, Putrajaya (Malaysia)

    2016-01-22

    This study was carried out on wholebody radiation dose assessment to paediatrics patient who undergo PET/CT scanner at Institut Kanser Negara. Consist of 68 patients with varies of malignancies and epilepsy disease case covering age between 2 years to 12 years old. This is a retrospective study from 2010-2014. The use of PET/CT scanner as an advanced tool has been proven to give an extra radiation dose to the patient. It is because of the radiation exposure from the combination of both CT and PET scans rather than a single CT or PET scan. Furthermore, a study on radiation dose to paediatric patient undergoing PET/CT is rare in Malaysia. So, the aim of this study is to estimate the wholebody effective dose to paediatric patient in Malaysia. Effective dose from PET scan was calculated based on the activity of F18 FDG and dose coefficient reported in International Commission on Radiological Protection (ICRP) Publication 106. Effective dose from CT was determined using k coefficient as reported in ICRP publication 102 and Dose Length Product (DLP) value. The average effective dose from PET and CT were found to be 7.05mSv and 5.77mSv respectively. The mean wholebody effective dose received by a patient with combined PETCT examination was 12.78mSv. These results could be used as reference for dosimetry of a patient undergoing PETCT examination in Malaysia.

  12. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  13. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  14. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  15. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  16. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    Ahmad, N.R.; Mohiuddin, M.; Marks, G.

    1993-01-01

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  17. Low-Dose Radiation Induces Genes Promoting Cell Survival

    International Nuclear Information System (INIS)

    Liu, Shu-Zheng; Chen, Dong; Mu, Ying

    1999-01-01

    Apoptosis is an important process controlling homeostasis of the body. It is influenced by stimuli constantly arising from the external and internal environment of the organism. It is well known that radiation could induce apoptosis of cells in vitro and in vivo. However, the dose-effect relationship of apoptosis extending to the low-dose range has scarcely been studied. Here, the molecular basis of the phenomenon is explored by examining the changes in expression of some of the proapoptotic and antiapoptotic genes

  18. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    Energy Technology Data Exchange (ETDEWEB)

    Goekce, Senem Divrik [I. Ikad Community Health Center, Health Directorate, Samsun (Turkmenistan); Gekce, Erkan [Samsun Maternity and Women' s Disease and Pediatrics Hospital, Samsun (Turkmenistan); Coskun, Melek [Faculty of Medicine, Ondokuz May' s University, Samsun (Turkmenistan)

    2012-03-15

    Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A X{sup 2}-test was used for the evaluation of data obtained. Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period.

  19. Evaluation of radiation doses delivered in different chest CT protocols

    International Nuclear Information System (INIS)

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDI VOL ) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to compare doses delivered in low dose chest CT with chest X-ray doses. CTDI VOL and DLP doses were taken to analysis from routine CT chest examinations (64 MDCT TK LIGHT SPEED GE Medical System) performed in 202 adult patients with FBP reconstruction: 51 low dose, 106 helical, 20 angio CT, and 25 high resolution CT protocols, as well as 19 helical protocols with iterative ASIR reconstruction. The analysis of chest X-ray doses was made on the basis of reports from 44 examinations. Mean values of CTDI VOL and DLP were, respectively: 2.1 mGy and 85.1 mGy·cm, for low dose, 9.7 mGy and 392.3 mGy·cm for helical, 18.2 mGy and 813.9 mGy·cm for angio CT, 2.3 mGy and 64.4 mGy·cm for high resolution CT, 8.9 mGy. and 317.6 mGy·cm for helical ASIR protocols. Significantly lower CTDI VOL and DLP values were observed for low dose and high resolution CT versus the remaining CT protocols; doses delivered in CT ASIR protocols were also lower (80–81%). The ratio between medial doses in low dose CT and chest X-ray was 11.56. Radiation dose in extended chest LDCT with parameters allowing for identification of mediastinal structures and adrenal glands is still much lower than that in standard CT protocols. Effective doses predicted for LDCT may exceed those used in chest X-ray examinations by a factor of 4 to 12, depending on LDCT scan parameters. Our results, as well as results from other authors, suggest a possibility of reducing the dose by means of iterative reconstruction. Efforts towards further dose

  20. Radiation Dose to Newborns in Neonatal Intensive Care Units

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M. T.; Malekzadeh, M.

    2012-01-01

    With the increase of X-ray use for medical diagnostic purposes, knowing the given doses is necessary in patients for comparison with reference levels. The concept of reference doses or diagnostic reference levels has been developed as a practical aid in the optimization of patient protection in diagnostic radiology. To assess the radiation doses to neonates from diagnostic radiography (chest and abdomen). This study has been carried out in the neonatal intensive care unit of a province in Iran. Entrance surface dose was measured directly with thermoluminescent dosimeters. The population included 195 neonates admitted for a diagnostic radiography, in eight NICUs of different hospital types. The mean entrance surface dose for chest and abdomen examinations were 76.3 μGy and 61.5 μGy, respectively. Diagnostic reference levels for neonate in NICUs of the province were 88 μGy for chest and 98 μGy for abdomen examinations that were slightly higher than other studies. Risk of death due to radiation cancer incidence of abdomens examination was equal to 1.88 × 10 -6 for male and 4.43 × 10 -6 for female. For chest X-ray, it was equal to 2.54 × 10 -6 for male and 1.17 × 10 -5 for female patients. Diagnostic reference levels for neonates in our province were slightly higher than values reported by other studies such as European national diagnostic reference levels and the NRPB reference dose. The main reason was related to using a high mAs and a low kVp applied in most departments and also a low focus film distance. Probably lack of collimation also affected some exams in the NICUs.

  1. The calculation of the surface dose in examinations following cardiac catheterization

    International Nuclear Information System (INIS)

    Ewen, K.

    1995-01-01

    It is inevitable in examinations requiring patient exposure to high doses that the investigators and medical assistants receive high wholebody doses on account of fray radiation and, occasionally, also high partial body doses (hands) on account of the useful beam range. A number of different circumstances are adding up to create this extreme situation. In this connection, a mathematical method for the calculation of the surface dose (cutaneous dose rate) is described that is based on sets of parameters commonly used in diagnostic radiology: Set I of parameters: Tube voltage - current strength of tube - distance between focus and skin; - set II of parameters: Incidence dose rate of image intensifier - distance between focus and skin -distance between image intensifier and plane of ray incidence (skin). (orig./VHE) [de

  2. Evaluation of radiation doses from MDCT-imaging in otolaryngology

    International Nuclear Information System (INIS)

    Yamauchi-Kawaura, C.; Fujii, K.; Aoyama, T.; Yamauchi, M.; Koyama, S.

    2009-01-01

    The purpose of this study was to clarify patient doses in the current otolaryngological multi-detector row computed tomography (MDCT) examinations. Patient doses were measured with an in-phantom dosimetry system which was composed of 48 photodiode dosemeters embedded within an anthropomorphic phantom. Organ and effective doses were evaluated according to the International Commission on Radiological Protection Publication 103. In neck CT, doses for salivary glands and for thyroid were high, 7.6-29.9 and 13.4-60.3 mGy, respectively. In sinus CT, brain and lens doses were high, 7.6-24.6 and 10.6-32.0 mGy, respectively, and in inner ear CT, lens dose was 8.0-35.3 mGy. Effective doses were 1.8-6.6 mSv in neck CT, 0.5-0.9 mSv in sinus CT and 0.3-0.6 mSv in inner ear CT. The present dose data would be used to estimate radiation risks for patients undergoing otolaryngological MDCT examinations. (authors)

  3. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Webster, C.M.; Horrocks, J.; Hayes, D.

    2001-01-01

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm 2 and 22.5 mSv for RFCA, and 32 Gycm 2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  4. Estimation of population doses from diagnostic medical examinations in Japan, 1974. III. Per caput mean marrow dose and leukemia significant dose

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Maruyama, T; Kumamoto, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    1976-03-01

    The mean per capita marrow dose and leukemia-significant dose from radiographic and fluoroscopic examinations in Japan have been estimated based on a 1974 nation wide survey of randomly sampled hospitals and clinics. To determine the mean marrow dose to an individual from a certain exposure of a given type of examination, the active marrow in the whole body was divided into 119 parts for an adult and 103 for a child. Dosimetric points on which the individual marrow doses were determined were set up in the center of each marrow part. The individual marrow doses at the dosimetric points in the beams of practical diagnostic x-rays were calculated on the basis of the exposure data on the patients selected in the nation wide survey, using depth dose curves experimentally determined for diagnostic x-rays. The mean individual marrow dose was averaged over the active marrow by summing, for each dosimetric point, the product of the fraction of active marrow exposed and the individual marrow dose at the dosimetric point. The leukemia significant dose was calculated by adopting a weighting factor that is, a leukemia significant factor. The factor was determined from the shape of the time-incidence curve for radiation-induced leukemia from the Hiroshima A-bomb and from the survival statistics for the average population. The resultant mean per capita marrow dose from radiographic and fluoroscopic examination was 37.0 and 70.0 mrad/person/year, respectively, with a total of 107.05 mrad/person/year. The leukemia significant dose was 32.1 mrad/person/year for radiographic examination and 61.2 mrad/person/year, with a total of 93.3. These values were compared with those of 1960 and 1969.

  5. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  6. Evaluation of the knowledge of physicians prescribing CT examinations on the radiation protection of patients

    International Nuclear Information System (INIS)

    Gervaise, A.; Pernin, M.; Naulet, P.; Portron, Y.; Lapierre-Combes, M.; Esperabe-Vignau, F.

    2011-01-01

    Purpose: To evaluate the knowledge of physicians prescribing CT examinations on the radiation protection of patients. Materials and methods: A questionnaire was distributed to all clinicians on medical staff who prescribe CT examinations. Several questions related to their prescription pattern and their knowledge of radiation protection. Results: Forty-four questionnaires were analyzed. While 70% of physicians claimed that they considered the risks from exposure to ionizing radiation when prescribing a CT examination, only 25% informed their patients about those risks. Knowledge of the radiation dose delivered during CT evaluation of the abdomen and pelvis was poorly understood and the risks related to small doses of radiation were grossly underestimated. Finally, only a third of clinicians had received training with regards to radiation protection. Conclusion: While most clinicians claim that they consider the risks from exposure to ionizing radiation when prescribing a CT examination, the risks are either not well known or not known at all. Increased formation of clinicians with regards to the radiation protection of patients, maybe through a dedicated clinical rotation while in medical school, could be a solution to improve the knowledge of hospital clinicians with regards to radiation protection. (authors)

  7. Background radiation dose and leukemia mortality in north Japan

    International Nuclear Information System (INIS)

    Sakka, Masatoshi

    1978-01-01

    In 7 prefectures in north Japan where natural environment as well as socioeconomic status are similar, the relation of natural background dose rate and death rate caused by leukemia was examined. More than 2500 deaths were recorded in the last 10 years which distributed normally throughout the entire area with a mean of 3.68 and a SD of 1.14 per 10 5 per year. There are no significant, differences in the observed values of each prefecture in spite of having different population. Natural background radiation dose rate has also a normal distribution with a mean of 8.98 μR/h and a SD of 2.12. The highest dose rate in Niigata (10.44) was significantly higher than the lowest value in Aomori (6.48) whereas the death rates caused by leukemia were not different between the both prefectures. The null hypothesis that a positive regression exists between dose rate and death rate even in the smallest dose range was not supported in north Japan. Leukemogenic effect of background radiation, if any, seems to be within a practical threshold. (auth.)

  8. Low-dose radiation as an environmental agent affecting intrauterine development

    International Nuclear Information System (INIS)

    Kameyama, Yoshiro

    1982-01-01

    The low-dose radiation effects which have been recognized in mammalian teratological studies are direct injuries to the particularly radiosensitive tissues of embryo and fetus, and increased incidences of spontaneous malformations and minor anomalies. The lowest radiation doses for manifestation of those effects in mice and rats are: 5 rad for resorption of preimplantation embryos; 5-10 rad for acute cytological changes such as pyknosis, cytoplasmic degeneration and mitotic delay; 5 rad for increasing frequency of spontaneous minor anomalies of the skeleton; 15-20 rad for malformations of the eye, brain and spinal cord; 20-25 rad for histogenetic and functional disorders of the central nervous system; and 20-25 rad for impaired fertility. Pregnant women who are subject to X-ray examination are much concerned about potential hazard of radiation to their offspring in utero. The above experimental findings suggest that the possibility of teratogenic effects of diagnostic radiation on human embryos and fetuses is extremely low, and probably negligible, given the proper dose control measures. (author)

  9. New patient-controlled abdominal compression method in radiography: radiation dose and image quality.

    Science.gov (United States)

    Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan

    2018-05-01

    The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.

  10. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  11. Personal radiation monitoring and assessment of doses received by radiation workers (1991)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1992-06-01

    The Australian Radiation Laboratory has operated a Personal Radiation Monitoring Service since the early 1930's so that people working with radiation can determine the radiation doses that they receive due to their occupation. Since late 1986, all persons monitored by the Service have been registered on a data base which maintains records of the doses received by each individual wearer. Ultimately, this data base will become a National Register of the doses received within Australia. At present, the Service regularly monitors approximately 20,000 persons, which is roughly 70 percent of those monitored in Australia, and maintains dose histories of over 35,000 people. The skin dose for occupationally exposed workers can be measured by using one of the four types of monitor issued by the Service: 1. Thermoluminescent Dosemeter (TLD monitor) 2. Finger TLD 3. Neutron Monitor 4. Special TLD. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 4 figs

  12. Reducing the radiation dose to the eye lens region during CT brain examination: the potential beneficial effect of the combined use of bolus and a bismuth shield

    International Nuclear Information System (INIS)

    Lai, C.W.K.; Chan, T.P.; Cheung, H.Y.; Wong, T.H.

    2015-01-01

    Objective: Computed Tomography (CT) is the leading contributor to medical exposure to ionizing radiation. Although the use of CT brain scans for patients with head injuries and convulsions has shown a tremendous growth, it has raised substantial concerns in the general public because of the risk of radiation-induced cataracts: the current available strategies to reduce the radiation dose to the eye lens region are limited. Therefore, the present research project was initiated with the aim of evaluating the potential benefit of the combined use of bolus and a bismuth shield on reducing the radiation dose to the eye lens region during CT brain examination. Materials and methods: We conducted a series of phantom studies to measure the entrance surface dose (ESD) that is delivered to the eye lens region during CT brain examination under the effect of different scanning and shielding setups. Results: Our results indicated, during CT brain examination: (1) a drastic reduction of 92.5% in the ESD to the eye lens region was found when the CT gantry was tilted from 0 deg. (overall ESD = 30.7 mGy) to 30 deg. cranially (overall ESD = 2.4 mGy), and (2) when the CT gantry was positioned at 0 deg. (the common practice in the clinical setting), the setups with the application of a) a bismuth shield, b) a bismuth shield with a face shield (air gap), c) a bismuth shield with bolus, and d) a bismuth shield with bolus and an air gap can result in an acceptable level of image quality with a smaller overall ESD delivered to the eye lens region (overall ESD = 23.2 mGy, 24 mGy, 21 mGy and 19.9 mGy, respectively) than the setup without the bismuth shield applied (overall ESD = 30.7 mGy). Conclusion: When the primary beam scanning through the eye lens region is unavoidable during CT brain examination, the combined use of a bismuth shield with bolus and a face shield is an easy-to-use and inexpensive shielding setup to reduce the radiation dose delivered to the eye lens region while

  13. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    Nelson, Gregory A.

    2016-01-01

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  14. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  15. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  16. Patient dose surveys for radiological examinations in Dutch hospitals between 1993 and 2000

    International Nuclear Information System (INIS)

    Spoelstra, F.M.; Geleijns, J.; Broerse, J.J.; Teeuwisse, W.M.; Zweers, D.

    2001-01-01

    Our inventory studies on radiation dose to patients in Dutch hospitals are reviewed and compared with current European guidelines on patient dose and reference dose values of the NRPB. Between the years 1993 and 2000 doses were measured and effective dose was assessed at 14 hospitals for paediatric radiography, at 18 hospitals for PA chest radiography, at 10 respectively 9 hospitals for barium meal and barium enema examinations and at 18 hospitals for CT scans of the brain, chest (including high resolution CT of the chest), abdomen and lumbar spine in The Netherlands. Effective doses varied from 1 μSv (AP chest radiograph premature) to 26 mSv (CT abdomen scan). Doses were in general well below the reference dose values, with the exception of CT where the dose length product often exceeded reference levels. Interhospital variations were considerable, the largest range was observed for PA chest examinations, i.e.a ratio of 27 between maximum and minimum effective dose. (author)

  17. Childhood leukaemia, fallout and radiation doses near Dounreay

    International Nuclear Information System (INIS)

    Darby, S.C.; Doll, Richard

    1987-01-01

    The possible explanations of the recently reported increase in the incidence of childhood leukaemia around Dounreay are examined in the light of the changes in national leukaemia incidence that occurred during the period of exposure to fallout from international atmospheric testing of nuclear weapons. It is concluded that the increase cannot be due to underestimation of the risk of leukaemia per unit dose of radiation, nor to an underestimate of the relative biological efficiency of high as compared with low LET radiation. Possible explanations of the increase include an underestimate of the red bone marrow doses due to the Dounreay discharges relative to those from fallout, a misconception of the site of origin of childhood leukaemia, epidemics of infectious disease and exposure to some other unidentified environmental agent. (author)

  18. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  19. Estimation of effective doses in pediatric X-ray computed tomography examination.

    Science.gov (United States)

    Obara, Hideki; Takahashi, Midori; Kudou, Kazuya; Mariya, Yasushi; Takai, Yoshihiro; Kashiwakura, Ikuo

    2017-11-01

    X-ray computed tomography (CT) images are used for diagnostic and therapeutic purposes in various medical disciplines. In Japan, the number of facilities that own diagnostic CT equipment, the number of CT examinations and the number of CT scanners increased by ~1.4-fold between 2005 and 2011. CT operators (medical radiological technologists, medical physicists and physicians) must understand the effective doses for examinations at their own institutions and carefully approach each examination. In addition, the patients undergoing the examination (as well as his/her family) must understand the effective dose of each examination in the context of the cumulative dose. In the present study, the numbers of pediatric patients (aged 0-5 years) and total patients who underwent CT at Hirosaki University Hospital (Hirosaki, Japan) between January 2011 and December 2013 were surveyed, and effective doses administered to children aged 0, 1 and 5 years were evaluated. Age- and region-specific conversion factors and dose-length products obtained from the CT scanner were used to estimate the effective doses. The numbers of CT examinations performed in 2011, 2012 and 2013 were 16,662, 17,491 and 17,649, respectively, of which 613 (1.2%) of the overall total involved children aged 0-5 years. The estimated effective doses per examination to children aged 0, 1 and 5 years were 6.3±4.8, 4.9±3.8 and 2.7±3.0 mSv, respectively. This large variation was attributed to several factors associated with scan methods and ranges in actual setting. In conclusion, the requirement for individual patient prospective exposure management systems and estimations of low-dose radiation exposure should be considered in light of the harmful effects of exposure.

