WorldWideScience

Sample records for exact numerical calculation

  1. Numerical Exact Ab Initio Four-Nucleon Scattering Calculations: from Dream to Reality

    Science.gov (United States)

    Fonseca, A. C.; Deltuva, A.

    2017-03-01

    In the present manuscript we review the work of the last ten years on the pursuit to obtain numerical exact solutions of the four-nucleon scattering problem using the most advanced force models that fit two nucleon data up to pion production threshold with a χ ^2 per data point approximately one, together with the Coulomb interaction between protons; three- and four-nucleon forces are also included in the framework of a meson exchange potential model where NN couples to NΔ. Failure to describe the world data on four-nucleon scattering observables in the framework of a non relativistic scattering approach falls necessarily on the force models one uses. Four-nucleon observables pose very clear challenges, particular in the low energy region where there are a number of resonances whose position and width needs to be dynamically generated by the nucleon-nucleon (NN) interactions one uses. In addition, our calculations constitute the most advance piece of work where observables for all four-nucleon reactions involving isospin I=0, I=0 coupled to I=1 and isospin I=1 initial states are calculated at energies both below and above breakup threshold. We also present a very extensive comparison between calculated results and data for cross sections and spin observables. Therefore the present work reveals both the shortcomings and successes of some of the present NN force models in describing four-nucleon data and serve as a benchmark for future developments.

  2. Multi-instantons and exact results II: specific cases, higher-order effects, and numerical calculations

    International Nuclear Information System (INIS)

    Zinn-Justin, Jean; Jentschura, Ulrich D.

    2004-01-01

    In this second part of the treatment of instantons in quantum mechanics, the focus is on specific calculations related to a number of quantum mechanical potentials with degenerate minima. We calculate the leading multi-instanton contributions to the partition function, using the formalism introduced in the first part of the treatise [Ann. Phys. (N. Y.) (previous issue) (2004)]. The following potentials are considered: (i) asymmetric potentials with degenerate minima, (ii) the periodic cosine potential, (iii) anharmonic oscillators with radial symmetry, and (iv) a specific potential which bears an analogy with the Fokker-Planck equation. The latter potential has the peculiar property that the perturbation series for the ground-state energy vanishes to all orders and is thus formally convergent (the ground-state energy, however, is non-zero and positive). For the potentials (ii), (iii), and (iv), we calculate the perturbative B-function as well as the instanton A-function to fourth order in g. We also consider the double-well potential in detail, and present some higher-order analytic as well as numerical calculations to verify explicitly the related conjectures up to the order of three instantons. Strategies analogous to those outlined here could result in new conjectures for problems where our present understanding is more limited

  3. Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O

    Science.gov (United States)

    Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102

  4. Quantum mechanical calculations of vibrational population inversion in chemical reactions - Numerically exact L-squared-amplitude-density study of the H2Br reactive system

    Science.gov (United States)

    Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.

    1988-01-01

    Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.

  5. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  6. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  7. Constructing exact symmetric informationally complete measurements from numerical solutions

    Science.gov (United States)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  8. Exact-exchange-based quasiparticle calculations

    International Nuclear Information System (INIS)

    Aulbur, Wilfried G.; Staedele, Martin; Goerling, Andreas

    2000-01-01

    One-particle wave functions and energies from Kohn-Sham calculations with the exact local Kohn-Sham exchange and the local density approximation (LDA) correlation potential [EXX(c)] are used as input for quasiparticle calculations in the GW approximation (GWA) for eight semiconductors. Quasiparticle corrections to EXX(c) band gaps are small when EXX(c) band gaps are close to experiment. In the case of diamond, quasiparticle calculations are essential to remedy a 0.7 eV underestimate of the experimental band gap within EXX(c). The accuracy of EXX(c)-based GWA calculations for the determination of band gaps is as good as the accuracy of LDA-based GWA calculations. For the lowest valence band width a qualitatively different behavior is observed for medium- and wide-gap materials. The valence band width of medium- (wide-) gap materials is reduced (increased) in EXX(c) compared to the LDA. Quasiparticle corrections lead to a further reduction (increase). As a consequence, EXX(c)-based quasiparticle calculations give valence band widths that are generally 1-2 eV smaller (larger) than experiment for medium- (wide-) gap materials. (c) 2000 The American Physical Society

  9. Comparing numerically exact and modelled static friction

    Directory of Open Access Journals (Sweden)

    Krengel Dominik

    2017-01-01

    Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.

  10. Paradoxes in numerical calculations

    Czech Academy of Sciences Publication Activity Database

    Brandts, J.; Křížek, Michal; Zhang, Z.

    2016-01-01

    Roč. 26, č. 3 (2016), s. 317-330 ISSN 1210-0552 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : round-off errors * numerical instability * recurrence formulae Subject RIV: BA - General Mathematics Impact factor: 0.394, year: 2016

  11. Exact renormalization group as a scheme for calculations

    International Nuclear Information System (INIS)

    Mack, G.

    1985-10-01

    In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)

  12. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com

    2008-04-14

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  13. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2008-01-01

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  14. Numerical calculations near spatial infinity

    International Nuclear Information System (INIS)

    Zenginoglu, Anil

    2007-01-01

    After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity

  15. Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation

    International Nuclear Information System (INIS)

    Miara, Bernadette; Muench, Arnaud

    2009-01-01

    We study the exact controllability of a three-dimensional body made of a material whose constitutive law introduces an elasticity-electricity coupling. We show that a coupled elastic-electric control acting on the whole boundary of the body drives the system to rest after time large enough. Two-dimensional numerical experiments suggest that controllability can still be achieved by relaxing this restrictive condition using either both controls on a reduced support or elastic control alone

  16. Thermodynamics of Rh nuclear spins calculated by exact diagonalization

    DEFF Research Database (Denmark)

    Lefmann, K.; Ipsen, J.; Rasmussen, F.B.

    2000-01-01

    We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...

  17. Transversal magnetotransport in Weyl semimetals: Exact numerical approach

    Science.gov (United States)

    Behrends, Jan; Kunst, Flore K.; Sbierski, Björn

    2018-02-01

    Magnetotransport experiments on Weyl semimetals are essential for investigating the intriguing topological and low-energy properties of Weyl nodes. If the transport direction is perpendicular to the applied magnetic field, experiments have shown a large positive magnetoresistance. In this work we present a theoretical scattering matrix approach to transversal magnetotransport in a Weyl node. Our numerical method confirms and goes beyond the existing perturbative analytical approach by treating disorder exactly. It is formulated in real space and is applicable to mesoscopic samples as well as in the bulk limit. In particular, we study the case of clean and strongly disordered samples.

  18. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  19. Use of exact albedo conditions in numerical methods for one-dimensional one-speed discrete ordinates eigenvalue problems

    International Nuclear Information System (INIS)

    Abreu, M.P. de

    1994-01-01

    The use of exact albedo boundary conditions in numerical methods applied to one-dimensional one-speed discrete ordinates (S n ) eigenvalue problems for nuclear reactor global calculations is described. An albedo operator that treats the reflector region around a nuclear reactor core implicitly is described and exactly was derived. To illustrate the method's efficiency and accuracy, it was used conventional linear diamond method with the albedo option to solve typical model problems. (author)

  20. DWBA (d,N) Calculations Including Dirac Phenomenological Potentials and an Exact Treatment of Finite-range Effects

    Science.gov (United States)

    Hawk, Eric

    2005-04-01

    An algorithm for the inclusion of both Dirac phenomenological potentials and an exact treatment of finite-range effects within the DWBA is presented. The numerical implementation of this algorithm is used to calculate low-energy deuteron stripping cross sections, analyzing powers, and polarizations. These calculations are compared with experimental data where available. The impact of using several commonly employed nuclear potentials (Reid soft-core, Bonn, Argonne v18) for the internal deuteron wave function is also examined.

  1. Calculation laboratory: game based learning in exact discipline

    Directory of Open Access Journals (Sweden)

    André Felipe de Almeida Xavier

    2017-12-01

    Full Text Available The Calculation Laboratory appeared with the need to give meaning to the learning of students entering the courses of Engineering, in the discipline of Differential Calculus, in the semester 1/2016. After obtaining good results, the activity was also extended to the classes of Analytical Geometry and Linear Algebra (GAAL and Integral Calculus, so that these incoming students could continue the process. Historically, students present some difficulty in these contents, and it is necessary to give meaning to their learning. Given the table presented, the Calculation Laboratory aims to give meaning to the contents worked, giving students autonomy, having the teacher as the tutor, as intermediary between the student and the knowledge, creating various practical, playful and innovative activities to assist in this process. Through this article, it is intended to report a little about the activities created to facilitate this process of execution of the Calculation Laboratory, in addition to demonstrating the results obtained and measured after its application. Through these proposed activities, it is noticed that the student is gradually gaining autonomy in the search for knowledge.

  2. Reactor Thermal Hydraulic Numerical Calculation And Modeling

    International Nuclear Information System (INIS)

    Duong Ngoc Hai; Dang The Ba

    2008-01-01

    In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)

  3. An Exact Formula for Calculating Inverse Radial Lens Distortions

    Directory of Open Access Journals (Sweden)

    Pierre Drap

    2016-06-01

    Full Text Available This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view.

  4. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer

    Science.gov (United States)

    Wang, Xiao-Gang; Carrington, Tucker

    2018-02-01

    We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.

  5. A numerical method for resonance integral calculations

    International Nuclear Information System (INIS)

    Tanbay, Tayfun; Ozgener, Bilge

    2013-01-01

    A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.)

  6. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  7. Numeric calculation of celestial bodies with spreadsheet analysis

    Science.gov (United States)

    Koch, Alexander

    2016-04-01

    The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.

  8. Numerical calculation of impurity charge state distributions

    International Nuclear Information System (INIS)

    Crume, E.C.; Arnurius, D.E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly

  9. Hybrid numerical calculation method for bend waveguides

    OpenAIRE

    Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno

    2017-01-01

    National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...

  10. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  11. Numerical calculations on heterogeneity of groundwater flow

    International Nuclear Information System (INIS)

    Follin, S.

    1992-01-01

    The upscaling of model parameters is a key issue in many research fields concerned with parameter heterogeneity. The upscaling process allows for fewer model blocks and relaxes the numerical problems caused by high contrasts in the hydraulic conductivity. The trade-offs are dependent on the object but the general drawback is an increasing uncertainty about the representativeness. The present study deals with numerical calculations of heterogeneity of groundwater flow and solute transport in hypothetical blocks of fractured hard rock in a '3m scale' and addresses both conceptual and practical problems in numerical simulation. Evidence that the hydraulic conductivity (K) of the rock mass between major fracture zones is highly heterogeneous in a 3m scale is provided by a large number of field investigations. The present uses the documented heterogeneity and investigates flow and transport in a two-dimensional stochastic continuum characterized by a variance in Y = In(K) of σ y 2 = 16, corresponding to about 12 log 10 cycles in K. The study considers anisotropy, channelling, non-Fickian and Fickian transport, and conditional simulation. The major conclusions are: * heterogeneity gives rise to anisotropy in the upscaling process, * the choice of support scale is crucial for the modelling of solute transport. As a consequence of the obtained results, a two-dimensional stochastic discontinuum model is presented, which provides a tool for linking stochastic continuum models to discrete fracture network models. (au) (14 figs., 136 refs.)

  12. Elementary exact calculations of degree growth and entropy for discrete equations.

    Science.gov (United States)

    Halburd, R G

    2017-05-01

    Second-order discrete equations are studied over the field of rational functions [Formula: see text], where z is a variable not appearing in the equation. The exact degree of each iterate as a function of z can be calculated easily using the standard calculations that arise in singularity confinement analysis, even when the singularities are not confined. This produces elementary yet rigorous entropy calculations.

  13. Numerical precision calculations for LHC physics

    Energy Technology Data Exchange (ETDEWEB)

    Reuschle, Christian Andreas

    2013-02-05

    In this thesis I present aspects of QCD calculations, which are related to the fully numerical evaluation of next-to-leading order (NLO) QCD amplitudes, especially of the one-loop contributions, and the efficient computation of associated collider observables. Two interrelated topics have thereby been of concern to the thesis at hand, which give rise to two major parts. One large part is focused on the general group-theoretical behavior of one-loop QCD amplitudes, with respect to the underlying SU(N{sub c}) theory, in order to correctly and efficiently handle the color degrees of freedom in QCD one-loop amplitudes. To this end a new method is introduced that can be used in order to express color-ordered partial one-loop amplitudes with multiple quark-antiquark pairs as shuffle sums over cyclically ordered primitive one-loop amplitudes. The other large part is focused on the local subtraction of divergences off the one-loop integrands of primitive one-loop amplitudes. A method for local UV renormalization has thereby been developed, which uses local UV counterterms and efficient recursive routines. Together with suitable virtual soft and collinear subtraction terms, the subtraction method is extended to the virtual contributions in the calculations of NLO observables, which enables the fully numerical evaluation of the one-loop integrals in the virtual contributions. The method has been successfully applied to the calculation of jet rates in electron-positron annihilation to NLO accuracy in the large-N{sub c} limit.

  14. Numerical precision calculations for LHC physics

    International Nuclear Information System (INIS)

    Reuschle, Christian Andreas

    2013-01-01

    In this thesis I present aspects of QCD calculations, which are related to the fully numerical evaluation of next-to-leading order (NLO) QCD amplitudes, especially of the one-loop contributions, and the efficient computation of associated collider observables. Two interrelated topics have thereby been of concern to the thesis at hand, which give rise to two major parts. One large part is focused on the general group-theoretical behavior of one-loop QCD amplitudes, with respect to the underlying SU(N c ) theory, in order to correctly and efficiently handle the color degrees of freedom in QCD one-loop amplitudes. To this end a new method is introduced that can be used in order to express color-ordered partial one-loop amplitudes with multiple quark-antiquark pairs as shuffle sums over cyclically ordered primitive one-loop amplitudes. The other large part is focused on the local subtraction of divergences off the one-loop integrands of primitive one-loop amplitudes. A method for local UV renormalization has thereby been developed, which uses local UV counterterms and efficient recursive routines. Together with suitable virtual soft and collinear subtraction terms, the subtraction method is extended to the virtual contributions in the calculations of NLO observables, which enables the fully numerical evaluation of the one-loop integrals in the virtual contributions. The method has been successfully applied to the calculation of jet rates in electron-positron annihilation to NLO accuracy in the large-N c limit.

  15. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-08-28

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.

  16. Numerical calculation of two-phase flows

    International Nuclear Information System (INIS)

    Travis, J.R.; Harlow, F.H.; Amsden, A.A.

    1975-06-01

    The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for high-speed computers are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite- difference formulation that is simultaneously implicit in the treatment of mass convection, equations of state, and the momentum coupling between phases. Such a method is described, the equations on which it is based are discussed, and its properties are illustrated by means of examples. In particular, the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability is emphasized. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy. (U.S.)

  17. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA

    International Nuclear Information System (INIS)

    Fye, R.M.; Benham, C.J.

    1999-01-01

    Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA transcription and in replication. In living organisms this process can be mediated by enzymes which regulate the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair sequences. It can also be used for closed loops of DNA which are typically found in vivo to be kilobases long. The analytic method consists of an integration over the DNA twist degrees of freedom followed by the introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the transfer matrix method. The algorithm implementing our technique requires O(N 2 ) operations and O(N) memory to analyze a DNA domain containing N base pairs. However, to analyze kilobase length DNA molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is constructed by imposing an upper bound M on the number of base pairs that can simultaneously denature in a state. This accelerated algorithm requires O(MN) operations, and has an analytically bounded error. Sample calculations show that it achieves high accuracy (greater than 15 decimal digits) with relatively small values of M (M<0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free parameters in the model, the locations and extents of local denaturation predicted by this analysis are in quantitatively precise agreement with in vitro experimental measurements

  19. Exact and microscopic one-instanton calculations in N=2 supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ito, K.; Sasakura, N.

    1997-01-01

    We study the low-energy effective theory in N=2 super Yang-Mills theories by microscopic and exact approaches. We calculate the one-instanton correction to the prepotential for any simple Lie group from the microscopic approach. We also study the Picard-Fuchs equations and their solutions in the semi-classical regime for classical gauge groups with rank r≤3. We find that for gauge groups G=A r , B r , C r (r≤3) the microscopic results agree with those from the exact solutions. (orig.)

  20. Exact and variational calculations of eigenmodes for three-dimensional free electron laser interaction with a warm electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    I present an exact calculation of free-electron-laser (FEL) eigenmodes (fundamental as well as higher order modes) in the exponential-gain regime. These eigenmodes specify transverse profiles and exponential growth rates of the laser field, and they are self-consistent solutions of the coupled Maxwell-Vlasov equations describing the FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, and diffraction and guiding of the laser field. The unperturbed electron distribution is assumed to be of Gaussian shape in four dimensional transverse phase space and in the energy variable, but uniform in longitudinal coordinate. The focusing of the electron beam is assumed to be matched to the natural wiggler focusing in both transverse planes. With these assumptions the eigenvalue problem can be reduced to a numerically manageable integral equation and solved exactly with a kernel iteration method. An approximate, but more efficient solution of the integral equation is also obtained for the fundamental mode by a variational technique, which is shown to agree well with the exact results. Furthermore, I present a handy formula, obtained from interpolating the numerical results, for a quick calculation of FEL exponential growth rate. Comparisons with simulation code TDA will also be presented. Application of these solutions to the design and multi-dimensional parameter space optimization for an X-ray free electron laser driven by SLAC linac will be demonstrated. In addition, a rigorous analysis of transverse mode degeneracy and hence the transverse coherence of the X-ray FEL will be presented based on the exact solutions of the higher order guided modes.

  1. Numerical study of the t-J model: Exact ground state and flux phases

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Poilblanc, D.

    1990-01-01

    Strongly correlated 2D electrons described by the t-J model are investigated numerically. Exact ground state for one and two holes in a finite cluster with periodic boundary conditions are obtained by using the Lanczos algorithm. The effects of Coulomb repulsion of the holes on the nearest neighbor sites are taken into account. Commensurate flux phases are investigated for the same size of clusters. They are shown to be a good approximation for the ground state specially in the intermediate value of J/t. (author). 21 refs, 3 figs

  2. Tunneling dynamics in open ultracold bosonic systems. Numerically exact dynamics - Analytical models - Control schemes

    International Nuclear Information System (INIS)

    Lode, Axel U.J.

    2013-01-01

    This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.

  3. Tunneling dynamics in open ultracold bosonic systems. Numerically exact dynamics - Analytical models - Control schemes

    Energy Technology Data Exchange (ETDEWEB)

    Lode, Axel U.J.

    2013-06-03

    This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.

  4. Stepwise optimization and global chaos of nonlinear parameters in exact calculations of few-particle systems

    International Nuclear Information System (INIS)

    Frolov, A.M.

    1986-01-01

    The problem of exact variational calculations of few-particle systems in the exponential basis of the relative coordinates using nonlinear parameters is studied. The techniques of stepwise optimization and global chaos of nonlinear parameters are used to calculate the S and P states of homonuclear muonic molecules with an error of no more than +0.001 eV. The global-chaos technique also has proved to be successful in the case of the nuclear systems 3 H and 3 He

  5. Large scale exact quantum dynamics calculations: Ten thousand quantum states of acetonitrile

    Science.gov (United States)

    Halverson, Thomas; Poirier, Bill

    2015-03-01

    'Exact' quantum dynamics (EQD) calculations of the vibrational spectrum of acetonitrile (CH3CN) are performed, using two different methods: (1) phase-space-truncated momentum-symmetrized Gaussian basis and (2) correlated truncated harmonic oscillator basis. In both cases, a simple classical phase space picture is used to optimize the selection of individual basis functions-leading to drastic reductions in basis size, in comparison with existing methods. Massive parallelization is also employed. Together, these tools-implemented into a single, easy-to-use computer code-enable a calculation of tens of thousands of vibrational states of CH3CN to an accuracy of 0.001-10 cm-1.

  6. Numerical calculation of the Fresnel transform.

    Science.gov (United States)

    Kelly, Damien P

    2014-04-01

    In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.

  7. Numerical calculation of backfilling of scour holes

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Baykal, Cüneyt; Fuhrman, David R.

    2014-01-01

    A fully-coupled hydrodynamic and morphologic CFD model is presented for simulating backfilling processes around structures. The hydrodynamic model is based on Reynolds-averaged Navier-Stokes equations, coupled with two-equation k-ω turbulence closure. The sediment transport model consists of sepa...... of structures: piles, and pipelines. Initial scour holes are generated by the same model. The numerical results appear to be in accord with the existing experimental information....

  8. Multilocus lod scores in large pedigrees: combination of exact and approximate calculations.

    Science.gov (United States)

    Tong, Liping; Thompson, Elizabeth

    2008-01-01

    To detect the positions of disease loci, lod scores are calculated at multiple chromosomal positions given trait and marker data on members of pedigrees. Exact lod score calculations are often impossible when the size of the pedigree and the number of markers are both large. In this case, a Markov Chain Monte Carlo (MCMC) approach provides an approximation. However, to provide accurate results, mixing performance is always a key issue in these MCMC methods. In this paper, we propose two methods to improve MCMC sampling and hence obtain more accurate lod score estimates in shorter computation time. The first improvement generalizes the block-Gibbs meiosis (M) sampler to multiple meiosis (MM) sampler in which multiple meioses are updated jointly, across all loci. The second one divides the computations on a large pedigree into several parts by conditioning on the haplotypes of some 'key' individuals. We perform exact calculations for the descendant parts where more data are often available, and combine this information with sampling of the hidden variables in the ancestral parts. Our approaches are expected to be most useful for data on a large pedigree with a lot of missing data. (c) 2007 S. Karger AG, Basel

  9. Efficient Calculation of Exact Exchange Within the Quantum Espresso Software Package

    Science.gov (United States)

    Barnes, Taylor; Kurth, Thorsten; Carrier, Pierre; Wichmann, Nathan; Prendergast, David; Kent, Paul; Deslippe, Jack

    Accurate simulation of condensed matter at the nanoscale requires careful treatment of the exchange interaction between electrons. In the context of plane-wave DFT, these interactions are typically represented through the use of approximate functionals. Greater accuracy can often be obtained through the use of functionals that incorporate some fraction of exact exchange; however, evaluation of the exact exchange potential is often prohibitively expensive. We present an improved algorithm for the parallel computation of exact exchange in Quantum Espresso, an open-source software package for plane-wave DFT simulation. Through the use of aggressive load balancing and on-the-fly transformation of internal data structures, our code exhibits speedups of approximately an order of magnitude for practical calculations. Additional optimizations are presented targeting the many-core Intel Xeon-Phi ``Knights Landing'' architecture, which largely powers NERSC's new Cori system. We demonstrate the successful application of the code to difficult problems, including simulation of water at a platinum interface and computation of the X-ray absorption spectra of transition metal oxides.

  10. Three identical particles on a line: comparison of some exact and approximate calculations

    International Nuclear Information System (INIS)

    Chuluunbaatar, O.; Gusev, A.A.; Vinitsky, S.I.; Larsen, S.Y.

    2002-01-01

    The three-body scattering problem is formulated in the adiabatic representation as a multi-channel spectral problem for a set of coupled one-dimensional integral equations. New stable variational-iteration schemes are developed to calculate the Hamiltonian eigenfunctions and energy eigenvalues, as well as the reaction matrix in the eigenphase shift representation, with prescribed accuracy. The convergence and efficiency of the method are demonstrated in the vicinity of the three-body threshold in the exactly solvable model of three identical particles fixed on a line and coupled with pair-repulsive or attractive zero-range potentials. (author). Letter-to-the-editor

  11. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  12. Exact exchange plane-wave-pseudopotential calculations for slabs: Extending the width of the vacuum

    Science.gov (United States)

    Engel, Eberhard

    2018-04-01

    Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced, which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is explicitly verified that the Slater component of the EXX/KLI potential decays as -1 /z over an extended region sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region. In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure of the KLI approximation for nonmetallic slabs.

  13. Exact calculation of three-body contact interaction to second order

    International Nuclear Information System (INIS)

    Kaiser, N.

    2012-01-01

    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle anti E(k f ) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to anti E(k f )∝k f 10 with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction. (orig.)

  14. Nodal methods in numerical reactor calculations

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del

    2004-01-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  15. Nodal methods in numerical reactor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hennart, J P [UNAM, IIMAS, A.P. 20-726, 01000 Mexico D.F. (Mexico); Valle, E del [National Polytechnic Institute, School of Physics and Mathematics, Department of Nuclear Engineering, Mexico, D.F. (Mexico)

    2004-07-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  16. PLNoise: a package for exact numerical simulation of power-law noises

    Science.gov (United States)

    Milotti, Edoardo

    2006-08-01

    Many simulations of stochastic processes require colored noises: here I describe a small program library that generates samples with a tunable power-law spectral density: the algorithm can be modified to generate more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen in the case of astronomical data, see e.g. [N.R. Lomb, Astrophys. Space Sci. 39 (1976) 447]. The method is exact in the sense that it reproduces a process that is theoretically guaranteed to produce a range-limited power-law spectrum 1/f with -1uk/summaries/ADXV_v1_0.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler No. of lines in distributed program, including test data, etc.:6238 No. of bytes in distributed program, including test data, etc.:52 387 Distribution format:tar.gz RAM: The code of the test program is very compact (about 50 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run (like the one discussed in Section 4 in the long write-up) with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes. External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell, ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes

  17. Comparison between phase shift derived and exactly calculated nucleon--nucleon interaction matrix elements

    International Nuclear Information System (INIS)

    Gregersen, A.W.

    1977-01-01

    A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels

  18. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    Science.gov (United States)

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  19. New version of PLNoise: a package for exact numerical simulation of power-law noises

    Science.gov (United States)

    Milotti, Edoardo

    2007-08-01

    In a recent paper I have introduced a package for the exact simulation of power-law noises and other colored noises [E. Milotti, Comput. Phys. Comm. 175 (2006) 212]: in particular, the algorithm generates 1/f noises with 0law spectrum for any arbitrary sequence of sampling intervals, i.e. the sampling times may be unevenly spaced. Program summaryTitle of program: PLNoise Catalogue identifier:ADXV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v2_0.html Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler RAM: The code of the test program is very compact (about 60 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell: ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press., Cambridge, 1992, pp. 274-290]. Notice that ranlib requires a pair of routines from the linear algebra package LINPACK, and that the distribution of ranlib includes the C source of these routines, in case LINPACK is not

  20. Surface-state mediated three-adsorbate interaction: exact and numerical results and simple asymptotic expression

    International Nuclear Information System (INIS)

    Hyldgaard, Per; Einstein, T.L.

    2003-01-01

    The interaction energy of three adsorbates on a surface consists of the sum of the three-pair interactions plus a trio contribution produced primarily by interference of electrons which traverse the entire perimeter, d 123 , of the three-adsorbate cluster. Here, we investigate this three-adatom interaction when mediated by the isotropic Shockley surface-state band found on noble-metal (1 1 1) surfaces, extending work on pair interactions. Our experimentally testable result depends on the s-wave phase-shift, characterizing the standing-wave patterns seen in scanning-tunneling microscopy (STM) images. Compared with the adsorbate-pair interactions, and in contrast to bulk-mediated interactions, the trio contribution exhibits a slightly weaker amplitude and a slightly faster asymptotic envelope decay, d 123 -5/2 . It also has a different but well-defined oscillation period dependent on d 123 and little dependence on the shape of the cluster. We finally compare the asymptotic description with exact model calculations assuming short-range interactions, which are viable even in the non-asymptotic range (when not outweighed by bulk-mediated interactions)

  1. Iterative optimized effective potential and exact exchange calculations at finite temperature

    International Nuclear Information System (INIS)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Muller, Richard Partain; Desjarlais, Michael Paul; Lippert, Ross A.; Sears, Mark P.; Wright, Alan Francis

    2006-01-01

    We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

  2. Strong-coupling expansion for the momentum distribution of the Bose-Hubbard model with benchmarking against exact numerical results

    International Nuclear Information System (INIS)

    Freericks, J. K.; Krishnamurthy, H. R.; Kato, Yasuyuki; Kawashima, Naoki; Trivedi, Nandini

    2009-01-01

    A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator-to-superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.

  3. Coalescent: an open-source and scalable framework for exact calculations in coalescent theory

    Science.gov (United States)

    2012-01-01

    Background Currently, there is no open-source, cross-platform and scalable framework for coalescent analysis in population genetics. There is no scalable GUI based user application either. Such a framework and application would not only drive the creation of more complex and realistic models but also make them truly accessible. Results As a first attempt, we built a framework and user application for the domain of exact calculations in coalescent analysis. The framework provides an API with the concepts of model, data, statistic, phylogeny, gene tree and recursion. Infinite-alleles and infinite-sites models are considered. It defines pluggable computations such as counting and listing all the ancestral configurations and genealogies and computing the exact probability of data. It can visualize a gene tree, trace and visualize the internals of the recursion algorithm for further improvement and attach dynamically a number of output processors. The user application defines jobs in a plug-in like manner so that they can be activated, deactivated, installed or uninstalled on demand. Multiple jobs can be run and their inputs edited. Job inputs are persisted across restarts and running jobs can be cancelled where applicable. Conclusions Coalescent theory plays an increasingly important role in analysing molecular population genetic data. Models involved are mathematically difficult and computationally challenging. An open-source, scalable framework that lets users immediately take advantage of the progress made by others will enable exploration of yet more difficult and realistic models. As models become more complex and mathematically less tractable, the need for an integrated computational approach is obvious. Object oriented designs, though has upfront costs, are practical now and can provide such an integrated approach. PMID:23033878

  4. Coalescent: an open-source and scalable framework for exact calculations in coalescent theory

    Directory of Open Access Journals (Sweden)

    Tewari Susanta

    2012-10-01

    Full Text Available Abstract Background Currently, there is no open-source, cross-platform and scalable framework for coalescent analysis in population genetics. There is no scalable GUI based user application either. Such a framework and application would not only drive the creation of more complex and realistic models but also make them truly accessible. Results As a first attempt, we built a framework and user application for the domain of exact calculations in coalescent analysis. The framework provides an API with the concepts of model, data, statistic, phylogeny, gene tree and recursion. Infinite-alleles and infinite-sites models are considered. It defines pluggable computations such as counting and listing all the ancestral configurations and genealogies and computing the exact probability of data. It can visualize a gene tree, trace and visualize the internals of the recursion algorithm for further improvement and attach dynamically a number of output processors. The user application defines jobs in a plug-in like manner so that they can be activated, deactivated, installed or uninstalled on demand. Multiple jobs can be run and their inputs edited. Job inputs are persisted across restarts and running jobs can be cancelled where applicable. Conclusions Coalescent theory plays an increasingly important role in analysing molecular population genetic data. Models involved are mathematically difficult and computationally challenging. An open-source, scalable framework that lets users immediately take advantage of the progress made by others will enable exploration of yet more difficult and realistic models. As models become more complex and mathematically less tractable, the need for an integrated computational approach is obvious. Object oriented designs, though has upfront costs, are practical now and can provide such an integrated approach.

  5. Exact milestoning

    International Nuclear Information System (INIS)

    Bello-Rivas, Juan M.; Elber, Ron

    2015-01-01

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied

  6. Numerical calculations in elementary quantum mechanics using Feynman path integrals

    International Nuclear Information System (INIS)

    Scher, G.; Smith, M.; Baranger, M.

    1980-01-01

    We show that it is possible to do numerical calculations in elementary quantum mechanics using Feynman path integrals. Our method involves discretizing both time and space, and summing paths through matrix multiplication. We give numerical results for various one-dimensional potentials. The calculations of energy levels and wavefunctions take approximately 100 times longer than with standard methods, but there are other problems for which such an approach should be more efficient

  7. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  8. Toward Exact Number: Young Children Use One-to-one Correspondence to Measure Set Identity but not Numerical Equality

    Science.gov (United States)

    Izard, Véronique; Streri, Arlette; Spelke, Elizabeth S.

    2014-01-01

    Exact integer concepts are fundamental to a wide array of human activities, but their origins are obscure. Some have proposed that children are endowed with a system of natural number concepts, whereas others have argued that children construct these concepts by mastering verbal counting or other numeric symbols. This debate remains unresolved, because it is difficult to test children’s mastery of the logic of integer concepts without using symbols to enumerate large sets, and the symbols themselves could be a source of difficulty for children. Here, we introduce a new method, focusing on large quantities and avoiding the use of words or other symbols for numbers, to study children’s understanding of an essential property underlying integer concepts: the relation of exact numerical equality. Children aged 32-36 months, who possessed no symbols for exact numbers beyond 4, were given one-to-one correspondence cues to help them track a set of puppets, and their enumeration of the set was assessed by a non-verbal manual search task. Children used one-to-one correspondence relations to reconstruct exact quantities in sets of 5 or 6 objects, as long as the elements forming the sets remained the same individuals. In contrast, they failed to track exact quantities when one element was added, removed, or substituted for another. These results suggest an alternative to both nativist and symbol-based constructivist theories of the development of natural number concepts: Before learning symbols for exact numbers, children have a partial understanding of the properties of exact numbers. PMID:24680885

  9. Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.

    Science.gov (United States)

    Huang, Ran

    The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.

  10. A Scientific Calculator for Exact Real Number Computation Based on LRT, GMP and FC++

    Directory of Open Access Journals (Sweden)

    J. A. Hernández

    2012-03-01

    Full Text Available Language for Redundant Test (LRT is a programming language for exact real number computation. Its lazy evaluation mechanism (also called call-by-need and its infinite list requirement, make the language appropriate to be implemented in a functional programming language such as Haskell. However, a direction translation of the operational semantics of LRT into Haskell as well as the algorithms to implement basic operations (addition subtraction, multiplication, division and trigonometric functions (sin, cosine, tangent, etc. makes the resulting scientific calculator time consuming and so inefficient. In this paper, we present an alternative implementation of the scientific calculator using FC++ and GMP. FC++ is a functional C++ library while GMP is a GNU multiple presicion library. We show that a direct translation of LRT in FC++ results in a faster scientific calculator than the one presented in Haskell.El lenguaje de verificación redundante (LRT, por sus siglas en inglés es un lenguaje de programación para el cómputo con números reales exactos. Su método de evaluación lazy (o mejor conocido como llamada por necesidad y el manejo de listas infinitas requerido, hace que el lenguaje sea apropiado para su implementación en un lenguaje funcional como Haskell. Sin embargo, la implementación directa de la semántica operacional de LRT en Haskell así como los algoritmos para funciones básicas (suma, resta, multiplicación y división y funciones trigonométricas (seno, coseno, tangente, etc hace que la calculadora científica resultante sea ineficiente. En este artículo, presentamos una implementación alternativa de la calculadora científica usando FC++ y GMP. FC++ es una librería que utiliza el paradigma Funcional en C++ mientras que GMP es una librería GNU de múltiple precisión. En el artículo mostramos que la implementación directa de LRT en FC++ resulta en una librería más eficiente que la implementada en Haskell.

