WorldWideScience

Sample records for exact foldy-wouthuysen transformation

  1. Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Obukhov, Yuri N.; Shapiro, Ilya L.

    2007-01-01

    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian, we arrive at the equations of motion for the nonrelativistic spinning particle. Two different kinds of gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by a sufficiently strong magnetic field. This result can be relevant for astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry

  2. The Foldy-Wouthuysen transformation

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.

    1994-01-01

    The Foldy-Wouthuysen transformation of Dirac Hamiltonian is generally taught as a mathematical trick that allows one to obtain a two-component theory in the low-energy limit. It is not often emphasised that the transformed representation is the only one in which one can take meaningful classical limit, in terms of particles and antiparticles. The history and physics of this transformation are briefly revised. 12 refs

  3. The Foldy--Wouthuysen transformation

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.

    1995-01-01

    The Foldy--Wouthuysen transformation of the Dirac Hamiltonian is generally taught as simply a mathematical trick that allows one to obtain a two-component theory in the low-energy limit. It is not often emphasized that the transformed representation is the only one in which one can take a meaningful classical limit, in terms of particles and antiparticles. We briefly review the history and physics of this transformation. copyright 1995 American Association of Physics Teachers

  4. The Foldy-Wouthuysen transformation

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.

    1995-01-01

    The Foldy-Wouthuysen transformation of the Dirac Hamiltonian is generally taught as simply a mathematical trick that allows one to obtain a two-component theory in the low-energy limit. It is not often emphasized that the transformed representation is the only one in which one can take a meaningful classical limit, in terms of particle and antiparticles. It is recognised that there are two representations of the Dirac equation. The Dirac-Pauli representation is unique due to its linearity; it is the representation in which the charged leptons are minimally coupled. The Newton-Wigner representation is unique due to its decoupling of positive- and negative- energy states; it is the representation in which the operators of the theory correspond to their classical counterparts. 12 refs

  5. Uncertainties in the Foldy-Wouthuysen transformation

    International Nuclear Information System (INIS)

    Wu, Dandi.

    1991-08-01

    The Foldy-Wouthuysen (W-F) transformation is designed to transform the Hamiltonian of a fermion to a block diagonalized one in order to make the physical contents explicit. At the limit of zero interaction, this diagonalization can be done completely. With interactions. the diagonalization is incomplete and can be done only in the nonrelativistic limit to the extent of neglecting higher orders of 1/m where m is the mass of the fermion. Although the F-W transformations are not uniquely defined in either case, the ambiguity in the final results appears only in the case of incomplete diagonalization. For some very special interactions, this ambiguity has been studied, however, this article will show that the ambiguity exists in general. Therefore, care must be taken when displaying the physical contents of an interacting Hamiltonian by F-W transformation. Extra information must be invoked to guarantee the unique and correct result

  6. The Melosh transformation and the Pryce-Tani-Foldy-Wouthuysen transformation

    International Nuclear Information System (INIS)

    Bell, J.S.

    1995-01-01

    The Melosh transformation and some of the main ideas leading up to it are discussed. The work of Melosh seemed to give theoretical support to suggestions, about the manner of breaking of relativistic SU(6) symmetry. Attention is focused on theoretical - in fact largely kinematical -considerations. A particular aim is to spell out the relation of the ideas of Melosh to older ideas based on the Foldy-Wouthuysen description of spin for relativistic particles. (K.A.)

  7. Foldy-Wouthuysen transformations for the classical relativistic electron. Non grassmannian description

    International Nuclear Information System (INIS)

    Pupasov-Maksimov, Andrey; Deriglazov, Alexei

    2012-01-01

    Full text: We consider a classical model of the relativistic electron proposed by A. Deriglazov in Phys. Lett. A 376 (2012) 309-313. Though this model contains only bosonic variables, its quantization leads to the Dirac equation and one-particle relativistic quantum mechanics of the electron. There are constraints and gauge symmetries, therefore 18 initial variables of the model {x μ , p μ , ω A , π A }, μ is an element of (0,4), A is an element of (0,5) do not correspond to the observable quantities. There are 10 physical degrees of freedom implying another set of 10 gauge invariant variables which will be interpreted as physically observable quantities. On the other hand, to have a consistent one-particle relativistic quantum mechanics one has to consider only even operators which do not mix quantum states with positive and negative energy states. Such separation can be obtained with the Foldy-Wouthuysen transformation and leads to the Foldy-Wouthuysen representation with new operators for coordinates and spin (so-called Newton-Wigner coordinates). In the present work we match these to pictures by comparing the choice of the gauge invariant classical variables and the transition to the even operators in the quantum mechanics. We study different canonical transformations of this classical model in order to separate the set of observable quantities from variables with ambiguous dynamics. The constraints of the model in the case of free particle can be chosen in such a way that the Dirac brackets coincide with the Poisson brackets. This choice significantly simplify calculations of transformed variables. Moreover, new variables are canonical variables by construction. It is shown that the following generator of an infinitesimal canonical transformation S=1/2J 5j p j A(p 2 ), can be associated with the Foldy-Wouthuysen transformation. Thus we obtain a classical analog of the Foldy- Wouthuysen transformation. Moreover, the gauge invariant variables in the

  8. Screening of electron electric dipole moment through the Foldy-Wouthuysen representation

    Directory of Open Access Journals (Sweden)

    M M Ettefaghi

    2015-07-01

    Full Text Available The existent of the intrinsic electric dipole moments (EDM lead to CP violation in a physical system. In the non-relativistic and point like limits, the effects of them in atoms are canceled which is well-known as Schiff screening effects. It is why that the energy shift due to the EDM is proportional to the expectation value of which vanishes in non-relativistic limit. In this paper, using Foldy-Wouthuysen representation we remove the odd terms (those terms mix the positive and negative energy solutions up to order and then study the Schiff screening effects.

  9. II. The Standard Model in the Isotopic Foldy-Wouthuysen Representation without Higgs Bosons in the Fermion Sector. Spontaneous Breaking of Parity and "Dark Matter" Problems

    OpenAIRE

    Neznamov, V. P.

    2011-01-01

    The Standard Model with massive fermions is formulated in the isotopic Foldy-Wouthuysen representation. SU(2)xU(1) - invariance of the theory in this representation is independent of whether fermions possess mass or not, and, consequently, it is not necessary to introduce interactions between Higgs bosons and fermions. The study discusses a possible relation between spontaneous breaking of parity in the isotopic Foldy-Wouthuysen representation and the composition of elementary particles of "d...

  10. Bogoliubov transformations and fermion condensates in lattice field theories

    International Nuclear Information System (INIS)

    Caracciolo, Sergio; Palumbo, Fabrizio; Viola, Giovanni

    2009-01-01

    We apply generalized Bogoliubov transformations to the transfer matrix of relativistic field theories regularized on a lattice. We derive the conditions these transformations must satisfy to factorize the transfer matrix into two terms which propagate fermions and antifermions separately, and we solve the relative equations under some conditions. We relate these equations to the saddle point approximation of a recent bosonization method and to the Foldy-Wouthuysen transformations which separate positive from negative energy states in the Dirac Hamiltonian

  11. Spinorial relativistic rotator: the transformation from quasi-Newtonian to Minkowski coordinates

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Bohm, A.; Tarlini, M.; van Dam, H.; Mukunda, N.

    1983-12-01

    There exists a remarkably close relationship between the operator algebra of the Dirac equation and the corresponding operators of the spinorial relativistic rotator (an indecomposable object lying on a mass-spin Regge trajectory). The analog of the Foldy-Wouthuysen transformation (more generally, the transformation between quasi-Newtonian and Minkowski coordinates) is constructed and explicit results are discussed for the spin and position operators. Zitterbewegung is shown to exist for a system having only positive energies. 31 references

  12. Fast Exact Euclidean Distance (FEED) Transformation

    NARCIS (Netherlands)

    Schouten, Theo; Kittler, J.; van den Broek, Egon; Petrou, M.; Nixon, M.

    2004-01-01

    Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number

  13. Separation of Dirac's Hamiltonian by Van Vleck transformation

    Science.gov (United States)

    Jørgensen, Flemming

    2017-01-01

    The now classic Foldy-Wouthuysen transformation (FWT) was introduced as successive unitary transformations. This fundamental idea has become the standard in later developments such as the Douglas-Kroll transformation (DKT) - but it is not the only possibility. FWT can be seen as a simple special case of the general Van Vleck transformation (VVT) which besides the successive version has another, known as the canonical because of a series of nice mathematical properties discovered gradually over time. The aim of the present paper is to compare the two approaches - which give identical results in the lower orders, but not in the higher. After having recapitalised both, we apply them to Dirac's Hamiltonian for the electron in a constant electromagnetic field, written with so few assumptions about the operators that the mathematical techniques stand out separated from the terminology of relativistic quantum mechanics. FWT for a free particle is dealt with by a recent geometric approach to VVT. The original FWT is continued through the next non-zero orders. DKT is considered with special weight on equivalent formulations of the generalised and the optimised forms introduced by Wolf, Reiher and Hess.

  14. Canonical transformations and exact invariants for dissipative systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1986-01-01

    A simple treatment to the problem of finding exact invariants and related auxiliary equations for time-dependent oscillators with friction is presented. The treatment is based on the use of a time-dependent canonical transformation and an auxiliary transformation. (Author) [pt

  15. Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles

    OpenAIRE

    Silenko, A. J.

    2014-01-01

    Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles possesing an anomalous magnetic moment are calculated with the transformation of an initial Hamiltonian to the Foldy-Wouthuysen representation. Polarizabilities of spin-1/2 and spin-1 particles are compared.

  16. Exact solutions of time-fractional heat conduction equation by the fractional complex transform

    Directory of Open Access Journals (Sweden)

    Li Zheng-Biao

    2012-01-01

    Full Text Available The Fractional Complex Transform is extended to solve exactly time-fractional differential equations with the modified Riemann-Liouville derivative. How to incorporate suitable boundary/initial conditions is also discussed.

  17. Exact Solution of Gas Dynamics Equations Through Reduced Differential Transform and Sumudu Transform Linked with Pades Approximants

    Science.gov (United States)

    Rao, T. R. Ramesh

    2018-04-01

    In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.

  18. Fast Exact Euclidean Distance (FEED): A new class of adaptable distance transforms

    NARCIS (Netherlands)

    Schouten, Theo E.; van den Broek, Egon

    2014-01-01

    A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast Exact Euclidean Distance (FEED) transforms. FEED class algorithms calculate the DT starting directly from the definition or rather its inverse. The principle of FEED class algorithms is

  19. Fast Exact Euclidean Distance (FEED) : A new class of adaptable distance transforms

    NARCIS (Netherlands)

    Schouten, Theo E.; van den Broek, Egon L.