  20. Analysis of T101 outage radiation dose

    International Nuclear Information System (INIS)

    Li, Zhonghua

    2008-01-01

    Full text: Collective radiation dose during outage is about 80% of annual collective radiation dose at nuclear power plants (NPPs). T 101 Outage is the first four-year outage of Unit 1 at Tianwan Nuclear Power Station (TNPS) and thorough overhaul was undergone for the 105-day's duration. Therefore, T 101 Outage has significant reference meaning to reducing collective radiation dose at TNPS. This paper collects the radiation dose statistics during T 101 Outage and analyses the radiation dose distribution according to tasks, work kinds and varying trend of the collective radiation dose etc., comparing with other similar PWRs in the world. Based on the analysis this paper attempts to find out the major factors in collective radiation dose during T 101 Outage. The major positive factor is low radiation level at workplace, which profits from low content of Co in reactor construction materials, optimised high-temperature p H value of the primary circuit coolant within the tight range and reactor operation without trips within the first fuel cycle. One of the most negative factors is long outage duration and many person-hours spent in the radiological controlled zone, caused by too many tasks and inefficient work. So besides keeping good performance of reducing radioactive sources, it should be focused on how to improve implementation of work management including work selection, planning and scheduling, work preparation, work implementation, work assessment and feedback, which can lead to reduced numbers of workers needed to perform a task, of person-hours spent in the radiological controlled zone. Moreover, this leads to reduce occupational exposures in an ALARA fashion. (author)

  1. Understanding the scatter radiation distribution during C-arm CT examination. A body phantom study

    International Nuclear Information System (INIS)

    Norimasa, Toshiyo; Kakimi, Akihiko; Takao, Yoshinori; Sasaki, Shohei; Katayama, Yutaka; Himoto, Daisuke; Izuta, Shinichiro; Ichida, Takao

    2016-01-01

    The purpose of this study was to understand the scatter radiation distribution during C-arm CT examination in the interventional radiography (IVR) room to show the escaped area and the radiation protective method. The C-arm rotates 200deg in 5 s. The tube voltage was 90 kV, and the entrance dose to the detector was 0.36 μGy/frame during C-arm CT examination. The scattered doses were measured each 50 cm from the isocenter like a grid pattern. The heights of the measurement were 50, 100, and 150 cm from the floor. The maximum scattered doses were 38.23 ± 0.60 μGy at 50 cm, 43.86 ± 20 μGy at 100 cm, and 25.78 ± 0.37 μGy at 150 cm. The scatter radiation distribution at 100 cm was the highest scattered dose. The operator should protect their reproductive gland, thyroid, and lens. The scattered dose was low behind the C-arm body and the bed, so they will be able to become the escaped area for staff. (author)

  2. Computed tomography to diagnose coronary artery disease: A reduction in radiation dose increases applicability

    International Nuclear Information System (INIS)

    Gosling, O.; Morgan-Hughes, G.; Iyengar, S.; Strain, W.; Loader, R.; Shore, A.; Roobottom, C.

    2013-01-01

    Aim: To assess the effects of dose-saving algorithms on the radiation dose in an established computed tomography coronary angiography (CTCA) clinical service. Materials and methods: A 3 year retrospective analysis of all patients attending for a clinically indicated CTCA was performed. The effective dose was calculated using a cardiac-specific conversion factor [0.028 mSv(mGy·cm) −1 ]. Patients were stratified by the advent of new scanning technology and dose-saving protocols. Results: Between September 2007 and August 2010, 1736 examinations were performed. In the first 6 months, 150 examinations were performed with a mean effective dose of 29.6 mSv (99% CI 26.6–33 mSv). In March 2008 prospective electrocardiogram (ECG) gating was installed; reducing the effective dose to 13.6 mSv (99% CI 12.5–14.9 mSv). In March 2009, the scanner parameters were set to a minimal exposure time and 100 kV in patients with a body mass index (BMI) of <30. This reduced the mean dose to 7.4 mSv (99% CI 6.8–8 mSv). For the final six months the mean radiation dose for a cardiac scan was 5.9 mSv (99% CI 5.4–6.5 mSv) this figure incorporates all examinations performed irrespective of the protocol used. Conclusion: With the implementation of evidence-based protocols, the effective dose from cardiac CT has significantly reduced. As CTCA services develop dose-saving algorithms should be adopted to keep the radiation dose as low as reasonably practical

  3. Cumulative total effective whole-body radiation dose in critically ill patients.

    Science.gov (United States)

    Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J

    2013-11-01

    Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.

  4. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  5. Shift in imaging modalities of the spine through 25 years and its impact on patient ionizing radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Borgen, Lars [Department of Radiology, Hospital of Buskerud, Dronning gaten 28, 3004 Drammen (Norway)]. E-mail: lars.borgen@sb-hf.no; Ostensen, Harald [Diagnostic Imaging and Laboratory Technology, World Health Organization, 20 Avenue Appia, CH-1211 Geneva 27 (Switzerland); Stranden, Erling [Buskerud University College, Konggate 51, 3019 Drammen (Norway); Olerud, Hilde Marie [Norwegian Radiation Protection Authority, PO Box 55, 1332 Osteras (Norway); Gudmundsen, Tor Erik [Department of Radiology, Hospital of Buskerud, Dronning gaten 28, 3004 Drammen (Norway); Buskerud University College, Konggate 51, 3019 Drammen (Norway)

    2006-10-15

    Study design: Retrospective. Objective: To explore the shift in modalities when diagnosing the spine in the years 1979-2003. To see how this shift, together with a radiation protective policy, have influenced on the ionizing radiation doses. Summary of background data: The shift from CT/myelography to MR when diagnosing the spine is well known. To what extent this has changed the radiation doses has to our knowledge not yet been published. Methods: Activity reports from a department of radiology have been reviewed. Relevant radiation doses estimates have been obtained from the Norwegian Radiation Protection Authority. Results: MRI was introduced in 1992 and has been used increasingly since then. Conventional X-ray to the spine has been practically unchanged. Myelography and CT decreased markedly after the introduction of MRI. The total number of examinations of the spine has increased, but the radiation doses given have decreased since 1993. Conclusions: The introduction of MRI together with a radiation protective policy have reduced the ionizing radiation doses given to this population, in spite of an increase in the total number of examinations of the spine.

  6. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  7. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  8. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  9. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    Our civilization is witnessing about century of nuclear age mixed with enormous promises and cataclysmic threats. Nuclear energy seems to encapsulate both potential for pure good and evil or at least we humans are able to perceive that. These images are continuously with us and they are both helping and distracting from making best of nuclear potentials for civilization. Today with nuclear use significantly present and with huge potential to further improve our life with energy and medical use it is of enormous importance to try to have calmed, rational, and objective view on potential risks and certain benefits. Because all use of nuclear energy proved that their immediate risks are negligible (i.e., Three Mile Island and Fukushima) or much smaller than from the other alternatives (i.e., Chernobyl) it seems that the most important issue is the amount of risk from the long term effects to people from exposure to small doses of radiation. A similar issue is present in the increased use of modern computational tomography and other radiation sources use in medicine for examination and therapy. Finally, extreme natural exposures are third such potential risk sources. Definition of low doses varies depending on the way of delivery (i.e., single, multiple or continuous exposures), and for this paper usual dose of 100 mSv is selected as yearly upper amount. There are three very different scientifically supported views on the potential risks from the low doses exposure. The most conservative theory is that all radiation is harmful, and even small increments from background levels (i.e., 2-3 mSv) present additional risk. This view is called linear no threshold theory (LNT) and it is accepted as a regulatory conservative simple approach which guarantees safety. Risk is derived from the extrapolation of the measured effects of high levels of radiation. Opposite theory to LNT is hormesis which assumes that in fact small doses of radiation are helpful and they are improving our

  10. Alteration of cytokine profiles in mice exposed to chronic low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Suk Chul [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Lee, Kyung-Mi [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kang, Yu Mi [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Kwanghee [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kim, Cha Soon; Yang, Kwang Hee; Jin, Young-Woo [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Chong Soon [Department of Nuclear Medicine, Haeundae Paik Hospital, Inje University, Busan 612-030 (Korea, Republic of); Kim, Hee Sun, E-mail: hskimdvm@khnp.co.kr [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of)

    2010-07-09

    While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7 mGy/h) and low (3.95 mGy/h) dose rate for the total dose of 0.2 and 2 Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4{sup +} T, CD8{sup +} T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1{alpha}, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-{gamma}. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naive T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose {gamma}-radiation, which may be associated with the functional benefits observed in various experimental models.

  11. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  12. Dental radiography technique and equipment: How they influence the radiation dose received at the level of the thyroid gland

    Energy Technology Data Exchange (ETDEWEB)

    Rush, E.R. [School of Health Sciences, University of Ulster, Shore Road, Newtownabbey, Belfast BT37 0QB (United Kingdom)]. E-mail: emmaroserush@hotmail.com; Thompson, N.A. [School of Health Sciences, University of Ulster, Shore Road, Newtownabbey, Belfast BT37 0QB (United Kingdom)

    2007-08-15

    Purpose: The aim of this study was to investigate the influence that collimator and technique choice had on the radiation dose detected at the thyroid gland position, during intra-oral examinations of the upper and lower teeth. Radiation dose reduction from a different perspective, other than the application of lead-rubber shielding, was addressed. Methods: A study was performed at a regional dental school with the use of a phantom head/neck and a radiation dosemeter, to measure the radiation dose detected at the thyroid gland position. The radiation dose was assessed for two intra-oral techniques (paralleling and bisecting angle), and two collimators (rectangular and circular). The radiation dose was also assessed with and without the application of a thyroid shield. Standard descriptive statistics, followed by inferential statistics were applied to the data. Results: There was a significant reduction in the radiation dose detected at the thyroid gland position, when employing the paralleling technique (66.7%) and rectangular collimator (45.5%). Other factors, for example the tooth/teeth under examination, were also found to influence the radiation dose detected. Conclusion: Radiation dose reductions using the paralleling technique and rectangular collimator were outlined. The use of this low dose combination within dental practices remains limited, therefore, continued awareness and acceptance of radiation hazards need to be addressed.

  13. Dental radiography technique and equipment: How they influence the radiation dose received at the level of the thyroid gland

    International Nuclear Information System (INIS)

    Rush, E.R.; Thompson, N.A.

    2007-01-01

    Purpose: The aim of this study was to investigate the influence that collimator and technique choice had on the radiation dose detected at the thyroid gland position, during intra-oral examinations of the upper and lower teeth. Radiation dose reduction from a different perspective, other than the application of lead-rubber shielding, was addressed. Methods: A study was performed at a regional dental school with the use of a phantom head/neck and a radiation dosemeter, to measure the radiation dose detected at the thyroid gland position. The radiation dose was assessed for two intra-oral techniques (paralleling and bisecting angle), and two collimators (rectangular and circular). The radiation dose was also assessed with and without the application of a thyroid shield. Standard descriptive statistics, followed by inferential statistics were applied to the data. Results: There was a significant reduction in the radiation dose detected at the thyroid gland position, when employing the paralleling technique (66.7%) and rectangular collimator (45.5%). Other factors, for example the tooth/teeth under examination, were also found to influence the radiation dose detected. Conclusion: Radiation dose reductions using the paralleling technique and rectangular collimator were outlined. The use of this low dose combination within dental practices remains limited, therefore, continued awareness and acceptance of radiation hazards need to be addressed

  14. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  15. Radiation doses to paediatric patients and comforters undergoing chest x rays

    International Nuclear Information System (INIS)

    Sulieman, A.; Vlychou, M.; Tsougos, I.; Theodorou, K.

    2011-01-01

    Pneumonia is an important cause of hospital admission among children in the developed world and it is estimated to be responsible for 3-18 % of all paediatric admissions. Chest X ray is an important examination for pneumonia diagnosis and for evaluation of complications. This study aims to determine the entrance surface dose (ESD), organ, effective doses and propose a local diagnostic reference level. The study was carried out at the university hospital of Larissa (Greece). Patients were divided into three groups: organ and effective doses were estimated using National Radiological Protection Board software. The ESD was determined by thermoluminescent dosemeters for 132 children and 76 comforters. The average ESD value was 55±8 μGy. The effective dose for patients was 11.2±5 μSv. The mean radiation dose for comforter is 22±3 mGy. The radiation dose to the patients is well within dose constraint, in the light of the current practice. (authors)

  16. Strategies to reduce radiation dose in cardiac PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung Hsin; Wu, Nien-Yun [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Wu, Jay [Institute of Radiological science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Mok, Greta S.P. [Department of Electrical and Electronics Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Yang, Ching-Ching, E-mail: g39220003@yahoo.com.tw [Department of Radiological Technology, Tzu Chi College of Technology, 880, Sec.2, Chien-kuo Rd. Hualien 970, Taiwan (China); Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2011-08-21

    Background: Our aim was to investigate CT dose reduction strategies on a hybrid PET/CT scanner for cardiac applications. Materials: Image quality and dose estimation of different CT scanning protocols for CT coronary angiography (CTCA), and CT-based attenuation correction for PET imaging were investigated. Fifteen patients underwent CTCA, perfusion PET imaging at rest and under stress, and FDG PET for myocardial viability. These patients were divided into three groups based on the CTCA technique performed: retrospectively gated helical (RGH), ECG tube current modulation (ETCM), and prospective gated axial (PGA) acquisitions. All emission images were corrected for photon attenuation using CT images obtained by default setting and an ultra-low dose CT (ULDCT) scan. Results: Radiation dose in RGH technique was 22.2{+-}4.0 mSv. It was reduced to 10.95{+-}0.82 and 4.13{+-}0.31 mSv using ETCM and PGA techniques, respectively. Radiation dose in CT transmission scan was reduced by 96.5% (from 4.53{+-}0.5 to 0.16{+-}0.01 mSv) when applying ULDCT as compared to the default CT. No significant difference in terms of image quality was found among various protocols. Conclusion: The proposed CT scanning strategies, i.e. ETCM or PGA for CTCA and ULDCT for PET attenuation correction, could reduce radiation dose up to 47% without degrading imaging quality in an integrated cardiac PET/CT coronary artery examination.

  17. Radiation doses in head CT examinations in Serbia: comparison among different CT units

    International Nuclear Information System (INIS)

    Arandjic, D.; Ciraj-Bjelac, O.; Bozovic, P.; Stankovic, J.; Hadnadjev, D.; Stojanovic, S.

    2012-01-01

    A rapid increase in number of Computed Tomography (CT) examinations has been observed world wide. As haed CT is the most frequent CT examination, the purpose of this study was to collect and analyse patient doses in children and adults in different CT units for this procedure. The study included 8 CT units from three manufacturers (Siemens, Toshiba and General Electric). Data for adults and pediatric patients were collected in terms of CTDIvol and DLP values. The doses were estimated as a mean value of 10 patients on each CT unit. For pediatrics, doses were collected for four age groups (0-1year, >1-5years, >5-10years and >10-15years). Comparing different manufacturers and the same number of detector rows it was observed that, in case of 16 slices units, doses were very similar on Siemens and General Electric scanner. CTDIvol and DLP on Siemens scanner were 60 mGy and 1066 mGy·cm, respectively, while on General Electric those values were 66 mGy and 1050 mGy·cm. However, this trend was not observed in case of 64 slices units. CTDIvol and DLP values collected on Toshiba were much higher (177 mGy and 2109 mGy·cm) than in case of Siemens scanner (59 mGy and 1060 mGy·cm). Doses on 16 and 64 slices Siemens scanners were very similar, while on 4 slices were higher. Except in two units, doses were were in line with DRLs. In case of pediatrics, doses increase with patient age and again Siemens scanner showed the lowest values while the highest were observed on Toshiba. (authors)

  18. Radiation dose to the global flying population

    International Nuclear Information System (INIS)

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  19. Effectiveness of Bismuth Shield to Reduce Eye Lens Radiation Dose Using the Photoluminescence Dosimetry in Computed Tomography

    International Nuclear Information System (INIS)

    Jung, Mi Young; Kweon, Dae Cheol; Kwon, Soo Il

    2009-01-01

    The purpose of our study was to determine the eye radiation dose when performing routine multi-detector computed tomography (MDCT). We also evaluated dose reduction and the effect on image quality of using a bismuth eye shield when performing head MDCT. Examinations were performed with a 64MDCT scanner. To compare the shielded/unshielded lens dose, the examination was performed with and without bismuth shielding in anthropomorphic phantom. To determine the average lens radiation dose, we imaged an anthropomorphic phantom into which calibrated photoluminescence glass dosimeter (PLD) were placed to measure the dose to lens. The phantom was imaged using the same protocol. Radiation doses to the lens with and without the lens shielding were measured and compared using the Student t test. In the qualitative evaluation of the MDCT scans, all were considered to be of diagnostic quality. We did not see any differences in quality between the shielded and unshielded brain. The mean radiation doses to the eye with the shield and to those without the shield were 21.54 versus 10.46 mGy, respectively. The lens shield enabled a 51.3% decrease in radiation dose to the lens. Bismuth in-plane shielding for routine eye and head MDCT decreased radiation dose to the lens without qualitative changes in image quality. The other radiosensitive superficial organs specifically must be protected with shielding.

  20. Thyroid Radiation Dose to Patients from Diagnostic Radiology Procedures over Eight Decades: 1930-2010.

    Science.gov (United States)

    Chang, Lienard A; Miller, Donald L; Lee, Choonsik; Melo, Dunstana R; Villoing, Daphnée; Drozdovitch, Vladimir; Thierry-Chef, Isabelle; Winters, Sarah J; Labrake, Michael; Myers, Charles F; Lim, Hyeyeun; Kitahara, Cari M; Linet, Martha S; Simon, Steven L

    2017-12-01

    This study summarizes and compares estimates of radiation absorbed dose to the thyroid gland for typical patients who underwent diagnostic radiology examinations in the years from 1930 to 2010. The authors estimated the thyroid dose for common examinations, including radiography, mammography, dental radiography, fluoroscopy, nuclear medicine, and computed tomography (CT). For the most part, a clear downward trend in thyroid dose over time for each procedure was observed. Historically, the highest thyroid doses came from the nuclear medicine thyroid scans in the 1960s (630 mGy), full-mouth series dental radiography (390 mGy) in the early years of the use of x rays in dentistry (1930s), and the barium swallow (esophagram) fluoroscopic exam also in the 1930s (140 mGy). Thyroid uptake nuclear medicine examinations and pancreatic scans also gave relatively high doses to the thyroid (64 mGy and 21 mGy, respectively, in the 1960s). In the 21st century, the highest thyroid doses still result from nuclear medicine thyroid scans (130 mGy), but high thyroid doses are also associated with chest/abdomen/pelvis CT scans (18 and 19 mGy for males and females, respectively). Thyroid doses from CT scans did not exhibit the same downward trend as observed for other examinations. The largest thyroid doses from conventional radiography came from cervical spine and skull examinations. Thyroid doses from mammography (which began in the 1960s) were generally a fraction of 1 mGy. The highest average doses to the thyroid from mammography were about 0.42 mGy, with modestly larger doses associated with imaging of breasts with large compressed thicknesses. Thyroid doses from dental radiographic procedures have decreased markedly throughout the decades, from an average of 390 mGy for a full-mouth series in the 1930s to an average of 0.31 mGy today. Upper GI series fluoroscopy examinations resulted in up to two orders of magnitude lower thyroid doses than the barium swallow. There are

  1. Radiation Dose to Post-Chernobyl Cleanup Workers

    Science.gov (United States)

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  2. Development of a method to calculate organ doses for the upper gastrointestinal fluoroscopic examination

    International Nuclear Information System (INIS)

    Suleiman, O.H.

    1989-01-01

    A method was developed to quantitatively measure the upper gastrointestinal fluoroscopic examination in order to calculate organ doses. The dynamic examination was approximated with a set of discrete x-ray fields. Once the examination was segmented into discrete x-ray fields appropriate organ dose tables were generated using an existing computer program for organ dose calculations. This, along with knowledge of the radiation exposures associated with each of the fields, enabled the calculation of organ doses for the entire dynamic examination. The protocol involves videotaping the examination while fluoroscopic technique factors, tube current and tube potential, are simultaneously recorded on the audio tracks of the videotape. Subsequent analysis allows the dynamic examination to be segmented into a series of discrete x-ray fields uniquely defined by field size, projection, and anatomical region. The anatomical regions associated with the upper gastrointestinal examination were observed to be the upper, middle, and lower esophagus, the gastroesophageal junction, the stomach, and the duodenum

  3. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  4. Ultraviolet radiation therapy and UVR dose models

    International Nuclear Information System (INIS)

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed

  5. Reduction of the dose of ionizing radiation: progressions in TC

    International Nuclear Information System (INIS)

    Orlacchio, A.; Costanzo, E.; Chegai, F.; Simonetti, G.

    2014-01-01

    The optimization of the dose of ionizing radiation in CT, it is a very important matter that can be reach avoiding unnecessary examinations, using un appropriate report KV / mAs reducing the rotation time, determining the field of study, using a high pitch using equipment that provide systems with dose reduction, through proper education of the staff that interacts with machinery and using radioprotective compounds.

  6. Tomographic anthropomorphic models. Pt. 2. Organ doses from computed tomographic examinations in paediatric radiology

    International Nuclear Information System (INIS)

    Zankl, M.; Panzer, W.; Drexler, G.