  11. On a method of numerical calculation of nonlinear radial pulsations of stars

    International Nuclear Information System (INIS)

    Kosovichev, A.G.

    1984-01-01

    Some features of using the finite difference method for numerical investigation of nonradial pulsations of stars were considered. The mathematical model of these pulsations is described by time-dependent gasdynaMic equations with gravity. A one-dimentional (spherically-symmetric) case is considered. It was obtained a two-parametric family of ultimate conservative difference schemes where the diffepence analogy of the main conservative laws as well as the additional relations for the balance to individual kinds of energy are performed. Such difference schemes provide more exact calculation of nonlinear flows with shocks as compared with the other difference schemes with the same order of approximation. The methods of numerical solution of implicit (absolute stable) difference schemes for a given family were considered. The coupled equations are solved through iterative Newton method Using martrix and separate successive eliminations. Numerical method can be used for calculation of large amplitude radial pulsations of stars

  12. Numerical calculation of two phase flow in a shock tube

    International Nuclear Information System (INIS)

    Rivard, W.C.; Travis, J.R.; Torrey, M.D.

    1976-01-01

    Numerical calculations of the dynamics of initially saturated water-steam mixtures in a shock tube demonstrate the accuracy and efficiency of a new solution technique for the transient, two-dimensional, two-fluid equations. The dependence of the calculated results on time step and cell size are investigated. The effects of boiling and condensation on the flow physics suggest the merits of basic fluid dynamic measurements for the determination and evaluation of mass exchange models

  13. Implementing Families of Implicit Chebyshev Methods with Exact Coefficients for the Numerical Integration of First- and Second-Order Differential Equations

    National Research Council Canada - National Science Library

    Mitchell, Jason

    2002-01-01

    A method is presented for the generation of exact numerical coefficients found in two families of implicit Chebyshev methods for the numerical integration of first- and second-order ordinary differential equations...

  14. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey , Angel; Ballenegger , Vincent

    2010-01-01

    8 pages; International audience; We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equation ...

  15. Numerical calculation of economic uncertainty by intervals and fuzzy numbers

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans

    2010-01-01

    This paper emphasizes that numerically correct calculation of economic uncertainty with intervals and fuzzy numbers requires implementation of global optimization techniques in contrast to straightforward application of interval arithmetic. This is demonstrated by both a simple case from managerial...... World Academic Press, UK. All rights reserved....

  16. Numerical Calculation of the Output Power of a MHD Generator

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-12-01

    Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.

  17. Effect of dietary regime on metabolic control in phenylketonuria: Is exact calculation of phenylalanine intake really necessary?

    Directory of Open Access Journals (Sweden)

    Carmen Rohde

    2015-12-01

    Conclusion: Exact calculation of Phe content of all food is not necessary to achieve good metabolic control in children and adolescents with PKU. Excluding special low protein food, as well as fruit and vegetables from calculation of Phe-intake has no impact on metabolic control. However including protein rich food into the diet and simply estimating all Phe-intake appears insufficient. The simplification of dietary regime may be helpful in enhancing acceptability and feasibility.

  18. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Science.gov (United States)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-01

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  19. Asymptotically exact calculation of the exchange energies of one-active-electron diatomic ions with the surface integral method

    International Nuclear Information System (INIS)

    Scott, Tony C; Aubert-Frecon, Monique; Hadinger, Gisele; Andrae, Dirk; Grotendorst, Johannes; III, John D Morgan

    2004-01-01

    We present a general procedure, based on the Holstein-Herring method, for calculating exactly the leading term in the exponentially small exchange energy splitting between two asymptotically degenerate states of a diatomic molecule or molecular ion. The general formulae we have derived are shown to reduce correctly to the previously known exact results for the specific cases of the lowest Σ and Π states of H + 2 . We then apply our general formulae to calculate the exchange energy splittings between the lowest states of the diatomic alkali cations K + 2 , Rb + 2 and Cs + 2 , which are isovalent to H + 2 . Our results are found to be in very good agreement with the best available experimental data and ab initio calculations

  20. MATH: A Scientific Tool for Numerical Methods Calculation and Visualization

    Directory of Open Access Journals (Sweden)

    Henrich Glaser-Opitz

    2016-02-01

    Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at http://sourceforge.net/projects/nummath. MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.

  1. Elements of calculation of reactivity by numerical processing

    International Nuclear Information System (INIS)

    Hedde, J.

    1968-01-01

    In order to explore the new opportunities provided by numerical techniques, the author describes the theoretical optimal conditions of a calculation in real time of reactivity from counting samples produced by a nuclear reactor. These optimal conditions can be the better approached if a more complex processing is adopted. A compromise is to be searched between the desired precision and simplicity of the numerical processing hardware. An example is reported to assess result accuracy on a wide power evolution range with a structure of reduced complexity [fr

  2. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Energy Technology Data Exchange (ETDEWEB)

    Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)

    2015-12-21

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  3. A program for performing exact quantum dynamics calculations using cylindrical polar coordinates: A nanotube application

    Science.gov (United States)

    Skouteris, Dimitris; Gervasi, Osvaldo; Laganà, Antonio

    2009-03-01

    A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here. The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrödinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube. Program summaryProgram title: CYLWAVE Catalogue identifier: AECL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3673 No. of bytes in distributed program, including test data, etc.: 35 237 Distribution format: tar.gz Programming language: Fortran 77 Computer: RISC workstations Operating system: UNIX RAM: 120 MBytes Classification: 16.7, 16.10 External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file). Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential. Solution method: Time dependent wavepacket propagation. Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete.

  4. Real-space, mean-field algorithm to numerically calculate long-range interactions

    Science.gov (United States)

    Cadilhe, A.; Costa, B. V.

    2016-02-01

    Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.

  5. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner

    Science.gov (United States)

    Gordon, Howard R.; Brown, James W.; Evans, Robert H.

    1988-01-01

    The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.

  6. Biased calculations: Numeric anchors influence answers to math equations

    Directory of Open Access Journals (Sweden)

    Andrew R. Smith

    2011-02-01

    Full Text Available People must often perform calculations in order to produce a numeric estimate (e.g., a grocery-store shopper estimating the total price of his or her shopping cart contents. The current studies were designed to test whether estimates based on calculations are influenced by comparisons with irrelevant anchors. Previous research has demonstrated that estimates across a wide range of contexts assimilate toward anchors, but none has examined estimates based on calculations. In two studies, we had participants compare the answers to math problems with anchors. In both studies, participants' estimates assimilated toward the anchor values. This effect was moderated by time limit such that the anchoring effects were larger when the participants' ability to engage in calculations was limited by a restrictive time limit.

  7. Current system of the solar wind: results of numerical calculation

    International Nuclear Information System (INIS)

    Pisanko, Yu.V.

    1985-01-01

    Results of numerical calculations of surface current in the interplanetary current layer and steady volume current in the solar wind for heliocentric distances (1-10)Rsub(s) (Rsub(s) is the Sun radius) are given. The strength of current dependence on spatial coordinates is considered. Stationary nondissipative magnetohydrodynamic corona expansion (SNMCE) in the reference system rotating with the Sun is studied. Calculations show that three-dimensional current system of nonaxial-symmetric and nonsymmetric relatively to helioequator plane of SNMCE is more complicated than the zonal ring current around the Sun, which is the only component of the current system in spatial symmetric case

  8. Advanced Dynamics Analytical and Numerical Calculations with MATLAB

    CERN Document Server

    Marghitu, Dan B

    2012-01-01

    Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly, allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support. This book also: Provides solutions analytically and numerically using MATLAB Illustrations and graphs generated with MATLAB reinforce visual learning for students as they study Covers modern technical advancements in areas like multibody systems, robotics, spacecraft and des...

  9. Numerical kinematic transformation calculations for a parallel link manipulator

    International Nuclear Information System (INIS)

    Killough, S.M.

    1993-01-01

    Parallel link manipulators are often considered for particular robotic applications because of the unique advantages they provide. Unfortunately, they have significant disadvantages with respect to calculating the kinematic transformations because of the high-order equations that must be solved. Presented is a manipulator design that exploits the mechanical advantages of parallel links yet also has a corresponding numerical kinematic solution that can be solved in real time on common microcomputers

  10. Exact comparison of dose rate measurements and calculation of TN12/2 packages

    International Nuclear Information System (INIS)

    Taniuchi, H.; Matsuda, F.

    1998-01-01

    Both of dose rate measurements of TN 12/2 package and calculations by Monte Carlo code MORSE in SCALE code system and MCNP were performed to evaluate the difference between the measurement and the calculation and finding out the cause of the difference. The calculated gamma-ray dose rates agreed well with measured ones, but calculated neutron dose rates overestimated more than a factor of 1.7. When considering the cause of the difference and applying the modification into the neutron calculation, the calculated neutron dose rates become to agree well, and the factor decreased to around 1.3. (authors)

  11. Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques

    NARCIS (Netherlands)

    Rodriguez, A.; Ibanescu, M.; Iannuzzi, D.; Joannopoulos, J. D.; Johnson, S.T.

    2007-01-01

    We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the

  12. Fluctuations of one-body observables. Comparison between exact predictions and numerical simulation

    International Nuclear Information System (INIS)

    Burgio, G.F.; Benhassine, B.; Remaud, B.; Sebille, F.

    1994-01-01

    Within the framework of a stochastic transport equation, we discuss a theoretical approach in order to derive the general covariance matrix of phase-space fluctuations and the dispersion of one-body variables at equilibrium. We compare with the independently obtained numerical results of Chomaz, Burgio and Randrup. The analysis proves the validity of the general approach. (orig.)

  13. Fluctuations of one-body observables. Comparison between exact predictions and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Burgio, G.F. (Lab. de Physique Nucleaire/CNRS and Univ. de Nantes, 44 Nantes (France)); Benhassine, B. (Lab. de Physique Nucleaire/CNRS and Univ. de Nantes, 44 Nantes (France)); Remaud, B. (Lab. de Physique Nucleaire/CNRS and Univ. de Nantes, 44 Nantes (France)); Sebille, F. (Lab. de Physique Nucleaire/CNRS and Univ. de Nantes, 44 Nantes (France))

    1994-01-24

    Within the framework of a stochastic transport equation, we discuss a theoretical approach in order to derive the general covariance matrix of phase-space fluctuations and the dispersion of one-body variables at equilibrium. We compare with the independently obtained numerical results of Chomaz, Burgio and Randrup. The analysis proves the validity of the general approach. (orig.)

  14. Simplified parquet equations for the Anderson impurity model: comparison with numerically exact solutions

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Vladislav; Žonda, M.; Kauch, Anna; Janiš, Václav

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1042-1044 ISSN 0587-4246 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : And erson model * parquet equations * numerical renormalization group Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  15. Step-by-step optimization and global chaos of nonlinear parameters in exact calculations of few-particle systems

    International Nuclear Information System (INIS)

    Frolov, A.M.

    1986-01-01

    Exact variational calculations are treated for few-particle systems in the exponential basis of relative coordinates using nonlinear parameters. The methods of step-by-step optimization and global chaos of nonlinear parameters are applied to calculate the S and P states of ppμ, ddμ, ttμ homonuclear mesomolecules within the error ≤±0.001 eV. The global chaos method turned out to be well applicable to nuclear 3 H and 3 He systems

  16. Step-by-step optimization and global chaos of nonlinear parameters in exact calculations of few-particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A M

    1986-09-01

    Exact variational calculations are treated for few-particle systems in the exponential basis of relative coordinates using nonlinear parameters. The methods of step-by-step optimization and global chaos of nonlinear parameters are applied to calculate the S and P states of pp..mu.., dd..mu.., tt..mu.. homonuclear mesomolecules within the error less than or equal to+-0.001 eV. The global chaos method turned out to be well applicable to nuclear /sup 3/H and /sup 3/He systems.

  17. Power calculations using exact data simulation: A useful tool for genetic study designs

    NARCIS (Netherlands)

    van der Sluis, S.; Dolan, C.V.; Neale, M.C.; Posthuma, D.

    2008-01-01

    Statistical power calculations constitute an essential first step in the planning of scientific studies. If sufficient summary statistics are available, power calculations are in principle straightforward and computationally light. In designs, which comprise distinct groups (e.g., MZ & DZ twins),

  18. Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques

    International Nuclear Information System (INIS)

    Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.; Johnson, Steven G.; Iannuzzi, Davide

    2007-01-01

    We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustrate our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a pistonlike geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising nonmonotonic ''lateral'' force from the walls

  19. Numerical shoves and countershoves in electron transport calculations

    International Nuclear Information System (INIS)

    Filippone, W.L.

    1986-01-01

    The justification for applying the relatively complex (compared to S/sub n/) streaming ray (SR) algorithm to electron transport problems is its potential for doing rapid and accurate calculations. Because of the Lagrangian treatment of the cell-uncollided electrons, the only significant sources of error are the numerical treatment of the scattering kernel and the spatial differencing scheme used for the cell-collided electrons. Considerable progress has been made in reducing the former source of error. If one is willing to pay the price, the latter source of error can be reduced to any desired level by refining the mesh size or by using high-order differencing schemes. Here the method of numerical shoves and countershoves is introduced, which reduces spatial differencing errors using relatively little additional computational effort

  20. Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions

    Science.gov (United States)

    Khajehtourian, Romik

    Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The

  1. Numerical methods for calculating thermal residual stresses and hydrogen diffusion

    International Nuclear Information System (INIS)

    Leblond, J.B.; Devaux, J.; Dubois, D.

    1983-01-01

    Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)

  2. Numerical calculation of hadron masses in lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Montvay, I.

    1985-07-01

    Recent numerical Monte Carlo simulations of the hadron spectrum are reviewed. After a general introduction, different ways of calculating the hadron masses in the ''quenched approximation'' (i.e. neglecting virtual quark loops) are described and the latest results are summarized. The pseudofermion method and the iterative hopping expansion method for the introduction of dynamical quarks is discussed, and the first results about the hadron spectrum including the effect of virtual quark loops are reviewed. A separate section is devoted to the discussion of the questions related to scaling with dynamical quarks. (orig./HSI)

  3. Application of a numerical transport correction in diffusion calculations

    International Nuclear Information System (INIS)

    Tomatis, Daniele; Dall'Osso, Aldo

    2011-01-01

    Full core calculations by ordinary transport methods can demand considerable computational time, hardly acceptable in the industrial work frame. However, the trend of next generation nuclear cores goes toward more heterogeneous systems, where transport phenomena of neutrons become very important. On the other hand, using diffusion solvers is more practical allowing faster calculations, but a specific formulation of the diffusion coefficient is requested to reproduce the scalar flux with reliable physical accuracy. In this paper, the Ronen method is used to evaluate numerically the diffusion coefficient in the slab reactor. The new diffusion solution is driven toward the solution of the integral neutron transport equation by non linear iterations. Better estimates of currents are computed and diffusion coefficients are corrected at node interfaces, still assuming Fick's law. This method enables obtaining closer results to the transport solution by a common solver in multigroup diffusion. (author)

  4. Numerical Calculation of the Flow in a Centrifugal Compressor Volute

    International Nuclear Information System (INIS)

    Seong, Seon Mo; Kang, Shin Hyoung; Cho, Kyung Seok; Kim, Woo June

    2007-01-01

    Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational domain contained inlet passage, impeller, radial and axial diffuser, and volute. The volute grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has the inlet passage like steps and axial diffuser after radial diffuser because of the shape of the motor cooling fins and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The loss in through the inlet passage was considerable and the flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue

  5. Numerical Calculation of Interaction Between Plane Jet and Subsonic Flow

    Directory of Open Access Journals (Sweden)

    V. O. Moskalenko

    2016-01-01

    Full Text Available The paper makes numerical calculation of interaction between plane jet and subsonic flow. Its aim is to determine the jet trajectory, velocity profiles, distribution of pressure coefficient on the plate surface at different jet angles, namely ωj=45°; 90°; 105° and at low blowing strengths ( ≤1.5 as well as a to make comparison with the experimental data of other authors.To simulate a two-dimensional jet in the subsonic flow the software package “CAD SolidWorks Flow Simulation” has been used. Initially, the test task was solved with its calculation results compared with experimental ones [6.8] in order to improve the convergence; the size of the computational domain and a computational grid within the k-ε turbulence model were selected. As a result of the calculation, were identified and analysed the pressure values, jet trajectories, and velocity profiles. In the graphs the solid lines show calculation results, and dots represent experimental data.From the calculation results it is seen that, with increasing intensity of the reduced mass flow ¯q in the above range, the change of the jet pressure coefficient p¯ distribution behind a slotted nozzle is almost linear and significant. Before the nozzle, with increasing ¯q the pressure coefficient increases slightly.Analysis of results has shown that blowing of jets with ωj>90ω, provides a greater perturbation of the subsonic flow. Thus, the jet penetrates into the flow deeper, forms a dead region of the greater length, and more significantly redistributes the pressure coefficient on the surface of the plate.The calculation results are in good compliance with the experimental data both for the jet axis and for the pressure coefficient distribution on the plate surface. The research results can be used in the designing the jet control of aircrafts.

  6. Experimental verification of numerical calculations of railway passenger seats

    Science.gov (United States)

    Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A.

    2018-04-01

    The construction of railway seats is based on industry regulations and the requirements of end users, i.e. passengers. The two main documents in this context are the UIC 566 (3rd Edition, dated 7 January 1994) and the EN 12663-1: 2010+A1:2014. The study was to carry out static load tests of passenger seat frames. The paper presents the construction of the test bench and the results of experimental and numerical studies of passenger seat rail frames. The test bench consists of a frame, a transverse beam, two electric cylinders with a force value of 6 kN, and a strain gauge amplifier. It has a modular structure that allows for its expansion depending on the structure of the seats. Comparing experimental results with numerical results for points A and B allowed to determine the existing differences. It follows from it that higher stress values are obtained by numerical calculations in the range of 0.2 MPa to 35.9 MPa.

  7. A Comparison between Effective Cross Section Calculations using the Intermediate Resonance Approximation and More Exact Methods

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1969-02-15

    In order to investigate some aspects of the 'Intermediate Resonance Approximation' developed by Goldstein and Cohen, comparative calculations have been made using this method together with more accurate methods. The latter are as follows: a) For homogeneous materials the slowing down equation is solved in the fundamental mode approximation with the computer programme SPENG. All cross sections are given point by point. Because the spectrum can be calculated for at most 2000 energy points, the energy regions where the resonances are accurately described are limited. Isolated resonances in the region 100 to 240 eV are studied for {sup 238}U/Fe and {sup 238}U/Fe/Na mixtures. In the regions 161 to 251 eV and 701 to 1000 eV, mixtures of {sup 238}U and Na are investigated. {sup 239}Pu/Na and {sup 239}Pu/{sup 238}U/Na mixtures are studied in the region 161 to 251 eV. b) For heterogeneous compositions in slab geometry the integral transport equation is solved using the FLIS programme in 22 energy groups. Thus, only one resonance can be considered in each calculation. Two resonances are considered, namely those belonging to {sup 238}U at 190 and 937 eV. The compositions are lattices of {sup 238}U and Fe plates. The computer programme DORIX is used for the calculations using the Intermediate Resonance Approximation. Calculations of reaction rates and effective cross sections are made at 0, 300 and 1100 deg K for homogeneous media and at 300 deg K for heterogeneous media. The results are compared to those obtained by using the programmes SPENG and FLIS and using the narrow resonance approximation.

  8. Determination of hydrogen cluster velocities and comparison with numerical calculations

    International Nuclear Information System (INIS)

    Täschner, A.; Köhler, E.; Ortjohann, H.-W.; Khoukaz, A.

    2013-01-01

    The use of powerful hydrogen cluster jet targets in storage ring experiments led to the need of precise data on the mean cluster velocity as function of the stagnation temperature and pressure for the determination of the volume density of the target beams. For this purpose a large data set of hydrogen cluster velocity distributions and mean velocities was measured at a high density hydrogen cluster jet target using a trumpet shaped nozzle. The measurements have been performed at pressures above and below the critical pressure and for a broad range of temperatures relevant for target operation, e.g., at storage ring experiments. The used experimental method is described which allows for the velocity measurement of single clusters using a time-of-flight technique. Since this method is rather time-consuming and these measurements are typically interfering negatively with storage ring experiments, a method for a precise calculation of these mean velocities was needed. For this, the determined mean cluster velocities are compared with model calculations based on an isentropic one-dimensional van der Waals gas. Based on the obtained data and the presented numerical calculations, a new method has been developed which allows to predict the mean cluster velocities with an accuracy of about 5%. For this two cut-off parameters defining positions inside the nozzle are introduced, which can be determined for a given nozzle by only two velocity measurements

  9. Exact and Numerical Solutions of a Spatially-Distributed Mathematical Model for Fluid and Solute Transport in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2016-06-01

    Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.

  10. Numerical calculation of beam coupling impedances in synchrotron accelerators

    International Nuclear Information System (INIS)

    Haenichen, Lukas

    2016-01-01

    Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator

  11. Numerical calculation of beam coupling impedances in synchrotron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haenichen, Lukas

    2016-07-01

    Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator

  12. Time domain numerical calculations of the short electron bunch wakefields in resistive structures

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanian, Andranik

    2010-10-15

    The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of

  13. Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    International Nuclear Information System (INIS)

    Chvosta, Petr; Holubec, Viktor; Ryabov, Artem; Einax, Mario; Maass, Philipp

    2010-01-01

    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven at a constant rate. The time evolutions of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the work performed during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility

  14. Numerical Uncertainty Analysis for Computational Fluid Dynamics using Student T Distribution -- Application of CFD Uncertainty Analysis Compared to Exact Analytical Solution

    Science.gov (United States)

    Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.

    2014-01-01

    Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.

  15. Numerical Activities and Information Learned at Home Link to the Exact Numeracy Skills in 5–6 Years-Old Children

    Science.gov (United States)

    Benavides-Varela, Silvia; Butterworth, Brian; Burgio, Francesca; Arcara, Giorgio; Lucangeli, Daniela; Semenza, Carlo

    2016-01-01

    It is currently accepted that certain activities within the family environment contribute to develop early numerical skills before schooling. However, it is unknown whether this early experience influences both the exact and the approximate representation of numbers, and if so, which is more important for numerical tasks. In the present study the mathematical performance of 110 children (mean age 5 years 11 months) was evaluated using a battery that included tests of approximate and exact numerical abilities, as well as everyday numerical problems. Moreover, children were assessed on their knowledge of number information learned at home. The parents of the participants provided information regarding daily activities of the children and socio-demographic characteristics of the family. The results showed that the amount of numerical information learned at home was a significant predictor of participants' performance on everyday numerical problems and exact number representations, even after taking account of age, memory span and socio-economic and educational status of the family. We also found that particular activities, such as board games, correlate with the children's counting skills, which are foundational for arithmetic. Crucially, tests relying on approximate representations were not predicted by the numerical knowledge acquired at home. The present research supports claims about the importance and nature of home experiences in the child's acquisition of mathematics. PMID:26903902

  16. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Science.gov (United States)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  17. Numerical calculation of particle collection efficiency in an ...

    Indian Academy of Sciences (India)

    Theoretical and numerical research has been previously done on ESPs to predict the efficiency ... Lagrangian simulations of particle transport in wire–plate ESP were .... The collection efficiency can be defined as the ratio of the number of ...

  18. A Lie-admissible method of integration of Fokker-Planck equations with non-linear coefficients (exact and numerical solutions)

    International Nuclear Information System (INIS)

    Fronteau, J.; Combis, P.

    1984-08-01

    A Lagrangian method is introduced for the integration of non-linear Fokker-Planck equations. Examples of exact solutions obtained in this way are given, and also the explicit scheme used for the computation of numerical solutions. The method is, in addition, shown to be of a Lie-admissible type

  19. On the Differences Between the Drucker-Prager Criterion and Exact Implementation of the Mohr-Coulomb Criterion in FEM Calculations

    DEFF Research Database (Denmark)

    Clausen, Johan; Andersen, Lars; Damkilde, Lars

    2010-01-01

    This paper compares calculation results obtained with the Mohr-Coulomb and Drucker-Prager material models. The models are implemented in a finite element code and the exact models are used, i.e. no rounding of yield surface corners or apices is performed. Results for both 2D and 3D calculations a...

  20. Numerical calculation of elastohydrodynamic lubrication methods and programs

    CERN Document Server

    Huang, Ping

    2015-01-01

    The book not only offers scientists and engineers a clear inter-disciplinary introduction and orientation to all major EHL problems and their solutions but, most importantly, it also provides numerical programs on specific application in engineering. A one-stop reference providing equations and their solutions to all major elastohydrodynamic lubrication (EHL) problems, plus numerical programs on specific applications in engineering offers engineers and scientists a clear inter-disciplinary introduction and a concise program for practical engineering applications to most important EHL problems

  1. Numerical method for two-phase flow discontinuity propagation calculation

    International Nuclear Information System (INIS)

    Toumi, I.; Raymond, P.

    1989-01-01

    In this paper, we present a class of numerical shock-capturing schemes for hyperbolic systems of conservation laws modelling two-phase flow. First, we solve the Riemann problem for a two-phase flow with unequal velocities. Then, we construct two approximate Riemann solvers: an one intermediate-state Riemann solver and a generalized Roe's approximate Riemann solver. We give some numerical results for one-dimensional shock-tube problems and for a standard two-phase flow heat addition problem involving two-phase flow instabilities

  2. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas

    NARCIS (Netherlands)

    De Wachter, D; Verdonck, P

    Hemolysis in extracorporeal life support systems presents an underestimated problem. In this article, we investigate the hemolytic potential of peripheral hemodialysis cannulas numerically. An axisymmetrical finite element model of 3 cannula sizes was built (13G, 14G, and 16G) that was refined

  3. Numerical fluid flow and heat transfer calculations on multiprocessor systems

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, G.A.; Malen, T.E.; Kuusela, P.

    1989-01-01

    The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.

  4. Numerical fluid flow and heat transfer calculations on multiprocessor systems

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, G.A.; Malen, T.E.; Kuusela, P.

    1989-12-31

    The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.

  5. Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory

    DEFF Research Database (Denmark)

    Sharma, S.; Pittalis, S.; Kurth, S.

    2007-01-01

    The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....

  6. Development of an atmospheric diffusion numerical model for a nuclear facility. Numerical calculation method incorporating building effects

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi

    2002-01-01

    Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)

  7. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non

  8. Exact solutions and numerical simulation of longitudinal vibration of the Rayleigh-Love rods with variable cross-sections

    CSIR Research Space (South Africa)

    Shatalov, M

    2012-09-01

    Full Text Available Exact solutions of equations of longitudinal vibration of conical and exponential rod are analyzed for the Rayleigh-Love model. These solutions are used as reference results for checking accuracy of the method of lines. It is shown that the method...

  9. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  10. Numerical groundwater flow calculations at the Finnsjoen site

    International Nuclear Information System (INIS)

    Lindbom, B.; Boghammar, A.; Lindberg, H.; Bjelkaas, J.

    1991-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has initiated a research project called SKB 91, which is related to performance assessment of repositories for high level waste from nuclear power plants. Specifically the Finnsjoen site is of concern. As part of this research project, the report describes groundwater flow calculations at the Finnsjoen site, located in northern Uppland, approximately 150 km north of Stockholm. The calculations have been performed with the finite element method applying the porous media approach. The project comprises three steps, the first of which is concerned with the presence of salt below a hydraulically significant structure. This step was modelled in two dimensions in a semi-generic fashion, while the two following steps comprised three-dimensional modelling of the site at a semi-regional and a local scale. The semi-regional model covered approximately 43 square km while the area of the local model was roughly 6.6 square km. The semi-regional model included well expressed regional fracture zones that were explicitly modelled in deterministic manner. The modelling was performed with the finite element code NAMMU, used together with the program-package HYPAC. The latter was used for pre- and postprocessing purposes. The modelling was performed with 8-noded brick elements for the three-dimensional calculations, and the two-dimensional model involved the use of 8-noded rectangular elements. The present report is a revised version of a report previously published as a working report. The difference between the present report and the previous one, is that the present report describes the conclusions more site-specifically, the presentation of a number of the cases tackled has been pruned down, some editorial effort has been put into having the volume of the report reduced, and finally the summary has been edited and cut down. (authors)

  11. Numerical calculation of radiation pattern of plasma channel antenna

    International Nuclear Information System (INIS)

    Xia Xinren; Yin Chengyou

    2010-01-01

    The idea of plasma channel antenna (PCA) for high power microwave weapon is presented in this paper. The radiation pattern of PCA is calculated. The directivity functions of general antenna are derived. The near electromagnetic model of PCA is created based on physical circumstances. The electromagnetic fields of PCA and surrounding air in cylindrical coordinate are given. The dispersion equation of PCA is deduced by applying the boundary conditions of electromagnetic fields. The surface wave vector of PCA is achieved. The variations of radiation characteristic with plasma density, antenna length and antenna radius are emphatically discussed. The controllability of PCA's radiation patterns is confirmed. (authors)

  12. Numerical calculation of ion polarization in the NICA collider

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.

  13. Numerical calculation of ion polarization in the NICA collider

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Filatov, Yu N; Kondratenko, M A; Kondratenko, A M

    2016-01-01

    The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams. (paper)

  14. fp shell spectroscopy: numerical calculations and theoretical aspects

    International Nuclear Information System (INIS)

    Pasquini, E.A.

    1976-01-01

    The fp shell spectroscopy is reviewed and the fsup(n) model is introduced. It is shown that the two-body Hamiltonian monopolar terms play a very important part in the behavior of these spectra, and that realistic interactions do not reproduce them. The detailed study of the following nuclei was undertaken: 47 Ca, 48 Ca, 49 Ca, 56 Ni, 48 Sc, 50 Sc, 50 Ti, 46 Ti, 50 Cr, 47 V and 49 Cr. It is shown that very precise values of the few parameters defining the monopolar contributions could be extracted from the comparison between calculations and experimental data. The study of the binding energies of all the nuclei from 40 Ca to 56 Ni shows that it is necessary to introduce three-body forces. The results also reveal the effect of nondiagonal multipoles which are well reproduced by realistic interactions. A better understanding of the electromagnetic behavior of the fsup(n) nuclei of their conjugaison properties and of the relation between 42 Sc and 48 Sc was obtained. Several calculations of two-body transfer amplitudes were proposed [fr

  15. NUMERICAL CALCULATIONS IN GEOMECHANICS APPLICABLE TO LINEAR STRUCTURES

    Directory of Open Access Journals (Sweden)

    Vlasov Aleksandr Nikolaevich

    2012-10-01

    Full Text Available The article covers the problem of applicability of finite-element and engineering methods to the development of a model of interaction between pipeline structures and the environment in the complex conditions with a view to the simulation and projection of exogenous geological processes, trustworthy assessment of their impacts on the pipeline, and the testing of varied calculation methodologies. Pipelining in the areas that have a severe continental climate and permafrost soils is accompanied by cryogenic and exogenous processes and developments. It may also involve the development of karst and/or thermokarst. The adverse effect of the natural environment is intensified by the anthropogenic impact produced onto the natural state of the area, causing destruction of forests and other vegetation, changing the ratio of soils in the course of the site planning, changing the conditions that impact the surface and underground waters, and causing the thawing of the bedding in the course of the energy carrier pumping, etc. The aforementioned consequences are not covered by effective regulatory documents. The latter constitute general and incomplete recommendations in this respect. The appropriate mathematical description of physical processes in complex heterogeneous environments is a separate task to be addressed. The failure to consider the above consequences has repeatedly caused both minor damages (denudation of the pipeline, insulation stripping and substantial accidents; the rectification of their consequences was utterly expensive. Pipelining produces a thermal impact on the environment; it may alter the mechanical properties of soils and de-frost the clay. The stress of the pipeline is one of the principal factors that determines its strength and safety. The pipeline stress exposure caused by loads and impacts (self-weight, internal pressure, etc. may be calculated in advance, and the accuracy of these calculations is sufficient for practical

  16. Numerical calculations of effective elastic properties of two cellular structures

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films

  17. Numerical calculation of two-phase turbulent jets

    Energy Technology Data Exchange (ETDEWEB)

    Saif, A.A.

    1995-05-01

    Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.

  18. Numerical calculation of air velocity and temperature in ice rinks

    Energy Technology Data Exchange (ETDEWEB)

    Bellache, O.; Galanis, N. [Sherbrooke Univ., PQ (Canada); Ouzzane, M.; Sunye, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Diversification Laboratory

    2002-07-01

    A computational fluid dynamic (CFD) model was developed to predict the energy consumption at an ice rink. Ice rinks in Canada consume approximately 3500 GWh of electricity annually and generate about 300,000 tons of gases contributing to the greenhouse effect. This newly developed model also considers ice quality and comfort conditions in the arena. The typical 2D configuration includes refrigeration loads as well as heat transfer coefficients between the air and the ice. The effects of heat losses through the ice rink envelope are also determined. A comparison of prediction results from 4 different formulations confirms that there are important differences in air velocities near the walls and in the temperature gradient near the ice. The turbulent mixed convection model gives the best estimate of the refrigeration load. It was determined that a good ventilation should circulate air throughout the building to avoid stagnant areas. Air velocities must be low near the stands where the temperature should be around 20 degrees C. Air temperature near the ice should be low to preserve ice quality and to reduce the refrigeration load. The complexity of this geometry has been taken into account in a numerical simulation of the hydrodynamic and thermal fields in the ice rink. 9 refs., 2 tabs., 5 figs.

  19. Numerical calculation of transient field effects in quenching superconducting magnets

    International Nuclear Information System (INIS)

    Schwerg, Juljan Nikolai

    2010-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  20. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  1. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    El-Osery, I.A.

    1981-01-01

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  2. A strong shock tube problem calculated by different numerical schemes

    Science.gov (United States)

    Lee, Wen Ho; Clancy, Sean P.

    1996-05-01

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 109 and density ratio of 103 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods.

  3. A strong shock tube problem calculated by different numerical schemes

    International Nuclear Information System (INIS)

    Lee, W.H.; Clancy, S.P.

    1996-01-01

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 10 9 and density ratio of 10 3 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods. copyright 1996 American Institute of Physics

  4. Fast numerical calculations of ion-atom collisions

    International Nuclear Information System (INIS)

    Reading, J.F.; Ford, A.L.; Becker, R.L.