    2014-01-01

    A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast Exact Euclidean Distance (FEED) transforms. FEED class algorithms calculate the DT startingdirectly from the definition or rather its inverse. The principle of FEED class algorithms is introduced,

  20. The exact solutions of the Schroedinger equation with the Morse potential via Laplace transforms

    International Nuclear Information System (INIS)

    Chen Gang

    2004-01-01

    In this Letter, we reduce the second-order differential equation about the one-dimensional Schroedinger equation with the Morse potential reduced to the first-order differential equation in terms of Laplace transforms and then obtain the exact bound state solutions

  1. Large quantum Fourier transforms are never exactly realized by braiding conformal blocks

    International Nuclear Information System (INIS)

    Freedman, Michael H.; Wang, Zhenghan

    2007-01-01

    Fourier transform is an essential ingredient in Shor's factoring algorithm. In the standard quantum circuit model with the gate set {U(2), controlled-NOT}, the discrete Fourier transforms F N =(ω ij ) NxN , i,j=0,1,...,N-1, ω=e 2πi at ∼sol∼ at N , can be realized exactly by quantum circuits of size O(n 2 ), n=ln N, and so can the discrete sine or cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms F N and the discrete sine or cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that an approximation is unavoidable in the implementation of Fourier transforms by braiding conformal blocks

  2. On the connection between the inverse transform method and the exact quantum eigenstates

    International Nuclear Information System (INIS)

    Honerkamp, J.; Weber, P.; Wiesler, A.

    1979-01-01

    The 'inverse scattering transformation', which has been used to solve certain nonlinear field theories classically, is discussed in the context of the quantized version of these theories. In particular the non-linear Schroedinger equation and the massive Thirring model are considered. It is found that certain Jost functions of the associated scattering problem lead already, in quantizing the theory, to creation operators for the exact eigenstates of the corresponding Hamiltonians. (Auth.)

  3. A quasi-relativistic treatment of nuclear motion in atoms and molecules

    International Nuclear Information System (INIS)

    Chen, W.Q.; Cook, A.H.

    1987-01-01

    A quasi-relativistic Hamiltonian for an atom and a molecule is constructed. The Foldy-Wouthuysen transformation is applied to the Hamiltonian. Consequently, extra terms from interactions between the electronic motion and the nuclear magnetic field contributing to the Darwin term and the spin-orbit coupling are derived explicitly. Moreover, the coupling between nuclear motion and the spin of the electron is obtained. (author)

  4. Exact solutions and transformation properties of nonlinear partial differential equations from general relativity

    International Nuclear Information System (INIS)

    Fischer, E.

    1977-01-01

    Various families of exact solutions to the Einstein and Einstein--Maxwell field equations of general relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations. The physical situations in which such equations arise include: the external gravitational field of an axisymmetric, uncharged steadily rotating body, cylindrical gravitational waves with two degrees of freedom, colliding plane gravitational waves, the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein--Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa. The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables

  5. A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation

    International Nuclear Information System (INIS)

    Ma Wenxiu; Lee, J.-H.

    2009-01-01

    A direct approach to exact solutions of nonlinear partial differential equations is proposed, by using rational function transformations. The new method provides a more systematical and convenient handling of the solution process of nonlinear equations, unifying the tanh-function type methods, the homogeneous balance method, the exp-function method, the mapping method, and the F-expansion type methods. Its key point is to search for rational solutions to variable-coefficient ordinary differential equations transformed from given partial differential equations. As an application, the construction problem of exact solutions to the 3+1 dimensional Jimbo-Miwa equation is treated, together with a Baecklund transformation.

  6. Gauge invariance and relativistic effects in X-ray absorption and scattering by solids

    International Nuclear Information System (INIS)

    Bouldi, N.; Brouder, C.

    2017-01-01

    There is an incompatibility between gauge invariance and the semi-classical time-dependent perturbation theory commonly used to calculate light absorption and scattering cross-sections. There is an additional incompatibility between perturbation theory and the description of the electron dynamics by a semi-relativistic Hamiltonian. In this paper, the gauge-dependence problem of exact perturbation theory is described, the proposed solutions are reviewed and it is concluded that none of them seems fully satisfactory. The problem is finally solved by using the fully relativistic absorption and scattering cross-sections given by quantum electrodynamics. Then, a new general Foldy-Wouthuysen transformation is presented. It is applied to the many-body case to obtain correct semi-relativistic transition operators. This transformation considerably simplifies the calculation of relativistic corrections. In the process, a new light-matter interaction term emerges, called the spin-position interaction, that contributes significantly to the magnetic X-ray circular dichroism of transition metals. We compare our result with the ones obtained by using several semi-relativistic time-dependent Hamiltonians. In the case of absorption, the final formula agrees with the result obtained from one of them. However, the correct scattering cross-section is not given by any of the semi-relativistic Hamiltonians. (authors)

  7. Separation Transformation and New Exact Solutions of the (N + 1)-dimensional Dispersive Double sine-Gordon Equation

    International Nuclear Information System (INIS)

    Tian Ye; Chen Jing; Zhang Zhifei

    2012-01-01

    In this paper, the separation transformation approach is extended to the (N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of 3 He superfluid. This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation. Then the general solutions of the set of partial differential equations are obtained and the nonlinear ordinary differential equation is solved by F-expansion method. Finally, many new exact solutions of the (N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation. For the case of N > 2, there is an arbitrary function in the exact solutions, which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.

  8. Generalized WKB method through an appropriate canonical transformation giving an exact invariant

    International Nuclear Information System (INIS)

    Guyard, J.; Nadeau, A.

    1976-01-01

    The solution of differential equations of the type d 2 q/dtau 2 +ω 2 (tau)q=0 is of great interest in Physics. Authors often introduce an auxiliary function w, solution of a differential equation which can be solved by a perturbation method. In fact this approach is nothing but an extension of the well known WKB method. Lewis has found an exact invariant of the motion given in closed form in terms in a much easier way. This method can now be used as a natural way of introducing the WKB extension [fr

  9. Baecklund transformations as exact integrable time discretizations for the trigonometric Gaudin model

    International Nuclear Information System (INIS)

    Ragnisco, Orlando; Zullo, Federico

    2010-01-01

    We construct a two-parameter family of Baecklund transformations for the trigonometric classical Gaudin magnet. The approach follows closely the one introduced by Sklyanin and Kuznetsov (1998 J. Phys. A: Math. Gen. 31 2241-51) in a number of seminal papers and takes advantage of the intimate relation between the trigonometric and the rational case. As in the paper by Hone, Kuznetsov and one of the authors (OR) (2001 J. Phys. A: Math. Gen. 34 2477-90) the Baecklund transformations are presented as explicit symplectic maps, starting from their Lax representation. The (expected) connection with the xxz Heisenberg chain is established and the rational (xxx) case is recovered in a suitable limit. It is shown how to obtain a 'physical' transformation mapping real variables into real variables. The interpolating Hamiltonian flow is derived and some numerical iterations of the map are presented.

  10. On the transformation of invariance and the exact solutions of the Rabi model

    International Nuclear Information System (INIS)

    Rustamov, K.A.

    1989-12-01

    The transformations of invariance of the Rabi model describing the interaction of the two-level system with the l-mode electromagnetic field are constructed. On this basis the explicit expressions for the coherent states and the Green function of the problem are obtained. (author). 15 refs

  11. Exact and approximate interior corner problem in neutron diffusion by integral transform methods

    International Nuclear Information System (INIS)

    Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.

    1976-09-01

    The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem

  12. The origin of the hidden supersymmetry

    International Nuclear Information System (INIS)

    Jakubsky, Vit; Nieto, Luis-Miguel; Plyushchay, Mikhail S.

    2010-01-01

    The hidden supersymmetry and related tri-supersymmetric structure of the free particle system, the Dirac delta potential problem and the Aharonov-Bohm effect (planar, bound state, and tubule models) are explained by a special nonlocal unitary transformation, which for the usual N=2 supercharges has a nature of Foldy-Wouthuysen transformation. We show that in general case, the bosonized supersymmetry of nonlocal, parity even systems emerges in the same construction, and explain the origin of the unusual N=2 supersymmetry of electron in three-dimensional parity even magnetic field. The observation extends to include the hidden superconformal symmetry.

  13. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order

    International Nuclear Information System (INIS)

    Reiher, Markus; Wolf, Alexander

    2004-01-01

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented

  14. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.

    Science.gov (United States)

    Reiher, Markus; Wolf, Alexander

    2004-12-08

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.

  15. Spin in stationary gravitational fields and rotating frames

    International Nuclear Information System (INIS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2010-01-01

    A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.

  16. Exact solution of a key equation in a finite stellar atmosphere by the method of Laplace transform and linear singular operators

    International Nuclear Information System (INIS)

    Das, R.N.

    1980-01-01

    The key equation which commonly appears for radiative transfer in a finite stellar atmosphere having ground reflection according to Lambert's law is considered in this paper. The exact solution of this equation is obtained for surface quantities in terms of the X-Y equations of Chandrasekhar by the method of Laplace transform and linear singular operators. This exact method is widely applicable for obtaining the solution for surface quantities in a finite atmosphere. (orig.)

  17. Exponential convergence rate (the spectral convergence) of the fast Pade transform for exact quantification in magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Belkic, Dzevad

    2006-01-01

    This study deals with the most challenging numerical aspect for solving the quantification problem in magnetic resonance spectroscopy (MRS). The primary goal is to investigate whether it could be feasible to carry out a rigorous computation within finite arithmetics to reconstruct exactly all the machine accurate input spectral parameters of every resonance from a synthesized noiseless time signal. We also consider simulated time signals embedded in random Gaussian distributed noise of the level comparable to the weakest resonances in the corresponding spectrum. The present choice for this high-resolution task in MRS is the fast Pade transform (FPT). All the sought spectral parameters (complex frequencies and amplitudes) can unequivocally be reconstructed from a given input time signal by using the FPT. Moreover, the present computations demonstrate that the FPT can achieve the spectral convergence, which represents the exponential convergence rate as a function of the signal length for a fixed bandwidth. Such an extraordinary feature equips the FPT with the exemplary high-resolution capabilities that are, in fact, theoretically unlimited. This is illustrated in the present study by the exact reconstruction (within machine accuracy) of all the spectral parameters from an input time signal comprised of 25 harmonics, i.e. complex damped exponentials, including those for tightly overlapped and nearly degenerate resonances whose chemical shifts differ by an exceedingly small fraction of only 10 -11 ppm. Moreover, without exhausting even a quarter of the full signal length, the FPT is shown to retrieve exactly all the input spectral parameters defined with 12 digits of accuracy. Specifically, we demonstrate that when the FPT is close to the convergence region, an unprecedented phase transition occurs, since literally a few additional signal points are sufficient to reach the full 12 digit accuracy with the exponentially fast rate of convergence. This is the critical

  18. DIRAC MATRICES IN CHIRAL REPRESENTATION AND THE CONNECTION WITH THE ELECTRIC FIELD PARALLEL TO THE MAGNETIC FIELD MATRICES DE DIRAC EN REPRESENTACIÓN QUIRAL Y LA CONEXIÓN CON EL CAMPO ELÉCTRICO PARALELO AL CAMPO MAGNÉTICO

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In this paper we offer an expression of the general Foldy-Wouthuysen transformation in the chiral representation of Dirac matrices interacting with fermion field. Our hypothesis is that through the multiplication of the Pauli matrix and Maxwell's chiral equations in the case of ,one obtains the Dirac's chiral equation. This is the proof of the theorem that the wave mechanics of quantum particles represent a specialized electrodynamic.En este trabajo se presenta una expresión de la transformación general de Foldy-Wouthuysen a la representación quiral de las matrices de Dirac interactuando con un campo de fermión. La hipótesis es que a través de la multiplicación de la matriz de Pauli por las ecuaciones quirales de Maxwell en el caso de , se obtiene la ecuación quiral de Dirac. Esta es la prueba del teorema de que la mecánica de ondas de partícula cuántica representa una electrodinámica especializada.