    1993-11-01

    This report provides a catalogue of organ dose conversion factors resulting from computed tomographic (CT) examinations of children. Two radiation qualities and two exposure geometries were simulated as well as the use of asymmetrical beams. The use of further beam shaping devices was not considered. The organ dose conversion factors are applicable to babies at the age of ca. 2 months and to children between 5 and 7 years but can be used for other ages as well with the appropriate adjustments. For the calculations, the patients were represented by the GSF tomographic anthropomorphic models BABY and CHILD. The radiation transport in the body was simulated using a Monte Carlo method. The doses are presented as conversion factors of mean organ doses per air kerma free in air on the axis of rotation. Mean organ dose conversion factors are given per organ and per scanned body section of 1 cm height. The mean dose to an organ resulting from a particular CT examination can be estimated by summing up the contributions to the organ dose from all relevant sections. To facilitate the selection of the appropriate sections, a table is given which relates the tomographic models' coordinates to certain anatomical landmarks in the human body. (orig.)

  7. Lung tuberculosis in children, and radiation doses imported during multiple exposures

    International Nuclear Information System (INIS)

    Milkovic, Dj.; Ranogajec Komor, M.; Knezevic, Z.; Milkovic, I.

    1996-01-01

    Most of the artificial ionizing radiation sources are located in medical institutions. The largest contribution to popular irradiation, apart from natural sources, also originates from their use. The application of ionizing radiation in medicine is continuously developing and spreading. Not only the individual absorbed dose is steadily growing, the whole population is more and more exposed. By lung radiogram analysis, important diagnostic data are obtained for tuberculosis treatment. So chest radiography remains the most important method at diagnosing and attending TB patients, children or adults equally. Unfortunately, radiological treatment is accompanied by the risk of radiation doses being received on organs which are unprotectable during examination. It should be remembered that TB patients are frequently x-rayed, whereby the accumulated dose, and the damage risk increase. To make the risk as small, and the benefit of ionizing radiation use as big as possible, certain principles have to be followed: a) Treat a patient with x-rays only if there is a positive and justified medical indication. b) If it is unavoidable, it has to be performed in an institution where technique and protection methods are well known to the staff. c) Monitor the received radiation doses by using suitable and precise dosimetry equipment. (author)

  8. Radiation Measurement And Risk Estimation For Pediatric Patients During Routine Diagnostic Examination

    International Nuclear Information System (INIS)

    Bushra, E.; Sulieman, A.; Osman, H.

    2011-01-01

    The aim of the present work was to evaluate Entrance Surface Dose (ESD) to the patient using Thermo luminescence dosimeters (TLD) during some common routine pediatrics X-ray examinations in main pediatrics hospitals in Sudan. ESD and Effective Dose (E) for pediatrics have been carried out for 250 patients undergoing five different examinations. The mean ESD ranged for neonates ranged between 0.17 mGy-0.30 mGy per radiograph with scattered thyroid dose 0.01 to 0.19 mGy. The risk of radiation induced cancer of was 0.13 x 10-6.

  9. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain

  10. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Richard P. [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  11. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  12. Measurements of surgeons' exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy.

    Science.gov (United States)

    Lee, Kisung; Lee, Kyoung Min; Park, Moon Seok; Lee, Boram; Kwon, Dae Gyu; Chung, Chin Youb

    2012-06-15

    Measurement of radiation dose from C-arm fluoroscopy during a simulated intraoperative use in spine surgery. OBJECTIVE.: To investigate scatter radiation doses to specific organs of surgeons during intraoperative use of C-arm fluoroscopy in spine surgery and to provide practical intraoperative guidelines. There have been studies that reported the radiation dose of C-arm fluoroscopy in various procedures. However, radiation doses to surgeons' specific organs during spine surgery have not been sufficiently examined, and the practical intraoperative radioprotective guidelines have not been suggested. Scatter radiation dose (air kerma rate) was measured during the use of a C-arm on an anthropomorphic chest phantom on an operating table. Then, a whole body anthropomorphic phantom was located besides the chest phantom to simulate a surgeon, and scatter radiation doses to specific organs (eye, thyroid, breast, and gonads) and direct radiation dose to the surgeon's hand were measured using 4 C-arm configurations (standard, inverted, translateral, and tube translateral). The effects of rotating the surgeon's head away from the patient and of a thyroid shield were also evaluated. Scatter radiation doses decreased as distance from the patient increased during C-arm fluoroscopy use. The standard and translateral C-arm configurations caused lower scatter doses to sensitive organs than inverted and tube translateral configurations. Scatter doses were highest for breast and lowest for gonads. The use of a thyroid shield and rotating the surgeon's head away from the patient reduced scatter radiation dose to the surgeon's thyroid and eyes. The direct radiation dose was at least 20 times greater than scatter doses to sensitive organs. The following factors could reduce radiation exposure during intraoperative use of C-arm; (1) distance from the patient, (2) C-arm configuration, (3) radioprotective equipments, (4) rotating the surgeons' eyes away from the patient, and (5) avoiding

  13. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  14. [Evaluation of the knowledge of physicians prescribing CT examinations on the radiation protection of patients].

    Science.gov (United States)

    Gervaise, A; Esperabe-Vignau, F; Pernin, M; Naulet, P; Portron, Y; Lapierre-Combes, M

    2011-01-01

    To evaluate the knowledge of physicians prescribing CT examinations on the radiation protection of patients. A questionnaire was distributed to all clinicians on medical staff who prescribe CT examinations. Several questions related to their prescription pattern and their knowledge of radiation protection. Forty-four questionnaires were analyzed. While 70% of physicians claimed that they considered the risks from exposure to ionizing radiation when prescribing a CT examination, only 25% informed their patients about those risks. Knowledge of the radiation dose delivered during CT evaluation of the abdomen and pelvis was poorly understood and the risks related to small doses of radiation were grossly underestimated. Finally, only a third of clinicians had received training with regards to radiation protection. While most clinicians claim that they consider the risks from exposure to ionizing radiation when prescribing a CT examination, the risks are either not well known or not known at all. Increased formation of clinicians with regards to the radiation protection of patients, maybe through a dedicated clinical rotation while in medical school, could be a solution to improve the knowledge of hospital clinicians with regards to radiation protection. Copyright © 2011 Elsevier Masson SAS and Éditions françaises de radiologie. All rights reserved.

  15. Estimation of the absorbed dose in radiation-processed food. Pt.2

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1991-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately evaluate the absorbed dose to radiation-processed bones (and thus meats) is examined. Additive re-irradiation of the bone produces a reproducible response function which can be used to evaluate the initial dose by back-extrapolation. It was found that an exponential fit (vs linear or polynomial) to the data provides improved accuracy of the estimated dose. These data as well as the protocol for the additive dose method are presented. (author)

  16. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J.; Xu, J.

    2010-01-01

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 ± 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  17. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  18. Automatic radiation dose monitoring for CT of trauma patients with different protocols: feasibility and accuracy

    International Nuclear Information System (INIS)

    Higashigaito, K.; Becker, A.S.; Sprengel, K.; Simmen, H.-P.; Wanner, G.; Alkadhi, H.

    2016-01-01

    Aim: To demonstrate the feasibility and accuracy of automatic radiation dose monitoring software for computed tomography (CT) of trauma patients in a clinical setting over time, and to evaluate the potential of radiation dose reduction using iterative reconstruction (IR). Materials and methods: In a time period of 18 months, data from 378 consecutive thoraco-abdominal CT examinations of trauma patients were extracted using automatic radiation dose monitoring software, and patients were split into three cohorts: cohort 1, 64-section CT with filtered back projection, 200 mAs tube current–time product; cohort 2, 128-section CT with IR and identical imaging protocol; cohort 3, 128-section CT with IR, 150 mAs tube current–time product. Radiation dose parameters from the software were compared with the individual patient protocols. Image noise was measured and image quality was semi-quantitatively determined. Results: Automatic extraction of radiation dose metrics was feasible and accurate in all (100%) patients. All CT examinations were of diagnostic quality. There were no differences between cohorts 1 and 2 regarding volume CT dose index (CTDI_v_o_l; p=0.62), dose–length product (DLP), and effective dose (ED, both p=0.95), while noise was significantly lower (chest and abdomen, both −38%, p<0.017). Compared to cohort 1, CTDI_v_o_l, DLP, and ED in cohort 3 were significantly lower (all −25%, p<0.017), similar to the noise in the chest (–32%) and abdomen (–27%, both p<0.017). Compared to cohort 2, CTDI_v_o_l (–28%), DLP, and ED (both –26%) in cohort 3 was significantly lower (all, p<0.017), while noise in the chest (+9%) and abdomen (+18%) was significantly higher (all, p<0.017). Conclusion: Automatic radiation dose monitoring software is feasible and accurate, and can be implemented in a clinical setting for evaluating the effects of lowering radiation doses of CT protocols over time. - Highlights: • Automatic dose monitoring software can be

  19. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  20. Occupational radiation doses among diagnostic radiation workers in South Korea, 1996-2006

    International Nuclear Information System (INIS)

    Lee, W. J.; Cha, E. S.; Ha, M.; Jin, Y. W.; Hwang, S. S.; Kong, K. A.; Lee, S. W.; Lee, H. K.; Lee, K. Y.; Kim, H. J.

    2009-01-01

    This study details the distribution and trends of doses of occupational radiation among diagnostic radiation workers by using the national dose registry between 1996 and 2006 by the Korea Food and Drug Administration. Dose measurements were collected quarterly by the use of thermoluminescent dosemeter personal monitors. A total of 61 732 workers were monitored, including 18 376 radiologic technologists (30%), 13 762 physicians (22%), 9858 dentists (16%) and 6114 dental hygienists (9.9%). The average annual effective doses of all monitored workers decreased from 1.75 to 0.80 mSv over the study period. Among all diagnostic radiation workers, radiologic technologists received both the highest effective and collective doses. Male radiologic technologists aged 30-49 y composed the majority of workers receiving more than 5 mSv in a quarter. More intensive monitoring of occupational radiation exposure and investigation into its health effects on diagnostic radiation workers are required in South Korea. (authors)

  1. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  2. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  3. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  4. Compression force and radiation dose in the Norwegian Breast Cancer Screening Program

    Energy Technology Data Exchange (ETDEWEB)

    Waade, Gunvor G.; Sanderud, Audun [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); Hofvind, Solveig, E-mail: solveig.hofvind@kreftregisteret.no [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); The Cancer Registry of Norway, P.O. 5313 Majorstuen, 0304 Oslo (Norway)

    2017-03-15

    Highlights: • Compression force and radiation dose for 17 951 screening mammograms were analyzed. • Large variations in mean applied compression force between the breast centers. • Limited associations between compression force and radiation dose. - Abstract: Purpose: Compression force is used in mammography to reduce breast thickness and by that decrease radiation dose and improve image quality. There are no evidence-based recommendations regarding the optimal compression force. We analyzed compression force and radiation dose between screening centers in the Norwegian Breast Cancer Screening Program (NBCSP), as a first step towards establishing evidence-based recommendations for compression force. Materials and methods: The study included information from 17 951 randomly selected screening examinations among women screened with equipment from four different venors at fourteen breast centers in the NBCSP, January-March 2014. We analyzed the applied compression force and radiation dose used on craniocaudal (CC) and mediolateral-oblique (MLO) view on left breast, by breast centers and vendors. Results: Mean compression force used in the screening program was 116N (CC: 108N, MLO: 125N). The maximum difference in mean compression force between the centers was 63N for CC and 57N for MLO. Mean radiation dose for each image was 1.09 mGy (CC: 1.04mGy, MLO: 1.14mGy), varying from 0.55 mGy to 1.31 mGy between the centers. Compression force alone had a negligible impact on radiation dose (r{sup 2} = 0.8%, p = < 0.001). Conclusion: We observed substantial variations in mean compression forces between the breast centers. Breast characteristics and differences in automated exposure control between vendors might explain the low association between compression force and radiation dose. Further knowledge about different automated exposure controls and the impact of compression force on dose and image quality is needed to establish individualised and evidence

  5. Examinations on cases of surgery for radiation-induced disorders of large intestine

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Tadaaki [Toho Univ., Tokyo (Japan). School of Medicine

    1996-11-01

    Author`s experience of surgery for radiation colitis was examined and discussed on the primary disease, radiation dose, major symptoms, surgical techniques, results and post-operative complication. Patients were 1 male and 21 females of the average age of 59.5 y. The primary diseases were bladder cancer for the male and uterine cancer for the females. The radiation dose ranged from 35-120 Gy and was 63.4 Gy in a mean. The symptoms for surgery were 14 ileuses, 4 intestinal hemorrhages, 1 perforation and 3 burrows. Colostomy was performed for 18 cases; enterostomy, 2; anastomosis, 1; and enterectomy, 1, which resulted in improvement of symptoms in 5 cases, 0, 1 and 1, respectively. The author concluded that radiation colitis should be treated preventively. (K.H.)

  6. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie; Haidar, Salwa; Moineddin, Rahim

    2006-01-01

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  7. Additional radiation dose to population due to X-ray diagnostic procedures

    International Nuclear Information System (INIS)

    Chougule, A.

    2006-01-01

    Full text of publication follows: Discovery of X rays has revolutionised the medical diagnosis but the fact that the diagnostic radiological procedures contribute about 80 to 90 % of the radiation dose to population as compared to other man made radiation sources cannot be ignored especially when X ray diagnostic facilities are being made available to larger section of the society. The estimated frequency of radiological procedures in India is 12,000 procedures/ year/100,000 population, though it is quite less as compared to developed countries, its increasing day by day. As part of the project, a radiation protection survey of X ray installations and patient radiation dose measurement during various radiological procedures was undertaken. 193 X ray installations were surveyed and the radiation doses received by the patient during various radiological procedure was measured. For measurement of radiation doses, CaSO 4 : Dy thermoluminescence (T.L.) discs of size 13.3 mm diameter and 0.8 mm thickness were used. Pre annealed T.L. discs were fixed by adhesive tape on the patient skin at the center of entrance beam before the exposure. After exposure the T.L. discs were estimated f or entrance skin dose during that particular projection/ examination. 10,000 measurements at different centers during various radiological procedures were done. It was found that chest radiography accounts for 37 % of all radiological procedures and further it was observed that 70 % of the chest X rays were normal with out any pathology indicating scope for curtailing the unwarranted radiological procedures. The special investigations like barium swallow, barium meal and fallow through accounts for about 1.5 % of the total radiological procedures. The entrance skin dose [E.S.D.] during chest radiography was 0.3 + 0.1 mGy where as during K.U.B. and cervical spine radiography it was 6.2 + 1.1 mGy and 5.1 + 0.9 mGy respectively. The details of frequency of various radiological procedures and the

  8. Assessment of effective dose from cone beam CT imaging in SPECT/CT examination in comparison with other modalities

    International Nuclear Information System (INIS)

    Tonkopi, Elena; Ross, Andrew A.

    2016-01-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose. (authors)

  9. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  10. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Yerramasu, Ajay; Venuraju, Shreenidhi; Atwal, Satvir; Goodman, Dennis; Lipkin, David; Lahiri, Avijit

    2012-01-01

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  11. Expedited Radiation Biodosimetry by Automated Dicentric Chromosome Identification (ADCI) and Dose Estimation.

    Science.gov (United States)

    Shirley, Ben; Li, Yanxin; Knoll, Joan H M; Rogan, Peter K

    2017-09-04

    Biological radiation dose can be estimated from dicentric chromosome frequencies in metaphase cells. Performing these cytogenetic dicentric chromosome assays is traditionally a manual, labor-intensive process not well suited to handle the volume of samples which may require examination in the wake of a mass casualty event. Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates this process by examining sets of metaphase images using machine learning-based image processing techniques. The software selects appropriate images for analysis by removing unsuitable images, classifies each object as either a centromere-containing chromosome or non-chromosome, further distinguishes chromosomes as monocentric chromosomes (MCs) or dicentric chromosomes (DCs), determines DC frequency within a sample, and estimates biological radiation dose by comparing sample DC frequency with calibration curves computed using calibration samples. This protocol describes the usage of ADCI software. Typically, both calibration (known dose) and test (unknown dose) sets of metaphase images are imported to perform accurate dose estimation. Optimal images for analysis can be found automatically using preset image filters or can also be filtered through manual inspection. The software processes images within each sample and DC frequencies are computed at different levels of stringency for calling DCs, using a machine learning approach. Linear-quadratic calibration curves are generated based on DC frequencies in calibration samples exposed to known physical doses. Doses of test samples exposed to uncertain radiation levels are estimated from their DC frequencies using these calibration curves. Reports can be generated upon request and provide summary of results of one or more samples, of one or more calibration curves, or of dose estimation.

  12. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  13. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography.

    Science.gov (United States)

    Laspas, Fotios; Tsantioti, Dimitra; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John

    2011-04-01

    Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR ≤65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure.

  14. Estimated collective effective dose to the population from nuclear medicine examinations in Slovenia

    International Nuclear Information System (INIS)

    Skrk, Damijan; Zontar, Dejan

    2013-01-01

    A national survey of patient exposure from nuclear medicine diagnostic procedures was performed by Slovenian Radiation Protection Administration in order to estimate their contribution to the collective effective dose to the population of Slovenia. A set of 36 examinations with the highest contributions to the collective effective dose was identified. Data about frequencies and average administered activities of radioisotopes used for those examinations were collected from all nuclear medicine departments in Slovenia. A collective effective dose to the population and an effective dose per capita were estimated from the collected data using dose conversion factors. The total collective effective dose to the population from nuclear medicine diagnostic procedures in 2011 was estimated to 102 manSv, giving an effective dose per capita of 0.05 mSv. The comparison of results of this study with studies performed in other countries indicates that the nuclear medicine providers in Slovenia are well aware of the importance of patient protection measures and of optimisation of procedures

  15. Conceptus radiation dose and risk from chest screen-film radiography

    International Nuclear Information System (INIS)

    Damilakis, John; Perisinakis, Kostas; Dimovasili, Evangelia; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Varveris, Haralambos

    2003-01-01

    The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d a ) was estimated for 51 women of childbearing age from chest CT examinations. The value of d a was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10 -3 mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d a estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is no need for

  16. Conceptus radiation dose and risk from chest screen-film radiography.

    Science.gov (United States)

    Damilakis, John; Perisinakis, Kostas; Prassopoulos, Panos; Dimovasili, Evangelia; Varveris, Haralambos; Gourtsoyiannis, Nicholas

    2003-02-01

    The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d(a)) was estimated for 51 women of childbearing age from chest CT examinations. The value of d(a) was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10(-3) mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d(a) estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is no need for

  17. Conceptus radiation dose and risk from chest screen-film radiography

    Energy Technology Data Exchange (ETDEWEB)

    Damilakis, John; Perisinakis, Kostas; Dimovasili, Evangelia [Department of Medical Physics, University of Crete, Faculty of Medicine, P.O. Box 1393, 714 09 Iraklion, Crete (Greece); Prassopoulos, Panos; Gourtsoyiannis, Nicholas [Department of Radiology, University of Crete, Faculty of Medicine, P.O. Box 1393, 714 09 Iraklion, Crete (Greece); Varveris, Haralambos [Department of Radiotherapy, University of Crete, Faculty of Medicine, P.O. Box 1393, 714 09 Iraklion, Crete (Greece)

    2003-02-01

    The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d{sub a}) was estimated for 51 women of childbearing age from chest CT examinations. The value of d{sub a} was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10{sup -3} mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d{sub a} estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is

  18. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  19. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Colgan, P.A.; Organo, C.; Hone, C.; Fenton, D.

    2008-05-01

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  20. Patient doses from x-ray examinations in Sweden - follow-up of remedial actions; Patientdoser fraan roentgenundersoekningar i Sverige - uppfoeljning av aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Helene; Leitz, W

    2002-03-01

    In early 1999 the Swedish Radiation Protection Authority (SSI) requested data about patient doses etc. for a number of specified x-ray examinations. The aim was on one hand to get a basis for planned regulations on diagnostic reference levels (DRL) and on the other hand to obtain an overview of how the situation is in the country with respect to patient doses. The licensees who reported dose values exceeding (provisional) DRL were asked to perform investigations about the grounds for the high dose and to take remedial actions for reducing the dose. In this report the outcome is presented. The dose reductions were large: on average between 35 and 60 % for the various examinations. A large proportion of the measures taken were simple and cheap, such as increase of radiation quality, improved examination methodology (smaller radiation fields, use of compression, reduced number of images or fluoroscopy time) and optimising the film processing. This is indicating that the planned regulations on diagnostic reference levels have a good chance to succeed with a large reduction of the patient doses in Sweden.

  1. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  2. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  3. A review of the uncertainties in internal radiation dose assessment for inhaled thorium

    International Nuclear Information System (INIS)

    Hewson, G.S.