    1979-01-01

    When an ion impinges on an atom, the cross sections for electronic transitions can be described in the independent electron model by functions of single electron amplitudes. A single centered expansion of the time-dependent wave function of an electron about the heavier nucleus, with charge Z/sub N/, is shown to be moderately successful in explaining the dependence of K-shell hole production on the charge, Z/sub p/, of the projectile. However, capture of electrons by the projectile is important for a complete understanding and can be incorporated, in principle, in the single-center approach by evaluation of a transition matrix element involving a final state on the projectile. This is not an easy theoretical problem even in an asymmetric (Z/sub p/ much less than Z/sub N/) collision, because long times are involved which aggravate the inadequacies of a coupled-state calculation where the continuum is replaced by a discrete set of pseudostates. Nevertheless a method was devised which allows convergence in the truncated expansion of Hilbert states. Comparisons are made to experiment. Future developments are discussed

  5. Multistate electron transfer dynamics in the condensed phase: Exact calculations from the reduced hierarchy equations of motion approach

    International Nuclear Information System (INIS)

    Tanaka, Midori; Tanimura, Yoshitaka

    2010-01-01

    Multiple displaced oscillators coupled to an Ohmic heat bath are used to describe electron transfer (ET) in a dissipative environment. By performing a canonical transformation, the model is reduced to a multilevel system coupled to a heat bath with the Brownian spectral distribution. A reduced hierarchy equations of motion approach is introduced for numerically rigorous simulation of the dynamics of the three-level system with various oscillator configurations, for different nonadiabatic coupling strengths and damping rates, and at different temperatures. The time evolution of the reduced density matrix elements illustrates the interplay of coherences between the electronic and vibrational states. The ET reaction rates, defined as a flux-flux correlation function, are calculated using the linear response of the system to an external perturbation as a function of activation energy. The results exhibit an asymmetric inverted parabolic profile in a small activation regime due to the presence of the intermediate state between the reactant and product states and a slowly decaying profile in a large activation energy regime, which arises from the quantum coherent transitions.

  6. Numerical Simulation of Shale Gas Production with Thermodynamic Calculations Incorporated

    KAUST Repository

    Urozayev, Dias

    2015-06-01

    In today’s energy sector, it has been observed a revolutionary increase in shale gas recovery induced by reservoir fracking. So-called unconventional reservoirs became profitable after introducing a well stimulation technique. Some of the analysts expect that shale gas is going to expand worldwide energy supply. However, there is still a lack of an efficient as well as accurate modeling techniques, which can provide a good recovery and production estimates. Gas transports in shale reservoir is a complex process, consisting of slippage effect, gas diffusion along the wall, viscous flow due to the pressure gradient. Conventional industrial simulators are unable to model the flow as the flow doesn’t follow Darcy’s formulation. It is significant to build a unified model considering all given mechanisms for shale reservoir production study and analyze the importance of each mechanism in varied conditions. In this work, a unified mathematical model is proposed for shale gas reservoirs. The proposed model was build based on the dual porosity continuum media model; mass conservation equations for both matrix and fracture systems were build using the dusty gas model. In the matrix, gas desorption, Knudsen diffusion and viscous flow were taken into account. The model was also developed by implementing thermodynamic calculations to correct for the gas compressibility, or to obtain accurate treatment of the multicomponent gas. Previously, the model was built on the idealization of the gas, considering every molecule identical without any interaction. Moreover, the compositional variety of shale gas requires to consider impurities in the gas due to very high variety. Peng-Robinson equation of state was used to com- pute and correct for the gas density to pressure relation by solving the cubic equation to improve the model. The results show that considering the compressibility of the gas will noticeably increase gas production under given reservoir conditions and slow down

  7. Numerically exact dynamics of the interacting many-body Schroedinger equation for Bose-Einstein condensates. Comparison to Bose-Hubbard and Gross-Pitaevskii theory

    Energy Technology Data Exchange (ETDEWEB)

    Sakmann, Kaspar

    2010-07-21

    In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)

  8. Numerical calculation models of the elastoplastic response of a structure under seismic action

    International Nuclear Information System (INIS)

    Edjtemai, Nima.

    1982-06-01

    Two digital calculation models developed in this work have made it possible to analyze the exact dynamic behaviour of ductile structures with one or several degrees of liberty, during earthquakes. With the first model, response spectra were built in the linear and non-linear fields for different absorption and ductility values and two types of seismic accelerograms. The comparative study of these spectra made it possible to check the validity of certain hypotheses suggested for the construction of elastoplastic spectra from corresponding linear spectra. A simplified method of non-linear seismic calculation based on the modal analysis and the spectra of elastoplastic response was then applied to structures with a varying number of degrees of liberty. The results obtained in this manner were compared with those provided by an exact calculation provided by the second digital model developed by us [fr

  9. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-08-15

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.

  10. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Pham, Dang-Lan; Le, Van-Hoang

    2013-01-01

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity

  11. Ability of aphasic individuals to perform numerical processing and calculation tasks

    Directory of Open Access Journals (Sweden)

    Gabriela De Luccia

    2014-03-01

    Full Text Available Objective To compare performance on EC301 battery calculation task between aphasic subjects and normal controls of the same sex, age, and education. Method Thirty-two aphasic patients who had suffered a single left hemisphere stroke were evaluated. Forty-four healthy volunteers were also selected. All subjects underwent a comprehensive arithmetic battery to assess their numerical and calculation skills. Performances on numerical processing and calculation tasks were then analyzed. Results Aphasic individuals showed changes in their ability to perform numerical processing and calculation tasks that were not observed in the healthy population. Conclusion Compared with healthy subjects of the same age and education level, individuals with aphasia had difficulty performing various tasks that involved numerical processing and calculation.

  12. On numerically solving the complex eikonal equation using real ray-tracing methods: A comparison with the exact analytical solution

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2012-01-01

    Roč. 77, č. 4 (2012), T109-T116 ISSN 0016-8033 R&D Projects: GA AV ČR IAA300120801 Institutional research plan: CEZ:AV0Z30120515 Institutional support: RVO:67985530 Keywords : anisotropic viscoelastic media * finite-difference calculation * travel - time calculation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.723, year: 2012

  13. Patient safety: numerical skills and drug calculation abilities of nursing students and registered nurses.

    Science.gov (United States)

    McMullan, Miriam; Jones, Ray; Lea, Susan

    2010-04-01

    This paper is a report of a correlational study of the relations of age, status, experience and drug calculation ability to numerical ability of nursing students and Registered Nurses. Competent numerical and drug calculation skills are essential for nurses as mistakes can put patients' lives at risk. A cross-sectional study was carried out in 2006 in one United Kingdom university. Validated numerical and drug calculation tests were given to 229 second year nursing students and 44 Registered Nurses attending a non-medical prescribing programme. The numeracy test was failed by 55% of students and 45% of Registered Nurses, while 92% of students and 89% of nurses failed the drug calculation test. Independent of status or experience, older participants (> or = 35 years) were statistically significantly more able to perform numerical calculations. There was no statistically significant difference between nursing students and Registered Nurses in their overall drug calculation ability, but nurses were statistically significantly more able than students to perform basic numerical calculations and calculations for solids, oral liquids and injections. Both nursing students and Registered Nurses were statistically significantly more able to perform calculations for solids, liquid oral and injections than calculations for drug percentages, drip and infusion rates. To prevent deskilling, Registered Nurses should continue to practise and refresh all the different types of drug calculations as often as possible with regular (self)-testing of their ability. Time should be set aside in curricula for nursing students to learn how to perform basic numerical and drug calculations. This learning should be reinforced through regular practice and assessment.

  14. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  15. Comparison of results of experimental research with numerical calculations of a model one-sided seal

    Directory of Open Access Journals (Sweden)

    Joachimiak Damian

    2015-06-01

    Full Text Available Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.

  16. Numerical calculation of the cross section by the solution of the wave equation

    International Nuclear Information System (INIS)

    Drewko, J.

    1982-01-01

    A numerical method of solving of the wave equation is described for chosen vibrational eigenfunctions. A prepared program calculates the total cross sections for the resonant vibrational excitation for diatomic molecules on the basis of introduced molecular data. (author)

  17. Exact calculations of survival probability for diffusion on growing lines, disks, and spheres: The role of dimension.

    Science.gov (United States)

    Simpson, Matthew J; Baker, Ruth E

    2015-09-07

    Unlike standard applications of transport theory, the transport of molecules and cells during embryonic development often takes place within growing multidimensional tissues. In this work, we consider a model of diffusion on uniformly growing lines, disks, and spheres. An exact solution of the partial differential equation governing the diffusion of a population of individuals on the growing domain is derived. Using this solution, we study the survival probability, S(t). For the standard non-growing case with an absorbing boundary, we observe that S(t) decays to zero in the long time limit. In contrast, when the domain grows linearly or exponentially with time, we show that S(t) decays to a constant, positive value, indicating that a proportion of the diffusing substance remains on the growing domain indefinitely. Comparing S(t) for diffusion on lines, disks, and spheres indicates that there are minimal differences in S(t) in the limit of zero growth and minimal differences in S(t) in the limit of fast growth. In contrast, for intermediate growth rates, we observe modest differences in S(t) between different geometries. These differences can be quantified by evaluating the exact expressions derived and presented here.

  18. Comparison of Different Numerical Methods for Quality Factor Calculation of Nano and Micro Photonic Cavities

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2014-01-01

    Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....

  19. The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: II. Numerical Treatment

    OpenAIRE

    Scheidsteger, T.; Urbschat, H.; Griffiths, R. B.; Schellnhuber, H. J.

    1997-01-01

    A procedure is described for efficiently finding the ground state energy and configuration for a Frenkel-Kontorova model in a periodic potential, consisting of N parabolic segments of identical curvature in each period, through a numerical solution of the convex minimization problem described in the preceding paper. The key elements are the use of subdifferentials to describe the structure of the minimization problem; an intuitive picture of how to solve it, based on motion of quasiparticles;...

  20. Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow

    International Nuclear Information System (INIS)

    Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.

    1992-01-01

    Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)

  1. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  2. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  3. Time-dependent flow model of a generalized Burgers' fluid with fractional derivatives through a cylindrical domain: An exact and numerical approach

    Science.gov (United States)

    Safdar, Rabia; Imran, M.; Khalique, Chaudry Masood

    2018-06-01

    Exact solutions for velocity field and tangential stress for rotational flow of a generalized Burgers' fluid within an infinite circular pipe are derived by using the methods of Laplace and finite Hankel transformations. Firstly we take the position of fluid at rest and then the fluid flow due to the rotation of the pipe around the axis of flow having time dependant angular velocity. The exact solutions are presented in terms of the generalized Ga,b,c (., t) -functions. The corresponding results can be freely specified for the same results of Burgers', Oldroyd B, Maxwell, second grade and Newtonian fluids (performing the same motion) as particular cases of the results obtained earlier. The impact of the different parameters, individually and in comparison, are represented by graphical demonstrations. Secondly the numerical solutions for velocity and stress are also obtained with the help of Laplace transformation, Gaver Stehfest's algorithm and MATHCAD. Finally a comparison of both methods for the same problem is done and shows the consistency of results.

  4. Accuracy requirements for the calculation of gravitational waveforms from coalescing compact binaries in numerical relativity

    International Nuclear Information System (INIS)

    Miller, Mark

    2005-01-01

    I discuss the accuracy requirements on numerical relativity calculations of inspiraling compact object binaries whose extracted gravitational waveforms are to be used as templates for matched filtering signal extraction and physical parameter estimation in modern interferometric gravitational wave detectors. Using a post-Newtonian point particle model for the premerger phase of the binary inspiral, I calculate the maximum allowable errors for the mass and relative velocity and positions of the binary during numerical simulations of the binary inspiral. These maximum allowable errors are compared to the errors of state-of-the-art numerical simulations of multiple-orbit binary neutron star calculations in full general relativity, and are found to be smaller by several orders of magnitude. A post-Newtonian model for the error of these numerical simulations suggests that adaptive mesh refinement coupled with second-order accurate finite difference codes will not be able to robustly obtain the accuracy required for reliable gravitational wave extraction on Terabyte-scale computers. I conclude that higher-order methods (higher-order finite difference methods and/or spectral methods) combined with adaptive mesh refinement and/or multipatch technology will be needed for robustly accurate gravitational wave extraction from numerical relativity calculations of binary coalescence scenarios

  5. A numerical approach to calculate the induced voltage in the case of conduced perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Andretzko, J.P.; Hedjiedj, A.; Babouri, A.; Guendouz, L.; Nadi, M. [Nancy-1 Univ. Henri Poincare, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France)

    2006-07-01

    This paper presents a method of numerical simulation that makes it possible to calculate the induced tension to the terminals of the cardiac pacemaker subjected to conduced disturbances. The physical model used for simulation is an experimental test bed which makes it possible to study the behaviour of pacemaker, in vitro, subjected to electromagnetic disturbances in low frequencies range (50 hz - 500 khz). The test bed in which the pacemaker is implanted is described in this article. The process of calculation uses the admittance method adapted to the case of conducted disturbances. Results obtained by numerical simulation are close to experimental values. (authors)

  6. A numerical approach to calculate the induced voltage in the case of conduced perturbations

    International Nuclear Information System (INIS)

    Andretzko, J.P.; Hedjiedj, A.; Babouri, A.; Guendouz, L.; Nadi, M.

    2006-01-01

    This paper presents a method of numerical simulation that makes it possible to calculate the induced tension to the terminals of the cardiac pacemaker subjected to conduced disturbances. The physical model used for simulation is an experimental test bed which makes it possible to study the behaviour of pacemaker, in vitro, subjected to electromagnetic disturbances in low frequencies range (50 hz - 500 khz). The test bed in which the pacemaker is implanted is described in this article. The process of calculation uses the admittance method adapted to the case of conducted disturbances. Results obtained by numerical simulation are close to experimental values. (authors)

  7. Distributed Sensor Network for meteorological observations and numerical weather Prediction Calculations

    Directory of Open Access Journals (Sweden)

    Á. Vas

    2013-06-01

    Full Text Available The prediction of weather generally means the solution of differential equations on the base of the measured initial conditions where the data of close and distant neighboring points are used for the calculations. It requires the maintenance of expensive weather stations and supercomputers. However, if weather stations are not only capable of measuring but can also communicate with each other, then these smart sensors can also be applied to run forecasting calculations. This applies the highest possible level of parallelization without the collection of measured data into one place. Furthermore, if more nodes are involved, the result becomes more accurate, but the computing power required from one node does not increase. Our Distributed Sensor Network for meteorological sensing and numerical weather Prediction Calculations (DSN-PC can be applied in several different areas where sensing and numerical calculations, even the solution of differential equations, are needed.

  8. Advanced numerical methods for three dimensional two-phase flow calculations in PWR

    International Nuclear Information System (INIS)

    Toumi, I.; Gallo, D.; Royer, E.

    1997-01-01

    This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)

  9. Numerically induced pressure excursions in two-phase-flow calculations. Final report

    International Nuclear Information System (INIS)

    Mahaffy, J.H.; Liles, D.R.

    1983-01-01

    Pressure spikes that cannot be traced to any physical origin sometimes are observed when standard Eulerian finite-difference methods are used to calculate two-phase-flow transients. This problem occurs with varying frequency in nuclear reactor safety codes such as RELAP, RETRAN, COBRA, and TRAC. These spikes usually result from numerical water packing or from interactions between spatial discretization and heat transfer

  10. A numerical calculation method of environmental impacts for the deep sea mining industry - a review.

    Science.gov (United States)

    Ma, Wenbin; van Rhee, Cees; Schott, Dingena

    2018-03-01

    Since the gradual decrease of mineral resources on-land, deep sea mining (DSM) is becoming an urgent and important emerging activity in the world. However, until now there has been no commercial scale DSM project in progress. Together with the reasons of technological feasibility and economic profitability, the environmental impact is one of the major parameters hindering its industrialization. Most of the DSM environmental impact research focuses on only one particular aspect ignoring that all the DSM environmental impacts are related to each other. The objective of this work is to propose a framework for the numerical calculation methods of the integrated DSM environmental impacts through a literature review. This paper covers three parts: (i) definition and importance description of different DSM environmental impacts; (ii) description of the existing numerical calculation methods for different environmental impacts; (iii) selection of a numerical calculation method based on the selected criteria. The research conducted in this paper provides a clear numerical calculation framework for DSM environmental impact and could be helpful to speed up the industrialization process of the DSM industry.

  11. Numerical Calculation for Whirling Motion of a Centrifugal Blood Pump with Conical Spiral Groove Bearings

    Science.gov (United States)

    Shigemaru, Daichi; Tsukamoto, Hiroshi

    2010-06-01

    Whirling motion of a pump impeller was calculated for the centrifugal blood pump with Conical Spiral Groove Bearings to get a criterion for the instability of impeller whirling motion. The motion of the centrifugal blood pump impeller was calculated based on a spring damping model, and unsteady flow in the pump was computed using the commercial CFD package ANSYS CFX. Also the whirling motion of rotating impeller was measured using two displacement sensors fixed to the blood pump casing. The numerical calculations were done for the blood pump impeller with conical spiral groove bearings, and impeller whirling motion was evaluated.

  12. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz

    International Nuclear Information System (INIS)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-01-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  13. Determination of Solution Accuracy of Numerical Schemes as Part of Code and Calculation Verification

    Energy Technology Data Exchange (ETDEWEB)

    Blottner, F.G.; Lopez, A.R.

    1998-10-01

    This investigation is concerned with the accuracy of numerical schemes for solving partial differential equations used in science and engineering simulation codes. Richardson extrapolation methods for steady and unsteady problems with structured meshes are presented as part of the verification procedure to determine code and calculation accuracy. The local truncation error de- termination of a numerical difference scheme is shown to be a significant component of the veri- fication procedure as it determines the consistency of the numerical scheme, the order of the numerical scheme, and the restrictions on the mesh variation with a non-uniform mesh. Genera- tion of a series of co-located, refined meshes with the appropriate variation of mesh cell size is in- vestigated and is another important component of the verification procedure. The importance of mesh refinement studies is shown to be more significant than just a procedure to determine solu- tion accuracy. It is suggested that mesh refinement techniques can be developed to determine con- sistency of numerical schemes and to determine if governing equations are well posed. The present investigation provides further insight into the conditions and procedures required to effec- tively use Richardson extrapolation with mesh refinement studies to achieve confidence that sim- ulation codes are producing accurate numerical solutions.

  14. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  15. Numerical Calculation of the Swirling Flow in a Centrifugal Compressor Volute

    International Nuclear Information System (INIS)

    Seong, Seon Mo; Kang, Shin Hyoung; Cho, Kyung Seok; Kim, Woo June

    2007-01-01

    Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has axial diffuser after radial diffuser because of the shape of inlet duct and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue. The calculation results show circumferential variations of the swirl and through flow velocity and pressure distribution. The mechanism deciding flow structure is explained by considering the force balance in volute cross section. And static pressure recovery and total pressure loss are estimated from the calculated results and compared with Japikse model

  16. The Uhlenbeck-Ford model: Exact virial coefficients and application as a reference system in fluid-phase free-energy calculations

    Science.gov (United States)

    Paula Leite, Rodolfo; Freitas, Rodrigo; Azevedo, Rodolfo; de Koning, Maurice

    2016-11-01

    The Uhlenbeck-Ford (UF) model was originally proposed for the theoretical study of imperfect gases, given that all its virial coefficients can be evaluated exactly, in principle. Here, in addition to computing the previously unknown coefficients B11 through B13, we assess its applicability as a reference system in fluid-phase free-energy calculations using molecular simulation techniques. Our results demonstrate that, although the UF model itself is too soft, appropriately scaled Uhlenbeck-Ford (sUF) models provide robust reference systems that allow accurate fluid-phase free-energy calculations without the need for an intermediate reference model. Indeed, in addition to the accuracy with which their free energies are known and their convenient scaling properties, the fluid is the only thermodynamically stable phase for a wide range of sUF models. This set of favorable properties may potentially put the sUF fluid-phase reference systems on par with the standard role that harmonic and Einstein solids play as reference systems for solid-phase free-energy calculations.

  17. An Efficient numerical method to calculate the conductivity tensor for disordered topological matter

    Science.gov (United States)

    Garcia, Jose H.; Covaci, Lucian; Rappoport, Tatiana G.

    2015-03-01

    We propose a new efficient numerical approach to calculate the conductivity tensor in solids. We use a real-space implementation of the Kubo formalism where both diagonal and off-diagonal conductivities are treated in the same footing. We adopt a formulation of the Kubo theory that is known as Bastin formula and expand the Green's functions involved in terms of Chebyshev polynomials using the kernel polynomial method. Within this method, all the computational effort is on the calculation of the expansion coefficients. It also has the advantage of obtaining both conductivities in a single calculation step and for various values of temperature and chemical potential, capturing the topology of the band-structure. Our numerical technique is very general and is suitable for the calculation of transport properties of disordered systems. We analyze how the method's accuracy varies with the number of moments used in the expansion and illustrate our approach by calculating the transverse conductivity of different topological systems. T.G.R, J.H.G and L.C. acknowledge Brazilian agencies CNPq, FAPERJ and INCT de Nanoestruturas de Carbono, Flemish Science Foundation for financial support.

  18. Numerical calculation of flashing from long pipes using a two-field model

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1976-05-01

    A two-field model for two-phase flows, in which the vapor and liquid phases have different densities, velocities, and temperatures, has been used to calculate the flashing of water from long pipes. The IMF (Implicit Multifield) technique is used to numerically solve the transient equations that govern the dynamics of each phase. The flow physics is described with finite rate phase transitions, interfacial friction, heat transfer, pipe wall friction, and appropriate state equations. The results of the calculations are compared with measured histories of pressure, temperature, and void fraction. A parameter study indicates the relative sensitivity of the results to the various physical models that are used

  19. Numerical calculation of flashing from long pipes using a two-field model

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1975-11-01

    A two-field model for two-phase flows, in which the vapor and liquid phases have different densities, velocities, and temperatures, has been used to calculate the flashing of water from long pipes. The IMF (Implicit Multifield) technique is used to numerically solve the transient equations that govern the dynamics of each phase. The flow physics is described with finite rate phase transitions, interfacial friction, heat transfer, pipe wall friction, and appropriate state equations. The results of the calculations are compared with measured histories of pressure, temperature, and void fraction. A parameter study indicates the relative sensitivity of the results to the various physical models that are used

  20. Mesoscale modelling in China: Risø DTU numerical wind atlas calculation for NE China (Dongbei)

    DEFF Research Database (Denmark)

    Badger, Jake; Larsén, Xiaoli Guo; Hahmann, Andrea N.

    of the wind resource for Dongbei south of 50oN. The results of the numerical wind atlas show a wind resource over the region of interest modulated mainly by topographic features. These are principally elevated terrain features, giving high resources on exposed ridges and lower resources adjacent to the low......This document reports on the methods and findings of project “A01 Mesoscale Modelling”, part of the CMA component of the Wind Energy Development (WED) programme, focusing mainly on the methods and work undertaken by Risø DTU. The KAMM/WAsP methodology for numerical wind atlas calculation....... The major new aspects of the project were the large number of KAMM/WAsP sensitivity studies, comparison with WRF, and the CMA’s numerical wind atlas method (WERAS). Additionally, the reliability of the input data for the methodology, and the wave-number spectra properties of the output data were...

  1. Planning design of Ukrainian mines by the means of numerical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ruppel, Ulrich; Scior, Carsten [DMT GmbH und Co. KG (DMT), Essen (Germany). Rock Mechanic Dept.

    2008-08-21

    Using a mine in the Ukraine as an example it is shown how the DMT performs rock mechanical and support planning or roadways in hard coal mines worldwide. Therefore it is necessary to analyse existing measurements and operating experience within a few days as well as organising further surveys on site on short notice. Based on these results the numerical models are calibrated. Using the numerical simulation technology it is possible for DMT to quantify and analyse the rock mechanical impact of different support systems within a short time. Finally the results of the numerical calculations are set in comparison in a rating matrix. Besides making a decision on implementing new roadway and support systems with the objective to use the roadways up to the second longwall panel, the rating matrix is also used for analysing the optimization potentials of existing support systems. This allows the recommendations to immediate improvement of the strata control in the miner's roadways. (orig.)

  2. Improvement of patient return electrodes in electrosurgery by experimental investigations and numerical field calculations.

    Science.gov (United States)

    Golombeck, M A; Dössel, O; Raiser, J

    2003-09-01

    Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.

  3. Exact Dispersion Study of an Asymmetric Thin Planar Slab Dielectric Waveguide without Computing {d^2}β/{d{k^2}} Numerically

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Palodiya, Vikram

    2017-08-01

    Waveguide dispersion can be tailored but not the material dispersion. Hence, the total dispersion can be shifted at any desired band by adjusting the waveguide dispersion. Waveguide dispersion is proportional to {d^2}β/d{k^2} and need to be computed numerically. In this paper, we have tried to compute analytical expression for {d^2}β/d{k^2} in terms of {d^2}β/d{k^2} accurately with numerical technique, ≈ 10^{-5} decimal point. This constraint sometimes generates the error in calculation of waveguide dispersion. To formulate the problem we will use the graphical method. Our study reveals that we can compute the waveguide dispersion enough accurately for various modes by knowing - β only.

  4. A geometrically exact formulation for three-dimensional numerical simulation of the umbilical cable in a deep-sea ROV system

    Science.gov (United States)

    Quan, Wei-cai; Zhang, Zhu-ying; Zhang, Ai-qun; Zhang, Qi-feng; Tian, Yu

    2015-04-01

    This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle (ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized- α implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current.

  5. Application of optimization numerical methods in calculation of the two-particle nuclear reactions

    International Nuclear Information System (INIS)

    Titarenko, N.N.

    1987-01-01

    An optimization packet of PEAK-OPT applied programs intended for solution of problems of absolute minimization of functions of many variables in calculations of cross sections of binary nuclear reactions is described. The main algorithms of computerized numerical solution of systems of nonlinear equations for the least square method are presented. Principles for plotting and functioning the optimization software as well as results of its practical application are given

  6. Numerical method and calculation of two-phase swirling flows with rigid particles for technical applications

    Directory of Open Access Journals (Sweden)

    Akhmetov Vadim

    2017-01-01

    Full Text Available Swirling flow with particle deposition effects at the lateral surface is numerically investigated. The flow field calculation results have been obtained as the solutions of the Navier-Stokes equations. Various flow regimes with the formation of axial recirculation zones are presented. The convection-diffusion model is used for the determination of the flow particle concentration and the formation of typical sedimentation zones.

  7. Basic numerical processing, calculation, and working memory in children with dyscalculia and/or ADHD symptoms.

    Science.gov (United States)

    Kuhn, Jörg-Tobias; Ise, Elena; Raddatz, Julia; Schwenk, Christin; Dobel, Christian

    2016-09-01

    Deficits in basic numerical skills, calculation, and working memory have been found in children with developmental dyscalculia (DD) as well as children with attention-deficit/hyperactivity disorder (ADHD). This paper investigates cognitive profiles of children with DD and/or ADHD symptoms (AS) in a double dissociation design to obtain a better understanding of the comorbidity of DD and ADHD. Children with DD-only (N = 33), AS-only (N = 16), comorbid DD+AS (N = 20), and typically developing controls (TD, N = 40) were assessed on measures of basic numerical processing, calculation, working memory, processing speed, and neurocognitive measures of attention. Children with DD (DD, DD+AS) showed deficits in all basic numerical skills, calculation, working memory, and sustained attention. Children with AS (AS, DD+AS) displayed more selective difficulties in dot enumeration, subtraction, verbal working memory, and processing speed. Also, they generally performed more poorly in neurocognitive measures of attention, especially alertness. Children with DD+AS mostly showed an additive combination of the deficits associated with DD-only and A_Sonly, except for subtraction tasks, in which they were less impaired than expected. DD and AS appear to be related to largely distinct patterns of cognitive deficits, which are present in combination in children with DD+AS.

  8. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-09-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (fp) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain fp. The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the fp of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the fp increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on fp. The increase of Reynolds number and Jakob number causes the increase of fp, and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. supported by National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and Funding of Jiangsu Innovation Program for Graduate Education, China (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  9. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    International Nuclear Information System (INIS)

    Han Le; Chang Haiping; Zhang Jingyang; Xu Tiejun

    2015-01-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (f p ) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain f p . The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the f p of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the f p increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on f p . The increase of Reynolds number and Jakob number causes the increase of f p , and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. (paper)

  10. Hybrid method for determining the parameters of condenser microphones from measured membrane velocities and numerical calculations

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2009-01-01

    to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters......, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses......Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel...

  11. Calculation of residual stresses by means of a 3D numerical weld simulation

    International Nuclear Information System (INIS)

    Nicak, Tomas; Huemmer, Matthias

    2008-01-01

    The numerical weld simulation has developed very fast in recent years. The problem complexity has increased from simple 2D models to full 3D models, which can describe the entire welding process more realistically. As recent research projects indicate, a quantitative assessment of the residual stresses by means of a 3D analysis is possible. The structure integrity can be assessed based on the weld simulation results superimposed with the operating load. Moreover, to support the qualification of welded components parametric studies for optimization of the residual stress distribution in the weld region can be performed. In this paper a full 3D numerical weld simulation for a man-hole drainage nozzle in a steam generator will be presented. The residual stresses are calculated by means of an uncoupled transient thermal and mechanical FE analysis. The paper will present a robust procedure allowing reasonable predictions of the residual stresses for complex structures in industrial practice. (authors)

  12. Calculation of infrared radiation in the atmosphere by a numerical method

    International Nuclear Information System (INIS)

    Nunes, G.S.S.; Viswanadham, Y.

    1981-01-01

    A numerical method is described for the calculations of the atmospheric infrared flux and radiative cooling rate in the atmosphere. It is suitable for use at all levels below lower stratosphere. The square root pressure correction factor is incorporated in the computation of the corrected optical depth. The water vapour flux emissivity data of Staley and Jurica are used in the model. The versatility of the computing scheme sugests that this method is adequate to evaluate infrared flux and flux divergence in the problems involving a large amount of atmospheric data. (Author) [pt

  13. Time dependent AN neutron transport calculations in finite media using a numerical inverse Laplace transform technique

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Sumini, M.

    1990-01-01

    The time dependent space second order discrete form of the monokinetic transport equation is given an analytical solution, within the Laplace transform domain. Th A n dynamic model is presented and the general resolution procedure is worked out. The solution in the time domain is then obtained through the application of a numerical transform inversion technique. The justification of the research relies in the need to produce reliable and physically meaningful transport benchmarks for dynamic calculations. The paper is concluded by a few results followed by some physical comments

  14. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  15. A contribution to the numerical calculation of static electromagnetic fields in unbounded domains

    International Nuclear Information System (INIS)

    Krawczyk, F.

    1990-11-01

    The numerical calculation of static electromagnetic fields for arbitrarily shaped three-dimensional structures, especially in unbounded domains, is very memory and cpu-time consuming. In this thesis several schemes that reduce memory and cpu-time consumption have been developed or introduced. The memory needed can be reduced by a special simulation of boundaries towards open space and by the use of a scalar potential for the field description. Known disadvantages of the use of such a potential are avoided by an improved formulation of the used algorithms. The cpu-time for the calculations can be reduced remarkably in many cases by using a multigrid solution scheme including a defect-correction. A computer code has been written that uses these algorithms. With the help of this program it has been demonstrated that using these algorithms, distinct improvements in terms of computer memory, cpu-time consumption and accuracy can be achieved. (orig.) [de

  16. Theory and numerical calculation of the acoustic field exerted by eddy-current forces

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, K.

    1976-01-01

    The equations for calculating the acoustic field produced within a nonmagnetic metal by interaction of eddy currents with a static magnetic field were obtained on the assumptions (1) an ultrasonic wave is generated by the electromagentic force through classical and macroscopic phenomena; (2) the electric, magnetic, and elastic properties of the metal are linear, isotropic, and homogeneous throughout the metal, which occupies semi-infinite space; (3) the whole system is axially symmetric; and (4) eddy currents and elastic waves show a steady-state sinusoidal variation. The acoustic field produced by a specific electromagnetic ultrasonic transducer with axial symmetry was calculated numerically, and the results showed a well-defined ultrasonic wave beam, which was narrower than had been expected from the size of the transducer. (auth)

  17. Numerical calculation of spin echo amplitude in pulsed NMR: effects of quadrupole interaction

    International Nuclear Information System (INIS)

    Sobral, R.R.

    1986-01-01

    The spin echo obtained by nuclear magnetic resonance, in systems which atomic nuclei interact with magnetic fields and electric field gradients, present oscillations in function of the time interval between two excitations pulses. Using the density matrix formalism, the amplitudes of these echo is calculated, analytically. In this work, echo amplitudes obtained under different excitation conditions for nuclei of different nuclear spin values are calculated. The numerical results are compared with disposable analytical solutions. Applications of this method to the case of electric field gradient without axial symmetry were studied. Within the used approximation limits, an expression for attnuation of oscillatory behaviour of echo amplitude in function of the time interval between experimentally observed pulses was obtained. (M.C.K.) [pt

  18. Comparison of turbulence models for numerical calculation of airflow in an annex 20 room

    DEFF Research Database (Denmark)

    Voigt, Lars P. K.

    2000-01-01

    The report deals with 2-D numerical calculation of room airflow in an isothermal annex 20 room. The report documents the ability of the flow solver EllipSys2D to give results in good agreement with measurements for the specified test case. The flow solver is a finite volume code solving the Reyno.......Applying theory for a two-dimensional wall jet, measurements are compared with calculated values of the turbulent kinetic energy....... the Reynolds Averaged Navier Stokes equations.Five two-equation turbulence models were tested. These are the standard k-epsilon model, the low-Reynolds number k-epison model by Launder & Sharma, the k-omega model by Wilcox, the k-omega baseline (BSL) model by Menter and the k-omega Shear Stress Transport (SST...

  19. Numerical procedure for the calculation of nonsteady spherical shock fronts with radiation

    International Nuclear Information System (INIS)

    Winkler, K.H.

    The basis of the numerical method is an implicit difference scheme with time backward differences to a freely moving coordinate system. The coordinate system itself is determined simultaneously with the iterative solution of the physical equations as a function of the physical variables. Shock fronts, even nonsteady ones, are calculated as discontinuities according to the Rankine--Hugoniot equations. The radiation field is obtained from the two-dimensional, static, spherically symmetric transport equation in conjunction with the time-dependent one-dimensional moment equations. No artificial viscosity of any type is ever used. The applicability of the method developed is demonstrated by an example involving the calculation of protostar collapse. 11 figures

  20. Numerical Models for Exact Description of in-situ Digital In-Line Holography Experiments with Irregularly-Shaped Arbitrarily-Located Particles

    Directory of Open Access Journals (Sweden)

    Marc Brunel

    2015-04-01

    Full Text Available We present the development of a numerical simulator for digital in-line holography applications. In-line holograms of arbitrarily shaped and arbitrarily located objects are calculated using generalized Huygens-Fresnel integrals. The objects are 2D opaque or phase objects. The optical set-up is described by its optical transfer matrix. A wide variety of optical systems, involving windows, spherical or cylindrical lenses, can thus be taken into account. It makes the simulator applicable for design and description of in situ experiments. We discuss future applications of this simulator for detection of nanoparticles in droplets, or calibration of airborne instruments that detect and measure ice crystals in the atmosphere.