  19. On exact solutions for disturbances to the asymptotic suction boundary layer: transformation of Barnes integrals to convolution integrals

    Science.gov (United States)

    Russell, John

    2000-11-01

    A modified Orr-Sommerfeld equation that applies to the asymptotic suction boundary layer was reported by Bussmann & Münz in a wartime report dated 1942 and by Hughes & Reid in J.F.M. ( 23, 1965, p715). Fundamental systems of exact solutions of the Orr-Sommerfeld equation for this mean velocity distribution were reported by D. Grohne in an unpublished typescript dated 1950. Exact solutions of the equation of Bussmann, Münz, Hughes, & Reid were reported by P. Baldwin in Mathematika ( 17, 1970, p206). Grohne and Baldwin noticed that these exact solutions may be expressed either as Barnes integrals or as convolution integrals. In a later paper (Phil. Trans. Roy. Soc. A, 399, 1985, p321), Baldwin applied the convolution integrals in the contruction of large-Reynolds number asymptotic approximations that hold uniformly. The present talk discusses the subtleties that arise in the construction of such convolution integrals, including several not reported by Grohne or Baldwin. The aim is to recover the full set of seven solutions (one well balanced, three balanced, and three dominant-recessive) postulated by W.H. Reid in various works on the uniformly valid solutions.

  20. Analysis of noise properties of a class of exact methods of inverting the 2-D exponential radon transform

    International Nuclear Information System (INIS)

    Pan, X.; Metz, C.E.

    1995-01-01

    A general approach that the authors proposed elsewhere reveals the intrinsic relationship among methods for inversion of the 2-D exponential Radon transform described by Bellini et al., by Tretiak and Metz, by Hawkins et al., and by Inouye et al. Moreover, the approach provides an infinite class of linear methods for inverting the 2-D exponential Radon transform. In the work reported here, they systematically investigated the noise characteristics of the methods in this class, obtaining analytical forms for the autocovariance and the variance of the images reconstructed by use of various methods. The noise properties of a new quasi-optimal method were then compared theoretically to those of other methods of the class. The analysis demonstrates that the quasi-optimal method achieves smaller global variance in the reconstructed images than do the other methods of the class. Extensive numerical simulation studies confirm this prediction

  1. Exact milestoning

    International Nuclear Information System (INIS)

    Bello-Rivas, Juan M.; Elber, Ron

    2015-01-01

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied

  2. Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Ebaid, Abdelhalim; Al Sharif, Mohammed A. [Tabuk Univ. (Saudi Arabia). Faculty of Science

    2015-10-01

    Since the discovery of the carbon nanotubes (CNTs), there is an increasing interest in their applications in industry and medical fields. Attempts of using such CNTs as drug carriers and in cancer therapy in the presence of a magnetic field are now undertaken because of their direct impacts on increasing the thermal conductivity of base fluids. Two types of CNTs are well known for the researchers, the single-walled CNT (SWCNTs) and the multi-walled CNTs (MWCNTs); however, the subject of which one is more effective in treatment of cancer deserves more investigations. The present article discusses the effect of such types of CNTs on the flow and heat transfer of nanofluids in the presence of a magnetic field. Exact analytical solution for the heat equation has been obtained by using the Laplace transform, where the solution is expressed in terms of a new special function, the generalised incomplete gamma function. The effects of various parameters on the fluid velocity, temperature distribution, and heat transfer rates have been introduced. Details of possible applications of the current results in the treatment of cancer have been also discussed.

  3. Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids

    International Nuclear Information System (INIS)

    Ebaid, Abdelhalim; Al Sharif, Mohammed A.

    2015-01-01

    Since the discovery of the carbon nanotubes (CNTs), there is an increasing interest in their applications in industry and medical fields. Attempts of using such CNTs as drug carriers and in cancer therapy in the presence of a magnetic field are now undertaken because of their direct impacts on increasing the thermal conductivity of base fluids. Two types of CNTs are well known for the researchers, the single-walled CNT (SWCNTs) and the multi-walled CNTs (MWCNTs); however, the subject of which one is more effective in treatment of cancer deserves more investigations. The present article discusses the effect of such types of CNTs on the flow and heat transfer of nanofluids in the presence of a magnetic field. Exact analytical solution for the heat equation has been obtained by using the Laplace transform, where the solution is expressed in terms of a new special function, the generalised incomplete gamma function. The effects of various parameters on the fluid velocity, temperature distribution, and heat transfer rates have been introduced. Details of possible applications of the current results in the treatment of cancer have been also discussed.

  4. Exact PsTd invariant and PsTd symmetric breaking solutions, symmetry reductions and Bäcklund transformations for an AB-KdV system

    Science.gov (United States)

    Jia, Man; Lou, Sen Yue

    2018-05-01

    In natural and social science, many events happened at different space-times may be closely correlated. Two events, A (Alice) and B (Bob) are defined as correlated if one event is determined by another, say, B = f ˆ A for suitable f ˆ operators. A nonlocal AB-KdV system with shifted-parity (Ps, parity with a shift), delayed time reversal (Td, time reversal with a delay) symmetry where B =Ps ˆ Td ˆ A is constructed directly from the normal KdV equation to describe two-area physical event. The exact solutions of the AB-KdV system, including PsTd invariant and PsTd symmetric breaking solutions are shown by different methods. The PsTd invariant solution show that the event happened at A will happen also at B. These solutions, such as single soliton solutions, infinitely many singular soliton solutions, soliton-cnoidal wave interaction solutions, and symmetry reduction solutions etc., show the AB-KdV system possesses rich structures. Also, a special Bäcklund transformation related to residual symmetry is presented via the localization of the residual symmetry to find interaction solutions between the solitons and other types of the AB-KdV system.

  5. Exact work

    International Nuclear Information System (INIS)

    Zeger, J.

    1993-01-01

    Organized criminals also tried to illegally transfer nuclear material through Austria. Two important questions have to be answered after the material is sized by police authorities: What is the composition of the material and where does it come from? By application of a broad range of analytical techniques, which were developed or refined by our experts, it is possible to measure the exact amount and isotopic composition of uranium and plutonium in any kind of samples. The criminalistic application is only a byproduct of the large scale work on controlling the peaceful application of nuclear energy, which is done in contract with the IAEA in the context of the 'Network of Analytical Laboratories'

  6. Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry

    International Nuclear Information System (INIS)

    Plyushchay, Mikhail S.; Nieto, Luis-Miguel

    2010-01-01

    We study supersymmetry of a self-isospectral one-gap Poeschl-Teller system in the light of a mirror symmetry that is based on spatial and shift reflections. The revealed exotic, partially broken, nonlinear supersymmetry admits seven alternatives for a grading operator. One of its local, first order supercharges may be identified as a Hamiltonian of an associated one-gap, nonperiodic Bogoliubov-de Gennes system. The latter possesses a nonlinear supersymmetric structure, in which any of the three nonlocal generators of a Clifford algebra may be chosen as the grading operator. We find that the supersymmetry generators for both systems are the Darboux-dressed integrals of a free spin-1/2 particle in the Schroedinger picture, or of a free massive Dirac particle. Nonlocal Foldy-Wouthuysen transformations are shown to be involved in the supersymmetric structure.

  7. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  8. Transformation

    DEFF Research Database (Denmark)

    Bock, Lars Nicolai

    2011-01-01

    Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....

  9. TRANSFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  10. An Exact Confidence Region in Multivariate Calibration

    OpenAIRE

    Mathew, Thomas; Kasala, Subramanyam

    1994-01-01

    In the multivariate calibration problem using a multivariate linear model, an exact confidence region is constructed. It is shown that the region is always nonempty and is invariant under nonsingular transformations.

  11. TRANSFORMER

    Science.gov (United States)

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  12. Quasi-exact solvability

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1992-01-01

    This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite

  13. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  14. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts

  15. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  16. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  17. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  18. Exactly solvable birth and death processes

    International Nuclear Information System (INIS)

    Sasaki, Ryu

    2009-01-01

    Many examples of exactly solvable birth and death processes, a typical stationary Markov chain, are presented together with the explicit expressions of the transition probabilities. They are derived by similarity transforming exactly solvable 'matrix' quantum mechanics, which is recently proposed by Odake and the author [S. Odake and R. Sasaki, J. Math. Phys. 49, 053503 (2008)]. The (q-) Askey scheme of hypergeometric orthogonal polynomials of a discrete variable and their dual polynomials play a central role. The most generic solvable birth/death rates are rational functions of q x (with x being the population) corresponding to the q-Racah polynomial.

  19. Prepotential approach to exact and quasi-exact solvabilities

    International Nuclear Information System (INIS)

    Ho, C.-L.

    2008-01-01

    Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations

  20. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  1. General treatment of quantum and classical spinning particles in external fields

    Science.gov (United States)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2017-11-01

    We develop the general theory of spinning particles with electric and magnetic dipole moments moving in arbitrary electromagnetic, inertial, and gravitational fields. Both the quantum-mechanical and classical dynamics is investigated. We start from the covariant Dirac equation extended to a spin-1/2 fermion with anomalous magnetic and electric dipole moments and then perform the relativistic Foldy-Wouthuysen transformation. This transformation allows us to obtain the quantum-mechanical equations of motion for the physical operators in the Schrödinger form and to establish the classical limit of relativistic quantum mechanics. The results obtained are then compared to the general classical description of the spinning particle interacting with electromagnetic, inertial and gravitational fields. The complete agreement between the quantum mechanics and the classical theory is proven in the general case. As an application of the results obtained, we consider the dynamics of a spinning particle in a gravitational wave and analyze the prospects of using the magnetic resonance setup to find possible manifestations of the gravitational wave on spin.

  2. The Dirac equation

    International Nuclear Information System (INIS)

    Thaller, B.

    1992-01-01

    This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics

  3. Exact Slater integrals

    International Nuclear Information System (INIS)

    Golden, L.B.

    1968-01-01

    In atomic structure calculations, one has to evaluate the Slater integrals. In the present program, the authors evaluate exactly the Slater integral when hydrogenic wave functions are used for the bound-state orbitals. When hydrogenic wave functions are used, the Slater integrals involve integrands which can be written in the form of a product of an exponential, exp(ax) and a known analytic polynomial function, f(x). By repeated partial integration such an integral can be expressed in terms of a finite series involving the exponential, the polynomial function and its derivatives. PL/1-FORMAC has a built-in subroutine that will analytically find the derivatives of any multinomial. Thus, the finite series and hence the Slater integral can be evaluated analytically. (Auth.)