    1989-01-01

    Present assessments of internal radiation dose to designated radiation workers in the mineral sands industry, calculated using ICRP 26/30 methodology and data, indicate that some workers approach and exceed statutory radiation dose limits. Such exposures are indicative of the need for a critical assessment of work and operational procedures and also of metabolic and dosimetric models used to estimate internal dose. This paper reviews past occupational exposure experience with inhaled thorium compounds, examines uncertainties in the underlying radiation protection models, and indicates the effect of alternative assumptions on the calculation of committed effective dose equivalent. The extremely low recommended inhalation limits for thorium in air do not appear to be well supported by studies on the health status of former thorium refinery workers who were exposed to thorium well in excess of presently accepted limits. The effect of cautious model assumptions is shown to result in internal dose assessments that could be up to an order of magnitude too high. It is concluded that the effect of such uncertainty constrains the usefulness of internal dose estimates as a reliable indicator of actual health risk. 26 refs., 5 figs., 3 tabs

  4. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  5. Doses from nuclear medicine examinations: A 25-year follow-up study

    International Nuclear Information System (INIS)

    Kairemo, K.J.A.; Korpela, H.

    2001-01-01

    New radiopharmaceuticals have been introduced in nuclear medicine examinations, and on the other hand, the amount of many routine nuclear medicine procedures have been replaced with clinical methods utilising non-ionisating radiation (ultrasonography, MRI). To clarify the situation in Finland, a country wide survey on the use of radiopharmaceuticals in diagnostics and therapy was made in 1975, 1982, 1989, 1994, 1997 and will be made in 2000. A questionnaire was sent to all hospitals and institutes using unsealed sources in both diagnostic and therapeutic nuclear medicine procedures. For each procedure, the pharmaceutical used, the number of procedures and the typical administered activities were recorded. The collective effective doses from nuclear medicine examinations were calculated according to the ICRP formulae similarly for each survey. In Finland, in each of these years, more than 50,000 procedures in more than 30 different laboratories were performed. Significant changes in collective doses were observed: for example, the collective dose from I-131 was 350 manSv in 1975, and 20 manSv in 1997. In 1975, 68% (n=23967) of collective dose originated from I-131, whereas in 1997 the percentage of I-131 in collective dose was 10 % (n=1118). In 1994 and 1997, the use of the three radionuclides (Tc-99m, I-131 and Tl-201) accounted for 96% and 95% of the collective effective dose. Our results indicate that the collective effective dose from nuclear medicine examinations has decreased in last 25 years. National surveys form the basis when setting reference levels for typical nuclear medicine examinations. By introducing reference levels based on national practice it is possible to even decrease the collective effective dose. (author)

  6. The clinical demand for information and the radiation dose in pelvimetry and amniography

    International Nuclear Information System (INIS)

    Wilbrand, H.F.; Lindmark, G.; Ytterbergh, C.

    1982-01-01

    Radiographic measurements are an important part of antenatal care and are in fact used to a great extent in nulliparous women. In view of this clinical background and also for ethical reasons, reduction of the radiation doses is mandatory. As radiographic pelvimetry is used in so many pregnant women, it is of importance that no higher radiation doses are applied than are absolutely needed to guarantee correct and necessary information. Dose reduction is afforded in two different ways - by optimizing the imaging techniques and by closing a suitable film-screen combination. Measurement of absorbed doses in patients was carried out with highly sensitive lithium fluoride thermoluminiscence dosimeters (TLD) with a dimension of 3x3x0.9 mm (Harshaw type TLD-100). All TLD probes were calibrated with Co60 radiation between the measurement series. Absorbed radiation doses were measured in the rectum for different film-screen combinations. Depending on the position of the fetus in relation to the maternal pelvis, it is obvious that in any individual case varying parts of the fetus will lie directly in the radiation beam. In amniography the absorbed radiation doses will vary from case to case depending on the number of exposures, which should not exceed six, and the duration of fluoroscopy, which should be no longer than 1 min. With the use of lanex Regular screens and highly coned images the radiation dose will not exceed 3.0 mGy. Since a high image quality is mandatory for evaluation of disorders in the fetal skeleton, measurements were not performed with other high-speed screens. The MR 800 screen appears to provide further reduction of the radiation dose in this type of examination. (orig./MG)

  7. Nationwide radiation dose survey of computed tomography for fetal skeletal dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Osamu [National Center for Child Health and Development, Department of Radiology, Setagaya-ku, Tokyo (Japan); Sawai, Hideaki [Hyogo College of Medicine, Department of Obstetrics and Gynecology, Nishinomiya-shi, Hyogo (Japan); Murotsuki, Jun [Miyagi Children' s Hospital, Department of Maternal and Fetal Medicine, Sendai-shi, Miyagi (Japan); Tohoku University Graduate School of Medicine, Department of Advanced Fetal and Developmental Medicine, Sendai-shi, Miyagi (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Fuchu-shi, Tokyo (Japan); Horiuchi, Tetsuya [National Center for Child Health and Development, Department of Radiology, Setagaya-ku, Tokyo (Japan); Osaka University, Department of Medical Physics and Engineering, Division of Medical Technology and Science, Course of Health Science, Graduate School of Medicine, Suita, Osaka (Japan)

    2014-08-15

    Recently, computed tomography (CT) has been used to diagnose fetal skeletal dysplasia. However, no surveys have been conducted to determine the radiation exposure dose and the diagnostic reference level (DRL). To collect CT dose index volume (CTDIvol) and dose length product (DLP) data from domestic hospitals implementing fetal skeletal 3-D CT and to establish DRLs for Japan. Scan data of 125 cases of 20 protocols from 16 hospitals were analyzed. The minimum, first-quartile, median, third-quartile and maximum values of CTDIvol and DLP were determined. The time-dependent change in radiation dose setting in hospitals with three or more cases with scans was also examined. The minimum, first-quartile, median, third-quartile and maximum CTDIvol values were 2.1, 3.7, 7.7, 11.3 and 23.1 mGy, respectively, and these values for DLP were 69.0, 122.3, 276.8, 382.6 and 1025.6 mGy.cm, respectively. Six of the 12 institutions reduced the dose setting during the implementation period. The DRLs of CTDIvol and DLP for fetal CT were 11.3 mGy and 382.6 mGy.cm, respectively. Institutions implementing fetal CT should use these established DRLs as the standard and make an effort to reduce radiation exposure by voluntarily decreasing the dose. (orig.)

  8. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  9. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N D

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  10. Dose received by radiation workers in Australia, 1991

    International Nuclear Information System (INIS)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs

  11. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors

    OpenAIRE

    Tong Yu; Jun Gao; Zhi-Min Liu; Qi-Feng Zhang; Yong Liu; Ling Jiang; Yun Peng

    2017-01-01

    Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors...

  12. Radiation-hygienic assessment of theroid exposure in children resulted from X-ray examination of chest organs

    International Nuclear Information System (INIS)

    Kostenetskij, M.I.

    1983-01-01

    Radiation doses for thyroid in children in the case of X-ray examination of chest organs with the aim of optimization of investigation regimes are studied. Dosimetric measurements are performed in aqueous plexiglass phantoms imitating children of different age. It is shown that the maximum radiation dose for thyroid is registered in breast-fed children and constitutes, about 50% of the annual radiation background; in the older age it constiturotes 8-10% of the natural annual radiation backgund. The increase of intensity at the X-ray tube with the simultaneous decrease of explosure in the case of constant filtration of radiation gives the increase of radiation dose of thyroid in breast-fed children are inconsiderable; in older children, approximately in 1.7 times

  13. Radiation dose from initial trauma assessment and resuscitation: review of the literature.

    Science.gov (United States)

    Hui, Catherine M; MacGregor, John H; Tien, Homer C; Kortbeek, John B

    2009-04-01

    Trauma care benefits from the use of imaging technologies. Trauma patients and trauma team members are exposed to radiation during the continuum of care. Knowledge of exposure amounts and effects are important for trauma team members. We performed a review of the published literature; keywords included "trauma," "patients," "trauma team members," "wounds," "injuries," "radiation," "exposure," "dose" and "computed tomography" (CT). We also reviewed the Board on Radiation Effects Research (BEIR VII) report, published in 2005 and 2006. We found no randomized controlled trials or studies. Relevant studies demonstrated that CT accounts for the single largest radiation exposure in trauma patients. Exposure to 100 mSv could result in a solid organ cancer or leukemia in 1 of 100 people. Trauma team members do not exceed the acceptable occupation radiation exposure determined by the National Council of Radiation Protection and Management. Modern imaging technologies such as 16- and 64-slice CT scanners may decrease radiation exposure. Multiple injured trauma patients receive a substantial dose of radiation. Radiation exposure is cumulative. The low individual risk of cancer becomes a greater public health issue when multiplied by a large number of examinations. Though CT scans are an invaluable resource and are becoming more easily accessible, they should not replace careful clinical examination and should be used only in appropriate patients.

  14. Scatter and transmission doses from several pediatric X-ray examinations in a nursery

    International Nuclear Information System (INIS)

    Burrage, John W.; Rampant, Peter L.; Beeson, Brendan P.

    2003-01-01

    While several studies have investigated the dose from scattered radiation from X-ray procedures in a pediatric nursery, they examined scatter from chest procedures only, or the types of examination were not specified. The aim of this study was to collect scatter and transmission data from several types of X-ray examinations. Using a ''newborn'' anthropomorphic phantom and an ion chamber, a series of scatter and transmission dose measurements were performed using typical exposure factors for chest, chest and abdomen, skull, skeletal long bone and spine procedures. The phantom was inside a crib for all exposures. The maximum scatter dose measured at 1 m from the field center was about 0.05 μGy per exposure for lateral skulls. Transmission doses for lateral exams were around 0.1 μGy per exposure at 1 m from the isocenter. The study demonstrated that scatter dose to other patients in a neonatal unit is not significant, assuming the distance between adjacent cribs is in the order of 1 m. Transmission doses are also low provided the beam is fully intercepted by the cassette. For an average workload the dose received by imaging technologists would be small. (orig.)

  15. Evaluation of Patient Radiation Dose during Orthopedic Surgery

    International Nuclear Information System (INIS)

    Osman, H; Elzaki, A.; Sam, A.K.; Sulieman, A.

    2013-01-01

    The number of orthopedic procedures requiring the use of the fluoroscopic guidance has increased over the recent years. Consequently the patient exposed to un avoidable radiation doses. The aim of the current study was to evaluate patient radiation dose during these procedures.37 patients under went dynamic hip screw (DHS) and dynamic cannulated screw (DCS) were evaluated using calibrated Thermolumincent Dosimeters (TLDs), under carm fluoroscopic machines ,in three centers in Khartoum-Sudan. The mean Entrance Skin Dose (ESD) was 7.9 m Gy per procedure. The bone marrow and gonad organ exposed to significant doses. No correlation was found between ESD and Body Mass Index (BMI), or patient weight. Well correlation was found between kilo voltage applied and ESD. Orthopedic surgeries delivered lower radiation dose to patients than cardiac catheterization or hysterosalpingraphy (HSG) procedures. More study should be implemented to follow radiation dose before surgery and after surgery

  16. Radiation doses to patients in medical diagnostic x-ray examinations in New Zealand: a 1983-84 survey

    International Nuclear Information System (INIS)

    Williamson, B.D.P.; Poletti, J.L.; Cartwright, P.H.; Le Heron, J.C.

    1993-06-01

    A survey of doses to patients undergoing diagnostic x-ray examinations was performed in 1983-84. Developments since 1983-84 were reviewed and estimates made of the frequency of x-ray examinations, and doses to patients, as at 1992. The collective effective dose from general medical diagnostic radiology in 1983-84 was estimated to have been about 443 μSv per capita per annum. The figure excluded computed tomography which was estimated to have contributed about 5.6 μSv per capita per annum and mammography gave 0.3 μSv per annum. The total per capital effective dose from all medical diag over the whole period from 1983-84 to 1992. The highest dose examinations in 1983-84 were the fluoroscopic procedures barium enema and meal. Over the whole period 1983-84 to 1992 the genetically significant dose (GSD) to the population of New Zealand from medical diagnostic radiology was estimated to have been in the range 200-250 μSv per capita per annum. The two opposing tendencies noted for effective dose, viz, the fall in frequency of some examination types and the rise of Computed tomography, acted also upon this dose index. 43 refs., tabs., figs., ills

  17. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2005-01-01

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  18. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  19. Radiation doses and risks to neonates undergoing common radiographic examinations in the neonatal intensive care unit

    International Nuclear Information System (INIS)

    McParland, B.J.; Lee, R.

    1996-01-01

    Neonates in the-Neonatal Intensive Care Unit (NICU) can receive large numbers of radiographs owing to the clinical conditions they may present. More neonatal radiation dosimetry data are required for three fundamental reasons: (1.) to aid in the establishment of reference dose levels for interinstitutional comparisons; (2.) to improve childhood cancer risk estimates following neonatal exposure; and (3.) to indicate appropriate directions for dose reduction. This paper describes an investigation of two different NICU radiological techniques with significantly different neonate doses. While patient-matched images taken with both techniques were assessed in a blind review, this component of the study is beyond the scope of this paper and is not discussed here. (author)

  20. Low-dose radiation epidemiological studies: an assessment of methodological problems

    International Nuclear Information System (INIS)

    Modan, B.

    1991-01-01

    The present report attempts to assess the problems inherent in the analysis of low dose radiation studies, with emphasis on possible sources of methodological errors in the published data, and the consequent relevance to risk estimates. The published data examined concerned populations exposed to nuclear sources such as fallout, weapons' test or in the vicinity of nuclear reactors, occupational exposure, intra-uterine diagnostic X-rays, scattered radiation following X-ray therapy and background irradiation. (UK)

  1. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    International Nuclear Information System (INIS)

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-01-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal

  2. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  3. Radiation Doses in Intravenous Urography And Potentials For Optimization

    International Nuclear Information System (INIS)

    Halato, M.A.; Badawi, A.; Gassom, G.A.; Barsham, M.A.; Ibrahim, A.F.; Suliman, I.I.; Sulieman, A.A.

    2011-01-01

    In this study radiation doses in IVU clinical examinations were measured in three public hospitals and a sample of 44 patients. In each room the machine output was measured for different peak tube voltages. Patient's data such as (age and weight) and exposure parameters (kVp) and mAs) were recorded. Entrance Surface Air Kerma (ESAK) for patients was determined by using the tube output and the patient exposure parameters. The ESAK ranged from 0.76 to 6.75 mGy. The cumulative ESAK ranged from 3.5 to 34.6 mGy. In conclusion, the obtained results are in agreement with the standard reference ESAK levels. The study showed that the cumulative ESAK can approach a level known to increase the probability of stochastic effect. Keywords: Patient dose, intravenous Urography, radiation protection

  4. Time- and dose-dependent changes in neuronal activity produced by X radiation in brain slices

    International Nuclear Information System (INIS)

    Pellmar, T.C.; Schauer, D.A.; Zeman, G.H.

    1990-01-01

    A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction

  5. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    Hori, Y.; Yoshikawa, N.; Ohmori, S.

    1975-01-01

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  6. The effect of radiation dose on mouse skeletal muscle remodeling

    International Nuclear Information System (INIS)

    Hardee, Justin P.; Puppa, Melissa J.; Fix, Dennis K.; Gao, Song; Hetzler, Kimbell L.; Bateman, Ted A.; Carson, James A.

    2014-01-01

    The purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling. Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure. The 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism. Collectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism

  7. Effect of staff training on radiation dose in pediatric CT.

    Science.gov (United States)

    Hojreh, Azadeh; Weber, Michael; Homolka, Peter

    2015-08-01

    To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Increasing Use of Dose-Escalated External Beam Radiation Therapy for Men With Nonmetastatic Prostate Cancer

    International Nuclear Information System (INIS)

    Swisher-McClure, Samuel; Mitra, Nandita; Woo, Kaitlin; Smaldone, Marc; Uzzo, Robert; Bekelman, Justin E.

    2014-01-01

    Purpose: To examine recent practice patterns, using a large national cancer registry, to understand the extent to which dose-escalated external beam radiation therapy (EBRT) has been incorporated into routine clinical practice for men with prostate cancer. Methods and Materials: We conducted a retrospective observational cohort study using the National Cancer Data Base, a nationwide oncology outcomes database in the United States. We identified 98,755 men diagnosed with nonmetastatic prostate cancer between 2006 and 2011 who received definitive EBRT and classified patients into National Comprehensive Cancer Network (NCCN) risk groups. We defined dose-escalated EBRT as total prescribed dose of ≥75.6 Gy. Using multivariable logistic regression, we examined the association of patient, clinical, and demographic characteristics with the use of dose-escalated EBRT. Results: Overall, 81.6% of men received dose-escalated EBRT during the study period. The use of dose-escalated EBRT did not vary substantially by NCCN risk group. Use of dose-escalated EBRT increased from 70.7% of patients receiving treatment in 2006 to 89.8% of patients receiving treatment in 2011. On multivariable analysis, year of diagnosis and use of intensity modulated radiation therapy were significantly associated with receipt of dose-escalated EBRT. Conclusions: Our study results indicate that dose-escalated EBRT has been widely adopted by radiation oncologists treating prostate cancer in the United States. The proportion of patients receiving dose-escalated EBRT increased nearly 20% between 2006 and 2011. We observed high utilization rates of dose-escalated EBRT within all disease risk groups. Adoption of intensity modulated radiation therapy was strongly associated with use of dose-escalated treatment

  9. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  10. Patient doses in CT examinations in Switzerland: Implementation of national diagnostic reference levels

    International Nuclear Information System (INIS)

    Treier, R.; Aroua, A.; Verdun, F. R.; Samara, E.; Stuessi, A.; Trueb, P. R.

    2010-01-01

    Diagnostic reference levels (DRLs) were established for 21 indication-based CT examinations for adults in Switzerland. One hundred and seventy-nine of 225 computed tomography (CT) scanners operated in hospitals and private radiology institutes were audited on-site and patient doses were collected. For each CT scanner, a correction factor was calculated expressing the deviation of the measured weighted computed tomography dose index (CTDI) to the nominal weighted CTDI as displayed on the workstation. Patient doses were corrected by this factor providing a realistic basis for establishing national DRLs. Results showed large variations in doses between different radiology departments in Switzerland, especially for examinations of the petrous bone, pelvis, lower limbs and heart. This indicates that the concept of DRLs has not yet been correctly applied for CT examinations in clinical routine. A close collaboration of all stakeholders is mandatory to assure an effective radiation protection of patients. On-site audits will be intensified to further establish the concept of DRLs in Switzerland. (authors)

  11. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  12. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    International Nuclear Information System (INIS)

    Santos, Joana; Paulo, Graciano; Foley, Shane; Rainford, Louise; McEntee, Mark F.

    2015-01-01

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  13. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joana; Paulo, Graciano [Instituto Politecnico de Coimbra, ESTESC, DMIR, Coimbra (Portugal); Foley, Shane; Rainford, Louise [University College Dublin, School of Medicine and Medical Science, Health Science Centre, Dublin 4 (Ireland); McEntee, Mark F. [The University of Sydney, Faculty of Health Sciences, Cumberland Campus, Sydney (Australia)

    2015-11-15

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  14. [Investigation of radiation dose for lower tube voltage CT using automatic exposure control].

    Science.gov (United States)

    Takata, Mitsuo; Matsubara, Kousuke; Koshida, Kichirou; Tarohda, Tohru

    2015-04-01

    The purpose of our study was to investigate radiation dose for lower tube voltage CT using automatic exposure control (AEC). An acrylic body phantom was used, and volume CT dose indices (CTDIvol) for tube voltages of 80, 100, 120, and 135 kV were investigated with combination of AEC. Average absorbed dose in the abdomen for 100 and 120 kV were also measured using thermoluminescence dosimeters. In addition, we examined noise characteristics under the same absorbed doses. As a result, the exposure dose was not decreased even when the tube voltage was lowered, and the organ absorbed dose value became approximately 30% high. And the noise was increased under the radiographic condition to be an equal absorbed dose. Therefore, radiation dose increases when AEC is used for lower tube voltage CT under the same standard deviation (SD) setting with 120 kV, and the optimization of SD setting is crucial.