  1. Universal factorization of 3n-j(j > 2) symbols of the first and second kinds for SU(2) group and their direct and exact calculation and tabulation

    International Nuclear Information System (INIS)

    Wei Liqiang; Dalgarno, Alexander

    2004-01-01

    We show that general 3n-j(n > 2) symbols of the first and second kinds for the group SU(2) can be reformulated in terms of binomial coefficients. The proof is based on the graphical technique established by Yutsis et al and through a definition of a reduced 6-j symbol. The resulting 3n-j symbols thereby take a combinatorial form which is simply the product of two factors. The one is an integer or polynomial which is the single sum over the products of reduced 6-j symbols. They are in the form of summing over the products of binomial coefficients. The other is a multiplication of all the triangle relations appearing in the symbols, which can also be rewritten using binomial coefficients. The new formulation indicates that the intrinsic structure for the general recoupling coefficients is much nicer and simpler, which might serve as a bridge for study with other fields. Along with our newly developed algorithms, this also provides a basis for a direct, exact and efficient calculation or tabulation of all the 3n-j symbols of the SU(2) group for all the range of quantum angular momentum arguments. As an illustration, we present the results for the 12-j symbols of the first kind

  2. Exact quantum dynamics study of the O++H2(v=0,j=0)→OH++H ion-molecule reaction and comparison with quasiclassical trajectory calculations

    International Nuclear Information System (INIS)

    Martinez, Rodrigo; Lucas, Josep M.; Gimenez, Xavier; Aguilar, Antonio; Gonzalez, Miguel

    2006-01-01

    The close-coupling hyperspherical (CCH) exact quantum method was used to study the title barrierless reaction up to a collision energy (E T ) of 0.75 eV, and the results compared with quasiclassical trajectory (QCT) calculations to determine the importance of quantum effects. The CCH integral cross section decreased with E T and, although the QCT results were in general quite similar to the CCH ones, they presented a significant deviation from the CCH data within the 0.2-0.6 eV collision energy range, where the QCT method did not correctly describe the reaction probability. A very good accord between both methods was obtained for the OH + vibrational distribution, where no inversion of population was found. For the OH + rotational distributions, the agreement between the CCH and QCT results was not as good as in the vibrational case, but it was satisfactory in many conditions. The kk ' angular distribution showed a preferential forward character, and the CCH method produced higher forward peaks than the QCT one. All the results were interpreted considering the potential energy surface and plots of a representative sampling of reactive trajectories

  3. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs

  4. An approach to first principles electronic structure calculation by symbolic-numeric computation

    Directory of Open Access Journals (Sweden)

    Akihito Kikuchi

    2013-04-01

    Full Text Available There is a wide variety of electronic structure calculation cooperating with symbolic computation. The main purpose of the latter is to play an auxiliary role (but not without importance to the former. In the field of quantum physics [1-9], researchers sometimes have to handle complicated mathematical expressions, whose derivation seems almost beyond human power. Thus one resorts to the intensive use of computers, namely, symbolic computation [10-16]. Examples of this can be seen in various topics: atomic energy levels, molecular dynamics, molecular energy and spectra, collision and scattering, lattice spin models and so on [16]. How to obtain molecular integrals analytically or how to manipulate complex formulas in many body interactions, is one such problem. In the former, when one uses special atomic basis for a specific purpose, to express the integrals by the combination of already known analytic functions, may sometimes be very difficult. In the latter, one must rearrange a number of creation and annihilation operators in a suitable order and calculate the analytical expectation value. It is usual that a quantitative and massive computation follows a symbolic one; for the convenience of the numerical computation, it is necessary to reduce a complicated analytic expression into a tractable and computable form. This is the main motive for the introduction of the symbolic computation as a forerunner of the numerical one and their collaboration has won considerable successes. The present work should be classified as one such trial. Meanwhile, the use of symbolic computation in the present work is not limited to indirect and auxiliary part to the numerical computation. The present work can be applicable to a direct and quantitative estimation of the electronic structure, skipping conventional computational methods.

  5. Exact work

    International Nuclear Information System (INIS)

    Zeger, J.

    1993-01-01

    Organized criminals also tried to illegally transfer nuclear material through Austria. Two important questions have to be answered after the material is sized by police authorities: What is the composition of the material and where does it come from? By application of a broad range of analytical techniques, which were developed or refined by our experts, it is possible to measure the exact amount and isotopic composition of uranium and plutonium in any kind of samples. The criminalistic application is only a byproduct of the large scale work on controlling the peaceful application of nuclear energy, which is done in contract with the IAEA in the context of the 'Network of Analytical Laboratories'

  6. THE NUMERICAL ALGORITHM FOR CALCULATING TEMPERATURE FIELDS OF THE PNEUMATIC TIRES DURING VULCANIZATION

    Directory of Open Access Journals (Sweden)

    S. G. Tikhomirov

    2015-01-01

    Full Text Available In the article discussed the mathematical formulation and numerical algorithm for solving the problem of calculating the temperature field in the process vulcanizing of the product, whose the thermal characteristics are depended on the temperature. As a mathematical model considered the system of differential equations of heat conduction, taking into account the change in the coefficients of thermal conductivity and heat density in multilayer product of the temperature. The system of equations is solved for a given initial distribution of temperature and for a given (time-dependent temperatures on the border of the product to the press-mold and to the diaphragm. On the border of the contacts of adjacent layers are given the condition of continuity of temperature and heat flux. Change of the thermal conductivity from the time is approximated by linear functions. The activation energy of the vulcanization process is determined on the basis of experimental data obtained in the control test samples using a reometer. Considering the function representing the corresponding integrals of the thermal conductivity, the original system of differential equations is transformed to an equivalent system of differential equations convenient for constructing numerical algorithms for solving the problem. The resulting system of partial differential equations derived using the method of finite-difference approximation is replaced by a system of algebraic equations. Solution of the system of algebraic equations is carried out under the scheme explicit difference approximation. In the article calculated the temperature field for the tire at given initial and boundary conditions. Stability and accuracy of the numerical algorithm for solving the problem is demonstrated by the calculations performed with different sampling step along the time and space coordinates. Assessment of the degree of completion of the process is carried out by calculated equivalent time for

  7. Comparison of two numerical modelling codes for hydraulic and transport calculations in the near-field

    International Nuclear Information System (INIS)

    Kalin, J.; Petkovsek, B.; Montarnal, Ph.; Genty, A.; Deville, E.; Krivic, J.; Ratej, J.

    2011-01-01

    In the past years the Slovenian Performance Analysis/Safety Assessment team has performed many generic studies for the future Slovenian low and intermediate level waste repository, most recently a Special Safety Analysis for the Krsko site. The modelling approach was to split the problem into three parts: near-field (detailed model of the repository), far-field (i.e., geosphere) and biosphere. In the Special Safety Analysis the code used to perform the near-field calculations was Hydrus2D. Recently the team has begun a cooperation with the French Commisariat al'Energie Atomique/Saclay (CEA/Saclay) and, as a part of this cooperation, began investigations into using the Alliances numerical platform for near-field calculations in order to compare the overall approach and calculated results. The article presents the comparison between these two codes for a silo-type repository that was considered in the Special Safety Analysis. The physical layout and characteristics of the repository are presented and a hydraulic and transport model of the repository is developed and implemented in Alliances. Some analysis of sensitivity to mesh fineness and to simulation timestep has been preformed and is also presented. The compared quantity is the output flux of radionuclides on the boundary of the model. Finally the results from Hydrus2D and Alliances are compared and the differences and similarities are commented.

  8. Comparison of two numerical modelling codes for hydraulic and transport calculations in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, J., E-mail: jan.kalin@zag.s [Slovenian National Building and Civil Engineering Institute, Dimiceva 12, SI-1000 Ljubljana (Slovenia); Petkovsek, B., E-mail: borut.petkovsek@zag.s [Slovenian National Building and Civil Engineering Institute, Dimiceva 12, SI-1000 Ljubljana (Slovenia); Montarnal, Ph., E-mail: philippe.montarnal@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Genty, A., E-mail: alain.genty@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Deville, E., E-mail: estelle.deville@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Krivic, J., E-mail: jure.krivic@geo-zs.s [Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana (Slovenia); Ratej, J., E-mail: joze.ratej@geo-zs.s [Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    In the past years the Slovenian Performance Analysis/Safety Assessment team has performed many generic studies for the future Slovenian low and intermediate level waste repository, most recently a Special Safety Analysis for the Krsko site. The modelling approach was to split the problem into three parts: near-field (detailed model of the repository), far-field (i.e., geosphere) and biosphere. In the Special Safety Analysis the code used to perform the near-field calculations was Hydrus2D. Recently the team has begun a cooperation with the French Commisariat al'Energie Atomique/Saclay (CEA/Saclay) and, as a part of this cooperation, began investigations into using the Alliances numerical platform for near-field calculations in order to compare the overall approach and calculated results. The article presents the comparison between these two codes for a silo-type repository that was considered in the Special Safety Analysis. The physical layout and characteristics of the repository are presented and a hydraulic and transport model of the repository is developed and implemented in Alliances. Some analysis of sensitivity to mesh fineness and to simulation timestep has been preformed and is also presented. The compared quantity is the output flux of radionuclides on the boundary of the model. Finally the results from Hydrus2D and Alliances are compared and the differences and similarities are commented.

  9. Numerical Calculation and Measurement of Nonlinear Acoustic Fields in Ultrasound Diagnosis

    Science.gov (United States)

    Kawagishi, Tetsuya; Saito, Shigemi; Mine, Yoshitaka

    2002-05-01

    In order to develop a tool for designing on the ultrasonic probe and its peripheral devices for tissue-harmonic-imaging systems, a study is carried out to compare the calculation and observation results of nonlinear acoustic fields for a diagnostic ultrasound system. The pulsed ultrasound with a center frequency of 2.5 MHz is emanated from a weakly focusing sector probe with a 6.5 mm aperture radius and a 50 mm focal length into an agar phantom with an attenuation coefficient of about 0.6 dB/cm/MHz or 1.2 dB/cm/MHz. The nonlinear acoustic field is measured using a needle-type hydrophone. The calculation is based on the Khokhlov-Zabolotskaya-Kuznetsov(KZK) equation which is modified so that the frequency dependence of the attenuation coefficient is the same as that in biological tissue. This equation is numerically solved with the implicit backward method employing the iterative method. The measured and calculated amplitude spectra show good agreement with each other.

  10. A numerical calculation method for flow discretisation in complex geometry with body-fitted grids

    International Nuclear Information System (INIS)

    Jin, X.

    2001-04-01

    A numerical calculation method basing on body fitted grids is developed in this work for computational fluid dynamics in complex geometry. The method solves the conservation equations in a general nonorthogonal coordinate system which matches the curvilinear boundary. The nonorthogonal, patched grid is generated by a grid generator which solves algebraic equations. By means of an interface its geometrical data can be used by this method. The conservation equations are transformed from the Cartesian system to a general curvilinear system keeping the physical Cartesian velocity components as dependent variables. Using a staggered arrangement of variables, the three Cartesian velocity components are defined on every cell surface. Thus the coupling between pressure and velocity is ensured, and numerical oscillations are avoided. The contravariant velocity for calculating mass flux on one cell surface is resulting from dependent Cartesian velocity components. After the discretisation and linear interpolation, a three dimensional 19-point pressure equation is found. Using the explicit treatment for cross-derivative terms, it reduces to the usual 7-point equation. Under the same data and process structure, this method is compatible with the code FLUTAN using Cartesian coordinates. In order to verify this method, several laminar flows are simulated in orthogonal grids at tilted space directions and in nonorthogonal grids with variations of cell angles. The simulated flow types are considered like various duct flows, transient heat conduction, natural convection in a chimney and natural convection in cavities. Their results achieve very good agreement with analytical solutions or empirical data. Convergence for highly nonorthogonal grids is obtained. After the successful validation of this method, it is applied for a reactor safety case. A transient natural convection flow for an optional sump cooling concept SUCO is simulated. The numerical result is comparable with the

  11. How to integrate divergent integrals: a pure numerical approach to complex loop calculations

    International Nuclear Information System (INIS)

    Caravaglios, F.

    2000-01-01

    Loop calculations involve the evaluation of divergent integrals. Usually [G. 't Hooft, M. Veltman, Nucl. Phys. B 44 (1972) 189] one computes them in a number of dimensions different than four where the integral is convergent and then one performs the analytical continuation and considers the Laurent expansion in powers of ε=n-4. In this paper we discuss a method to extract directly all coefficients of this expansion by means of concrete and well defined integrals in a five-dimensional space. We by-pass the formal and symbolic procedure of analytic continuation; instead we can numerically compute the integrals to extract directly both the coefficient of the pole 1/ε and the finite part

  12. Analytic and numerical calculations of quantum synchrotron spectra from relativistic electron distributions

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Petrosian, V.

    1987-01-01

    Calculations are performed numerically and analytically of synchrotron spectra for thermal and power-law electron distributions using the single-particle synchrotron power spectrum derived from quantum electrodynamics. It is found that the photon energy at which quantum effects appear is proportional to temperature and independent of field strength for thermal spectra; quantum effects introduce an exponential roll-off away from the classical spectra. For power law spectra, the photon energy at which quantum effects appear is inversely proportional to the magnetic field strength; quantum effects produce a steeper power law than is found classically. The results are compared with spectra derived from the classical power spectrum with an energy cutoff ensuring conservation of energy. It is found that an energy cutoff is generally an inadequate approximation of quantum effects for low photon energies and for thermal spectra, but gives reasonable results for high-energy emission from power-law electron distributions. 17 references

  13. Characterization of BPM pickup designs for the HESR rate at FAIR using simulations and numerical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Halama, Arthur; Kamerdzhiev, Vsevolod; Boehme, Christian; Srinivasan, Sudharsan [Forschungszentrum Juelich, IKP-4 (Germany)

    2016-07-01

    The institute of Nuclear Physics 4(IKP-4) of the Research Center Juelich (FZJ) is in charge of building and commissioning the High Energy Storage Ring (HESR) within the international Facility for Antiproton and Ion Research (FAIR) at Darmstadt. Simulations and numerical calculations were performed to characterize the initial beam position pickup design. Capacitive couplings of the electrodes and the behavior of the electrical equivalent circuit were investigated. This made room for changes to the design and performance increase. A prototype of the BPM pickup was constructed and tested on a dedicated test bench. Preliminary results will be presented. In order to gain higher signal levels and higher sensitivity, another suggested design was characterized as well and put into comparison.

  14. Calculations of the electromechanical transfer processes using implicit methods of numerical integration

    Energy Technology Data Exchange (ETDEWEB)

    Pogosyan, T A

    1983-01-01

    The article is dedicated to the solution of systems of differential equations which describe the transfer processes in an electric power system (EES) by implicit methods of numerical integration. The distinguishing feature of the implicit methods (Euler's reverse method and the trapeze method) is their absolute stability and, consequently, the relatively small accumulation of errors in each step of integration. Therefore, they are found to be very convenient for solving problems of electric power engineering, when the transfer processes are described by a rigid system of differential equations. The rigidity is associated with the range of values of the time constants considered. The advantage of the implicit methods over explicit are shown in a specific example (calculation of the dynamic stability of the simplest electric power system), along with the field of use of the implicit methods and the expedience of their use in power engineering problems.

  15. Numerical Calculation of Coherent Synchrotron Radiation Effects Using TraFiC4

    International Nuclear Information System (INIS)

    Kabel, Andreas C.

    2000-01-01

    Coherent synchrotron radiation (CSR) occurs when short bunches travel on strongly bent trajectories. Its effects on high-quality beams can be severe and are well understood qualitatively. For quantitative results, however, one has to rely on numerical methods. There exist several simulation codes utilizing different approaches. The authors describe in some detail the code TraFiC 4 developed at DESY for design and analysis purposes, which approaches the problem from first principles and solves the equations of motion either perturbatively or self-consistently. They present some calculational results and comparison with experimental data. Also, they give examples of how the code can be used to design beamlines with minimal emittance growth due to CSR

  16. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions

    International Nuclear Information System (INIS)

    Havu, V.; Blum, V.; Havu, P.; Scheffler, M.

    2009-01-01

    We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as the more rigorous bottom-up approaches.

  17. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Sabine [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany); Tong, Ning-Hua [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, 76128 Karlsruhe (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany)

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  18. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    Science.gov (United States)

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  19. Development and Application of a Numerical Framework for Improving Building Foundation Heat Transfer Calculations

    Science.gov (United States)

    Kruis, Nathanael J. F.

    Heat transfer from building foundations varies significantly in all three spatial dimensions and has important dynamic effects at all timescales, from one hour to several years. With the additional consideration of moisture transport, ground freezing, evapotranspiration, and other physical phenomena, the estimation of foundation heat transfer becomes increasingly sophisticated and computationally intensive to the point where accuracy must be compromised for reasonable computation time. The tools currently available to calculate foundation heat transfer are often either too limited in their capabilities to draw meaningful conclusions or too sophisticated to use in common practices. This work presents Kiva, a new foundation heat transfer computational framework. Kiva provides a flexible environment for testing different numerical schemes, initialization methods, spatial and temporal discretizations, and geometric approximations. Comparisons within this framework provide insight into the balance of computation speed and accuracy relative to highly detailed reference solutions. The accuracy and computational performance of six finite difference numerical schemes are verified against established IEA BESTEST test cases for slab-on-grade heat conduction. Of the schemes tested, the Alternating Direction Implicit (ADI) scheme demonstrates the best balance between accuracy, performance, and numerical stability. Kiva features four approaches of initializing soil temperatures for an annual simulation. A new accelerated initialization approach is shown to significantly reduce the required years of presimulation. Methods of approximating three-dimensional heat transfer within a representative two-dimensional context further improve computational performance. A new approximation called the boundary layer adjustment method is shown to improve accuracy over other established methods with a negligible increase in computation time. This method accounts for the reduced heat transfer

  20. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    Science.gov (United States)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  1. OEDIPE: a new graphical user interface for fast construction of numerical phantoms and MCNP calculations.

    Science.gov (United States)

    Franck, D; de Carlan, L; Pierrat, N; Broggio, D; Lamart, S

    2007-01-01

    Although great efforts have been made to improve the physical phantoms used to calibrate in vivo measurement systems, these phantoms represent a single average counting geometry and usually contain a uniform distribution of the radionuclide over the tissue substitute. As a matter of fact, significant corrections must be made to phantom-based calibration factors in order to obtain absolute calibration efficiencies applicable to a given individual. The importance of these corrections is particularly crucial when considering in vivo measurements of low energy photons emitted by radionuclides deposited in the lung such as actinides. Thus, it was desirable to develop a method for calibrating in vivo measurement systems that is more sensitive to these types of variability. Previous works have demonstrated the possibility of such a calibration using the Monte Carlo technique. Our research programme extended such investigations to the reconstruction of numerical anthropomorphic phantoms based on personal physiological data obtained by computed tomography. New procedures based on a new graphical user interface (GUI) for development of computational phantoms for Monte Carlo calculations and data analysis are being developed to take advantage of recent progress in image-processing codes. This paper presents the principal features of this new GUI. Results of calculations and comparison with experimental data are also presented and discussed in this work.

  2. Comparison of different approaches to the numerical calculation of the LMJ focal

    Directory of Open Access Journals (Sweden)

    Bourgeade A.

    2013-11-01

    Full Text Available The beam smoothing in the focal plane of high power lasers is of particular importance to laser-plasma interaction studies in order to minimize plasma parametric and hydrodynamic instabilities on the target. Here we investigate the focal spot structure in different geometrical configurations where standard paraxial hypotheses are no longer verified. We present numerical studies in the cases of single flat top square beam, LMJ quadruplet and complete ring of quads with large azimuth angle. Different calculations are made with Fresnel diffraction propagation model in the paraxial approximation and full vector Maxwell's equations. The first model is based on Fourier transform from near to far field method. The second model uses first spherical wave decomposition in plane waves with Fourier transform and propagates them to the focal spot. These two different approaches are compared with Miró [1] modeling results using paraxial or Feit and Fleck options. The methods presented here are generic for focal spot calculations. They can be used for other complex geometric configurations and various smoothing techniques. The results will be used as boundary conditions in plasma interaction computations.

  3. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    Science.gov (United States)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  4. Analytical and numerical calculations of resistive wall impedances for thin beam pipe structures at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: u.niedermayer@gsi.de [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2012-09-21

    The resistive wall impedance is one of the main sources for beam instabilities in synchrotrons and storage rings. The fast ramped SIS18 synchrotron at GSI and the projected SIS100 synchrotron for FAIR both employ thin (0.3 mm) stainless steel beam pipes in order to reduce eddy current effects. The lowest betatron sidebands are at about 100 kHz, which demands accurate impedance predictions in the low frequency (LF) range where the beam pipe and possibly also the structures behind the pipe are the dominating impedance sources. The longitudinal and transverse resistive wall impedances of a circular multi-layer pipe are calculated analytically using the field matching technique. We compare the impedances obtained from a radial wave model, which corresponds to the setup used in bench measurements, with the axial wave model, which corresponds to an actual beam moving with relativistic velocity. For thin beam pipes the induced wall current and the corresponding shielding properties of the pipe are important. In both models the wall current is obtained analytically. The characteristic frequencies for the onset of the wall current are calculated from equivalent lumped element circuits corresponding to the radial model. For more complex structures, like the SIS100 beam pipe, we use a numerical method, in which the impedance is obtained from the total power loss. The method is validated by the analytic expressions for circular beam pipes.

  5. Resistivity of strong-scattering alloys: Absence of localization and success of coherent-potential approximation confirmed by exact supercell calculations in V/sub 1-//sub x/Al/sub x/

    International Nuclear Information System (INIS)

    Brown, R.H.; Allen, P.B.; Nicholson, D.M.; Butler, W.H.

    1989-01-01

    A supercell procedure for exact evaluation of the one-electron Kubo-Greenwood formula is applied to the resistivity rho of V/sub 1-//sub x/Al/sub x/ alloys and compared with a Korringa-Kohn-Rostoker coherent-potential approximation calculation. The results of these calculations agree well, consistent with the observation of delocalized eigenstates, in spite of the very high resistivity, rho≅200 μΩ cm

  6. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  7. Numerical calculation of hydrodynamic characteristics of tidal currents for submarine excavation engineering in coastal area

    Directory of Open Access Journals (Sweden)

    Jian-hua Li

    2016-04-01

    Full Text Available In coastal areas with complicated flow movement, deposition and scour readily occur in submarine excavation projects. In this study, a small-scale model, with a high resolution in the vertical direction, was used to simulate the tidal current around a submarine excavation project. The finite volume method was used to solve Navier-Stokes equations and the Reynolds stress transport equation, and the entire process of the tidal current was simulated with unstructured meshes, generated in the irregular shape area, and structured meshes, generated in other water areas. The meshes near the bottom and free surface were densified with a minimum layer thickness of 0.05 m. The volume of fluid method was used to track the free surface, the volume fraction of cells on the upstream boundary was obtained from the volume fraction of adjacent cells, and that on the downstream boundary was determined by the water level process. The numerical results agree with the observed data, and some conclusions can be drawn: after the foundation trench excavation, the flow velocity decreases quite a bit through the foundation trench, with reverse flow occurring on the lee slope in the foundation trench; the swirling flow impedes inflow, leading to the occurrence of dammed water above the foundation trench; the turbulent motion is stronger during ebbing than in other tidal stages, the range with the maximum value of turbulent viscosity, occurring on the south side of the foundation trench at maximum ebbing, is greater than those in other tidal stages in a tidal cycle, and the maximum value of Reynolds shear stress occurs on the south side of the foundation trench at maximum ebbing in a tidal cycle. The numerical calculation method shows a strong performance in simulation of the hydrodynamic characteristics of tidal currents in the foundation trench, providing a basis for submarine engineering construction in coastal areas.

  8. Hybrid TE-TM scheme for time domain numerical calculations of wakefields in structures with walls of finite conductivity

    Directory of Open Access Journals (Sweden)

    Andranik Tsakanian

    2012-05-01

    Full Text Available In particle accelerators a preferred direction, the direction of motion, is well defined. If in a numerical calculation the (numerical dispersion in this direction is suppressed, a quite coarse mesh and moderate computational resources can be used to reach accurate results even for extremely short electron bunches. Several approaches have been proposed in the past decades to reduce the accumulated dispersion error in wakefield calculations for perfectly conducting structures. In this paper we extend the TE/TM splitting algorithm to a new hybrid scheme that allows for wakefield calculations in structures with walls of finite conductivity. The conductive boundary is modeled by one-dimensional wires connected to each boundary cell. A good agreement of the numerical simulations with analytical results and other numerical approaches is obtained.

  9. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle

    Science.gov (United States)

    Jiang, Chao; Qiao, Mingzhong; Zhu, Peng

    2017-12-01

    A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

  10. Numerical Calculation and Exergy Equations of Spray Heat Exchanger Attached to a Main Fan Diffuser

    Science.gov (United States)

    Cui, H.; Wang, H.; Chen, S.

    2015-04-01

    In the present study, the energy depreciation rule of spray heat exchanger, which is attached to a main fan diffuser, is analyzed based on the second law of thermodynamics. Firstly, the exergy equations of the exchanger are deduced. The equations are numerically calculated by the fourth-order Runge-Kutta method, and the exergy destruction is quantitatively effected by the exchanger structure parameters, working fluid (polluted air, i.e., PA; sprayed water, i.e., SW) initial state parameters and the ambient reference parameters. The results are showed: (1) heat transfer is given priority to latent transfer at the bottom of the exchanger, and heat transfer of convection and is equivalent to that of condensation in the upper. (2) With the decrease of initial temperature of SW droplet, the decrease of PA velocity or the ambient reference temperature, and with the increase of a SW droplet size or initial PA temperature, exergy destruction both increase. (3) The exergy efficiency of the exchanger is 72.1 %. An approach to analyze the energy potential of the exchanger may be provided for engineering designs.

  11. Phenomenology and numerical calculations of lean hydrogen-air premixed flame propagation in a turbulent flow

    International Nuclear Information System (INIS)

    Faix-Gantier, A.

    2001-12-01

    This thesis concerns the study of flame propagation in a turbulent flow of lean hydrogen-air mixtures. The aim is to precise the characteristics of propagation as well as combustion and turbulence models able to take into account the peculiarities of these mixtures. This research work is related to the prevention of fire hazards associated with accidental release of hydrogen within the reactor of a nuclear power plant. In a first part, the scales (the flame velocity and thickness) associated with the laminar flame propagation in hydrogen-air mixtures are studied. A specific attention is devoted to the intrinsic instability properties of such flames. Then, the turbulence scales potentially present within a reactor are estimated in order to allow for the determination of the regimes of combustion that might be present within the reactor and among which the flamelet regime appears to be conceivable. In a second part, starting with the analysis of the propagation properties of a mean reaction zone calculated with a flamelet model, we show that, with an adequate tuning of the parameter appearing in the mean reaction rate expression, it is possible to predict numerically the turbulent flame speeds available with the literature. (author)

  12. Mixed layer depth calculation in deep convection regions in ocean numerical models

    Science.gov (United States)

    Courtois, Peggy; Hu, Xianmin; Pennelly, Clark; Spence, Paul; Myers, Paul G.

    2017-12-01

    Mixed Layer Depths (MLDs) diagnosed by conventional numerical models are generally based on a density difference with the surface (e.g., 0.01 kg.m-3). However, the temperature-salinity compensation and the lack of vertical resolution contribute to over-estimated MLD, especially in regions of deep convection. In the present work, we examined the diagnostic MLD, associated with the deep convection of the Labrador Sea Water (LSW), calculated with a simple density difference criterion. The over-estimated MLD led us to develop a new tool, based on an observational approach, to recalculate MLD from model output. We used an eddy-permitting, 1/12° regional configuration of the Nucleus for European Modelling of the Ocean (NEMO) to test and discuss our newly defined MLD. We compared our new MLD with that from observations, and we showed a major improvement with our new algorithm. To show the new MLD is not dependent on a single model and its horizontal resolution, we extended our analysis to include 1/4° eddy-permitting simulations, and simulations using the Modular Ocean Model (MOM) model.

  13. VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

    Directory of Open Access Journals (Sweden)

    NAM-IL TAK

    2013-11-01

    Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

  14. Numerical calculation of electromagnetic properties including chirality parameters for uniaxial bianisotropic media

    International Nuclear Information System (INIS)

    Amirkhizi, Alireza V; Nemat-Nasser, Sia

    2008-01-01

    Through the use of conductive straight wires or coils the electromagnetic properties of a composite material can be modified. The asymmetric geometry of the coils creates an overall chiral response. The polarization vectors rotate as an electromagnetic wave travels through such a medium. To calculate the chirality of a medium prior to its manufacturing, we developed a method to extract all four electromagnetic material parameter tensors for a general uniaxial bianisotropic composite based on the numerical simulation of the electromagnetic fields. Our method uses appropriate line and surface field averages in a single unit cell of the periodic structure of the composite material. These overall field quantities have physical meaning only when the microscopic variation of the electromagnetic fields in the scale of the unit cell is not important, that is when the wavelength of interest is significantly larger than the maximum linear dimension of the unit cell. The overall constitutive relations of the periodic structure can then be obtained from the relations among the average quantities

  15. Numerical methods to calculate solar radiation, validation through a new Graphic User Interface design

    International Nuclear Information System (INIS)

    Mesri, Mokhtaria

    2015-01-01

    Highlights: • Rare measuring networks in the developing world due to technical and fiscal reasons. • Insufficient attention is paid regarding to tools for solar energy systems design. • The new interface offers solutions to the insisting need for innovative decisions. • Comprehensive comparative studies are conducted using experimental measurements. • Results are with attractive margins of error in accordance with experimental data. - Abstract: The present paper is basically devoted to the estimation of solar radiation in order to provide data on the situation of solar applications in a given site; it also aims at contributing to the performance improvement of solar energy systems. I aim to show and evaluate the performance of the most appropriate models used to recover solar components at ground level, via confronting meteorological techniques to selected semi empirical methods. I have adopted an innovative approach to testing the theory through numerical simulation by providing a friendly user ergonomic Graphic User Interface ‘GUI’, carefully designed and that principally makes use of a large range of models for the calculation of solar components. In this article I may consider three numerical models namely: Lacis and Hansen, Atwater and Ball and Lui and Jordon, which are used here to elucidate the performance of such methods facing meteorological models such as those of Angstrom, Garg and Coppolino. I debate the advantages of these latest methods, and I argue that they are of big importance because the main variable that is used is sunshine duration. Some of them involve the water content in the atmosphere, a particularly important parameter which strongly absorbs solar radiation in the infrared region. They are also perfectly suited for locations where solar irradiance is not being measured by all hydrometeorological stations, and where only meteorological data are collected. I want to complete this paper by demonstrating the efficiency of the

  16. A calculation method for RF couplers design based on numerical simulation by microwave studio

    International Nuclear Information System (INIS)

    Wang Rong; Pei Yuanji; Jin Kai

    2006-01-01

    A numerical simulation method for coupler design is proposed. It is based on the matching procedure for the 2π/3 structure given by Dr. R.L. Kyhl. Microwave Studio EigenMode Solver is used for such numerical simulation. the simulation for a coupler has been finished with this method and the simulation data are compared with experimental measurements. The results show that this numerical simulation method is feasible for coupler design. (authors)

  17. An Exact and Grid-free Numerical Scheme for the Hybrid Two Phase Traffic Flow Model Based on the Lighthill-Whitham-Richards Model with Bounded Acceleration

    KAUST Repository

    Qiu, Shanwen

    2012-07-01

    In this article, we propose a new grid-free and exact solution method for computing solutions associated with an hybrid traffic flow model based on the Lighthill- Whitham-Richards (LWR) partial differential equation. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a fixed acceleration otherwise. We first present a grid-free solution method for the LWR equation based on the minimization of component functions. We then show that this solution method can be extended to compute the solutions to the hybrid model by proper modification of the component functions, for any concave fundamental diagram. We derive these functions analytically for the specific case of a triangular fundamental diagram. We also show that the proposed computational method can handle fixed or moving bottlenecks.

  18. The numerical method of inverse Laplace transform for calculation of overvoltages in power transformers and test results

    Directory of Open Access Journals (Sweden)

    Mikulović Jovan Č.

    2014-01-01

    Full Text Available A methodology for calculation of overvoltages in transformer windings, based on a numerical method of inverse Laplace transform, is presented. Mathematical model of transformer windings is described by partial differential equations corresponding to distributed parameters electrical circuits. The procedure of calculating overvoltages is applied to windings having either isolated neutral point, or grounded neutral point, or neutral point grounded through impedance. A comparative analysis of the calculation results obtained by the proposed numerical method and by analytical method of calculation of overvoltages in transformer windings is presented. The results computed by the proposed method and measured voltage distributions, when a voltage surge is applied to a three-phase 30 kVA power transformer, are compared. [Projekat Ministartsva nauke Republike Srbije, br. TR-33037 i br. TR-33020

  19. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn [School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Lin, Lin, E-mail: linlin@math.berkeley.edu [Department of Mathematics, University of California, Berkeley, CA 94720 (United States); Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Vigil-Fowler, Derek, E-mail: vigil@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lischner, Johannes, E-mail: jlischner597@gmail.com [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kemper, Alexander F., E-mail: afkemper@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sharifzadeh, Sahar, E-mail: ssharifz@bu.edu [Department of Electrical and Computer Engineering and Division of Materials Science and Engineering, Boston University, Boston, MA 02215 (United States); Jornada, Felipe H. da, E-mail: jornada@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Deslippe, Jack, E-mail: jdeslippe@lbl.gov [NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); and others

    2015-04-01

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit of using different self energy expressions to perform the numerical convolution at different frequencies.

  20. Numerical calculation of unsteady turbulent heat transfer in a circular tube considering for heat dissipation in a wale

    International Nuclear Information System (INIS)

    Groshev, A.I.; Slobodchuk, V.I.

