WorldWideScience

Sample records for exact results compared

  1. Multijet final states: exact results and the leading pole approximation

    International Nuclear Information System (INIS)

    Ellis, R.K.; Owens, J.F.

    1984-09-01

    Exact results for the process gg → ggg are compared with those obtained using the leading pole approximation. Regions of phase space where the approximation breaks down are discussed. A specific example relevant for background estimates to W boson production is presented. It is concluded that in this instance the leading pole approximation may underestimate the standard QCD background by more than a factor of two in certain kinematic regions of physical interest

  2. Exact results for Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Fiol, Bartomeu; Torrents, Genís [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain)

    2014-01-08

    We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of N=4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.

  3. Exact results for integrable asymptotically-free field theories

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).

  4. Watermelon configurations with wall interaction: exact and asymptotic results

    Energy Technology Data Exchange (ETDEWEB)

    Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)

    2006-06-15

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  5. Watermelon configurations with wall interaction: exact and asymptotic results

    International Nuclear Information System (INIS)

    Krattenthaler, C

    2006-01-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature

  6. Watermelon configurations with wall interaction: exact and asymptotic results

    Science.gov (United States)

    Krattenthaler, C.

    2006-06-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  7. Exact penalty results for mathematical programs with vanishing constraints

    Czech Academy of Sciences Publication Activity Database

    Hoheisel, T.; Kanzow, Ch.; Outrata, Jiří

    2010-01-01

    Roč. 72, č. 5 (2010), s. 2514-2526 ISSN 0362-546X R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mathematical programs with vanishing constraints * Mathematical programs with equilibrium constraints * Exact penalization * Calmness * Subdifferential calculus * Limiting normal cone Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-exact penalty results for mathematical programs with vanishing constraints.pdf

  8. Exact Results in Non-Supersymmetric Large N Orientifold Field Theories

    CERN Document Server

    Armoni, Adi; Veneziano, Gabriele

    2003-01-01

    We consider non-supersymmetric large N orientifold field theories. Specifically, we discuss a gauge theory with a Dirac fermion in the anti-symmetric tensor representation. We argue that, at large N and in a large part of its bosonic sector, this theory is non-perturbatively equivalent to N=1 SYM, so that exact results established in the latter (parent) theory also hold in the daughter orientifold theory. In particular, the non-supersymmetric theory has an exactly calculable bifermion condensate, exactly degenerate parity doublets, and a vanishing cosmological constant (all this to leading order in 1/N).

  9. Optics of Water Microdroplets with Soot Inclusions: Exact Versus Approximate Results

    Science.gov (United States)

    Liu, Li; Mishchenko, Michael I.

    2016-01-01

    We use the recently generalized version of the multi-sphere superposition T-matrix method (STMM) to compute the scattering and absorption properties of microscopic water droplets contaminated by black carbon. The soot material is assumed to be randomly distributed throughout the droplet interior in the form of numerous small spherical inclusions. Our numerically-exact STMM results are compared with approximate ones obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be used to calculate the droplet optical cross sections, single-scattering albedo, and asymmetry parameter provided that the soot inclusions are quasi-uniformly distributed throughout the droplet interior, but can fail in computations of the elements of the scattering matrix depending on the volume fraction of soot inclusions. The integral radiative characteristics computed with the MCRTA can deviate more significantly from their exact STMM counterparts, while accurate MCRTA computations of the phase function require droplet size parameters substantially exceeding 60.

  10. Non-Fermi-liquid behavior: Exact results for ensembles of magnetic impurities

    CERN Document Server

    Zvyagin, A A

    2002-01-01

    In this work we consider several exactly solvable models of magnetic impurities in critical quantum antiferromagnetic spin chains and multichannel Kondo impurities. Their ground state properties are studied and the finite set of nonlinear integral equations, which exactly describe the thermodynamics of the models, is constructed. We obtain several analytic low-energy expressions for the temperature, magnetic field, and frequency dependences of important characteristics of exactly solvable disordered quantum spin models and disordered multichannel Kondo impurities with essential many-body interactions. We show that the only low-energy parameter that gets renormalized is the velocity of the low-lying excitations (or the effective crossover scale connected with each impurity); the others appear to be universal. In our study several kinds of strong disorder important for experiments were used. Some of them produce low divergences in certain characteristics of our strongly disordered critical systems (compared wit...

  11. Exact properties of spin glasses. I. 2D supersymmetry and Nishimori's result

    International Nuclear Information System (INIS)

    Georges, A.; Le Doussal, P.; Hansel, D.

    1985-01-01

    We introduce an effective theory of interacting fermions and bosons in order to express the quenched internal energy of the 2D Ising spin glass. We show that an exact result derived by Nishimori appears, in this formulation, as a dimensional reduction due to the apparition of a supersymmetry. For a general Ising spin glass, this suggests new insights into the physical meaning of this exact result

  12. Exact milestoning

    International Nuclear Information System (INIS)

    Bello-Rivas, Juan M.; Elber, Ron

    2015-01-01

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied

  13. Dynamical Response of Networks Under External Perturbations: Exact Results

    Science.gov (United States)

    Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2015-04-01

    We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.

  14. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    Science.gov (United States)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  15. Comparing EFT and Exact One-Loop Analyses of Non-Degenerate Stops

    CERN Document Server

    Drozd, Aleksandra; Quevillon, Jeremie; You, Tevong

    2015-01-01

    We develop a universal approach to the one-loop effective field theory (EFT) using the Covariant Derivative Expansion (CDE) method. We generalise previous results to include broader classes of UV models, showing how expressions previously obtained assuming degenerate heavy-particle masses can be extended to non-degenerate cases. We apply our method to the general MSSM with non-degenerate stop squarks, illustrating our approach with calculations of the coefficients of dimension-6 operators contributing to the $hgg$ and $h\\gamma\\gamma$ couplings, and comparing with exact calculations of one-loop Feynman diagrams. We then use present and projected future sensitivities to these operator coefficients to obtain present and possible future indirect constraints on stop masses. The current sensitivity is already comparable to that of direct LHC searches, and future FCC-ee measurements could be sensitive to stop masses above a TeV. The universality of our one-loop EFT approach facilitates extending these constraints to...

  16. Polymers undergoing inhomogeneous adsorption: exact results and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, G K [Department of Mathematics, University of Melbourne, Parkville, Victoria (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G, E-mail: giliev@yorku.ca [Department of Chemistry, University of Toronto, Toronto (Canada)

    2011-10-07

    We consider several types of inhomogeneous polymer adsorption. In each case, the inhomogeneity is regular and resides in the surface, in the polymer or in both. We consider two different polymer models: a directed walk model that can be solved exactly and a self-avoiding walk model which we investigate using Monte Carlo methods. In each case, we compute the phase diagram. We compare and contrast the phase diagrams and give qualitative arguments about their forms. (paper)

  17. Exact results for the one dimensional asymmetric exclusion model

    International Nuclear Information System (INIS)

    Derrida, B.; Evans, M.R.; Pasquier, V.

    1993-01-01

    The asymmetric exclusion model describes a system of particles hopping in a preferred direction with hard core repulsion. These particles can be thought of as charged particles in a field, as steps of an interface, as cars in a queue. Several exact results concerning the steady state of this system have been obtained recently. The solution consists of representing the weights of the configurations in the steady state as products of non-commuting matrices. (author)

  18. Exact result in strong wave turbulence of thin elastic plates

    Science.gov (United States)

    Düring, Gustavo; Krstulovic, Giorgio

    2018-02-01

    An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.

  19. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  20. A fast, exact code for scattered thermal radiation compared with a two-stream approximation

    International Nuclear Information System (INIS)

    Cogley, A.C.; Pandey, D.K.

    1980-01-01

    A two-stream accuracy study for internally (thermal) driven problems is presented by comparison with a recently developed 'exact' adding/doubling method. The resulting errors in external (or boundary) radiative intensity and flux are usually larger than those for the externally driven problems and vary substantially with the radiative parameters. Error predictions for a specific problem are difficult. An unexpected result is that the exact method is computationally as fast as the two-stream approximation for nonisothermal media

  1. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  2. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    Science.gov (United States)

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  3. Non-local energy density functionals: models plus some exact general results

    International Nuclear Information System (INIS)

    March, N.H.

    2001-02-01

    Holas and March (Phys. Rev. A51, 2040, 1995) gave a formally exact expression for the force - δV xc (r-tilde)/δr-tilde associated with the exchange-correlation potential V xc (r-tilde) of density functional theory. This forged a precise link between first- and second-order density matrices and V xc (r-tilde). Here models are presented in which these low-order matrices can be related to the ground-state electron density. This allows non-local energy density functionals to be constructed within the framework of such models. Finally, results emerging from these models have led to the derivation of some exact 'nuclear cusp' relations for exchange and correlation energy densities in molecules, clusters and condensed phases. (author)

  4. A Class of Quasi-exact Solutions of Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.

    2007-01-01

    A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.

  5. Ageing without detailed balance in the bosonic contact and pair-contact processes: exact results

    International Nuclear Information System (INIS)

    Baumann, Florian; Henkel, Malte; Pleimling, Michel; Richert, Jean

    2005-01-01

    Ageing in systems without detailed balance is studied in the exactly solvable bosonic contact process and the critical bosonic pair-contact process. The two-time correlation function and the two-time response function are explicitly found. In the ageing regime, the dynamical scaling of these is analysed and exact results for the ageing exponents and the scaling functions are derived. For the critical bosonic pair-contact process, the autocorrelation and autoresponse exponents agree but the ageing exponents a and b are shown to be distinct

  6. Prepotential approach to exact and quasi-exact solvabilities

    International Nuclear Information System (INIS)

    Ho, C.-L.

    2008-01-01

    Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations

  7. Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities

    Directory of Open Access Journals (Sweden)

    Idris Addou

    2000-01-01

    Full Text Available We consider the boundary-value problem $$displaylines{ -(varphi_p (u'' =lambda f(u mbox{ in }(0,1 cr u(0 = u(1 =0,, }$$ where $p>1$, $lambda >0$ and $varphi_p (x =| x|^{p-2}x$. The nonlinearity $f$ is cubic-like with three distinct roots 0=a less than b less than c. By means of a quadrature method, we provide the exact number of solutions for all $lambda >0$. This way we extend a recent result, for $p=2$, by Korman et al. cite{KormanLiOuyang} to the general case $p>1$. We shall prove that when 1less than $pleq 2$ the structure of the solution set is exactly the same as that studied in the case $p=2$ by Korman et al. cite{KormanLiOuyang}, and strictly different in the case $p>2$.

  8. Monte Carlo Simulations Comparing Fisher Exact Test and Unequal Variances t Test for Analysis of Differences Between Groups in Brief Hospital Lengths of Stay.

    Science.gov (United States)

    Dexter, Franklin; Bayman, Emine O; Dexter, Elisabeth U

    2017-12-01

    We examined type I and II error rates for analysis of (1) mean hospital length of stay (LOS) versus (2) percentage of hospital LOS that are overnight. These 2 end points are suitable for when LOS is treated as a secondary economic end point. We repeatedly resampled LOS for 5052 discharges of thoracoscopic wedge resections and lung lobectomy at 26 hospitals. Unequal variances t test (Welch method) and Fisher exact test both were conservative (ie, type I error rate less than nominal level). The Wilcoxon rank sum test was included as a comparator; the type I error rates did not differ from the nominal level of 0.05 or 0.01. Fisher exact test was more powerful than the unequal variances t test at detecting differences among hospitals; estimated odds ratio for obtaining P < .05 with Fisher exact test versus unequal variances t test = 1.94, with 95% confidence interval, 1.31-3.01. Fisher exact test and Wilcoxon-Mann-Whitney had comparable statistical power in terms of differentiating LOS between hospitals. For studies with LOS to be used as a secondary end point of economic interest, there is currently considerable interest in the planned analysis being for the percentage of patients suitable for ambulatory surgery (ie, hospital LOS equals 0 or 1 midnight). Our results show that there need not be a loss of statistical power when groups are compared using this binary end point, as compared with either Welch method or Wilcoxon rank sum test.

  9. Exact results for the spectra of bosons and fermions with contact interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, Stefan [Schroedinger, 120 West 45th St., New York, NY 10036 (United States)]. E-mail: mash@mashke.org; Matveenko, Sergey [Landau Institute for Theoretical Physics, Kosygina Str. 2, 119334 Moscow (Russian Federation)]. E-mail: matveen@landau.ac.ru; Ouvry, Stephane [Laboratoire de Physique Theorique et Modeles Statistiques, Unite de Recherche de l' Universite Paris 11 associee au CNRS, UMR 8626., Bat. 100, Universite Paris-Sud, 91405 Orsay (France)]. E-mail: ouvry@lptms.u-psud.fr

    2007-02-19

    An N-body bosonic model with delta-contact interactions projected on the lowest Landau level is considered. For a given number of particles in a given angular momentum sector, any energy level can be obtained exactly by means of diagonalizing a finite matrix: they are roots of algebraic equations. A complete solution of the three-body problem is presented, some general properties of the N-body spectrum are pointed out, and a number of novel exact analytic eigenstates are obtained. The FQHE N-fermion model with Laplacian-delta interactions is also considered along the same lines of analysis. New exact eigenstates are proposed, along with the Slater determinant, whose eigenvalues are shown to be related to Catalan numbers.

  10. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1982-12-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essencial singularity, when the excharge parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  11. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1983-01-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essential singularity, when the exchange parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  12. Eigenstates and dynamics of Hooke's atom: Exact results and path integral simulations

    Science.gov (United States)

    Gholizadehkalkhoran, Hossein; Ruokosenmäki, Ilkka; Rantala, Tapio T.

    2018-05-01

    The system of two interacting electrons in one-dimensional harmonic potential or Hooke's atom is considered, again. On one hand, it appears as a model for quantum dots in a strong confinement regime, and on the other hand, it provides us with a hard test bench for new methods with the "space splitting" arising from the one-dimensional Coulomb potential. Here, we complete the numerous previous studies of the ground state of Hooke's atom by including the excited states and dynamics, not considered earlier. With the perturbation theory, we reach essentially exact eigenstate energies and wave functions for the strong confinement regime as novel results. We also consider external perturbation induced quantum dynamics in a simple separable case. Finally, we test our novel numerical approach based on real-time path integrals (RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach with exact account of electronic correlations for solving the eigenstates and dynamics without the conventional restrictions of electronic structure methods.

  13. Exact results for ABJ Wilson loops and open-closed duality

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Département de Physique Théorique et section de Mathématiques, Université de Genève,Genève, CH-1211 (Switzerland); Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan)

    2016-10-24

    We find new exact relations between the partition function and vacuum expectation values (VEVs) of 1/2 BPS Wilson loops in ABJ theory, which allow us to predict the large N expansions of the 1/2 BPS Wilson loops from known results of the partition function. These relations are interpreted as an open-closed duality where the closed string background is shifted by the insertion of Wilson loops due to a back-reaction. Using the connection between ABJ theory and the topological string on local ℙ{sup 1}×ℙ{sup 1}, we explicitly write down non-trivial relations between open and closed string amplitudes.

  14. Exact deconstruction of the 6D (2,0) theory

    Science.gov (United States)

    Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodríguez-Gómez, D.

    2017-06-01

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: in the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the "half-BPS" limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 × T 2. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  15. Exact deconstruction of the 6D (2,0) theory

    International Nuclear Information System (INIS)

    Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodriguez-Gomez, D.

    2017-06-01

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2 , starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the ''half-BPS'' limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 x T 2 . In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  16. Surface-state mediated three-adsorbate interaction: exact and numerical results and simple asymptotic expression

    International Nuclear Information System (INIS)

    Hyldgaard, Per; Einstein, T.L.

    2003-01-01

    The interaction energy of three adsorbates on a surface consists of the sum of the three-pair interactions plus a trio contribution produced primarily by interference of electrons which traverse the entire perimeter, d 123 , of the three-adsorbate cluster. Here, we investigate this three-adatom interaction when mediated by the isotropic Shockley surface-state band found on noble-metal (1 1 1) surfaces, extending work on pair interactions. Our experimentally testable result depends on the s-wave phase-shift, characterizing the standing-wave patterns seen in scanning-tunneling microscopy (STM) images. Compared with the adsorbate-pair interactions, and in contrast to bulk-mediated interactions, the trio contribution exhibits a slightly weaker amplitude and a slightly faster asymptotic envelope decay, d 123 -5/2 . It also has a different but well-defined oscillation period dependent on d 123 and little dependence on the shape of the cluster. We finally compare the asymptotic description with exact model calculations assuming short-range interactions, which are viable even in the non-asymptotic range (when not outweighed by bulk-mediated interactions)

  17. Exact results for the Kuramoto model with a bimodal frequency distribution

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Barreto, E.; Strogatz, S. H.

    2009-01-01

    weighted Lorentzians. Using an ansatz recently discov- ered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence......, where all the oscillators are desynchronized; partial synchrony, where a macro- scopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented...

  18. Exact deconstruction of the 6D (2,0) theory

    Energy Technology Data Exchange (ETDEWEB)

    Hayling, J.; Papageorgakis, C. [Queen Mary Univ. of London (United Kingdom). CRST and School of Physics and Astronomy; Pomoni, E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Rodriguez-Gomez, D. [Oviedo Univ. (Spain). Dept. of Physics

    2017-06-15

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T{sup 2}, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the ''half-BPS'' limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S{sup 4} to the (2,0) partition function on S{sup 4} x T{sup 2}. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  19. Some exact results for the three-layer Zamolodchikov model

    International Nuclear Information System (INIS)

    Boos, H.E.; Mangazeev, V.V.

    2001-01-01

    In this paper we continue the study of the three-layer Zamolodchikov model started in our previous works (H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 3041-3054 and H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298). We analyse numerically the solutions to the Bethe ansatz equations obtained in H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298. We consider two regimes I and II which differ by the signs of the spherical sides (a 1 ,a 2 ,a 3 )→(-a 1 ,-a 2 ,-a 3 ). We accept the two-line hypothesis for the regime I and the one-line hypothesis for the regime II. In the thermodynamic limit we derive integral equations for distribution densities and solve them exactly. We calculate the partition function for the three-layer Zamolodchikov model and check a compatibility of this result with the functional relations obtained in H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298. We also do some numeric checkings of our results

  20. Stochastic epidemic-type model with enhanced connectivity: exact solution

    International Nuclear Information System (INIS)

    Williams, H T; Mazilu, I; Mazilu, D A

    2012-01-01

    We present an exact analytical solution to a one-dimensional model of the susceptible–infected–recovered (SIR) epidemic type, with infection rates dependent on nearest-neighbor occupations. We use a quantum mechanical approach, transforming the master equation via a quantum spin operator formulation. We calculate exactly the time-dependent density of infected, recovered and susceptible populations for random initial conditions. Our results compare well with those of previous work, validating the model as a useful tool for additional and extended studies in this important area. Our model also provides exact solutions for the n-point correlation functions, and can be extended to more complex epidemic-type models

  1. Exact results for survival probability in the multistate Landau-Zener model

    International Nuclear Information System (INIS)

    Volkov, M V; Ostrovsky, V N

    2004-01-01

    An exact formula is derived for survival probability in the multistate Landau-Zener model in the special case where the initially populated state corresponds to the extremal (maximum or minimum) slope of a linear diabatic potential curve. The formula was originally guessed by S Brundobler and V Elzer (1993 J. Phys. A: Math. Gen. 26 1211) based on numerical calculations. It is a simple generalization of the expression for the probability of diabatic passage in the famous two-state Landau-Zener model. Our result is obtained via analysis and summation of the entire perturbation theory series

  2. Exact results for the Floquet coin toss for driven integrable models

    Science.gov (United States)

    Bhattacharya, Utso; Maity, Somnath; Banik, Uddipan; Dutta, Amit

    2018-05-01

    We study an integrable Hamiltonian reducible to free fermions, which is subjected to an imperfect periodic driving with the amplitude of driving (or kicking), randomly chosen from a binary distribution like a coin-toss problem. The randomness present in the driving protocol destabilizes the periodic steady state reached in the limit of perfectly periodic driving, leading to a monotonic rise of the stroboscopic residual energy with the number of periods (N ) for such Hamiltonians. We establish that a minimal deviation from the perfectly periodic driving in the present case using such protocols would always result in a bounded heating up of the system with N to an asymptotic finite value. Exploiting the completely uncorrelated nature of the randomness and the knowledge of the stroboscopic Floquet operator in the perfectly periodic situation, we provide an exact analytical formalism to derive the disorder averaged expectation value of the residual energy through a disorder operator. This formalism not only leads to an immense numerical simplification, but also enables us to derive an exact analytical form for the residual energy in the asymptotic limit which is universal, i.e., independent of the bias of coin-toss and the protocol chosen. Furthermore, this formalism clearly establishes the nature of the monotonic growth of the residual energy at intermediate N while clearly revealing the possible nonuniversal behavior of the same.

  3. Dissociation between exact and approximate addition in developmental dyslexia.

    Science.gov (United States)

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Exact Synthesis of Reversible Circuits Using A* Algorithm

    Science.gov (United States)

    Datta, K.; Rathi, G. K.; Sengupta, I.; Rahaman, H.

    2015-06-01

    With the growing emphasis on low-power design methodologies, and the result that theoretical zero power dissipation is possible only if computations are information lossless, design and synthesis of reversible logic circuits have become very important in recent years. Reversible logic circuits are also important in the context of quantum computing, where the basic operations are reversible in nature. Several synthesis methodologies for reversible circuits have been reported. Some of these methods are termed as exact, where the motivation is to get the minimum-gate realization for a given reversible function. These methods are computationally very intensive, and are able to synthesize only very small functions. There are other methods based on function transformations or higher-level representation of functions like binary decision diagrams or exclusive-or sum-of-products, that are able to handle much larger circuits without any guarantee of optimality or near-optimality. Design of exact synthesis algorithms is interesting in this context, because they set some kind of benchmarks against which other methods can be compared. This paper proposes an exact synthesis approach based on an iterative deepening version of the A* algorithm using the multiple-control Toffoli gate library. Experimental results are presented with comparisons with other exact and some heuristic based synthesis approaches.

  5. Exact results in a lattice model of a binary reactant mixture

    International Nuclear Information System (INIS)

    Thomas, P.B.

    1995-01-01

    We study phase separation in a binary mixture of two particles, which can react with each other and form a third compound. We determine the exact phase boundaries for a restricted range of the interaction parameters

  6. Short overview of PSA quantification methods, pitfalls on the road from approximate to exact results

    International Nuclear Information System (INIS)

    Banov, Reni; Simic, Zdenko; Sterc, Davor

    2014-01-01

    Over time the Probabilistic Safety Assessment (PSA) models have become an invaluable companion in the identification and understanding of key nuclear power plant (NPP) vulnerabilities. PSA is an effective tool for this purpose as it assists plant management to target resources where the largest benefit for plant safety can be obtained. PSA has quickly become an established technique to numerically quantify risk measures in nuclear power plants. As complexity of PSA models increases, the computational approaches become more or less feasible. The various computational approaches can be basically classified in two major groups: approximate and exact (BDD based) methods. In recent time modern commercially available PSA tools started to provide both methods for PSA model quantification. Besides availability of both methods in proven PSA tools the usage must still be taken carefully since there are many pitfalls which can drive to wrong conclusions and prevent efficient usage of PSA tool. For example, typical pitfalls involve the usage of higher precision approximation methods and getting a less precise result, or mixing minimal cuts and prime implicants in the exact computation method. The exact methods are sensitive to selected computational paths in which case a simple human assisted rearrangement may help and even switch from computationally non-feasible to feasible methods. Further improvements to exact method are possible and desirable which opens space for a new research. In this paper we will show how these pitfalls may be detected and how carefully actions must be done especially when working with large PSA models. (authors)

  7. TVT-Exact and midurethral sling (SLING-IUFT) operative procedures: a randomized study.

    Science.gov (United States)

    Aniuliene, Rosita; Aniulis, Povilas; Skaudickas, Darijus

    2015-01-01

    The aim of the study is to compare results, effectiveness and complications of TVT exact and midurethral sling (SLING-IUFT) operations in the treatment of female stress urinary incontinence (SUI). A single center nonblind, randomized study of women with SUI who were randomized to TVT-Exact and SLING-IUFT was performed by one surgeon from April 2009 to April 2011. SUI was diagnosed on coughing and Valsalva test and urodynamics (cystometry and uroflowmetry) were assessed before operation and 1 year after surgery. This was a prospective randomized study. The follow up period was 12 months. 76 patients were operated using the TVT-Exact operation and 78 patients - using the SLING-IUFT operation. There was no statistically significant differences between groups for BMI, parity, menopausal status and prolapsed stage (no patients had cystocele greater than stage II). Mean operative time was significantly shorter in the SLING-IUFT group (19 ± 5.6 min.) compared with the TVT-Exact group (27 ± 7.1 min.). There were statistically significant differences in the effectiveness of both procedures: TVT-Exact - at 94.5% and SLING-IUFT - at 61.2% after one year. Hospital stay was statistically significantly shorter in the SLING-IUFT group (1. 2 ± 0.5 days) compared with the TVT-Exact group (3.5 ± 1.5 days). Statistically significantly fewer complications occurred in the SLING-IUFT group. the TVT-Exact and SLING-IUFT operations are both effective for surgical treatment of female stress urinary incontinence. The SLING-IUFT involved a shorter operation time and lower complications rate., the TVT-Exact procedure had statistically significantly more complications than the SLING-IUFT operation, but a higher effectiveness.

  8. Comparison of approximate formulas for decision levels and detection limits for paired counting with the exact results

    International Nuclear Information System (INIS)

    Potter, W.E.

    2005-01-01

    The exact probability density function for paired counting can be expressed in terms of modified Bessel functions of integral order when the expected blank count is known. Exact decision levels and detection limits can be computed in a straightforward manner. For many applications perturbing half-integer corrections to Gaussian distributions yields satisfactory results for decision levels. When there is concern about the uncertainty for the expected value of the blank count, a way to bound the errors of both types using confidence intervals for the expected blank count is discussed. (author)

  9. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  10. Quasi-exact solvability

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1992-01-01

    This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite

  11. Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian

    Directory of Open Access Journals (Sweden)

    Lunyov A.V.

    2016-01-01

    Full Text Available Results of the Strong Pairing Approximation (SPA as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM. It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.

  12. Exact Results for 't Hooft Loops in Gauge Theories on S^4

    CERN Document Server

    Gomis, Jaume; Pestun, Vasily

    2012-01-01

    The path integral of a general N=2 supersymmetric gauge theory on S^4 is exactly evaluated in the presence of a supersymmetric 't Hooft loop operator. The result we find - obtained using localization techniques - captures all perturbative quantum corrections as well as non-perturbative effects due to instantons and monopoles, which are supported at the north pole, south pole and equator of S^4. As a by-product, our gauge theory calculations successfully confirm the predictions made for 't Hooft loops obtained from the calculation of topological defect correlators in Liouville/Toda conformal field theory.

  13. Exact results on diffusion in a piecewise linear potential with a time-dependent sink

    Energy Technology Data Exchange (ETDEWEB)

    Diwaker, E-mail: diwakerphysics@gmail.com [Central University of Himachal Pradesh, School of Physical and Astronomical Sciences (India); Chakraborty, Aniruddha [Indian Institute of Technology Mandi (India)

    2016-02-15

    The Smoluchowski equation with a time-dependent sink term is solved exactly. In this method, knowing the probability distribution P(0, s) at the origin, allows deriving the probability distribution P(x, s) at all positions. Exact solutions of the Smoluchowski equation are also provided in different cases where the sink term has linear, constant, inverse, and exponential variation in time.

  14. Disease clusters, exact distributions of maxima, and P-values.

    Science.gov (United States)

    Grimson, R C

    1993-10-01

    This paper presents combinatorial (exact) methods that are useful in the analysis of disease cluster data obtained from small environments, such as buildings and neighbourhoods. Maxwell-Boltzmann and Fermi-Dirac occupancy models are compared in terms of appropriateness of representation of disease incidence patterns (space and/or time) in these environments. The methods are illustrated by a statistical analysis of the incidence pattern of bone fractures in a setting wherein fracture clustering was alleged to be occurring. One of the methodological results derived in this paper is the exact distribution of the maximum cell frequency in occupancy models.