  4. On the physical applications of hyper-Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Gaeta, Giuseppe; Rodriguez, Miguel A

    2008-01-01

    An extension of Hamiltonian dynamics, defined on hyper-Kahler manifolds ('hyper-Hamiltonian dynamics') and sharing many of the attractive features of standard Hamiltonian dynamics, was introduced in previous work. In this paper, we discuss applications of the theory to physically interesting cases, dealing with the dynamics of particles with spin 1/2 in a magnetic field, i.e. the Pauli and the Dirac equations. While the free Pauli equation corresponds to a hyper-Hamiltonian flow, it turns out that the hyper-Hamiltonian description of the Dirac equation, and of the full Pauli one, is in terms of two commuting hyper-Hamiltonian flows. In this framework one can use a factorization principle discussed here (which is a special case of a general phenomenon studied by Walcher) and provide an explicit description of the resulting flow. On the other hand, by applying the familiar Foldy-Wouthuysen and Cini-Tousheck transformations (and the one recently introduced by Mulligan) which separate-in suitable limits-the Dirac equation into two equations, each of these turn out to be described by a single hyper-Hamiltonian flow. Thus the hyper-Hamiltonian construction is able to describe the fundamental dynamics for particles with spin

  5. The nucleon-nucleon interaction in the framework of the boson exchange model

    International Nuclear Information System (INIS)

    Niephaus, G.H.

    1984-01-01

    The aim of this thesis was the description of the nucleon-nucleon interaction in a microscopically founded model. For this the description of the 2-nucleon problem by an interacting 2-nucleon-pion system was presented. The starting point of our description was a relativistic eigenvalue equation for the system of mesons and two baryons. The interaction of the baryons with the mesons was described by interaction Hamiltonians. By the elimination of antinucleon states by means of a unitary tansformation (Foldy-Wouthuysen transformation) the interaction Hamiltonians for nucleons could be generated for the field-theoretical Lagrangian densities. The Hamiltonians for resonant baryon states were obtained by means of a simplified procedure from the corresponding Lagrangian densities. Because the determination of Lagrangian densities is not unique, for the pion-nucleon coupling two alternative Lagrangian densities were allowed. For the interaction of positive-energy nucleonic states these two coupling yield nearly equal results; the production or annihilation of negative-energy nucleon states (antiparticles) the predictions however are very different. (orig./HSI) [de

  6. Two different formulations of the heavy quark effective theory

    International Nuclear Information System (INIS)

    Balk, S.; Ilakovac, A.; Koerner, J.G.; Pirjol, D.

    1994-01-01

    We point out that there exist two different formulations of the Heavy Quark Effective Theory (HQET). The one formulation of HQET was mostly developed at Harvard and involves the use of the equation of motion to eliminate the small components of the heavy quark field. The second formulation, developed in Mainz, involves a series of Foldy-Wouthuysen-type field transformations which diagonalizes the heavy quark Lagrangian in terms of an effective quark and antiquark sector. Starting at O(1/m Q 2 ) the two formulations are different in that their effective Lagrangians, their effective currents, and their effective wave functions differ. However, when these three differences are properly taken into account, the two alternative formulations lead to identical transition or S-matrix elements. This is demonstrated in an explicit example at O(1/m Q 2 ). We point to an essential difficulty of the Harvard HQET in that the Harvard effective fields are not properly normalized starting at order O(1/m Q 2 ). We provide explicit higher order expressions for the effective fields and the Lagrangian in the Mainz approach, and write down an O(1/m Q 2 ) nonabelian version of the Pauli equation for the heavy quark effective field. (orig.)

  7. Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time

    Science.gov (United States)

    Noble, J. H.; Jentschura, U. D.

    2016-03-01

    We investigate the spin-1 /2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electrogravitational correction terms to the potential proportional to αnG , where α is the fine-structure constant and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic coupling. The resulting spectrum of radially symmetric, electrostatically bound systems (with gravitational corrections) is evaluated for example cases.

  8. Spectra of heavy-light mesons in a relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)

    2017-05-15

    The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)

  9. Spin Hall effect on a noncommutative space

    International Nuclear Information System (INIS)

    Ma Kai; Dulat, Sayipjamal

    2011-01-01

    We study the spin-orbital interaction and the spin Hall effect of an electron moving on a noncommutative space under the influence of a vector potential A(vector sign). On a noncommutative space, we find that the commutator between the vector potential A(vector sign) and the electric potential V 1 (r(vector sign)) of the lattice induces a new term, which can be treated as an effective electric field, and the spin Hall conductivity obtains some correction. On a noncommutative space, the spin current and spin Hall conductivity have distinct values in different directions, and depend explicitly on the noncommutative parameter. Once this spin Hall conductivity in different directions can be measured experimentally with a high level of accuracy, the data can then be used to impose bounds on the value of the space noncommutativity parameter. We have also defined a new parameter, σ=ρθ (ρ is the electron concentration, θ is the noncommutativity parameter), which can be measured experimentally. Our approach is based on the Foldy-Wouthuysen transformation, which gives a general Hamiltonian of a nonrelativistic electron moving on a noncommutative space.

  10. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    Science.gov (United States)

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  11. Exact Solutions to a Combined sinh-cosh-Gordon Equation

    International Nuclear Information System (INIS)

    Wei Long

    2010-01-01

    Based on a transformed Painleve property and the variable separated ODE method, a function transformation method is proposed to search for exact solutions of some partial differential equations (PDEs) with hyperbolic or exponential functions. This approach provides a more systematical and convenient handling of the solution process of this kind of nonlinear equations. Its key point is to eradicate the hyperbolic or exponential terms by a transformed Painleve property and reduce the given PDEs to a variable-coefficient ordinary differential equations, then we seek for solutions to the resulting equations by some methods. As an application, exact solutions for the combined sinh-cosh-Gordon equation are formally derived. (general)

  12. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  13. CONDITIONS FOR EXACT CAVALIERI ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mónica Tinajero-Bravo

    2014-03-01

    Full Text Available Exact Cavalieri estimation amounts to zero variance estimation of an integral with systematic observations along a sampling axis. A sufficient condition is given, both in the continuous and the discrete cases, for exact Cavalieri sampling. The conclusions suggest improvements on the current stereological application of fractionator-type sampling.

  14. Stochastic epidemic-type model with enhanced connectivity: exact solution

    International Nuclear Information System (INIS)

    Williams, H T; Mazilu, I; Mazilu, D A

    2012-01-01

    We present an exact analytical solution to a one-dimensional model of the susceptible–infected–recovered (SIR) epidemic type, with infection rates dependent on nearest-neighbor occupations. We use a quantum mechanical approach, transforming the master equation via a quantum spin operator formulation. We calculate exactly the time-dependent density of infected, recovered and susceptible populations for random initial conditions. Our results compare well with those of previous work, validating the model as a useful tool for additional and extended studies in this important area. Our model also provides exact solutions for the n-point correlation functions, and can be extended to more complex epidemic-type models

  15. Pseudo-classical theory of Majorana-Weyl particle

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.

    1996-01-01

    A pseudo-classical theory of Weyl particle in the space-time dimensions D = 2 n is constructed. The canonical quantization of that pseudo-classical theory is carried out and it results in the theory of the D = 2 n dimensional Weyl particle in the Foldy-Wouthuysen representation. 28 refs

  16. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  17. Exact solutions to sine-Gordon-type equations

    International Nuclear Information System (INIS)

    Liu Shikuo; Fu Zuntao; Liu Shida

    2006-01-01

    In this Letter, sine-Gordon-type equations, including single sine-Gordon equation, double sine-Gordon equation and triple sine-Gordon equation, are systematically solved by Jacobi elliptic function expansion method. It is shown that different transformations for these three sine-Gordon-type equations play different roles in obtaining exact solutions, some transformations may not work for a specific sine-Gordon equation, while work for other sine-Gordon equations

  18. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  19. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  20. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  1. A simple method for generating exactly solvable quantum mechanical potentials

    CERN Document Server

    Williams, B W

    1993-01-01

    A simple transformation method permitting the generation of exactly solvable quantum mechanical potentials from special functions solving second-order differential equations is reviewed. This method is applied to Gegenbauer polynomials to generate an attractive radial potential. The relationship of this method to the determination of supersymmetric quantum mechanical superpotentials is discussed, and the superpotential for the radial potential is also derived. (author)

  2. Exact solitary waves of the Fisher equation

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given

  3. Exact models for isotropic matter

    Science.gov (United States)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  4. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  5. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  6. Criteria for exact qudit universality

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; O'Leary, Dianne P.; Bullock, Stephen S.

    2005-01-01

    We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H jk x =(ℎ/2π)Ω(vertical bar k> jk y =(ℎ/2π)Ω(i vertical bar k> jk x,y are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=(ℎ/2π)Ω vertical bar d-1,d-1> 87 Rb and construct an optimal gate sequence using Raman laser pulses

  7. Exact discretization of Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2016-01-08

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  8. Exact discretization of Schrödinger equation

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2016-01-01

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  9. Quantized Bogoliubov transformations

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1984-01-01

    The boson mapping of single fermion operators in a situation dominated by the pairing force gives rise to a transformation that can be considered a quantized version of the Bogoliubov transformation. This transformation can also be obtained as an exact special case of operators constructed from an approximate treatment of particle number projection, suggesting a method of obtaining the boson mapping in cases more complicated than that of pairing force domination

  10. Duality invariant class of exact string backgrounds

    CERN Document Server

    Klimcík, C

    1994-01-01

    We consider a class of $2+D$ - dimensional string backgrounds with a target space metric having a covariantly constant null Killing vector and flat `transverse' part. The corresponding sigma models are invariant under $D$ abelian isometries and are transformed by $O(D,D)$ duality into models belonging to the same class. The leading-order solutions of the conformal invariance equations (metric, antisymmetric tensor and dilaton), as well as the action of $O(D,D)$ duality transformations on them, are exact, i.e. are not modified by $\\a'$-corrections. This makes a discussion of different space-time representations of the same string solution (related by $O(D,D|Z)$ duality subgroup) rather explicit. We show that the $O(D,D)$ duality may connect curved $2+D$-dimensional backgrounds with solutions having flat metric but, in general, non-trivial antisymmetric tensor and dilaton. We discuss several particular examples including the $2+D=4$ - dimensional background that was recently interpreted in terms of a WZW model.

  11. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  12. Painlevé test for integrability and exact solutions for the field ...

    Indian Academy of Sciences (India)

    - tion between two pairs of solutions. ... have been rediscovered. Keywords. Painlevé analysis; integrability; auto-Backlund transformations; exact solu- ..... [8] H Yoshida, Celestial Mechanics 81, 363 (1983). [9] H Yoshida, Celestial Mechanics ...