    1986-01-01

    The results of numerical calculation of the conjugated problem of convective heat transfer under unsteady conditions are presented. The equations describing heat transfer take into account longitudinal heat diffusion in liquid and in a wall. The formulae for calculating local heat flows at the wall-liquid surface in the case of an arbitrary law of temperature variation at the outer wall surface along the channel length are proposed for steady-state heat transfer conditions

  1. Precise calculation of the transmission coefficient of a potential barrier. Study of the error in the B K W approximation; Calcul exact du coefficient de transmission d'une barriere de potentiel. Etude de l'erreur de l'approximation B K W

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Following on to work started in a previous report, the author carries out in the case of few examples, the calculation of the transmission coefficient T using accurate methods. He then deduces from this the error in the B K W method. The calculations are carried out for values of T ranging down to 10{sup -200}. The use of modern computers makes it possible to obtain values of T to eight decimal places in a few seconds and the practical advantage of the B K W approximation appears therefore considerably reduced. The author gives also a method which may be used for an exact calculation of the energy levels of a potential well. (author) [French] Poursuivant une etude commencee dans une note anterieure, l'auteur effectue, sur quelques exemples, le calcul du coefficient de transmission T par des methodes exactes. Il en deduit ensuite l'erreur de la methode B K W. Les calculs sont faits pour des valeurs de T allant jusqu'a 10{sup -200}. L'utilisation des machines a calculer modernes permettant d'obtenir en quelques secondes, la valeur de T avec 8 decimales exactes, l'interet pratique de l'approximation B K W semble considerablement diminue. L'auteur indique egalement une methode qui peut servir a calculer exactement les niveaux d'energie d'un puits de potentiel. (auteur)

  2. Numerical calculation of the entanglement entropy for scalar field in dilaton spacetimes

    Science.gov (United States)

    Huang, Shifeng; Fang, Xiongjun; Jing, Jiliang

    2018-06-01

    Using coupled harmonic oscillators model, we numerical analyze the entanglement entropy of massless scalar field in Gafinkle-Horowitz-Strominger (GHS) dilaton spacetime and Gibbons-Maeda (GM) dilaton spacetime. By numerical fitting, we find that the entanglement entropy of the dilaton black holes receive contribution from dilaton charge and is proportional to the area of the event horizon. It is interesting to note that the results of numerical fitting are coincide with ones obtained by using brick wall method and Euclidean path integral approach.

  3. Exact geodesic distances in FLRW spacetimes

    Science.gov (United States)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  4. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  5. Numerical Calculation of Secondary Flow in Pump Volute and Circular Casings using 3D Viscous Flow Techniques

    Directory of Open Access Journals (Sweden)

    K. Majidi

    2000-01-01

    Full Text Available The flow field in volute and circular casings interacting with a centrifugal impeller is obtained by numerical analysis. In the present study, effects of the volute and circular casings on the flow pattern have been investigated by successively combining a volute casing and a circular casing with a single centrifugal impeller. The numerical calculations are carried out with a multiple frame of reference to predict the flow field inside the entire impeller and casings. The impeller flow field is solved in a rotating frame and the flow field in the casings in a stationary frame. The static pressure and velocity in the casing and impeller, and the static pressures and secondary velocity vectors at several cross-sectional planes of the casings are calculated. The calculations show that the curvature of the casings creates pressure gradients that cause vortices at cross-sectional planes of the casings.

  6. Numerical Calculation of Distribution of Induced Carge Density on Planar Confined Surfaces

    International Nuclear Information System (INIS)

    Bolotov, V.; Druzhchenko, R.; Karazin, V.; Lominadze, J.; Kharadze, F.

    2007-01-01

    The calculation method of distribution of induced charge density on planar surfaces, including fractal structures of Sierpinski carpet type, is propesed. The calculation scheme is based on the fact that simply connected conducting surface of arbitrary geometry is an equipotential surface. (author)

  7. Numerical

    Directory of Open Access Journals (Sweden)

    M. Boumaza

    2015-07-01

    Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.

  8. On numerical calculation of Rényi entropy for a sphere

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nakwoo, E-mail: nkim@khu.ac.kr

    2014-06-02

    We numerically compute the Rényi entropy for four-dimensional free scalar field theory with a spherical entangling surface. As is well known, the Rényi entropy as a function of the boundary area exhibits linear dependence in the leading order. The coefficient of the subleading logarithmic term from our numerical data, as a function of the Rényi order q, agrees nicely with the general prediction of conformal field theory computation. The motivation of this work is also partly to see how the efficiency of numerical computation changes as a function of q. For q<1 the summation over eigenvalues of reduced density matrix takes longer since the series converges more slowly than for q=1. For q>1 the convergence is faster, but the relative error becomes large as a general trend.

  9. The exact calculation of the e. m. field arising from the scattering of twodimensional electromagnetic waves at a perfectly conducting cylindrical surface of arbitrary shape

    NARCIS (Netherlands)

    Hoenders, B.J.

    1982-01-01

    The scattered field generated by the interaction of an incoming twodimensional electromagnetic wave with a cylindrical perfectly conducting surface is calculated. The scattered field is obtained in closed form.

  10. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation : An fMRI study combined with a cognitive model

    NARCIS (Netherlands)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may

  11. Numerical method for calculation of 3D viscous turbomachine flow taking into account stator/rotor unsteady interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rusanov, A V; Yershov, S V [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)

    1998-12-31

    The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.

  12. Numerical method for calculation of 3D viscous turbomachine flow taking into account stator/rotor unsteady interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)

    1997-12-31

    The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.

  13. Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method

    Directory of Open Access Journals (Sweden)

    GAO Honglin

    2017-08-01

    Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.

  14. Numerical calculation of the conductivity of percolation clusters and the use of special purpose computers

    International Nuclear Information System (INIS)

    Herrmann, H.J.

    1989-01-01

    Electrical conductivity diffusion or phonons, have an anomalous behaviour on percolation clusters at the percolation threshold due to the fractality of these clusters. The results that have been found numerically for this anomalous behaviour are reviewed. A special purpose computer built for this purpose is described and the evaluation of the data from this machine is discussed

  15. Calculation of exact vibrational spectra for P{sub 2}O and CH{sub 2}NH using a phase space wavelet basis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Thomas, E-mail: tom.halverson@ttu.edu; Poirier, Bill [Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States)

    2014-05-28

    ‘‘Exact” quantum dynamics calculations of vibrational spectra are performed for two molecular systems of widely varying dimensionality (P{sub 2}O and CH{sub 2}NH), using a momentum-symmetrized Gaussian basis. This basis has been previously shown to defeat exponential scaling of computational cost with system dimensionality. The calculations were performed using the new “SWITCHBLADE” black-box code, which utilizes both dimensionally independent algorithms and massive parallelization to compute very large numbers of eigenstates for any fourth-order force field potential, in a single calculation. For both molecules considered here, many thousands of vibrationally excited states were computed, to at least an “intermediate” level of accuracy (tens of wavenumbers). Future modifications to increase the accuracy to “spectroscopic” levels, along with other potential future improvements of the new code, are also discussed.

  16. Hybrid Numerical-Analytical Scheme for Calculating Elastic Wave Diffraction in Locally Inhomogeneous Waveguides

    Science.gov (United States)

    Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.

    2018-01-01

    Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.

  17. Note on the numerical calculation of the Fermi-Dirac integrals

    International Nuclear Information System (INIS)

    Graef, H.; Pabst, M.

    1977-11-01

    Expansions of the Fermi-Dirac integrals Fsub(α)(x) are developed, suitable for numerical computation. Only integrals of integer- or half-integer order are treated and expansion coefficients are tabulated for F 1 (x),....,F 9 (x); Fsub(-1/2)(x),...,Fsub(7/2)(x). Maximal relative errors vary with the function and interval considered, but are less than 3 x 10 -6 . (orig.) [de

  18. Calculation of temperature rise for cable conductor of DCS cabinet power based on theory of numerical thermal transfer

    International Nuclear Information System (INIS)

    Tian Yong; Zhang Longqiang; Yang Zhen; Yu Bin

    2014-01-01

    In order to ensure a long-term reliable operation of the DCS cabinet's 220 V AC power cable, it was needed to confirm whether the conductor temperature rise of power cable meet the requirement of the cable specification. Based on the actual data in site and the theory of numerical heat transfer, conservative model was established, and the conductor temperature was calculated. The calculation results show that the cable arrangement on the cable tray will not lead to the conductor temperature rise of power cable over than the required temperature in technical specification. (authors)

  19. Numerical calculation of wall-to-bed heat transfer coefficients in gas-fluidized beds

    NARCIS (Netherlands)

    Kuipers, J.A.M.; Prins, W.; van Swaaij, W.P.M.

    1992-01-01

    A computer model for a hot gas-fluidized bed has been developed. The theoretical description is based on a two-fluid model (TFM) approach in which both phases are considered to be continuous and fully interpenetrating. Local wall-to-bed heat-transfer coefficients have been calculated by the

  20. Elasto-plastic benchmark calculations. Step 1: verification of the numerical accuracy of the computer programs

    International Nuclear Information System (INIS)

    Corsi, F.

    1985-01-01

    In connection with the design of nuclear reactors components operating at elevated temperature, design criteria need a level of realism in the prediction of inelastic structural behaviour. This concept leads to the necessity of developing non linear computer programmes, and, as a consequence, to the problems of verification and qualification of these tools. Benchmark calculations allow to carry out these two actions, involving at the same time an increased level of confidence in complex phenomena analysis and in inelastic design calculations. With the financial and programmatic support of the Commission of the European Communities (CEE) a programme of elasto-plastic benchmark calculations relevant to the design of structural components for LMFBR has been undertaken by those Member States which are developing a fast reactor project. Four principal progressive aims were initially pointed out that brought to the decision to subdivide the Benchmark effort in a calculations series of four sequential steps: step 1 to 4. The present document tries to summarize Step 1 of the Benchmark exercise, to derive some conclusions on Step 1 by comparison of the results obtained with the various codes and to point out some concluding comments on the first action. It is to point out that even if the work was designed to test the capabilities of the computer codes, another aim was to increase the skill of the users concerned

  1. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction

    International Nuclear Information System (INIS)

    Sobol, A.; Ellison, J.A.

    2003-01-01

    We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique

  2. Comparison of numerical models for calculating dispersion from accidental releases of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W [Savannah River Lab., Aiken, SC; Cooper, R E; Baker, A J

    1982-01-01

    A modular, data-based system approach has been developed to facilitate computational simulation of multi-dimensional pollutant dispersion in atmospheric, steam, estuary, and groundwater applications. This system is used to assess effects of accidental releases of pollutants to the environment. Model sophistication ranges from simple statistical to complex three-dimensional numerical methods. The system used specifies desired degree of model sophistication from a terminal. The model used depends on the particular type of problem being solved, and on a basis of merit related to computer cost. The results of prediction for several model problems are presented.

  3. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    Energy Technology Data Exchange (ETDEWEB)

    Babailov, S. P., E-mail: babajlov@niic.nsc.ru [A. V. Nikolaevs Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Purtov, P. A. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Insitutskaya 3, 630090 Novosibirsk (Russian Federation); Fomin, E. S. [Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Av. Lavrentyev 10, 630090 Novosibirsk (Russian Federation)

    2016-08-07

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  4. Numerical weld modeling - a method for calculating weld-induced residual stresses

    International Nuclear Information System (INIS)

    Fricke, S.; Keim, E.; Schmidt, J.

    2001-01-01

    In the past, weld-induced residual stresses caused damage to numerous (power) plant parts, components and systems (Erve, M., Wesseling, U., Kilian, R., Hardt, R., Bruemmer, G., Maier, V., Ilg, U., 1994. Cracking in Stabilized Austenitic Stainless Steel Piping of German Boiling Water Reactors - Characteristic Features and Root Causes. 20. MPA-Seminar 1994, vol. 2, paper 29, pp.29.1-29.21). In the case of BWR nuclear power plants, this damage can be caused by the mechanism of intergranular stress corrosion cracking in austenitic piping or the core shroud in the reactor pressure vessel and is triggered chiefly by weld-induced residual stresses. One solution of this problem that has been used in the past involves experimental measurements of residual stresses in conjunction with weld optimization testing. However, the experimental analysis of all relevant parameters is an extremely tedious process. Numerical simulation using the finite element method (FEM) not only supplements this method but, in view of modern computer capacities, is also an equally valid alternative in its own right. This paper will demonstrate that the technique developed for numerical simulation of the welding process has not only been properly verified and validated on austenitic pipe welds, but that it also permits making selective statements on improvements to the welding process. For instance, numerical simulation can provide information on the starting point of welding for every weld bead, the effect of interpass cooling as far as a possible sensitization of the heat affected zone (HAZ) is concerned, the effect of gap width on the resultant weld residual stresses, or the effect of the 'last pass heat sink welding' (welding of the final passes while simultaneously cooling the inner surface with water) producing compressive stresses in the root area of a circumferential weld in an austenitic pipe. The computer program FERESA (finite element residual stress analysis) was based on a commercially

  5. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Razali, Azhani Mohd, E-mail: azhani@nuclearmalaysia.gov.my; Abdullah, Jaafar, E-mail: jaafar@nuclearmalaysia.gov.my [Plant Assessment Technology (PAT) Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  6. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    International Nuclear Information System (INIS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-01-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm

  7. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Science.gov (United States)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  8. Static Q anti Q force from instanton gas and numerical lattice calculations

    International Nuclear Information System (INIS)

    Ilgenfrits, E.M.; Mueller-Preussker, M.

    1982-01-01

    Lattice Monte Carlo calculation predictions for the static strength between quarks are compared with the results obtained in the framework of instanton gas model and a typical instanton size is determined. Yang-Mills theory data for different ratios of Wilson loops in case of SU(3) for the string tension are presented. The instanton corrections to perturbation strength turn to be essential to reach an agreement with obtained by lattice calculations data inside the small-distance region up to approximately 0.3 fm. Arguments in favour of the statement that data difference in this region from the phenomenologically known value is connected with the notion of infinitely heavy quarks but not with neglect of virtual quark loops are presented

  9. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    OpenAIRE

    Abbas, Laith K.; Chen, Dongyang; Rui, Xiaoting

    2014-01-01

    The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which ver...

  10. Expansion and compression shock wave calculation in pipes with the C.V.M. numerical method

    International Nuclear Information System (INIS)

    Raymond, P.; Caumette, P.; Le Coq, G.; Libmann, M.

    1983-03-01

    The Control Variables Method for fluid transients computations has been used to compute expansion and compression shock waves propagations. In this paper, first analytical solutions for shock wave and rarefaction wave propagation are detailed. Then after a rapid description of the C.V.M. technique and its stability and monotonicity properties, we will present some results about standard shock tube problem, reflection of shock wave, finally a comparison between experimental results obtained on the ELF facility and calculations is given

  11. Numerical-analytical method of calculating insulated double-glazed units deflection under climatic (internal load

    Directory of Open Access Journals (Sweden)

    Plotnikov Aleksandr Aleksandrovich

    Full Text Available Glass unit consists of glasses hermetically-united together. The cavity of an insulating glass unit contains a fixed volume of air (gas. In the process of production regular air with atmospheric pressure and temperature is sealed inside a glass unit. During operation the atmospheric pressure is constantly changing, but the pressure inside remains constant (at a constant temperature. A change of temperature or of the external air pressure results in a pressure difference and therefore in a load on the glass panes. The action may exceed the usual load considerably. This pressure effects the glasses of the unit, deforms them, lowers the thermotechnical properties of glass units and can lead to their destruction. The action of the inside pressure can be seen all around as convex and concaved glasses, which destroys the architectural look of buildings. It is obvious that it is incorrect to calculate thin glass plates on such a load only by classical methods of strength of materials theory. In this case we need a special calculation method. The effects of a change in temperature, altitude or meteorological pressure are easily covered by the definition of an isochore pressure. This is necessary, to determine the change of pressure due to the temperature induced gas expansion in the cavity of the insulating glass according to the ideal gas law. After the integration of the analytical plate solution and the ideal gas law, the final pressure states can easily be calculated by coupling the change of volume and the change of pressure.

  12. Impact of flow routing on catchment area calculations, slope estimates, and numerical simulations of landscape development

    Science.gov (United States)

    Shelef, Eitan; Hilley, George E.

    2013-12-01

    Flow routing across real or modeled topography determines the modeled discharge and wetness index and thus plays a central role in predicting surface lowering rate, runoff generation, likelihood of slope failure, and transition from hillslope to channel forming processes. In this contribution, we compare commonly used flow-routing rules as well as a new routing rule, to commonly used benchmarks. We also compare results for different routing rules using Airborne Laser Swath Mapping (ALSM) topography to explore the impact of different flow-routing schemes on inferring the generation of saturation overland flow and the transition between hillslope to channel forming processes, as well as on location of saturation overland flow. Finally, we examined the impact of flow-routing and slope-calculation rules on modeled topography produced by Geomorphic Transport Law (GTL)-based simulations. We found that different rules produce substantive differences in the structure of the modeled topography and flow patterns over ALSM data. Our results highlight the impact of flow-routing and slope-calculation rules on modeled topography, as well as on calculated geomorphic metrics across real landscapes. As such, studies that use a variety of routing rules to analyze and simulate topography are necessary to determine those aspects that most strongly depend on a chosen routing rule.

  13. Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Escudier, M.P.; Smith, S. [Department of Engineering, Mechanical Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom); Oliveira, P.J. [Departamento de Engenharia Electromecanica, Universidade da Beira Interior, Rua Marques D' Avila e Boloma, 6200 Covilha (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)

    2002-07-01

    Experimental data are reported for fully developed laminar flow of a shear-thinning liquid through both a concentric and an 80% eccentric annulus with and without centrebody rotation. The working fluid was an aqueous solution of 0.1% xanthan gum and 0.1% carboxymethylcellulose for which the flow curve is well represented by the Cross model. Comparisons are reported between numerical calculations and the flow data, as well as with other laminar annular-flow data for a variety of shear-thinning liquids previously reported in the literature. In general, the calculations are in good quantitative agreement with the experimental data, even in situations where viscoelastic effects, neglected in the calculations, would be expected to play a role. (orig.)

  14. Preliminary analysis of four numerical models for calculating the mesoscale transport of Kr-85

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1983-01-01

    A performance study of four numerical algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids has been made. Dispersion from point and distributed sources and a simulation of a continuous source are compared with analytical solutions to assess relative accuracy. Model predictions are then compared with actual measurements of Kr-85 emitted from the Savannah River Plant (SRP). The particle-in-cell and method of moments algorithms exhibit superior accuracy in modeling single source releases. For modeling distributed sources, algorithms based on the pseudospectral and finite element interpolation concepts exhibit comparable accuracy. The method of moments is felt to be the best overall performer, although all the models appear to be relatively close in accuracy.

  15. Design and Numerical Calculation of Variable Test Section for Small Supersonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Václav DVOŘÁK

    2010-12-01

    Full Text Available The paper is concerned with numerical modelling of transition in a separated boundary layer. The model of laminar/turbulent transition is based on the combination of empirical terms determining position of the transition and averaged Navier – Stokes equations closed by the k – ω SST turbulence model. The model of transition is applied in computation of 2D flow past NACA63A421 airfoil. Computation is performed using the commercial code ANSYS Fluent 6.3.26, in which the transition method is implemented as a User-Defined-Function. Computed distributions of Cp along the airfoil are verified by comparison with experimental data, which were obtained by measurements in a closed circuit wind tunnel at the constant Reynolds number and several angles of attack. Comparisons prove applicability of the implemented transitional model.

  16. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2010-01-01

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  17. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes

    Science.gov (United States)

    Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo

    2017-10-01

    A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.

  18. Kinetic calculations for miniature neutron source reactor using analytical and numerical techniques

    International Nuclear Information System (INIS)

    Ampomah-Amoako, E.

    2008-06-01

    The analytical methods, step change in reactivity and ramp change in reactivity as well as numerical methods, fixed point iteration and Runge Kutta-gill were used to simulate the initial build up of neutrons in a miniature neutron source reactor with and without temperature feedback effect. The methods were modified to include photo neutron concentration. PARET 7.3 was used to simulate the transients behaviour of Ghana Research Reactor-1. The PARET code was capable of simulating the transients for 2.1 mk and 4 mk insertions of reactivity with peak powers of 49.87 kW and 92.34 kW, respectively. PARET code however failed to simulate 6.71 mk of reactivity which was predicted by Akaho et al through TEMPFED. (au)

  19. Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1989-02-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman. The final f' value does not include the Jensen's correction term on the magnetic scattering. The tables are presented with the f' and f'' values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)

  20. Ion cyclotron emission calculations using a 2D full wave numerical code

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1987-01-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code 2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included

  1. A numerical method to calculate flow-induced vibrations in a turbulent flow

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki; Umegaki, Kikuo

    1993-01-01

    An unsteady fluid force on structures in a turbulent flow can cause their vibration. The phenomenon is the most important among various flow-induced vibrations and it is an important subject in design nuclear plant components such as heat exchangers. A new approach to simulate flow-induced vibrations is introduced. A fully coupled analysis of fluid-structure interaction has been realized in a turbulent flow field by integrating the following calculational steps: (a) solving turbulent flow by a direct simulation method where the ALE (arbitrary Lagrangian Eulerian) type approximation is adopted to take account of structure displacements; (b) estimating fluid force on structures by integrating fluid pressure and shear stress; (c) calculating dynamic response of structures and determining the amount of displacement; (d) regenerate curvilinear grids for new geometry using the boundary-fitted coordinate transformation method. Forced vibration of a circular cylinder in a cross flow were successfully simulated and the synchronization phenomena between Karman-vortices and cylinder vibrations were clearly seen

  2. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths

    Science.gov (United States)

    Zhou, Dan; Niu, Jiqiang

    2017-01-01

    Trains with different numbers of cars running in the open air were simulated using the delayed detached-eddy simulation (DDES). The numbers of cars included in the simulation are 3, 4, 5 and 8. The aim of this study was to investigate how train length influences the boundary layer, the wake flow, the surface pressure, the aerodynamic drag and the friction drag. To certify the accuracy of the mesh and methods, the drag coefficients from numerical simulation of trains with 3 cars were compared with those from the wind tunnel test, and agreement was obtained. The results show that the boundary layer is thicker and the wake vortices are less symmetric as the train length increases. As a result, train length greatly affects pressure. The upper surface pressure of the tail car reduced by 2.9%, the side surface pressure of the tail car reduced by 8.3% and the underneath surface pressure of the tail car reduced by 19.7% in trains that included 3 cars to those including 8 cars. In addition, train length also has a significant effect on the friction drag coefficient and the drag coefficient. The friction drag coefficient of each car in a configuration decreases along the length of the train. In a comparison between trains consisting of 3 cars to those consisting of 8 cars, the friction drag coefficient of the tail car reduced by 8.6% and the drag coefficient of the tail car reduced by 3.7%. PMID:29261758

  3. Numerical calculations of heat engineering parameters of a solar greenhouse dryer

    International Nuclear Information System (INIS)

    Akhatov, Zh.S.; Khalimov, A.S.

    2015-01-01

    The results of numerical simulation to determine the optimum volume of a thermal storage water heater in a solar greenhouse dryer are presented. A CAD (computer-aided design) model is created for the given installation by simulating the heat transfer processes with the aid of the Solid Works Flow Simulation software. The given CAD model consists of a concrete foundation and a steel frame in which translucent coatings made from two-layer polycarbonate sheets 6 mm in thickness with an air gap between the two layers are attached. The north wall is made of bricks with size and thickness of 2 x 4 m"2 and 0.4 m, respectively. The front surface has an angle of inclination 39.53 degree with respect to the horizontal surface for the maximum incidence of solar radiation to its surface. All the geometrical dimensions of the solar greenhouse dryer were selected on the basis of the allocated platform for the solar drying installation 3 x 4 m"2 in size. It is shown that the optimum volume of the heat storage tank for the present installation is 500 L. (authors)

  4. Numerical Calculation of Transient Thermal Characteristics in Gas-Insulated Transmission Lines

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-11-01

    Full Text Available For further knowledge of the thermal characteristics in gas-insulated transmission lines (GILs installed above ground, a finite-element model coupling fluid field and thermal field is established, in which the corresponding assumptions and boundary conditions are given.  Transient temperature rise processes of the GIL under the conditions of variable ambient temperature, wind velocity and solar radiation are respectively investigated. Equivalent surface convective heat transfer coefficient and heat flux boundary conditions are updated in the analysis process. Unlike the traditional finite element methods (FEM, the variability of the thermal properties with temperature is considered. The calculation results are validated by the tests results reported in the literature. The conclusion provides method and theory basis for the knowledge of transient temperature rise characteristics of GILs in open environment.

  5. Numerical groundwater flow calculations at the Finnsjoen study site - The influence of the regional gradient

    International Nuclear Information System (INIS)

    Lindbom, B.; Boghammar, A.

    1992-04-01

    The present report describes the modelling efforts of the groundwater flow situation at the Finnsjoen site in northern Uppland, approximately 140 km north of Stockholm. The study forms part of the SKB 91 performance assessment project, and aims at describing the model sensitivity to changes in the prevailing regional gradient, as well as the local, with regard to both direction and magnitude. Particular emphasis has been put into the evaluation of travel times and travel paths form a potential repository, and also on flux values at repository level. The analyses were based on the finite element technique and made use of the NAMMU-code for stationary calculations in three dimensions. The fracture zones within the modelled area were modelled implicitly with an averaging technique. (au)

  6. Behavior of Environmental Pollutants in the Field of Electromagnetic Radiation: Numerical Calculations

    International Nuclear Information System (INIS)

    Hathout, A.M.; Hassan, F.; Elsady, Z.

    2009-01-01

    One of the familiar pollutants is the black cloud. The black cloud is a term written to describe the arrival of an enormous cloud of gas that enters the solar system and threatens to destroy most of the life on earth by blocking the sun radiation, [7]. Close to the burning area, black clouds appear indicating strong absorption. While, further down wind they may look white, indicating weaker or no absorption. In previous study, it can be pointed out that the electromagnetic waves are an effective factor in the existence of the black cloud, [2]. The detection of the cloud was described using mathematical equations. In this paper, the effect of the ionosphere on the concentration of pollutants is investigated. Also, the behavior of the environmental pollutants in the occurrence of electric and magnetic fields is calculated and discussed.

  7. Numerical calculation of high frequency fast wave current drive in a reactor grade tokamak

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Hamamatsu, Kiyotaka

    1988-02-01

    A fast wave current drive with a high frequency is estimated for a reactor grade tokamak by the ray tracing and the quasi-linear Fokker-Planck calculations with an assumption of single path absorption. The fast wave can drive RF current with the drive efficiency of η CD = n-bar e (10 19 m -3 )I RC (A)R(m)/P RF (W) ∼ 3.0 when the wave frequency is selected to be f/f ci > 7. A sharp wave spectrum and a ph|| >/υ Te ∼ 3.0 are required to obtain a good efficiency. A center peaked RF current profile can be formed with an appropriate wave spectrum even in the high temperature plasma. (author)

  8. Theoretical description and numerical calculations of significant three-dimensional magnetic field configurations

    Energy Technology Data Exchange (ETDEWEB)

    Mierau, Anna; Weiland, Thomas [Technische Universitaet Darmstadt (DE). Institut fuer Theorie Elektromagnetischer Felder (TEMF); Schnizer, Pierre; Fischer, Egbert [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Akishin, Pavel [JINR, Dubna (Russian Federation)

    2010-07-01

    The heavy ion synchrotron SIS100, the core component of the Facility of Antiproton and Ion Research will accelerate high current ion beams of up to U{sup 27+}. For operating such a machine the static and transient magnetic field quality must be fully understood. This is also necessary to keep the beam losses well below acceptable limits and to prepare a sound strategy for high resolution magnetic measurements and data analysis. Challenging preconditions to perform such work are to find a proper description for the non. Cartesian symmetry of the magnets, most important for curved dipoles with elliptical apertures. We describe the parameterisation methods using elliptic and toroidal multipoles and summarise comparing the calculated to the measured field quality.

  9. A TURBO-GENERATOR DESIGN SYNTHESIS BASED ON THE NUMERICAL-FIELD CALCULATIONS AT VARYING THE NUMBER OF STATOR SLOTS

    Directory of Open Access Journals (Sweden)

    V. I. Milykh

    2016-12-01

    Full Text Available Purpose. The work is dedicated to the presentation of the principle of construction and implementation of an automated synthesis system of the turbo-generator (TG electromagnetic system in the case of its modernization. This is done on the example of changing the number of the stator core slots. Methodology. The basis of the synthesis is a TG basic construction. Its structure includes the mathematical and physical-geometrical models, as well as the calculation model for the FEMM software environment, providing the numerical calculations of the magnetic fields and electromagnetic parameters of TG. The mathematical model links the changing and basic dimensions and parameters of the electromagnetic system, provided that the TG power parameters are ensured. The physical-geometrical model is the geometric mapping of the electromagnetic system with the specified physical properties of its elements. This model converts the TG electromagnetic system in a calculation model for the FEMM program. Results. Testing of the created synthesis system is carried out on the example of the 340 MW TG. The geometric, electromagnetic and power parameters of its basic construction and its new variants at the different numbers of the stator slots are compared. The harmonic analysis of the temporal function of the stator winding EMF is also made for the variants being compared. Originality. The mathematical model, relating the new and base parameters of TG at the changing of the number of the stator slots is created. A Lua script, providing the numerical-field calculations of the TG electromagnetic parameters in the FEMM software environment is worked out. Construction of the constructive and calculation models, the numerical-field calculations and delivery of results are performed by a computer automatically, that ensures high efficiency of the TG design process. Practical value. The considered version of the TG modernization on the example of changing the number of the

  10. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-02-01

    The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular

  11. Exact Slater integrals

    International Nuclear Information System (INIS)

    Golden, L.B.

    1968-01-01

    In atomic structure calculations, one has to evaluate the Slater integrals. In the present program, the authors evaluate exactly the Slater integral when hydrogenic wave functions are used for the bound-state orbitals. When hydrogenic wave functions are used, the Slater integrals involve integrands which can be written in the form of a product of an exponential, exp(ax) and a known analytic polynomial function, f(x). By repeated partial integration such an integral can be expressed in terms of a finite series involving the exponential, the polynomial function and its derivatives. PL/1-FORMAC has a built-in subroutine that will analytically find the derivatives of any multinomial. Thus, the finite series and hence the Slater integral can be evaluated analytically. (Auth.)

  12. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  13. The algorithm of numerical calculation of constraints reactions in a dynamic system of transport machine

    Science.gov (United States)

    Akhtulov, A. L.

    2018-01-01

    The questions of construction and practical application of the automation system for the design of components and aggregates for the construction of transport vehicles are considered, taking into account their dynamic characteristics. Based on the results of the studies, a unified method for determining the reactions of bonds of a complex spatial structure is proposed. The technique, based on the method of substructures, allows us to determine the values of the transfer functions taking into account the reactions of the bonds. After the carried out researches it is necessary to note, that such approach gives the most satisfactory results and can be used for calculations of complex mechanical systems of machines and units of different purposes. The directions of increasing the degree of validity of technical decisions are shown, especially in the early stages of design, when the cost of errors is high, with careful thorough working out of all the elements of the design, which is really feasible only on the basis of automation of design and technological work.

  14. Manipulating the magnetic anisotropy and magnetization dynamics by stress: Numerical calculation and experiment

    Science.gov (United States)

    Correa, M. A.; Bohn, F.

    2018-05-01

    We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.

  15. Numerical Comparison of Various Methods of Transient Flow Calculation in Water Conveyance Systems with Pumping Station

    Directory of Open Access Journals (Sweden)

    Alireza Khoshfetrat

    2018-05-01

    Full Text Available Under transient flow condition, the behavior of water conveyance system varies according to their characteristics. In the present study, the pressure was measured using a fast and sensitive pressure gauge in Bukan and Piranshahr water conveyance system. The pressure simulation was conducted using Bentley Hammer software. The friction head loss was calculated by different methods. The results showed that Unsteady Vitkovsky method had minimum error comparing with other methods. Wave velocity increase had direct effect on maximum pressures while velocity decrease affected minimum pressures. In a shorter water conveyance system, the reduction of wave velocity had direct effect on maximum pressure. Destruction to the long conveyance system was more probable and maximum and minimum pressures occurred during the first period. Shorter conveyance system had more pressure fluctuations and the minimum pressure did not occur in the first period. Coincidence of periods happened at the beginning and continued untill the end of data recording in the longer conveyance system. However, as time passed by, such coincidence did not occure in shorter conveyance system.

  16. Virtual-bound, filamentary and layered states in a box-shaped quantum dot of square potential form the exact numerical solution of the effective mass Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Luque, A., E-mail: a.luque@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain); Mellor, A.; Tobías, I.; Antolín, E.; Linares, P.G.; Ramiro, I.; Martí, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain)

    2013-03-15

    The effective mass Schrödinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band—which are similar to those originated in quantum wires and quantum wells—coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.

  17. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    Science.gov (United States)

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Development of numerical methods to calculate the propagation and the absorption of the hybrid wave in tokamaks

    International Nuclear Information System (INIS)

    Sebelin, E.

    1997-01-01

    Full-wave calculations based on trial functions are carried out for solving the lower hybrid current drive problem in tokamaks. A variational method is developed and provides an efficient system to describe in a global manner both the propagation and the absorption of the electromagnetic waves in plasmas. The calculation is fully carried out in the case of circular and concentric flux surfaces. The existence and uniqueness of the solution of the wave propagation equation is mathematically proved. The first realistic simulations are performed for the high aspect ratio tokamak TRIAM-1M. It is checked that the main features of the lower-hybrid wave dynamics are well described numerically. (A.C.)

  19. Electron transfer dynamics: Zusman equation versus exact theory

    International Nuclear Information System (INIS)

    Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing

    2009-01-01

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.

  20. An approach to 3D magnetic field calculation using numerical and differential algebra methods

    International Nuclear Information System (INIS)

    Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.

    1992-01-01

    Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A n (z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of ''harmonic components'' proportional to functions sin (nθ) or cos (nθ) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A n (z) and their derivatives. For twodimensional configurations B z of course is identically zero, the derivatives of A n (z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B r,n ∝ r n-1 sin (nθ),B θ,n ∝ r n-1 cos (nθ), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called ''psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed

  1. Numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1982-01-01

    There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)

  2. Application of numerical method in calculating the internal rate of return of joint venture investment using diminishing musyarakah model

    Science.gov (United States)

    Ruslan, Siti Zaharah Mohd; Jaffar, Maheran Mohd

    2017-05-01

    Islamic banking in Malaysia offers variety of products based on Islamic principles. One of the concepts is a diminishing musyarakah. The concept of diminishing musyarakah helps Muslims to avoid transaction which are based on riba. The diminishing musyarakah can be defined as an agreement between capital provider and entrepreneurs that enable entrepreneurs to buy equity in instalments where profits and losses are shared based on agreed ratio. The objective of this paper is to determine the internal rate of return (IRR) for a diminishing musyarakah model by applying a numerical method. There are several numerical methods in calculating the IRR such as by using an interpolation method and a trial and error method by using Microsoft Office Excel. In this paper we use a bisection method and secant method as an alternative way in calculating the IRR. It was found that the diminishing musyarakah model can be adapted in managing the performance of joint venture investments. Therefore, this paper will encourage more companies to use the concept of joint venture in managing their investments performance.

  3. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs

  4. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Directory of Open Access Journals (Sweden)

    M. T. Johnson

    2010-10-01

    Full Text Available The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest. Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone, such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases, but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.

  5. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-10-01

    The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest). Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone), such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases), but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility) are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.