  15. Exact one-loop results for l_i → l_jγ in 3-3-1 models

    Science.gov (United States)

    Hue, L. T.; Ninh, L. D.; Thuc, T. T.; Dat, N. T. T.

    2018-02-01

    We investigate the decays l_i→ l_j γ , with l_i=e,μ ,τ in a general class of 3-3-1 models with heavy exotic leptons with arbitrary electric charges. We present full and exact analytical results keeping external lepton masses. As a by product, we perform numerical comparisons between exact results and approximate ones where the external lepton masses are neglected. As expected, we found that branching fractions can reach the current experimental limits if mixings and mass differences of the exotic leptons are large enough. We also found unexpectedly that, depending on the parameter values, there can be huge destructive interference between the gauge and Higgs contributions when the gauge bosons connecting the Standard Model leptons to the exotic leptons are light enough. This mechanism should be taken into account when using experimental constraints on the branching fractions to exclude the parameter space of the model.

  16. Exact results for emission from one and two atoms in an ideal cavity at multiphoton resonance

    International Nuclear Information System (INIS)

    Fam Le Kien; Shumovskij, A.S.; Tran Quang.

    1987-01-01

    The emission from the system of one or two two-level atoms in an ideal cavity with one mode at mutiphoton resonance is examined. Exact results for the two-time dipole correlation function and the time-dependent spectra of multiphoton-induced fluorescence are presented

  17. Mean field approximation versus exact treatment of collisions in few-body systems

    International Nuclear Information System (INIS)

    Lemm, J.; Weiguny, A.; Giraud, B.G.

    1990-01-01

    A variational principle for calculating matrix elements of the full resolvent operator for a many-body system is studied. Its mean field approximation results in non-linear equations of Hartree (-Fock) type, with initial and final channel wave functions as driving terms. The mean field equations will in general have many solutions whereas the exact problem being linear, has a unique solution. In a schematic model with separable forces the mean field equations are analytically soluble, and for the exact problem the resulting integral equations are solved numerically. Comparing exact and mean field results over a wide range of system parameters, the mean field approach proves to be a very reliable approximation, which is not plagued by the notorious problem of defining asymptotic channels in the time-dependent mean field method. (orig.)

  18. Numerical Uncertainty Analysis for Computational Fluid Dynamics using Student T Distribution -- Application of CFD Uncertainty Analysis Compared to Exact Analytical Solution

    Science.gov (United States)

    Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.

    2014-01-01

    Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.

  19. Exact combinatorial approach to finite coagulating systems

    Science.gov (United States)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  20. Some exact results for the two-point function of an integrable quantum field theory

    International Nuclear Information System (INIS)

    Creamer, D.B.; Thacker, H.B.; Wilkinson, D.

    1981-01-01

    The two-point correlation function for the quantum nonlinear Schroedinger (one-dimensional delta-function gas) model is studied. An infinite-series representation for this function is derived using the quantum inverse-scattering formalism. For the case of zero temperature, the infinite-coupling (c→infinity) result of Jimbo, Miwa, Mori, and Sato is extended to give an exact expression for the order-1/c correction to the two-point function in terms of a Painleve transcendent of the fifth kind

  1. Some exact results for the two-point function of an integrable quantum field theory

    International Nuclear Information System (INIS)

    Creamer, D.B.; Thacker, H.B.; Wilkinson, D.

    1981-02-01

    The two point correlation function for the quantum nonlinear Schroedinger (delta-function gas) model is studied. An infinite series representation for this function is derived using the quantum inverse scattering formalism. For the case of zero temperature, the infinite coupling (c → infinity) result of Jimbo, Miwa, Mori and Sato is extended to give an exact expression for the order 1/c correction to the two point function in terms of a Painleve transcendent of the fifth kind

  2. Exact statistical results for binary mixing and reaction in variable density turbulence

    Science.gov (United States)

    Ristorcelli, J. R.

    2017-02-01

    We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ ⁣2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ ⁣2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived

  3. Exact covariant results related to the redshift, aberration and luminosity distance for arbitrary spacetime and instantaneous observers

    Energy Technology Data Exchange (ETDEWEB)

    Calvao, Maurcio O.; Lago, Bruno L.; Reis, Ribamar R.R. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: We start by emphasizing the importance of formalizing the the concepts of a (classical) relativistic instantaneous observer, observer, frame of reference (as distinct from a coordinate system or tetrad) and a local Lorentz boost. Then, as a first result, we apply their concrete definitions to obtain exact covariant expressions for the redshift and aberration, as well as for the redshift transformation under local Lorentz boosts. Afterwards we revisit the notion of luminosity distance, providing some clarifications which render its definition manifestly valid in a completely general setting (not only for comoving observers in the Robertson-Walker spacetime); therefrom we see clearly that (not unexpectedly) the luminosity distance is dependent on the instantaneous observers and we derive its corresponding exact, covariant transformation law. By Etherington's reciprocity theorem, analogous transformation laws can be obtained for other relativistic distances, e.g. the angular size one. The exact covariant transformation law for the luminosity distance has a particularly relevant application for the determination of the impact of peculiar motions on type Ia supernovae observations and data analysis, which is supposed to be one of the main systematic effects plaguing that probe. The redshift and aberration results, on the other hand, might be of interest for precise redshift drift and astrometric (e.g. Gaia) measurements, respectively. We conclude by listing some open avenues for generalizations. (author)

  4. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  5. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  6. The exact effects of radiation and joule heating on magnetohydrodynamic Marangoni convection over a flat surface

    Directory of Open Access Journals (Sweden)

    Khaled S.M.

    2018-01-01

    Full Text Available In this paper, we re-investigate the problem describing effects of radiation, Joule heating, and viscous dissipation on magnetohydrodynamic Marangoni convection boundary layer over a flat surface with suction/injection. The analytical solution obtained for the reduced system of non-linear-coupled differential equations governing the problem. Laplace transform successfully implemented to get the exact expression for the temperature profile. Furthermore, comparing the current exact results with approximate numerical results obtained using Runge-Kutta-Fehlberg method is introduced. These comparisons declare that the published numerical results agree with the current exact results. In addition, the effects of various parameters on the temperature profile are discussed graphically.

  7. Exact Results on Quantum Interference and Magnetoconductance in Variable-Range Hopping

    Science.gov (United States)

    Lin, Yeong-Lieh; Nori, Franco

    1997-03-01

    We study quantum interference effects on the transition strength for strongly localized electrons hopping on 2D square and 3D cubic lattices in a magnetic field B. In 2D, we obtain closed-form expressions for the tunneling probability between two arbitrary sites by exactly summing the corresponding phase factors of all directed paths connecting them. An analytic expression for the magnetoconductance, as an explicit function of the magnetic flux, is derived. A positive MC is clearly observed when turning on the magnetic field. When the strength of B reaches a certain value, which is inversely proportional to twice the hopping length, the MC is increased by a factor of two compared to that at zero field. The periodicity in the flux of the MC is found to be equal to hc/2e. In the experimentally important 3D case, we show how the interference patterns and the small-B behavior of the magnetoconductance vary according to the orientation of B. Furthermore, for a 3D sample, the effect on the low-flux MC due to the randomness of the angles between the hopping direction and the orientation of B is examined analytically.(Y.-L. Lin and F. Nori, Phys. Rev. Lett. 76), 4580 (1996); Phys. Rev. B 53, 15543 (1996).

  8. Double Potts chain and exact results for some two-dimensional models

    International Nuclear Information System (INIS)

    Yurishchev, M.A.

    2000-11-01

    A closed-form exact analytical solution for the q-state Potts model on a ladder 2x∞ with arbitrary two-, three-, and four-site interactions in a unit cell is presented. Using the obtained solution it is shown that the finite-size internal energy equation [J. Wosiek, Phys. Rev. B 49, 15 023 (1994)] yields an accurate value of the critical temperature for the triangular Potts lattice with three-site interactions in alternate triangular faces. (author)

  9. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Physik, WA THEP, Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-06-13

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These “exact effective couplings” encode the finite, relative renormalization between the N=2 and the N=4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  10. New Exact and Asymptotic Results of Dual-Branch MRC over Correlated Nakagami-m Fading Channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-05-01

    We present in this paper a new performance analysis results of dual-branch maximal-ratio combining over correlated Nakagami-m fading channels with arbitrary fading parameter. In particular, we derive exact closed-form expressions of the outage probability, the average bit error rate, and the ergodic capacity in terms of the extended generalized bivariate Meijer G- function. Moreover, we also provide simple closed- form asymptotic expressions in the high signal-to- noise ratio regime of these three fundamental performance measures. © 2015 IEEE.

  11. New Exact and Asymptotic Results of Dual-Branch MRC over Correlated Nakagami-m Fading Channels

    KAUST Repository

    Al-Quwaiee, Hessa; Alouini, Mohamed-Slim

    2015-01-01

    We present in this paper a new performance analysis results of dual-branch maximal-ratio combining over correlated Nakagami-m fading channels with arbitrary fading parameter. In particular, we derive exact closed-form expressions of the outage probability, the average bit error rate, and the ergodic capacity in terms of the extended generalized bivariate Meijer G- function. Moreover, we also provide simple closed- form asymptotic expressions in the high signal-to- noise ratio regime of these three fundamental performance measures. © 2015 IEEE.

  12. Statistical mechanics of few-particle systems: exact results for two useful models

    Science.gov (United States)

    Miranda, Enrique N.

    2017-11-01

    The statistical mechanics of small clusters (n ˜ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B , as in the thermodynamic case, while within the microcanonical formalism the limit value is k B (1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles.

  13. Exact one-loop results for l{sub i} → l{sub j}γ in 3-3-1 models

    Energy Technology Data Exchange (ETDEWEB)

    Hue, L.T. [Duy Tan University, Institute for Research and Development, Da Nang (Viet Nam); Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam); Ninh, L.D. [Institute for Interdisciplinary Research in Science and Education, ICISE, Ghenh Rang, Quy Nhon (Viet Nam); Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Thuc, T.T. [Department of Education and Training of Ca Mau, Ca Mau (Viet Nam); Dat, N.T.T. [Universita di Trieste, Dipartimento di Fisica, Theoretical Section, Trieste (Italy); International Center for Theoretical Physics, Trieste (Italy)

    2018-02-15

    We investigate the decays l{sub i} → l{sub j}γ, with l{sub i} = e, μ, τ in a general class of 3-3-1 models with heavy exotic leptons with arbitrary electric charges. We present full and exact analytical results keeping external lepton masses. As a by product, we perform numerical comparisons between exact results and approximate ones where the external lepton masses are neglected. As expected, we found that branching fractions can reach the current experimental limits if mixings and mass differences of the exotic leptons are large enough. We also found unexpectedly that, depending on the parameter values, there can be huge destructive interference between the gauge and Higgs contributions when the gauge bosons connecting the Standard Model leptons to the exotic leptons are light enough. This mechanism should be taken into account when using experimental constraints on the branching fractions to exclude the parameter space of the model. (orig.)

  14. Vertex function for the coupling of an electron with intramolecular phonons: Exact results in the antiadiabatic limit

    International Nuclear Information System (INIS)

    Takada, Y.; Higuchi, T.

    1995-01-01

    The Green's-function techniques, especially the one developed in the preceding paper [Takada, Phys. Rev. B 52, 12 708 (1995)], are employed to calculate the electron-phonon vertex part as well as the electronic self-energy exactly on both real- and imaginary-frequency axes in the electron-phonon Holstein model with the on-site Coulomb repulsion in the limit in which the intramolecular phonon energy ω 0 is much larger than the electronic bandwidth. The rigorous vertex part is found to diverge at the frequencies at which an electron is locked by such local phonons with an infinitely strong effective coupling. Characteristic frequencies of this divergence, which are not equal to multiples of ω 0 , are calculated as a function of the electron-phonon bare coupling constant. Our results for the self-energy are checked successfully with the exact ones obtained by the Lang-Firsov canonical transformation

  15. Exact Optimum Design of Segmented Thermoelectric Generators

    Directory of Open Access Journals (Sweden)

    M. Zare

    2016-01-01

    Full Text Available A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs. Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency.

  16. On the exact conservation laws in thermal models and the analysis of AGS and SIS experimental results

    International Nuclear Information System (INIS)

    Keraenen, A.; Suhonen, E.; Cleymans, J.

    1999-01-01

    The production of hadrons in relativistic heavy ion collisions is studied using a statistical ensemble with thermal and chemical equilibrium. Special attention is given to exact conservation laws, i.e. certain charges are treated canonically instead of using the usual grand canonical approach. For small systems, the exact conservation of baryon number, strangeness and electric charge is to be taken into account. We have derived compact, analytical expressions for particle abundances in such ensemble. As an application, the change in K/π ratios in AGS experiments with different interaction system sizes is well reproduced. The canonical treatment of three charges becomes impractical very quickly with increasing system size. Thus, we focus our attention on exact conservation of strangeness, and treat baryon number and electric charge grand canonically. We present expressions for particle abundances in such ensemble as well, and apply them to reproduce the large variety of particle ratios in GSI SIS 2 A GeV Ni-Ni experiments. At the energies considered here, the exact strangeness conservation fully accounts for strange particle suppression, and no extra chemical factor is needed. (author)

  17. Atypical extended electronic states in an infinite Vicsek fractal: An exact result

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Bhattacharyya, B.

    1996-01-01

    We present a class of extended electronic wave functions on a Vicsek fractal. The transmittivity of arbitrarily large fractal lattices corresponding to these particular extended-state eigenvalues exhibits a power-law decay with increasing system size. The eigenvalues corresponding to the above extended states as well as the scaling law for the transmittivity have been exactly calculated using a real-space renormalization-group method. copyright 1996 The American Physical Society

  18. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Hendriks, E.M.

    1983-01-01

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  19. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    International Nuclear Information System (INIS)

    Kim, Jeong Soo; Kim, Moon Kyum

    2012-01-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  20. Quantum quenches to the attractive one-dimensional Bose gas: exact results

    Directory of Open Access Journals (Sweden)

    Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler

    2016-09-01

    Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.

  1. Exact Heat Kernel on a Hypersphere and Its Applications in Kernel SVM

    Directory of Open Access Journals (Sweden)

    Chenchao Zhao

    2018-01-01

    Full Text Available Many contemporary statistical learning methods assume a Euclidean feature space. This paper presents a method for defining similarity based on hyperspherical geometry and shows that it often improves the performance of support vector machine compared to other competing similarity measures. Specifically, the idea of using heat diffusion on a hypersphere to measure similarity has been previously proposed and tested by Lafferty and Lebanon [1], demonstrating promising results based on a heuristic heat kernel obtained from the zeroth order parametrix expansion; however, how well this heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown. This paper presents a higher order parametrix expansion of the heat kernel on a unit hypersphere and discusses several problems associated with this expansion method. We then compare the heuristic kernel with an exact form of the heat kernel expressed in terms of a uniformly and absolutely convergent series in high-dimensional angular momentum eigenmodes. Being a natural measure of similarity between sample points dwelling on a hypersphere, the exact kernel often shows superior performance in kernel SVM classifications applied to text mining, tumor somatic mutation imputation, and stock market analysis.

  2. Exact results for quantum chaotic systems and one-dimensional fermions from matrix models

    International Nuclear Information System (INIS)

    Simons, B.D.; Lee, P.A.; Altshuler, B.L.

    1993-01-01

    We demonstrate a striking connection between the universal parametric correlations of the spectra of quantum chaotic systems and a class of integrable quantum hamiltonians. We begin by deriving a non-perturbative expression for the universal m-point correlation function of the spectra of random matrix ensembles in terms of a non-linear supermatrix σ-model. These results are shown to coincide with those from previous studies of weakly disordered metallic systems. We then introduce a continuous matrix model which describes the quantum mechanics of the Sutherland hamiltonian describing particles interacting through an inverse-square pairwise potential. We demonstrate that a field theoretic approach can be employed to determine exact analytical expressions for correlations of the quantum hamiltonian. The results, which are expressed in terms of a non-linear σ-model, are shown to coincide with those for analogous correlation functions of random matrix ensembles after an appropriate change of variables. We also discuss possible generalizations of the matrix model to higher dimensions. These results reveal a common mathematical structure which underlies branches of theoretical physics ranging from continuous matrix models to strongly interacting quantum hamiltonians, and universalities in the spectra of quantum chaotic systems. (orig.)

  3. Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes

    DEFF Research Database (Denmark)

    Häggström, Olle; Lieshout, Marie-Colette van; Møller, Jesper

    1999-01-01

    The area-interaction process and the continuum random-cluster model are characterized in terms of certain functional forms of their respective conditional intensities. In certain cases, these two point process models can be derived from a bivariate point process model which in many respects...... is simpler to analyse and simulate. Using this correspondence we devise a two-component Gibbs sampler, which can be used for fast and exact simulation by extending the recent ideas of Propp and Wilson. We further introduce a Swendsen-Wang type algorithm. The relevance of the results within spatial statistics...

  4. Exact results and open questions in first principle functional RG

    International Nuclear Information System (INIS)

    Le Doussal, Pierre

    2010-01-01

    Some aspects of the functional RG (FRG) approach to pinned elastic manifolds (of internal dimension d) at finite temperature T > 0 are reviewed and reexamined in this much expanded version of Le Doussal (2006) . The particle limit d = 0 provides a test for the theory: there the FRG is equivalent to the decaying Burgers equation, with viscosity ν ∼ T-both being formally irrelevant. An outstanding question in FRG, i.e. how temperature regularizes the otherwise singular flow of T = 0 FRG, maps to the viscous layer regularization of inertial range Burgers turbulence (i.e. to the construction of the inviscid limit). Analogy between Kolmogorov scaling and FRG cumulant scaling is discussed. First, multi-loop FRG corrections are examined and the direct loop expansion at T > 0 is shown to fail already in d = 0, a hierarchy of ERG equations being then required (introduced in Balents and Le Doussal (2005) ). Next we prove that the FRG function R(u) and higher cumulants defined from the field theory can be obtained for any d from moments of a renormalized potential defined in an sliding harmonic well. This allows to measure the fixed point function R(u) in numerics and experiments. In d = 0 the beta function (of the inviscid limit) is obtained from first principles to four loop. For Sinai model (uncorrelated Burgers initial velocities) the ERG hierarchy can be solved and the exact function R(u) is obtained. Connections to exact solutions for the statistics of shocks in Burgers and to ballistic aggregation are detailed. A relation is established between the size distribution of shocks and the one for droplets. A droplet solution to the ERG functional hierarchy is found for any d, and the form of R(u) in the thermal boundary layer is related to droplet probabilities. These being known for the d = 0 Sinai model the function R(u) is obtained there at any T. Consistency of the ε=4-d expansion in one and two loop FRG is studied from first principles, and connected to shock and

  5. Quasitraces on exact C*-algebras are traces

    DEFF Research Database (Denmark)

    Haagerup, Uffe

    2014-01-01

    It is shown that all 2-quasitraces on a unital exact C ∗   -algebra are traces. As consequences one gets: (1) Every stably finite exact unital C ∗   -algebra has a tracial state, and (2) if an AW ∗   -factor of type II 1   is generated (as an AW ∗   -algebra) by an exact C ∗   -subalgebra, then i......, then it is a von Neumann II 1   -factor. This is a partial solution to a well known problem of Kaplansky. The present result was used by Blackadar, Kumjian and Rørdam to prove that RR(A)=0  for every simple non-commutative torus of any dimension...

  6. Exact Theory of Compressible Fluid Turbulence

    Science.gov (United States)

    Drivas, Theodore; Eyink, Gregory

    2017-11-01

    We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.

  7. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  8. Exact solutions in string-motivated scalar-field cosmology

    International Nuclear Information System (INIS)

    Oezer, M.; Taha, M.O.

    1992-01-01

    Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era

  9. Quasi-exact solutions of nonlinear differential equations

    OpenAIRE

    Kudryashov, Nikolay A.; Kochanov, Mark B.

    2014-01-01

    The concept of quasi-exact solutions of nonlinear differential equations is introduced. Quasi-exact solution expands the idea of exact solution for additional values of parameters of differential equation. These solutions are approximate solutions of nonlinear differential equations but they are close to exact solutions. Quasi-exact solutions of the the Kuramoto--Sivashinsky, the Korteweg--de Vries--Burgers and the Kawahara equations are founded.

  10. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  11. Exact models for isotropic matter

    Science.gov (United States)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  12. Exact renormalization group equation for the Lifshitz critical point

    Science.gov (United States)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  13. Criteria for exact qudit universality

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; O'Leary, Dianne P.; Bullock, Stephen S.

    2005-01-01

    We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H jk x =(ℎ/2π)Ω(vertical bar k> jk y =(ℎ/2π)Ω(i vertical bar k> jk x,y are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=(ℎ/2π)Ω vertical bar d-1,d-1> 87 Rb and construct an optimal gate sequence using Raman laser pulses

  14. Exact theory of freeze-out

    Science.gov (United States)

    Cannoni, Mirco

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.

  15. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  16. Clock Math — a System for Solving SLEs Exactly

    Directory of Open Access Journals (Sweden)

    Jakub Hladík

    2013-01-01

    Full Text Available In this paper, we present a GPU-accelerated hybrid system that solves ill-conditioned systems of linear equations exactly. Exactly means without rounding errors due to using integer arithmetics. First, we scale floating-point numbers up to integers, then we solve dozens of SLEs within different modular arithmetics and then we assemble sub-solutions back using the Chinese remainder theorem. This approach effectively bypasses current CPU floating-point limitations. The system is capable of solving Hilbert’s matrix without losing a single bit of precision, and with a significant speedup compared to existing CPU solvers.

  17. Exact results for the O( N ) model with quenched disorder

    Science.gov (United States)

    Delfino, Gesualdo; Lamsen, Noel

    2018-04-01

    We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points for O( N )-symmetric models with quenched disorder in two dimensions. Random fixed points are characterized by two disorder parameters: a modulus that vanishes when approaching the pure case, and a phase angle. The critical lines fall into three classes depending on the values of the disorder modulus. Besides the class corresponding to the pure case, a second class has maximal value of the disorder modulus and includes Nishimori-like multicritical points as well as zero temperature fixed points. The third class contains critical lines that interpolate, as N varies, between the first two classes. For positive N , it contains a single line of infrared fixed points spanning the values of N from √{2}-1 to 1. The symmetry sector of the energy density operator is superuniversal (i.e. N -independent) along this line. For N = 2 a line of fixed points exists only in the pure case, but accounts also for the Berezinskii-Kosterlitz-Thouless phase observed in presence of disorder.

  18. On Central Branch/Reinsurance Risk Networks: Exact Results and Heuristics

    Directory of Open Access Journals (Sweden)

    Florin Avram

    2018-04-01

    Full Text Available Modeling the interactions between a reinsurer and several insurers, or between a central management branch (CB and several subsidiary business branches, or between a coalition and its members, are fascinating problems, which suggest many interesting questions. Beyond two dimensions, one cannot expect exact answers. Occasionally, reductions to one dimension or heuristic simplifications yield explicit approximations, which may be useful for getting qualitative insights. In this paper, we study two such problems: the ruin problem for a two-dimensional CB network under a new mathematical model, and the problem of valuation of two-dimensional CB networks by optimal dividends. A common thread between these two problems is that the one dimensional reduction exploits the concept of invariant cones. Perhaps the most important contribution of the paper is the questions it raises; for that reason, we have found it useful to complement the particular examples solved by providing one possible formalization of the concept of a multi-dimensional risk network, which seems to us an appropriate umbrella for the kind of questions raised here.

  19. New exact travelling wave solutions for the Ostrovsky equation

    International Nuclear Information System (INIS)

    Kangalgil, Figen; Ayaz, Fatma

    2008-01-01

    In this Letter, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. In order to illustrate the validity and the advantages of the method we choose the Ostrovsky equation. As a result, many new and more general exact solutions have been obtained for the equation

  20. The exact equation of motion of a simple pendulum of arbitrary amplitude: a hypergeometric approach

    International Nuclear Information System (INIS)

    Qureshi, M I; Rafat, M; Azad, S Ismail

    2010-01-01

    The motion of a simple pendulum of arbitrary amplitude is usually treated by approximate methods. By using generalized hypergeometric functions, it is however possible to solve the problem exactly. In this paper, we provide the exact equation of motion of a simple pendulum of arbitrary amplitude. A new and exact expression for the time of swinging of a simple pendulum from the vertical position to an arbitrary angular position θ is given by equation (3.10). The time period of such a pendulum is also exactly expressible in terms of hypergeometric functions. The exact expressions thus obtained are used to plot the graphs that compare the exact time period T(θ 0 ) with the time period T(0) (based on simple harmonic approximation). We also compare the relative difference between T(0) and T(θ 0 ) found from the exact equation of motion with the usual perturbation theory estimate. The treatment is intended for graduate students, who have acquired some familiarity with the hypergeometric functions. This approach may also be profitably used by specialists who encounter during their investigations nonlinear differential equations similar in form to the pendulum equation. Such nonlinear differential equations could arise in diverse fields, such as acoustic vibrations, oscillations in small molecules, turbulence and electronic filters, among others.

  1. An exactly conservative particle method for one dimensional scalar conservation laws

    International Nuclear Information System (INIS)

    Farjoun, Yossi; Seibold, Benjamin

    2009-01-01

    A particle scheme for scalar conservation laws in one space dimension is presented. Particles representing the solution are moved according to their characteristic velocities. Particle interaction is resolved locally, satisfying exact conservation of area. Shocks stay sharp and propagate at correct speeds, while rarefaction waves are created where appropriate. The method is variation diminishing, entropy decreasing, exactly conservative, and has no numerical dissipation away from shocks. Solutions, including the location of shocks, are approximated with second order accuracy. Source terms can be included. The method is compared to CLAWPACK in various examples, and found to yield a comparable or better accuracy for similar resolutions.

  2. Lie and Q-Conditional Symmetries of Reaction-Diffusion-Convection Equations with Exponential Nonlinearities and Their Application for Finding Exact Solutions

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2018-04-01

    Full Text Available This review is devoted to search for Lie and Q-conditional (nonclassical symmetries and exact solutions of a class of reaction-diffusion-convection equations with exponential nonlinearities. A complete Lie symmetry classification of the class is derived via two different algorithms in order to show that the result depends essentially on the type of equivalence transformations used for the classification. Moreover, a complete description of Q-conditional symmetries for PDEs from the class in question is also presented. It is shown that all the well-known results for reaction-diffusion equations with exponential nonlinearities follow as particular cases from the results derived for this class of reaction-diffusion-convection equations. The symmetries obtained for constructing exact solutions of the relevant equations are successfully applied. The exact solutions are compared with those found by means of different techniques. Finally, an application of the exact solutions for solving boundary-value problems arising in population dynamics is presented.

  3. Exact solitary waves of the Fisher equation

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given

  4. Electron transfer dynamics: Zusman equation versus exact theory

    International Nuclear Information System (INIS)

    Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing

    2009-01-01

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.

  5. CONDITIONS FOR EXACT CAVALIERI ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mónica Tinajero-Bravo

    2014-03-01

    Full Text Available Exact Cavalieri estimation amounts to zero variance estimation of an integral with systematic observations along a sampling axis. A sufficient condition is given, both in the continuous and the discrete cases, for exact Cavalieri sampling. The conclusions suggest improvements on the current stereological application of fractionator-type sampling.

  6. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  7. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  8. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey , Angel; Ballenegger , Vincent

    2010-01-01

    8 pages; International audience; We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equation ...