  13. Symmetry and exact solutions of nonlinear spinor equations

    International Nuclear Information System (INIS)

    Fushchich, W.I.; Zhdanov, R.Z.

    1989-01-01

    This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)

  14. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  15. Duality and self-duality (energy reflection symmetry) of quasi-exactly solvable periodic potentials

    International Nuclear Information System (INIS)

    Dunne, Gerald V.; Shifman, M.

    2002-01-01

    A class of spectral problems with a hidden Lie-algebraic structure is considered. We define a duality transformation which maps the spectrum of one quasi-exactly solvable (QES) periodic potential to that of another QES periodic potential. The self-dual point of this transformation corresponds to the energy-reflection symmetry found previously for certain QES systems. The duality transformation interchanges bands at the bottom (top) of the spectrum of one potential with gaps at the top (bottom) of the spectrum of the other, dual, potential. Thus, the duality transformation provides an exact mapping between the weak coupling (perturbative) and semiclassical (nonperturbative) sectors

  16. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  17. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  18. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  19. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Physik, WA THEP, Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-06-13

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These “exact effective couplings” encode the finite, relative renormalization between the N=2 and the N=4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  20. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  1. Exact analytic solutions generated from stipulated Morse and trigonometric Scarf potentials

    International Nuclear Information System (INIS)

    Saikia, N; Ahmed, S A S

    2011-01-01

    The extended transformation method has been applied to the exactly solvable stipulated Morse potential and trigonometric Scarf potential, to generate a set of exactly solvable quantum systems (QSs) in any chosen dimension. Bound state solutions of the exactly solvable potentials are given. The generated QSs are generally of Sturmian form. We also report a system case-specific regrouping technique to convert a Sturmian QS to a normal QS. A second-order application of the transformation method is given. The normalizability of the generated QSs is generally given in Sturmian form.

  2. Exact renormalization group for gauge theories

    International Nuclear Information System (INIS)

    Balaban, T.; Imbrie, J.; Jaffe, A.

    1984-01-01

    Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study

  3. Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

    International Nuclear Information System (INIS)

    Hinschberger Schreiber, Yannick

    2012-01-01

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac's formalism. By means of the Foldy-Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin-field electronic Hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit Hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulomb interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined. (author) [fr

  4. Noncommutativity into Dirac Equation with mass dependent on the position

    International Nuclear Information System (INIS)

    Bastos, Samuel Batista; Almeida, Carlos Alberto Santos; Nunes, Luciana Angelica da Silva

    2013-01-01

    Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)

  5. Exact Synthesis of Reversible Circuits Using A* Algorithm

    Science.gov (United States)

    Datta, K.; Rathi, G. K.; Sengupta, I.; Rahaman, H.

    2015-06-01

    With the growing emphasis on low-power design methodologies, and the result that theoretical zero power dissipation is possible only if computations are information lossless, design and synthesis of reversible logic circuits have become very important in recent years. Reversible logic circuits are also important in the context of quantum computing, where the basic operations are reversible in nature. Several synthesis methodologies for reversible circuits have been reported. Some of these methods are termed as exact, where the motivation is to get the minimum-gate realization for a given reversible function. These methods are computationally very intensive, and are able to synthesize only very small functions. There are other methods based on function transformations or higher-level representation of functions like binary decision diagrams or exclusive-or sum-of-products, that are able to handle much larger circuits without any guarantee of optimality or near-optimality. Design of exact synthesis algorithms is interesting in this context, because they set some kind of benchmarks against which other methods can be compared. This paper proposes an exact synthesis approach based on an iterative deepening version of the A* algorithm using the multiple-control Toffoli gate library. Experimental results are presented with comparisons with other exact and some heuristic based synthesis approaches.

  6. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  7. Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method

    International Nuclear Information System (INIS)

    Bekir Ahmet; Güner Özkan

    2013-01-01

    In this paper, we use the fractional complex transform and the (G′/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann—Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations

  8. New Exact Solutions for the Wick-Type Stochastic Kudryashov–Sinelshchikov Equation

    International Nuclear Information System (INIS)

    Ray, S. Saha; Singh, S.

    2017-01-01

    In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space. (paper)

  9. Exact wavefunctions for a time-dependent Coulomb potential

    International Nuclear Information System (INIS)

    Menouar, S; Maamache, M; Saadi, Y; Choi, J R

    2008-01-01

    The one-dimensional Schroedinger equation associated with a time-dependent Coulomb potential is studied. The invariant operator method (Lewis and Riesenfeld) and unitary transformation approach are employed to derive quantum solutions of the system. We obtain an ordinary second-order differential equation whose analytical exact solution has been unknown. It is confirmed that the form of this equation is similar to the radial Schroedinger equation for the hydrogen atom in a (arbitrary) strong magnetic field. The qualitative properties for the eigenstates spectrum are described separately for the different values of the parameter ω 0 appearing in the x 2 term, x being the position, i.e., ω 0 > 0, ω 0 0 = 0. For the ω 0 = 0 case, the eigenvalue equation of invariant operator reduces to a solvable form and, consequently, we have provided exact eigenstates of the time-dependent Hamiltonian system

  10. Extremal black holes as exact string solutions

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in α' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five-dimensional background which is proved to be an exact string solution

  11. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  12. On exact solutions of scattering problems

    International Nuclear Information System (INIS)

    Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.

    1982-01-01

    Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived

  13. Quasi exact solution of the Rabi Hamiltonian

    CERN Document Server

    Koç, R; Tuetuencueler, H

    2002-01-01

    A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.

  14. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  15. Quasi exactly solvable operators and abstract associative algebras

    International Nuclear Information System (INIS)

    Brihaye, Y.; Kosinski, P.

    1998-01-01

    We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra

  16. Exact quantization conditions for the relativistic Toda lattice

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Mariño, Marcos

    2016-01-01

    Inspired by recent connections between spectral theory and topological string theory, we propose exact quantization conditions for the relativistic Toda lattice of N particles. These conditions involve the Nekrasov-Shatashvili free energy, which resums the perturbative WKB expansion, but they require in addition a non-perturbative contribution, which is related to the perturbative result by an S-duality transformation of the Planck constant. We test the quantization conditions against explicit calculations of the spectrum for N=3. Our proposal can be generalized to arbitrary toric Calabi-Yau manifolds and might solve the corresponding quantum integrable system of Goncharov and Kenyon.

  17. The exact effects of radiation and joule heating on magnetohydrodynamic Marangoni convection over a flat surface

    Directory of Open Access Journals (Sweden)

    Khaled S.M.

    2018-01-01

    Full Text Available In this paper, we re-investigate the problem describing effects of radiation, Joule heating, and viscous dissipation on magnetohydrodynamic Marangoni convection boundary layer over a flat surface with suction/injection. The analytical solution obtained for the reduced system of non-linear-coupled differential equations governing the problem. Laplace transform successfully implemented to get the exact expression for the temperature profile. Furthermore, comparing the current exact results with approximate numerical results obtained using Runge-Kutta-Fehlberg method is introduced. These comparisons declare that the published numerical results agree with the current exact results. In addition, the effects of various parameters on the temperature profile are discussed graphically.

  18. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  19. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  20. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  1. Exact EGB models for spherical static perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hansraj, Sudan; Chilambwe, Brian; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2015-06-15

    We obtain a new exact solution to the field equations for a 5-dimensional spherically symmetric static distribution in the Einstein-Gauss-Bonnet modified theory of gravity. By using a transformation, the study is reduced to the analysis of a single second order nonlinear differential equation. In general the condition of pressure isotropy produces a first order differential equation which is an Abel equation of the second kind. An exact solution is found. The solution is examined for physical admissibility. In particular a set of constants is found which ensures that a pressure-free hypersurface exists which defines the boundary of the distribution. Additionally the isotropic pressure and the energy density are shown to be positive within the radius of the sphere. The adiabatic sound-speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution. On setting the Gauss-Bonnet coupling to zero, an exact solution for 5-dimensional perfect fluids in the standard Einstein theory is obtained. Plots of the dynamical quantities for the Gauss-Bonnet and the Einstein case reveal that the pressure is unaffected, while the energy density increases under the influence of the Gauss-Bonnet term. (orig.)

  2. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  3. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  4. New exact wave solutions for Hirota equation

    Indian Academy of Sciences (India)

    2Department of Engineering Sciences, Faculty of Technology and Engineering,. University ... of nonlinear partial differential equations (NPDEs) in mathematical physics. Keywords. ... This method has been successfully applied to obtain exact.

  5. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels

    2012-01-01

    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  6. On exactly soluble model in quantum electrodynamics

    International Nuclear Information System (INIS)

    Bogolubov, N.N.; Shumovsky, A.S.; Fam Le Kien

    1984-01-01

    Equations of motion describing the dynamics of three-level atom of ladder type interacting with two modes of quantized radiation field are solved exactly. Evolution of level population and photon rumbers under different unitial conditions is irvestigated

  7. New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2013-01-01

    Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.

  8. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  9. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  10. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  11. Exact solution of the hidden Markov processes

    Science.gov (United States)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  12. Classes of exact Einstein Maxwell solutions

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  13. New approach to the exact solution of viscous flow due to stretching (shrinking and porous sheet

    Directory of Open Access Journals (Sweden)

    Azhar Ali

    Full Text Available Exact analytical solutions for the generalized stretching (shrinking of a porous surface, for the variable suction (injection velocity, is presented in this paper. The solution is generalized in the sense that the existing solutions that correspond to various stretching velocities are recovered as a special case of this study. A suitable similarity transformation is introduced to find self-similar solution of the non-linear governing equations. The flow is characterized by a few non-dimensional parameters signifying the problem completely. These parameters are such that the whole range of stretching (shrinking problems discussed earlier can be recovered by assigning appropriate values to these parameters. A key point of the whole narrative is that a number of earlier works can be abridged into one generalized problem through the introduction of a new similarity transformation and finding its exact solution encompassing all the earlier solutions. Keywords: Exact solutions, New similarities, Permeable and moving sheet

  14. New quasi-exactly solvable Hermitian as well as non-Hermitian PT ...

    Indian Academy of Sciences (India)

    Abstract. We start with quasi-exactly solvable (QES) Hermitian (and hence real) as ... the time reversal transformation t → −t and further, one replaces i → −i. One can ..... F M Fernandez, R Guardiola, J Ros and M Znojil, J. Phys. A32, 3105 ...

  15. New quasi-exactly solvable Hermitian as well as non-Hermitian PT ...

    Indian Academy of Sciences (India)

    We start with quasi-exactly solvable (QES) Hermitian (and hence real) as well as complex P T -invariant, double sinh-Gordon potential and show that even after adding perturbation terms, the resulting potentials, in both cases, are still QES potentials. Further, by using anti-isospectral transformations, we obtain Hermitian as ...