  6. Quasi-exact solvability

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1992-01-01

    This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite

  7. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    Science.gov (United States)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  8. BOKASUN: A fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams

    Science.gov (United States)

    Caffo, Michele; Czyż, Henryk; Gunia, Michał; Remiddi, Ettore

    2009-03-01

    We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations. Program summaryProgram title: BOKASUN Catalogue identifier: AECG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9404 No. of bytes in distributed program, including test data, etc.: 104 123 Distribution format: tar.gz Programming language: FORTRAN77 Computer: Any computer with a Fortran compiler accepting FORTRAN77 standard. Tested on various PC's with LINUX Operating system: LINUX RAM: 120 kbytes Classification: 4.4 Nature of problem: Any integral arising in the evaluation of the two-loop sunrise Feynman diagram can be expressed in terms of a given set of Master Integrals, which should be calculated numerically. The program provides a fast and precise evaluation method of the Master Integrals for arbitrary (but not vanishing) masses and arbitrary value of the external momentum. Solution method: The integrals depend on three internal masses and the external momentum squared p. The method is a combination of an accelerated expansion in 1/p in its (pretty large!) region of fast convergence and of a Runge-Kutta numerical solution of a system of linear differential equations. Running time: To obtain 4 Master Integrals on PC with 2 GHz processor it takes 3 μs for series expansion with pre-calculated coefficients, 80 μs for series expansion without pre-calculated coefficients, from a few seconds up to a few minutes for Runge-Kutta method (depending

  9. Numerical calculation procedure for criticality parameters of the two-zone reflected reactor with flat central zone

    International Nuclear Information System (INIS)

    Bosevski, T.; Strugar, P.

    1966-10-01

    In determining the criticality parameters of a two-zone reactor with flat central zone one encounters a numerical problem requiring the solution of a system of two non-linear equations. To solve them the Newton method, which proved convenient, was used n this work. By comparing our results with those reported one obtains about 5% smaller values of both the radius of the flat zone and of the radial buckling of the outer zone. This discrepancy probably results from some approximations used in solving the same system of equations used in solving the same system of equations where the procedure form was applied, whereas the calculation time is by one order of magnitude smaller

  10. The numerical calculation of hydrological processes in the coastal zone of the Black Sea region in the city of Poti

    Science.gov (United States)

    Saghinadze, Ivane; Pkhakadze, Manana

    2016-04-01

    (The article was published with support of the Sh. Rustaveli National Science Foundation) The serious environmental problems started in Poti after transfer of the main flow of the river Rioni to the north. As a result the flooding of the city stopped, but the reduction of water consumption in the city channel, caused a decrease of the sediments carried away by the river, what leads to coastal erosion. The coast changes are connected with the movement of the waves and currents in the coastal part of the sea. In the paper, the three-dimensional mathematical model of sediment transport and coastal zone lithodynamics is developed. The finite element formulations for the problems of wave modes, coastal currents, sediment transport and evolution of the coastal zone of the sea, are given. The numerical algorithms, implemented in the form of software. Programs are allowing to bring the solutions of the tasks to numerical results. The numerical modeling was developed in three stages. In the first stage the topography of the coast and the initial geometry of the structures are considered as an input parameters. Then, coastal wave field is calculated for the conditions prescribed in the initial wave. In the second stage, the calculated wave field is used to estimate the spatial distribution of the radiation stresses near-bottom orbital velocity. In the third stage the coastal wave fields and flow fields are used in the sub-models of sediment transport and changes in the topography of the coast. In the numerical solution of basic equations of motion of the waves, coastal currents and changes in sea bottom topography we use: finite element, finite difference methods and the method of upper relaxation, Crank-Nicolson scheme. As an example, we are giving the results of research of the wave regime in the coastal area of the city of Poti (700X600m) adjacent to the port of Poti. The bottom profile, in this area is rather complicated. During the calculations of the average rise of

  11. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  12. Local measurement and numerical calculation on turbulent two-phase flow in a vertical pipe with sudden expansion

    International Nuclear Information System (INIS)

    Kondo, Koichi; Yoshida, Kenji; Okawa, Tomio; Kataoka, Isao

    2004-01-01

    Experiment and numerical calculation were carried out for upward, turbulent bubbly two-phase flow in a vertical pipe with an axisymmetric sudden expansion, which is one of the typical multi-dimensional channel geometries. The void fraction, the liquid velocity and turbulent intensity along the flow direction below and the above the sudden expansion point were measured for various turbulent flow conditions by using a point-electrode resistivity probe and a hot-film anemometry probe. They showed quite complicated behaviors depending upon flow rates of gas and liquid phases and bubble size. In particular, the geometry of sudden expansion affected on the bubble behaviors in multi-dimensional two-phase flow, such as the bubble-stagnation, the bubble-deformation, the enhancement and suppression effects due to the two-phase turbulence etc. Through the measurements, fundamental parameters of the two-phase flow were clarified for the sudden expansion channel. Moreover, a three-dimensional one-way bubble tracking simulation of a single bubble behavior in turbulent flow field along the downstream of the sudden expansion was also demonstrated where equation of motion of bubble was solved by assuming appropriate constitutive models and turbulence model. Based on the trajectories of large number of bubbles, the void fraction distribution was predicted in this calculation. It concretely revealed that the lift force and the two-phase turbulence model were the most important parameters in determining the multi-dimensional void fraction distribution and the calculation should be considered by using the measured experimental data. (author)

  13. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  14. Exact combinatorial approach to finite coagulating systems

    Science.gov (United States)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  15. Numerical Nuclear Second Derivatives on a Computing Grid: Enabling and Accelerating Frequency Calculations on Complex Molecular Systems.

    Science.gov (United States)

    Yang, Tzuhsiung; Berry, John F

    2018-06-04

    The computation of nuclear second derivatives of energy, or the nuclear Hessian, is an essential routine in quantum chemical investigations of ground and transition states, thermodynamic calculations, and molecular vibrations. Analytic nuclear Hessian computations require the resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations, while numerical differentiation of analytic first derivatives has an unfavorable 6 N ( N = number of atoms) prefactor. Herein, we present a new method in which grid computing is used to accelerate and/or enable the evaluation of the nuclear Hessian via numerical differentiation: NUMFREQ@Grid. Nuclear Hessians were successfully evaluated by NUMFREQ@Grid at the DFT level as well as using RIJCOSX-ZORA-MP2 or RIJCOSX-ZORA-B2PLYP for a set of linear polyacenes with systematically increasing size. For the larger members of this group, NUMFREQ@Grid was found to outperform the wall clock time of analytic Hessian evaluation; at the MP2 or B2LYP levels, these Hessians cannot even be evaluated analytically. We also evaluated a 156-atom catalytically relevant open-shell transition metal complex and found that NUMFREQ@Grid is faster (7.7 times shorter wall clock time) and less demanding (4.4 times less memory requirement) than an analytic Hessian. Capitalizing on the capabilities of parallel grid computing, NUMFREQ@Grid can outperform analytic methods in terms of wall time, memory requirements, and treatable system size. The NUMFREQ@Grid method presented herein demonstrates how grid computing can be used to facilitate embarrassingly parallel computational procedures and is a pioneer for future implementations.

  16. Calculation of the Intensity of electrical field at the end of the loaded path in the solid-state nuclear track detectors by using the numerical calculation of Laplace equations

    International Nuclear Information System (INIS)

    Kolahdooz, M.; Abotalebi, A.; Sheikh Aleslam, F.

    2011-01-01

    The goal of this article is calculation of the electric field at the end of loaded path in solid-state track detectors. For the calculation, Laplace-Equation has been solved numerically. By solving the equation, upon considering a specific potential at the boundary of the region, in addition to calculating the electric field at the end of path, the parameters which are affecting the electric field have also been investigated.

  17. Determination of ultra-short laser induced damage threshold of KH2PO4 crystal: Numerical calculation and experimental verification

    Directory of Open Access Journals (Sweden)

    Jian Cheng

    2016-03-01

    Full Text Available Rapid growth and ultra-precision machining of large-size KDP (KH2PO4 crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  18. Predictions of steam generator soiling - experiment, calculation, numerical simulation; Vorhersage des Ansatzverhaltens in Dampferzeugern - Experiment, Berechnung und numerische Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Hildebrand, V.; Ullrich, B.; Szilagyi, J.

    2000-07-01

    Power plant reliability depends to a large extent on steam generator operation. Investigations were therefore carried out for early detection of combustion chamber soiling at different operating conditions. Apart from CFD numerical simulations of the gaseous phase and particle tracks, both in the original and coupled with thermochemical calculations, emphasis was given to validations with measured values in the original plant, in combustion chamber models, and in experimental facilities. Three different fuels with different composition and behaviour were investigated, i.e. oil shales, mixed coal, and coal pretreated with sorption agents. Apart from the influence of the temperature and reaction conditions (oxygen concentration) in the vicinity of the particle, also different times of residue were investigated. [German] Die Betriebssicherheit von Kraftanlagen wird massgeblich von der Arbeitsweise der Dampferzeuger bestimmt. Ziel dieses Forschungskomplexes ist es, fruehzeitig Aussagen zum Ansatzverhalten im Feuerraum bei verschiedenen Betriebsbedingungen zu treffen. Neben der numerischen Simulation der Gasphase und der Partikelbahnen mit CFD-Codes im Original und der Kopplung mit thermochemischen Berechnungen stehen vor allem Validierungen mit Messwerten am Original, an Feuerraummodellen und Versuchsanlagen im Vordergrund der Arbeiten. Die hier vorgestellten Untersuchungen erfolgten an drei unterschiedlichen Brennstoffen, die sich sowohl in der Zusammensetzung als auch im Einsatz stark voneinander unterscheiden. Dies sind: Oelschiefer, Mischkohle und vorbehandelte Kohle mit Sorbent. Dabei werden neben den Einfluessen der Temperatur und der Reaktionsbedingung (Sauerstoffgehalt) in der Umgebung des Partikels auch verschiedene Verweilzeiten untersucht. (orig./AKF)

  19. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts

  20. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  1. Computing exact bundle compliance control charts via probability generating functions.

    Science.gov (United States)

    Chen, Binchao; Matis, Timothy; Benneyan, James

    2016-06-01

    Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.

  2. Criteria for exact qudit universality

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; O'Leary, Dianne P.; Bullock, Stephen S.

    2005-01-01

    We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H jk x =(ℎ/2π)Ω(vertical bar k> jk y =(ℎ/2π)Ω(i vertical bar k> jk x,y are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=(ℎ/2π)Ω vertical bar d-1,d-1> 87 Rb and construct an optimal gate sequence using Raman laser pulses

  3. Application of numerical inverse method in calculation of composition-dependent interdiffusion coefficients in finite diffusion couples

    DEFF Research Database (Denmark)

    Liu, Yuanrong; Chen, Weimin; Zhong, Jing

    2017-01-01

    The previously developed numerical inverse method was applied to determine the composition-dependent interdiffusion coefficients in single-phase finite diffusion couples. The numerical inverse method was first validated in a fictitious binary finite diffusion couple by pre-assuming four standard...... sets of interdiffusion coefficients. After that, the numerical inverse method was then adopted in a ternary Al-Cu-Ni finite diffusion couple. Based on the measured composition profiles, the ternary interdiffusion coefficients along the entire diffusion path of the target ternary diffusion couple were...... obtained by using the numerical inverse approach. The comprehensive comparisons between the computations and the experiments indicate that the numerical inverse method is also applicable to high-throughput determination of the composition-dependent interdiffusion coefficients in finite diffusion couples....

  4. Numerical calculation of aerodynamics wind turbine blade S809 airfoil and comparison of theoretical calculations with experimental measurements and confirming with NREL data

    Science.gov (United States)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.

  5. Numerical calculation of the main variables of the laminar flow around a circunferential square obstacle at the wall of a circular pipe

    International Nuclear Information System (INIS)

    Nogueira, A.C.R.

    1981-10-01

    The numerical calculation of the main variables of the laminar, incompressible, axissimmetric, steady flow around a circunferential square obstacle placed at the wall of a circular pipe, is done. The velocity profiles, the separating length and the shape of the separating streamline are compared with experimental available data and a good agreement is achieved. (E.G.) [pt

  6. Numerical calculation of the tensor of diffusion in the nuclear reactor cells by Monte-Carlo method

    International Nuclear Information System (INIS)

    Gorodkov, S.S.; Kalugin, M.A.

    2009-01-01

    New algorithm based on the sequential application of the RMS path method has been proposed for the diffusion constants calculation. The offered algorithm conforms to the diffusion constants calculation in arbitrary segments of nuclear reactors without detail description of geometry, dependence of cross-sections from energy or neutron scattering anisotropy by kernel medium. The proposed algorithm is used for the diffusion constants calculation in uranium-graphite reactor sells

  7. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  8. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  9. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  10. Validation of numeric methods for calculating interactions between district heating pipelines and the surrounding soil; Validierung numerischer Verfahren zur Berechnung des Interaktionsverhaltens 'Fernwaermeleitung - Baugrund'

    Energy Technology Data Exchange (ETDEWEB)

    Salveter, G.

    2000-07-01

    In this thesis, the results of experimental research work on global bearing behaviour with respect to the existing theoretical basis are systematically analysed for the evaluation and interpretation of measuring results. Among other things, the geometry of the pipeline route, the compactness of the backfilling material and the temperature dependence are considered. The mutual influence of friction and bedding resistances in the region of bends could not yet be determined for a local analysis by existing numerical models. This requires the determination of the induced stress distribution on the pipe perimeter due to lateral displacement of the pipe. The influence is therefore described by a numerical consideration of relative displacements between the pipe and the surrounding soil. Ultimately, relative displacements are verified on the basis of our own complementary results from experimental research carried out in a laboratory for soil mechanics with specially designed test equipment. The global analysis of bearing loads and displacements is done with a numerical model, in which the plastic jacked pipe is idealized as a beam, and the effect of the soil is idealized by spring elements with non-linear force displacement characteristics. An existing numerical model is extended with regard to the new findings and while taking vertical displacements into account. It is used for numerical simulations of selected tests on the global bearing behaviour of underground district heating pipelines which were carried out as part of the research cooperation project. Apart from a good correspondence between calculated results and test results this also provides a plausible description of interrelations. At the same time, however, it also makes itclear that further research is necessary. This thesis provides a contribution to the validation of recent methods for the calculated modelling of the interaction between a district heating pipeline and the subsoil on the basis of

  11. Eye-movement patterns during nonsymbolic and symbolic numerical magnitude comparison and their relation to math calculation skills.

    Science.gov (United States)

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J

    2017-05-01

    A growing body of research suggests that the processing of nonsymbolic (e.g. sets of dots) and symbolic (e.g. Arabic digits) numerical magnitudes serves as a foundation for the development of math competence. Performance on magnitude comparison tasks is thought to reflect the precision of a shared cognitive representation, as evidence by the presence of a numerical ratio effect for both formats. However, little is known regarding how visuo-perceptual processes are related to the numerical ratio effect, whether they are shared across numerical formats, and whether they relate to math competence independently of performance outcomes. The present study investigates these questions in a sample of typically developing adults. Our results reveal a pattern of associations between eye-movement measures, but not their ratio effects, across formats. This suggests that ratio-specific visuo-perceptual processing during magnitude processing is different across nonsymbolic and symbolic formats. Furthermore, eye movements are related to math performance only during symbolic comparison, supporting a growing body of literature suggesting symbolic number processing is more strongly related to math outcomes than nonsymbolic magnitude processing. Finally, eye-movement patterns, specifically fixation dwell time, continue to be negatively related to math performance after controlling for task performance (i.e. error rate and reaction time) and domain general cognitive abilities (IQ), suggesting that fluent visual processing of Arabic digits plays a unique and important role in linking symbolic number processing to formal math abilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. BOKASUN: a fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams

    OpenAIRE

    Caffo, Michele; Czyz, Henryk; Gunia, Michal; Remiddi, Ettore

    2008-01-01

    We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations.

  13. Exact Optimum Design of Segmented Thermoelectric Generators

    Directory of Open Access Journals (Sweden)

    M. Zare

    2016-01-01

    Full Text Available A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs. Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency.

  14. Prepotential approach to exact and quasi-exact solvabilities

    International Nuclear Information System (INIS)

    Ho, C.-L.

    2008-01-01

    Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations

  15. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  16. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  17. Some results of a numerical calculation of plasma dispersion curves including collisions; Quelques resultats de calcul de courbes de dispersion avec collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lepechinsky, D; Parlange, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Dispersion curves including the effect of collisions have been calculated with a 7090 IBM computer for several types of laboratory hydrogen plasmas; Te = Ti = 1 eV; Te = 1 eV, Ti = 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti 10 eV, with neutral gas pressures of 10{sup -1}, 10{sup -3} and 10{sup -4} mmHg and electron densities of 10{sup 10}, 10{sup 13} and eventually 10{sup 15} el/cc. The corresponding collision frequencies with neutrals and between electrons and ions have been derived using appropriate relationships The dispersion equations used correspond to the macroscopic treatment. The real and imaginary parts of the wave number K are presented as a function of real values of the frequency {omega}, for electrostatic and electromagnetic waves and for e.m. waves propagating parallel to a permanent magnetic field of 500 gauss and 12.5 Kgauss. (authors) [French] Des courbes de dispersion tenant compte de l'effet des collisions ont ete calculees a l'aide d'un ordinateur IBM 7090 pour differents types de plasmas d'hydrogene se presentant au laboratoire; les temperatures electroniques et ioniques envisagees ont ete les suivantes: Te = Ti = 1 Ev; Te = 1 eV, Ti 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti = 10 eV; les pressions de neutres - de 10{sup -1}, 10{sup -3} et 10{sup -4} mmHg; les densites electroniques - de 10{sup 10}, 10{sup 13} et eventuellement de 10{sup 15} el/cc. Les frequences de collision avec les neutres et entre electrons et ions ont ete evaluees en fonction de ces donnees. Les equations, de dispersion utilisees correspondant au traitement macroscopique. On presente les valeurs des parties reelle et imaginaire du nombre d'ondes K en fonction de valeurs reelles de la frequence {omega} pour les ondes electrostatiques et electromagnetiques et pour les ondes e.m. se propageant parallelement a un champ magnetique permanent de 500 gauss et de 12,5 kgauss. (auteurs)

  18. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-10-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory.

  19. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-01-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory. (author)

  20. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Physik, WA THEP, Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-06-13

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These “exact effective couplings” encode the finite, relative renormalization between the N=2 and the N=4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  1. The radiation environment on the surface of Mars - Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS.

    Science.gov (United States)

    Matthiä, Daniel; Berger, Thomas

    2017-08-01

    Galactic cosmic radiation and secondary particles produced in the interaction with the atmosphere lead to a complex radiation field on the Martian surface. A workshop ("1st Mars Space Radiation Modeling Workshop") organized by the MSL-RAD science team was held in June 2016 in Boulder with the goal to compare models capable to predict this radiation field with each other and measurements from the RAD instrument onboard the curiosity rover taken between November 15, 2015 and January 15, 2016. In this work the results of PLANETOCOSMICS/GEANT4 contributed to the workshop are presented. Calculated secondary particle spectra on the Martian surface are investigated and the radiation field's directionality of the different particles in dependence on the energy is discussed. Omnidirectional particle fluxes are used in combination with fluence to dose conversion factors to calculate absorbed dose rates and dose equivalent rates in a slab of tissue. Copyright © 2017. Published by Elsevier Ltd.

  2. Mean field approximation versus exact treatment of collisions in few-body systems

    International Nuclear Information System (INIS)

    Lemm, J.; Weiguny, A.; Giraud, B.G.

    1990-01-01

    A variational principle for calculating matrix elements of the full resolvent operator for a many-body system is studied. Its mean field approximation results in non-linear equations of Hartree (-Fock) type, with initial and final channel wave functions as driving terms. The mean field equations will in general have many solutions whereas the exact problem being linear, has a unique solution. In a schematic model with separable forces the mean field equations are analytically soluble, and for the exact problem the resulting integral equations are solved numerically. Comparing exact and mean field results over a wide range of system parameters, the mean field approach proves to be a very reliable approximation, which is not plagued by the notorious problem of defining asymptotic channels in the time-dependent mean field method. (orig.)

  3. Numerical comparison between Maxwell stress method and equivalent multipole approach for calculation of the dielectrophoretic force in single-cell traps.

    Science.gov (United States)

    Rosales, Carlos; Lim, Kian Meng

    2005-06-01

    This paper presents detailed numerical calculations of the dielectrophoretic force in traps designed for single-cell trapping. A trap with eight planar electrodes is studied for spherical and ellipsoidal particles using the boundary element method (BEM). Multipolar approximations of orders one to three are compared with the full Maxwell stress tensor (MST) calculation of the electrical force on spherical particles. Ellipsoidal particles are also studied, but in their case only the dipolar approximation is available for comparison with the MST solution. The results show that a small number of multipolar terms need to be considered in order to obtain accurate results for spheres, even in the proximity of the electrodes, and that the full MST calculation is only required in the study of non-spherical particles.

  4. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Convergence and Testing

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs

  5. Exact solution of the hidden Markov processes

    Science.gov (United States)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  6. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML

    DEFF Research Database (Denmark)

    Xie, Zhinan; Komatitsch, Dimitri; Martin, Roland

    2014-01-01

    with perfectly matched absorbing layers we introduce a computationally efficient boundary storage strategy by saving information along the interface between the CFS-UPML and the main domain only, thus avoiding the need to solve a backward wave propagation problem inside the CFS-UPML, which is known to be highly......In recent years, the application of time-domain adjoint methods to improve large, complex underground tomographic models at the regional scale has led to new challenges for the numerical simulation of forward or adjoint elastic wave propagation problems. An important challenge is to design...... convolution formulation of the complex-frequency-shifted unsplit-field perfectly matched layer (CFS-UPML) derived in previous work more flexible by providing a new treatment to analytically remove singular parameters in the formulation. We also extend this new formulation to 3-D. Furthermore, we derive...

  7. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  8. Subauroral red arcs as a conjugate phenomenon: comparison of OV1-10 satellite data with numerical calculations

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    Full Text Available This study compares the OV1-10 satellite measurements of the integral airglow intensities at 630 nm in the SAR arc regions observed in the northern and southern hemisphere as a conjugate phenomenon, with the model results obtained using the time-dependent one-dimensional mathematical model of the Earth ionosphere and plasmasphere (the IZMIRAN model during the geomagnetic storm of the period 15–17 February 1967. The major enhancements to the IZMIRAN model developed in this study are the inclusion of He+ ions (three major ions: O+, H+, and He+, and three ion temperatures, the updated photochemistry and energy balance equations for ions and electrons, the diffusion of NO+ and O2+ ions and O(1D and the revised electron cooling rates arising from their collisions with unexcited N2, O2 molecules and N2 molecules at the first vibrational level. The updated model includes the option to use the models of the Boltzmann or non-Boltzmann distributions of vibrationally excited molecular nitrogen. Deviations from the Boltzmann distribution for the first five vibrational levels of N2 were calculated. The calculated distribution is highly non-Boltzmann at vibrational levels v > 2 and leads to a decrease in the calculated electron density and integral intensity at 630 nm in the northern and southern hemispheres in comparison with the electron density and integral intensity calculated using the Boltzmann vibrational distribution of N2. It is found that the intensity at 630 nm is very sensitive to the oxygen number densities. Good agreement between the modelled and measured intensities is obtained provided that at all altitudes of the southern hemisphere a reduction of about factor 1.35 in MSIS-86 atomic oxygen densities is included in the IZMIRAN model with the non-Boltzmann vibrational distribution of N2

  9. Comment on "Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs", [Commun Nonlinear Sci Numer Simulat 47 (2017) 253-266

    Science.gov (United States)

    Li, Xiangzheng

    2018-06-01

    A counterexample is given to show that the product rule of the Caputo fractional derivatives does not hold except on a special point. The function-expansion method of separation variable proposed by Rui[Commun Nonlinear Sci Numer Simulat 47 (2017) 253-266] based on the product rule must be modified.

  10. Exact shock profile for the ASEP with sublattice-parallel update

    International Nuclear Information System (INIS)

    Jafarpour, F H; Ghafari, F E; Masharian, S R

    2005-01-01

    We analytically study the one-dimensional asymmetric simple exclusion process with open boundaries under sublattice-parallel updating scheme. We investigate the stationary state properties of this model conditioned on finding a given particle number in the system. Recent numerical investigations have shown that the model possesses three different phases in this case. Using a matrix product method we calculate both the exact canonical partition function and also density profiles of the particles in each phase. Application of the Yang-Lee theory reveals that the model undergoes two second-order phase transitions at critical points. These results confirm the correctness of our previous numerical studies

  11. Numerical calculations for diffusion effects in the well-of-the-well culture system for mammalian embryos.

    Science.gov (United States)

    Matsuura, Koji

    2014-06-01

    Recent studies suggest that the microenvironment and embryo density used during embryo culture considerably affect development to the blastocyst stage. High embryo density allows for autocrine secretions to diffuse to neighbouring embryos during group culture, with a positive effect on further development. A variation of group culture is the well-of-the-well (WOW) culture system, allowing for individual identification of embryos cultured in small holes in a microdroplet. Bovine blastocyst development is higher in the WOW culture system than in conventional group culture. To compare the concentration of chemical factors between conventional and WOW culture, a model was constructed to calculate the concentration of secreted factors based on Fick's second law of diffusion using spreadsheet software. Furthermore, model was used to determine the concentration of growth factors and waste materials adjacent to the embryo periphery. The results of these calculations suggest that the highest difference in the concentration of secreted small molecules and macromolecules was at the most two- to threefold, with the concentrations reduced more and diffusion kinetics facilitated to a greater extent in the WOW culture system. The average ratio of the concentration of secreted macromolecules (10nm diameter) around the embryos was also compared between systems with well widths of 0.1 and 0.3mm. The concentration of secreted materials surrounding embryos increased in a narrow tapered well. The findings suggest that the WOW culture system is better than conventional group culture because of the increased final concentration of autocrine factors and higher diffusion kinetics of waste materials.

  12. An anomalous subauroral red arc on 4 August, 1972: comparison of ISIS-2 satellite data with numerical calculations

    Directory of Open Access Journals (Sweden)

    V. V. Lobzin

    Full Text Available This study compares the Isis II satellite measurements of the electron density and temperature, the integral airglow intensity and volume emission rate at 630 nm in the SAR arc region, observed at dusk on 4 August, 1972, in the Southern Hemisphere, during the main phase of the geomagnetic storm. The model results were obtained using the time dependent one-dimensional mathematical model of the Earth's ionosphere and plasmasphere (the IZMIRAN model. The major enhancement to the IZMIRAN model developed in this study to explain the two component 630 nm emission observed is the analytical yield spectrum approach to calculate the fluxes of precipitating electrons and the additional production rates of N+2, O+2, O+(4S, O+(2D, O(2P, and O+(2P ions, and O(1D in the SAR arc regions in the Northern and Southern Hemispheres. In order to bring the measured and modelled electron temperatures into agreement, the additional heating electron rate of 1.05 eV cm–3 s–1 was added in the energy balance equation of electrons at altitudes above 5000 km during the main phase of the geomagnetic storm. This additional heating electron rate determines the thermally excited 630 nm emission observed. The IZMIRAN model calculates a 630 nm integral intensity above 350 km of 4.1 kR and a total 630 nm integral intensity of 8.1 kR, values which are slightly lower compared to the observed 4.7 kR and 10.6 kR. We conclude that the 630 nm emission observed can be explained considering both the soft energy electron excited component and the thermally excited component. It is found that the inclusion of N2(v > 0 and O2(v > 0 in the calculations of the O+(4S loss rate improves the agreement between the calculated N

  13. An anomalous subauroral red arc on 4 August, 1972: comparison of ISIS-2 satellite data with numerical calculations

    Directory of Open Access Journals (Sweden)

    V. V. Lobzin

    1999-11-01

    Full Text Available This study compares the Isis II satellite measurements of the electron density and temperature, the integral airglow intensity and volume emission rate at 630 nm in the SAR arc region, observed at dusk on 4 August, 1972, in the Southern Hemisphere, during the main phase of the geomagnetic storm. The model results were obtained using the time dependent one-dimensional mathematical model of the Earth's ionosphere and plasmasphere (the IZMIRAN model. The major enhancement to the IZMIRAN model developed in this study to explain the two component 630 nm emission observed is the analytical yield spectrum approach to calculate the fluxes of precipitating electrons and the additional production rates of N+2, O+2, O+(4S, O+(2D, O–(2P, and O+(2P ions, and O(1D in the SAR arc regions in the Northern and Southern Hemispheres. In order to bring the measured and modelled electron temperatures into agreement, the additional heating electron rate of 1.05 eV cm–3 s–1 was added in the energy balance equation of electrons at altitudes above 5000 km during the main phase of the geomagnetic storm. This additional heating electron rate determines the thermally excited 630 nm emission observed. The IZMIRAN model calculates a 630 nm integral intensity above 350 km of 4.1 kR and a total 630 nm integral intensity of 8.1 kR, values which are slightly lower compared to the observed 4.7 kR and 10.6 kR. We conclude that the 630 nm emission observed can be explained considering both the soft energy electron excited component and the thermally excited component. It is found that the inclusion of N2(v > 0 and O2(v > 0 in the calculations of the O+(4S loss rate improves the agreement between the calculated Ne and the data on 4 August, 1972. The  N2(v > 0 and O2(v > 0 effects are enough to explain the electron density depression in the SAR arc F-region and above F2 peak altitude. Our calculations show that the increase in the O++N2 rate factor due to the vibrationally

  14. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  15. Effect Analysis of Geometric Parameters on Stainless Steel Stamping Multistage Pump by Experimental Test and Numerical Calculation

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2013-01-01

    Full Text Available In order to improve the efficiency of stainless steel stamping multistage pump, quadratic regression orthogonal test, hydraulic design, and computational fluid dynamics (CFD are used to analyze the effect of pump geometric parameters. Sixteen impellers are designed based on the quadratic regression orthogonal test, which have three factors including impeller outlet slope, impeller blade outlet stagger angle, and impeller blade outlet width. Through quadratic regression equation, the function relationship between efficiency values and three factors is established. The optimal combination of geometric parameters is found through the analysis of the regression equation. To further study the influence of blade thickness on the performance of multistage pump, numerical simulations of multistage pump with different blade thicknesses are carried out. The influence law of blade thickness on pump performance is built from the external characteristics and internal flow field. In conclusion, with the increase of blade thickness, the best efficiency point of the pump shifts to the small flow rate direction, and the vortex regions inside the pump at rated flow gradually increase, which is the main reason that pump efficiency decreases along with the increase of the blade thickness at rated flow.

  16. Numerical calculation of the dispersion of heat and material in rivers by means of a depth-averaged model

    International Nuclear Information System (INIS)

    Pavlovic, R.N.

    1981-01-01

    Nowadays, our rivers are polluted to an ever increasing degree by industrial and domestic discharges of waste heat and sewage. An important task of environmental protection is to predict the consequences of such pollutions in order to be able to plan and perform protective measures. For the solution of this problem a reliable mathematical model is very helpful. In the present paper a depth-averaged model is developed consisting of a two-dimensional elliptical model component for the direct near-field of a discharge and a two-dimensional parabolic separate model for the calculation of longer river distances further downstream. This model is exhaustively tested by application to a number of laboratory flows and real discharges to rivers. (orig./RW) [de

  17. Analytical and numerical calculation of magnetic field distribution in the slotted air-gap of tangential surface permanent-magnet motors

    Directory of Open Access Journals (Sweden)

    Boughrara Kamel

    2009-01-01

    Full Text Available This paper deals with the analytical and numerical analysis of the flux density distribution in the slotted air gap of permanent magnet motors with surface mounted tangentially magnetized permanent magnets. Two methods for magnetostatic field calculations are developed. The first one is an analytical method in which the effect of stator slots is taken into account by modulating the magnetic field distribution by the complex relative air gap permeance. The second one is a numerical method using 2-D finite element analysis with consideration of Dirichlet and anti-periodicity (periodicity boundary conditions and Lagrange Multipliers for simulation of movement. The results obtained by the analytical method are compared to the results of finite-element analysis.

  18. Visualisation of the velocity field in a scaled water model for validation of numerical calculations for a powder fuelled boiler

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Laurent [Luleaa Univ. of Technology (Sweden)

    2001-01-01

    Validation of numerical predictions of the flow field in a powder fired industry boiler by flow visualisation in a water model has been studied. The bark powder fired boiler at AssiDomaen Kraftliner in Piteaa has been used as a case study. A literature study covering modelling of combusting flows by water models and different flow visualisation techniques has been carried out. The main conclusion as regards the use of water models is that only qualitative information can be expected. As far as turbulent flow is assured in the model as well as the real furnace, the same Reynolds number is not required. Geometrical similarity is important but modelling of burner jets requires adaptation of the jet diameters in the model. Guidelines for this are available and are presented in the report. The review of visualisation techniques shows that a number of methods have been used successfully for validation of flow field predictions. The conclusion is that the Particle Image Velocimetry and Particle Tracking Velocimetry methods could be very suitable for validation purposes provided that optical access is possible. The numerical predictions include flow fields in a 1130 scale model of the AssiDomaen furnace with water flow as well as flow and temperature fields in the actual furnace. Two burner arrangements were considered both for the model and the actual furnace, namely the present configuration with four front burners and a proposed modification where an additional burner is positioned at a side wall below the other burners. There are many similarities between the predicted flow fields in the model and the full scale furnace but there are also some differences, in particular in the region above the burners and the effects of the low region re-circulation on the lower burner jets. The experiments with the water model have only included the arrangement with four front burners. There were problems determining the velocities in the jets and the comparisons with predictions are

  19. Numerical method to calculate the quantum transmission, resonance and eigenvalue energies: application to a biased multibarrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413 (Saudi Arabia)

    2015-04-15

    A novel method to calculate the quantum transmission, resonance and eigenvalue energies forming the sub-bands structure of non-symmetrical, non-periodical semiconducting heterostructure potential has been proposed in this paper. The method can be applied on a multilayer system with varying thickness of the layer and effective mass of electrons and holes. Assuming an approximated effective mass and using Bastard's boundary conditions, Schrödinger equation at each media is solved and then using a confirmed recurrence method, the transmission and reflection coefficients and the energy quantification condition are expressed. They are simple combination of coupled equations. Schrödinger's equation solutions are Airy functions or plane waves, depending on the electrical potential energy slope. To illustrate the feasibility of the proposed method, the N barriers – (N−1) wells structure for N=3, 5, 8, 9, 17 and 35 are studied. All results show very good agreements with previously published results obtained from applying different methods on similar systems.

  20. Numerical effects in the neutron flux calculations into WWER-type reactor vessels by Monte Carlo method

    International Nuclear Information System (INIS)

    Alvarez Cardona, C.M.; Rodriguez Gual, M.; Hernandez Valle, S.