  9. New exact travelling wave solutions for two potential coupled KdV equations with symbolic computation

    International Nuclear Information System (INIS)

    Yang Zonghang

    2007-01-01

    We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed

  10. Performance comparison of a new hybrid conjugate gradient method under exact and inexact line searches

    Science.gov (United States)

    Ghani, N. H. A.; Mohamed, N. S.; Zull, N.; Shoid, S.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is one of iterative techniques prominently used in solving unconstrained optimization problems due to its simplicity, low memory storage, and good convergence analysis. This paper presents a new hybrid conjugate gradient method, named NRM1 method. The method is analyzed under the exact and inexact line searches in given conditions. Theoretically, proofs show that the NRM1 method satisfies the sufficient descent condition with both line searches. The computational result indicates that NRM1 method is capable in solving the standard unconstrained optimization problems used. On the other hand, the NRM1 method performs better under inexact line search compared with exact line search.

  11. Bistability in a self-assembling system confined by elastic walls: Exact results in a one-dimensional lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)

    2015-01-07

    The impact of confinement on self-assembly of particles interacting with short-range attraction and long-range repulsion potential is studied for thermodynamic states corresponding to local ordering of clusters or layers in the bulk. Exact and asymptotic expressions for the local density and for the effective potential between the confining surfaces are obtained for a one-dimensional lattice model introduced by J. Pȩkalski et al. [J. Chem. Phys. 138, 144903 (2013)]. The simple asymptotic formulas are shown to be in good quantitative agreement with exact results for slits containing at least 5 layers. We observe that the incommensurability of the system size and the average distance between the clusters or layers in the bulk leads to structural deformations that are different for different values of the chemical potential μ. The change of the type of defects is reflected in the dependence of density on μ that has a shape characteristic for phase transitions. Our results may help to avoid misinterpretation of the change of the type of defects as a phase transition in simulations of inhomogeneous systems. Finally, we show that a system confined by soft elastic walls may exhibit bistability such that two system sizes that differ approximately by the average distance between the clusters or layers are almost equally probable. This may happen when the equilibrium separation between the soft boundaries of an empty slit corresponds to the largest stress in the confined self-assembling system.

  12. Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results

    Directory of Open Access Journals (Sweden)

    V. Ilyin

    2010-01-01

    Full Text Available We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (sub- or super-diffusion at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two different asymptotics of the diffusion process. Having done so we solve for the probability distribution function as a continuous function which evolves inside a ballistically expanding domain. This general solution agrees for long times with the probability distribution function obtained within the continuous random walk approach but it is much superior to this solution at shorter times where the effect of the ballistic regime is crucial.

  13. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  14. Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory

    Science.gov (United States)

    Gould, Tim; Kronik, Leeor; Pittalis, Stefano

    2018-05-01

    By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.

  15. Exact theory of freeze-out

    International Nuclear Information System (INIS)

    Cannoni, Mirco

    2015-01-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x * = m χ /T * . The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y 0 , is where the maximum departure of the WIMPs abundance Y from the thermal value Y 0 is reached. For each mass m χ and total annihilation cross section left angle σ ann υ r right angle, the temperature x * and the actual WIMPs abundance Y(x * ) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x * . The matching of the two abundances at x * is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  16. Lattice sigma models with exact supersymmetry

    International Nuclear Information System (INIS)

    Simon Catterall; Sofiane Ghadab

    2004-01-01

    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)

  17. The Semianalytical Solutions for Stiff Systems of Ordinary Differential Equations by Using Variational Iteration Method and Modified Variational Iteration Method with Comparison to Exact Solutions

    Directory of Open Access Journals (Sweden)

    Mehmet Tarik Atay

    2013-01-01

    Full Text Available The Variational Iteration Method (VIM and Modified Variational Iteration Method (MVIM are used to find solutions of systems of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential equations, problems were solved by Adomian Decomposition Method and VIM and Homotopy Perturbation Method. Comparisons with exact solutions reveal that the Variational Iteration Method (VIM and the Modified Variational Iteration Method (MVIM are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.

  18. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    Science.gov (United States)

    Rivera, R.; Villarroel, D.

    2002-10-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.

  19. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    International Nuclear Information System (INIS)

    Rivera, R.; Villarroel, D.

    2002-01-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics

  20. Universality in exact quantum state population dynamics and control

    International Nuclear Information System (INIS)

    Wu, Lian-Ao; Segal, Dvira; Brumer, Paul; Egusquiza, Inigo L.

    2010-01-01

    We consider an exact population transition, defined as the probability of finding a state at a final time that is exactly equal to the probability of another state at the initial time. We prove that, given a Hamiltonian, there always exists a complete set of orthogonal states that can be employed as time-zero states for which this exact population transition occurs. The result is general: It holds for arbitrary systems, arbitrary pairs of initial and final states, and for any time interval. The proposition is illustrated with several analytic models. In particular, we demonstrate that in some cases, by tuning the control parameters, a complete transition might occur, where a target state, vacant at t=0, is fully populated at time τ.

  1. On exact solutions of scattering problems

    International Nuclear Information System (INIS)

    Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.

    1982-01-01

    Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived

  2. 5D Lovelock gravity: New exact solutions with torsion

    Science.gov (United States)

    Cvetković, B.; Simić, D.

    2016-10-01

    Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.

  3. A position-dependent mass model for the Thomas–Fermi potential: Exact solvability and relation to δ-doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); García-Ravelo, Jesús; Pacheco-García, Christian [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, 07738 México D.F. (Mexico); Juan Peña Gil, José [Universidad Autónoma Metropolitana - Azcapotzalco, CBI - Area de Física Atómica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 México D.F. (Mexico)

    2013-06-15

    We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed in closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.

  4. A position-dependent mass model for the Thomas–Fermi potential: Exact solvability and relation to δ-doped semiconductors

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; García-Ravelo, Jesús; Pacheco-García, Christian; Juan Peña Gil, José

    2013-01-01

    We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed in closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study

  5. Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase

    CERN Document Server

    Bleher, P M

    2005-01-01

    The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite $N$ by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an $N\\times N$ Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large $N$ asymptotics of the six-vertex model with DWBC in the disordered phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method. As was noticed by Kuperberg, the problem of enumeration of alternating sign matrices (the ASM problem) is a special case of the the six-vertex model. We compare the obtained exact solution of the six-vertex model with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with the exact solution on the so-called f...

  6. arXiv Integrable flows between exact CFTs

    CERN Document Server

    Georgiou, George

    2017-11-14

    We explicitly construct families of integrable σ-model actions smoothly inter-polating between exact CFTs. In the ultraviolet the theory is the direct product of two current algebras at levels k$_{1}$ and k$_{2}$. In the infrared and for the case of two deformation matrices the CFT involves a coset CFT, whereas for a single matrix deformation it is given by the ultraviolet direct product theories but at levels k$_{1}$ and k$_{2}$ − k$_{1}$. For isotropic deformations we demonstrate integrability. In this case we also compute the exact beta-function for the deformation parameters using gravitational methods. This is shown to coincide with previous results obtained using perturbation theory and non-perturbative symmetries.

  7. Exact computation of the 9-j symbols

    International Nuclear Information System (INIS)

    Lai Shantao; Chiu Jingnan

    1992-01-01

    A useful algebraic formula for the 9-j symbol has been rewritten for convenient use on a computer. A simple FORTRAN program for the exact computation of 9-j symbols has been written for the VAX with VMS version V5,4-1 according to this formula. The results agree with the approximate values in existing literature. Some specific values of 9-j symbols needed for the intensity and alignments of three-photon nonresonant transitions are tabulated. Approximate 9-j symbol values beyond the limitation of the computer can also be computed by this program. The computer code of the exact computation of 3-j, 6-j and 9-j symbols are available through electronic mail upon request. (orig.)

  8. An exactly solvable model for first- and second-order transitions

    International Nuclear Information System (INIS)

    Klushin, L I; Skvortsov, A M; Gorbunov, A A

    1998-01-01

    The possibility of an exact analytical description of first-order and second-order transitions is demonstrated using a specific microscopic model. Predictions using the exactly calculated partition function are compared with those based on the Landau and Yang-Lee approaches. The model employed is an adsorbed polymer chain with an arbitrary number of links and an external force applied to its end, for which the variation of the partition function with the adsorption interaction parameter and the magnitude of the applied force is calculated. In the thermodynamic limit, the system has one isotropic and two anisotropic, ordered phases, each of which is characterized by two order parameters and between which first-order and second-order transitions occur and a bicritical point exists. The Landau free energy is found exactly as a function of each order parameter separately and, near the bicritical point, as a function of both of them simultaneously. An exact analytical formula is found for the distribution of the complex zeros of the partition function in first-order and second-order phase transitions. Hypotheses concerning the way in which the free energy and the positions of the complex zeros scale with the number of particles N in the system are verified. (reviews of topical problems)

  9. Exact results for N=2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants

    International Nuclear Information System (INIS)

    Bershtein, Mikhail; Bonelli, Giulio; Ronzani, Massimiliano; Tanzini, Alessandro

    2016-01-01

    We provide a contour integral formula for the exact partition function of N=2 supersymmetric U(N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N=2"∗ theory on ℙ"2 for all instanton numbers. In the zero mass case, corresponding to the N=4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a long-standing conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.

  10. Exact theory of freeze-out

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x{sub *} = m{sub χ}/T{sub *}. The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y{sub 0}, is where the maximum departure of the WIMPs abundance Y from the thermal value Y{sub 0} is reached. For each mass m{sub χ} and total annihilation cross section left angle σ{sub ann}υ{sub r} right angle, the temperature x{sub *} and the actual WIMPs abundance Y(x{sub *}) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x{sub *}. The matching of the two abundances at x{sub *} is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  11. Exact Solution of a Faraday's Law Problem that Includes a Nonlinear Term and Its Implication for Perturbation Theory.

    Science.gov (United States)

    Fulcher, Lewis P.

    1979-01-01

    Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)

  12. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  13. Exact ground and excited states of an antiferromagnetic quantum spin model

    International Nuclear Information System (INIS)

    Bose, I.

    1989-08-01

    A quasi-one-dimensional spin model which consists of a chain of octahedra of spins has been suggested for which a certain parameter regime of the Hamiltonian, the ground state, can be written down exactly. The ground state is highly degenerate and can be other than a singlet. Also, several excited states can be constructed exactly. The ground state is a local RVB state for which resonance is confined to rings of spins. Some exact numerical results for an octahedron of spins have also been reported. (author). 16 refs, 2 figs, 1 tab

  14. Time measurement - technical importance of most exact clocks

    International Nuclear Information System (INIS)

    Goebel, E.O.; Riehle, F.

    2004-01-01

    The exactness of the best atomic clocks currently shows a temporal variation of 1 second in 30 million years. This means that we have reached the point of the most exact frequency and time measurement ever. In the past, there was a trend towards increasing the exactness in an increasingly fast sequence. Will this trend continue? And who will profit from it? This article is meant to give answers to these questions. This is done by presenting first the level reached currently with the best atomic clocks and describing the research activities running worldwide with the aim of achieving even more exact clocks. In the second part, we present examples of various areas of technical subjects and research in which the most exact clocks are being applied presently and even more exact ones will be needed in the future [de

  15. On exact solutions for oscillatory flows in a generalized Burgers fluid with slip condition

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan); Dept. of Mathematics, Coll. of Sciences, KS Univ., Riyadh (Saudi Arabia); Najam, Saher [Theoretical Plasma Physics Div., PINSTECH, P.O. Nilore, Islamabad (Pakistan); Sajid, Muhammad; Mesloub, Said [Dept. of Mathematics, Coll. of Sciences, KS Univ., Riyadh (Saudi Arabia); Ayub, Muhammad [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan)

    2010-05-15

    An analysis is performed for the slip effects on the exact solutions of flows in a generalized Burgers fluid. The flow modelling is based upon the magnetohydrodynamic (MHD) nature of the fluid and modified Darcy law in a porous space. Two illustrative examples of oscillatory flows are considered. The results obtained are compared with several limiting cases. It has been shown here that the derived results hold for all values of frequencies including the resonant frequency. (orig.)

  16. Exact solution for a non-Markovian dissipative quantum dynamics.

    Science.gov (United States)

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  17. New exact solutions of the mBBM equation

    International Nuclear Information System (INIS)

    Zhang Zhe; Li Desheng

    2013-01-01

    The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin-Bona-Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations. (authors)

  18. Analysis of thin plates with holes by using exact geometrical representation within XFEM.

    Science.gov (United States)

    Perumal, Logah; Tso, C P; Leng, Lim Thong

    2016-05-01

    This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.

  19. Exact discretization of Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2016-01-08

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  20. Exact discretization of Schrödinger equation

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2016-01-01

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  1. Exact outage analysis of incremental decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel; Yang, Hongchuan; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we investigate a dual-hop decode-andforward opportunistic relaying scheme where the selected relay chooses to cooperate only if the source-destination channel is of an unacceptable quality. In our study, we derive exact closed-form expression for the outage probability based on the exact statistics of each hop. Furthermore, we perform asymptotic analysis and we deduce the diversity order of the scheme. We validate our analysis by showing that performance simulation results coincide with our analytical results over different network architectures. © 2010 IEEE.

  2. Exact outage analysis of incremental decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel

    2010-11-01

    In this paper, we investigate a dual-hop decode-andforward opportunistic relaying scheme where the selected relay chooses to cooperate only if the source-destination channel is of an unacceptable quality. In our study, we derive exact closed-form expression for the outage probability based on the exact statistics of each hop. Furthermore, we perform asymptotic analysis and we deduce the diversity order of the scheme. We validate our analysis by showing that performance simulation results coincide with our analytical results over different network architectures. © 2010 IEEE.

  3. Exact results for the behavior of the thermodynamic Casimir force in a model with a strong adsorption

    Science.gov (United States)

    Dantchev, Daniel M.; Vassilev, Vassil M.; Djondjorov, Peter A.

    2016-09-01

    When massless excitations are limited or modified by the presence of material bodies one observes a force acting between them generally called Casimir force. Such excitations are present in any fluid system close to its true bulk critical point. We derive exact analytical results for both the temperature and external ordering field behavior of the thermodynamic Casimir force within the mean-field Ginzburg-Landau Ising type model of a simple fluid or binary liquid mixture. We investigate the case when under a film geometry the boundaries of the system exhibit strong adsorption onto one of the phases (components) of the system. We present analytical and numerical results for the (temperature-field) relief map of the force in both the critical region of the film close to its finite-size or bulk critical points as well as in the capillary condensation regime below but close to the finite-size critical point.

  4. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  5. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Communication: Density functional theory model for multi-reference systems based on the exact-exchange hole normalization.

    Science.gov (United States)

    Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian

    2018-03-28

    The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.

  7. Communication: Density functional theory model for multi-reference systems based on the exact-exchange hole normalization

    Science.gov (United States)

    Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian

    2018-03-01

    The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.

  8. Coalescence of two equal cylinders: exact results for creeping viscous plane flow driven by capillarity

    International Nuclear Information System (INIS)

    Hopper, R.W.

    1984-01-01

    The coalescence of two equal viscous cylinders under the influence of capillarity is of interest in the theory of sintering. Although the flow in typical cylinder coalescence experiments is not planar, the plane-flow case is of general interest and is a good approximation in the early stage. An essentially exact analytic solution giving the shape as a function of time for slow plane flow is presented in simple closed form. 16 references, 2 figures, 1 table

  9. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  10. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  11. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  12. Exact Solution and Exotic Fluid in Cosmology

    Directory of Open Access Journals (Sweden)

    Phillial Oh

    2012-09-01

    Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.

  13. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  14. Comparing numerically exact and modelled static friction

    Directory of Open Access Journals (Sweden)

    Krengel Dominik

    2017-01-01

    Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.

  15. Exact analytical solution of shear-induced flexural vibration of functionally graded piezoelectric beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: psharma@rtu.ac.in; Parashar, Sandeep Kumar, E-mail: parashar2@yahoo.com [Mechanical Engineering Department, Rajasthan Technical University, Kota (India)

    2016-05-06

    The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d{sub 15} effect. In piezoelectric actuators, the potential use of d{sub 15} effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d{sub 31} and d{sub 33}. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton's principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.

  16. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from

  17. On the Differences Between the Drucker-Prager Criterion and Exact Implementation of the Mohr-Coulomb Criterion in FEM Calculations

    DEFF Research Database (Denmark)

    Clausen, Johan; Andersen, Lars; Damkilde, Lars

    2010-01-01

    This paper compares calculation results obtained with the Mohr-Coulomb and Drucker-Prager material models. The models are implemented in a finite element code and the exact models are used, i.e. no rounding of yield surface corners or apices is performed. Results for both 2D and 3D calculations a...

  18. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  19. Exact Tests for Two-Way Contingency Tables with Structural Zeros

    Directory of Open Access Journals (Sweden)

    Luke J. West

    2008-11-01

    Full Text Available Fisher's exact test, named for Sir Ronald Aylmer Fisher, tests contingency tables for homogeneity of proportion. This paper discusses a generalization of Fisher's exact test for the case where some of the table entries are constrained to be zero. The resulting test is useful for assessing cases where the null hypothesis of conditional multinomial distribution is suspected to be false. The test is implemented in the form of a new R package, aylmer.

  20. Classes of exact Einstein Maxwell solutions

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  1. Exact solutions of the neutron slowing down equation

    International Nuclear Information System (INIS)

    Dawn, T.Y.; Yang, C.N.

    1976-01-01

    The problem of finding the exact analytic closed-form solution for the neutron slowing down equation in an infinite homogeneous medium is studied in some detail. The existence and unique properties of the solution of this equation for both the time-dependent and the time-independent cases are studied. A direct method is used to determine the solution of the stationary problem. The final result is given in terms of a sum of indefinite multiple integrals by which solutions of some special cases and the Placzek-type oscillation are examined. The same method can be applied to the time-dependent problem with the aid of the Laplace transformation technique, but the inverse transform is, in general, laborious. However, the solutions of two special cases are obtained explicitly. Results are compared with previously reported works in a variety of cases. The time moments for the positive integral n are evaluated, and the conditions for the existence of the negative moments are discussed

  2. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  3. Hawking Radiation from a (4+n)-dimensional Black Hole Exact Results for the Schwarzschild Phase

    CERN Document Server

    Harris, C M; Harris, Chris M.; Kanti, Panagiota

    2003-01-01

    We start our analysis by deriving a master equation that describes the motion of a field with arbitrary spin $s$ on a 3-brane embedded in a non-rotating, uncharged (4+n)-dimensional black hole background. By numerical analysis, we derive exact results for the greybody factors and emission rates for scalars, fermions and gauge bosons emitted directly on the brane, for all energy regimes and for an arbitrary number $n$ of extra dimensions. The relative emissivities on the brane for different types of particles are computed and their dependence on the dimensionality of spacetime is demonstrated -- we therefore conclude that both the amount and the type of radiation emitted can be used for the determination of $n$ if the Hawking radiation from these black holes is observed. The emission of scalar modes in the bulk from the same black holes is also studied and the relative bulk-to-brane energy emissivity is accurately computed. We demonstrate that this quantity varies considerably with $n$ but always remains small...

  4. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    Science.gov (United States)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  5. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  6. Exact coefficients for higher dimensional operators with sixteen supersymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ming [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, Congkao [INFN Sezione di Roma “Tor Vergata' ,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-09-15

    We consider constraints on higher-dimensional operators for supersymmetric effective field theories. In four dimensions with maximal supersymmetry and SU(4) R-symmetry, we demonstrate that the coefficients of abelian operators F{sup n} with MHV helicity configurations must satisfy a recursion relation, and are completely determined by that of F{sup 4}. As the F{sup 4} coefficient is known to be one-loop exact, this allows us to derive exact coefficients for all such operators. We also argue that the results are consistent with the SL(2,Z) duality symmetry. Breaking SU(4) to Sp(4), in anticipation for the Coulomb branch effective action, we again find an infinite class of operators whose coefficients are determined exactly. We also consider three-dimensional N=8 as well as six-dimensional N=(2,0),(1,0) and (1,1) theories. In all cases, we demonstrate that the coefficient of dimension-six operator must be proportional to the square of that of dimension-four.

  7. Current fluctuations and statistics during a large deviation event in an exactly solvable transport model

    International Nuclear Information System (INIS)

    Hurtado, Pablo I; Garrido, Pedro L

    2009-01-01

    We study the distribution of the time-integrated current in an exactly solvable toy model of heat conduction, both analytically and numerically. The simplicity of the model allows us to derive the full current large deviation function and the system statistics during a large deviation event. In this way we unveil a relation between system statistics at the end of a large deviation event and for intermediate times. The mid-time statistics is independent of the sign of the current, a reflection of the time-reversal symmetry of microscopic dynamics, while the end-time statistics does depend on the current sign, and also on its microscopic definition. We compare our exact results with simulations based on the direct evaluation of large deviation functions, analyzing the finite-size corrections of this simulation method and deriving detailed bounds for its applicability. We also show how the Gallavotti–Cohen fluctuation theorem can be used to determine the range of validity of simulation results

  8. Exact performance analysis of decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel

    2010-06-01

    In this paper, we investigate a dual-hop decode-and-forward opportunistic relaying scheme where the source may or may not be able to communicate directly with the destination. In our study, we consider a regenerative relaying scheme in which the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact statistics of each hop. Unlike existing works where the analysis focused on high signal-to-noise ratio (SNR) regime, such results are important to enable the designers to take decisions regarding practical systems that operate at low SNR regime. We show that performance simulation results coincide with our analytical results.

  9. Exact model reduction of combinatorial reaction networks

    Directory of Open Access Journals (Sweden)

    Fey Dirk

    2008-08-01

    Full Text Available Abstract Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.

  10. 26Al(n,p)26Mg reaction: Comparison between the Hauser-Feshbach formula and the exact random-matrix result for the cross section

    International Nuclear Information System (INIS)

    Thomas, J.; Zirnbauer, M.R.; Langanke, K.

    1986-01-01

    We have calculated the 26 Al(n,p) 26 Mg reaction rate using an exact expression for the compound-nucleus cross section derived recently by Verbaarschot et al. This reaction is astrophysically important, and it happens to fall in a kinematic regime where the exact expression is expected to yield large deviations from the standard Hauser-Feshbach formula. We find that the exact statistical cross section is 20% lower at energies greater than 300 keV, and drops to 40% lower at 0 energy but still does not describe the available data. These deviations are quite similar to those predicted by the formula of Tepel et al

  11. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  12. Eigenvalue ratio detection based on exact moments of smallest and largest eigenvalues

    KAUST Repository

    Shakir, Muhammad; Tang, Wuchen; Rao, Anlei; Imran, Muhammad Ali; Alouini, Mohamed-Slim

    2011-01-01

    Detection based on eigenvalues of received signal covariance matrix is currently one of the most effective solution for spectrum sensing problem in cognitive radios. However, the results of these schemes always depend on asymptotic assumptions since the close-formed expression of exact eigenvalues ratio distribution is exceptionally complex to compute in practice. In this paper, non-asymptotic spectrum sensing approach to approximate the extreme eigenvalues is introduced. In this context, the Gaussian approximation approach based on exact analytical moments of extreme eigenvalues is presented. In this approach, the extreme eigenvalues are considered as dependent Gaussian random variables such that the joint probability density function (PDF) is approximated by bivariate Gaussian distribution function for any number of cooperating secondary users and received samples. In this context, the definition of Copula is cited to analyze the extent of the dependency between the extreme eigenvalues. Later, the decision threshold based on the ratio of dependent Gaussian extreme eigenvalues is derived. The performance analysis of our newly proposed approach is compared with the already published asymptotic Tracy-Widom approximation approach. © 2011 ICST.

  13. Three faces of node importance in network epidemiology: Exact results for small graphs

    Science.gov (United States)

    Holme, Petter

    2017-12-01

    We investigate three aspects of the importance of nodes with respect to susceptible-infectious-removed (SIR) disease dynamics: influence maximization (the expected outbreak size given a set of seed nodes), the effect of vaccination (how much deleting nodes would reduce the expected outbreak size), and sentinel surveillance (how early an outbreak could be detected with sensors at a set of nodes). We calculate the exact expressions of these quantities, as functions of the SIR parameters, for all connected graphs of three to seven nodes. We obtain the smallest graphs where the optimal node sets are not overlapping. We find that (i) node separation is more important than centrality for more than one active node, (ii) vaccination and influence maximization are the most different aspects of importance, and (iii) the three aspects are more similar when the infection rate is low.

  14. Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model

    Science.gov (United States)

    Pont, Federico M.; Osenda, Omar; Serra, Pablo

    2018-05-01

    The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.

  15. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  16. Exact solutions to the Lienard equation and its applications

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2004-01-01

    In this paper, a kind of explicit exact solutions to the Lienard equation is obtained, and the applications of the result in seeking traveling solitary wave solution of the nonlinear Schroedinger equation are presented

  17. Exact Analytic Result of Contact Value for the Density in a Modified Poisson-Boltzmann Theory of an Electrical Double Layer.

    Science.gov (United States)

    Lou, Ping; Lee, Jin Yong

    2009-04-14

    For a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, we have derived the exact analytic expression for the contact values of the difference profile of the counterion and co-ion, as well as of the sum (density) and product profiles, near a charged planar electrode that is immersed in a binary symmetric electrolyte. In the zero ionic size or dilute limit, these contact values reduce to the contact values of the Poisson-Boltzmann (PB) theory. The analytic results of the SMPB theory, for the difference, sum, and product profiles were compared with the results of the Monte-Carlo (MC) simulations [ Bhuiyan, L. B.; Outhwaite, C. W.; Henderson, D. J. Electroanal. Chem. 2007, 607, 54 ; Bhuiyan, L. B.; Henderson, D. J. Chem. Phys. 2008, 128, 117101 ], as well as of the PB theory. In general, the analytic expression of the SMPB theory gives better agreement with the MC data than the PB theory does. For the difference profile, as the electrode charge increases, the result of the PB theory departs from the MC data, but the SMPB theory still reproduces the MC data quite well, which indicates the importance of including steric effects in modeling diffuse layer properties. As for the product profile, (i) it drops to zero as the electrode charge approaches infinity; (ii) the speed of the drop increases with the ionic size, and these behaviors are in contrast with the predictions of the PB theory, where the product is identically 1.

  18. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  19. Exact gravitational quasinormal frequencies of topological black holes

    International Nuclear Information System (INIS)

    Birmingham, Danny; Mokhtari, Susan

    2006-01-01

    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies

  20. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts

  1. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    Science.gov (United States)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  2. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  3. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  4. Exact Lorentz-violating all-loop ultraviolet divergences in scalar field theories

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P.R.S. [Universidade Federal do Piaui, Departamento de Fisica, Teresina, PI (Brazil); Sena-Junior, M.I. [Universidade de Pernambuco, Escola Politecnica de Pernambuco, Recife, PE (Brazil); Universidade Federal de Alagoas, Instituto de Fisica, Maceio, AL (Brazil)

    2017-11-15

    In this work we evaluate analytically the ultraviolet divergences of Lorentz-violating massive O(N) λφ{sup 4} scalar field theories, which are exact in the Lorentz-violating mechanism, firstly explicitly at next-to-leading order and latter at any loop level through an induction procedure based on a theorem following from the exact approach, for computing the corresponding critical exponents. For attaining that goal, we employ three different and independent field-theoretic renormalization group methods. The results found for the critical exponents show that they are identical in the three distinct methods and equal to their Lorentz-invariant counterparts. Furthermore, we show that the results obtained here, based on the single concept of loop order of the referred terms of the corresponding β-function and anomalous dimensions, reduce to the ones obtained through the earlier non-exact approach based on a joint redefinition of the field and coupling constant of the theory, in the appropriate limit. (orig.)

  5. On the exact interpolating function in ABJ theory

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2016-12-16

    Based on the recent indications of integrability in the planar ABJ model, we conjecture an exact expression for the interpolating function h(λ{sub 1},λ{sub 2}) in this theory. Our conjecture is based on the observation that the integrability structure of the ABJM theory given by its Quantum Spectral Curve is very rigid and does not allow for a simple consistent modification. Under this assumption, we revised the previous comparison of localization results and exact all loop integrability calculations done for the ABJM theory by one of the authors and Grigory Sizov, fixing h(λ{sub 1},λ{sub 2}). We checked our conjecture against various weak coupling expansions, at strong coupling and also demonstrated its invariance under the Seiberg-like duality. This match also gives further support to the integrability of the model. If our conjecture is correct, it extends all the available integrability results in the ABJM model to the ABJ model.