  16. The fractional coupled KdV equations: Exact solutions and white noise functional approach

    International Nuclear Information System (INIS)

    Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah

    2013-01-01

    Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)

  17. Three Dimensional Fast Exact Euclidean Distance (3D-FEED) Maps

    NARCIS (Netherlands)

    Latecki, L.J.; Schouten, Theo E.; Mount, D.M.; Kuppens, Harco C.; Wu, A.Y.; van den Broek, Egon

    2006-01-01

    In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. Recently, the Fast Exact Euclidean Distance (FEED) transformation was launched. In this paper, we present the three dimensional (3D) version of

  18. Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation

    Directory of Open Access Journals (Sweden)

    Hongwei Yang

    2012-01-01

    Full Text Available We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation. By employing the Lie group method of infinitesimal transformations, symmetry reductions and similarity solutions of the governing equation are given. Based on discrete symmetries analysis, two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid Burgers equation.

  19. On a revisit to the Painlevé test for integrability and exact solutions ...

    Indian Academy of Sciences (India)

    ... the same equations and keeping the singularity manifold completely general in nature. It has been found that the equations, in real form, pass the Painlevé test for integrability. The truncation procedure of the same analysis leads to non-trivial exact solutions obtained previously and auto-Backlund transformation between ...

  20. Exactly solvable energy-dependent potentials

    International Nuclear Information System (INIS)

    Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.

    2009-01-01

    We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.

  1. Exact relativistic cylindrical solution of disordered radiation

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da; Wolk, I.; Som, M.M.

    1976-05-01

    A source free disordered distribution of electromagnetic radiation is considered in Einstein' theory, and a time independent exact solution with cylindrical symmetry is obtained. The gravitation and pressure effects of the radiation alone are sufficient to give the distribution an equilibrium. A finite maximum concentration is found on the axis of symmetry, and decreases monotonically to zero outwards. Timelike and null geodesics are discussed

  2. New exact solutions for two nonlinear equations

    International Nuclear Information System (INIS)

    Wang Quandi; Tang Minying

    2008-01-01

    In this Letter, we investigate two nonlinear equations given by u t -u xxt +3u 2 u x =2u x u xx +uu xxx and u t -u xxt +4u 2 u x =3u x u xx +uu xxx . Through some special phase orbits we obtain four new exact solutions for each equation above. Some previous results are extended

  3. Exact Optimum Design of Segmented Thermoelectric Generators

    Directory of Open Access Journals (Sweden)

    M. Zare

    2016-01-01

    Full Text Available A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs. Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency.

  4. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  5. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  6. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  7. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  8. Exponential x-ray transform

    International Nuclear Information System (INIS)

    Hazou, I.A.

    1986-01-01

    In emission computed tomography one wants to determine the location and intensity of radiation emitted by sources in the presence of an attenuating medium. If the attenuation is known everywhere and equals a constant α in a convex neighborhood of the support of f, then the problem reduces to that of inverting the exponential x-ray transform P/sub α/. The exponential x-ray transform P/sub μ/ with the attenuation μ variable, is of interest mathematically. For the exponential x-ray transform in two dimensions, it is shown that for a large class of approximate δ functions E, convolution kernels K exist for use in the convolution backprojection algorithm. For the case where the attenuation is constant, exact formulas are derived for calculating the convolution kernels from radial point spread functions. From these an exact inversion formula for the constantly attenuated transform is obtained

  9. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  10. Frames for exact inversion of the rank order coder.

    Science.gov (United States)

    Masmoudi, Khaled; Antonini, Marc; Kornprobst, Pierre

    2012-02-01

    Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe et al. who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in [1] a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to [1]. Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.

  11. Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for the Feshbach resonance

    International Nuclear Information System (INIS)

    Sparenberg, Jean-Marc; Samsonov, Boris F; Foucart, Francois; Baye, Daniel

    2006-01-01

    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behaviour of solutions at the origin. Contrary to the usual transformations, these 'non-conservative' transformations allow, in the presence of thresholds, the construction of well-behaved potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of the Feshbach-resonance phenomenon. (letter to the editor)

  12. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  13. Exact computation of the 9-j symbols

    International Nuclear Information System (INIS)

    Lai Shantao; Chiu Jingnan

    1992-01-01

    A useful algebraic formula for the 9-j symbol has been rewritten for convenient use on a computer. A simple FORTRAN program for the exact computation of 9-j symbols has been written for the VAX with VMS version V5,4-1 according to this formula. The results agree with the approximate values in existing literature. Some specific values of 9-j symbols needed for the intensity and alignments of three-photon nonresonant transitions are tabulated. Approximate 9-j symbol values beyond the limitation of the computer can also be computed by this program. The computer code of the exact computation of 3-j, 6-j and 9-j symbols are available through electronic mail upon request. (orig.)

  14. Lattice sigma models with exact supersymmetry

    International Nuclear Information System (INIS)

    Simon Catterall; Sofiane Ghadab

    2004-01-01

    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)

  15. Model checking exact cost for attack scenarios

    DEFF Research Database (Denmark)

    Aslanyan, Zaruhi; Nielson, Flemming

    2017-01-01

    Attack trees constitute a powerful tool for modelling security threats. Many security analyses of attack trees can be seamlessly expressed as model checking of Markov Decision Processes obtained from the attack trees, thus reaping the benefits of a coherent framework and a mature tool support....... However, current model checking does not encompass the exact cost analysis of an attack, which is standard for attack trees. Our first contribution is the logic erPCTL with cost-related operators. The extended logic allows to analyse the probability of an event satisfying given cost bounds and to compute...... the exact cost of an event. Our second contribution is the model checking algorithm for erPCTL. Finally, we apply our framework to the analysis of attack trees....

  16. Exact folded-band chaotic oscillator.

    Science.gov (United States)

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  17. Exact geodesic distances in FLRW spacetimes

    Science.gov (United States)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  18. New exact solutions of the Dirac equation

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Lavrov, P.M.; Shapovalov, V.N.

    1980-01-01

    Search for new exact solutions of the Dirac and Klein-Gordon equations are in progress. Considered are general properties of the Dirac equation solutions for an electron in a purely magnetic field, in combination with a longitudinal magnetic and transverse electric fields. New solutions for the equations of charge motion in an electromagnetic field of axial symmetry and in a nonstationary field of a special form have been found for potentials selected concretely

  19. Exact BPS bound for noncommutative baby Skyrmions

    International Nuclear Information System (INIS)

    Domrin, Andrei; Lechtenfeld, Olaf; Linares, Román; Maceda, Marco

    2013-01-01

    The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory

  20. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  1. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  2. Exactly and completely integrable nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Leznov, A.N.; Savel'ev, M.V.

    1987-01-01

    The survey is devoted to a consitent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including generalized (periodic and finite nonperiodic Toda lattice, nonlinear Schroedinger, Korteweg-de Vries, Lotka-Volterra equations, etc.) For exactly integrable systems the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed. Application of the developed methods to a differential geometry problem of classification of the integrable manifolds embeddings is discussed. For exactly integrable systems the supersymmetric extensions are constructed. By the example of the generalized Toda lattice a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their desription in terms of the quantum algebras of the Hopf type. Among multidimensional systems the four-dimensional self-dual Yang-Mills equations are investigated most attentively with a goal of constructing their general solutions

  3. Exact theory of freeze-out

    International Nuclear Information System (INIS)

    Cannoni, Mirco

    2015-01-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x * = m χ /T * . The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y 0 , is where the maximum departure of the WIMPs abundance Y from the thermal value Y 0 is reached. For each mass m χ and total annihilation cross section left angle σ ann υ r right angle, the temperature x * and the actual WIMPs abundance Y(x * ) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x * . The matching of the two abundances at x * is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  4. Exact theory of freeze-out

    Science.gov (United States)

    Cannoni, Mirco

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.

  5. Exact Theory of Compressible Fluid Turbulence

    Science.gov (United States)

    Drivas, Theodore; Eyink, Gregory

    2017-11-01

    We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.

  6. Regarding on the exact solutions for the nonlinear fractional differential equations

    Directory of Open Access Journals (Sweden)

    Kaplan Melike

    2016-01-01

    Full Text Available In this work, we have considered the modified simple equation (MSE method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW and the modified equal width (mEW equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.

  7. Exact Solutions for Fractional Differential-Difference Equations by an Extended Riccati Sub-ODE Method

    International Nuclear Information System (INIS)

    Feng Qinghua

    2013-01-01

    In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann—Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established. (general)

  8. Quasi-exact solutions of nonlinear differential equations

    OpenAIRE

    Kudryashov, Nikolay A.; Kochanov, Mark B.

    2014-01-01

    The concept of quasi-exact solutions of nonlinear differential equations is introduced. Quasi-exact solution expands the idea of exact solution for additional values of parameters of differential equation. These solutions are approximate solutions of nonlinear differential equations but they are close to exact solutions. Quasi-exact solutions of the the Kuramoto--Sivashinsky, the Korteweg--de Vries--Burgers and the Kawahara equations are founded.

  9. Exact solutions of the neutron slowing down equation

    International Nuclear Information System (INIS)

    Dawn, T.Y.; Yang, C.N.

    1976-01-01

    The problem of finding the exact analytic closed-form solution for the neutron slowing down equation in an infinite homogeneous medium is studied in some detail. The existence and unique properties of the solution of this equation for both the time-dependent and the time-independent cases are studied. A direct method is used to determine the solution of the stationary problem. The final result is given in terms of a sum of indefinite multiple integrals by which solutions of some special cases and the Placzek-type oscillation are examined. The same method can be applied to the time-dependent problem with the aid of the Laplace transformation technique, but the inverse transform is, in general, laborious. However, the solutions of two special cases are obtained explicitly. Results are compared with previously reported works in a variety of cases. The time moments for the positive integral n are evaluated, and the conditions for the existence of the negative moments are discussed

  10. Exact theory of freeze-out

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x{sub *} = m{sub χ}/T{sub *}. The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y{sub 0}, is where the maximum departure of the WIMPs abundance Y from the thermal value Y{sub 0} is reached. For each mass m{sub χ} and total annihilation cross section left angle σ{sub ann}υ{sub r} right angle, the temperature x{sub *} and the actual WIMPs abundance Y(x{sub *}) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x{sub *}. The matching of the two abundances at x{sub *} is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  11. An exact solution in Einstein-Cartan

    International Nuclear Information System (INIS)

    Roque, W.L.

    1982-01-01

    The exact solution of the field equations of the Einstein-Cartan theory is obtained for an artificial dust of radially polarized spins, with spherical symmetry and static. For a best estimation of the effect due the spin, the energy-momentum metric tensor is considered null. The gravitational field dynamics is studied for several torsion strengths, through the massive and spinless test-particle moviment, in particular for null torsion Schwarzschild solutions is again obtained. It is observed that the gravitational effects related to the torsin (spin) sometimes are attractives sometimes are repulsives, depending of the torsion values and of the test-particle position and velocity. (L.C.) [pt

  12. Exact renormalization group equations: an introductory review

    Science.gov (United States)

    Bagnuls, C.; Bervillier, C.