    2001-01-01

    The calculation of neutron fluxes and fluence into reactor pressure vessel is a regulatory requirement in the stages of the design, operation and plan lifetime extension. The reactor vessel is considered a unique and non-substitutable part of the NPP that undergoes degradation. The main source of the aging comes from the fast neutron damage induced in the steel crystalline lattice. Due to the proximity of the core edge to the vessel inner surface; the vessel steel is exposed to high fast neutron fluence. The effect of this irradiation on the mechanical properties becomes more acute because of the impurities measured in the Russian steel alloys. In the present paper, a PC version of the Monte Carlo 3-D HEXANN-EVALU system is used for the estimation of the WWER reactor pressure vessel irradiation. It was selected on the basis of its flexible options that on the other hand need to be quantified in connection with the desired magnitudes. The parameters that control the random walk of neutrons as well as the efficiency increasing options included in the code are studied in order to identify their impact in the final results for fluxes and fluence in the reactor pressure vessel. As a result an optimal set of parameters is suggested. (authors)

  1. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    Science.gov (United States)

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  2. Numerical Calculations of the Effect of Moisture Content and Moisture Flow on Ionic Multi-Species Diffusion in the Pore Solution of Porous Materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Hosokawa, Yoshifumi; Yamada, Kazuo

    2009-01-01

    A method to analyse and calculate concentration profiles of different types of ions in the pore solution of porous materials such as concrete subjected to external wetting and drying is described. The equations in use have a solid theoretical meaning and are derived from a porous media technique......, which is a special branch of the more general mixture theory. The effect of chemical action is ignored making the presented model suitable to be implemented into codes dealing solely with chemical equilibrium. The coupled set of equations for diffusion of ionic species, the internal electrical potential...... of the model should be judged from the assumptions made when developing the balance laws and the constitutive equations and the assumptions made in obtaining a working numerical calculation scheme....

  3. An Exact Analytical Solution to Exponentially Tapered Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    H. Salmani

    2015-01-01

    Full Text Available It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled equations into modal coordinates. The steady states harmonic solution results are verified both numerically and experimentally. Results show that there exist values for tapering parameter and electric resistance in a way that the output power per mass of the energy harvester will be maximized. Moreover it is concluded that the electric resistance must be higher than a specified value for gaining more power by tapering the beam.

  4. Jurin's law revisited: Exact meniscus shape and column height.

    Science.gov (United States)

    Liu, Sai; Li, Shanpeng; Liu, Jianlin

    2018-03-30

    Capillary rise of a liquid column is a historical problem, which has normally been formulated by Jurin's law. In the present study, we investigate the exact solutions of the column height, considering the real shape of the meniscus according to the Young-Laplace equation. The analytical solution in the planar model and the numerical solution in the axisymmetric model on the meniscus shape are both given, which are compared with the results from Jurin's law, modified Jurin's law and Surface Evolver simulation. The results quantitatively show that when the distance between the two plates or the diameter of the tube becomes bigger, Jurin's law and modified Jurin's law would cause serious errors, and the profile morphology of the meniscus must be calculated according to the Young-Laplace equation. These findings are beneficial for us to better understand the mechanism of capillarity and wetting, which are promising for such areas as oil displacement, ore floatation, building materials, fabrics, etc.

  5. A Numerical Method for Calculating the Wave Drag of a Configuration from the Second Derivative of the Area Distribution of a Series of Equivalent Bodies of Revolution

    Science.gov (United States)

    Levy, Lionel L., Jr.; Yoshikawa, Kenneth K.

    1959-01-01

    A method based on linearized and slender-body theories, which is easily adapted to electronic-machine computing equipment, is developed for calculating the zero-lift wave drag of single- and multiple-component configurations from a knowledge of the second derivative of the area distribution of a series of equivalent bodies of revolution. The accuracy and computational time required of the method to calculate zero-lift wave drag is evaluated relative to another numerical method which employs the Tchebichef form of harmonic analysis of the area distribution of a series of equivalent bodies of revolution. The results of the evaluation indicate that the total zero-lift wave drag of a multiple-component configuration can generally be calculated most accurately as the sum of the zero-lift wave drag of each component alone plus the zero-lift interference wave drag between all pairs of components. The accuracy and computational time required of both methods to calculate total zero-lift wave drag at supersonic Mach numbers is comparable for airplane-type configurations. For systems of bodies of revolution both methods yield similar results with comparable accuracy; however, the present method only requires up to 60 percent of the computing time required of the harmonic-analysis method for two bodies of revolution and less time for a larger number of bodies.

  6. Visualization of strong around motion calculated from the numerical simulation of Hyogo-ken Nanbu earthquake; Suchi simulation de miru Hyogoken nanbu jishin no kyoshindo

    Energy Technology Data Exchange (ETDEWEB)

    Furumura, T [Hokkaido Univ. of Education, Sapporo (Japan); Koketsu, K [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute

    1996-10-01

    Hyogo-ken Nanbu earthquake with a focus in the Akashi straits has given huge earthquake damages in and around Awaji Island and Kobe City in 1995. It is clear that the basement structure, which is steeply deepened at Kobe City from Rokko Mountains towards the coast, and the focus under this related closely to the local generation of strong ground motion. Generation process of the strong ground motion was discussed using 2D and 3D numerical simulation methods. The 3D pseudospectral method was used for the calculation. Space of 51.2km{times}25.6km{times}25.6km was selected for the calculation. This space was discretized with the lattice interval of 200m. Consequently, it was found that the basement structure with a steeply deepened basement, soft and weak geological structure thickly deposited on the basement, and earthquake faults running under the boundary of base rock and sediments related greatly to the generation of strong ground motion. Numerical simulation can be expected to predict the strong ground motion by shallow earthquakes. 9 refs., 7 figs.

  7. Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model

    Science.gov (United States)

    Pont, Federico M.; Osenda, Omar; Serra, Pablo

    2018-05-01

    The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.

  8. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  9. Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Schmidt, Per Simmendefeldt; Winther, Kirsten Trøstrup

    2016-01-01

    Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong q dependence of the 2D dielectric function around q = 0 that calls for a much denser...

  10. Numerical calculation and analysis of natural convection removal of the spent fuel residual heat of 10 MW high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Wang Jinhua; Huang Yifan; Wu Bin

    2013-01-01

    The spent fuel of 10 MW High Temperature Gas Cooled Reactor (HTR-10) could be stored in the shielded tank, and the tank is stored in the concrete shielded canister in spent fuel storage room, the residual heat of the spent fuel could be removed by the air. The ability of residual heat removal is analyzed in the paper, and the temperature field is numerically calculated through FEA program ANSYS, the analysis and the calculation are used to validate the safety of the spent fuel and the tank, the ultimate temperature of the spent fuel and the tank should below the safety limit. The calculation shows that the maximum temperature locates in the middle of the fuel pebble bed in the spent fuel tank, and the temperature decreases gradually with radial distance, the temperature in the tank body is evenly distributed, and the temperature in the concrete shielded canister decreases gradually with radial distance. It is feasible to remove the residual heat of the spent fuel storage tank by natural ventilation, in natural ventilation condition, the temperature of the spent fuel and the tank is lower than the temperature limit, which provides theoretical evidence for the choice of the residual heat removal method. (authors)

  11. Character of photovoltaic/thermal hybrid collector. Character analysis by numerical calculation; Taiyoko netsu hybrid collector no tokusei. Suchi keisan ni yoru tokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y; Iwawaki, T; Fujisawa, T; Tani, T [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    In order to investigate characteristics of photovoltaic (PV)/thermal hybrid collectors (PV/T{sub s}) operating under varying conditions, energy equilibrium equations have been developed for numerical calculation, and the calculated results were compared with the observed ones. The calculated characteristics are close to the observed ones, both for photoelectric conversion and heat collecting characteristics, demonstrating validity of these energy equations. It is found, by comparing characteristics of PV/T{sub A} (covered with glass) with those of PV/T{sub B} (not covered with glass), that these characteristics are greatly affected by glass cover. Maximum overall excergy levels attained are 13.29% with PV/T{sub A} and 11.48% with PV/T{sub B} under the conditions of solar radiation intensity H: 800W/m{sup 2}, ambient temperature: 20degC and wind velocity: 0.5m/s, where flow rates of heat medium are 2.0times10{sup -3} and 4.0times10{sup -3}kg/s, respectively. Thus, the PV/T{sub A} system has a higher maximum excergy efficiency than the PV/T{sub B} system. The PV/T{sub A} gives water of higher temperature, demonstrating that covering the system with glass increases maximum excergy efficiency and optimum temperature. 6 refs., 5 figs., 2 tabs.

  12. Development of a numerical model for calculating exposure to toxic and nontoxic stressors in the water column and sediment from drilling discharges.

    Science.gov (United States)

    Rye, Henrik; Reed, Mark; Frost, Tone Karin; Smit, Mathijs G D; Durgut, Ismail; Johansen, Øistein; Ditlevsen, May Kristin

    2008-04-01

    Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.

  13. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  14. CONDITIONS FOR EXACT CAVALIERI ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mónica Tinajero-Bravo

    2014-03-01

    Full Text Available Exact Cavalieri estimation amounts to zero variance estimation of an integral with systematic observations along a sampling axis. A sufficient condition is given, both in the continuous and the discrete cases, for exact Cavalieri sampling. The conclusions suggest improvements on the current stereological application of fractionator-type sampling.

  15. Analytical relativistic self-consistent-field calculations for atoms

    International Nuclear Information System (INIS)

    Barthelat, J.C.; Pelissier, M.; Durand, P.

    1980-01-01

    A new second-order representation of the Dirac equation is presented. This representation which is exact for a hydrogen atom is applied to approximate analytical self-consistent-field calculations for atoms. Results are given for the rare-gas atoms from helium to radon and for lead. The results compare favorably with numerical Dirac-Hartree-Fock solutions

  16. A Class of Quasi-exact Solutions of Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.

    2007-01-01

    A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.

  17. Risk approximation in decision making: approximative numeric abilities predict advantageous decisions under objective risk.

    Science.gov (United States)

    Mueller, Silke M; Schiebener, Johannes; Delazer, Margarete; Brand, Matthias

    2018-01-22

    Many decision situations in everyday life involve mathematical considerations. In decisions under objective risk, i.e., when explicit numeric information is available, executive functions and abilities to handle exact numbers and ratios are predictors of objectively advantageous choices. Although still debated, exact numeric abilities, e.g., normative calculation skills, are assumed to be related to approximate number processing skills. The current study investigates the effects of approximative numeric abilities on decision making under objective risk. Participants (N = 153) performed a paradigm measuring number-comparison, quantity-estimation, risk-estimation, and decision-making skills on the basis of rapid dot comparisons. Additionally, a risky decision-making task with exact numeric information was administered, as well as tasks measuring executive functions and exact numeric abilities, e.g., mental calculation and ratio processing skills, were conducted. Approximative numeric abilities significantly predicted advantageous decision making, even beyond the effects of executive functions and exact numeric skills. Especially being able to make accurate risk estimations seemed to contribute to superior choices. We recommend approximation skills and approximate number processing to be subject of future investigations on decision making under risk.

  18. Time's arrow: A numerical experiment

    Science.gov (United States)

    Fowles, G. Richard

    1994-04-01

    The dependence of time's arrow on initial conditions is illustrated by a numerical example in which plane waves produced by an initial pressure pulse are followed as they are multiply reflected at internal interfaces of a layered medium. Wave interactions at interfaces are shown to be analogous to the retarded and advanced waves of point sources. The model is linear and the calculation is exact and demonstrably time reversible; nevertheless the results show most of the features expected of a macroscopically irreversible system, including the approach to the Maxwell-Boltzmann distribution, ergodicity, and concomitant entropy increase.

  19. Dissociation between exact and approximate addition in developmental dyslexia.

    Science.gov (United States)

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Heterogeneous Calculation of {epsilon}

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Alf

    1961-02-15

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.

  1. Heterogeneous Calculation of ε

    International Nuclear Information System (INIS)

    Jonsson, Alf

    1961-02-01

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer

  2. Lattice sigma models with exact supersymmetry

    International Nuclear Information System (INIS)

    Simon Catterall; Sofiane Ghadab

    2004-01-01

    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)

  3. A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle

    Directory of Open Access Journals (Sweden)

    F. Álvarez-Velarde

    2012-01-01

    Full Text Available A fast numerical method for the calculation in a zero-dimensional approach of the equilibrium isotopic composition of an iteratively used transmutation system in an advanced fuel cycle, based on the Banach fixed point theorem, is described in this paper. The method divides the fuel cycle in successive stages: fuel fabrication, storage, irradiation inside the transmutation system, cooling, reprocessing, and incorporation of the external material into the new fresh fuel. The change of the fuel isotopic composition, represented by an isotope vector, is described in a matrix formulation. The resulting matrix equations are solved using direct methods with arbitrary precision arithmetic. The method has been successfully applied to a double-strata fuel cycle with light water reactors and accelerator-driven subcritical systems. After comparison to the results of the EVOLCODE 2.0 burn-up code, the observed differences are about a few percents in the mass estimations of the main actinides.

  4. Improved numerical calculation of the generation of a neutral beam by charge transfer between chlorine ions/neutrals and a graphite surface

    International Nuclear Information System (INIS)

    Kubota, Tomohiro; Samukawa, Seiji; Watanabe, Naoki; Ohtsuka, Shingo; Iwasaki, Takuya; Ono, Kohei; Iriye, Yasuroh

    2014-01-01

    The charge transfer process between chlorine particles (ions or neutrals) and a graphite surface on collision was investigated by using a highly stable numerical simulator based on time-dependent density functional theory to understand the generation mechanism of a high-efficiency neutral beam developed by Samukawa et al (2001 Japan. J. Appl. Phys. 40 L779). A straightforward calculation was achieved by adopting a large enough unit cell. The dependence of the neutralization efficiency on the incident energy of the particle was investigated, and the trend of the experimental result was reproduced. It was also found that doping the electrons and holes into graphite could change the charge transfer process and neutralization probability. This result suggests that it is possible to develop a neutral beam source that has high neutralization efficiency for both positive and negative ions. (paper)

  5. Numerical performance and throughput benchmark for electronic structure calculations in PC-Linux systems with new architectures, updated compilers, and libraries.

    Science.gov (United States)

    Yu, Jen-Shiang K; Hwang, Jenn-Kang; Tang, Chuan Yi; Yu, Chin-Hui

    2004-01-01

    A number of recently released numerical libraries including Automatically Tuned Linear Algebra Subroutines (ATLAS) library, Intel Math Kernel Library (MKL), GOTO numerical library, and AMD Core Math Library (ACML) for AMD Opteron processors, are linked against the executables of the Gaussian 98 electronic structure calculation package, which is compiled by updated versions of Fortran compilers such as Intel Fortran compiler (ifc/efc) 7.1 and PGI Fortran compiler (pgf77/pgf90) 5.0. The ifc 7.1 delivers about 3% of improvement on 32-bit machines compared to the former version 6.0. Performance improved from pgf77 3.3 to 5.0 is also around 3% when utilizing the original unmodified optimization options of the compiler enclosed in the software. Nevertheless, if extensive compiler tuning options are used, the speed can be further accelerated to about 25%. The performances of these fully optimized numerical libraries are similar. The double-precision floating-point (FP) instruction sets (SSE2) are also functional on AMD Opteron processors operated in 32-bit compilation, and Intel Fortran compiler has performed better optimization. Hardware-level tuning is able to improve memory bandwidth by adjusting the DRAM timing, and the efficiency in the CL2 mode is further accelerated by 2.6% compared to that of the CL2.5 mode. The FP throughput is measured by simultaneous execution of two identical copies of each of the test jobs. Resultant performance impact suggests that IA64 and AMD64 architectures are able to fulfill significantly higher throughput than the IA32, which is consistent with the SpecFPrate2000 benchmarks.

  6. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    Science.gov (United States)

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  7. The exact mass-gaps of the principal chiral models

    CERN Document Server

    Hollowood, Timothy J

    1994-01-01

    An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.

  8. Analysis by numerical calculations of the depth and dynamics of the penetration of ordered cellular structure made by casting from AlSi10Mg eutectic alloy

    Directory of Open Access Journals (Sweden)

    M. Małysza

    2011-07-01

    Full Text Available Owing to high plastic deformability while maintaining stress values constant and relatively low, ordered cellular structures arecharacterised by excellent properties and the ability to dissipate the impact energy. Due to the low weight, structures of this type can beused, among others, for different parts of motor vehicles. For tests, a trapezoidal ordered cellular structure of 50.8 x 50.8 x 25.4 (mmoverall dimensions was selected. It was made as an investment casting from AlSi9Mg eutectic alloy by the method of Rapid Prototyping(RP. During FEM computations using an Abaqus programme, it was assumed that the material is isotropic and exhibits the features of anelastic – plastic body, introducing to calculations the, listed in a table, values of the stress-strain curve obtained in tensile tests performedon a MTS testing machine (10T. The computations used Johnson - Cook model, which is usually sufficiently accurate when modelling thephenomena of penetration of an element by an object of high initial velocity. The performed numerical calculations allowed identification

  9. Analysis of the two-fluid model and the drift-flux model for numerical calculation of two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Munkejord, Svend Tollak

    2006-05-11

    This thesis analyses models for two-phase flows and methods for the numerical resolution of these models. It is therefore one contribution to the development of reliable design tools for multiphase applications. Such tools are needed and expected by engineers in a range of fields, including in the oil and gas industry. The approximate Riemann solver of Roe has been studied. Roe schemes for three different two-phase flow models have been implemented in the framework of a standard numerical algorithm for the solution of hyperbolic conservation laws. The schemes have been analysed by calculation of benchmark tests from the literature, and by comparison with each other. A Roe scheme for the four-equation one-pressure two-fluid model has been implemented, and a second-order extension based on wave decomposition and flux-difference splitting was shown to work well and to give improved results compared to the first-order scheme. The convergence properties of the scheme were tested on smooth and discontinuous solutions. A Roe scheme has been proposed for a five-equation two-pressure two-fluid model with pressure relaxation. The use of analogous numerical methods for the five-equation and four-equation models allowed for a direct comparison of a method with and without pressure relaxation. Numerical experiments demonstrated that the two approaches converged to the same results, but that the five-equation pressure-relaxation method was significantly more dissipative, particularly for contact discontinuities. Furthermore, even though the five-equation model with instantaneous pressure relaxation has real eigenvalues, the calculations showed that it produced oscillations for cases where the four-equation model had complex eigenvalues. A Roe scheme has been constructed for the drift-flux model with general closure laws. For the case of the Zuber-Findlay slip law describing bubbly flows, the Roe matrix is completely analytical. Hence the present Roe scheme is more efficient than

  10. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  11. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  12. A numerical calculation method for flow discretisation in complex geometry with body-fitted grids; Rechenverfahren zur Diskretisierung von Stroemungen in komplexer Geometrie mittels koerperangepasster Gitter

    Energy Technology Data Exchange (ETDEWEB)

    Jin, X.

    2001-04-01

    A numerical calculation method basing on body fitted grids is developed in this work for computational fluid dynamics in complex geometry. The method solves the conservation equations in a general nonorthogonal coordinate system which matches the curvilinear boundary. The nonorthogonal, patched grid is generated by a grid generator which solves algebraic equations. By means of an interface its geometrical data can be used by this method. The conservation equations are transformed from the Cartesian system to a general curvilinear system keeping the physical Cartesian velocity components as dependent variables. Using a staggered arrangement of variables, the three Cartesian velocity components are defined on every cell surface. Thus the coupling between pressure and velocity is ensured, and numerical oscillations are avoided. The contravariant velocity for calculating mass flux on one cell surface is resulting from dependent Cartesian velocity components. After the discretisation and linear interpolation, a three dimensional 19-point pressure equation is found. Using the explicit treatment for cross-derivative terms, it reduces to the usual 7-point equation. Under the same data and process structure, this method is compatible with the code FLUTAN using Cartesian coordinates. In order to verify this method, several laminar flows are simulated in orthogonal grids at tilted space directions and in nonorthogonal grids with variations of cell angles. The simulated flow types are considered like various duct flows, transient heat conduction, natural convection in a chimney and natural convection in cavities. Their results achieve very good agreement with analytical solutions or empirical data. Convergence for highly nonorthogonal grids is obtained. After the successful validation of this method, it is applied for a reactor safety case. A transient natural convection flow for an optional sump cooling concept SUCO is simulated. The numerical result is comparable with the

  13. Exact results for survival probability in the multistate Landau-Zener model

    International Nuclear Information System (INIS)

    Volkov, M V; Ostrovsky, V N

    2004-01-01

    An exact formula is derived for survival probability in the multistate Landau-Zener model in the special case where the initially populated state corresponds to the extremal (maximum or minimum) slope of a linear diabatic potential curve. The formula was originally guessed by S Brundobler and V Elzer (1993 J. Phys. A: Math. Gen. 26 1211) based on numerical calculations. It is a simple generalization of the expression for the probability of diabatic passage in the famous two-state Landau-Zener model. Our result is obtained via analysis and summation of the entire perturbation theory series

  14. Evaluation of quantum mechanics path integrals by the approximations exact on a class of polynomial functionals

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Shidkov, E.P.

    1987-01-01

    The method for numerical evaluation of path integrals in Eucledean quantum mechanics without lattice discretization is elaborated. The method is based on the representation of these integrals in the form of functional integrals with respect to the conditional Wiener measure and on the use of the derived approximate exact on a class of polynomial functionals of a given degree. By the computations of non-perturbative characteristics, concerned the topological structure of vacuum, the advantages of this method versus lattice Monte-Carlo calculations are demonstrated

  15. Some exact results for the three-layer Zamolodchikov model

    International Nuclear Information System (INIS)

    Boos, H.E.; Mangazeev, V.V.

    2001-01-01

    In this paper we continue the study of the three-layer Zamolodchikov model started in our previous works (H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 3041-3054 and H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298). We analyse numerically the solutions to the Bethe ansatz equations obtained in H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298. We consider two regimes I and II which differ by the signs of the spherical sides (a 1 ,a 2 ,a 3 )→(-a 1 ,-a 2 ,-a 3 ). We accept the two-line hypothesis for the regime I and the one-line hypothesis for the regime II. In the thermodynamic limit we derive integral equations for distribution densities and solve them exactly. We calculate the partition function for the three-layer Zamolodchikov model and check a compatibility of this result with the functional relations obtained in H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298. We also do some numeric checkings of our results

  16. Determination of ultra-short laser induced damage threshold of KH{sub 2}PO{sub 4} crystal: Numerical calculation and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian [Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States); Chen, Mingjun, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu; Wang, Jinghe; Xiao, Yong [Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Kafka, Kyle; Austin, Drake; Chowdhury, Enam, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu [Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States)

    2016-03-15

    Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  17. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  18. Determination of the exact range of the value of the parameter corresponding to chaos based on the Silnikov criterion

    International Nuclear Information System (INIS)

    Wei-Yi, Li; Qi-Chang, Zhang; Wei, Wang

    2010-01-01

    Based on the Silnikov criterion, this paper studies a chaotic system of cubic polynomial ordinary differential equations in three dimensions. Using the Cardano formula, it obtains the exact range of the value of the parameter corresponding to chaos by means of the centre manifold theory and the method of multiple scales combined with Floque theory. By calculating the manifold near the equilibrium point, the series expression of the homoclinic orbit is also obtained. The space trajectory and Lyapunov exponent are investigated via numerical simulation, which shows that there is a route to chaos through period-doubling bifurcation and that chaotic attractors exist in the system. The results obtained here mean that chaos occurred in the exact range given in this paper. Numerical simulations also verify the analytical results. (general)

  19. Exact solitary waves of the Fisher equation

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given

  20. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods; Calculo Numerico de Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Metodos Numericos

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-10-12

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs.

  1. Stochastic epidemic-type model with enhanced connectivity: exact solution

    International Nuclear Information System (INIS)

    Williams, H T; Mazilu, I; Mazilu, D A

    2012-01-01

    We present an exact analytical solution to a one-dimensional model of the susceptible–infected–recovered (SIR) epidemic type, with infection rates dependent on nearest-neighbor occupations. We use a quantum mechanical approach, transforming the master equation via a quantum spin operator formulation. We calculate exactly the time-dependent density of infected, recovered and susceptible populations for random initial conditions. Our results compare well with those of previous work, validating the model as a useful tool for additional and extended studies in this important area. Our model also provides exact solutions for the n-point correlation functions, and can be extended to more complex epidemic-type models

  2. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  3. Large-scale exact diagonalizations reveal low-momentum scales of nuclei

    Science.gov (United States)

    Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.

    2018-03-01

    Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

  4. Exact travelling wave solutions for some important nonlinear

    Indian Academy of Sciences (India)

    The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical ...

  5. Exact models for isotropic matter

    Science.gov (United States)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  6. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  7. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  8. Calculation of Tsunami Damage and preparation of Inundation Maps by 2D and 3D numerical modeling in Göcek, Turkey

    Science.gov (United States)

    Ozer Sozdinler, C.; Arikawa, T.; Necmioglu, O.; Ozel, N. M.

    2016-12-01

    The Aegean and its surroundings form the most active part of the Africa-Eurasia collision zone responsible for the high level of seismicity in this region. It constitutes more than 60% of the expected seismicity in Europe up to Mw=8.2 (Moratto et al., 2007; Papazachos, 1990). Shaw and Jackson (2010) argued that the existing system of Hellenic Arc subduction-zone is capable of allowing very large but rare earthquakes on splay faults, such as the one occurred in 365, together with the contribution of small earthquakes. Based on an extensive earthquake generated tsunami scenario database, Necmioğlu and Özel (2015) showed that maximum wave heights in the Eastern Mediterranean for shallow earthquakes defined is >3 m in locations in, around and orthogonal to the Hellenic Arc. Considering the seismicity and the tsunami potential in Eastern Mediterranean, the investigation and monitoring of earthquake and tsunami hazard, and the preparation of mitigation strategies and national resilience plans would become inevitable in Turkey. Gocek town, as one of the Tsunami Forecast Points having a unique geography with many small bays and islands and a very popular touristic destination especially for yachtsmen, is selected in this study for the tsunami modeling by using high resolution bathymetric and topographic data with less than 4m grid size. The tsunami analyses are performed by the numerical codes NAMIDANCE (NAMIDANCE,2011) for 2D modeling and STOC-CADMAS (Arikawa,2014) for 3D modeling for the calculations of tsunami hydrodynamic parameters. Froude numbers, as one of the most important indicators for tsunami damage (Ozer, 2012) and the directions of current velocities inside marinas are solved by NAMIDANCE while STOC-CADMAS determines the tsunami pressure and force exerted onto the sea and land structures with 3D and non-hydrostatic approaches. The results are then used to determine the tsunami inundation and structural resilience and establish the tsunami preparedness and

  9. Multiplicity fluctuations in a hadron gas with exact conservation laws

    International Nuclear Information System (INIS)

    Becattini, Francesco; Keraenen, Antti; Ferroni, Lorenzo; Gabbriellini, Tommaso

    2005-01-01

    The study of fluctuations of particle multiplicities in relativistic heavy-ion reactions has drawn much attention in recent years, because they have been proposed as a probe for underlying dynamics and possible formation of quark-gluon plasma. Thus it is of uttermost importance to describe the baseline of statistical fluctuations in the hadron gas phase in a correct way. We performed a comprehensive study of multiplicity distributions in the full ideal hadron-resonance gas in different ensembles, namely grand canonical, canonical, and microcanonical, by using two different methods: Asymptotic expansions and full Monte Carlo simulations. The method based on asymptotic expansion allows a quick numerical calculation of dispersions in the hadron gas with three conserved charges at the primary hadron level, while the Monte Carlo simulation is suitable for studying the effect of resonance decays. Even though mean multiplicities converge to the same values, major differences in fluctuations for these ensembles persist in the thermodynamic limit, as pointed out in recent studies. We observe that this difference is ultimately related to the nonadditivity of the variances in the ensembles with exact conservation of extensive quantities

  10. Investigations on sail force by full scale measurement and numerical calculation. Part 1. Steady sailing performance; Sail ryutairyoku ni kansuru jissen shiken to suchi keisan. 1. Teijo hanso seino

    Energy Technology Data Exchange (ETDEWEB)

    Masuyama, Y.; Fukasawa, T. [Kanazawa Institute of Technology, Ishikawa (Japan); Kitazaki, T. [DMW Corp., Tokyo (Japan)

    1997-06-01

    Sailing forces are measured with a 10.3m long full-scale sailing boat, equipped with a sail force dynamometer, CCD camera for sail shape measurement and an instrument for detecting sailing conditions of the hull, in order to obtain highly reliable performance data of a sailing yacht. The vortex lattice method is used for step-by-step numerical calculations, and the results are compared with the observed ones. The test results clearly show performance changing with slight changes in relative wind directions and sail shapes, which are not clearly obtained by the traditional wind tunnel tests. The calculated results, although deviating from the observed ones to some extent, well represent trends of performance changing with wind directions and sail shapes. In particular, changed performance caused by slight changes in draft at the main sail is clearly demonstrated. The numerical calculation is considered to be useful for searching for sail trim conditions. 17 refs., 18 figs., 1 tab.

  11. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  12. Exact Solution and Exotic Fluid in Cosmology

    Directory of Open Access Journals (Sweden)

    Phillial Oh

    2012-09-01

    Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.

  13. An analytical method for neutron thermalization calculations in heterogenous reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1965-07-01

    It is well known that the use of the diffusion approximation for stuexact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations.

  14. An analytical method for neutron thermalization calculations in heterogenous reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1965-01-01

    It is well known that the use of the diffusion approximation for studying neutron thermalization in heterogeneous reactors may result in considerable errors. On the other hand, more exact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations

  15. Development of a numerical model for calculating exposure to toxic and nontoxic stressors in the water column and sediment from drilling discharges

    NARCIS (Netherlands)

    Rye, H.; Reed, M.; Frost, T.K.; Smit, M.G.D.; Durgut, S.

    2008-01-01

    Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was

  16. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  17. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz; Soldadura T.I.G. de acero inoxidable. Modelo numerico para el calculo de temperaturas en la ZAT

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-07-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  18. Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results

    Science.gov (United States)

    Díaz, M.; Hirsch, M.; Porod, W.; Romão, J.; Valle, J.

    2003-07-01

    We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between the approximate and full numerical calculations, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle Mikheyev-Smirnov-Wolfenstein solution, now strongly favored by the recent KamLAND reactor neutrino data.

  19. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1982-12-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essencial singularity, when the excharge parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  20. Exact solutions of continuous states for Hartmann potential

    International Nuclear Information System (INIS)

    Chen Changyuan; Lu Falin; Sun Dongsheng

    2004-01-01

    In this Letter, we obtain the exact solutions of continuous states for the Hartmann potential. The normalized wave functions of continuous states on the 'k/2π scale' and the calculation formula of phase shifts are presented. Analytical properties of the scattering amplitude are discussed

  1. Exact angular momentum projection based on cranked HFB solution

    Energy Technology Data Exchange (ETDEWEB)

    Enami, Kenichi; Tanabe, Kosai; Yosinaga, Naotaka [Saitama Univ., Urawa (Japan). Dept. of Physics

    1998-03-01

    Exact angular momentum projection of cranked HFB solutions is carried out. It is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus. The result also indicates that the energy correction from projection is important for further investigation of nuclear structure. (author)

  2. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1983-01-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essential singularity, when the exchange parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  3. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  4. Optics of Water Microdroplets with Soot Inclusions: Exact Versus Approximate Results

    Science.gov (United States)

    Liu, Li; Mishchenko, Michael I.

    2016-01-01

    We use the recently generalized version of the multi-sphere superposition T-matrix method (STMM) to compute the scattering and absorption properties of microscopic water droplets contaminated by black carbon. The soot material is assumed to be randomly distributed throughout the droplet interior in the form of numerous small spherical inclusions. Our numerically-exact STMM results are compared with approximate ones obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be used to calculate the droplet optical cross sections, single-scattering albedo, and asymmetry parameter provided that the soot inclusions are quasi-uniformly distributed throughout the droplet interior, but can fail in computations of the elements of the scattering matrix depending on the volume fraction of soot inclusions. The integral radiative characteristics computed with the MCRTA can deviate more significantly from their exact STMM counterparts, while accurate MCRTA computations of the phase function require droplet size parameters substantially exceeding 60.

  5. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  6. Coupling calculation of CFD-ACE computational fluid dynamics code and DeCART whole-core neutron transport code for development of numerical reactor

    International Nuclear Information System (INIS)

    Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog

    2005-03-01

    Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too

  7. Coupling calculation of CFD-ACE computational fluid dynamics code and DeCART whole-core neutron transport code for development of numerical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog

    2005-03-15

    Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too.

  8. Shielding calculations for NET

    International Nuclear Information System (INIS)

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  9. An Exact Line Integral Representation of the Magnetic Physical Optics Scattered Field

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2003-01-01

    An exact line integral representation is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by electric or magnetic Hertzian dipoles. The positions of source and observation points can be almost arbitrary. Numerical examples...... are presented to illustrate the exactness of the line integral representation....

  10. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    Science.gov (United States)

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  11. Multishell method: Exact treatment of a cluster in an effective medium

    International Nuclear Information System (INIS)

    Gonis, A.; Garland, J.W.

    1977-01-01

    A method is presented for the exact determination of the Green's function of a cluster embedded in a given effective medium. This method, the multishell method, is applicable even to systems with off-diagonal disorder, extended-range hopping, multiple bands, and/or hybridization, and is computationally practicable for any system described by a tight-binding or interpolation-scheme Hamiltonian. It allows one to examine the effects of local environment on the densities of states and site spectral weight functions of disordered systems. For any given analytic effective medium characterized by a non-negative density of states the method yields analytic cluster Green's functions and non-negative site spectral weight functions. Previous methods used for the calculation of the Green's function of a cluster embedded in a given effective medium have not been exact. The results of numerical calculations for model systems show that even the best of these previous methods can lead to substantial errors, at least for small clusters in two- and three-dimensional lattices. These results also show that fluctuations in local environment have large effects on site spectral weight functions, even in cases in which the single-site coherent-potential approximation yields an accurate overall density of states

  12. Improvement of fire-tube boilers calculation methods by the numerical modeling of combustion processes and heat transfer in the combustion chamber

    Science.gov (United States)

    Komarov, I. I.; Rostova, D. M.; Vegera, A. N.

    2017-11-01

    This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.

  13. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Directory of Open Access Journals (Sweden)

    Matthew J Simpson

    Full Text Available Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i the rate at which the domain elongates, (ii the diffusivity associated with the spreading density profile, (iii the reaction rate, and (iv the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t.

  14. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Science.gov (United States)

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i) the rate at which the domain elongates, (ii) the diffusivity associated with the spreading density profile, (iii) the reaction rate, and (iv) the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t).

  15. Numerical analysis of the p-barN system with continuous set of resonances in the annihilation channel

    International Nuclear Information System (INIS)

    Kuperin, Yu.A.; Levin, S.B.; Melnikov, Yu.B.; Yarevsky, E.A.