  15. Scattered radiation dose to radiologist's cornea, thyroid and gonads while performing some x-ray fluoroscopic investigations

    International Nuclear Information System (INIS)

    Chougle, Arun

    1993-01-01

    The mankind has been immensely benefited from discovery of X-ray and it has found wide spread application in diagnosis and treatment. Radiation is harmful and can produce somatic and genetic effects in the exposed person. International Commission on Radiation Protection (ICRP) has recommended a system of dose limitation based on principle of ALARA. All the efforts should be made to keep the radiation dose to the radiation worker as low as possible. Fluoroscopy gives maximum dose to the patient and staff and hence we have attempted to quantify the scattered radiation dose to the cornea, thyroid and gonads of the radiologist performing fluoroscopic examinations such as barium meal, barium swallow, barium enema, myelography, histerosalpingography and fracture reduction. Thermoluminescence dosimetry (TLD) method using CaSO 4 :Dy TLD disc was employed for these measurements. Use of lead apron has reduced the dose to radiologist's gonad. (author). 3 refs., 4 tabs

  16. Management of radiation dose to paediatric patients undergoing CT examination at Korle-bu Teaching Hospital, Accra-Ghana

    International Nuclear Information System (INIS)

    Gedel, A.M.

    2010-01-01

    In this work management of paediatric patients doses for Computed Tomography examinations have been studied at Korle-Bu Teaching Hospital. The assessment of the management system involved: evaluation of the frequency of examinations, comparison of techniques factors used for adult and children; estimation of CTDI w , CTDI vol , DLP and effective dose; evaluation of quality assurance and quality control programmes to optimise paediatric patient doses. The frequency of CT examinations for paediatric patients accounted for 1300 out 5200 examinations (25%) of the total examinations recorded for the year 2008 which is five times that of the East European countries, indicating an overuse of CT examinations for children not taking into account paediatric patient anatomy and the section of the body being scanned. Adult CT exposure parameters such as the KV, mAs, scan length, pitch, and collimation values were being used in paediatric CT examination. Effective dose estimated for children were higher than that for adults by factors 5.1, 1.8, 3.1 and 3.9 more for head, chest, abdomen and pelvis examinations respectively. From the questionnaire administered and dosimetry results there was no established justification policy, procedures and referral criteria for CT examination requests for children. There was no Quality Assurance Committee to see to the implementation of dose management system dedicated to paediatrics patients. There was the need for the Hospital Authorities to formulate policies in the training of CT equipment operators, radiographers and radiographers and radiologist in modern CT technology as well as in the selection of appropriate parameters tailored to individual patient size that can achieve desirable diagnostic image quality at low doses. (au)

  17. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Laspas, Fotios; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John; Tsantioti, Dimitra

    2011-01-01

    Background: Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. Purpose: To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Material and Methods: Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Results: Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR =65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Conclusion: Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure

  18. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  19. Fluoroscopy without the grid: a method of reducing the radiation dose

    International Nuclear Information System (INIS)

    Drury, P.; Robinson, A.

    1980-01-01

    The anti-scatter grid has been removed from the fluoroscopic set during the course of over 80 contrast examinations performed routinely during the ordinary workload of a busy paediatric radiology department. This manoeuvre approximatley halves the radiation dose to the patient during both fluoroscopy and radiography. Experience suggests that the degree of loss of contrast consequent on the abandonment of the grid is diagnostically acceptable during many examinations performed on children (of all ages), when balanced against the lower radiation dose received. In addition, an assessment has been made of the contrast improvement factor of the grids in two fluoroscopic sets in common use, using tissue-equivalent phantoms of various thicknesses. Although the contrast was significantly improved by the use of the grid, to a degree dependent on various factors, the relevance of this improvement in clinical radiology depends on exactly what information is being sought. It is recommended that radiologists should use the grid with discretion when performing fluoroscopic examinations on children and that the apparatus for such examinations should have the capability for easy removal and reintroduction of the grid. (author)

  20. Progress in high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.; Chadwick, K.H.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expanded applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Reference systems also include a number of chemical dose meters: ferrous sulphate, ferrous-cupric sulphate, and ceric sulphate acidic aqueous solutions. Requirements for stable and reliable transfer dose meters have led to further developments of several important high-dose systems: amino acids and saccharides analysed by ESR or lyoluminescence, thermoluminescent materials, radiochromic dyes and plastics, ceric-cerous solutions analysed by potentiometry, and ethanol-chlorobenzene solutions analysed by high-frequency oscillometry. A number of other prospective dose meters are also treated in this review. In addition, an IAEA programme of high-dose standardization and intercomparison for industrial radiation processing is described. (author)

  1. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  2. Study on radiation dose and its protection for the physician performing the retrograde urethrography for male

    International Nuclear Information System (INIS)

    Inui, Saburo; Suzuki, Toshiyuki; Kashino, Teiichi; Abe, Hitoshi.

    1982-01-01

    The status quo of the various techniques used in retrograde urethrography (R.U.) is examined by the questionnaire method with the data of radiation doses to medical personnels, and new methods are devised to reduce unnecessary radiation dose. Manual injection of the radio-opaquee contrast medium has been employed by 92.5% out of 8,259 physicians in 67 institutions. They expose themselves as well as patients to the radiation during the course of the examination. In most of these occasions the physician is not sufficiently protected from radiation leaving the possibility of his somatic damage. From these observations, the followings were studied: 1) Application of our newly developed protective barrier, exclusive for R.U., made of lead-impregnated acryl-resin plate (KYOW GLAS-XA). 2) Employment of the high speed screen made of rare earth metal. The results were encouraging in reducing the radiation exposure dose. In conclusion, the employment of the above two methods are efficient in obviating unnecessary radiation exposure to the physician during R.U. (author)

  3. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Matzke, Melissa M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Waters, Katrina M., E-mail: katrina.waters@pnnl.gov [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States)

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  4. The level of radiation exposure of critical organs of the patient and the examiner during arteriographies

    International Nuclear Information System (INIS)

    Schmitt, G.; Lohr, E.; Ewen, K.

    1979-01-01

    The radiation exposures of the patient and the examiner during arteriographies are analyzed. The unshielded gonadal doses of the patient range from 1 mrem at brachial- and carotid arteriographies to 1000 mrem at pelvic arteriographies, while the bone marrow is exposed to approximately 500 mrem in the direct beam. For the examiner shielded by an apron with a lead equivalent of 0.25 mm, the body and gonadal doses do not exceed 10 mrem. The exposure of the eyes and the hands can reach 75 and 131 mrem, respectively. If skilful techniques and careful radiation protection are taken into account, genetic or somatic hazards are not to be expected for the patient and the examiner in the aforementioned dose range during arteriographies

  5. Dose effect relationships in cervical and thoracic radiation myelopathies

    International Nuclear Information System (INIS)

    Holdorff, B.

    1980-01-01

    The course and prognosis of radiation myelopathies are determined by 3 factors: the segmental (vertical) location of the lesion, the extent of the transverse syndrome (complete or incomplete) and the radiation dose. The median spinal dose in cervical radiation myelopathies with fatal outcome was higher than in survivals with an incomplete transverse syndrome. In thoracic radiation myelopathies a dose difference between complete and incomplete transverse syndromes could be found as well. Incomplete transverse syndromes as submaximum radiation injuries are more suitable for the determination of the spinal tolerance dose than complete transverse syndromes. The lowest threshold could be stated for cases following high-volume irradiation of the lymphatic system. (Auth.)

  6. Coronary calcium scoring with MDCT: The radiation dose to the breast and the effectiveness of bismuth breast shield

    International Nuclear Information System (INIS)

    Yilmaz, Mehmet Halit; Yasar, Dogan; Albayram, Sait; Adaletli, Ibrahim; Ozer, Harun; Ozbayrak, Mustafa; Mihmanli, Ismail; Akman, Canan

    2007-01-01

    Objective: The purpose of our study was to determine the breast radiation dose during coronary calcium scoring with multidetector computerized tomography (MDCT). We also evaluated the degree of dose reduction by using a bismuth breast shield when performing coronary calcium scoring with MDCT. Materials and methods: The dose reduction achievable by shielding the adult (35 years or older) female breasts was studied in 25 women who underwent coronary calcium scoring with MDCT. All examinations were performed with a 16-MDCT scanner. To compare the shielded versus unshielded breast dose, the examinations were performed with (right breast) and without (left breast) breast shielding in all patients. With this technique the superficial breast doses were calculated. To determine the average glandular breast radiation dose, we imaged an anthropomorphic dosimetric phantom into which calibrated dosimeters were placed to measure the dose to the breast. The phantom was imaged using the same protocol. Radiation doses to the breasts with and without the breast shielding were measured and compared using the Student's t-test. Results: The mean radiation doses with and without the breast shield were 5.71 ± 1.1 mGy versus 9.08 ± 1.5 mGy, respectively. The breast shield provided a 37.12% decrease in radiation dose to the breast with shielding. The difference between the dose received by the breasts with and without bismuth shielding was significant, with a p-value of less than 0.001. Conclusion: The high radiation during MDCT greatly exceeds the recommended doses and should not be underestimated. Bismuth in plane shielding for coronary calcium scoring with MDCT decreased the radiation dose to the breast. We recommend routine use of breast shields in female patients undergoing calcium scoring with MDCT

  7. Systematic review on physician's knowledge about radiation doses and radiation risks of computed tomography

    International Nuclear Information System (INIS)

    Krille, Lucian; Hammer, Gael P.; Merzenich, Hiltrud; Zeeb, Hajo

    2010-01-01

    Background: The frequent use of computed tomography is a major cause of the increasing medical radiation exposure of the general population. Consequently, dose reduction and radiation protection is a topic of scientific and public concern. Aim: We evaluated the available literature on physicians' knowledge regarding radiation dosages and risks due to computed tomography. Methods: A systematic review in accordance with the Cochrane and PRISMA statements was performed using eight databases. 3091 references were found. Only primary studies assessing physicians' knowledge about computed tomography were included. Results: 14 relevant articles were identified, all focussing on dose estimations for CT. Overall, the surveys showed moderate to low knowledge among physicians concerning radiation doses and the involved health risks. However, the surveys varied considerably in conduct and quality. For some countries, more than one survey was available. There was no general trend in knowledge in any country except a slight improvement of knowledge on health risks and radiation doses in two consecutive local German surveys. Conclusions: Knowledge gaps concerning radiation doses and associated health risks among physicians are evident from published research. However, knowledge on radiation doses cannot be interpreted as reliable indicator for good medical practice.

  8. Radiation retinopathy caused by low dose irradiation and antithyroid drug-induced systemic vasculitis

    International Nuclear Information System (INIS)

    Sonoda, Koh-hei; Ishibashi, Tatsuro

    2005-01-01

    We report on a patient with Graves' disease with radiation retinopathy caused by low-dose irradiation and antithyroid drug-induced antineutrophil cytoplasmic antibody (ANCA)-positive vasculitis. A 38-year-old woman with Graves' disease presented with bilateral blurred vision, micro-aneurysms, telangiectasia, and macular edema. The patient was examined by ophthalmoscopy and fluorescein angiography, and radiation retinopathy was diagnosed. The patient had been treated with low-dose irradiation for her Graves' ophthalmopathy a few years earlier. She also had ANCA-positive vasculitis induced by the antithyroid drug (propylthiouracil, PTU) that had been prescribed for her at that time. Because of multiple avascular areas on both retinas, she was treated by intensive retinal photocoagulation to control progressive retinopathy. The radiation doses used to treat Graves' disease ophthalmopathy are low. Nevertheless, there is still a risk of radiation retinopathy developing in patients with PTU-induced ANCA-positive vasculitis. (author)

  9. Radiation apparatus with distance mapper for dose control

    International Nuclear Information System (INIS)

    Saunders, A.M.

    1990-01-01

    The patent describes apparatus for delivering a radiation dose. It comprises: radiation source means for producing a beam of ionizing gamma ray or x-ray radiation directed so as to deliver a dose of the radiation to an area of a target surface, a light source emitting a light beam in a direction transverse to the direction of the ionizing radiation beam, a photodetector, positioned to receive light scattered from the target surface, means for scanning the light beam over the area of the target surface, means for forming a three-dimensional surface profile map of the area of the target surface without movement of the radiation source means or the light source, and means responsive to the surface profile map for adjusting the dose of radiation from the radiation source over the area of the target surface, so that the radiation source means and the light source may be operated simultaneously

  10. Cone beam computed tomography radiation dose and image quality assessments.

    Science.gov (United States)

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  11. Occupational radiation dose in Indonesia 1981-1986

    International Nuclear Information System (INIS)

    Hiswara, E.; Ismono, A.

    1993-01-01

    Occupational radiation dose in Indonesia 1981-1986. This paper presents the occupational radiation dose in Indonesia during the period of 1981-1986. The highest collective dose accurated in 1983 was calculated to be 2.68 man-Sv, with the maximum mean dose per worker, who received dose more than zero, was around 11.07 mSv in the same year. In 1985, a relative collective dose from medical occupations of 1.88 man mSv for 10 6 population was estimated based on its total collective dose of 0.31 man-mSv. The total number of workers who received annual collective dose less than 5 mSv varied from 97.0% in 1981 to 99.5% in 1986. As a group, the industrial occupations has considerably higher risk in receiving a dose than others. (authors). 11 refs., 7 tabs

  12. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    2006-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV, and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision, and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and rapid response of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. With these properties, we conclude that DARWIN will be able to play a very important role for improving radiation safety in high energy accelerator facilities. (author)

  13. Effects of a radiation dose reduction strategy for computed tomography in severely injured trauma patients in the emergency department: an observational study.

    Science.gov (United States)

    Kim, Soo Hyun; Jung, Seung Eun; Oh, Sang Hoon; Park, Kyu Nam; Youn, Chun Song

    2011-11-03

    Severely injured trauma patients are exposed to clinically significant radiation doses from computed tomography (CT) imaging in the emergency department. Moreover, this radiation exposure is associated with an increased risk of cancer. The purpose of this study was to determine some effects of a radiation dose reduction strategy for CT in severely injured trauma patients in the emergency department. We implemented the radiation dose reduction strategy in May 2009. A prospective observational study design was used to collect data from patients who met the inclusion criteria during this one year study (intervention group) from May 2009 to April 2010. The prospective data were compared with data collected retrospectively for one year prior to the implementation of the radiation dose reduction strategy (control group). By comparison of the cumulative effective dose and the number of CT examinations in the two groups, we evaluated effects of a radiation dose reduction strategy. All the patients met the institutional adult trauma team activation criteria. The radiation doses calculated by the CT scanner were converted to effective doses by multiplication by a conversion coefficient. A total of 118 patients were included in this study. Among them, 33 were admitted before May 2009 (control group), and 85 were admitted after May 2009 (intervention group). There were no significant differences between the two groups regarding baseline characteristics, such as injury severity and mortality. Additionally, there was no difference between the two groups in the mean number of total CT examinations per patient (4.8 vs. 4.5, respectively; p = 0.227). However, the mean effective dose of the total CT examinations per patient significantly decreased from 78.71 mSv to 29.50 mSv (p trauma patients effectively decreased the cumulative effective dose of the total CT examinations in the emergency department. But not effectively decreased the number of CT examinations.

  14. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  15. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  16. Head CT: Image quality improvement of posterior fossa and radiation dose reduction with ASiR - comparative studies of CT head examinations.

    Science.gov (United States)

    Guziński, Maciej; Waszczuk, Łukasz; Sąsiadek, Marek J

    2016-10-01

    To evaluate head CT protocol developed to improve visibility of the brainstem and cerebellum, lower bone-related artefacts in the posterior fossa and maintain patient radioprotection. A paired comparison of head CT performed without Adaptive Statistical Iterative Reconstruction (ASiR) and a clinically indicated follow-up with 40 % ASiR was acquired in one group of 55 patients. Patients were scanned in the axial mode with different scanner settings for the brain and the posterior fossa. Objective image quality analysis was performed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality analysis was based on brain structure visibility and evaluation of the artefacts. We achieved 19 % reduction of total DLP and significantly better image quality of posterior fossa structures. SNR for white and grey matter in the cerebellum were 34 % to 36 % higher, respectively, CNR was improved by 142 % and subjective analyses were better for images with ASiR. When imaging parameters are set independently for the brain and the posterior fossa imaging, ASiR has a great potential to improve CT performance: image quality of the brainstem and cerebellum is improved, and radiation dose for the brain as well as total radiation dose are reduced. •With ASiR it is possible to lower radiation dose or improve image quality •Sequentional imaging allows setting scan parameters for brain and posterior-fossa independently •We improved visibility of brainstem structures and decreased radiation dose •Total radiation dose (DLP) was decreased by 19.

  17. The Dose Response Relationship for Radiation Carcinogenesis

    Science.gov (United States)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  18. Radiation dose responses for chemoradiation therapy of pancreatic cancer: an analysis of compiled clinical data using biophysical models.

    Science.gov (United States)

    Moraru, Ion C; Tai, An; Erickson, Beth; Li, X Allen

    2014-01-01

    We analyzed recent clinical data obtained from chemoradiation of unresectable, locally advanced pancreatic cancer (LAPC) in order to examine possible benefits from radiation therapy dose escalation. A modified linear quadratic model was used to fit clinical tumor response and survival data of chemoradiation treatments for LAPC reported from 20 institutions. Biophysical radiosensitivity parameters were extracted from the fits. Examination of the clinical data demonstrated an enhancement in tumor response with higher irradiation dose, an important clinical result for palliation and quality of life. Little indication of improvement in 1-year survival with increased radiation dose was observed. Possible dose escalation schemes are proposed based on calculations of the biologically effective dose required for a 50% tumor response rate. Based on the evaluation of tumor response data, the escalation of radiation dose presents potential clinical benefits which when combined with normal tissue complication analyses may result in improved treatment outcome for locally advanced pancreatic cancer patients. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  19. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures

  20. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  1. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    Eleveld, H.; Pruppers, M.

    2002-01-01

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  2. Dose to red bone marrow of infants, children and adults from radiation of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, G M [Childhood Cancer Research Group, University of Oxford, 57 Woodstock Road, Oxford OX2 6HJ (United Kingdom); Fell, T P; Harrison, J D [Health Protection Agency, Radiation Protection Division, CRCE, Chilton, Didcot OX11 0RQ, Oxon (United Kingdom)], E-mail: Gerald.Kendall@ccrg.ox.ac.uk

    2009-06-15

    Natural radiation sources contribute much the largest part of the radiation exposure of the average person. This paper examines doses from natural radiation to the red bone marrow, the tissue in which leukaemia is considered to originate, with particular emphasis on doses to children. The most significant contributions are from x-rays and gamma rays, radionuclides in food and inhalation of isotopes of radon and their decay products. External radiation sources and radionuclides other than radon dominate marrow doses at all ages. The variation with age of the various components of marrow dose is considered, including doses received in utero and in each year up to the age of 15. Doses in utero include contributions resulting from the ingestion of radionuclides by the mother and placental transfer to the foetus. Postnatal doses include those from radionuclides in breast-milk and from radionuclides ingested in other foods. Doses are somewhat higher in the first year of life and there is a general slow decline from the second year of life onwards. The low linear energy transfer (LET) component of absorbed dose to the red bone marrow is much larger than the high LET component. However, because of the higher radiation weighting factor for the latter it contributes about 40% of the equivalent dose incurred up to the age of 15.

  3. Tumour induction by small doses of ionised radiation

    International Nuclear Information System (INIS)

    Putten, L.M. van

    1980-01-01

    The effect of low doses of ionised radiation on tumour induction in animals is discussed. It is hypothesised that high doses of radiation can strongly advance tumour induction from the combination of a stimulated cell growth, as a reaction to massive cell killing, and damage to DNA in the cell nuclei. This effect has a limit below which the radiation dose causes a non-significant amount of dead cells. However in animals where through other reasons, a chronic growth stimulation already exists, only one effect, the damage of DNA, is necessary to induce tumours. A linear dose effect without a threshold level applies in these cases. Applying this hypothesis to man indicates that calculating low dose effects by linear extrapolation of high dose effects is nothing more than a reasonable approximation. (C.F.)

  4. Decreasing the effective radiation dose in pediatric craniofacial CT by changing head position

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Kuang, Anna A.; Schwartz, Daniel L.; Selden, Nathan R.; Stevens, Donna M.; Bardo, Dianna M.E.