  6. Exact Solutions to a Combined sinh-cosh-Gordon Equation

    International Nuclear Information System (INIS)

    Wei Long

    2010-01-01

    Based on a transformed Painleve property and the variable separated ODE method, a function transformation method is proposed to search for exact solutions of some partial differential equations (PDEs) with hyperbolic or exponential functions. This approach provides a more systematical and convenient handling of the solution process of this kind of nonlinear equations. Its key point is to eradicate the hyperbolic or exponential terms by a transformed Painleve property and reduce the given PDEs to a variable-coefficient ordinary differential equations, then we seek for solutions to the resulting equations by some methods. As an application, exact solutions for the combined sinh-cosh-Gordon equation are formally derived. (general)

  7. The exact wavefunction factorization of a vibronic coupling system

    International Nuclear Information System (INIS)

    Chiang, Ying-Chih; Klaiman, Shachar; Otto, Frank; Cederbaum, Lorenz S.

    2014-01-01

    We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation

  8. Exact folded-band chaotic oscillator.

    Science.gov (United States)

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  9. New exact solutions for two nonlinear equations

    International Nuclear Information System (INIS)

    Wang Quandi; Tang Minying

    2008-01-01

    In this Letter, we investigate two nonlinear equations given by u t -u xxt +3u 2 u x =2u x u xx +uu xxx and u t -u xxt +4u 2 u x =3u x u xx +uu xxx . Through some special phase orbits we obtain four new exact solutions for each equation above. Some previous results are extended

  10. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.

  11. Development of Exact Matrix-Matching Inductively Coupled Plasma-Optical Emission Spectroscopy for the Analysis of Cu and K in Infant Formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ye-Ji; Yim, Yong-Hyeon [University of Science and Technology, Daejeon (Korea, Republic of); Heo, Sung Woo; Han, Myung-Sub; Lim, Youngran [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-08-15

    In the present study, we have developed an exact matrix-matching inductively coupled plasma-optical emission spectroscopy (ICP-OES) as a low-cost alternative to the isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) method for accurate and precise measurements of nutrient elements K and Cu in infant formula. In spite of its high precision and accuracy, ICP-OES analysis of complex samples was not reliable due to biases originating from various matrix effects. The elaborated exact matrix-matching approach tested here demonstrated its potential to minimize biases due to matrix mismatch. The exact matrix-matching ICP-OES method was successfully validated by comparing the results with those from an isotope dilution ICP-M S method. Because the model provides reliable results without significant loss of precision, it will be an excellent choice for major element analysis in a complex sample, especially when isotope dilution is not applicable due to the l ck of alternative isotopes or the high cost of enriched isotopes.

  12. Exact solution of the nucleons diffusion equation with increase inelastic cross section

    International Nuclear Information System (INIS)

    Portella, H.M.

    1985-01-01

    The successive aproximations method is applied to obtain an exact and compact analytical solution of the differential equation wich describes the diffusion of nucleonic component in the atmosphere, when the inelastic cross section of the air interaction nucleon-nucleus increases with the energy. The result is compared with the experimental data wich have been obtained in Chacaltaya (x=540g/cm 2 ) by the Brazil - Japan cooperation using emulsion chambers. The value of the constant a measurement of the variation of the cross section with the energy, that makes the best adjustment of the result found out with the experimental data is between 0.05 and 0.06. (M.C.K.) [pt

  13. Exact capacity analysis of multihop transmission over amplify-and-forward relay fading channels

    KAUST Repository

    Yilmaz, Ferkan; Kucur, Oǧuz; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we propose an analytical framework on the exact computation of the average capacity of multihop transmission over amplify-and-forward relay fading channels. Our approach relies on the algebraic combination of Mellin and Laplace transforms to obtain exact single integral expressions which can be easily computed by Gauss-Chebyshev Quadrature (GCQ) rule. As such, the derived results are a convenient tool to analyze the average capacity of multihop transmission over amplify-and-forward relay fading channels. As an application of the analytical framework on the exact computation of the average capacity of multihop transmission, some examples are accentuated for generalized Nakagami-m fading channels. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement. ©2010 IEEE.

  14. Exact capacity analysis of multihop transmission over amplify-and-forward relay fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we propose an analytical framework on the exact computation of the average capacity of multihop transmission over amplify-and-forward relay fading channels. Our approach relies on the algebraic combination of Mellin and Laplace transforms to obtain exact single integral expressions which can be easily computed by Gauss-Chebyshev Quadrature (GCQ) rule. As such, the derived results are a convenient tool to analyze the average capacity of multihop transmission over amplify-and-forward relay fading channels. As an application of the analytical framework on the exact computation of the average capacity of multihop transmission, some examples are accentuated for generalized Nakagami-m fading channels. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement. ©2010 IEEE.

  15. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  16. Jurin's law revisited: Exact meniscus shape and column height.

    Science.gov (United States)

    Liu, Sai; Li, Shanpeng; Liu, Jianlin

    2018-03-30

    Capillary rise of a liquid column is a historical problem, which has normally been formulated by Jurin's law. In the present study, we investigate the exact solutions of the column height, considering the real shape of the meniscus according to the Young-Laplace equation. The analytical solution in the planar model and the numerical solution in the axisymmetric model on the meniscus shape are both given, which are compared with the results from Jurin's law, modified Jurin's law and Surface Evolver simulation. The results quantitatively show that when the distance between the two plates or the diameter of the tube becomes bigger, Jurin's law and modified Jurin's law would cause serious errors, and the profile morphology of the meniscus must be calculated according to the Young-Laplace equation. These findings are beneficial for us to better understand the mechanism of capillarity and wetting, which are promising for such areas as oil displacement, ore floatation, building materials, fabrics, etc.

  17. Exact effective-stress rules in rock mechanics

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1992-01-01

    The standard paradigm for analysis of rock deformation arises from postulating the existence of ''an equivalent homogeneous porous rock.'' However, data on the pore-pressure dependence of fluid permeability for some rocks cannot be explained using any equivalent homogeneous porous medium. In contrast, a positive result shows that deformation measurements on both high-porosity sandstones and low-porosity granites can be explained adequately in terms of an equivalent two-constituent model of porous rocks, for which exact results have recently been discovered

  18. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches.

    Science.gov (United States)

    Almutairy, Meznah; Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method.

  19. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches.

    Directory of Open Access Journals (Sweden)

    Meznah Almutairy

    Full Text Available Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method.

  20. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

    Science.gov (United States)

    Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method. PMID:29389989

  1. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  2. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  3. Exact calculation of three-body contact interaction to second order

    International Nuclear Information System (INIS)

    Kaiser, N.

    2012-01-01

    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle anti E(k f ) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to anti E(k f )∝k f 10 with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction. (orig.)

  4. Extremal black holes as exact string solutions

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in α' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five-dimensional background which is proved to be an exact string solution

  5. Quasi exact solution of the Rabi Hamiltonian

    CERN Document Server

    Koç, R; Tuetuencueler, H

    2002-01-01

    A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.

  6. New exact solutions of the Dirac equation. 11

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Noskov, M.D.

    1984-01-01

    Investigations into determining new exact solutions of relativistic wave equations started in another paper were continued. Exact solutions of the Dirac, Klein-Gordon equations and classical relativistic equations of motion in four new types of external electromagnetic fields were found

  7. Exact self-similar solutions for the magnetized Noh Z pinch problem

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Thornhill, J. W.; Zalesak, S. T.; Gardiner, T. A.

    2012-01-01

    A self-similar solution is derived for a radially imploding cylindrical plasma with an embedded, azimuthal magnetic field. The plasma stagnates through a strong, outward propagating shock wave of constant velocity. This analysis is an extension of the classic Noh gasdynamics problem to its ideal magnetohydrodynamics (MHD) counterpart. The present exact solution is especially suitable as a test for MHD codes designed to simulate linear Z pinches. To demonstrate the application of the new solution to code verification, simulation results from the cylindrical R-Z version of Mach2 and the 3D Cartesian code Athena are compared against the analytic solution. Alternative routines from the default ones in Athena lead to significant improvement of the results, thereby demonstrating the utility of the self-similar solution for verification.

  8. Exact solitary waves of the Korteveg - de Vries - Burgers equation

    OpenAIRE

    Kudryashov, N. A.

    2004-01-01

    New approach is presented to search exact solutions of nonlinear differential equations. This method is used to look for exact solutions of the Korteveg -- de Vries -- Burgers equation. New exact solitary waves of the Korteveg -- de Vries -- Burgers equation are found.

  9. Exact stopping cross section of the quantum harmonic oscillator for a penetrating point charge of arbitrary strength

    International Nuclear Information System (INIS)

    Mikkelsen, H.H.; Flyvbjerg, H.

    1991-05-01

    The time-dependent Schroedinger equation for a Coulomb collision between a heavy point charge and a harmonically bound electron is solved exactly numerically. The energy transferred to the electron is studied as a function of impact parameter and projectile charge. Special attention is given to the Barkas effect, and the transition from light ion to heavy ion stopping. All results are compared with classical and recent approximate results, whose precision and ranges of validity are discussed. (orig.)

  10. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  11. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  12. INDEFINITE COPOSITIVE MATRICES WITH EXACTLY ONE POSITIVE EIGENVALUE OR EXACTLY ONE NEGATIVE EIGENVALUE

    NARCIS (Netherlands)

    Jargalsaikhan, Bolor

    Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out

  13. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  14. Exact holography of the mass-deformed M2-brane theory

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Dongmin; Kim, Yoonbai; Kwon, O. Kab [Sungkyunkwan University, Department of Physics, BK21 Physics Research Division, Institute of Basic Science, Suwon (Korea, Republic of); Tolla, D.D. [Sungkyunkwan University, Department of Physics, BK21 Physics Research Division, Institute of Basic Science, Suwon (Korea, Republic of); Sungkyunkwan University, University College, Suwon (Korea, Republic of)

    2017-05-15

    We test the holographic relation between the vacuum expectation values of gauge invariant operators in N = 6 U{sub k}(N) x U{sub -k}(N) mass-deformed ABJM theory and the LLM geometries with Z{sub k} orbifold in 11-dimensional supergravity. To do so, we apply the Kaluza-Klein reduction to construct a 4-dimensional gravity theory and implement the holographic renormalization procedure. We obtain an exact holographic relation for the vacuum expectation values of the chiral primary operator with conformal dimension Δ = 1, which is given by left angle O{sup (Δ=1)} right angle = N{sup (3)/(2)} f{sub (Δ=1)}, for large N and k = 1. Here the factor f{sub (Δ)} is independent of N. Our results involve an infinite number of exact dual relations for all possible supersymmetric Higgs vacua and so provide a non-trivial test of gauge/gravity duality away from the conformal fixed point. We extend our results to the case of k ≠ 1 for LLM geometries represented by rectangular-shaped Young diagrams. We also discuss the exact mapping of the gauge/gravity at finite N for classical supersymmetric vacuum solutions in field theory side and corresponding classical solutions in gravity side. (orig.)

  15. Regarding on the exact solutions for the nonlinear fractional differential equations

    Directory of Open Access Journals (Sweden)

    Kaplan Melike

    2016-01-01

    Full Text Available In this work, we have considered the modified simple equation (MSE method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW and the modified equal width (mEW equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.

  16. Exact and heuristic solutions to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Archetti, Claudia; Madsen, Oli B.G.

    -pallet, which can be loaded in 3 stacks in a standard 40 foot container. Different exact and heuristic solution approaches to the DTSPMS have been implemented and tested. The exact approaches are based on different mathematical formulations of the problem which are solved using branch-and-cut. One formulation...... instances. The implemented heuristics include tabu search, simulated annealing and large neighbourhood search. Particularly the LNS approach shows promising results. It finds the known optimal solution of smaller instances (15 orders) within 10 seconds in most cases, and in 3 minutes it finds solutions...

  17. Exact angular momentum projection based on cranked HFB solution

    Energy Technology Data Exchange (ETDEWEB)

    Enami, Kenichi; Tanabe, Kosai; Yosinaga, Naotaka [Saitama Univ., Urawa (Japan). Dept. of Physics

    1998-03-01

    Exact angular momentum projection of cranked HFB solutions is carried out. It is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus. The result also indicates that the energy correction from projection is important for further investigation of nuclear structure. (author)

  18. Exactly solvable birth and death processes

    International Nuclear Information System (INIS)

    Sasaki, Ryu

    2009-01-01

    Many examples of exactly solvable birth and death processes, a typical stationary Markov chain, are presented together with the explicit expressions of the transition probabilities. They are derived by similarity transforming exactly solvable 'matrix' quantum mechanics, which is recently proposed by Odake and the author [S. Odake and R. Sasaki, J. Math. Phys. 49, 053503 (2008)]. The (q-) Askey scheme of hypergeometric orthogonal polynomials of a discrete variable and their dual polynomials play a central role. The most generic solvable birth/death rates are rational functions of q x (with x being the population) corresponding to the q-Racah polynomial.

  19. Exact traveling wave solutions of the Boussinesq equation

    International Nuclear Information System (INIS)

    Ding Shuangshuang; Zhao Xiqiang

    2006-01-01

    The repeated homogeneous balance method is used to construct exact traveling wave solutions of the Boussinesq equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions of the Boussinesq equation are successfully obtained

  20. Frames for exact inversion of the rank order coder.

    Science.gov (United States)

    Masmoudi, Khaled; Antonini, Marc; Kornprobst, Pierre

    2012-02-01

    Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe et al. who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in [1] a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to [1]. Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.

  1. Exact ground state of finite Bose-Einstein condensates on a ring

    International Nuclear Information System (INIS)

    Sakmann, Kaspar; Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.

    2005-01-01

    The exact ground state of the many-body Schroedinger equation for N bosons on a one-dimensional ring interacting via a pairwise δ-function interaction is presented for up to 50 particles. The solutions are obtained by solving Lieb and Liniger's system of coupled transcendental equations numerically for finite N. The ground-state energies for repulsive and attractive interactions are shown to be smoothly connected at the point of zero interaction strength, implying that the Bethe ansatz can be used also for attractive interactions for all cases studied. For repulsive interactions the exact energies are compared to (i) Lieb and Liniger's thermodynamic limit solution and (ii) the Tonks-Girardeau gas limit. It is found that the energy of the thermodynamic limit solution can differ substantially from that of the exact solution for finite N when the interaction is weak or when N is small. A simple relation between the Tonks-Girardeau gas limit and the solution for finite interaction strength is revealed. For attractive interactions we find that the true ground-state energy is given to a good approximation by the energy of the system of N attractive bosons on an infinite line, provided the interaction is stronger than the critical interaction strength of mean-field theory

  2. Symmetries and exact solutions of the nondiagonal Einstein-Rosen metrics

    International Nuclear Information System (INIS)

    Goyal, N; Gupta, R K

    2012-01-01

    We seek exact solutions of the nondiagonal Einstein-Rosen metrics. The method of Lie symmetry of differential equations is utilized to obtain new exact solutions of Einstein vacuum equations obtained from the nondiagonal Einstein-Rosen metric. Four cases arise depending on the nature of the Lie symmetry generator. In all cases, we find reductions in terms of ordinary differential equations and exact solutions of the nonlinear system of partial differential equations (PDEs) are derived. For this purpose, first we check the Painlevé property and then corresponding to the nonlinear system of PDEs, symmetries and exact solutions are obtained.

  3. Exact solution for the generalized Telegraph Fisher's equation

    International Nuclear Information System (INIS)

    Abdusalam, H.A.; Fahmy, E.S.

    2009-01-01

    In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.

  4. Exact solution of the hidden Markov processes

    Science.gov (United States)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  5. Exact Cover Problem in Milton Babbitt's All-partition Array

    OpenAIRE

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set, A, and a collection of distinct subsets of this set, S, then a subset of S is an exact cover of A if it exhaustively and exclu- sively partitions A. We provide a backtracking algorithm for solving ...

  6. Thermodynamics of Rh nuclear spins calculated by exact diagonalization

    DEFF Research Database (Denmark)

    Lefmann, K.; Ipsen, J.; Rasmussen, F.B.

    2000-01-01

    We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...

  7. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  8. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    Science.gov (United States)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  9. Exact solution of the Schroedinger equation with the spin-boson Hamiltonian

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej

    2011-01-01

    We address the problem of obtaining the exact reduced dynamics of the spin-half (qubit) immersed within the bosonic bath (environment). An exact solution of the Schroedinger equation with the paradigmatic spin-boson Hamiltonian is obtained. We believe that this result is a major step ahead and may ultimately contribute to the complete resolution of the problem in question. We also construct the constant of motion for the spin-boson system. In contrast to the standard techniques available within the framework of the open quantum systems theory, our analysis is based on the theory of block operator matrices.

  10. Exact work

    International Nuclear Information System (INIS)

    Zeger, J.

    1993-01-01

    Organized criminals also tried to illegally transfer nuclear material through Austria. Two important questions have to be answered after the material is sized by police authorities: What is the composition of the material and where does it come from? By application of a broad range of analytical techniques, which were developed or refined by our experts, it is possible to measure the exact amount and isotopic composition of uranium and plutonium in any kind of samples. The criminalistic application is only a byproduct of the large scale work on controlling the peaceful application of nuclear energy, which is done in contract with the IAEA in the context of the 'Network of Analytical Laboratories'

  11. Exact solution of nonsteady thermal boundary layer equation

    International Nuclear Information System (INIS)

    Dorfman, A.S.

    1995-01-01

    There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs

  12. Constructing exact symmetric informationally complete measurements from numerical solutions

    Science.gov (United States)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  13. Geometrically exact nonlinear analysis of pre-twisted composite rotor blades

    Directory of Open Access Journals (Sweden)

    Li'na SHANG

    2018-02-01

    Full Text Available Modeling of pre-twisted composite rotor blades is very complicated not only because of the geometric non-linearity, but also because of the cross-sectional warping and the transverse shear deformation caused by the anisotropic material properties. In this paper, the geometrically exact nonlinear modeling of a generalized Timoshenko beam with arbitrary cross-sectional shape, generally anisotropic material behavior and large deflections has been presented based on Hodges’ method. The concept of decomposition of rotation tensor was used to express the strain in the beam. The variational asymptotic method was used to determine the arbitrary warping of the beam cross section. The generalized Timoshenko strain energy was derived from the equilibrium equations and the second-order asymptotically correct strain energy. The geometrically exact nonlinear equations of motion were established by Hamilton’s principle. The established modeling was used for the static and dynamic analysis of pre-twisted composite rotor blades, and the analytical results were validated based on experimental data. The influences of the transverse shear deformation on the pre-twisted composite rotor blade were investigated. The results indicate that the influences of the transverse shear deformation on the static deformation and the natural frequencies of the pre-twisted composite rotor blade are related to the length to chord ratio of the blade. Keywords: Geometrically exact, Nonlinear, Pre-twisted composite blade, Transverse shear deformation, Variational asymptotic, Warping

  14. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  15. New method for the exact determination of the effective conductivity and the local field in RLC networks

    International Nuclear Information System (INIS)

    Zekri, L.; Zekri, N.; Bouamrane, R.

    1999-10-01

    We present a new numerical method for determining exactly the effective conductivity and the local field for random RLC networks. This method is compared to a real space renormalization group method and the Frank and Lobb method. Although our method is slower than the Frank and Lobb method, it also computes exactly the local field for large size systems. We also show that the renormalization group method fails in determining the local field. (author)

  16. The exact mass-gaps of the principal chiral models

    CERN Document Server

    Hollowood, Timothy J

    1994-01-01

    An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.

  17. Exact solutions to some modified sine-Gordon equations

    International Nuclear Information System (INIS)

    Saermark, K.

    1983-01-01

    Exact, translational solutions to a number of modified sine-Gordon equations are presented. In deriving the equations and the solutions use is made of results from the theory of ordinary differential equations without moving critical points as given by Ince. It is found that kink-like solutions exist also in cases where the coefficients of the trigonometric terms are space- and time-dependent. (Auth.)

  18. New exact solutions of coupled Boussinesq–Burgers equations by Exp-function method

    Directory of Open Access Journals (Sweden)

    L.K. Ravi

    2017-03-01

    Full Text Available In the present paper, we build the new analytical exact solutions of a nonlinear differential equation, specifically, coupled Boussinesq–Burgers equations by means of Exp-function method. Then, we analyze the results by plotting the three dimensional soliton graphs for each case, which exhibit the simplicity and effectiveness of the proposed method. The primary purpose of this paper is to employ a new approach, which allows us victorious and efficient derivation of the new analytical exact solutions for the coupled Boussinesq–Burgers equations.

  19. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  20. Exact exchange-correlation potential and approximate exchange potential in terms of density matrices

    International Nuclear Information System (INIS)

    Holas, A.; March, N.H.

    1995-01-01

    An exact expression in terms of density matrices (DM) is derived for δF[n]/δn(r), the functional derivative of the Hohenberg-Kohn functional. The derivation starts from the differential form of the virial theorem, obtained here for an electron system with arbitrary interactions, and leads to an expression taking the form of an integral over a path that can be chosen arbitrarily. After applying this approach to the equivalent system of noninteracting electrons (Slater-Kohn-Sham scheme) and combining the corresponding result with the previous one, an exact expression for the exchange-correlation potential v xc (r) is obtained which is analogous in character to that for δF[n]/δn(r), but involving, besides the interacting-system DMs, also the noninteracitng DMs. Equating the former DMs to the latter ones, we reduce the result for the exact v xc (r) to that for an approximate exchange-only potential v x (r). This leads naturally to the Harbola-Sahni exchange-only potential

  1. An Exact Solution of The Neutron Slowing Down Equation

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovic, D [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1970-07-01

    The slowing down equation for an infinite homogeneous monoatomic medium is solved exactly. The cross sections depend on neutron energy. The solution is given in analytical form within each of the lethargy intervals. This analytical form is the sum of probabilities which are given by the Green functions. The calculated collision density is compared with the one obtained by Bednarz and also with an approximate Wigner formula for the case of a resonance not wider than one collision interval. For the special case of hydrogen, the present solution reduces to Bethe's solution. (author)

  2. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  3. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Shanker, Balasubramaniam; Lu, Mingyu; Michielssen, Eric

    2013-01-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  4. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei

    2013-07-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  5. Exact reliability quantification of highly reliable systems with maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Bris, Radim, E-mail: radim.bris@vsb.c [VSB-Technical University Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Applied Mathematics, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic)

    2010-12-15

    When a system is composed of highly reliable elements, exact reliability quantification may be problematic, because computer accuracy is limited. Inaccuracy can be due to different aspects. For example, an error may be made when subtracting two numbers that are very close to each other, or at the process of summation of many very different numbers, etc. The basic objective of this paper is to find a procedure, which eliminates errors made by PC when calculations close to an error limit are executed. Highly reliable system is represented by the use of directed acyclic graph which is composed from terminal nodes, i.e. highly reliable input elements, internal nodes representing subsystems and edges that bind all of these nodes. Three admissible unavailability models of terminal nodes are introduced, including both corrective and preventive maintenance. The algorithm for exact unavailability calculation of terminal nodes is based on merits of a high-performance language for technical computing MATLAB. System unavailability quantification procedure applied to a graph structure, which considers both independent and dependent (i.e. repeatedly occurring) terminal nodes is based on combinatorial principle. This principle requires summation of a lot of very different non-negative numbers, which may be a source of an inaccuracy. That is why another algorithm for exact summation of such numbers is designed in the paper. The summation procedure uses benefits from a special number system with the base represented by the value 2{sup 32}. Computational efficiency of the new computing methodology is compared with advanced simulation software. Various calculations on systems from references are performed to emphasize merits of the methodology.

  6. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  7. Mass Deformed Exact S-parameter in Conformal Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    the existence of a universal lower bound on the opportunely normalized S parameter and explore its theoretical and phenomenological implications. Our exact results constitute an ideal framework to correctly interpret the lattice studies of the conformal window of strongly interacting theories....... leads to drastically different limiting values of S. Our results apply to any fermion matter representation and can be used as benchmark for the determination of certain relevant properties of the conformal window of any generic vector like gauge theory with fermionic matter. We finally suggest...

  8. Communication: An exact bound on the bridge function in integral equation theories.

    Science.gov (United States)

    Kast, Stefan M; Tomazic, Daniel

    2012-11-07

    We show that the formal solution of the general closure relation occurring in Ornstein-Zernike-type integral equation theories in terms of the Lambert W function leads to an exact relation between the bridge function and correlation functions, most notably to an inequality that bounds possible bridge values. The analytical results are illustrated on the example of the Lennard-Jones fluid for which the exact bridge function is known from computer simulations under various conditions. The inequality has consequences for the development of bridge function models and rationalizes numerical convergence issues.

  9. Exact solutions of nonlinear differential equations using continued fractions

    International Nuclear Information System (INIS)

    Ditto, W.L.; Pickett, T.J.

    1990-01-01

    The continued-fraction conversion method (J. Math. Phys. (N.Y.), 29, 1761 (1988)) is used to generate a homologous family of exact solutions to the Lane-Emden equation φ(r) '' + 2φ(r)'/r + αφ(r) p = 0, for p=5. An exact solution is also obtained for a generalization of the Lane-Emden equation of the form -φ '' (r) -2φ(r)'/r + αφ(r) 2p+1 + λφ(r) 4p+1 = 0 for arbitrary α, γ and p. A condition is established for the generation of exact solutions from the method

  10. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  11. Upper bounds on minimum cardinality of exact and approximate reducts

    KAUST Repository

    Chikalov, Igor

    2010-01-01

    In the paper, we consider the notions of exact and approximate decision reducts for binary decision tables. We present upper bounds on minimum cardinality of exact and approximate reducts depending on the number of rows (objects) in the decision table. We show that the bound for exact reducts is unimprovable in the general case, and the bound for approximate reducts is almost unimprovable in the general case. © 2010 Springer-Verlag Berlin Heidelberg.

  12. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  13. Exact Solutions of the Space Time Fractional Symmetric Regularized Long Wave Equation Using Different Methods

    Directory of Open Access Journals (Sweden)

    Özkan Güner

    2014-01-01

    Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.

  14. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  15. Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media

    Science.gov (United States)

    Gallican, Valentin; Brenner, Renald; Suquet, Pierre

    2017-11-01

    This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"

  16. Six-term exact sequences for smooth generalized crossed products

    DEFF Research Database (Denmark)

    Gabriel, Olivier; Grensing, Martin

    2013-01-01

    We define smooth generalized crossed products and prove six-term exact sequences of Pimsner–Voiculescu type. This sequence may, in particular, be applied to smooth subalgebras of the quantum Heisenberg manifolds in order to compute the generators of their cyclic cohomology. Further, our results...... include the known results for smooth crossed products. Our proof is based on a combination of arguments from the setting of (Cuntz–)Pimsner algebras and the Toeplitz proof of Bott periodicity....

  17. Exact scattering solutions in an energy sudden (ES) representation

    International Nuclear Information System (INIS)

    Chang, B.; Eno, L.; Rabitz, H.

    1983-01-01

    In this paper, we lay down the theoretical foundations for computing exact scattering wave functions in a reference frame which moves in unison with the system internal coordinates. In this frame the (internal) coordinates appear to be fixed and its adoption leads very naturally (in zeroth order) to the energy sudden (ES) approximation [and the related infinite order sudden (IOS) method]. For this reason we call the new representation for describing the exact dynamics of a many channel scattering problem, the ES representation. Exact scattering solutions are derived in both time dependent and time independent frameworks for the representation and many interesting results in these frames are established. It is shown, e.g., that in a time dependent frame the usual Schroedinger propagator factorizes into internal Hamiltonian, ES, and energy correcting propagators. We also show that in a time independent frame the full Green's functions can be similarly factorized. Another important feature of the new representation is that it forms a firm foundation for seeking corrections to the ES approximation. Thus, for example, the singularity which arises in conventional perturbative expansions of the full Green's functions (with the ES Green's function as the zeroth order solution) is avoided in the ES representation. Finally, a number of both time independent and time dependent ES correction schemes are suggested

  18. The exact mass-gap of the supersymmetric O(N) sigma model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    A formula for the mass-gap of the supersymmetric O(N) sigma model (N>4) in two dimensions is derived: m/\\Lambda_{\\overline{\\rm MS}}=2^{2\\Delta}\\sin(\\pi\\Delta)/(\\pi\\Delta), where \\Delta=1/(N-2) and m is the mass of the fundamental vector particle in the theory. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of Shankar and Witten via the the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD ambiguities.