    1996-01-01

    The exact expressions for the partial S-matrix elements for p-barn and p-barp systems are obtained in the extended Hilbert-space model with continuous spectrum of resonances treated as the annihilation channel. A numerical algorithm for the scattering-data calculation is suggested. A satisfactory agreement between experimental and theoretical data is obtained

  16. Benchmarking GW against exact diagonalization for semiempirical models

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian Sommer

    2010-01-01

    We calculate ground-state total energies and single-particle excitation energies of seven pi-conjugated molecules described with the semiempirical Pariser-Parr-Pople model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW capt...... (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene....

  17. Boundary conditions of the exact impulse wave function

    International Nuclear Information System (INIS)

    Gravielle, M.; Miraglia, J.E.

    1997-01-01

    The behavior of the exact impulse wave function is investigated at intermediate and high impact energies. Numerical details of the wave function and its perturbative potential are reported. We conclude that the impulse wave function does not tend to the proper Coulomb asymptotic limit. For electron capture, however, it is shown that the impulse wave function produces reliable probabilities even for intermediate velocities and symmetric collision systems. copyright 1997 The American Physical Society

  18. Exact classical scaling formalism for nonreactive processes

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1981-01-01

    A general nonreactive collision system is considered with internal molecular variables (p, r) and/or (I, theta) of arbitrary dimensions and relative translational variables (P, R) of three or less dimensions. We derive an exact classical scaling formalism which relates the collisional change in any function of molecular variables directly to the initial values of these variables. The collision dynamics is then described by an explicit function of the initial point in the internal molecular phase space, for a fixed point in the relative translational phase space. In other words, the systematic variation of the internal molecular properties (e.g., actions and average internal kinetic energies) is given as a function of the initial internal action-angle variables. A simple three term approximation to the exact formalism is derived, the natural variables of which are the internal action I and internal linear momenta p. For the final average internal kinetic energies T, the result is T-T/sup( 0 ) = α+βp/sup( 0 )+γI/sup( 0 ), where the superscripted ''0'' indicates the initial value. The parameters α, β, and γ in this scaling theory are directly related to the moments of the change in average internal kinetic energy. Utilizing a very limited number of input moments generated from classical trajectory calculations, the scaling can be used to predict the entire distribution of final internal variables as a function of initial internal actions and linear momenta. Initial examples for atom--collinear harmonic oscillator collision systems are presented in detail, with the scaling predictions (e.g., moments and quasiclassical histogram transition probabilities) being generally very good to excellent quantitatively

  19. Bayesian noninferiority test for 2 binomial probabilities as the extension of Fisher exact test.

    Science.gov (United States)

    Doi, Masaaki; Takahashi, Fumihiro; Kawasaki, Yohei

    2017-12-30

    Noninferiority trials have recently gained importance for the clinical trials of drugs and medical devices. In these trials, most statistical methods have been used from a frequentist perspective, and historical data have been used only for the specification of the noninferiority margin Δ>0. In contrast, Bayesian methods, which have been studied recently are advantageous in that they can use historical data to specify prior distributions and are expected to enable more efficient decision making than frequentist methods by borrowing information from historical trials. In the case of noninferiority trials for response probabilities π 1 ,π 2 , Bayesian methods evaluate the posterior probability of H 1 :π 1 >π 2 -Δ being true. To numerically calculate such posterior probability, complicated Appell hypergeometric function or approximation methods are used. Further, the theoretical relationship between Bayesian and frequentist methods is unclear. In this work, we give the exact expression of the posterior probability of the noninferiority under some mild conditions and propose the Bayesian noninferiority test framework which can flexibly incorporate historical data by using the conditional power prior. Further, we show the relationship between Bayesian posterior probability and the P value of the Fisher exact test. From this relationship, our method can be interpreted as the Bayesian noninferior extension of the Fisher exact test, and we can treat superiority and noninferiority in the same framework. Our method is illustrated through Monte Carlo simulations to evaluate the operating characteristics, the application to the real HIV clinical trial data, and the sample size calculation using historical data. Copyright © 2017 John Wiley & Sons, Ltd.

  20. The effects of static quartic anharmonicity on the quantum dynamics of a linear oscillator with time-dependent harmonic frequency: Perturbative analysis and numerical calculations

    International Nuclear Information System (INIS)

    Sarkar, P.; Bhattacharyya, S.P.

    1995-01-01

    The effects of quartic anharmonicity on the quantum dynamics of a linear oscillator with time-dependent force constant (K) or harmonic frequency (ω) are studied both perturbatively and numerically by the time-dependent Fourier grid Hamiltonian method. In the absence of anharmonicity, the ground-state population decreases and the population of an accessible excited state (k = 2.4, 6 ... ) increases with time. However, when anharmonicity is introduced, both the ground- and excited-state populations show typical oscillations. For weak coupling, the population of an accessible excited state at a certain instant of time (short) turns out to be a parabolic function of the anharmonic coupling constant (λ), when all other parameters of the system are kept fixed. This parabolic nature of the excited-state population vs. the λ profile is independent of the specific form of the time dependence of the force constant, K t . However, it depends upon the rate at which K t relaxes. For small anharmonic coupling strength and short time scales, the numerical results corroborate expectations based on the first-order time-dependent perturbative analysis, using a suitably repartitioned Hamiltonian that makes H 0 time-independent. Some of the possible experimental implications of our observations are analyzed, especially in relation to intensity oscillations observed in some charge-transfer spectra in systems in which the dephasing rates are comparable with the time scale of the electron transfer. 21 refs., 7 figs., 1 tab

  1. Analysis of thin plates with holes by using exact geometrical representation within XFEM.

    Science.gov (United States)

    Perumal, Logah; Tso, C P; Leng, Lim Thong

    2016-05-01

    This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.

  2. Exact deconstruction of the 6D (2,0) theory

    Science.gov (United States)

    Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodríguez-Gómez, D.

    2017-06-01

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: in the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the "half-BPS" limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 × T 2. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  3. Exact braneworld cosmology induced from bulk black holes

    International Nuclear Information System (INIS)

    Gregory, James P; Padilla, Antonio

    2002-01-01

    We use a new, exact approach in calculating the energy density measured by an observer living on a brane embedded in a charged black-hole spacetime. We find that the bulk Weyl tensor gives rise to nonlinear terms in the energy density and pressure in the FRW equations for the brane. Remarkably, these take exactly the same form as the 'unconventional' terms found in the cosmology of branes embedded in pure AdS, with extra matter living on the brane. Black-hole-driven cosmologies have the benefit that there is no ambiguity in splitting the braneworld energy momentum into tension and additional matter. We propose a new, enlarged relationship between the two descriptions of braneworld cosmology. We also study the exact thermodynamics of the field theory and present a generalized Cardy-Verlinde formula in this set-up

  4. Exact deconstruction of the 6D (2,0) theory

    Energy Technology Data Exchange (ETDEWEB)

    Hayling, J.; Papageorgakis, C. [Queen Mary Univ. of London (United Kingdom). CRST and School of Physics and Astronomy; Pomoni, E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Rodriguez-Gomez, D. [Oviedo Univ. (Spain). Dept. of Physics

    2017-06-15

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T{sup 2}, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the ''half-BPS'' limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S{sup 4} to the (2,0) partition function on S{sup 4} x T{sup 2}. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  5. Exact deconstruction of the 6D (2,0) theory

    International Nuclear Information System (INIS)

    Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodriguez-Gomez, D.

    2017-06-01

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2 , starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the ''half-BPS'' limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 x T 2 . In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  6. The zonal tidal effect on the variation in the rotation rate of the Earth with a fluid core II. Numerical calculation and comparisons

    Science.gov (United States)

    Zhang, Han-Wei; Zheng, Yong; Du, Lan; Pan, Guan-Song

    The tidal variation in Earth rotation rate is a periodical response to solar-lunar tide generating potential (TGP). Some theoretical formulae are given here based on Doodson development of TGP including the variations in Earth rotation rate, LOD and UT1. Finally the zonal tidal effect on the variation in the fluid core Earth rotation rate is calculated according to the formula deduced by Xi Qinwen (1995). The calculation shows that the results in this paper are well consistent with the ones in IERS (96), which indicates the correctness of the theoretical formula we deduced. It is also shown that the effects from the high frequency parts are relatively small, within the observing precision so far; relatively large effects due to the lower parts, which should be able to be seperated from the observed data, are actually difficult to make because of the influence from some non-tidal factors as well as short time span data.

  7. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  8. The exact effects of radiation and joule heating on magnetohydrodynamic Marangoni convection over a flat surface

    Directory of Open Access Journals (Sweden)

    Khaled S.M.

    2018-01-01

    Full Text Available In this paper, we re-investigate the problem describing effects of radiation, Joule heating, and viscous dissipation on magnetohydrodynamic Marangoni convection boundary layer over a flat surface with suction/injection. The analytical solution obtained for the reduced system of non-linear-coupled differential equations governing the problem. Laplace transform successfully implemented to get the exact expression for the temperature profile. Furthermore, comparing the current exact results with approximate numerical results obtained using Runge-Kutta-Fehlberg method is introduced. These comparisons declare that the published numerical results agree with the current exact results. In addition, the effects of various parameters on the temperature profile are discussed graphically.

  9. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Convergence and Testing; Calculo Numerico del Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Convergencia y Comprobaciones

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-12-11

    This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs.

  10. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Numerical simulation of the accurate RCP start-up flow rate

    International Nuclear Information System (INIS)

    Martin, A.; Alvarez, D.; Cases, F.; Stelletta, S.

    1997-06-01

    This report explains the last results about the mixing in the 900 MW PWR vessels. The accurate fluid flow transient, induced by the RCP starting-up, is represented. In a first time, we present the Thermalhydraulic Finite Element Code N3S used for the 3D numerical computations. After that, results obtained for one reactor operation case are given. This case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. A comparison made between two injection modes; a steady state fluid flow conditions or the accurate RCP transient fluid flow conditions. The results giving the local minimum of concentration and the time response of the mean concentration at the core inlet are compared. The results show the real importance of the unsteadiness characteristics of the fluid flow transport of the clear water plug. (author)

  11. Code-experiment comparison on wall condensation tests in the presence of non-condensable gases-Numerical calculations for containment studies

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, BP 68, 91192 Gif-sur-Yvette (France); Porcheron, E.; Dumay, F.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, BP 68, 91192 Gif-sur-Yvette (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Steam condensation on walls has been investigated in the TOSQAN vessel. Black-Right-Pointing-Pointer Experiments on 7 different tests have been performed. Black-Right-Pointing-Pointer Different steam injections and wall temperatures are used. Black-Right-Pointing-Pointer Simulations are performed in 2D using the TONUS code. Black-Right-Pointing-Pointer Code-experiments comparisons at many different locations show a good agreement. - Abstract: During the course of a severe Pressurized Water Reactor accident, pressurization of the containment occurs and hydrogen can be produced by the reactor core oxidation and distributed in the containment according to convection flows and wall condensation. Filmwise wall condensation in the presence of non-condensable gases is a subject of many interests and extensive studies have been performed in the past. Some empirical correlations have demonstrated their limit for extrapolation under different thermal-hydraulic conditions and at different geometries/scales. The French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a numerical tool and an experimental facility in order to investigate free convection flows in the presence of condensation. The objective of this paper is to present numerical results obtained on different wall condensation tests in 7 m{sup 3} volume vessel (TOSQAN facility), and to compare them with the experimental ones. Over eight tests are considered here, and code-experiment comparison is performed on many different locations, giving an extensive insight of the code assessment for air-steam mixture flows involving wall condensation in the presence of non-condensable gases.

  12. Exact scale-invariant background of gravitational waves from cosmic defects.

    Science.gov (United States)

    Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon

    2013-03-08

    We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.

  13. Exact-to-precision generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Wang Congjian; Abdel-Khalik, Hany S.

    2011-01-01

    Highlights: ► We present a new development in higher order generalized perturbation theory. ► The method addresses the explosion in the flux phase space, input parameters, and responses. ► The method hybridizes first-order GPT and proper orthogonal decomposition snapshots method. ► A simplified 1D and realistic 2D assembly models demonstrate applicability of the method. ► The accuracy of the method is compared to exact direct perturbations and first-order GPT. - Abstract: Presented in this manuscript are new developments to perturbation theory which are intended to extend its applicability to estimate, with quantifiable accuracy, the exact variations in all responses calculated by the model with respect to all possible perturbations in the model's input parameters. The new developments place high premium on reducing the associated computational overhead in order to enable the use of perturbation theory in routine reactor design calculations. By way of examples, these developments could be employed in core simulation to accurately estimate the few-group cross-sections variations resulting from perturbations in neutronics and thermal-hydraulics core conditions. These variations are currently being described using a look-up table approach, where thousands of assembly calculations are performed to capture few-group cross-sections variations for the downstream core calculations. Other applications include the efficient evaluation of surrogates for applications that require repeated model runs such as design optimization, inverse studies, uncertainty quantification, and online core monitoring. The theoretical background of these developments applied to source-driven systems and supporting numerical experiments are presented in this manuscript. Extension to eigenvalue problems will be presented in a future article.

  14. New resonance cross section calculational algorithms

    International Nuclear Information System (INIS)

    Mathews, D.R.

    1978-01-01

    Improved resonance cross section calculational algorithms were developed and tested for inclusion in a fast reactor version of the MICROX code. The resonance energy portion of the MICROX code solves the neutron slowing-down equations for a two-region lattice cell on a very detailed energy grid (about 14,500 energies). In the MICROX algorithms, the exact P 0 elastic scattering kernels are replaced by synthetic (approximate) elastic scattering kernels which permit the use of an efficient and numerically stable recursion relation solution of the slowing-down equation. In the work described here, the MICROX algorithms were modified as follows: an additional delta function term was included in the P 0 synthetic scattering kernel. The additional delta function term allows one more moments of the exact elastic scattering kernel to be preserved without much extra computational effort. With the improved synthetic scattering kernel, the flux returns more closely to the exact flux below a resonance than with the original MICROX kernel. The slowing-down calculation was extended to a true B 1 hyperfine energy grid calculatn in each region by using P 1 synthetic scattering kernels and tranport-corrected P 0 collision probabilities to couple the two regions. 1 figure, 6 tables

  15. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  16. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  17. Pollution of soils and ecosystems by a permanent toxic organochlorine pesticide: chlordecone—numerical simulation of allophane nanoclay microstructure and calculation of its transport properties

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2015-06-01

    Full Text Available Pest control technology was introduced into the tropics without considering the specificity of their ecosystems and the risk of pollution was underestimated. Some volcanic soils (andosols contain nanoclay (allophane with a unique structure and porous properties compared to crystalline clays. Andosols are characterized by large pore volume and pore size distribution, a high specific surface area, and a fractal structure. These soils are more polluted than the other kinds of tropical soils but release less pollutants (chlordecone to water and plants. The literature shows that the allophane microstructure favors accumulation and sequestration of chlordecone, an organochlorine pesticide, in andosols.We used a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster-cluster aggregation model. From the simulated data, we derived the structural features, pore volume and tortuosity, and its transport properties, hydraulic conductivity and diffusion. We show that transport properties decrease because of the presence of allophane. We propose that low hydraulic conductivity and diffusion are important parameters to explain the high concentrations and trapping of pollutants in andosols.

  18. A benchmark study for different numerical parameters and their impact on the calculated strain levels for a model part door outer

    International Nuclear Information System (INIS)

    Berger, E.; Till, E.; Brenne, T.; Heath, A.; Hochholdinger, B.; Kassem-Manthey, K.; Kessler, L.; Koch, N.; Kortmann, G.; Kroeff, A.; Otto, T.; Verhoeven, H.; Steinbeck, G.; Vu, T.-C.; Wiegand, K.

    2005-01-01

    To increase the accuracy of finite element simulations in daily practice the local German and Austrian Deep Drawing Research Groups of IDDRG founded a special Working Group in year 2000. The main objective of this group was the continuously ongoing study and discussion of numerical / material effects in simulation jobs and to work out possible solutions. As a first theme of this group the intensive study of small die radii and the possibility of detecting material failure in these critical forming positions was selected. The part itself is a fictional body panel outside in which the original door handle of the VW Golf A4 has been constructed, a typical position of possible material necking or rupture in the press shop. All conditions to do a successful simulation have been taken care of in advance, material data, boundary conditions, friction, FLC and others where determined for the two materials in investigation - a mild steel and a dual phase steel HXT500X. The results of the experiments have been used to design the descriptions of two different benchmark runs for the simulation. The simulations with different programs as well as with different parameters showed on one hand negligible and on the other hand parameters with strong impact on the result - thereby having a different impact on a possible material failure prediction

  19. Numerical Models used for The Calculation of The Cable-Stayed Bridge at Km 0+540 over Danube-Black Sea Canal

    Directory of Open Access Journals (Sweden)

    Mutu Costin Stelian

    2016-12-01

    Full Text Available Cable-stayed bridges are complex structures and for their design, the traditional calculation methods are hard, even impossible to use for a global analysis. Separate analyses for the each component of the bridge in a simplified manner can be conducted, but in this case the concurrence of the elements into the structure is not taken into account, leading to errors in estimating the structural response. For these structures, the construction method and the presence of the stays, which are elements having a nonlinear behaviour, implies to consider a nonlinear staged analysis including the second order effects in order to transmit form one stage to the other the stress-strain state.

  20. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    Science.gov (United States)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  1. Fluid mechanics calculations in physics of droplets – IV: Head-on and off-center numerical collisions of unequal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2016-09-01

    Full Text Available In this study, the finite volume method is employed to simulate the coalescence collision between water drops immersed in a continuous phase (n-heptane. For that purpose, it is chosen a range of values for the velocity of collisions for the finite volume calculations may yield different possible outcomes of the collision process. It can be seen for head-on collisions that when the velocity of collision is 0.2 m/s and 3.5 m/s, the little drop induces the formation of a hole in the bigger drop, until the surface tension forces to restore the circular form of the resulting drop. For a velocity of collision of 16.0 m/s, the little drop deforms the bigger one, and the system is converted into a thin ligament with the evolution of the dynamics. In this case, a little mass of n-heptane is trapped between the two drops, but at the end of the dynamics it drains to the continuous phase. For off-center collisions, two different values for the velocity of collisions were chosen, and the drops exhibit a lot of waves on the droplets’ surface. The streamlines are calculated for the process of coalescence of drops. These streamlines allow the understanding of the dynamics of the droplets immersed on the n-heptane phase. The effect of the interfacial tension it is showed due to the oscillations that the droplet exhibits. When the coalescence has begun, the streamlines form circular patterns at the zone of contact between the drops which explain the increment of the thickness of the bridge structure of the fluid between the two drops. At the end of the dynamics, when the velocity is of 0.2 m/s, the bigger drop reaches a circular form approximately, but when the velocity is of 3.5 m/s the drop reaches an elongated form.

  2. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  3. Recurrent formulas and some exact relations for radial integrals with Dirac and Schroedinger wave functions

    International Nuclear Information System (INIS)

    Shabaev, V.M.

    1984-01-01

    Some exact relations are derived for radial integrals with Dirac wave functions. These relations are used for calculating radial integrals in the case of the Coulomb field. The threedimensional harmonic oscillator is also considered and exact formulae for the dipole transition probabilities are obtained using general relations between matrix elements

  4. Recent status of numerical simulation studies for zeolites as highly-selective cesium adsorbents by first-principles calculation and Monte Carlo method

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Okumura, Masahiko; Machida, Masahiko

    2015-01-01

    The authors examined, based on first-principles calculation, the mechanism of mordenite as a species of zeolite to show high adsorption selectivity for Cs, with a focus on the pores as adsorption site. For increasing the adsorption selectivity for Cs, the following three conditions for mordenite were proposed: (1) to have many pores with a radius of about 3 Å, (2) relatively small ratio of Al and Si, and (3) uniform distribution of Al atoms around the pores to adsorb Cs. The superposition effect of the interaction obtained by embracing positive ions with all the pores was revealed to be important, which verified the importance of computational science. It was also successfully conducted to reproduce with Monte Carlo method the thermodynamic level data of ion exchange isotherms, which became engineering metrics after actual measurement. This method was able to reproduce the difference in properties shown by different zeolites, and also able to explain changes in the adsorption performance that depends on Al and Si ratio, which remained the findings from experience up to date, by utilizing the method to associate the result to microscopic factors. Based on these results, this paper discusses how far material development would be realized depending on the leadership of computational science, and what kinds of research and development would be required in the future. (A.O)

  5. Application of numerical methods to the determination of molecular wave functions; Application de methodes de calcul numerique a la determination de fonctions d'onde moleculaires

    Energy Technology Data Exchange (ETDEWEB)

    Douady, Jerome

    1969-10-01

    A simplified SCF Method is developed. The wave function of molecular systems and spin densities in the case of free radicals are computed from geometrical data. This method, including at the beginning a delocalization of electrons over all the molecular system, two methods which clear out bonding and anti-bonding interactions have been studied and programmed: a) overlap population analysis, b) localisation of molecular orbitals. These methods have been carried out in the case of organic compounds and free radicals. (author) [French] Mise en oeuvre d'une methode de champ self-consistant simplifie qui, a partir des donnees geometriques, permet de calculer la fonction d'onde des systemes moleculaires et les densites de spin dans le cas des radicaux libres. Cette methode introduisant au depart une delocalisation des electrons sur tout le systeme moleculaire, deux methodes permettant de rendre compte du caractere liant et antiliant de ces electrons ont ete etudiees et programmees: a) analyse des populations de recouvrement, b) localisation des orbitales moleculaires. Ces methodes ont ete appliquees a divers composes organiques radicalaires et non radicalaires. (auteur)

  6. Comparative analysis of the serial/parallel numerical calculation of boiling channels thermohydraulics; Analisis comparativo del calculo numerico serie/paralelo de la termohidraulica de canales con ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M., E-mail: mcf@iie.org.mx [Instituto Nacional de Electricidad y Energias Limpias, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2017-09-15

    A parallel channel model with boiling and punctual neutron kinetics is used to compare the implementation of its programming in C language through a conventional scheme and through a parallel programming scheme. In both cases the subroutines written in C are practically the same, but they vary in the way of controlling the execution of the tasks that calculate the different channels. Parallel Virtual Machine is used for the parallel solution, which allows the passage of messages between tasks to control convergence and transfer the variables of interest between the tasks that run simultaneously on a platform equipped with a multi-core microprocessor. For some problems defined as a study case, such as the one presented in this paper, a computer with two cores can reduce the computation time to 54-56% of the time required by the same program in its conventional sequential version. Similarly, a processor with four cores can reduce the time to 22-33% of execution time of the conventional serial version. These results of substantially reducing the computation time are very motivating of all those applications that can be prepared to be parallelized and whose execution time is an important factor. (Author)

  7. Numerical Calculation and Experiment of Coupled Dynamics of the Differential Velocity Vane Pump Driven by the Hybrid Higher-order Fourier Non-circular Gears

    Science.gov (United States)

    Xu, Gaohuan; Chen, Jianneng; Zhao, Huacheng

    2018-06-01

    The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also similar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmission system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relationships between strain and torque are obtained by experimental calibration, and then the true torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the periodic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the transmission system.

  8. Extremal black holes as exact string solutions

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in α' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five-dimensional background which is proved to be an exact string solution

  9. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  10. On exact solutions of scattering problems

    International Nuclear Information System (INIS)

    Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.

    1982-01-01

    Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived

  11. Quasi exact solution of the Rabi Hamiltonian

    CERN Document Server

    Koç, R; Tuetuencueler, H

    2002-01-01

    A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.

  12. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  13. Parquet theory in nuclear structure calculations

    International Nuclear Information System (INIS)

    Bergli, Elise

    2010-01-01

    The thesis concerns a numerical implementation of the Parquet summation of diagrams within Green's functions theory applied to calculations of nuclear systems. The main motivation has been to investigate whether it is possible to develop this approach to a level comparable in accuracy and reliability to other ab initio nuclear structure methods. The Green's functions approach is theoretically well-established in many-body theory, but to our knowledge, no actual application to nuclear systems has been previously published. It has a number of desirable properties, foremost the gently scaling with system size compared to direct diagonalization and the closeness to experimentally accessible quantities. The main drawback is the numerical instabilities due to the pole structure of the one-particle propagator, leading to convergence difficulties. This issue is one of the main focal points of the work presented in this thesis, and strategies to improve the convergence properties are described and investigated. We have applied the method both to a simple model which can be solved by exact diagonalization and to the more realistic 4 He system. The results shows that our implementation is close to the exact solution in the simple model as long as the interaction strengths are small. As the number of particles increases, convergence is increasingly hard to obtain. In the 4 He case, we obtain results in the vicinity of the results from comparable approaches. The numerical in-stabilities in the current implementation still prevents the desired accuracy and stability necessary to achieve the current benchmark standards. (Author)

  14. Development of numerical methods to calculate the propagation and the absorption of the hybrid wave in tokamaks; Developpement des methodes numeriques pour la resolution de la propagation et de l`absorption de l`onde hybride dans les tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sebelin, E

    1997-12-15

    Full-wave calculations based on trial functions are carried out for solving the lower hybrid current drive problem in tokamaks. A variational method is developed and provides an efficient system to describe in a global manner both the propagation and the absorption of the electromagnetic waves in plasmas. The calculation is fully carried out in the case of circular and concentric flux surfaces. The existence and uniqueness of the solution of the wave propagation equation is mathematically proved. The first realistic simulations are performed for the high aspect ratio tokamak TRIAM-1M. It is checked that the main features of the lower-hybrid wave dynamics are well described numerically. (A.C.) 81 refs.

  15. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    DEFF Research Database (Denmark)

    Garde, Henrik

    2018-01-01

    . For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method...

  16. Some exact velocity profiles for granular flow in converging hoppers

    Science.gov (United States)

    Cox, Grant M.; Hill, James M.

    2005-01-01

    Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.

  17. Exactly solvable models in many-body theory

    CERN Document Server

    March, N H

    2016-01-01

    The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.

  18. Exact analytic solutions for Mikheyev-Smirnov-Wolfenstein level crossings

    International Nuclear Information System (INIS)

    Noetzold, D.

    1987-01-01

    An exact formula for the transition probability in level-crossing phenomena is derived for a general case, ranging from adiabatic to sudden crossings. This is done in the context of neutrino flavor oscillations for the Mikheyev-Smirnov-Wolfenstein (MSW) effect, where hitherto only numerical or approximate solutions were obtained. The matter density or level splitting is assumed to be governed by a hyperbolic-tangent function which, however, can change arbitrarily fast between two constant values. For example, in context of the MSW effect this furnishes a nice fit to the solar density determining the level crossing of solar neutrinos. In the quasiadiabatic limit the exact Landau-Zener factor can be read off, correcting some expressions obtained so far. Even in the opposite limit of a sudden level crossing a conversion is found, which can have far-reaching consequences for neutrino detection on Earth

  19. Exact renormalization group equation for the Lifshitz critical point

    Science.gov (United States)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  20. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry; Calculo Numerico del Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-12-11

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs.

  1. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  2. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  3. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  4. Parallel computer calculation of quantum spin lattices

    International Nuclear Information System (INIS)

    Lamarcq, J.

    1998-01-01

    Numerical simulation allows the theorists to convince themselves about the validity of the models they use. Particularly by simulating the spin lattices one can judge about the validity of a conjecture. Simulating a system defined by a large number of degrees of freedom requires highly sophisticated machines. This study deals with modelling the magnetic interactions between the ions of a crystal. Many exact results have been found for spin 1/2 systems but not for systems of other spins for which many simulation have been carried out. The interest for simulations has been renewed by the Haldane's conjecture stipulating the existence of a energy gap between the ground state and the first excited states of a spin 1 lattice. The existence of this gap has been experimentally demonstrated. This report contains the following four chapters: 1. Spin systems; 2. Calculation of eigenvalues; 3. Programming; 4. Parallel calculation

  5. Energy spectra of the hyperbolic and second Poeschl-Teller like potentials solved by new exact quantization rule

    International Nuclear Information System (INIS)

    Dong Shihai; Gonzalez-Cisneros, A.

    2008-01-01

    A new exact quantization rule simplifies the calculation of the energy levels for the exactly solvable quantum system. In this work we calculate the energy levels of the Schroedinger equation with the hyperbolic potential by this quantization rule. The corresponding eigenfunction is also derived for completeness. The second Poeschl-Teller like potential case is also carried out

  6. Exact Finite-Difference Schemes for d-Dimensional Linear Stochastic Systems with Constant Coefficients

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2013-01-01

    Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.

  7. An Exact Confidence Region in Multivariate Calibration

    OpenAIRE

    Mathew, Thomas; Kasala, Subramanyam

    1994-01-01

    In the multivariate calibration problem using a multivariate linear model, an exact confidence region is constructed. It is shown that the region is always nonempty and is invariant under nonsingular transformations.

  8. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  9. Fast Exact Euclidean Distance (FEED) Transformation

    NARCIS (Netherlands)

    Schouten, Theo; Kittler, J.; van den Broek, Egon; Petrou, M.; Nixon, M.

    2004-01-01

    Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number

  10. New exact wave solutions for Hirota equation

    Indian Academy of Sciences (India)

    2Department of Engineering Sciences, Faculty of Technology and Engineering,. University ... of nonlinear partial differential equations (NPDEs) in mathematical physics. Keywords. ... This method has been successfully applied to obtain exact.

  11. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels

    2012-01-01

    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  12. On exactly soluble model in quantum electrodynamics

    International Nuclear Information System (INIS)

    Bogolubov, N.N.; Shumovsky, A.S.; Fam Le Kien

    1984-01-01

    Equations of motion describing the dynamics of three-level atom of ladder type interacting with two modes of quantized radiation field are solved exactly. Evolution of level population and photon rumbers under different unitial conditions is irvestigated

  13. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  14. Intermittency inhibited by transport: An exactly solvable model

    Science.gov (United States)

    Zanette, Damián H.

    1994-04-01

    Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic reactions of the type A-->2A and A-->0, whose population field is known to exhibit spatiotemporal intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as transport is strengthened, low-order population moments are affected before the high-order ones. Numerical simulations are presented to support the analytical results.

  15. The exact fundamental solution for the Benes tracking problem

    Science.gov (United States)

    Balaji, Bhashyam

    2009-05-01

    The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.

  16. Class of nonsingular exact solutions for Laplacian pattern formation

    International Nuclear Information System (INIS)

    Mineev-Weinstein, M.B.; Dawson, S.P.

    1994-01-01

    We present a class of exact solutions for the so-called Laplacian growth equation describing the zero-surface-tension limit of a variety of two-dimensional pattern formation problems. These solutions are free of finite-time singularities (cusps) for quite general initial conditions. They reproduce various features of viscous fingering observed in experiments and numerical simulations with surface tension, such as existence of stagnation points, screening, tip splitting, and coarsening. In certain cases the asymptotic interface consists of N separated moving Saffman-Taylor fingers

  17. An exact linear dispersion relation for CRM instability

    International Nuclear Information System (INIS)

    Choyal, Y; Minami, K

    2011-01-01

    An exact self-consistent linear dispersion relation of a large orbit electron beam including two principles of cyclotron emission with oscillation frequencies above and below the relativistic electron frequency is derived and analyzed numerically for the first time in the literature. The two principles are cyclotron resonance maser (CRM) instability and Cherenkov instability in the azimuthal direction. Self-consistency in the formulation and inclusion of proper boundary conditions have removed the unphysical instability existing for infinitely large k z observed in conventional dispersion relations of CRM instability.

  18. Exact error estimation for solutions of nuclide chain equations

    International Nuclear Information System (INIS)

    Tachihara, Hidekazu; Sekimoto, Hiroshi

    1999-01-01

    The exact solution of nuclide chain equations within arbitrary figures is obtained for a linear chain by employing the Bateman method in the multiple-precision arithmetic. The exact error estimation of major calculation methods for a nuclide chain equation is done by using this exact solution as a standard. The Bateman, finite difference, Runge-Kutta and matrix exponential methods are investigated. The present study confirms the following. The original Bateman method has very low accuracy in some cases, because of large-scale cancellations. The revised Bateman method by Siewers reduces the occurrence of cancellations and thereby shows high accuracy. In the time difference method as the finite difference and Runge-Kutta methods, the solutions are mainly affected by the truncation errors in the early decay time, and afterward by the round-off errors. Even though the variable time mesh is employed to suppress the accumulation of round-off errors, it appears to be nonpractical. Judging from these estimations, the matrix exponential method is the best among all the methods except the Bateman method whose calculation process for a linear chain is not identical with that for a general one. (author)

  19. Spray Evaporation in Turbulent Flow: Numerical Calculations and Detailed Experiments by Phase-Doppler Anemometry Évaporation de brouillard en flux turbulent : calculs numériques et expériences détaillées par anémometrie de phase-Doppler

    Directory of Open Access Journals (Sweden)

    Sommerfeld M.

    2006-11-01

    Full Text Available The present paper concerns experiments and numerical calculations of an isopropyl-alcohol spray evaporating in a co-flowing turbulent heated air flow. The measurements provided detailed inlet and boundary conditions for the numerical calculations and allowed the validation of the numerical method and models. Phase-Doppler anemometry was used in order to obtain the spatial change of the droplet size distribution and the correlation between droplet size and velocity throughout the flow field. Additionally, a reliable method based on the detection of the signal amplitudes was applied to determine the droplet mass flux. By integration of the droplet mass flux profiles, the global evaporation rates could be determined for different flow conditions. Numerical calculations of the evaporating spray were performed by the Eulerian / Lagrangian approach. The modelling of droplet evaporation is briefly reviewed prior to the description of the applied numerical models and methods. Calculations for a single phase flow showed good agreement with the experiments. Also for all of the droplet phase properties reasonable agreement with the experiments could be achieved and the global evaporation rates agreed well with the measurements. Cet article expose en détail les expériences et les calculs concernant l'évaporation d'isopropanol pulvérisé dans un flux d'air chaud turbulent. Les mesures ont fourni le détail des conditions initiales et des conditions limites pour les calculs numériques ; elles ont également permis de valider la méthode et le modèle. L'anémométrie de phase-Doppler a permis de définir la modification spatiale de la distribution des dimensions de gouttelettes ainsi que la corrélation entre dimension et vitesse des gouttelettes, dans l'ensemble du champ d'écoulement. De plus, une méthode fiable fondée sur la détection des amplitudes de signal a été appliquée afin de déterminer le débit massique des gouttelettes. L

  20. Exact ground and excited states of an antiferromagnetic quantum spin model

    International Nuclear Information System (INIS)

    Bose, I.

    1989-08-01

    A quasi-one-dimensional spin model which consists of a chain of octahedra of spins has been suggested for which a certain parameter regime of the Hamiltonian, the ground state, can be written down exactly. The ground state is highly degenerate and can be other than a singlet. Also, several excited states can be constructed exactly. The ground state is a local RVB state for which resonance is confined to rings of spins. Some exact numerical results for an octahedron of spins have also been reported. (author). 16 refs, 2 figs, 1 tab