    2010-01-01

    Children are exposed to ionizing radiation during pre- and post-operative evaluation for craniofacial surgery. The primary purpose of the study was to decrease effective radiation dose while preserving the diagnostic quality of the study. In this prospective study 49 children were positioned during craniofacial CT (CFCT) imaging with their neck fully extended into an exaggerated sniff position, parallel to the CT gantry, to eliminate the majority of the cervical spine and the thyroid gland from radiation exposure. Image-quality and effective radiation dose comparisons were made retrospectively in age-matched controls (n = 49). When compared to CT scans reviewed retrospectively, the prospective examinations showed a statistically significant decrease in z-axis length by 16% (P < 0.0001) and delivered a reduced effective radiation dose by 18% (P < 0.0001). The subjective diagnostic quality of the exams performed in the prospective arm was maintained despite a slight decrease in the quality of the brain windows. There was statistically significant improvement in the quality of the bone windows and three-dimensional reconstructed images. Altering the position of the head by extending the neck during pediatric craniofacial CT imaging statistically reduces the effective radiation dose while maintaining the diagnostic quality of the images. (orig.)

  5. Estimation of collective effective dose equivalent from environmental radiation and radioactive materials in Japan. A preliminary study

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Noda, Yutaka; Takeshita, Mitsue; Iwai, Kazuo.

    1994-01-01

    The peaceful uses of nuclear power and radiations have been developed into a stage of practical applications for human life. Radiation causes harmful effects to human beings, although human beings receives a number of invaluable benefits from the nuclear energy and the uses of radiation. In order to examine the optimization of radiation protection in these practices, collective effective dose equivalent from environmental exposures due to natural and artificial radiations have been preliminarily evaluated using most recent data. The resultant collective doses were compared with those from medical and occupational exposures. It is noted that, in Japan, the collective effective dose from environmental radiation sources can be approximately same to that from medical exposure. (author)

  6. The Study of External Radiation Dose for Radiation Worker at PRSG-BATAN Serpong

    International Nuclear Information System (INIS)

    Sunarningsih; Mashudi; A Lilik W; Yosep S

    2012-01-01

    The study of External radiation dose for radiation worker at PRSG-BATAN Serpong has been carried out. The sample is taken from the System Reactor division (BSR), Operation Reactor division, (BOR) Safety division UPN, UJM and head of PRSG by setting Thermoluminescence Dosemeter (TLD) on the chest, then is detected by a tool TLD reader model 6600. The aim of this study is to evaluate the occupational exposure dose that has been accepted by the radiation worker for the last five years. The result in average doses at BSR is 0,99 mSv, BOR is 3,27 mSv, at BK is 0,69 mSv and UPN + UJM + head of PRSG is 0,03 mSv. The result highest doses at BSR is 6,58 mSv, BOR is 28,94 mSv, BK is 4,24 mSv, and UPN UJM Head of PRSG is 0,52 mSv. Dose interval radiation worker at PRSG BATAN ttd - 28,98 mSv. To overall the external personal dose acceptant for radiation worker at PRSG BATAN one below maximum permissible dose acceptant that allowed by BAPETEN, that is 20 mSv in average every year during five years. (author)

  7. Effects of a radiation dose reduction strategy for computed tomography in severely injured trauma patients in the emergency department: an observational study

    Directory of Open Access Journals (Sweden)

    Kim Soo Hyun

    2011-11-01

    Full Text Available Abstract Background Severely injured trauma patients are exposed to clinically significant radiation doses from computed tomography (CT imaging in the emergency department. Moreover, this radiation exposure is associated with an increased risk of cancer. The purpose of this study was to determine some effects of a radiation dose reduction strategy for CT in severely injured trauma patients in the emergency department. Methods We implemented the radiation dose reduction strategy in May 2009. A prospective observational study design was used to collect data from patients who met the inclusion criteria during this one year study (intervention group from May 2009 to April 2010. The prospective data were compared with data collected retrospectively for one year prior to the implementation of the radiation dose reduction strategy (control group. By comparison of the cumulative effective dose and the number of CT examinations in the two groups, we evaluated effects of a radiation dose reduction strategy. All the patients met the institutional adult trauma team activation criteria. The radiation doses calculated by the CT scanner were converted to effective doses by multiplication by a conversion coefficient. Results A total of 118 patients were included in this study. Among them, 33 were admitted before May 2009 (control group, and 85 were admitted after May 2009 (intervention group. There were no significant differences between the two groups regarding baseline characteristics, such as injury severity and mortality. Additionally, there was no difference between the two groups in the mean number of total CT examinations per patient (4.8 vs. 4.5, respectively; p = 0.227. However, the mean effective dose of the total CT examinations per patient significantly decreased from 78.71 mSv to 29.50 mSv (p Conclusions The radiation dose reduction strategy for CT in severely injured trauma patients effectively decreased the cumulative effective dose of the total

  8. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  9. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Wang Zhikang; Sun Jianzhong; Zhao Zudan

    2012-01-01

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  10. Evaluation of Patient Radiation Dose during Cardiac Interventional Procedures: What Is the Most Effective Method?

    International Nuclear Information System (INIS)

    Chida, K.; Saito, H.; Ishibashi, T.; Zuguchi, M.; Kagaya, Y.; Takahashi, S.

    2009-01-01

    Cardiac interventional radiology has lower risks than surgical procedures. This is despite the fact that radiation doses from cardiac intervention procedures are the highest of any commonly performed general X-ray examination. Maximum radiation skin doses (MSDs) should be determined to avoid radiation-associated skin injuries in patients undergoing cardiac intervention procedures. However, real-time evaluation of MSD is unavailable for many cardiac intervention procedures. This review describes methods of determining MSD during cardiac intervention procedures. Currently, in most cardiac intervention procedures, real-time measuring of MSD is not feasible. Thus, we recommend that physicians record the patient's total entrance skin dose, such as the dose at the interventional reference point when it can be monitored, in order to estimate MSD in intervention procedures

  11. Is energy imparted a good measure of the radiation risk associated with CT examinations

    International Nuclear Information System (INIS)

    Huda, W.

    1984-01-01

    The dose distribution in a Rando phantom has been measured for typical EMI 5005 CT scans of the head, chest, abdomen and pelvis. These dose distributions have been used to generate quantitative estimates of the somatic and genetic radiation risks associated with these CT examinations and also to measure the total energy imparted during each scan. A comparison has been made between the radiation risk estimates and the energy imparted measurements. The energy imparted measurements are not a good indicator of the somatic and/or genetic risks when one type of CT scan is compared with another. However, for a given type of scan, the energy imparted may be a reasonable indicator of the relative somatic risks associated with different CT examinations. Considerable care should be taken when interpreting and using any measured value of energy imparted in a radiological examination since published values of the risk per unit energy imparted can significantly underestimate the radiation risk. (author)

  12. Possible radiation dose reduction by using digital X-ray equipment

    International Nuclear Information System (INIS)

    Horvathova, M.; Nikodemova, D.; Prikazska, M.

    2001-01-01

    The radiation load of population all over the world from medical examinations clearly demonstrates the importance of the introduction of the quality assurance and quality control programmes into the activities of radiology departments. The basic aim of quality assurance program is to ensure that the radiation dose is kept as low as reasonably practicable while still providing an adequate image quality. As many other fields, the rapid development of techniques brought change-over from the conventional analogue technique to the digital technique. In this process, the conventional X-ray film is being abandoned and images are being viewed on either laser film or monitor. The main advantages of using digital equipment lay in improved image quality and diagnostic accuracy through digital image processing, reduction in patients exposure, cost reduction by reduction of the film usage, more efficient storage and retrieval of radiographic images through picture archiving. Several studies that have been conducted for comparison of various diagnostic examinations show , that there is potential for dose saving in the digital image intensifier technique. The aim of this study was to compare measured values of dose-area product for colon investigations using different X-ray equipment types, two digital and two analogue. Our material consisted of 169 randomly selected patients, 115 of them were examined with digital equipment and 54 patients with the analogue equipment. The obtained results have confirmed the dose reduction and increase of diagnostic accuracy when using the digital equipment, with the added benefit of a good image quality. (authors)

  13. Study report by the Committee of Actual Surbey for Radiation Doses in Digital Imaging

    International Nuclear Information System (INIS)

    Katakura, Toshihiko; Yasuhiko, Shigeru; Abe, Yoshihiro

    1995-01-01

    The aim of this questionnaire survey was to assess the reasonable radiation doses in computed radiography (CR). Questionnaires were sent to 430 facilities having CR apparatus, and 221 of these (51.3%) answered them. The conventional screen/film analog (S/F) imaging serves as control. Radiation doses of CR were smaller than or equal to those of S/F imaging. Estimated radiation doses were obtained from the skull, thoracic vertebrae, lumbar vertebrae, hip joint, leg joint, chest, abdomen, pediatric chest, pediatric hip joint, pediatric abdomen, salivary gland, renal pelvis, uterus, ovaries, and mammary glands. Exposure doses to the chest, which requires resolution, were increased. Reliability of S value was examined. S value varied greatly among CR systems. It was, however, considered to become an indicator for radiation doses in individual systems. Furthermore, image quality of CR imaging was compared with basic characteristics of S/F imaging (such as MTF, Wiener spectral value, and photographic density). MTF in CR was extremely low, as compared with HR-4/HR-S with moderate sensitivity. Wiener spectral value in CR was almost equal to that in S/F imaging at the same doses. (N.K.)

  14. Dose assessment in patients undergoing lung examinations by computed tomography

    International Nuclear Information System (INIS)

    Gonzaga, Natalia B.; Silva, Teogenes A. da; Magalhaes, Marcos J.

    2011-01-01

    In the last fifteen years, the use of computed tomography (CT) has increased alongside other radiology technologies technologies. Its contribution has already achieved 34% in terms of doses undergone by patients. Radiation protection of patients submitted to CT examinations is based on the knowledge of internationally defined dosimetric quantities as the CT air kerma-length product (P K,L ) and weighted CT air kerma index (C w ). In Brazil, those dosimetric quantities are not routinely used and the optimization criteria are based only upon the MSAD - the average dose in multislices. In this work, the dosimetric quantities P K,L and C w were assessed by the CT Expo program for seven protocols used daily for lung examinations in adults with the use of Siemens and Philips scanners in Belo Horizonte. Results showed that P K,L values varied from 163 to 558 mGy.cm and the C w from 9.6 to 17.5 mGy. All results were found to be lower than the reference values internationally recommended by ICRP 87 and the European Community 16262 (30 mGy and 650 mGy.cm). The large dose ranges suggest that optimization of patient dose reduction is still possible without losses in the image quality and new reference dose levels could be recommended after a large survey to be carried out in the region. (author)

  15. On the common mechanism for initiation of different effects of low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Ehjdus, L.Kh.

    1996-01-01

    Main regularities of different endpoints of ionizing radiation low dose effects (adaptive response, stimulation of proliferation, special radiosensitivity of lymphoid cells, and others) have been examined. It has been shown that these endpoints have a commonness for the dose interval, the shape of the dose-response curve, the reverse effect of dose rate, non-specificity toward initiating agents, and others. An explanation is suggested for the common mechanism of the initiation of all the studied low dose effects, basing on the theory of the non-specific reaction of cell to external influences. It is concluded that initiation of the low dose effects is conditioned by radiation induced damage of functions of plasmic and internal membranes

  16. A trial of radiation dose prescription based on dose-cell survival formula

    International Nuclear Information System (INIS)

    Allen, E.P.

    1984-01-01

    Radiation treatment has been prescribed for 379 basal cell carcinomata on the basis of a selected equivalent single dose derived from the standard multi-target dose-cell survival formula using values of m = 2 and Do = 130 rads for orthovoltage x-rays. The results suggest that the approach provides a flexible and acceptable alternative to prescription by total dose or by Nominal Standard Dose. It is submitted that Total Dose is an inadequate expression of radiobiological effects: that the NSD and related systems are valuable measures of the ability of normal tissues to recover from radiation damage: and that a parallel measure of the degree of tumour depopulation has become necessary to allow further progress in alternative fractionation schedules

  17. Digital radiography of scoliosis with a scanning method: radiation dose optimization

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, Haakan; Andersson, Torbjoern [Department of Radiology, Oerebro University Hospital, 701 85 Oerebro (Sweden); Verdonck, Bert [Philips Medical Systems, P.O. Box 10,000, 5680 Best (Netherlands); Beckman, Karl-Wilhelm; Persliden, Jan [Department of Medical Physics, Oerebro University Hospital, 701 85 Oerebro (Sweden)

    2003-03-01

    The aim of this study was optimization of the radiation dose-image quality relationship for a digital scanning method of scoliosis radiography. The examination is performed as a digital multi-image translation scan that is reconstructed to a single image in a workstation. Entrance dose was recorded with thermoluminescent dosimeters placed dorsally on an Alderson phantom. At the same time, kerma area product (KAP) values were recorded. A Monte Carlo calculation of effective dose was also made. Image quality was evaluated with a contrast-detail phantom and Visual Grading. The radiation dose was reduced by lowering the image intensifier entrance dose request, adjusting pulse frequency and scan speed, and by raising tube voltage. The calculated effective dose was reduced from 0.15 to 0.05 mSv with reduction of KAP from 1.07 to 0.25 Gy cm{sup 2} and entrance dose from 0.90 to 0.21 mGy. The image quality was reduced with the Image Quality Figure going from 52 to 62 and a corresponding reduction in image quality as assessed with Visual Grading. The optimization resulted in a dose reduction to 31% of the original effective dose with an acceptable reduction in image quality considering the intended use of the images for angle measurements. (orig.)

  18. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yakun; Li Xiang; Paul Segars, W.; Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States) and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University, Durham, North Carolina 27705 (United States) and Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2012-06-15

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated

  19. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    International Nuclear Information System (INIS)

    Zhang Yakun; Li Xiang; Paul Segars, W.; Samei, Ehsan

    2012-01-01

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated

  20. Radiation Dose Contribution To The Worker Health Level At Serpong Area

    International Nuclear Information System (INIS)

    Yuwono, Indro

    2000-01-01

    Analysis of internal and external radiation doses received for radiation and non-radiation workers of P2TBDU have been done. In the period of 1997/1998 and 1998/1999 there were no significant increasing level of radiation doses received that was 0.55 mSv and highest received radiation dose was 2.66% from dose limit value. Increasing of healthy difference on the same period was 5.76%. Increasing of healthy difference no cause by increasing of radiation dose received but maybe the food consumption design

  1. Evaluation of an exposed-radiation dose on a dual-source cardiac computed tomography examination with a prospective electrocardiogram-gated fast dual spiral scan

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Koshida, Kichiro; Koshida, Haruka; Sakuta, Keita; Hayashi, Hiroyuki; Takata, Tadanori; Horii, Junsei; Kawai, Keiichi; Yamamoto, Tomoyuki

    2012-01-01

    We evaluated exposed-radiation doses on dual-source cardiac computed tomography (CT) examinations with prospective electrocardiogram (ECG)-gated fast dual spiral scans. After placing dosimeters at locations corresponding to each of the thoracic organs, prospective ECG-gated fast dual spirals and retrospective ECG-gated dual spiral scans were performed to measure the absorbed dose of each organ. In the prospective ECG-gated fast dual spiral scans, the average absorbed doses were 5.03 mGy for the breast, 9.96 mGy for the heart, 6.60 mGy for the lung, 6.48 mGy for the bone marrow, 9.73 mGy for the thymus, and 4.58 mGy for the skin. These values were about 5% of the absorbed doses for the retrospective ECG-gated dual spiral scan. However, the absorbed dose differed greatly at each scan, especially in the external organs such as the breast. For effective and safe use of the prospective ECG-gated fast dual spiral scan, it is necessary to understand these characteristics sufficiently. (author)

  2. Ultraviolet Radiation Dose National Standard of México

    Science.gov (United States)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  3. Radiation doses of employees of a nuclear medicine department after implementation of more rigorous radiation protection methods

    International Nuclear Information System (INIS)

    Piwowarska-Bilska, H.; Supinska, A.; Listewnik, M. H.; Zorga, P.; Birkenfeld, B.

    2013-01-01

    The appropriate radiation protection measures applied in departments of nuclear medicine should lead to a reduction in doses received by the employees. During 1991-2007, at the Department of Nuclear Medicine of Pomeranian Medical University (Szczecin, Poland), nurses received on average two-times higher (4.6 mSv) annual doses to the whole body than those received by radiopharmacy technicians. The purpose of this work was to examine whether implementation of changes in the radiation protection protocol will considerably influence the reduction in whole-body doses received by the staff that are the most exposed. A reduction in nurses' exposure by ∼63% took place in 2008-11, whereas the exposure of radiopharmacy technicians grew by no more than 22% in comparison with that in the period 1991-2007. Proper reorganisation of the work in departments of nuclear medicine can considerably affect dose reduction and bring about equal distribution of the exposure. (authors)

  4. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  5. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    International Nuclear Information System (INIS)

    Appelt, Ane L.; Pløen, John; Vogelius, Ivan R.; Bentzen, Søren M.; Jakobsen, Anders

    2013-01-01

    Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D 50,i , and the normalized dose-response gradient, γ 50,i . Results: A highly significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D 50,TRG1 = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), γ 50,TRG1 = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D 50,TRG1 and 2 = 72.1 Gy (CI 65.3-94.0 Gy), γ 50,TRG1 and 2 = 0.770 (CI 0.338-1.201). Tumor size and N category both had a significant effect on the dose-response relationships. Conclusions: This study demonstrated a significant dose-response relationship for tumor regression after preoperative CRT for locally advanced rectal cancer for tumor dose levels in the range of 50.4-70 Gy, which is higher than the dose range usually considered.

  6. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  7. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  8. Exposure to Low-Dose X-Ray Radiation Alters Bone Progenitor Cells and Bone Microarchitecture.

    Science.gov (United States)

    Lima, Florence; Swift, Joshua M; Greene, Elisabeth S; Allen, Matthew R; Cunningham, David A; Braby, Leslie A; Bloomfield, Susan A

    2017-10-01

    Exposure to high-dose ionizing radiation during medical treatment exerts well-documented deleterious effects on bone health, reducing bone density and contributing to bone growth retardation in young patients and spontaneous fracture in postmenopausal women. However, the majority of human radiation exposures occur in a much lower dose range than that used in the radiation oncology clinic. Furthermore, very few studies have examined the effects of low-dose ionizing radiation on bone integrity and results have been inconsistent. In this study, mice were irradiated with a total-body dose of 0.17, 0.5 or 1 Gy to quantify the early (day 3 postirradiation) and delayed (day 21 postirradiation) effects of radiation on bone microarchitecture and bone marrow stromal cells (BMSCs). Female BALBc mice (4 months old) were divided into four groups: irradiated (0.17, 0.5 and 1 Gy) and sham-irradiated controls (0 Gy). Micro-computed tomography analysis of distal femur trabecular bone from animals at day 21 after exposure to 1 Gy of X-ray radiation revealed a 21% smaller bone volume (BV/TV), 22% decrease in trabecular numbers (Tb.N) and 9% greater trabecular separation (Tb.Sp) compared to sham-irradiated controls (P X-rays, whereas osteoclastogenesis was enhanced. A better understanding of the effects of radiation on osteoprogenitor cell populations could lead to more effective therapeutic interventions that protect bone integrity for individuals exposed to low-dose ionizing radiation.