  19. Evidence for the ferromagnetic frustration in a classical spin- 1 / 2 system with multisite interaction in external magnetic field: Exact results

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate the influence of the multisite interaction among sites within elementary triangles of the kagome-like recursive lattice on the properties of the classical spin- 1 / 2 ferromagnetic Ising model in the external magnetic field. The exact solution of the model is found and it is shown that the model exhibits a nontrivial structure of the first order as well as second order phase transitions in nonzero external magnetic fields related to the multisite interaction. The equation for the exact determination of the positions of the critical points of the second order phase transitions is derived. The thermodynamic properties of the model are investigated in detail and it is shown that the competition between the ferromagnetic interaction and the multisite interaction leads to the appearance of strong ferromagnetic frustration effects represented by the formation of a nontrivial system of macroscopically degenerated plateau-like and single-point-like ground states. The residual entropies of all ground states are found and the kagome spin-ice-like highly macroscopically degenerated plateau state with nonzero magnetization is identified with the exact residual entropy per site s /kB = ln(4 / 3) / 3 ≈ 0 . 095894. The properties of the specific heat are investigated, its Schottky-type behavior near the single-point ground state values of the magnetic field is identified, the existence of large magnetocaloric effect is discussed, and the existence of the first order phase transitions without the specific heat capacity change is demonstrated.

  20. Exact Cover Problem in Milton Babbitt's All-partition Array

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set...

  1. Exact Closed-form Solutions for Lamb's Problem

    Science.gov (United States)

    Feng, X.

    2017-12-01

    In this work, we report on an exact closedform solution for the displacement at the surfaceof an elastic halfspace elicited by a buried point source that acts at some point underneath thatsurface. This is commonly referred to as the 3D Lamb's problem, for which previous solutionswere restricted to sources and receivers placed at the free surface. By means of the reciprocitytheorem, our solution should also be valid as a means to obtain the displacements at interior pointswhen the source is placed at the free surface. We manage to obtain explicit results by expressingthe solution in terms of elementary algebraic expression as well as elliptic integrals. We anchorour developments on Poissons ratio 0.25 starting from Johnson's numerical, integral transformsolutions. Furthermore, the spatial derivatives of our solutions can be easily acquired in termsof our methods. In the end, our closed-form results agree perfectly with the numerical results ofJohnson, which strongly conrms the correctness of our explicit formulas. It is hoped that in duetime, these formulas may constitute a valuable canonical solution that will serve as a yardstickagainst which other numerical solutions can be compared and measured.In addition, we abstract some terms from our solutions as the generator of the Rayleigh waves.Some basic properties of the Rayleigh waves in the time domain will be indicated in terms of thegenerator. The fareld radiation patterns of P-wave and S-wave elicited by the double-couple forcein the uniform half-space medium could also be acquired from our results.

  2. A class of exact solutions to the Einstein field equations

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R K

    2012-01-01

    The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)

  3. Mechanical characterization of the Varian Exact-arm and R-arm support systems for eight aS500 electronic portal imaging devices

    International Nuclear Information System (INIS)

    Grattan, Mark W. D.; McGarry, Conor K.

    2010-01-01

    Purpose: The aim of this study is to compare the positioning accuracy at different gantry angles of two electronic portal imaging devices (EPIDs) support arm systems by using EPID difference images as a measure for displacement. This work presents a comparison of the mechanical performance of eight Varian aS500 (Varian Medical Systems, Palo Alto, CA) EPIDs, mounted using either the Varian Exact-arm or R-arm. Methods: The mechanical performance of the two arm systems was compared by investigating the variation in sensitivity with gantry angle, both before and after the EPID position was adjusted after gantry rotation. Positional errors were investigated by subtracting images from a reference image taken at gantry 0 deg., and the amplitude of the peaks and troughs at the field edges for longitudinal (radial) and lateral (transverse) profiles across the resulting image was related to the distance of displacement. Calibration curves based on a pixel-by-pixel shift were generated for each EPID and the Varian hand pendant accuracy was compared to the calibration data. Results: The response of the EPIDs was found to change with gantry rotation, with the largest difference at 180 deg. The Exact-arm was found to correct well for any displacement, while the R-arm tended to overcorrect following repositioning using the hand pendant. The calibration curves were consistent within each set of matched linacs, and the hand pendant accuracy was similar for both arm systems, although generally in different directions. With respect to gantry rotation effects, the mechanical performance of the Exact-arm systems was found to be much better than that of the R-arm systems. At gantry positions 90 deg., 270 deg., and 180 deg. the average misalignment in the longitudinal direction was +4.2±0.2, +1.8±1.6, and +7.4±0.5 mm for the R-arms, and +2.9±0.2, +2.1±0.8, and +4.9±0.7 mm for the Exact-arms. In the lateral direction the average positional errors were +2.1±0.4, -4.7±0.4, and -2.5

  4. Exact solutions and symmetry analysis for the limiting probability distribution of quantum walks

    International Nuclear Information System (INIS)

    Xu, Xin-Ping; Ide, Yusuke

    2016-01-01

    In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coin and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.

  5. Exact solutions and symmetry analysis for the limiting probability distribution of quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xin-Ping, E-mail: xuxp@mail.ihep.ac.cn [School of Physical Science and Technology, Soochow University, Suzhou 215006 (China); Ide, Yusuke [Department of Information Systems Creation, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, 221-8686 (Japan)

    2016-10-15

    In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coin and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.

  6. Exactly and completely integrable nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Leznov, A.N.; Savel'ev, M.V.

    1987-01-01

    The survey is devoted to a consitent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including generalized (periodic and finite nonperiodic Toda lattice, nonlinear Schroedinger, Korteweg-de Vries, Lotka-Volterra equations, etc.) For exactly integrable systems the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed. Application of the developed methods to a differential geometry problem of classification of the integrable manifolds embeddings is discussed. For exactly integrable systems the supersymmetric extensions are constructed. By the example of the generalized Toda lattice a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their desription in terms of the quantum algebras of the Hopf type. Among multidimensional systems the four-dimensional self-dual Yang-Mills equations are investigated most attentively with a goal of constructing their general solutions

  7. Elastic stars in general relativity: III. Stiff ultrarigid exact solutions

    International Nuclear Information System (INIS)

    Karlovini, Max; Samuelsson, Lars

    2004-01-01

    We present an equation of state for elastic matter which allows for purely longitudinal elastic waves in all propagation directions, not just principal directions. The speed of these waves is equal to the speed of light whereas the transversal type speeds are also very high, comparable to but always strictly less than that of light. Clearly such an equation of state does not give a reasonable matter description for the crust of a neutron star, but it does provide a nice causal toy model for an extremely rigid phase in a neutron star core, should such a phase exist. Another reason for focusing on this particular equation of state is simply that it leads to a very simple recipe for finding stationary rigid motion exact solutions to the Einstein equations. In fact, we show that a very large class of stationary spacetimes with constant Ricci scalar can be interpreted as rigid motion solutions with this matter source. We use the recipe to derive a static spherically symmetric exact solution with constant energy density, regular centre and finite radius, having a nontrivial parameter that can be varied to yield a mass-radius curve from which stability can be read off. It turns out that the solution is stable down to a tenuity R/M slightly less than 3. The result of this static approach to stability is confirmed by a numerical determination of the fundamental radial oscillation mode frequency. We also present another solution with outwards decreasing energy density. Unfortunately, this solution only has a trivial scaling parameter and is found to be unstable

  8. New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2008-01-01

    The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics

  9. Energy vs. density on paths toward exact density functionals

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2018-01-01

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a “path”. Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness...

  10. Exact braneworld cosmology induced from bulk black holes

    International Nuclear Information System (INIS)

    Gregory, James P; Padilla, Antonio

    2002-01-01

    We use a new, exact approach in calculating the energy density measured by an observer living on a brane embedded in a charged black-hole spacetime. We find that the bulk Weyl tensor gives rise to nonlinear terms in the energy density and pressure in the FRW equations for the brane. Remarkably, these take exactly the same form as the 'unconventional' terms found in the cosmology of branes embedded in pure AdS, with extra matter living on the brane. Black-hole-driven cosmologies have the benefit that there is no ambiguity in splitting the braneworld energy momentum into tension and additional matter. We propose a new, enlarged relationship between the two descriptions of braneworld cosmology. We also study the exact thermodynamics of the field theory and present a generalized Cardy-Verlinde formula in this set-up

  11. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  12. Exact Lagrangian caps and non-uniruled Lagrangian submanifolds

    Science.gov (United States)

    Dimitroglou Rizell, Georgios

    2015-04-01

    We make the elementary observation that the Lagrangian submanifolds of C n , n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian caps, which obviously are non-uniruled in themselves. This property is also used to show that if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its Chekanov-Eliashberg algebra is acyclic.

  13. The exact mass-gap of the supersymmetric CP$^{N-1}$ sigma model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    A formula for the mass-gap of the supersymmetric \\CP^{n-1} sigma model (n > 1) in two dimensions is derived: m/\\Lambda_{\\overline{\\rm MS}}=\\sin(\\pi\\Delta)/(\\pi\\Delta) where \\Delta=1/n and m is the mass of the fundamental particle multiplet. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of K\\"oberle and Kurak via the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD ambiguities.

  14. Long-term stable time integration scheme for dynamic analysis of planar geometrically exact Timoshenko beams

    Science.gov (United States)

    Nguyen, Tien Long; Sansour, Carlo; Hjiaj, Mohammed

    2017-05-01

    In this paper, an energy-momentum method for geometrically exact Timoshenko-type beam is proposed. The classical time integration schemes in dynamics are known to exhibit instability in the non-linear regime. The so-called Timoshenko-type beam with the use of rotational degree of freedom leads to simpler strain relations and simpler expressions of the inertial terms as compared to the well known Bernoulli-type model. The treatment of the Bernoulli-model has been recently addressed by the authors. In this present work, we extend our approach of using the strain rates to define the strain fields to in-plane geometrically exact Timoshenko-type beams. The large rotational degrees of freedom are exactly computed. The well-known enhanced strain method is used to avoid locking phenomena. Conservation of energy, momentum and angular momentum is proved formally and numerically. The excellent performance of the formulation will be demonstrated through a range of examples.

  15. Dissipation in adiabatic quantum computers: lessons from an exactly solvable model

    Science.gov (United States)

    Keck, Maximilian; Montangero, Simone; Santoro, Giuseppe E.; Fazio, Rosario; Rossini, Davide

    2017-11-01

    We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between nonadiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (the average value of the Hamiltonian) as a measure of the deviation from reaching the final target ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the nonadiabatic effects and the dissipative processes. We compare these results with the matrix-product-operator simulations of an Ising system and show that the phenomenology we found also applies for this more realistic case.

  16. Exact solutions, energy, and charge of stable Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Marques, M.A. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2016-05-15

    In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable. (orig.)

  17. Some exact solutions to the Lighthill–Whitham–Richards–Payne traffic flow equations

    International Nuclear Information System (INIS)

    Rowlands, G; Infeld, E; Skorupski, A A

    2013-01-01

    We find a class of exact solutions to the Lighthill–Whitham–Richards–Payne (LWRP) traffic flow equations. Using two consecutive Lagrangian transformations, a linearization is achieved. Next, depending on the initial density, we either apply (again two) Lambert functions and obtain exact formulae for the dependence of the car density and velocity on x, t, or else, failing that, the same result in a parametric representation. The calculation always involves two possible factorizations of a consistency condition. Both must be considered. In physical terms, the lineup usually separates into two offshoots at different velocities. Each velocity soon becomes uniform. This outcome in many ways resembles the two soliton solution to the Korteweg–de Vries equation. We check general conservation requirements. Although traffic flow research has developed tremendously since LWRP, this calculation, being exact, may open the door to solving similar problems, such as gas dynamics or water flow in rivers. With this possibility in mind, we outline the procedure in some detail at the end. (paper)

  18. Implementation of nonseparable exact exchange effects in the first-order nondegenerate adiabatic theory

    International Nuclear Information System (INIS)

    Abdolsalami, M.; Abdolsalami, F.; Gonzalez, H.R.

    1994-01-01

    We have implemented nonlocal exchange effects rigorously in the first-order nondegenerate adiabatic (FONDA) theory. This implementation requires solving integrodifferential equations that involve double integrals. Separable and model exchange approximations that simplify the inclusion of exchange in the scattering calculations have been previously implemented in the FONDA theory. The discrepancy between the exact exchange FONDA cross sections and the separable and model exchange results suggests that one needs to include exchange rigorously to obtain accurate results over a wide range of energies. Specifically, a difference of up to 30% is observed between the exact and separable exchange FONDA cross sections at near-threshold energies. At higher energies the FONDA results from the rigorous and model exchange implementations disagree by as much as 10%

  19. Comparison of exact, efron and breslow parameter approach method on hazard ratio and stratified cox regression model

    Science.gov (United States)

    Fatekurohman, Mohamat; Nurmala, Nita; Anggraeni, Dian

    2018-04-01

    Lungs are the most important organ, in the case of respiratory system. Problems related to disorder of the lungs are various, i.e. pneumonia, emphysema, tuberculosis and lung cancer. Comparing all those problems, lung cancer is the most harmful. Considering about that, the aim of this research applies survival analysis and factors affecting the endurance of the lung cancer patient using comparison of exact, Efron and Breslow parameter approach method on hazard ratio and stratified cox regression model. The data applied are based on the medical records of lung cancer patients in Jember Paru-paru hospital on 2016, east java, Indonesia. The factors affecting the endurance of the lung cancer patients can be classified into several criteria, i.e. sex, age, hemoglobin, leukocytes, erythrocytes, sedimentation rate of blood, therapy status, general condition, body weight. The result shows that exact method of stratified cox regression model is better than other. On the other hand, the endurance of the patients is affected by their age and the general conditions.

  20. Exact master equations for the non-Markovian decay of a qubit

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Breuer, Heinz-Peter

    2010-01-01

    Exact master equations describing the decay of a two-state system into a structured reservoir are constructed. By employing the exact solution for the model, analytical expressions are determined for the memory kernel of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless master equation. This approach allows an explicit comparison of the convergence behavior of the corresponding perturbation expansions. Moreover, the structure of widely used phenomenological master equations with a memory kernel may be incompatible with a nonperturbative treatment of the underlying microscopic model. Several physical implications of the results on the microscopic analysis and the phenomenological modeling of non-Markovian quantum dynamics of open systems are discussed.

  1. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  2. Exact and microscopic one-instanton calculations in N=2 supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ito, K.; Sasakura, N.

    1997-01-01

    We study the low-energy effective theory in N=2 super Yang-Mills theories by microscopic and exact approaches. We calculate the one-instanton correction to the prepotential for any simple Lie group from the microscopic approach. We also study the Picard-Fuchs equations and their solutions in the semi-classical regime for classical gauge groups with rank r≤3. We find that for gauge groups G=A r , B r , C r (r≤3) the microscopic results agree with those from the exact solutions. (orig.)

  3. New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods

    Science.gov (United States)

    S Saha, Ray

    2016-04-01

    In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.

  4. Benchmarking GW against exact diagonalization for semiempirical models

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian Sommer

    2010-01-01

    We calculate ground-state total energies and single-particle excitation energies of seven pi-conjugated molecules described with the semiempirical Pariser-Parr-Pople model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW capt...... (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene....

  5. Exactly solvable energy-dependent potentials

    International Nuclear Information System (INIS)

    Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.

    2009-01-01

    We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.

  6. A Table Lookup Method for Exact Analytical Solutions of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Ji Juan-Juan

    2017-01-01

    Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.

  7. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  8. Exact solutions for some discrete models of the Boltzmann equation

    International Nuclear Information System (INIS)

    Cabannes, H.; Hong Tiem, D.

    1987-01-01

    For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr

  9. Pure N=2 super Yang-Mills and exact WKB

    International Nuclear Information System (INIS)

    Kashani-Poor, Amir-Kian; Troost, Jan

    2015-01-01

    We apply exact WKB methods to the study of the partition function of pure N=2ϵ i -deformed gauge theory in four dimensions in the context of the 2d/4d correspondence. We study the partition function at leading order in ϵ 2 /ϵ 1 (i.e. at large central charge) and in an expansion in ϵ 1 . We find corrections of the form ∼exp [−((/tiny SW periods)/(ϵ 1 ))] to this expansion. We attribute these to the exchange of the order of summation over gauge instanton number and over powers of ϵ 1 when passing from the Nekrasov form of the partition function to the topological string theory inspired form. We conjecture that such corrections should be computable from a worldsheet perspective on the partition function. Our results follow upon the determination of the Stokes graphs associated to the Mathieu equation with complex parameters and the application of exact WKB techniques to compute the Mathieu characteristic exponent.

  10. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels

    2012-01-01

    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  11. The asymptotic and exact Fisher information matrices of a vector ARMA process

    NARCIS (Netherlands)

    Klein, A.; Melard, G.; Saidi, A.

    2008-01-01

    The exact Fisher information matrix of a Gaussian vector autoregressive-moving average (VARMA) process has been considered for a time series of length N in relation to the exact maximum likelihood estimation method. In this paper it is shown that the Gaussian exact Fisher information matrix

  12. Exact correlations in the Lieb-Liniger model and detailed balance out-of-equilibrium

    Directory of Open Access Journals (Sweden)

    Jacopo De Nardis, Miłosz Panfil

    2016-12-01

    Full Text Available We study the density-density correlation function of the 1D Lieb-Liniger model and obtain an exact expression for the small momentum limit of the static correlator in the thermodynamic limit. We achieve this by summing exactly over the relevant form factors of the density operator in the small momentum limit. The result is valid for any eigenstate, including thermal and non-thermal states. We also show that the small momentum limit of the dynamic structure factors obeys a generalized detailed balance relation valid for any equilibrium state.

  13. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  14. A low-dispersion, exactly energy-charge-conserving semi-implicit relativistic particle-in-cell algorithm

    Science.gov (United States)

    Chen, Guangye; Luis, Chacon; Bird, Robert; Stark, David; Yin, Lin; Albright, Brian

    2017-10-01

    Leap-frog based explicit algorithms, either ``energy-conserving'' or ``momentum-conserving'', do not conserve energy discretely. Time-centered fully implicit algorithms can conserve discrete energy exactly, but introduce large dispersion errors in the light-wave modes, regardless of timestep sizes. This can lead to intolerable simulation errors where highly accurate light propagation is needed (e.g. laser-plasma interactions, LPI). In this study, we selectively combine the leap-frog and Crank-Nicolson methods to produce a low-dispersion, exactly energy-and-charge-conserving PIC algorithm. Specifically, we employ the leap-frog method for Maxwell equations, and the Crank-Nicolson method for particle equations. Such an algorithm admits exact global energy conservation, exact local charge conservation, and preserves the dispersion properties of the leap-frog method for the light wave. The algorithm has been implemented in a code named iVPIC, based on the VPIC code developed at LANL. We will present numerical results that demonstrate the properties of the scheme with sample test problems (e.g. Weibel instability run for 107 timesteps, and LPI applications.

  15. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  16. Exact Mass-Coupling Relation for the Homogeneous Sine-Gordon Model.

    Science.gov (United States)

    Bajnok, Zoltán; Balog, János; Ito, Katsushi; Satoh, Yuji; Tóth, Gábor Zsolt

    2016-05-06

    We derive the exact mass-coupling relation of the simplest multiscale quantum integrable model, i.e., the homogeneous sine-Gordon model with two mass scales. The relation is obtained by comparing the perturbed conformal field theory description of the model valid at short distances to the large distance bootstrap description based on the model's integrability. In particular, we find a differential equation for the relation by constructing conserved tensor currents, which satisfy a generalization of the Θ sum rule Ward identity. The mass-coupling relation is written in terms of hypergeometric functions.

  17. Fuzziness and Foundations of Exact and Inexact Sciences

    CERN Document Server

    Dompere, Kofi Kissi

    2013-01-01

    The monograph is an examination of the fuzzy rational foundations of the structure of exact and inexact sciences over the epistemological space which is distinguished from the ontological space. It is thus concerned with the demarcation problem. It examines exact science and its critique of inexact science. The role of fuzzy rationality in these examinations is presented. The driving force of the discussions is the nature of the information that connects the cognitive relational structure of the epistemological space to the ontological space for knowing. The knowing action is undertaken by decision-choice agents who must process information to derive exact-inexact or true-false conclusions. The information processing is done with a paradigm and laws of thought that constitute the input-output machine. The nature of the paradigm selected depends on the nature of the information structure that is taken as input of the thought processing. Generally, the information structure received from the ontological space i...

  18. Symmetry and exact solutions of nonlinear spinor equations

    International Nuclear Information System (INIS)

    Fushchich, W.I.; Zhdanov, R.Z.

    1989-01-01

    This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)

  19. Quasinormal modes of the BTZ black hole under scalar perturbations with a non-minimal coupling: exact spectrum

    Science.gov (United States)

    Panotopoulos, Grigoris

    2018-06-01

    We perturb the non-rotating BTZ black hole with a non-minimally coupled massless scalar field, and we compute the quasinormal spectrum exactly. We solve the radial equation in terms of hypergeometric functions, and we obtain an analytical expression for the quasinormal frequencies. In addition, we compare our analytical results with the 6th order semi-analytical WKB method, and we find an excellent agreement. The impact of the nonminimal coupling as well as of the cosmological constant on the quasinormal spectrum is briefly discussed.

  20. Computing exact bundle compliance control charts via probability generating functions.

    Science.gov (United States)

    Chen, Binchao; Matis, Timothy; Benneyan, James

    2016-06-01

    Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.

  1. A Mini-Landscape of Exact MSSM Spectra in Heterotic Orbifolds

    CERN Document Server

    Lebedev, O; Raby, S; Ramos-Sánchez, S; Ratz, M; Vaudrevange, P K S; Wingerter, A; Lebedev, Oleg; Nilles, Hans Peter; Raby, Stuart; Ramos-Sanchez, Saul; Ratz, Michael; Vaudrevange, Patrick K.S.; Wingerter, Akin

    2007-01-01

    We explore a "fertile patch" of the heterotic landscape based on a Z_6-II orbifold with SO(10) and E_6 local GUT structures. We search for models allowing for the exact MSSM spectrum. Our result is that of order 100 out of a total 3\\times 10^4 inequivalent models satisfy this requirement.

  2. Exact many-electron ground states on diamond and triangle Hubbard chains

    International Nuclear Information System (INIS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2009-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)

  3. Exact Solutions of the Time Fractional BBM-Burger Equation by Novel (G′/G-Expansion Method

    Directory of Open Access Journals (Sweden)

    Muhammad Shakeel

    2014-01-01

    Full Text Available The fractional derivatives are used in the sense modified Riemann-Liouville to obtain exact solutions for BBM-Burger equation of fractional order. This equation can be converted into an ordinary differential equation by using a persistent fractional complex transform and, as a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions are attained. The performance of the method is reliable, useful, and gives newer general exact solutions with more free parameters than the existing methods. Numerical results coupled with the graphical representation completely reveal the trustworthiness of the method.

  4. Fast Exact Euclidean Distance (FEED) Transformation

    NARCIS (Netherlands)

    Schouten, Theo; Kittler, J.; van den Broek, Egon; Petrou, M.; Nixon, M.

    2004-01-01

    Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number

  5. Does really Born-Oppenheimer approximation break down in charge transfer processes? An exactly solvable model

    International Nuclear Information System (INIS)

    Kuznetsov, Alexander M.; Medvedev, Igor G.

    2006-01-01

    Effects of deviation from the Born-Oppenheimer approximation (BOA) on the non-adiabatic transition probability for the transfer of a quantum particle in condensed media are studied within an exactly solvable model. The particle and the medium are modeled by a set of harmonic oscillators. The dynamic interaction of the particle with a single local mode is treated explicitly without the use of BOA. Two particular situations (symmetric and non-symmetric systems) are considered. It is shown that the difference between the exact solution and the true BOA is negligibly small at realistic parameters of the model. However, the exact results differ considerably from those of the crude Condon approximation (CCA) which is usually considered in the literature as a reference point for BOA (Marcus-Hush-Dogonadze formula). It is shown that the exact rate constant can be smaller (symmetric system) or larger (non-symmetric one) than that obtained in CCA. The non-Condon effects are also studied

  6. Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution

    Science.gov (United States)

    Baradaran, M.; Panahi, H.

    2018-05-01

    Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.

  7. Exact-to-precision generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Wang Congjian; Abdel-Khalik, Hany S.

    2011-01-01

    Highlights: ► We present a new development in higher order generalized perturbation theory. ► The method addresses the explosion in the flux phase space, input parameters, and responses. ► The method hybridizes first-order GPT and proper orthogonal decomposition snapshots method. ► A simplified 1D and realistic 2D assembly models demonstrate applicability of the method. ► The accuracy of the method is compared to exact direct perturbations and first-order GPT. - Abstract: Presented in this manuscript are new developments to perturbation theory which are intended to extend its applicability to estimate, with quantifiable accuracy, the exact variations in all responses calculated by the model with respect to all possible perturbations in the model's input parameters. The new developments place high premium on reducing the associated computational overhead in order to enable the use of perturbation theory in routine reactor design calculations. By way of examples, these developments could be employed in core simulation to accurately estimate the few-group cross-sections variations resulting from perturbations in neutronics and thermal-hydraulics core conditions. These variations are currently being described using a look-up table approach, where thousands of assembly calculations are performed to capture few-group cross-sections variations for the downstream core calculations. Other applications include the efficient evaluation of surrogates for applications that require repeated model runs such as design optimization, inverse studies, uncertainty quantification, and online core monitoring. The theoretical background of these developments applied to source-driven systems and supporting numerical experiments are presented in this manuscript. Extension to eigenvalue problems will be presented in a future article.

  8. Exact one-fermion-loop contributions in (1+1)-dimensional solitons

    International Nuclear Information System (INIS)

    Shepard, J.R.; Price, C.E.; Ferree, T.C.

    1993-01-01

    We find solutions to the (1+1)-dimensional scalar-only linear σ model. A new method is used to compute one-fermion-loop contributions exactly, and agreemment with published results employing other methods is excellent. A renormalization scheme which differs from that commonly used in such calculations but is similar to that required in 1+3 dimensions is also presented. We compare ''kink'' versus ''shallow bag'' solutions, paying careful attention to the implications of the one-fermion-loop contributions for the stability of the former. We find that, for small fermion multiplicities, self-consistent shallow bag solutions are always more bound than their metastable kink counterparts. However, as the fermion multiplicity increases, shallow bags evolve into kinks which eventually are the only self-consistent configurations. This situation is qualitatively the same for the two renormalization schemes considered. When we construct ''baryons,'' each containing three fermions, the kink configuration is typically more bound than the shallow bag when one-fermion-loop contributions are included

  9. On nonlinear differential equation with exact solutions having various pole orders

    International Nuclear Information System (INIS)

    Kudryashov, N.A.

    2015-01-01

    We consider a nonlinear ordinary differential equation having solutions with various movable pole order on the complex plane. We show that the pole order of exact solution is determined by values of parameters of the equation. Exact solutions in the form of the solitary waves for the second order nonlinear differential equation are found taking into account the method of the logistic function. Exact solutions of differential equations are discussed and analyzed

  10. New exact solutions of the KdV-Burgers-Kuramoto equation

    International Nuclear Information System (INIS)

    Zhang Sheng

    2006-01-01

    A generalized F-expansion method is proposed and applied to the KdV-Burgers-Kuramoto equation. As a result, many new and more general exact travelling wave solutions are obtained including combined non-degenerate Jacobi elliptic function solutions, solitary wave solutions and trigonometric function solutions. The method can be applied to other nonlinear partial differential equations in mathematical physics

  11. Exact complexity: The spectral decomposition of intrinsic computation

    International Nuclear Information System (INIS)

    Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.