    2001-07-01

    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

  13. Exactly soluble problems in statistical mechanics

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    In the last few years, a number of two-dimensional classical and one-dimensional quantum mechanical problems in statistical mechanics have been exactly solved. Although these problems range over models of diverse physical interest, their solutions were obtained using very similar mathematical methods. In these lectures, the main points of the methods are discussed. In this introductory lecture, an overall survey of all these problems without going into the detailed method of solution is given. In later lectures, they shall concentrate on one particular problem: the delta function interaction in one dimension, and go into the details of that problem

  14. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...... optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem....

  15. Exact capacity analysis of multihop transmission over amplify-and-forward relay fading channels

    KAUST Repository

    Yilmaz, Ferkan; Kucur, Oǧuz; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we propose an analytical framework on the exact computation of the average capacity of multihop transmission over amplify-and-forward relay fading channels. Our approach relies on the algebraic combination of Mellin and Laplace transforms to obtain exact single integral expressions which can be easily computed by Gauss-Chebyshev Quadrature (GCQ) rule. As such, the derived results are a convenient tool to analyze the average capacity of multihop transmission over amplify-and-forward relay fading channels. As an application of the analytical framework on the exact computation of the average capacity of multihop transmission, some examples are accentuated for generalized Nakagami-m fading channels. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement. ©2010 IEEE.

  16. Exact capacity analysis of multihop transmission over amplify-and-forward relay fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we propose an analytical framework on the exact computation of the average capacity of multihop transmission over amplify-and-forward relay fading channels. Our approach relies on the algebraic combination of Mellin and Laplace transforms to obtain exact single integral expressions which can be easily computed by Gauss-Chebyshev Quadrature (GCQ) rule. As such, the derived results are a convenient tool to analyze the average capacity of multihop transmission over amplify-and-forward relay fading channels. As an application of the analytical framework on the exact computation of the average capacity of multihop transmission, some examples are accentuated for generalized Nakagami-m fading channels. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement. ©2010 IEEE.

  17. Exact and Heuristic Algorithms for Runway Scheduling

    Science.gov (United States)

    Malik, Waqar A.; Jung, Yoon C.

    2016-01-01

    This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.

  18. Exact model reduction of combinatorial reaction networks

    Directory of Open Access Journals (Sweden)

    Fey Dirk

    2008-08-01

    Full Text Available Abstract Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.

  19. Exact combinatorial approach to finite coagulating systems

    Science.gov (United States)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  20. Exact simulation of max-stable processes.

    Science.gov (United States)

    Dombry, Clément; Engelke, Sebastian; Oesting, Marco

    2016-06-01

    Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.

  1. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  2. Explicitly broken supersymmetry with exactly massless moduli

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Freedman, Daniel Z. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Zhao, Yue [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-16

    The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a supergravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.

  3. Unitary Transformation in Quantum Teleportation

    International Nuclear Information System (INIS)

    Wang Zhengchuan

    2006-01-01

    In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.

  4. Exactly solvable models: the way towards a rigorous treatment of phase transitions in finite systems

    International Nuclear Information System (INIS)

    Bugaev, K.A.

    2007-01-01

    The exact analytical solutions of a variety of statistical models recently obtained for finite systems are thoroughly discussed. Among them are a constrained version of the statistical multifragmentation model, the Bag Model of Gases and the Hills and Dales Model of surface partition. The finite volume analytical solutions of these models were obtained by a novel powerful mathematical method - the Laplace-Fourier transform. The Laplace-Fourier transform allows one to study the nuclear matter equation of state, the equation of state of hadronic and quark-gluon plasma and the surface entropy of large clusters on the same footing. A complete analysis of the isobaric partition singularities of these models is done for finite systems. The developed formalism allows one to exactly define the finite volume analogs of gaseous, liquid and mixed phases of these models from the first principles of statistical mechanics [ru

  5. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  6. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  7. New exact solutions of the Einstein—Maxwell equations for magnetostatic fields

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R.K.

    2012-01-01

    The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein—Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions

  8. A procedure to construct exact solutions of nonlinear fractional differential equations.

    Science.gov (United States)

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  9. Integrals of the motion and exact solutions of the problem of two dispersing delta-wells

    International Nuclear Information System (INIS)

    Man'ko, V.I.; Chikhachev, A.S.

    1998-01-01

    An exact solution is analyzed for the analogs of bound and scattering states in a nonstationary quantum mechanical system whose potential has the form of two dispersing delta-wells. For the delta-potentials explicit (in the form of operator kernels) expressions are found for the integrals of the motion that depend on time and transform to the known integrals of the motion for a free quantum particle as the interaction force with the potential approaches zero

  10. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    International Nuclear Information System (INIS)

    Kamenov, O Y

    2009-01-01

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): u tt = u xx + 3(u 2 ) xx + u xxxx + αu xxxxxx , α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  11. Exact solutions for some discrete models of the Boltzmann equation

    International Nuclear Information System (INIS)

    Cabannes, H.; Hong Tiem, D.

    1987-01-01

    For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr

  12. Independent oscillator model of a heat bath: exact diagonalization of the Hamiltonian

    International Nuclear Information System (INIS)

    Ford, G.W.; Lewis, J.T.; O'Connell, R.F.

    1988-01-01

    The problem of a quantum oscillator coupled to an independent-oscillator model of a heat bath is discussed. The transformation to normal coordinates is explicitly constructed using the method of Ullersma. With this transformation an alternative derivation of an exact formula for the oscillator free energy is constructed. The various contributions to the oscillator energy are calculated, with the aim of further understanding this formula. Finally, the limitations of linear coupling models, such as that used by Ullersma, are discussed in the form of some critical remarks

  13. Exact Solution and Exotic Fluid in Cosmology

    Directory of Open Access Journals (Sweden)

    Phillial Oh

    2012-09-01

    Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.

  14. A search for exact superstring vacua

    CERN Document Server

    Peterman, Andreas; Zichichi, Antonino

    1994-01-01

    We investigate $2d$ sigma-models with a $2+N$ dimensional Minkowski signature target space metric and Killing symmetry, specifically supersymmetrized, and see under which conditions they might lead to corresponding exact string vacua. It appears that the issue relies heavily on the properties of the vector $M_{\\mu}$, a reparametrization term, which needs to possess a definite form for the Weyl invariance to be satisfied. We give, in the $n = 1$ supersymmetric case, two non-renormalization theorems from which we can relate the $u$ component of $M_{\\mu}$ to the $\\beta^G_{uu}$ function. We work out this $(u,u)$ component of the $\\beta^G$ function and find a non-vanishing contribution at four loops. Therefore, it turns out that at order $\\alpha^{\\prime 4}$, there are in general non-vanishing contributions to $M_u$ that prevent us from deducing superstring vacua in closed form.

  15. Interference-exact radiative transfer equation

    DEFF Research Database (Denmark)

    Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani

    2017-01-01

    Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....

  16. Exact iterative reconstruction for the interior problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2009-01-01

    There is a trend in single photon emission computed tomography (SPECT) that small and dedicated imaging systems are becoming popular. For example, many companies are developing small dedicated cardiac SPECT systems with different designs. These dedicated systems have a smaller field of view (FOV) than a full-size clinical system. Thus data truncation has become the norm rather than the exception in these systems. Therefore, it is important to develop region of interest (ROI) reconstruction algorithms using truncated data. This paper is a stepping stone toward this direction. This paper shows that the common generic iterative image reconstruction algorithms are able to exactly reconstruct the ROI under the conditions that the convex ROI is fully sampled and the image value in a sub-region within the ROI is known. If the ROI includes a sub-region that is outside the patient body, then the conditions can be easily satisfied.

  17. On truncations of the exact renormalization group

    CERN Document Server

    Morris, T R

    1994-01-01

    We investigate the Exact Renormalization Group (ERG) description of (Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,\\dots, obtained by expanding about the field \\varphi=0 and discarding all powers \\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.

  18. Exact solutions to operator differential equations

    International Nuclear Information System (INIS)

    Bender, C.M.

    1992-01-01

    In this talk we consider the Heisenberg equations of motion q = -i(q, H), p = -i(p, H), for the quantum-mechanical Hamiltonian H(p, q) having one degree of freedom. It is a commonly held belief that such operator differential equations are intractable. However, a technique is presented here that allows one to obtain exact, closed-form solutions for huge classes of Hamiltonians. This technique, which is a generalization of the classical action-angle variable methods, allows us to solve, albeit formally and implicitly, the operator differential equations of two anharmonic oscillators whose Hamiltonians are H = p 2 /2 + q 4 /4 and H = p 4 /4 + q 4 /4

  19. Exact solutions to chaotic and stochastic systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.; Guerrero, L. E.

    2001-03-01

    We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of these functions can produce truly random numbers. For the first time, we present solutions to random maps. This allows us to check, analytically, some recent results about the complexity of random dynamical systems. We confirm the result that a negative Lyapunov exponent does not imply predictability in random systems. We test the effectiveness of forecasting methods in distinguishing between chaotic and random time series. Using the explicit random functions, we can give explicit analytical formulas for the output signal in some systems with stochastic resonance. We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our models we can predict specific patterns in the output signal of stochastic resonance systems.

  20. Exactly soluble QCD and confinement of quarks

    International Nuclear Information System (INIS)

    Rusakov, B.

    1997-01-01

    An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)

  1. Exact classical scaling formalism for nonreactive processes

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1981-01-01

    A general nonreactive collision system is considered with internal molecular variables (p, r) and/or (I, theta) of arbitrary dimensions and relative translational variables (P, R) of three or less dimensions. We derive an exact classical scaling formalism which relates the collisional change in any function of molecular variables directly to the initial values of these variables. The collision dynamics is then described by an explicit function of the initial point in the internal molecular phase space, for a fixed point in the relative translational phase space. In other words, the systematic variation of the internal molecular properties (e.g., actions and average internal kinetic energies) is given as a function of the initial internal action-angle variables. A simple three term approximation to the exact formalism is derived, the natural variables of which are the internal action I and internal linear momenta p. For the final average internal kinetic energies T, the result is T-T/sup( 0 ) = α+βp/sup( 0 )+γI/sup( 0 ), where the superscripted ''0'' indicates the initial value. The parameters α, β, and γ in this scaling theory are directly related to the moments of the change in average internal kinetic energy. Utilizing a very limited number of input moments generated from classical trajectory calculations, the scaling can be used to predict the entire distribution of final internal variables as a function of initial internal actions and linear momenta. Initial examples for atom--collinear harmonic oscillator collision systems are presented in detail, with the scaling predictions (e.g., moments and quasiclassical histogram transition probabilities) being generally very good to excellent quantitatively

  2. New exact solutions of the mBBM equation

    International Nuclear Information System (INIS)

    Zhang Zhe; Li Desheng

    2013-01-01

    The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin-Bona-Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations. (authors)

  3. New Potentials for Old: The Darboux Transformation in Quantum Mechanics

    Science.gov (United States)

    Williams, Brian Wesley; Celius, Tevye C.