  9. The evolution of radiation dose over time: Measurement of a patient cohort undergoing whole-body examinations on three computer tomography generations

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Roy P., E-mail: roy.marcus@med.uni-tuebingen.de [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Department of Radiology, Mayo Clinic, Rochester, MN (United States); Koerner, Elise [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Aydin, Roland C. [Institute for Computational Mechanics, Technische Universität München, Garching (Germany); Zinsser, Dominik; Finke, Tobias [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Cyron, Christian J. [Institute for Computational Mechanics, Technische Universität München, Garching (Germany); Bamberg, Fabian; Nikolaou, Konstantin; Notohamiprodjo, Mike [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany)

    2017-01-15

    Objectives: To evaluate and compare the radiation dose and image quality of whole-body-CT (WBCT) performed on the 3rd-generation dual-source-CT (DSCT) with 2nd-generation DSCT and 64-slices-Single-Source-CT (SSCT) in a large patient cohort. Material and methods: Using a monitoring and tracking software 1451, 747 and 1861 patients scanned with a one-spiral-thorax-abdomen-pelvis-CT-examination on a 3rd-, 2nd-generation DSCT and SSCT, respectively, were extracted from the PACS server. For the intra-individual analysis, 203 patients on the 3rd-generation DSCT were identified. Out of those 203 patients, 155 had the same examination on the 2nd-generation DSCT, 91 patients had the same examination on the SSCT and 43 patients had an examination on all three CT-generations. Automatic tube current modulation was active on all three CT-generations, whereas automatic tube voltage selection was only available on both DSCT-generations. Dose was recorded by the size-specific-dose-estimate-method (SSDE); signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated placing a ROI on the ascending aorta/liver and the subcutaneous adipose tissue at comparable level. Image quality of axillary and mediastinal lymph nodes and adrenal glands was assessed by two experienced radiologists. Results: Subjective image quality was excellent throughout all three CT-generations (p = 0.38–0.98). Quantitative image quality in both DSCT generations was superior to SSCT (p < 0.001). SNR and CNR in the liver parenchyma were superior in the 3rd-generation DSCT compared to the 2nd generation DSCT (p < 0.001), whereas there was no difference in the aorta. In the inter-individual analysis, CTDI{sub vol} was lower by 26.9% and 44.3% in the 3rd-generation DSCT, when compared to the 2nd-generation DSCT and SSCT, respectively; SSDE was lower by 31.5% and 51% in the 3rd-generation DSCT, when compared to the 2nd-generation DSCT and SSCT, respectively. In the intra-individual comparison CTDI

  10. Radiation dose and cancer risk to children undergoing skull radiography

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Raissaki, Maria; Gourtsoyiannis, Nicholas

    2004-01-01

    Background: Limited data exist in the literature concerning the patient-effective dose from paediatric skull radiography. No information has been provided regarding organ doses, patient dose during PA skull projection, risk of cancer induction and dose to comforters, i.e. individuals supporting children during exposure. Objective: To estimate patient-effective dose, organ doses, lifetime cancer mortality risk to children and radiation dose to comforters associated with skull radiography. Materials and methods: Data were collected from 136 paediatric examinations, including AP, PA and lateral skull radiographs. Entrance-surface dose (ESD) and dose to comforters were measured using thermoluminescent dosimeters. Patients were divided into the following age groups: 0.5-2, 3-7, 8-12 and 13-18 years. The patient-effective dose and corresponding organ doses were calculated using data from the NRPB and Monte Carlo techniques. The risk for fatal cancer induction was assessed using appropriate risk coefficients. Results: For AP, PA and lateral skull radiography, effective dose ranges were 8.8-25.4, 8.2-27.3 and 8.4-22.7 μSv respectively, depending upon the age of the child. For each skull projection, the organs receiving doses above 10 μGy are presented. The number of fatal cancers was found to be less than or equal to 2 per 1 million children undergoing a skull radiograph. The mean radiation dose absorbed by the hands of comforters was 13.4 μGy. Conclusions: The current study provides detailed tabular and graphical data on ESD, effective dose, organ doses and lifetime cancer mortality risk to children associated with AP, PA and lateral skull projections at all patient ages. (orig.)

  11. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  12. The development of wireless radiation dose monitoring using smart phone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo; Jeong, Gyo Seong; Lee, Yun Jong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Chonbuk National University, Jeonju (Korea, Republic of); Lim, Chai Wan [REMTECH, Seoul (Korea, Republic of)

    2016-11-15

    Radiation workers at a nuclear facility or radiation working area should hold personal dosimeters. some types of dosimeters have functions to generate audible or visible alarms to radiation workers. However, such devices used in radiation fields these days have no functions to communicate with other equipment or the responsible personnel. our project aims at the development of a remote wireless radiation dose monitoring system that can be utilized to monitor the radiation dose for radiation workers and to notify the radiation protection manager of the dose information in real time. We use a commercial survey meter for personal radiation measurement and a smart phone for a mobile wireless communication tool and a Beacon for position detection of radiation workers using Blue tooth communication. In this report, the developed wireless dose monitoring of cellular phone is introduced.

  13. Genomic instability in mutation induction on normal human fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsuruoka, C.; Uchihori, Y.; Yasuda, H.; Fujitaka, K.

    2003-01-01

    Full text: At a time when manned space exploration is more a reality with the planned the International Space Station (ISS) underway, the potential exposure of crews in a spacecraft to chronic low-dose radiations in the field of low-flux galactic cosmic rays (GCR) and the subsequent biological effects have become one of the major concerns of space science. We have studied both in vitro life span and genomic instability in cellular effects in normal human skin fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field. Cells were cultured in a CO2 incubator, which was set in the irradiation room for the biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and irradiated with scattered radiations produced from heavy ions. Absorbed dose measured using a thermoluminescence dosimeter (TLD) and a Si-semiconductor detector was to be around 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number (tPDN) of low-dose irradiated cells was significantly smaller (79-93%) than that of unirradiated cells. The results indicate that the life span of the cell population shortens by irradiating with low-dose scattered radiations in the heavy-ion irradiation field. Genomic instability in cellular responses was examined to measure either cell killing or mutation induction in low-dose accumulated cells after exposing to X-ray challenging doses. The results showed that there was no enhanced effect on cell killing between low-dose accumulated and unirradiated cells after exposing to defined challenging doses of 200kV X rays. On the contrary, the mutation frequency on hprt locus of low-dose accumulated cells was much higher than that of unirradiated cells. The results suggested that genomic instability was induced in mutagenesis by the chronic low-dose irradiations in heavy-ion radiation field

  14. Comparison of radiation doses between newborns and 6-y-old children undergoing head, chest and abdominal CT examinations-A phantom study

    International Nuclear Information System (INIS)

    Sugimoto, N.; Aoyama, T.; Koyama, S.; Yamauchi-Kawaura, C.; Fujii, K.

    2013-01-01

    Radiation doses in paediatric computed tomography (CT) were investigated for various types of recent CT scanners with newborn and 6-y-old phantoms in which silicon-photodiode dosemeters were implanted at various organ positions. In the head, chest and abdominal CT for the newborn phantom, doses for organs within the scan region were 21-40, 3-8 and 3-12 mGy, respectively. The corresponding doses for the child phantom were 20-37, 2-11 and 4-17 mGy, respectively. In the head, chest and abdominal CT, the effective doses were respectively 2.1-3.3, 2.0-6.0 and 2.2-10.0 mSv for the newborn, and 1.0-2.0, 1.2-6.6 and 2.9-11.8 mSv for the child. Radiation doses for the newborn were at the same levels as those for the child, excepting effective doses in head CT for the newborn, which were 1.8 times higher than those for the child. (authors)

  15. PET/CT-guided Interventions: Personnel Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  16. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  17. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  18. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    Zielinski, J. M.; Band, P. R.; Ashmore, P. J.; Jiang, H.; Shilnikova, N. S.; Tait, V. K.; Krewski, D.

    2009-01-01

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  19. Estimation of radiation dose received by the victims in a Chinese radiation accident

    International Nuclear Information System (INIS)

    Zhang, Liangan; Xu, Zhiyong; Jia, Delin; Dai, Guangfu

    2002-01-01

    In April 1999, a radiation accident happened in Henan province, China. In this accident, A 60 Co ex-service therapy radiation source was purchased by a waster purchase company, then some persons break the lead pot and taken out the stainless steel drawer with the radiation source, then sell the drawer to another small company, and the buyer reserved the drawer in his bed room until all of his family members shoot their cookies. During the event, seven persons received overdose exposure, the dose rang is about 1.0 - 6.0Gy, especially, all of the buyer family members meet with bad radiation damage. In order to assess the accident consequences and cure the patients of the bad radiation damage, it is necessary to estimate the doses of the Victims in the accident. In the dose reconstruction of the accident victims, we adopted biologic dose method, experiment-simulating method with an anthropomorphic phantom, and theory simulating method with Monte Carlo to estimate the doses of the victims. In this paper, the frame of the accident and the Monte Carlo method in our work will be described, the main dose results of the three methods mentioned above will be reported and a comparison analysis will be presented

  20. Cancer and low dose responses in vivo: implications for radiation protection

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    2006-01-01

    Full text: Radiation protection practices assume that cancer risk is linearly proportional to total dose, without a threshold, both for people with normal cancer risk and for people who may be genetically cancer prone. Mice heterozygous for the Tp 53 gene are cancer prone, and their increased risk from high doses was not different from Tp 53 normal mice. However, in either Tp 53 normal or heterozygous mice, a single low dose of low LET radiation given at low dose rate protected against both spontaneous and radiation-induced cancer by increasing tumor latency. Increased tumor latency without a cancer frequency change implies that low doses in vivo primarily slow the process of genomic instability, consistent with the elevated capacity for correct DSB rejoining seen in low dose exposed cells. The in vivo animal data indicates that, for low doses and low dose rates in both normal and cancer prone adult mice, risk does not increase linearly with dose, and dose thresholds for increased risk exist. Below those dose thresholds (which are influenced by Tp 53 function) overall risk is reduced below that of unexposed control mice, indicating that Dose Rate Effectiveness Factors (DREF) may approach infinity, rather than the current assumption of 2. However, as dose decreases, different tissues appear to have different thresholds at which detriment turns to protection, indicating that individual tissue weighting factors (Wt) are also not constant, but vary from positive values to zero with decreasing dose. Measurements of Relative Biological Effect between high and low LET radiations are used to establish radiation weighting factors (Wr) used in radiation protection, and these are also assumed to be constant with dose. However, since the risk from an exposure to low LET radiation is not constant with dose, it would seem unlikely that radiation-weighting factors for high LET radiation are actually constant at low dose and dose rate

  1. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    International Nuclear Information System (INIS)

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R 50% ); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D 2cm ) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ 2 test was used to examine the difference in parameters between groups. The PTV V 100% PD ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V 90% PD ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D 2cm , 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives

  2. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X., E-mail: lhong0812@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Shankar, Viswanathan [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (United States); Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Kuo, Hsiang-Chi [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Mynampati, Dinesh [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Yaparpalvi, Ravindra [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Goddard, Lee [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States)

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  3. Analysis of occupational doses of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Sanaye, S.S.; Baburajan, Sujatha; Joshi, V.D.; Pawar, S.G.; Nalawade, S.K.; Raman, N.V.; Kher, R.K.

    2007-01-01

    Routine monitoring of occupational radiation workers is done for controlling the doses to the individuals and to demonstrate the compliance with occupational dose limits. One of the objective of personnel monitoring program is the assessment of the radiation safety of working area and trends of exposure histories of individuals or group of workers. Computerised dose registry of all monitored radiation workers along with their personnel data helps in analyzing these trends. This in turn helps the institutions in management of their radiation safety programs. In India, annual and life time occupational dose records are maintained as National Dose Registry in the Radiological Physics and Advisory Division, Bhabha Atomic Research Centre. This paper presents analysis of occupational dose data of monitored radiation workers in medical institutions in India during last five years (i.e. 2002-2006)

  4. Radiation exposure of the Yazd Population from medical conventional X-ray examinations

    International Nuclear Information System (INIS)

    Bouzarjomehri, F.; Zare, M. H.; Dashti, M. H.

    2007-01-01

    Radiation dose knowledge through X-ray examinations and their distribution in Iran provides useful guidance on patient dose reduction. The results of the entrance skin dose (ESD s ) of five common radiographs in all radiology centers in Yazd province were reported in our previous study (2003). In the present study we have evaluated the collective effective dose of conventional X-ray examinations, as well as the annual per caput of Yazd population.Materials and Methods: The annual frequencies of 18 different types of conventional radiology examinations during April 2005 to March 2006 were recorded from all 35 radiology centers in Yazd province. The exposure conditions consisted of kVp, mAs, and Focus surface distance (FSD) of the examinations for the mode of exposure in each X-ray unit. 620 ESD were measured by diode dosimeter in 35 hospitals and clinics. The real exposure kVp for each radiology unit was measured by a Molt-0-Meter. The conversion coefficient (effective dose - ESD ratio) for each radiology examination was determined by using SR262 tables. Finally, the patients' effective dose was calculated by multiplying the conversion factor to the ESD. Results: The patients' annual collective effective dose due to the conventional radiology examinations was 31.159 man-Sv (0.03 mSv per inhabitant). The frequency of examinations was 311813 i.e. 0.36 examinations per head of the population for one year. Conclusion: According to our findings, the effective per caput dose seems to be optimally relative to HCL-II countries, which may be due to low mean effective dose that could obscure high examination frequency. The number of radiology conventional examinations and frequency of radiologist per1000 population of Yazd was more and lower than HCL-II countries respectively. Thus the justification of radiography requests in this province must be revised

  5. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-01-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  6. Options for radiation dose optimisation in pelvic digital radiography: A phantom study

    International Nuclear Information System (INIS)

    Manning-Stanley, Anthony S.; Ward, Anthony J.; England, Andrew

    2012-01-01

    Purpose: To investigate the effects of phantom orientation and AEC chamber selection on radiation dose and image quality (IQ) for digital radiography (DR) examinations of the pelvis. Methods: A phantom study was conducted using a DR detector, utilising all AEC chamber combinations. Current recommended orientation (Cr-AEC) was with the outer AEC chambers cranially orientated. mAs (given), source-to-skin distance and kV p data facilitated entrance surface dose and effective dose calculations. Six anatomical areas were blindly graded by two observers (3-point scale) for IQ. Statistical differences in radiation dose were determined using the paired Student’s t-test. IQ data was analysed for inter-observer variability (ICC) and statistical differences (Wilcoxon test). Results: Switching phantom orientation (caudally orientated outer AEC chambers: Ca-AEC) reduced mean radiation dose by 36.8%, (p < 0.001). A minor reduction in median IQ (15.5 vs. 15) was seen (p < 0.001). One Ca-AEC orientated image (1.6%) had all anatomical areas graded ‘inadequate’ by at least one observer; all other images were considered ‘adequate’ for all areas. In the Ca-AEC orientation, at least a 44% dose reduction was achievable (p < 0.001) when only the outer AEC chambers were used. In the Cr-AEC orientation, at least 11% dose reduction was achieved (p < 0.001); here the central chamber was used alone, or in combination. IQ scores fell, but remained ‘adequate’. Conclusion: Switching pelvic orientation relative to AEC chamber position can optimise radiation dose during pelvic radiography. AEC chamber position should be clearly marked on equipment to facilitate this. AEC selection should be an active process.

  7. Pediatric radiation dose and risk from bone density measurements using a GE Lunar Prodigy scanner.

    Science.gov (United States)

    Damilakis, J; Solomou, G; Manios, G E; Karantanas, A

    2013-07-01

    Effective radiation doses associated with bone mineral density examinations performed on children using a GE Lunar Prodigy fan-beam dual-energy X-ray absorptiometry (DXA) scanner were found to be comparable to doses from pencil-beam DXA devices, i.e., lower than 1 μSv. Cancer risks associated with acquisitions obtained in this study are negligible. No data were found in the literature on radiation doses and potential risks following pediatric DXA performed on GE Lunar DXA scanners. This study aimed to estimate effective doses and associated cancer risks involved in pediatric examinations performed on a GE Lunar Prodigy scanner. Four physical anthropomorphic phantoms representing newborn, 1-, 5-, and 10-year-old patients were employed to simulate DXA exposures. All acquisitions were carried out using the Prodigy scanner. Dose measurements were performed for spine and dual femur using the phantoms simulating the 5- and 10-year-old child. Moreover, doses associated with whole-body examinations were measured for the four phantoms used in the current study. The gender-average effective dose for spine and hip examinations were 0.65 and 0.36 μSv, respectively, for the phantom representing the 5-year-old child and 0.93 and 0.205 μSv, respectively, for the phantom representing the 10-year-old child. Effective doses for whole-body examinations were 0.25, 0.22, 0.19, and 0.15 μSv for the neonate, 1-, 5-, and 10-year old child, respectively. The estimated lifetime cancer risks were negligible, i.e., 0.02-0.25 per million, depending on the sex, age, and type of DXA examination. A formula is presented for the estimation of effective dose from examinations performed on GE Lunar Prodigy scanners installed in other institutions. The effective doses and potential cancer risks associated with pediatric DXA examinations performed on a GE Lunar Prodigy fan-beam scanner were found to be comparable to doses and risks reported from pencil-beam DXA devices.

  8. Potential gonadal dose from leakage radiation?

    International Nuclear Information System (INIS)

    Nicholson, R.A.

    1995-01-01

    The author draws attention to the potential dangers of leakage radiation from mobile image intensifier units, and points out that during interventional urological procedures, radiation from below the urologist's knees may irradiate male gonads without being intercepted by protective aprons. Results are presented for a Shimatzu WHA mobile II, phantom doses being measured with an ionization chamber. Dose rates measured in the male gonad position were compared with rates at waist level behind a 0.35 mm lead equivalent shielding and dose rates at collar level outside the lead apron. Results are also presented of a study on the effect on gonad dose of a) adding 0.7 mm lead shielding to the tube housing and b) adding 0.7 mm lead and removing the spacer cone to reduce scatter. Results show that it is possible for gonad doses to be comparable with those assumed for the eyes, rather than the body. (Author)

  9. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  10. Audit of radiation dose during balloon mitral valvuloplasty procedure

    International Nuclear Information System (INIS)

    Livingstone, Roshan S; Chandy, Sunil; Peace, B S Timothy; George, Paul; John, Bobby; Pati, Purendra

    2006-01-01

    Radiation doses to patients during cardiological procedures are of concern in the present day scenario. This study was intended to audit the radiation dose imparted to patients during the balloon mitral valvuloplasty (BMV) procedure. Thirty seven patients who underwent the BMV procedure performed using two dedicated cardiovascular machines were included in the study. The radiation doses imparted to patients were measured using a dose area product (DAP) meter. The mean DAP value for patients who underwent the BMV procedure from one machine was 19.16 Gy cm 2 and from the other was 21.19 Gy cm 2 . Optimisation of exposure parameters and radiation doses was possible for one machine with the use of appropriate copper filters and optimised exposure parameters, and the mean DAP value after optimisation was 9.36 Gy cm 2

  11. Exposure to low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Le Guen, B.

    2008-01-01

    The author discusses the knowledge about the effects of ionizing radiations on mankind. Some of them have been well documented (skin cancer and leukaemia for the pioneer scientists who worked on radiations, some other types of cancer for workers who handled luminescent paints, rock miners, nuclear explosion survivors, patients submitted to radiological treatments). He also evokes the issue of hereditary cancers, and discusses the issue of low dose irradiation where some surveys can now be performed on workers. He discusses the biological effects of these low doses. He outlines that many questions remain about these effects, notably the influence of dose level and of dose rate level on the biological reaction

  12. The 3D Radiation Dose Analysis For Satellite

    Science.gov (United States)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  13. Online radiation dose measurement system for ATLAS experiment

    International Nuclear Information System (INIS)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  14. Clinical indications and radiation doses to the conceptus associated with CT imaging in pregnancy: a retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Woussen, S.; Vanbeckevoort, D.; Bosmans, H.; Oyen, R. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Lopez-Rendon, X.; Zanca, F. [University Hospitals Leuven, Department of Imaging and Pathology, Leuven (Belgium)

    2016-04-15

    To perform an internal audit at a university hospital with the aim of evaluating the number, clinical indication and operating procedure of computed tomography (CT) performed on pregnant patients and of estimating the radiation doses to the conceptus. A retrospective review was conducted of all CT examinations performed in a single centre on pregnant patients between January 2008 and July 2013. The radiation doses to the conceptus were estimated. The results were compared with published data. The number of CT examinations during pregnancy increased from 3-4 per year in 2008-2011 to 11 per year in 2012. The mean estimated conceptus radiation dose was considered negligible for CT of the head and cervical spine, being less than 0.01 mGy, and for CT of the chest, less than 0.1 mGy. The estimated conceptus radiation dose from abdominopelvic CT was on average 28.7 mGy (range 6.7-60.5 mGy). The number of CT scans of pregnant patients increased threefold during the last few years. Most clinical indications and doses were in line with good clinical practice and literature; only in two cases the dose to the conceptus was higher than 50 mGy. (orig.)

  15. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  16. Biological effects of low doses of ionizing radiation: Conflict between assumptions and observations

    International Nuclear Information System (INIS)

    Kesavan, P.C.; Devasagayam, T.P.A.

    1997-01-01

    Recent epidemiological data on cancer incidence among the A-bomb survivors and more importantly experimental studies in cell and molecular radiobiology do not lend unequivocal support to the ''linear, no threshold'' (LNT) hypothesis; in fact, the discernible evidence that low and high doses of ionizing radiations induce qualitatively different/opposite effects cannot be summarily rejected. A time has come to examine the mechanistic aspects of ''radiation hormesis'' and ''radioadaptive response'' seriously rather than proclaiming one's profound disbelief about these phenomena. To put the discussion in a serious scientific mode, we briefly catalogue here reports in the literature on gene expression differentially influenced by low and high doses. These are not explicable in terms of the current radiation paradigm. (author)

  17. Radiation dose in paediatric cardiac catheterisation: A systematic literature review

    International Nuclear Information System (INIS)

    Gould, R.; McFadden, S.L.; Hughes, C.M.