    2016-01-01

    We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.

  12. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems

    CERN Document Server

    Li, Tatsien; Gu, Qilong

    2016-01-01

    This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...

  13. Entanglement of Exact Excited Eigenstates of the Hubbard Model in Arbitrary Dimension

    Directory of Open Access Journals (Sweden)

    Oskar Vafek, Nicolas Regnault, B. Andrei Bernevig

    2017-12-01

    Full Text Available We compute exactly the von Neumann entanglement entropy of the eta-pairing states - a large set of exact excited eigenstates of the Hubbard Hamiltonian. For the singlet eta-pairing states the entropy scales with the logarithm of the spatial dimension of the (smaller partition. For the eta-pairing states with finite spin magnetization density, the leading term can scale as the volume or as the area-times-log, depending on the momentum space occupation of the Fermions with flipped spins. We also compute the corrections to the leading scaling. In order to study the eigenstate thermalization hypothesis (ETH, we also compute the entanglement Renyi entropies of such states and compare them with the corresponding entropies of thermal density matrix in various ensembles. Such states, which we find violate strong ETH, may provide a useful platform for a detailed study of the time-dependence of the onset of thermalization due to perturbations which violate the total pseudospin conservation.

  14. Greedy solution of ill-posed problems: error bounds and exact inversion

    International Nuclear Information System (INIS)

    Denis, L; Lorenz, D A; Trede, D

    2009-01-01

    The orthogonal matching pursuit (OMP) is a greedy algorithm to solve sparse approximation problems. Sufficient conditions for exact recovery are known with and without noise. In this paper we investigate the applicability of the OMP for the solution of ill-posed inverse problems in general, and in particular for two deconvolution examples from mass spectrometry and digital holography, respectively. In sparse approximation problems one often has to deal with the problem of redundancy of a dictionary, i.e. the atoms are not linearly independent. However, one expects them to be approximatively orthogonal and this is quantified by the so-called incoherence. This idea cannot be transferred to ill-posed inverse problems since here the atoms are typically far from orthogonal. The ill-posedness of the operator probably causes the correlation of two distinct atoms to become huge, i.e. that two atoms look much alike. Therefore, one needs conditions which take the structure of the problem into account and work without the concept of coherence. In this paper we develop results for the exact recovery of the support of noisy signals. In the two examples, mass spectrometry and digital holography, we show that our results lead to practically relevant estimates such that one may check a priori if the experimental setup guarantees exact deconvolution with OMP. Especially in the example from digital holography, our analysis may be regarded as a first step to calculate the resolution power of droplet holography

  15. Exact Stiffness for Beams on Kerr-Type Foundation: The Virtual Force Approach

    Directory of Open Access Journals (Sweden)

    Suchart Limkatanyu

    2013-01-01

    Full Text Available This paper alternatively derives the exact element stiffness equation for a beam on Kerr-type foundation. The shear coupling between the individual Winkler-spring components and the peripheral discontinuity at the boundaries between the loaded and the unloaded soil surfaces are taken into account in this proposed model. The element flexibility matrix is derived based on the virtual force principle and forms the core of the exact element stiffness matrix. The sixth-order governing differential compatibility of the problem is revealed using the virtual force principle and solved analytically to obtain the exact force interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix based on the exact force interpolation functions. The so-called “natural” element stiffness matrix is obtained by inverting the exact element flexibility matrix. One numerical example is utilized to confirm the accuracy and the efficiency of the proposed beam element on Kerr-type foundation and to show a more realistic distribution of interactive foundation force.

  16. Novel correlations in two dimensions: Some exact solutions

    International Nuclear Information System (INIS)

    Murthy, M.V.; Bhaduri, R.K.; Sen, D.

    1996-01-01

    We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring. copyright 1996 The American Physical Society

  17. Extension of the KLI approximation toward the exact optimized effective potential.

    Science.gov (United States)

    Iafrate, G J; Krieger, J B

    2013-03-07

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be

  18. Accelerating exact schedulability analysis for fixed-priority pre-emptive scheduling

    NARCIS (Netherlands)

    Hang, Y.; Jiale, Z.; Keskin, U.; Bril, R.J.

    2010-01-01

    The schedulability analysis for fixed-priority preemptive scheduling (FPPS) plays a significant role in the real-time systems domain. The so-called Hyperplanes Exact Test (HET) [1] is an example of an exact schedulability test for FPPS. In this paper, we aim at improving the efficiency of HET by

  19. Exact-exchange-based quasiparticle calculations

    International Nuclear Information System (INIS)

    Aulbur, Wilfried G.; Staedele, Martin; Goerling, Andreas

    2000-01-01

    One-particle wave functions and energies from Kohn-Sham calculations with the exact local Kohn-Sham exchange and the local density approximation (LDA) correlation potential [EXX(c)] are used as input for quasiparticle calculations in the GW approximation (GWA) for eight semiconductors. Quasiparticle corrections to EXX(c) band gaps are small when EXX(c) band gaps are close to experiment. In the case of diamond, quasiparticle calculations are essential to remedy a 0.7 eV underestimate of the experimental band gap within EXX(c). The accuracy of EXX(c)-based GWA calculations for the determination of band gaps is as good as the accuracy of LDA-based GWA calculations. For the lowest valence band width a qualitatively different behavior is observed for medium- and wide-gap materials. The valence band width of medium- (wide-) gap materials is reduced (increased) in EXX(c) compared to the LDA. Quasiparticle corrections lead to a further reduction (increase). As a consequence, EXX(c)-based quasiparticle calculations give valence band widths that are generally 1-2 eV smaller (larger) than experiment for medium- (wide-) gap materials. (c) 2000 The American Physical Society

  20. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  1. Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2010-05-01

    In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.

  2. New analytical exact solutions of time fractional KdV–KZK equation by Kudryashov methods

    International Nuclear Information System (INIS)

    Saha Ray, S

    2016-01-01

    In this paper, new exact solutions of the time fractional KdV–Khokhlov–Zabolotskaya–Kuznetsov (KdV–KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann–Liouville derivative is used to convert the nonlinear time fractional KdV–KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV–KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV–KZK equation. (paper)

  3. Intermittency inhibited by transport: An exactly solvable model

    Science.gov (United States)

    Zanette, Damián H.

    1994-04-01

    Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic reactions of the type A-->2A and A-->0, whose population field is known to exhibit spatiotemporal intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as transport is strengthened, low-order population moments are affected before the high-order ones. Numerical simulations are presented to support the analytical results.

  4. Exact asymptotic expansions for solutions of multi-dimensional renewal equations

    International Nuclear Information System (INIS)

    Sgibnev, M S

    2006-01-01

    We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles

  5. New exact wave solutions for Hirota equation

    Indian Academy of Sciences (India)

    2Department of Engineering Sciences, Faculty of Technology and Engineering,. University ... of nonlinear partial differential equations (NPDEs) in mathematical physics. Keywords. ... This method has been successfully applied to obtain exact.

  6. Exact solution for the reflection and diffraction of atomic de Broglie waves by a travelling evanescent laser wave

    International Nuclear Information System (INIS)

    Witte, N.S.

    1997-01-01

    The exact solution to the problem of reflection and diffraction of atomic de Broglie waves by a travelling evanescent wave is found starting with a bare-state formulation. The solution for the wavefunctions, the tunnelling losses and the non-adiabatic losses are given exactly in terms of hyper-Bessel functions, and are valid for all detuning and Rabi frequencies, thus generalizing previous approximate methods. Furthermore we give the limiting cases of all amplitudes in the uniform semiclassical limit, which is valid in all regions including near the classical turning points, and in the large and weak coupling cases. Exact results for the zero detuning case are obtained in terms of Bessel functions. We find our uniform semiclassical limit to be closer to the exact result over the full range of parameter values than the previously reported calculations. The current knowledge of hyper-Bessel function properties is reviewed in order to apply this to the physical problems imposed

  7. Faster exact Markovian probability functions for motif occurrences: a DFA-only approach.

    Science.gov (United States)

    Ribeca, Paolo; Raineri, Emanuele

    2008-12-15

    The computation of the statistical properties of motif occurrences has an obviously relevant application: patterns that are significantly over- or under-represented in genomes or proteins are interesting candidates for biological roles. However, the problem is computationally hard; as a result, virtually all the existing motif finders use fast but approximate scoring functions, in spite of the fact that they have been shown to produce systematically incorrect results. A few interesting exact approaches are known, but they are very slow and hence not practical in the case of realistic sequences. We give an exact solution, solely based on deterministic finite-state automata (DFA), to the problem of finding the whole relevant part of the probability distribution function of a simple-word motif in a homogeneous (biological) sequence. Out of that, the z-value can always be computed, while the P-value can be obtained either when it is not too extreme with respect to the number of floating-point digits available in the implementation, or when the number of pattern occurrences is moderately low. In particular, the time complexity of the algorithms for Markov models of moderate order (0 manage to obtain an algorithm which is both easily interpretable and efficient. This approach can be used for exact statistical studies of very long genomes and protein sequences, as we illustrate with some examples on the scale of the human genome.

  8. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  9. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  10. Equivariant Homotopy Theory and K-Theory of Exact Categories with Duality

    DEFF Research Database (Denmark)

    Moi, Kristian Jonsson

    This thesis has two main parts. The first part, which consists of two papers, is concerned with the role of equivariant loop spaces in the K-theory of exact categories with duality. We prove a group completion-type result for topological monoids with anti-involution. The methods in this proof als...

  11. New quasi-exactly solvable Hermitian as well as non-Hermitian PT ...

    Indian Academy of Sciences (India)

    We start with quasi-exactly solvable (QES) Hermitian (and hence real) as well as complex P T -invariant, double sinh-Gordon potential and show that even after adding perturbation terms, the resulting potentials, in both cases, are still QES potentials. Further, by using anti-isospectral transformations, we obtain Hermitian as ...

  12. Model checking exact cost for attack scenarios

    DEFF Research Database (Denmark)

    Aslanyan, Zaruhi; Nielson, Flemming

    2017-01-01

    Attack trees constitute a powerful tool for modelling security threats. Many security analyses of attack trees can be seamlessly expressed as model checking of Markov Decision Processes obtained from the attack trees, thus reaping the benefits of a coherent framework and a mature tool support....... However, current model checking does not encompass the exact cost analysis of an attack, which is standard for attack trees. Our first contribution is the logic erPCTL with cost-related operators. The extended logic allows to analyse the probability of an event satisfying given cost bounds and to compute...... the exact cost of an event. Our second contribution is the model checking algorithm for erPCTL. Finally, we apply our framework to the analysis of attack trees....

  13. Exact nonparametric confidence bands for the survivor function.

    Science.gov (United States)

    Matthews, David

    2013-10-12

    A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.

  14. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  15. Exact Boundary Controllability of Electromagnetic Fields in a General Region

    International Nuclear Information System (INIS)

    Eller, M. M.; Masters, J. E.

    2002-01-01

    We prove exact controllability for Maxwell's system with variable coefficients in a bounded domain by a current flux in the boundary. The proof relies on a duality argument which reduces the proof of exact controllability to the proof of continuous observability for the homogeneous adjoint system. There is no geometric restriction imposed on the domain

  16. New Exact Solutions for (1 + 1)-Dimensional Dispersion-Less System

    International Nuclear Information System (INIS)

    Naranmandula; Hu Jianguo; Bao Gang; Tubuxin

    2008-01-01

    Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately

  17. Exact results in the large system size limit for the dynamics of the chemical master equation, a one dimensional chain of equations.

    Science.gov (United States)

    Martirosyan, A; Saakian, David B

    2011-08-01

    We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.

  18. An Exact Confidence Region in Multivariate Calibration

    OpenAIRE

    Mathew, Thomas; Kasala, Subramanyam

    1994-01-01

    In the multivariate calibration problem using a multivariate linear model, an exact confidence region is constructed. It is shown that the region is always nonempty and is invariant under nonsingular transformations.

  19. Exact geodesic distances in FLRW spacetimes

    Science.gov (United States)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  20. A unified form of exact-MSR codes via product-matrix frameworks

    KAUST Repository

    Lin, Sian Jheng

    2015-02-01

    Regenerating codes represent a class of block codes applicable for distributed storage systems. The [n, k, d] regenerating code has data recovery capability while possessing arbitrary k out of n code fragments, and supports the capability for code fragment regeneration through the use of other arbitrary d fragments, for k ≤ d ≤ n - 1. Minimum storage regenerating (MSR) codes are a subset of regenerating codes containing the minimal size of each code fragment. The first explicit construction of MSR codes that can perform exact regeneration (named exact-MSR codes) for d ≥ 2k - 2 has been presented via a product-matrix framework. This paper addresses some of the practical issues on the construction of exact-MSR codes. The major contributions of this paper include as follows. A new product-matrix framework is proposed to directly include all feasible exact-MSR codes for d ≥ 2k - 2. The mechanism for a systematic version of exact-MSR code is proposed to minimize the computational complexities for the process of message-symbol remapping. Two practical forms of encoding matrices are presented to reduce the size of the finite field.

  1. A unified form of exact-MSR codes via product-matrix frameworks

    KAUST Repository

    Lin, Sian Jheng; Chung, Weiho; Han, Yunghsiangsam; Al-Naffouri, Tareq Y.

    2015-01-01

    Regenerating codes represent a class of block codes applicable for distributed storage systems. The [n, k, d] regenerating code has data recovery capability while possessing arbitrary k out of n code fragments, and supports the capability for code fragment regeneration through the use of other arbitrary d fragments, for k ≤ d ≤ n - 1. Minimum storage regenerating (MSR) codes are a subset of regenerating codes containing the minimal size of each code fragment. The first explicit construction of MSR codes that can perform exact regeneration (named exact-MSR codes) for d ≥ 2k - 2 has been presented via a product-matrix framework. This paper addresses some of the practical issues on the construction of exact-MSR codes. The major contributions of this paper include as follows. A new product-matrix framework is proposed to directly include all feasible exact-MSR codes for d ≥ 2k - 2. The mechanism for a systematic version of exact-MSR code is proposed to minimize the computational complexities for the process of message-symbol remapping. Two practical forms of encoding matrices are presented to reduce the size of the finite field.

  2. Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields

    International Nuclear Information System (INIS)

    Baxter, Mathew; Van Gorder, Robert A

    2013-01-01

    We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)

  3. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner

    Science.gov (United States)

    Gordon, Howard R.; Brown, James W.; Evans, Robert H.

    1988-01-01

    The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.

  4. Exact Solutions for Fractional Differential-Difference Equations by an Extended Riccati Sub-ODE Method

    International Nuclear Information System (INIS)

    Feng Qinghua

    2013-01-01

    In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann—Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established. (general)

  5. Exact analytic solutions generated from stipulated Morse and trigonometric Scarf potentials

    International Nuclear Information System (INIS)

    Saikia, N; Ahmed, S A S

    2011-01-01

    The extended transformation method has been applied to the exactly solvable stipulated Morse potential and trigonometric Scarf potential, to generate a set of exactly solvable quantum systems (QSs) in any chosen dimension. Bound state solutions of the exactly solvable potentials are given. The generated QSs are generally of Sturmian form. We also report a system case-specific regrouping technique to convert a Sturmian QS to a normal QS. A second-order application of the transformation method is given. The normalizability of the generated QSs is generally given in Sturmian form.

  6. An Exact Solution of the Gamma Ray Burst Arrival Time Analysis ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    An Exact Solution of the Gamma Ray Burst Arrival Time Analysis. Problem. S. Sinha ISRO Satellite Center, Bangalore 560 017, India. Abstract. An analytical solution of the GRB arrival time analysis is presented. The errors in the position of the GRB resulting from timing and position errors of different satellites are calculated.

  7. Corollary from the Exact Expression for Enthalpy of Vaporization

    OpenAIRE

    A. A. Sobko

    2011-01-01

    A problem on determining effective volumes for atoms and molecules becomes actual due to rapidly developing nanotechnologies. In the present study an exact expression for enthalpy of vaporization is obtained, from which an exact expression is derived for effective volumes of atoms and molecules, and under certain assumptions on the form of an atom (molecule) it is possible to find their linear dimensions. The accuracy is only determined by the accuracy of measurements of thermodynamic paramet...

  8. Exact Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics

    International Nuclear Information System (INIS)

    Niven, Robert K.

    2005-01-01

    The exact Maxwell-Boltzmann (MB), Bose-Einstein (BE) and Fermi-Dirac (FD) entropies and probabilistic distributions are derived by the combinatorial method of Boltzmann, without Stirling's approximation. The new entropy measures are explicit functions of the probability and degeneracy of each state, and the total number of entities, N. By analysis of the cost of a 'binary decision', exact BE and FD statistics are shown to have profound consequences for the behaviour of quantum mechanical systems

  9. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  10. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  11. Exact Slater integrals

    International Nuclear Information System (INIS)

    Golden, L.B.

    1968-01-01

    In atomic structure calculations, one has to evaluate the Slater integrals. In the present program, the authors evaluate exactly the Slater integral when hydrogenic wave functions are used for the bound-state orbitals. When hydrogenic wave functions are used, the Slater integrals involve integrands which can be written in the form of a product of an exponential, exp(ax) and a known analytic polynomial function, f(x). By repeated partial integration such an integral can be expressed in terms of a finite series involving the exponential, the polynomial function and its derivatives. PL/1-FORMAC has a built-in subroutine that will analytically find the derivatives of any multinomial. Thus, the finite series and hence the Slater integral can be evaluated analytically. (Auth.)

  12. Exact analysis of the response of quantum systems to two-photons using a QSDE approach

    International Nuclear Information System (INIS)

    Pan, Yu; Dong, Daoyi; Zhang, Guofeng

    2016-01-01

    We introduce the quantum stochastic differential equation (QSDE) approach to exactly analyze the response of quantum systems to a continuous-mode two-photon input. The QSDE description of the two-photon process allows us to integrate the input–output analysis with the quantum network theory, and so the analytical computability of the output state of a general quantum system can be addressed within this framework. We show that the time-domain two-photon output states can be exactly calculated for a large class of quantum systems including passive linear networks, optomechanical oscillators and two-level emitter in waveguide systems. In particular, we propose to utilise the results for the exact simulation of the stimulated emission as well as the study of the scattering of two-mode photon wave packets. (paper)

  13. Quasi-exactly solvable relativistic soft-core Coulomb models

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  14. Asymptotically exact solution of the multi-channel resonant-level model

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Yu Lu.

    1994-01-01

    An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig

  15. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    International Nuclear Information System (INIS)

    Kamenov, O Y

    2009-01-01

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): u tt = u xx + 3(u 2 ) xx + u xxxx + αu xxxxxx , α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  16. Exactly solvable models in many-body theory

    CERN Document Server

    March, N H

    2016-01-01

    The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.

  17. Exactly solvable models of 2D-quantum gravity on the lattice. Course 5

    International Nuclear Information System (INIS)

    Kazakov, V.A.

    1990-01-01

    It is shown that statistical mechanical models defined on randomly triangulated surfaces can be solved exactly and that thereby the results on 2-D quantum gravity can be confirmed. (author). 32 refs.; 4 figs.; 2 tabs

  18. Exact master equation for a noncommutative Brownian particle

    International Nuclear Information System (INIS)

    Costa Dias, Nuno; Nuno Prata, Joao

    2009-01-01

    We derive the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators on the plane with spatial noncommutativity. The results obtained are exact to all orders in the noncommutative parameter. As a by-product we derive some miscellaneous results such as the equilibrium Wigner distribution for the reservoir of noncommutative oscillators, the weak coupling limit of the master equation and a set of sufficient conditions for strict purity decrease of the Brownian particle. Finally, we consider a high-temperature Ohmic model and obtain an estimate for the time scale of the transition from noncommutative to ordinary quantum mechanics. This scale is considerably smaller than the decoherence scale

  19. Exactness of supersymmetric WKB method for translational shape invariant potentials

    International Nuclear Information System (INIS)

    Cheng, K M; Leung, P T; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs

  20. Exactness of supersymmetric WKB method for translational shape invariant potentials

    CERN Document Server

    Cheng, K M; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.

  1. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  2. Exact ground-state correlation functions of one-dimenisonal strongly correlated electron models with resonating-valence-bond ground state

    International Nuclear Information System (INIS)

    Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito

    1996-01-01

    We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing

  3. Human physiological benefits of viewing nature: EEG responses to exact and statistical fractal patterns.

    Science.gov (United States)

    Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P

    2015-01-01

    Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.

  4. Exact scattering and diffraction of antiplane shear waves by a vertical edge crack

    Science.gov (United States)

    Tsaur, Deng-How

    2010-06-01

    Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.

  5. Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory

    DEFF Research Database (Denmark)

    Sharma, S.; Pittalis, S.; Kurth, S.

    2007-01-01

    The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....

  6. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  7. On exactly soluble model in quantum electrodynamics

    International Nuclear Information System (INIS)

    Bogolubov, N.N.; Shumovsky, A.S.; Fam Le Kien

    1984-01-01

    Equations of motion describing the dynamics of three-level atom of ladder type interacting with two modes of quantized radiation field are solved exactly. Evolution of level population and photon rumbers under different unitial conditions is irvestigated

  8. General exact harmonic analysis of in-plane timoshenko beam structures

    Directory of Open Access Journals (Sweden)

    C. A. N. Dias

    Full Text Available The exact solution for the problem of damped, steady state response, of in-plane Timoshenko frames subjected to harmonically time varying external forces is here described. The solution is obtained by using the classical dynamic stiffness matrix (DSM, which is non-linear and transcendental in respect to the excitation frequency, and by performing the harmonic analysis using the Laplace transform. As an original contribution, the partial differential coupled governing equations, combining displacements and forces, are directly subjected to Laplace transforms, leading to the member DSM and to the equivalent load vector formulations. Additionally, the members may have rigid bodies attached at any of their ends where, optionally, internal forces can be released. The member matrices are then used to establish the global matrices that represent the dynamic equilibrium of the overall framed structure, preserving close similarity to the finite element method. Several application examples prove the certainty of the proposed method by comparing the model results with the ones available in the literature or with finite element analyses.

  9. Comments on exact quantization conditions and non-perturbative topological strings

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2015-12-01

    We give some remarks on exact quantization conditions associated with quantized mirror curves of local Calabi-Yau threefolds, conjectured in arXiv:1410.3382. It is shown that they characterize a non-perturbative completion of the refined topological strings in the Nekrasov-Shatashvili limit. We find that the quantization conditions enjoy an exact S-dual invariance. We also discuss Borel summability of the semi-classical spectrum.

  10. Exactly solvable spin-1 Ising–Heisenberg diamond chain with the second-neighbor interaction between nodal spins

    International Nuclear Information System (INIS)

    Hovhannisyan, V V; Ananikian, N S; Strečka, J

    2016-01-01

    The spin-1 Ising–Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. (paper)

  11. Exactly soluble QCD and confinement of quarks

    International Nuclear Information System (INIS)

    Rusakov, B.

    1997-01-01

    An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)

  12. Exact simulation of max-stable processes.

    Science.gov (United States)

    Dombry, Clément; Engelke, Sebastian; Oesting, Marco

    2016-06-01

    Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.

  13. New explicit and exact solutions of the Benney–Kawahara–Lin equation

    International Nuclear Information System (INIS)

    Yuan-Xi, Xie

    2009-01-01

    In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney–Kawahara–Lin equation and derive its many explicit and exact solutions which are all new solutions. (general)

  14. A new auxiliary equation and exact travelling wave solutions of nonlinear equations

    International Nuclear Information System (INIS)

    Sirendaoreji

    2006-01-01

    A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations

  15. Exact quantization conditions for the relativistic Toda lattice

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Mariño, Marcos

    2016-01-01

    Inspired by recent connections between spectral theory and topological string theory, we propose exact quantization conditions for the relativistic Toda lattice of N particles. These conditions involve the Nekrasov-Shatashvili free energy, which resums the perturbative WKB expansion, but they require in addition a non-perturbative contribution, which is related to the perturbative result by an S-duality transformation of the Planck constant. We test the quantization conditions against explicit calculations of the spectrum for N=3. Our proposal can be generalized to arbitrary toric Calabi-Yau manifolds and might solve the corresponding quantum integrable system of Goncharov and Kenyon.

  16. Asymptotically exact solution of a local copper-oxide model

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu.

    1994-03-01

    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig

  17. Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying Over Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua; Aissa, Sonia; Wu, Yik-Chung

    2012-01-01

    to evaluate the outage performance of the system under study. The analytical results of outage probability coincide exactly with Monte-Carlo simulation results and outperform the previously reported upper bounds in the low and medium SNR regions.

  18. String propagation in an exact four-dimensional black hole background

    International Nuclear Information System (INIS)

    Mahapatra, S.

    1997-01-01

    We study string propagation in an exact, stringy, four-dimensional dyonic black hole background. The exact solutions in terms of elliptic functions describing string configurations in the J=0 limit are obtained by solving the string equations of motion and constraints. By using the covariant formalism, we also investigate the propagation of physical perturbations along the string in the given curved background. copyright 1997 The American Physical Society

  19. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  20. A conditionally exactly solvable generalization of the inverse square root potential

    Energy Technology Data Exchange (ETDEWEB)

    Ishkhanyan, A.M., E-mail: aishkhanyan@gmail.com [Institute for Physical Research, NAS of Armenia, Ashtarak 0203 (Armenia); Armenian State Pedagogical University, Yerevan 0010 (Armenia); Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation)

    2016-11-25

    We present a conditionally exactly solvable singular potential for the one-dimensional Schrödinger equation which involves the exactly solvable inverse square root potential. Each of the two fundamental solutions that compose the general solution of the problem is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. Discussing the bound-state wave functions vanishing both at infinity and in the origin, we derive the exact equation for the energy spectrum which is written using two Hermite functions of non-integer order. In specific auxiliary variables this equation becomes a mathematical equation that does not refer to a specific physical context discussed. In the two-dimensional space of these auxiliary variables the roots of this equation draw a countable infinite set of open curves with hyperbolic asymptotes. We present an analytic description of these curves by a transcendental algebraic equation for the involved variables. The intersections of the curves thus constructed with a certain cubic curve provide a highly accurate description of the energy spectrum. - Highlights: • We present a conditionally exactly solvable singular potential for 1D Schrödinger equation. • Each of the two fundamental solutions is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. • The exact equation for the energy spectrum is written using two Hermite functions that do not reduce to polynomials.

  1. Some exactly solvable models in quantum mechanics and the low energy expansions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Holden, H.; Gesztesy, F.

    We give an overview of recent results on exactly solvable models in quantum mechanics. In particular we discuss point interactions located at finitely or infinitely many centers, in one and three dimensions. Results about the resolvent, energy eigenvalues and resonances, scattering quantitites as well as eigenfunctions and corresponding low energy expansions are mentioned, with particular attention to the case of three-dimensional crystals. (orig.)

  2. Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying Over Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua

    2012-10-01

    In this correspondence, considering dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying over Nakagami- m fading channels, the cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) is derived. In particular, when the fading shape factors m1 and m2 at consecutive hops take non-integer values, the bivariate H-function and G -function are exploited to obtain an exact analytical expression for the CDF. The obtained CDF is then applied to evaluate the outage performance of the system under study. The analytical results of outage probability coincide exactly with Monte-Carlo simulation results and outperform the previously reported upper bounds in the low and medium SNR regions.

  3. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2017-11-01

    Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines

  4. Casimir interaction between a cylinder and a plate at finite temperature: Exact results and comparison to proximity force approximation

    International Nuclear Information System (INIS)

    Teo, L. P.

    2011-01-01

    We study the finite temperature Casimir interaction between a cylinder and a plate using the exact formula derived from the Matsubara representation and the functional determinant representation. We consider the scalar field with Dirichlet and Neumann boundary conditions. The asymptotic expansions of the Casimir free energy and the Casimir force when the separation a between the cylinder and the plate is small are derived. As in the zero temperature case, it is found that the leading terms of the Casimir free energy and the Casimir force agree with those derived from the proximity force approximation when rT>>1, where r is the radius of the cylinder. Specifically, when aT 5/2 whereas, for the Casimir force, it is of order T 7/2 . In this case, the leading terms are independent of the separation a. When 1 3/2 , whereas, for the force, it is inversely proportional to a 5/2 . The first order corrections to the proximity force approximations in different temperature regions are computed using the perturbation approach. In the zero temperature case, the results agree with those derived in [M. Bordag, Phys. Rev. D 73, 125018 (2006)].

  5. Exact reliability formula and bounds for general k-out-of-n systems

    International Nuclear Information System (INIS)

    Koucky, Miroslav

    2003-01-01

    The paper deals with reliability of general k-out-of-n systems whose component failures need not be independent and identically distributed. The result is an exact closed form reliability formula which is based on Feller's result. The formula is efficient and easy to use for manual and computer computations. The approximations for the system reliability are given and are useful when dealing with large systems. Two examples illustrate the use of the results

  6. Exact EGB models for spherical static perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hansraj, Sudan; Chilambwe, Brian; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2015-06-15

    We obtain a new exact solution to the field equations for a 5-dimensional spherically symmetric static distribution in the Einstein-Gauss-Bonnet modified theory of gravity. By using a transformation, the study is reduced to the analysis of a single second order nonlinear differential equation. In general the condition of pressure isotropy produces a first order differential equation which is an Abel equation of the second kind. An exact solution is found. The solution is examined for physical admissibility. In particular a set of constants is found which ensures that a pressure-free hypersurface exists which defines the boundary of the distribution. Additionally the isotropic pressure and the energy density are shown to be positive within the radius of the sphere. The adiabatic sound-speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution. On setting the Gauss-Bonnet coupling to zero, an exact solution for 5-dimensional perfect fluids in the standard Einstein theory is obtained. Plots of the dynamical quantities for the Gauss-Bonnet and the Einstein case reveal that the pressure is unaffected, while the energy density increases under the influence of the Gauss-Bonnet term. (orig.)

  7. Exact rebinning methods for three-dimensional PET.

    Science.gov (United States)

    Liu, X; Defrise, M; Michel, C; Sibomana, M; Comtat, C; Kinahan, P; Townsend, D

    1999-08-01

    The high computational cost of data processing in volume PET imaging is still hindering the routine application of this successful technique, especially in the case of dynamic studies. This paper describes two new algorithms based on an exact rebinning equation, which can be applied to accelerate the processing of three-dimensional (3-D) PET data. The first algorithm, FOREPROJ, is a fast-forward projection algorithm that allows calculation of the 3-D attenuation correction factors (ACF's) directly from a two-dimensional (2-D) transmission scan, without first reconstructing the attenuation map and then performing a 3-D forward projection. The use of FOREPROJ speeds up the estimation of the 3-D ACF's by more than a factor five. The second algorithm, FOREX, is a rebinning algorithm that is also more than five times faster, compared to the standard reprojection algorithm (3DRP) and does not suffer from the image distortions generated by the even faster approximate Fourier rebinning (FORE) method at large axial apertures. However, FOREX is probably not required by most existing scanners, as the axial apertures are not large enough to show improvements over FORE with clinical data. Both algorithms have been implemented and applied to data simulated for a scanner with a large axial aperture (30 degrees), and also to data acquired with the ECAT HR and the ECAT HR+ scanners. Results demonstrate the excellent accuracy achieved by these algorithms and the important speedup when the sinogram sizes are powers of two.

  8. Occupation times and exact asymptotics of small deviations of Bessel processes for Lp-norms with p>0

    International Nuclear Information System (INIS)

    Fatalov, V R

    2007-01-01

    We prove theorems on exact asymptotics of the distributions of integral functionals of the occupation time of Bessel processes. Using these results, we obtain exact asymptotics of small deviations for Bessel processes in the L p -norm. We use Laplace's method for the occupation times of Markov processes with continuous time. Computations are carried out for p=2 and p=1. We also solve extremal problems for the action functional

  9. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  10. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  11. General method and exact solutions to a generalized variable-coefficient two-dimensional KdV equation

    International Nuclear Information System (INIS)

    Chen, Yong; Shanghai Jiao-Tong Univ., Shangai; Chinese Academy of sciences, Beijing

    2005-01-01

    A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion

  12. Exactly energy conserving semi-implicit particle in cell formulation

    International Nuclear Information System (INIS)

    Lapenta, Giovanni

    2017-01-01

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These

  13. Exactly energy conserving semi-implicit particle in cell formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be

    2017-04-01

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These

  14. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    Energy Technology Data Exchange (ETDEWEB)

    Kamenov, O Y [Department of Applied Mathematics and Informatics, Technical University of Sofia, PO Box 384, 1000 Sofia (Bulgaria)], E-mail: okam@abv.bg

    2009-09-18

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): u{sub tt} = u{sub xx} + 3(u{sup 2}){sub xx} + u{sub xxxx} + {alpha}u{sub xxxxxx}, {alpha} in R, depending on the positive parameter {alpha}. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  15. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    Science.gov (United States)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  16. An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice

    International Nuclear Information System (INIS)

    Bezzola, Andri; Bales, Benjamin B.; Alkire, Richard C.; Petzold, Linda R.

    2014-01-01

    We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands

  17. An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice

    Energy Technology Data Exchange (ETDEWEB)

    Bezzola, Andri, E-mail: andri.bezzola@gmail.com [Mechanical Engineering Department, University of California, Santa Barbara, CA 93106 (United States); Bales, Benjamin B., E-mail: bbbales2@gmail.com [Mechanical Engineering Department, University of California, Santa Barbara, CA 93106 (United States); Alkire, Richard C., E-mail: r-alkire@uiuc.edu [Department of Chemical Engineering, University of Illinois, Urbana, IL 61801 (United States); Petzold, Linda R., E-mail: petzold@engineering.ucsb.edu [Mechanical Engineering Department and Computer Science Department, University of California, Santa Barbara, CA 93106 (United States)

    2014-01-01

    We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.

  18. Exact critical properties of two-dimensional polymer networks from conformal invariance

    International Nuclear Information System (INIS)

    Duplantier, B.

    1988-03-01

    An infinity of exact critical exponents for two-dimensional self-avoiding walks can be derived from conformal invariance and Coulomb gas techniques applied to the O(n) model and to the Potts model. They apply to polymer networks of any topology, for which a general scaling theory is given, valid in any dimension d. The infinite set of exponents has also been calculated to O(ε 2 ), for d=4-ε. The 2D study also includes other universality classes like the dense polymers, the Hamiltonian walks, the polymers at their θ-point. Exact correlation functions can be further given for Hamiltonian walks, and exact winding angle probability distributions for the self-avoiding walks

  19. Exact solutions to chaotic and stochastic systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.; Guerrero, L. E.

    2001-03-01

    We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of these functions can produce truly random numbers. For the first time, we present solutions to random maps. This allows us to check, analytically, some recent results about the complexity of random dynamical systems. We confirm the result that a negative Lyapunov exponent does not imply predictability in random systems. We test the effectiveness of forecasting methods in distinguishing between chaotic and random time series. Using the explicit random functions, we can give explicit analytical formulas for the output signal in some systems with stochastic resonance. We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our models we can predict specific patterns in the output signal of stochastic resonance systems.

  20. Strong-coupling expansion for the momentum distribution of the Bose-Hubbard model with benchmarking against exact numerical results

    International Nuclear Information System (INIS)

    Freericks, J. K.; Krishnamurthy, H. R.; Kato, Yasuyuki; Kawashima, Naoki; Trivedi, Nandini

    2009-01-01

    A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator-to-superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.

  1. Exact results for corner contributions to the entanglement entropy and Rényi entropies of free bosons and fermions in 3d

    Directory of Open Access Journals (Sweden)

    Henriette Elvang

    2015-10-01

    Full Text Available In the presence of a sharp corner in the boundary of the entanglement region, the entanglement entropy (EE and Rényi entropies for 3d CFTs have a logarithmic term whose coefficient, the corner function, is scheme-independent. In the limit where the corner becomes smooth, the corner function vanishes quadratically with coefficient σ for the EE and σn for the Rényi entropies. For a free real scalar and a free Dirac fermion, we evaluate analytically the integral expressions of Casini, Huerta, and Leitao to derive exact results for σ and σn for all n=2,3,… . The results for σ agree with a recent universality conjecture of Bueno, Myers, and Witczak-Krempa that σ/CT=π2/24 in all 3d CFTs, where CT is the central charge. For the Rényi entropies, the ratios σn/CT do not indicate similar universality. However, in the limit n→∞, the asymptotic values satisfy a simple relationship and equal 1/(4π2 times the asymptotic values of the free energy of free scalars/fermions on the n-covered 3-sphere.

  2. Exact evaluation of the rates of electrostatic decay and scattering off thermal ions for an unmagnetized Maxwellian plasma

    Energy Technology Data Exchange (ETDEWEB)

    Layden, B.; Cairns, Iver H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-15

    Electrostatic decay of Langmuir waves into Langmuir and ion sound waves (L→L′+S) and scattering of Langmuir waves off thermal ions (L+i→L′+i′, also called “nonlinear Landau damping”) are important nonlinear weak-turbulence processes. The rates for these processes depend on the quadratic longitudinal response function α{sup (2)} (or, equivalently, the quadratic longitudinal susceptibility χ{sup (2)}), which describes the second-order response of a plasma to electrostatic wave fields. Previous calculations of these rates for an unmagnetized Maxwellian plasma have relied upon an approximate form for α{sup (2)} that is valid where two of the wave fields are fast (i.e., v{sub φ}=ω/k≫V{sub e} where ω is the angular frequency, k is the wavenumber, and V{sub e} is the electron thermal speed) and one is slow (v{sub φ}≪V{sub e}). Recently, an exact expression was derived for α{sup (2)} that is valid for any phase speeds of the three waves in an unmagnetized Maxwellian plasma. Here, this exact α{sup (2)} is applied to the calculation of the three-dimensional rates for electrostatic decay and scattering off thermal ions, and the resulting exact rates are compared with the approximate rates. The calculations are performed using previously derived three-dimensional rates for electrostatic decay given in terms of a general α{sup (2)}, and newly derived three-dimensional rates for scattering off thermal ions; the scattering rate is derived assuming a Maxwellian ion distribution, and both rates are derived assuming arc distributions for the wave spectra. For most space plasma conditions, the approximate rate is found to be accurate to better than 20%; however, for sufficiently low Langmuir phase speeds (v{sub φ}/V{sub e}≈3) appropriate to some spatial domains of the foreshock regions of planetary bow shocks and type II solar radio bursts, the use of the exact rate may be necessary for accurate calculations. The relative rates of electrostatic decay

  3. A BEHAVIORAL-APPROACH TO LINEAR EXACT MODELING

    NARCIS (Netherlands)

    ANTOULAS, AC; WILLEMS, JC

    1993-01-01

    The behavioral approach to system theory provides a parameter-free framework for the study of the general problem of linear exact modeling and recursive modeling. The main contribution of this paper is the solution of the (continuous-time) polynomial-exponential time series modeling problem. Both

  4. Exact Finite-Difference Schemes for d-Dimensional Linear Stochastic Systems with Constant Coefficients

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2013-01-01

    Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.

  5. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Directory of Open Access Journals (Sweden)

    Matthew J Simpson

    Full Text Available Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0Comparing our exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i the rate at which the domain elongates, (ii the diffusivity associated with the spreading density profile, (iii the reaction rate, and (iv the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t.

  6. Exact exchange potential for slabs: Asymptotic behavior of the Krieger-Li-Iafrate approximation

    Science.gov (United States)

    Engel, Eberhard

    2018-02-01

    The Krieger-Li-Iafrate (KLI) approximation for the exact exchange (EXX) potential of density functional theory is investigated far outside the surface of slabs. For large z the Slater component of the EXX/KLI potential falls off as -1 /z , where z is the distance to the surface of a slab parallel to the x y plane. The Slater potential thus reproduces the behavior of the exact EXX potential. Here it is demonstrated that the second component of the EXX/KLI potential, often called the orbital-shift term, is also proportional to 1 /z for large z , at least in general. This result is obtained by an analytical evaluation of the Brillouin zone integrals involved, relying on the exponential decay of the states into the vacuum. Several situations need to be distinguished in the Brillouin zone integration, depending on the band structure of the slab. In all standard situations, including such prominent cases as graphene and Si(111) slabs, however, a 1 /z dependence of the orbital-shift potential is obtained to leading order. The complete EXX/KLI potential therefore does not reproduce the asymptotic behavior of the exact EXX potential.

  7. Comparing Results from Constant Comparative and Computer Software Methods: A Reflection about Qualitative Data Analysis

    Science.gov (United States)

    Putten, Jim Vander; Nolen, Amanda L.

    2010-01-01

    This study compared qualitative research results obtained by manual constant comparative analysis with results obtained by computer software analysis of the same data. An investigated about issues of trustworthiness and accuracy ensued. Results indicated that the inductive constant comparative data analysis generated 51 codes and two coding levels…

  8. The Problem of Understanding of Nature in Exact Science

    Directory of Open Access Journals (Sweden)

    Leo Näpinen

    2014-10-01

    Full Text Available In this short inquiry I would like to defend the statement that exact science deals with the explanation of models, but not with the understanding (comprehending of nature. By the word ‘nature’ I mean nature as physis (as a self-moving and self-developing living organism to which humans also belong, not nature as natura naturata (as a nonevolving creature created by someone or something. The Estonian philosopher of science Rein Vihalemm (2008 has shown with his conception of phi-science (φ-science that exact science is itself an idealized model or theoretical object derived from Galilean mathematical physics.

  9. Quasi-exact solvability of the one-dimensional Holstein model

    International Nuclear Information System (INIS)

    Pan Feng; Dai Lianrong; Draayer, J P

    2006-01-01

    The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is solved by using a Bethe ansatz in analogue to that for the one-dimensional spinless Fermi-Hubbard model. Excitation energies and the corresponding wavefunctions of the model are determined by a set of partial differential equations. It is shown that the model is, at least, quasi-exactly solvable for the two-site case, when the phonon frequency, the electron-phonon coupling strength and the hopping integral satisfy certain relations. As examples, some quasi-exact solutions of the model for the two-site case are derived. (letter to the editor)

  10. Exact solution of matricial Φ23 quantum field theory

    Science.gov (United States)

    Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar

    2017-12-01

    We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.

  11. Exact Markov chains versus diffusion theory for haploid random mating.

    Science.gov (United States)

    Tyvand, Peder A; Thorvaldsen, Steinar

    2010-05-01

    Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck. 2010 Elsevier Inc. All rights reserved.

  12. Cubic and quartic planar differential systems with exact algebraic limit cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Bendjeddou

    2011-01-01

    Full Text Available We construct cubic and quartic polynomial planar differential systems with exact limit cycles that are ovals of algebraic real curves of degree four. The result obtained for the cubic case generalizes a proposition of [9]. For the quartic case, we deduce for the first time a class of systems with four algebraic limit cycles and another for which nested configurations of limit cycles occur.

  13. Toward Exact Number: Young Children Use One-to-one Correspondence to Measure Set Identity but not Numerical Equality

    Science.gov (United States)

    Izard, Véronique; Streri, Arlette; Spelke, Elizabeth S.

    2014-01-01

    Exact integer concepts are fundamental to a wide array of human activities, but their origins are obscure. Some have proposed that children are endowed with a system of natural number concepts, whereas others have argued that children construct these concepts by mastering verbal counting or other numeric symbols. This debate remains unresolved, because it is difficult to test children’s mastery of the logic of integer concepts without using symbols to enumerate large sets, and the symbols themselves could be a source of difficulty for children. Here, we introduce a new method, focusing on large quantities and avoiding the use of words or other symbols for numbers, to study children’s understanding of an essential property underlying integer concepts: the relation of exact numerical equality. Children aged 32-36 months, who possessed no symbols for exact numbers beyond 4, were given one-to-one correspondence cues to help them track a set of puppets, and their enumeration of the set was assessed by a non-verbal manual search task. Children used one-to-one correspondence relations to reconstruct exact quantities in sets of 5 or 6 objects, as long as the elements forming the sets remained the same individuals. In contrast, they failed to track exact quantities when one element was added, removed, or substituted for another. These results suggest an alternative to both nativist and symbol-based constructivist theories of the development of natural number concepts: Before learning symbols for exact numbers, children have a partial understanding of the properties of exact numbers. PMID:24680885

  14. Exact Path Integral for 3D Quantum Gravity.

    Science.gov (United States)

    Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji

    2015-10-16

    Three-dimensional Euclidean pure gravity with a negative cosmological constant can be formulated in terms of the Chern-Simons theory, classically. This theory can be written in a supersymmetric way by introducing auxiliary gauginos and scalars. We calculate the exact partition function of this Chern-Simons theory by using the localization technique. Thus, we obtain the quantum gravity partition function, assuming that it can be obtained nonperturbatively by summing over partition functions of the Chern-Simons theory on topologically different manifolds. The resultant partition function is modular invariant, and, in the case in which the central charge is expected to be 24, it is the J function, predicted by Witten.

  15. Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Sun Chengfeng; Gao Hongjun

    2009-01-01

    The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.

  16. Exact Symbol Error Probability of Cross-QAM in AWGN and Fading Channels

    Directory of Open Access Journals (Sweden)

    Zhang Xi-chun

    2010-01-01

    Full Text Available The exact symbol error probability (SEP performance of -ary cross quadrature amplitude modulation (QAM in additive white Gaussian noise (AWGN channel and fading channels, including Rayleigh, Nakagami-m, Rice, and Nakagami-q (Hoyt channels, is analyzed. The obtained closed-form SEP expressions contain a finite (in proportion to sum of single integrals with finite limits and an integrand composed of elementary (exponential, trigonometric, and/or power functions, thus readily enabling numerical evaluation. Particularly, Gaussian -function is a special case of these integrals and is included in the SEP expressions. Simple and very precise approximations, which contain only Gaussian -function for AWGN channel and contain three terms of the single integrals mentioned above for fading channels, respectively, are also given. The analytical expressions show excellent agreement with the simulation results, and numerical evaluation with the proposed expressions reveals that cross QAM can obtain at least 1.1 dB gain compared to rectangular QAM when SEP < 0.3 in all the considered channels.

  17. Semiclassical versus exact quantization of the Sinh-Gordon model

    Energy Technology Data Exchange (ETDEWEB)

    Grossehelweg, Juliane

    2009-12-15

    In this work we investigate the semiclassics of the Sinh-Gordon model. The Sinh-Gordon model is integrable, its explicit solutions of the classical and the quantum model are well known. This allows for a comprehensive investigation of the semiclassical quantization of the classical model as well as of the semiclassical limit of the exact quantum solution. Semiclassical means in this case that the key objects of quantum theory are constructed as formal power series. A quantity playing an important role in the quantum theory is the Q-function. The purpose of this work is to investigate to what extend the classical integrability of the model admits of a construction of the semiclassical expansion of the Q-function. Therefore we used two conceptual independent approaches. In the one approach we start from the exact nonperturbative solution of the quantum model and calculate the semiclassical limit up to the next to leading order. Thereby we found the spectral curve, as well as the semiclassical expansion of the Q-function and of the eigenvalue of the monodromy matrix. In the other approach we constructed the first two orders of the semiclassical expansion of the Q-function, starting from the classical solution theory. The results of both approaches coincide. (orig.)

  18. Exact renormalization group as a scheme for calculations

    International Nuclear Information System (INIS)

    Mack, G.

    1985-10-01

    In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)

  19. New types of exact solutions for a breaking soliton equation

    International Nuclear Information System (INIS)

    Mei Jianqin; Zhang Hongqing

    2004-01-01

    In this paper based on a system of Riccati equations, we present a newly generally projective Riccati equation expansion method and its algorithm, which can be used to construct more new exact solutions of nonlinear differential equations in mathematical physics. A typical breaking soliton equation is chosen to illustrate our algorithm such that more families of new exact solutions are obtained, which contain soliton-like solutions and periodic solutions. This algorithm can also be applied to other nonlinear differential equations

  20. Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models

    Science.gov (United States)

    Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil

    2018-02-01

    We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.

  1. Exact error estimation for solutions of nuclide chain equations

    International Nuclear Information System (INIS)

    Tachihara, Hidekazu; Sekimoto, Hiroshi

    1999-01-01

    The exact solution of nuclide chain equations within arbitrary figures is obtained for a linear chain by employing the Bateman method in the multiple-precision arithmetic. The exact error estimation of major calculation methods for a nuclide chain equation is done by using this exact solution as a standard. The Bateman, finite difference, Runge-Kutta and matrix exponential methods are investigated. The present study confirms the following. The original Bateman method has very low accuracy in some cases, because of large-scale cancellations. The revised Bateman method by Siewers reduces the occurrence of cancellations and thereby shows high accuracy. In the time difference method as the finite difference and Runge-Kutta methods, the solutions are mainly affected by the truncation errors in the early decay time, and afterward by the round-off errors. Even though the variable time mesh is employed to suppress the accumulation of round-off errors, it appears to be nonpractical. Judging from these estimations, the matrix exponential method is the best among all the methods except the Bateman method whose calculation process for a linear chain is not identical with that for a general one. (author)

  2. The generalized tanh method to obtain exact solutions of nonlinear partial differential equation

    OpenAIRE

    Gómez, César

    2007-01-01

    In this paper, we present the generalized tanh method to obtain exact solutions of nonlinear partial differential equations, and we obtain solitons and exact solutions of some important equations of the mathematical physics.

  3. Stochastic approximation Monte Carlo importance sampling for approximating exact conditional probabilities

    KAUST Repository

    Cheon, Sooyoung

    2013-02-16

    Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305-320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom. © 2013 Springer Science+Business Media New York.

  4. Stochastic approximation Monte Carlo importance sampling for approximating exact conditional probabilities

    KAUST Repository

    Cheon, Sooyoung; Liang, Faming; Chen, Yuguo; Yu, Kai

    2013-01-01

    Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305-320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom. © 2013 Springer Science+Business Media New York.

  5. Exact classical scaling formalism for nonreactive processes

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1981-01-01

    A general nonreactive collision system is considered with internal molecular variables (p, r) and/or (I, theta) of arbitrary dimensions and relative translational variables (P, R) of three or less dimensions. We derive an exact classical scaling formalism which relates the collisional change in any function of molecular variables directly to the initial values of these variables. The collision dynamics is then described by an explicit function of the initial point in the internal molecular phase space, for a fixed point in the relative translational phase space. In other words, the systematic variation of the internal molecular properties (e.g., actions and average internal kinetic energies) is given as a function of the initial internal action-angle variables. A simple three term approximation to the exact formalism is derived, the natural variables of which are the internal action I and internal linear momenta p. For the final average internal kinetic energies T, the result is T-T/sup( 0 ) = α+βp/sup( 0 )+γI/sup( 0 ), where the superscripted ''0'' indicates the initial value. The parameters α, β, and γ in this scaling theory are directly related to the moments of the change in average internal kinetic energy. Utilizing a very limited number of input moments generated from classical trajectory calculations, the scaling can be used to predict the entire distribution of final internal variables as a function of initial internal actions and linear momenta. Initial examples for atom--collinear harmonic oscillator collision systems are presented in detail, with the scaling predictions (e.g., moments and quasiclassical histogram transition probabilities) being generally very good to excellent quantitatively

  6. The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Liu Chunping; Liu Xiaoping

    2004-01-01

    First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions

  7. Exact, almost and delayed fault detection: An observer based approach

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    This paper consider the problem of fault detection and isolation in continuous- and discrete-time systems while using zero or almost zero threshold. A number of different fault detections and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability...... conditions are given for the formulated design problems together with methods for appropriate design of observer based fault detectors. The l-step delayed fault detection problem is also considered for discrete-time systems . Moreover, certain indirect fault detection methods such as unknown input observers...

  8. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    International Nuclear Information System (INIS)

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-01-01

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n) , n= 1, …, N are constructed via Zakharov and Manakov ∂-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by ∂-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n) . It is shown that the sums u=u (k 1 ) +...+u (k m ) , 1 ⩽k 1 2 m ⩽N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  9. Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases

    Science.gov (United States)

    Chiu, Y. T.; Hilton, H. H.

    1977-01-01

    Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.

  10. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    Science.gov (United States)

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  11. An Exact Solution to the Central Core Model of the Renal Medulla

    Science.gov (United States)

    Mickens, Ronald E.

    1998-11-01

    The central core model of the renal medulla provides a mathematical representation of the urine concentration mechanism. The model consists of eight coupled, nonlinear ODE's subject to certain initial and boundary conditions. Many investigators have studied the properties of the solutions to these equations, however no general analytic solution is known to exist. Thus, special exact solutions assume a position of significance by providing a basis for insight into the understanding of more realistic models used to analyze actual data. We calculate an exact solution for the case in which the water permeabilities are zero and a particular, but realistic, functional form is used for the metabolic pump. A detailed discussion will be given for the results obtained on the four cencentration and four flux functions that define the model. If invited to do so, the author is willing to expand the talk for the above abstract to twenty minutes.

  12. Exact solutions to the supply chain equations for arbitrary, time-dependent demands

    DEFF Research Database (Denmark)

    Warburton, Roger D.H.; Hodgson, J.P.E.; Nielsen, Erland Hejn

    2014-01-01

    , so users can determine the inventory behavior to any desired precision. To illustrate, we solve the equations for a non-linear, quadratic time-dependence in the demand. For practical use, only a few terms in the series are required, a proposition illustrated by the For All Practical Purposes (FAPP......We study the impact on inventory of an unexpected, non-linear, time-dependent demand and present the exact solutions over time to the supply chain equations without requiring any approximations. We begin by imposing a boundary condition of stability at infinity, from which we derive expressions...... for the estimated demand and the target work in progress when the demand is time-dependent. The resulting inventory equation is solved in terms of the Lambert modes with all of the demand non-linearities confined to the pre-shape function. The series solution is exact, and all terms are reasonably easy to calculate...

  13. The First-Integral Method and Abundant Explicit Exact Solutions to the Zakharov Equations

    Directory of Open Access Journals (Sweden)

    Yadong Shang

    2012-01-01

    Full Text Available This paper is concerned with the system of Zakharov equations which involves the interactions between Langmuir and ion-acoustic waves in plasma. Abundant explicit and exact solutions of the system of Zakharov equations are derived uniformly by using the first integral method. These exact solutions are include that of the solitary wave solutions of bell-type for n and E, the solitary wave solutions of kink-type for E and bell-type for n, the singular traveling wave solutions, periodic wave solutions of triangle functions, Jacobi elliptic function doubly periodic solutions, and Weierstrass elliptic function doubly periodic wave solutions. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial differential equations.

  14. Formulations and exact algorithms for the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Kallehauge, Brian

    2008-01-01

    In this paper we review the exact algorithms proposed in the last three decades for the solution of the vehicle routing problem with time windows (VRPTW). The exact algorithms for the VRPTW are in many aspects inherited from work on the traveling salesman problem (TSP). In recognition of this fact...

  15. Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares

    International Nuclear Information System (INIS)

    Gurin, Péter; Varga, Szabolcs

    2015-01-01

    We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluid layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore

  16. Simultaneous exact controllability for Maxwell equations and for a second-order hyperbolic system

    Directory of Open Access Journals (Sweden)

    Boris V. Kapitonov

    2010-02-01

    Full Text Available We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modified multipliers in order to generate a necessary observability estimate which allow us to use the Hilbert Uniqueness Method (HUM introduced by Lions.