    2017-01-01

    Objectives: It is believed that children are more sensitive to ionising radiation than adults. This work reviewed the reported radiation dose estimates for paediatric cardiac catheterisation. A systematic literature review was performed by searching healthcare databases for studies reporting radiation dose using predetermined key words relating to children having cardiac catheterisation. The quality of publications was assessed using relevant Critical Appraisal Skills Programme questions and their reported radiation exposures were evaluated. Key findings: It is only in recent years that larger cohort observations have been undertaken. Although radiation dose from paediatric cardiac catheterisation has decreased in recent years, the literature indicated that it remains varied and potentially substantial. Conclusion: Standardisation of weight categories and procedure types such as those recommended by the PiDRL project could help compare current and future radiation dose estimates. - Highlights: • 31 articles reporting radiation dose from paediatric cardiac catheterisation were reviewed. • In recent years, larger cohorts (>1000) have been reported. • Radiation dose to children has been lowered in the last decade but remains varied. • Future dosimetry should be consistent for weight categories and procedure types.

  18. Immunologic mechanism of the suppressive effect of low dose radiation on thymic lymphoma induced by radiation

    International Nuclear Information System (INIS)

    Li Xiujuan; Yang Ying; Li Xiuyi; Liu Shuzheng

    1999-01-01

    To study immunologic mechanism of the suppressive effect of low dose radiation (LDR) on thymic lymphoma (TL) induced by high dose radiation (HDR). The authors adopted the model that C57BL/6J mice were administered whole body irradiation with 1.75 Gy X-rays one time every week for 4 weeks to induce TL. It was examined that splenic NK cytotoxic activity, IL-2 and γ-IFN secretion activity, peritoneal macrophage phagocytosis and its TNF-α secretion activity in mice with different dose 1 month after irradiation. The results showed that all the immunologic functions mentioned above in mice given 75 mGy 12 h before 1.75 Gy every time were higher than that in mice given only 1.75 Gy, and approached to the sham-irradiation mice. It suggested that the suppressive effect of LDR on TL induced by HDR may be related to the adaptive response induced by LDR and decreasing immunological functions damage caused by HDR

  19. External radiation dose and cancer mortality among French nuclear workers: considering potential confounding by internal radiation exposure.

    Science.gov (United States)

    Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K

    2016-11-01

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  20. External radiation dose and cancer mortality among French nuclear workers. Considering potential confounding by internal radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, L.; Laurent, O.; Samson, E.; Caer-Lorho, S.; Laurier, D.; Leuraud, K. [Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses (France). Ionizing Radiation Epidemiology Lab.; Laroche, P. [AREVA, Paris (France); Le Guen, B. [EDF, Saint Denis (France)

    2016-11-15

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat a l'Energie Atomique), AREVA NC, or EDF (Electricite de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  1. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  2. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  3. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  4. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  5. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-06-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  6. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi

    2001-01-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  7. The dose received by patients during dental X-ray examination and the technical condition of radiological equipment.

    Science.gov (United States)

    Bekas, Marcin; Pachocki, Krzysztof A

    2013-01-01

    Implementation of X-ray dental examination is associated with the patients exposure to ionizing radation. The size of the exposure depends on the type of medical procedure, the technical condition of the X-ray unit and selected exposure conditions. The aim of this study was to determine the dose received by patients during dental X-ray examination and the assessment of the technical condition of medical equipment, The study included a total number of 79 dental X-ray units located in the region of Mazovia. The test methods for the assessment of the technical condition of dental X-ray units and measurement of radiation dose received by patients were based on the procedures elaborated in the Department of Radiation Hygiene and Radiobiology in the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland) accredited for the certification of compliance with PN-EN 17025. The research found that 69.6% fully meets the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 30.4% did not meet some of them. A tenfold difference in the size of the dose received by patients during dental X-ray examinations was discovered. For example, during a radiography of the canine teeth of a child, the recorded entrance surface dose (ESD) ranged from 72.8 to 2430 microGy with the average value of 689.1 microGy. Cases where the dose reference level defined in Polish legislation of 5 mGy was exceeded were also found. CONCKUSIONS: It is essential to constantly monitor the situation regarding the technical condition of X-ray units which affects the size of the population's exposure to ionizing radiation as well as raising dentists' awareness about the effects of X-rays on the human body.

  8. Organ dose and effective dose with the EOS scanner in spine deformity surgery

    DEFF Research Database (Denmark)

    Heide Pedersen, Peter; Petersen, Asger Greval; Eiskjær, Søren Peter

    2016-01-01

    Organ dose and effective dose with the EOS scanner in spine deformity surgery. A study on anthropomorphic phantoms describing patient radiation exposure in full spine examinations. Authors: Peter Heide Pedersen, Asger Greval Petersen, Søren Peter Eiskjær. Background: Ionizing radiation potentially...... quality images while at the same time reducing radiation dose. At our institution we use the EOS for pre- and postoperative full spine examinations. Purpose: The purpose of the study is to make first time organ dose and effective dose evaluations with micro-dose settings in full spine examinations. Our...... hypothesis is that organ dose and effective doses can be reduced 5-10 times compared to standard settings, without too high image-quality trade off, resulting in a theoretical reduction of radiation induced cancer. Methods: Patient dosimetry is performed on anthropomorphic child phantoms, representing a 5...

  9. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    Highlights: • First study on early stress responses in salmon exposed to low-dose gamma radiation. • Dramatic dose-dependent transcriptional responses characterized. • Multiple modes of action proposed for gamma radiation. - Abstract: Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48 h) exposure. Global transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes (DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the majority of differences were dose-specific. No GO functions were identified at low or medium doses, but repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response to reactive oxygen species (ROS) were observed after 280 mGy gamma exposure. Ortholog-based toxicity pathway analysis further showed that 15 mGy radiation

  10. Radiation doses in pediatric computed tomography procedures: challenges facing new technologies

    International Nuclear Information System (INIS)

    Cotelo, E.; Padilla, M.; Dibarboure, L.

    2008-01-01

    Despite the fact that in recent years an increasing number of radiologists and radiological technologists have been applying radiation dose optimization techniques in paediatric Computed Tomography (CT) examinations, dual and multi -slice CT (MSCT) scanners present a new challenge in Radiation Protection (RP). While on one hand these scanners are provided with Automatic Exposure Control (AEC) devices, dose reduction modes and dose estimation software, on the other hand Quality Control (QC) tests and CT Kerma Index (C) measurements and patient dose estimation present specific difficulties and require changes or adaptations of traditional QC protocols. This implies a major challenge in most developing countries where Quality Assurance Programmes (QAP) have not been implemented yet and there is a shortage in the number of medical physicists This paper analyses clinical and technical protocols as well as patient doses in 204 CT body procedures performed in 154 children. The investigation was carried out in a paediatric reference hospital of Uruguay, where are performed an average of 450 paediatric CT examinations per month in a sole CT dual scanner. Besides, C VOL reported from the scanner display was registered in order to be related with the same dosimetric quantity derived from technical parameters and C values published on tables. Results showed that not all the radiologists applied the same protocol in similar clinical situations delivering unnecessary patient dose with no significant differences in image quality. Moreover, it was found that dose reduction modes represent a drawback in order to estimate patient dose when mA changes according to tissue attenuation, in most cases in each rotation. The study concluded on the importance of QAP that must include education on RP of radiologists and technologists, as well as in the need of medical physicists to perform QC tests and patient dose estimations and measurements. (author)

  11. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  12. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    Science.gov (United States)

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Radiation dose electrophysiology procedures

    International Nuclear Information System (INIS)

    Hernandez-Armas, J.; Rodriguez, A.; Catalan, A.; Hernandez Armas, O.; Luque Japon, L.; Moral, S.; Barroso, L.; Rfuez-Hdez, R.

    2006-01-01

    The aim of this paper has been to measure and analyse some of the parameters which are directly related with the doses given to patients in two electrophysiology procedures: diagnosis and ablation with radiofrequency. 16 patients were considered in this study. 13 them had an ablation with radiofrequency at the Unit of Electrophysiology at the University Hospital of the Canaries, La Laguna., Tenerife. The results of skin doses, in the ablation cases, were higher than 2 Gy (threshold of some deterministic effects). The average value was 1.1 Gy. The personal doses, measured under the lead apron, for physician and nurses were 4 and 3 micro Sievert. These results emphasised the necessity of radiation protection measures in order to reduce, ad much as possible, the doses to patients. (Author)

  14. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  15. PET/CT-guided Interventions: Personnel Radiation Dose

    International Nuclear Information System (INIS)

    Ryan, E. Ronan; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-01-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0–0.13) mSv for the primary operator, 0.01 (range 0–0.05) mSv for the nurse anesthetist, and 0.02 (range 0–0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0–0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient

  16. Some human activities to decrease public radiation dose

    International Nuclear Information System (INIS)

    Pan Ziqiang; Guo Minqiang

    1994-01-01

    The necessity of studying the variations in radiation levels from the balance viewpoint is discussed. Some human activities may increase, while others may decrease, radiation dose to population. In 1988, China's investigation showed that travel by air caused a raise of population collective dose by 3.6 x 10 1 man·Sv, while travel by ship, train and vehicle lead to a drop of 5.36 x 10 2 man·Sv, and that dwellings of coal cinder brick decreased collective dose by 3.5 x 10 3 man·Sv, while buildings of reinforced concrete structure increased collective dose by 3.7 x 10 3 man·Sv. It is inadequate to only study those activities which may increase radiation levels

  17. Work practices and occupational radiation dose among radiologic technologists in Korea

    International Nuclear Information System (INIS)

    Cha, Eun Shil; Lee, Won Jin; Ha, Mina; Hwang, Seung Sik; Lee, Kyoung Mu; Jeong, Mee Seon

    2013-01-01

    Radiologic technologists are one of the occupational groups exposed to the highest dose of radiation worldwide. In Korea, radiologic technologists occupy the largest group (about 33%) among medical radiation workers and they are exposed to the highest dose of occupational dose of radiation as well (1). Although work experience with diagnostic radiation procedure of U.S. radiologic technologists was reported roughly (2), few studies have been conducted for description of overall work practices and the change by calendar year and evaluation of related factors on occupational radiation dose. The aims of the study are to describe work practices and to assess risk factors for occupational radiation dose among radiologic technologists in Korea. This study showed the work practices and occupational radiation dose among representative sample of radiologic technologists in Korea. The annual effective dose among radiologic technologists in Korea remains higher compared with those of worldwide average and varied according to demographic factors, year began working, and duration of working

  18. Audit of radiation dose during balloon mitral valvuloplasty procedure

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, Roshan S [Department of Radiology, Christian Medical College, Vellore-632004, TN (India); Chandy, Sunil [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); Peace, B S Timothy [Department of Radiology, Christian Medical College, Vellore-632004, TN (India); George, Paul [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); John, Bobby [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); Pati, Purendra [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India)

    2006-12-15

    Radiation doses to patients during cardiological procedures are of concern in the present day scenario. This study was intended to audit the radiation dose imparted to patients during the balloon mitral valvuloplasty (BMV) procedure. Thirty seven patients who underwent the BMV procedure performed using two dedicated cardiovascular machines were included in the study. The radiation doses imparted to patients were measured using a dose area product (DAP) meter. The mean DAP value for patients who underwent the BMV procedure from one machine was 19.16 Gy cm{sup 2} and from the other was 21.19 Gy cm{sup 2}. Optimisation of exposure parameters and radiation doses was possible for one machine with the use of appropriate copper filters and optimised exposure parameters, and the mean DAP value after optimisation was 9.36 Gy cm{sup 2}.

  19. Survey of environmental radiation dose rates in Tokushima prefecture

    International Nuclear Information System (INIS)

    Sakama, Minoru; Imura, Hiroyoshi; Akou, Natsuki; Takeuchi, Emi; Morihiro, Yukinori

    2004-01-01

    Survey of environmental radiation dose rates in Tokushima prefecture has been carried out using a portable NaI (Tl) scintillation survey meter and a CsI(Tl) pocket type one. To our knowledge, previous several surveys in Tokushima, for example by Abe et al. (1982) and Yoshino et al. (1991), have remained to report the environmental radiation dose rates merely about the major cities, that is Tokushima City and others along the Pacific. Up to now, there have been few efforts to survey the environmental radiation dose rates about mountain valleys in Tokushima. In this work, it is remarkable that we have for the first time made surveys of environmental radiation dose rates on the 6 routes across the Sanuki mountains and inside the pier of Onaruto Bridge, 'Naruto Uzu-no-michi', in the northern area of Tokushima. In the course of present surveys, the maximum value of the environmental radiation dose rates was 0.117±0.020 μGy/h at Higetouge in Sanuki City, and then it was found that the radiation dose rates across the Sanuki mountains tend to increase slightly with approaching Kagawa area from Tokushima one. Considering geological formation around the northern side of Sanuki mountains, there are mainly geological layers of granodiorite containing in the substantial amount of naturally occurring radionuclides, 40 K, U-series, and Th-series, than other geological rocks and it was found that the terrestrial gamma-rays have effect on the environmental radiation dose rates according to the geological formation. (author)

  20. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1981-12-01

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  1. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  2. Radiation dose during tomography of the petrous bone. Experimental investigations with film dosimetry on an Alderson phantom

    Energy Technology Data Exchange (ETDEWEB)

    Grehn, S.

    1988-06-01

    Using filmdosimetry and an Alderson skull phantom, the iso-dose distribution during tomography of the petrous bone was investigated. We were particularly concerned with the radiation dose to the lens of the eye, the critical organ in the skull, and to the inner ear, using different types of examination and various positions of the skull. The choice of suitable film material and standardisation against TLD measurements is crucial for the accuracy of film dosimetry, allowing for correction of film blackening in relation to varying energies. Tomography of the petrous bone in the prone position produced a reduction in radiation dose to the eye to only 1 to 4% of the dose incident on the occiput. In this way, and using high definition screen and grinds, it is possible to obtain optimal tomographic images despite drastic reduction of the scattered radiation to the eye. Radiation dose to the inner ear is greatly below any significant somatic dose, irrespective of projection or technique. Special measures to reduce radiation to the inner ear are neither effective nor sensible.

  3. Dose response of tracheal epithelial cells to ionizing radiation in air-liquid interface cultures

    International Nuclear Information System (INIS)

    Fukutsu, K.; Yamada, Y.; Shimo, M.

    2002-01-01

    The dose-response relationships of tracheal epithelial cells to ionizing radiation was examined in air-liquid interface cultures, which were developed for the purpose of simulating in vivo conditions. The cultures investigated in this study were expected to be advantageous for the performance of irradiation experiments using short-range α rays. The level of dose response of air-liquid interface cultures to ionizing radiation proved to be the same as that for in vivo conditions. This result indicates that air-liquid interface cultures will prove most useful, to facilitate future studies for the investigation of the biological effects induced in tracheal epithelial cells by ionizing radiation, especially by α-rays. (orig.)

  4. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  5. Radiologist and angiographic procedures. Absorbed radiation dose

    International Nuclear Information System (INIS)

    Tryhus, M.; Mettler, F.A. Jr.; Kelsey, C.

    1987-01-01

    The radiation dose absorbed by the angiographer during angiographic procedures is of vital importance to the radiologist. Nevertheless, most articles on the subject are incomplete, and few measure gonadal dose. In this study, three TLDs were used for each of the following sites: radiologist's eyes, thyroid, gonads with and without shielding apron, and hands. The average dose during carotid angiograms was 2.6, 4.1, 0.4, 4.7, and 7.1 mrads to the eyes, thyroid, gonads with and without .5 mm of lead shielding, and hands, respectively. Average dose during abdominal and peripheral vascular angiographic procedures was 5.2, 7.5, 1.2, 8.5, and 39.9 mrads to the eyes, thyroid, gonads with and without shielding, and hands, respectively. A literature review demonstrates a significant reduction in radiation dose to the angiographer after the advent of automated injectors. Our measured doses for carotid angiography are compatible with contemporary reported values. There was poor correlation with fluoroscopy time and measured dose to the angiographer

  6. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  7. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  8. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

  9. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment

  10. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  11. Lifetime radiation risks from low-dose rate radionuclides in beagles

    International Nuclear Information System (INIS)

    Goldman, M.; Rosenblatt, L.S.

    1985-01-01

    One of the largest, long-term (25-yr) animal studies on the effects of low-dose internal irradiation is almost completed. Some 335 beagles were given continuous exposure to graded 90 Sr [low linear energy transfer (LET)] in their diets (D-dogs) through adulthood. A second group (R-dogs) was given fractionated doses of 225 Ra (high LET) as young adults. A third group of 44 was given a single injection of 90 Sr as adults (S-dogs) to compare single to continuous dosages. All dogs were followed through their lifetimes. Only one of the 848 dogs is still alive. The animals were whole-body counted over their entire life span and were examined frequently for assessment of medical status. There were no acute radiation lethalities. Analyses of the large data base from these dogs have begun and preliminary indications are that 90 Sr, which was tested over a 1500-fold skeletal dose rate range, does not cause significant life shortening at average accumulation skeletal doses of ∼2500 rads (25 Gy) and that a curvilinear dose response curve for life shortening was seen at higher accumulation doses. The data will be discussed in terms of modern epidemiological concepts and quantifications will be related to certain parameters of human risk from acute or chronic radiation exposures

  12. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    El-Naggar, M.A.

    1996-01-01

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  13. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    Science.gov (United States)

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  14. Occupational Radiation Dose for Medical Workers at a University Hospital

    Directory of Open Access Journals (Sweden)

    M.H. Nassef

    2017-11-01

    Full Text Available Occupational radiation doses for medical workers from the departments of diagnostic radiology, nuclear medicine, and radiotherapy at the university hospital of King Abdul-Aziz University (KAU were measured and analysed. A total of 100 medical radiation workers were monitored to determine the status of their average annual effective dose. The analysis and the calibration procedures of this study were carried out at the Center for Radiation Protection and Training-KAU. The monitored workers were classified into subgroups, namely, medical staff/supervisors, technicians, and nurses, according to their responsibilities and specialties. The doses were measured using thermo luminescence dosimeters (TLD-100 (LiF:Mg,Ti placed over the lead apron at the chest level in all types of workers except for those in the cath lab, for whom the TLD was placed at the thyroid protective collar. For nuclear medicine, a hand dosimeter was used to measure the hand dose distribution. The annual average effective doses for diagnostic radiology, nuclear medicine, and radiotherapy workers were found to be 0.66, 1.56, and 0.28 mSv, respectively. The results of the measured annual dose were well below the international recommended dose limit of 20 mSv. Keywords: Occupational radiation dose, radiation workers, TLD, radiation protection

  15. Online radiation dose measurement system for ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  16. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Morishima, Hiroshige [Kinki Univ., Atomic Energy Research Institute, Osaka (Japan); Tatsumi, Kusuo [Kinki Univ., Life Science Research Institute, Osaka (Japan); Nakai, Sayaka; Sugahara, Tsutomu [Health Research Foundation, Kyoto (Japan); Yuan Yongling [Labor Hygiene Institute of Hunan Prov. (China); Wei Luxin [Laboratory of Industorial Hygiene, Ministry of Health (China)

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: (1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. (2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  17. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    International Nuclear Information System (INIS)

    Koga, Taeko; Morishima, Hiroshige; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: 1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. 2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  18. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  19. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  20. Radiation dose in hysterosalpingography: modern 100mm fluorography vs. full-scale radiography

    International Nuclear Information System (INIS)

    Seppaenen, S.; Lehtinen, E.; Holli, H.

    1978-01-01

    Radiation doses of modern 100 mm fluorography and full-scale radiography were compared experimentally and applied to hysterosalpingography. It was determined that 100 mm fluorography reduced the doses by 28 to 29 percent per exposure and 37 to 47 percent per examination compared with full-scale radiography performed with fast tungstate screens in identical conditions (70 to 80 kV, 400 mA). The dose during one minute of videofluoroscopy was equivalent to the doses produced by one exposure in full-scale filming and three to four exposures in 100 mm filming. Although electronic magnification in 100 mm fluorography increases the doses by two or threefold, these are still less than the doses in full-scale radiography