  17. Efficiently computing exact geodesic loops within finite steps.

    Science.gov (United States)

    Xin, Shi-Qing; He, Ying; Fu, Chi-Wing

    2012-06-01

    Closed geodesics, or geodesic loops, are crucial to the study of differential topology and differential geometry. Although the existence and properties of closed geodesics on smooth surfaces have been widely studied in mathematics community, relatively little progress has been made on how to compute them on polygonal surfaces. Most existing algorithms simply consider the mesh as a graph and so the resultant loops are restricted only on mesh edges, which are far from the actual geodesics. This paper is the first to prove the existence and uniqueness of geodesic loop restricted on a closed face sequence; it contributes also with an efficient algorithm to iteratively evolve an initial closed path on a given mesh into an exact geodesic loop within finite steps. Our proposed algorithm takes only an O(k) space complexity and an O(mk) time complexity (experimentally), where m is the number of vertices in the region bounded by the initial loop and the resultant geodesic loop, and k is the average number of edges in the edge sequences that the evolving loop passes through. In contrast to the existing geodesic curvature flow methods which compute an approximate geodesic loop within a predefined threshold, our method is exact and can apply directly to triangular meshes without needing to solve any differential equation with a numerical solver; it can run at interactive speed, e.g., in the order of milliseconds, for a mesh with around 50K vertices, and hence, significantly outperforms existing algorithms. Actually, our algorithm could run at interactive speed even for larger meshes. Besides the complexity of the input mesh, the geometric shape could also affect the number of evolving steps, i.e., the performance. We motivate our algorithm with an interactive shape segmentation example shown later in the paper.

  18. Exact Solutions of the Harry-Dym Equation

    International Nuclear Information System (INIS)

    Mokhtari, Reza

    2011-01-01

    The aim of this paper is to generate exact travelling wave solutions of the Harry-Dym equation through the methods of Adomian decomposition, He's variational iteration, direct integration, and power series. We show that the two later methods are more successful than the two former to obtain more solutions of the equation. (general)

  19. LipidPioneer : A Comprehensive User-Generated Exact Mass Template for Lipidomics

    Science.gov (United States)

    Ulmer, Candice Z.; Koelmel, Jeremy P.; Ragland, Jared M.; Garrett, Timothy J.; Bowden, John A.

    2017-03-01

    Lipidomics, the comprehensive measurement of lipid species in a biological system, has promising potential in biomarker discovery and disease etiology elucidation. Advances in chromatographic separation, mass spectrometric techniques, and novel substrate applications continue to expand the number of lipid species observed. The total number and type of lipid species detected in a given sample are generally indicative of the sample matrix examined (e.g., serum, plasma, cells, bacteria, tissue, etc.). Current exact mass lipid libraries are static and represent the most commonly analyzed matrices. It is common practice for users to manually curate their own lists of lipid species and adduct masses; however, this process is time-consuming. LipidPioneer, an interactive template, can be used to generate exact masses and molecular formulas of lipid species that may be encountered in the mass spectrometric analysis of lipid profiles. Over 60 lipid classes are present in the LipidPioneer template and include several unique lipid species, such as ether-linked lipids and lipid oxidation products. In the template, users can add any fatty acyl constituents without limitation in the number of carbons or degrees of unsaturation. LipidPioneer accepts naming using the lipid class level (sum composition) and the LIPID MAPS notation for fatty acyl structure level. In addition to lipid identification, user-generated lipid m/z values can be used to develop inclusion lists for targeted fragmentation experiments. Resulting lipid names and m/z values can be imported into software such as MZmine or Compound Discoverer to automate exact mass searching and isotopic pattern matching across experimental data.

  20. An improved exact inversion formula for solenoidal fields in cone beam vector tomography

    Science.gov (United States)

    Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas

    2017-06-01

    In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.

  1. New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Yang Qin; Dai Chaoqing; Zhang Jiefang

    2005-01-01

    Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.

  2. An Exact Line Integral Representation of the Magnetic Physical Optics Scattered Field

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2003-01-01

    An exact line integral representation is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by electric or magnetic Hertzian dipoles. The positions of source and observation points can be almost arbitrary. Numerical examples...... are presented to illustrate the exactness of the line integral representation....

  3. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  4. Dichotomous Markov Noise:. Exact Results for Out-Of Systems

    Science.gov (United States)

    Bena, Ioana

    Nonequilibrium systems driven by additive or multiplicative dichotomous Markov noise appear in a wide variety of physical and mathematical models. We review here some prototypical examples, with an emphasis on analytically-solvable situations. In particular, it has escaped attention till recently that the standard results for the long-time properties of such systems cannot be applied when unstable fixed points are crossed in the asymptotic regime. We show how calculations have to be modified to deal with these cases and present a few relevant applications — the hypersensitive transport, the rocking ratchet, and the stochastic Stokes' drift. These results reinforce the impression that dichotomous noise can be put on par with Gaussian white noise as far as obtaining analytical results is concerned. They convincingly illustrate the interplay between noise and nonlinearity in generating nontrivial behaviors of nonequilibrium systems and point to various practical applications.

  5. Exact travelling wave solutions for some important nonlinear ...

    Indian Academy of Sciences (India)

    The study of nonlinear partial differential equations is an active area of research in applied mathematics, theoretical physics and engineering fields. In particular ... In [16–18], the author applied this method to construct the exact solutions of.

  6. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  7. STELLAR: fast and exact local alignments

    Directory of Open Access Journals (Sweden)

    Weese David

    2011-10-01

    Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

  8. Multishell method: Exact treatment of a cluster in an effective medium

    International Nuclear Information System (INIS)

    Gonis, A.; Garland, J.W.

    1977-01-01

    A method is presented for the exact determination of the Green's function of a cluster embedded in a given effective medium. This method, the multishell method, is applicable even to systems with off-diagonal disorder, extended-range hopping, multiple bands, and/or hybridization, and is computationally practicable for any system described by a tight-binding or interpolation-scheme Hamiltonian. It allows one to examine the effects of local environment on the densities of states and site spectral weight functions of disordered systems. For any given analytic effective medium characterized by a non-negative density of states the method yields analytic cluster Green's functions and non-negative site spectral weight functions. Previous methods used for the calculation of the Green's function of a cluster embedded in a given effective medium have not been exact. The results of numerical calculations for model systems show that even the best of these previous methods can lead to substantial errors, at least for small clusters in two- and three-dimensional lattices. These results also show that fluctuations in local environment have large effects on site spectral weight functions, even in cases in which the single-site coherent-potential approximation yields an accurate overall density of states

  9. The exact fundamental solution for the Benes tracking problem

    Science.gov (United States)

    Balaji, Bhashyam

    2009-05-01

    The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.

  10. Exact wavefunctions for a time-dependent Coulomb potential

    International Nuclear Information System (INIS)

    Menouar, S; Maamache, M; Saadi, Y; Choi, J R

    2008-01-01

    The one-dimensional Schroedinger equation associated with a time-dependent Coulomb potential is studied. The invariant operator method (Lewis and Riesenfeld) and unitary transformation approach are employed to derive quantum solutions of the system. We obtain an ordinary second-order differential equation whose analytical exact solution has been unknown. It is confirmed that the form of this equation is similar to the radial Schroedinger equation for the hydrogen atom in a (arbitrary) strong magnetic field. The qualitative properties for the eigenstates spectrum are described separately for the different values of the parameter ω 0 appearing in the x 2 term, x being the position, i.e., ω 0 > 0, ω 0 0 = 0. For the ω 0 = 0 case, the eigenvalue equation of invariant operator reduces to a solvable form and, consequently, we have provided exact eigenstates of the time-dependent Hamiltonian system

  11. The modified simplest equation method to look for exact solutions of nonlinear partial differential equations

    OpenAIRE

    Efimova, Olga Yu.

    2010-01-01

    The modification of simplest equation method to look for exact solutions of nonlinear partial differential equations is presented. Using this method we obtain exact solutions of generalized Korteweg-de Vries equation with cubic source and exact solutions of third-order Kudryashov-Sinelshchikov equation describing nonlinear waves in liquids with gas bubbles.

  12. New method for exact measurement of thermal neutron distribution in elementary cell

    International Nuclear Information System (INIS)

    Takac, S.M.; Krcevinac, S.B.

    1966-06-01

    Exact measurement of thermal neutron density distribution in an elementary cell necessitates the knowledge of the perturbations involved in the cell by the measuring device. A new method has been developed in which a special stress is made to evaluate these perturbations by measuring the response from the perturbations introduced in the elementary cell. The unperturbed distribution was obtained by extrapolation to zero perturbation. The final distributions for different lattice pitches were compared with a THERMOS-type calculation. As a pleasing fact a very good agreement has been reached, which dissolves the long existing disagreement between THERMOS calculations and measured density distribution (author)

  13. New method for exact measurement of thermal neutron distribution in elementary cell

    Energy Technology Data Exchange (ETDEWEB)

    Takac, S M; Krcevinac, S B [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-06-15

    Exact measurement of thermal neutron density distribution in an elementary cell necessitates the knowledge of the perturbations involved in the cell by the measuring device. A new method has been developed in which a special stress is made to evaluate these perturbations by measuring the response from the perturbations introduced in the elementary cell. The unperturbed distribution was obtained by extrapolation to zero perturbation. The final distributions for different lattice pitches were compared with a THERMOS-type calculation. As a pleasing fact a very good agreement has been reached, which dissolves the long existing disagreement between THERMOS calculations and measured density distribution (author)

  14. Exactly soluble two-state quantum models with linear couplings

    International Nuclear Information System (INIS)

    Torosov, B T; Vitanov, N V

    2008-01-01

    A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of π/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model

  15. Exact and Heuristic Algorithms for Runway Scheduling

    Science.gov (United States)

    Malik, Waqar A.; Jung, Yoon C.

    2016-01-01

    This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.

  16. Exact analysis of Packet Reversed Packet Combining Scheme and Modified Packet Combining Scheme; and a combined scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2007-07-01

    Packet combining scheme is a well defined simple error correction scheme for the detection and correction of errors at the receiver. Although it permits a higher throughput when compared to other basic ARQ protocols, packet combining (PC) scheme fails to correct errors when errors occur in the same bit locations of copies. In a previous work, a scheme known as Packet Reversed Packet Combining (PRPC) Scheme that will correct errors which occur at the same bit location of erroneous copies, was studied however PRPC does not handle a situation where a packet has more than 1 error bit. The Modified Packet Combining (MPC) Scheme that can correct double or higher bit errors was studied elsewhere. Both PRPC and MPC schemes are believed to offer higher throughput in previous studies, however neither adequate investigation nor exact analysis was done to substantiate this claim of higher throughput. In this work, an exact analysis of both PRPC and MPC is carried out and the results reported. A combined protocol (PRPC and MPC) is proposed and the analysis shows that it is capable of offering even higher throughput and better error correction capability at high bit error rate (BER) and larger packet size. (author)

  17. An exact solution for quantum tunneling in a dissipative system

    International Nuclear Information System (INIS)

    Yu, L.H.

    1996-01-01

    Applying a technique developed recently for a harmonic oscillator coupled to a bath of harmonic oscillators, we present an exact solution for the tunneling problem in an Ohmic dissipative system with inverted harmonic potential. The result shows that while the dissipation tends to suppress the tunneling, the Brownian motion tends to enhance the tunneling. Whether the tunneling rate increases or not would then depend on the initial conditions. We give a specific formula to calculate the tunneling probability determined by various parameters and the initial conditions

  18. Exact distributions of two-sample rank statistics and block rank statistics using computer algebra

    NARCIS (Netherlands)

    Wiel, van de M.A.

    1998-01-01

    We derive generating functions for various rank statistics and we use computer algebra to compute the exact null distribution of these statistics. We present various techniques for reducing time and memory space used by the computations. We use the results to write Mathematica notebooks for

  19. Accurate characterization of 3D diffraction gratings using time domain discontinuous Galerkin method with exact absorbing boundary conditions

    KAUST Repository

    Sirenko, Kostyantyn

    2013-07-01

    Exact absorbing and periodic boundary conditions allow to truncate grating problems\\' infinite physical domains without introducing any errors. This work presents exact absorbing boundary conditions for 3D diffraction gratings and describes their discretization within a high-order time-domain discontinuous Galerkin finite element method (TD-DG-FEM). The error introduced by the boundary condition discretization matches that of the TD-DG-FEM; this results in an optimal solver in terms of accuracy and computation time. Numerical results demonstrate the superiority of this solver over TD-DG-FEM with perfectly matched layers (PML)-based domain truncation. © 2013 IEEE.

  20. Exactly solvable nonequilibrium Langevin relaxation of a trapped nanoparticle

    International Nuclear Information System (INIS)

    Salazar, Domingos S P; Lira, Sérgio A

    2016-01-01

    In this work, we study the nonequilibrium statistical properties of the relaxation dynamics of a nanoparticle trapped in a harmonic potential. We report an exact time-dependent analytical solution to the Langevin dynamics that arises from the stochastic differential equation of our system’s energy in the underdamped regime. By utilizing this stochastic thermodynamics approach, we are able to completely describe the heat exchange process between the nanoparticle and the surrounding environment. As an important consequence of our results, we observe the validity of the heat exchange fluctuation theorem in our setup, which holds for systems arbitrarily far from equilibrium conditions. By extending our results for the case of N noninterating nanoparticles, we perform analytical asymptotic limits and direct numerical simulations that corroborate our analytical predictions. (paper)

  1. Canonical transformations and exact invariants for dissipative systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1986-01-01

    A simple treatment to the problem of finding exact invariants and related auxiliary equations for time-dependent oscillators with friction is presented. The treatment is based on the use of a time-dependent canonical transformation and an auxiliary transformation. (Author) [pt

  2. Exact Solutions of Five Complex Nonlinear Schrödinger Equations by Semi-Inverse Variational Principle

    International Nuclear Information System (INIS)

    Najafi Mohammad; Arbabi Somayeh

    2014-01-01

    In this paper, we establish exact solutions for five complex nonlinear Schrödinger equations. The semi-inverse variational principle (SVP) is used to construct exact soliton solutions of five complex nonlinear Schrödinger equations. Many new families of exact soliton solutions of five complex nonlinear Schrödinger equations are successfully obtained. (general)

  3. A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Xing Yuxiang; Zhang Li; Kang Kejun; Wang Ge

    2006-01-01

    In recent years, image reconstruction methods for cone-beam computed tomography (CT) have been extensively studied. However, few of these studies discussed computing parallel-beam projections from cone-beam projections. In this paper, we focus on the exact synthesis of complete or incomplete parallel-beam projections from cone-beam projections. First, an extended central slice theorem is described to establish a relationship between the Radon space and the Fourier space. Then, data sufficiency conditions are proposed for computing parallel-beam projection data from cone-beam data. Using these results, a general filtered backprojection algorithm is formulated that can exactly synthesize parallel-beam projection data from cone-beam projection data. As an example, we prove that parallel-beam projections can be exactly synthesized in an angular range in the case of circular cone-beam scanning. Interestingly, this angular range is larger than that derived in the Feldkamp reconstruction framework. Numerical experiments are performed in the circular scanning case to verify our method

  4. Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Neto, J.F.S.; Lima, K.A.L.; Carvalho, P.R.S. [Universidade Federal do Piaui, Departamento de Fisica, Teresina, PI (Brazil); Sena-Junior, M.I. [Universidade de Pernambuco, Escola Politecnica de Pernambuco, Recife, PE (Brazil); Universidade Federal de Alagoas, Instituto de Fisica, Maceio, AL (Brazil)

    2017-12-15

    We probe the two-scale-factor universality hypothesis by evaluating, firstly explicitly and analytically at the one-loop order, the loop quantum corrections to the amplitude ratios for O(N)λφ{sup 4} scalar field theories with rotation symmetry breaking in three distinct and independent methods in which the rotation symmetry-breaking mechanism is treated exactly. We show that the rotation symmetry-breaking amplitude ratios turn out to be identical in the three methods and equal to their respective rotation symmetry-breaking ones, although the amplitudes themselves, in general, depend on the method employed and on the rotation symmetry-breaking parameter. At the end, we show that all these results can be generalized, through an inductive process based on a general theorem emerging from the exact calculation, to any loop level and physically interpreted based on symmetry ideas. (orig.)

  5. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  6. Exact Rational Expectations, Cointegration, and Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  7. Exact rational expectations, cointegration, and reduced rank regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  8. Exact rational expectations, cointegration, and reduced rank regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    2008-01-01

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  9. Exact time-dependent exchange-correlation potentials for strong-field electron dynamics

    International Nuclear Information System (INIS)

    Lein, Manfred; Kuemmel, Stephan

    2005-01-01

    By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process

  10. Exact performance analysis of MIMO cognitive radio systems using transmit antenna selection

    KAUST Repository

    Tourki, Kamel

    2014-03-01

    We consider in this paper, a spectrum sharing cognitive radio system with a ratio selection scheme; where one out of N independent-and-identically- distributed transmit antennas is selected such that the ratio of the secondary transmitter (ST) to the secondary receiver (SR) channel gain to the interference from the ST to the primary receiver (PR) channel gain is maximized. Although previous works considered perfect, outdated, or partial channel state information at the transmitter, we stress that using such assumptions may lead to a feedback overhead for updating the SR with the ST-PR interference channel estimation. Considering only statistical knowledge of the ST-PR channel gain, we investigate a ratio selection scheme using a mean value (MV)-based power allocation strategy referred to as MV-based scheme. We first provide the exact statistics in terms of probability density function and cumulative distribution function of the secondary channel gain as well as of the interference channel gain. Furthermore, we derive exact cumulative density function of the received signal-to-noise ratio at the SR where the ST uses a power allocation based on instantaneous perfect channel state information (CSI) referred to as CSI-based scheme. These statistics are then used to derive exact closed form expressions of the outage probability, symbol error rate, and ergodic capacity of the secondary system when the interference channel from the primary transmitter (PT) to the SR is ignored. Furthermore, an asymptotical analysis is also carried out for the MV-based scheme as well as for the CSI-based scheme to derive the generalized diversity gain for each. Subsequently, we address the performance analysis based on exact statistics of the combined signal-to-interference-plus- noise ratio at the SR of the more challenging case; when the PT-SR interference channel is considered. Numerical results in a Rayleigh fading environment manifest that the MV-based scheme outperforms the CSI

  11. An Algebraic Method for Constructing Exact Solutions to Difference-Differential Equations

    International Nuclear Information System (INIS)

    Wang Zhen; Zhang Hongqing

    2006-01-01

    In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).

  12. A procedure to construct exact solutions of nonlinear fractional differential equations.

    Science.gov (United States)

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  13. Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy.

    Science.gov (United States)

    Ansumali, S; Karlin, I V; Arcidiacono, S; Abbas, A; Prasianakis, N I

    2007-03-23

    The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB kinetic equations which combines the method of moments with boundary conditions for populations enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.

  14. A trial of beclomethasone/formoterol in COPD using EXACT-PRO to measure exacerbations

    DEFF Research Database (Denmark)

    Singh, Dave; Kampschulte, Jorg; Wedzicha, Jadwiga A

    2013-01-01

    -primary outcome, and the Exacerbations of Chronic Pulmonary Disease Tool (EXACT) means of collecting patient-reported outcome data are also being used to enhance the detection of exacerbation events. EXACT data are being collected using a novel application of a digital platform technology. FORWARD is therefore...

  15. Wireless three-hop networks with stealing II : exact solutions through boundary value problems

    NARCIS (Netherlands)

    Guillemin, F.; Knessl, C.; Leeuwaarden, van J.S.H.

    2013-01-01

    We study the stationary distribution of a random walk in the quarter plane arising in the study of three-hop wireless networks with stealing. Our motivation is to find exact tail asymptotics (beyond logarithmic estimates) for the marginal distributions, which requires an exact solution for the

  16. Exact solutions of continuous states for Hartmann potential

    International Nuclear Information System (INIS)

    Chen Changyuan; Lu Falin; Sun Dongsheng

    2004-01-01

    In this Letter, we obtain the exact solutions of continuous states for the Hartmann potential. The normalized wave functions of continuous states on the 'k/2π scale' and the calculation formula of phase shifts are presented. Analytical properties of the scattering amplitude are discussed

  17. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  18. An Exactly Solvable Supersymmetric Model of Semimagic Nuclei

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Gueven, Nurtac; Pehlivan, Yamac

    2008-01-01

    A simple model of nucleons coupled to angular momentum zero (s-pairs) occupying the valance shell of a semi-magic nuclei is considered. The model has a separable, orbit dependent pairing interaction which dominates over the kinetic term. It is shown that such an interaction leads to an exactly solvable model whose (0 + ) eigenstates and energies can be computed very easily with the help of the algebraic Bethe ansatz method. It is also shown that the model has a supersymmetry which connects the spectra of some semimagic nuclei. The results obtained from this model for the semimagic Ni isotopes from 58 Ni to 68 Ni are given. In addition, a new and easier technique for calculating the energy eigenvalues from the Bethe ansatz equations is also presented.

  19. The exact $C$-function in integrable $\\lambda$-deformed theories arXiv

    CERN Document Server

    Georgiou, George; Sagkrioti, Eftychia; Sfetsos, Konstantinos; Siampos, Konstantinos

    By employing CFT techniques, we show how to compute in the context of \\lambda-deformations of current algebras and coset CFTs the exact in the deformation parameters C-function for a wide class of integrable theories that interpolate between a UV and an IR point. We explicitly consider RG flows for integrable deformations of left-right asymmetric current algebras and coset CFTs. In all cases, the derived exact C-functions obey all the properties asserted by Zamolodchikov's c-theorem in two-dimensions.

  20. An Exact Line Integral Representation of the Physical Optics Far Field from Plane PEC Scatterers Illuminnated by Hertzian Dipoles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Meincke, Peter; Jørgensen, Erik

    2003-01-01

    We derive a line integral representation of the physical optics scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles. The source and observation points can take on almost arbitrary positions. To illustrate the exactness and efficiency of the new line integral, numerical comparisons with the conventional surface radiation integral are carried out....

  1. Exact compact breather-like solutions of two-dimensional Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Sarkar, Ranja; Dey, Bishwajyoti

    2006-01-01

    We demonstrate that two-dimensional Fermi-Pasta-Ulam lattice support exact discrete compact breather-like solutions. We also find exact compact breather solutions of the same lattice in presence of long-range interaction with r -s dependence on the distance in the continuum limit. The usefulness of these solutions for energy localization and transport in various physical systems are discussed. (letter to the editor)

  2. Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact ...

    African Journals Online (AJOL)

    Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws. ... In this paper we study the combined sinh-cosh-Gordon equation, which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves.

  3. New exact solutions of the Dirac equation. 8

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Sukhomlin, N.B.; Shapovalov, V.N.

    1978-01-01

    The paper continues the investigation into the exact solutions of the Dirac, Klein-Gordon, and Lorentz equations for a charge in an external electromagnetic field. The fields studied do not allow for separation of variables in the Dirac equation, but solutions to the Dirac equation are obtained

  4. New exact travelling wave solutions of bidirectional wave equations

    Indian Academy of Sciences (India)

    Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea. ∗ ... exact travelling wave solutions of system (1) using the modified tanh–coth function method ... The ordinary differential equation is then integrated.

  5. Analysis of fast neutrons elastic moderator through exact solutions involving synthetic-kernels

    International Nuclear Information System (INIS)

    Moura Neto, C.; Chung, F.L.; Amorim, E.S.

    1979-07-01

    The computation difficulties in the transport equation solution applied to fast reactors can be reduced by the development of approximate models, assuming that the continuous moderation holds. Two approximations were studied. The first one was based on an expansion in Taylor's series (Fermi, Wigner, Greuling and Goertzel models), and the second involving the utilization of synthetic Kernels (Walti, Turinsky, Becker and Malaviya models). The flux obtained by the exact method is compared with the fluxes from the different models based on synthetic Kernels. It can be verified that the present study is realistic for energies smaller than the threshold for inelastic scattering, as well as in the resonance region. (Author) [pt

  6. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  7. Exact solutions of the vacuum Einstein's equations allowing for two noncommuting Killing vectors

    International Nuclear Information System (INIS)

    Aliev, V.N.; Leznov, A.N.

    1990-01-01

    Einstein's equations are written in the form of covariant gauge theory in two-dimensional space with binomial solvable gauge group, with respect to two noncommutative of Killing vectors. The theory is exact integrable in one-dimensional case and series of partial exact solutions are constructed in two-dimensional. 5 refs

  8. Investigating decision rules with a new experimental design: the EXACT paradigm

    Science.gov (United States)

    Biscione, Valerio; Harris, Christopher M.

    2015-01-01

    In the decision-making field, it is important to distinguish between the perceptual process (how information is collected) and the decision rule (the strategy governing decision-making). We propose a new paradigm, called EXogenous ACcumulation Task (EXACT) to disentangle these two components. The paradigm consists of showing a horizontal gauge that represents the probability of receiving a reward at time t and increases with time. The participant is asked to press a button when they want to request a reward. Thus, the perceptual mechanism is hard-coded and does not need to be inferred from the data. Based on this paradigm, we compared four decision rules (Bayes Risk, Reward Rate, Reward/Accuracy, and Modified Reward Rate) and found that participants appeared to behave according to the Modified Reward Rate. We propose a new way of analysing the data by using the accuracy of responses, which can only be inferred in classic RT tasks. Our analysis suggests that several experimental findings such as RT distribution and its relationship with experimental conditions, usually deemed to be the result of a rise-to-threshold process, may be simply explained by the effect of the decision rule employed. PMID:26578916

  9. Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2016-08-15

    Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.

  10. Exact Analysis of the Cache Behavior of Nested Loops

    National Research Council Canada - National Science Library

    Chatterjee, Siddhartha; Parker, Erin; Hanlon, Philip J; Lebeck, Alvin R

    2001-01-01

    The authors develop from first principles an exact model of the behavior of loop nests executing in a memory hierarchy by using a nontraditional classification of misses that has the key property of composability...

  11. A procedure to construct exact solutions of nonlinear evolution ...

    Indian Academy of Sciences (India)

    Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30. ... computer science, directly searching for solutions of nonlinear differential equations has become more and ... Right after this pioneer work, this ...

  12. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  13. Exact relativistic cylindrical solution of disordered radiation

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da; Wolk, I.; Som, M.M.

    1976-05-01

    A source free disordered distribution of electromagnetic radiation is considered in Einstein' theory, and a time independent exact solution with cylindrical symmetry is obtained. The gravitation and pressure effects of the radiation alone are sufficient to give the distribution an equilibrium. A finite maximum concentration is found on the axis of symmetry, and decreases monotonically to zero outwards. Timelike and null geodesics are discussed

  14. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  15. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    Science.gov (United States)

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  16. New exact solutions of the generalized Zakharov–Kuznetsov ...

    Indian Academy of Sciences (India)

    In this paper, new exact solutions, including soliton, rational and elliptic integral function solutions, for the generalized Zakharov–Kuznetsov modified equal-width equation are obtained using a new approach called the extended trial equation method. In this discussion, a new version of the trial equation method for the ...

  17. Timed Fast Exact Euclidean Distance (tFEED) maps

    NARCIS (Netherlands)

    Kehtarnavaz, Nasser; Schouten, Theo E.; Laplante, Philip A.; Kuppens, Harco; van den Broek, Egon

    2005-01-01

    In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. In a naive implementation, each object pixel feeds its (exact) ED to each background pixel; then the minimum of these values denotes the ED to

  18. Exact renormalization group for gauge theories

    International Nuclear Information System (INIS)

    Balaban, T.; Imbrie, J.; Jaffe, A.

    1984-01-01

    Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study

  19. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)

    Jefta M Sunzu

    2017-09-05

    Sep 5, 2017 ... The exact solutions corresponding to our models are found explicitly in terms of elementary ...... PD extends his appre- ciation to the President Office (Local Governments and ... Kwazulu-Natal, Howard College, April 2004).

  20. Quantum theory of atom-surface scattering: exact solutions and evaluation of approximations

    International Nuclear Information System (INIS)

    Chiroli, C.; Levi, A.C.

    1976-01-01

    In a recent article a hard corrugated surface was proposed as a simple model for atom-surface scattering. The problem was not solved exactly, however, but several alternative approximations were considered. Since these three similar, but inequivalent, approximations were proposed, the problem arose to evaluate these approximations in order to choose between them. In the present letter some exact calculations are presented which make this choice rationally possible. (Auth.)