    2008-01-01

    The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…

  4. INDEFINITE COPOSITIVE MATRICES WITH EXACTLY ONE POSITIVE EIGENVALUE OR EXACTLY ONE NEGATIVE EIGENVALUE

    NARCIS (Netherlands)

    Jargalsaikhan, Bolor

    Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out

  5. Transformative Learning

    Science.gov (United States)

    Wang, Victor C. X.; Cranton, Patricia

    2011-01-01

    The theory of transformative learning has been explored by different theorists and scholars. However, few scholars have made an attempt to make a comparison between transformative learning and Confucianism or between transformative learning and andragogy. The authors of this article address these comparisons to develop new and different insights…

  6. Exact solitary waves of the Korteveg - de Vries - Burgers equation

    OpenAIRE

    Kudryashov, N. A.

    2004-01-01

    New approach is presented to search exact solutions of nonlinear differential equations. This method is used to look for exact solutions of the Korteveg -- de Vries -- Burgers equation. New exact solitary waves of the Korteveg -- de Vries -- Burgers equation are found.

  7. Transformation kinetics for nucleus clusters

    International Nuclear Information System (INIS)

    Villa, Elena; Rios, Paulo R.

    2009-01-01

    A rigorous mathematical approach based on stochastic geometry concepts is presented to extend previous Johnson-Mehl, Avrami, Kolmogorov treatment of transformation kinetics to situations in which nuclei are not homogeneously located in space but are located in clusters. An exact analytical solution is presented here for the first time assuming that nucleation sites follow a Matern cluster process. The influence of Matern cluster process parameters on subsequent growth kinetics and the microstructural path are illustrated by means of numerical examples. Moreover, using the superposition principle, exact analytical solutions are also obtained when nucleation takes place by a combination of a Matern cluster process and an inhomogeneous Poisson point process. The new solutions presented here significantly increase the number of exactly solvable cases available to formal kinetics.

  8. Backlund transformations as canonical transformations

    International Nuclear Information System (INIS)

    Villani, A.; Zimerman, A.H.

    1977-01-01

    Toda and Wadati as well as Kodama and Wadati have shown that the Backlund transformations, for the exponential lattice equation, sine-Gordon equation, K-dV (Korteweg de Vries) equation and modifies K-dV equation, are canonical transformation. It is shown that the Backlund transformation for the Boussinesq equation, for a generalized K-dV equation, for a model equation for shallow water waves and for the nonlinear Schroedinger equation are also canonical transformations [pt

  9. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    Science.gov (United States)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  10. Exact cone beam CT with a spiral scan

    International Nuclear Information System (INIS)

    Tam, K.C.; Samarasekera, S.; Sauer, F.

    1998-01-01

    A method is developed which makes it possible to scan and reconstruct an object with cone beam x-rays in a spiral scan path with area detectors much shorter than the length of the object. The method is mathematically exact. If only a region of interest of the object is to be imaged, a top circle scan at the top level of the region of interest and a bottom circle scan at the bottom level of the region of interest are added. The height of the detector is required to cover only the distance between adjacent turns in the spiral projected at the detector. To reconstruct the object, the Radon transform for each plane intersecting the object is computed from the totality of the cone beam data. This is achieved by suitably combining the cone beam data taken at different source positions on the scan path; the angular range of the cone beam data required at each source position can be determined easily with a mask which is the spiral scan path projected on the detector from the current source position. The spiral scan algorithm has been successfully validated with simulated cone beam data. (author)

  11. Exact-exchange-based quasiparticle calculations

    International Nuclear Information System (INIS)

    Aulbur, Wilfried G.; Staedele, Martin; Goerling, Andreas

    2000-01-01

    One-particle wave functions and energies from Kohn-Sham calculations with the exact local Kohn-Sham exchange and the local density approximation (LDA) correlation potential [EXX(c)] are used as input for quasiparticle calculations in the GW approximation (GWA) for eight semiconductors. Quasiparticle corrections to EXX(c) band gaps are small when EXX(c) band gaps are close to experiment. In the case of diamond, quasiparticle calculations are essential to remedy a 0.7 eV underestimate of the experimental band gap within EXX(c). The accuracy of EXX(c)-based GWA calculations for the determination of band gaps is as good as the accuracy of LDA-based GWA calculations. For the lowest valence band width a qualitatively different behavior is observed for medium- and wide-gap materials. The valence band width of medium- (wide-) gap materials is reduced (increased) in EXX(c) compared to the LDA. Quasiparticle corrections lead to a further reduction (increase). As a consequence, EXX(c)-based quasiparticle calculations give valence band widths that are generally 1-2 eV smaller (larger) than experiment for medium- (wide-) gap materials. (c) 2000 The American Physical Society

  12. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  13. STELLAR: fast and exact local alignments

    Directory of Open Access Journals (Sweden)

    Weese David

    2011-10-01

    Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

  14. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon

    Aggregating formulations is a powerful approach for transforming problems into taking more tractable forms. Aggregated formulations can, though, have drawbacks: some information may get lost in the aggregation and { put in a branch-and-bound context { branching may become very di_cult and even....... The paper includes general considerations on types of problems for which the method is of particular interest. Furthermore, we prove the correctness of the procedure and consider how to include extensions such as cutting planes and advanced branching strategies....

  15. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    Directory of Open Access Journals (Sweden)

    Rahmatullah

    2018-03-01

    Full Text Available We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses. Keywords: Exp-function method, New exact traveling wave solutions, Modified Riemann-Liouville derivative, Fractional complex transformation, Fractional order Boussinesq-like equations, Symbolic computation

  16. Exact partial solution to the steady-state, compressible fluid flow problems of jet formation and jet penetration

    International Nuclear Information System (INIS)

    Karpp, R.R.

    1980-10-01

    This report treats analytically the problem of the symmetric impact of two compressible fluid streams. The flow is assumed to be steady, plane, inviscid, and subsonic and that the compressible fluid is of the Chaplygin (tangent gas) type. In the analysis, the governing equations are first transformed to the hodograph plane where an exact, closed-form solution is obtained by standard techniques. The distributions of fluid properties along the plane of symmetry as well as the shapes of the boundary streamlines are exactly determined by transforming the solution back to the physical plane. The problem of a compressible fluid jet penetrating into an infinite target of similar material is also exactly solved by considering a limiting case of this solution. This new compressible flow solution reduces to the classical result of incompressible flow theory when the sound speed of the fluid is allowed to approach infinity. Several illustrations of the differences between compressible and incompressible flows of the type considered are presented

  17. Hadamard Transforms

    CERN Document Server

    Agaian, Sos; Egiazarian, Karen; Astola, Jaakko

    2011-01-01

    The Hadamard matrix and Hadamard transform are fundamental problem-solving tools in a wide spectrum of scientific disciplines and technologies, such as communication systems, signal and image processing (signal representation, coding, filtering, recognition, and watermarking), digital logic (Boolean function analysis and synthesis), and fault-tolerant system design. Hadamard Transforms intends to bring together different topics concerning current developments in Hadamard matrices, transforms, and their applications. Each chapter begins with the basics of the theory, progresses to more advanced

  18. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  19. Canonical transformations and hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms

  20. Quantum decoration transformation for spin models

    Energy Technology Data Exchange (ETDEWEB)

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre, E-mail: ors@dfi.ufla.br

    2016-09-15

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  1. Quantum decoration transformation for spin models

    International Nuclear Information System (INIS)

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre

    2016-01-01

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  2. Time measurement - technical importance of most exact clocks

    International Nuclear Information System (INIS)

    Goebel, E.O.; Riehle, F.

    2004-01-01

    The exactness of the best atomic clocks currently shows a temporal variation of 1 second in 30 million years. This means that we have reached the point of the most exact frequency and time measurement ever. In the past, there was a trend towards increasing the exactness in an increasingly fast sequence. Will this trend continue? And who will profit from it? This article is meant to give answers to these questions. This is done by presenting first the level reached currently with the best atomic clocks and describing the research activities running worldwide with the aim of achieving even more exact clocks. In the second part, we present examples of various areas of technical subjects and research in which the most exact clocks are being applied presently and even more exact ones will be needed in the future [de

  3. An improved exact inversion formula for solenoidal fields in cone beam vector tomography

    Science.gov (United States)

    Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas

    2017-06-01

    In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.

  4. Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields

    International Nuclear Information System (INIS)

    Baxter, Mathew; Van Gorder, Robert A

    2013-01-01

    We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)

  5. Visualizing Transformation

    DEFF Research Database (Denmark)

    Pedersen, Pia

    2012-01-01

    Transformation, defined as the step of extracting, arranging and simplifying data into visual form (M. Neurath, 1974), was developed in connection with ISOTYPE (International System Of TYpographic Picture Education) and might well be the most important legacy of Isotype to the field of graphic...... design. Recently transformation has attracted renewed interest because of the book The Transformer written by Robin Kinross and Marie Neurath. My on-going research project, summarized in this paper, identifies and depicts the essential principles of data visualization underlying the process...... of transformation with reference to Marie Neurath’s sketches on the Bilston Project. The material has been collected at the Otto and Marie Neurath Collection housed at the University of Reading, UK. By using data visualization as a research method to look directly into the process of transformation, the project...

  6. Upper bounds on minimum cardinality of exact and approximate reducts

    KAUST Repository

    Chikalov, Igor

    2010-01-01

    In the paper, we consider the notions of exact and approximate decision reducts for binary decision tables. We present upper bounds on minimum cardinality of exact and approximate reducts depending on the number of rows (objects) in the decision table. We show that the bound for exact reducts is unimprovable in the general case, and the bound for approximate reducts is almost unimprovable in the general case. © 2010 Springer-Verlag Berlin Heidelberg.

  7. A class of exact solutions to the Einstein field equations

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R K

    2012-01-01

    The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)

  8. Exact gravitational quasinormal frequencies of topological black holes

    International Nuclear Information System (INIS)

    Birmingham, Danny; Mokhtari, Susan

    2006-01-01

    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies

  9. Rainbow Fourier Transform

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.

    2012-01-01

    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).

  10. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  11. A Class of Quasi-exact Solutions of Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.

    2007-01-01

    A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.

  12. The exact wavefunction factorization of a vibronic coupling system

    International Nuclear Information System (INIS)

    Chiang, Ying-Chih; Klaiman, Shachar; Otto, Frank; Cederbaum, Lorenz S.

    2014-01-01

    We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation

  13. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    Science.gov (United States)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  14. Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution

    Science.gov (United States)

    Baradaran, M.; Panahi, H.

    2018-05-01

    Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.

  15. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    Science.gov (United States)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  16. Parametric Level Statistics in Random Matrix Theory: Exact Solution

    International Nuclear Information System (INIS)

    Kanzieper, E.

    1999-01-01

    During recent several years, the theory of non-Gaussian random matrix ensembles has experienced a sound progress motivated by new ideas in quantum chromodynamics (QCD) and mesoscopic physics. Invariant non-Gaussian random matrix models appear to describe universal features of low-energy part of the spectrum of Dirac operator in QCD, and electron level statistics in normal conducting-superconducting hybrid structures. They also serve as a basis for constructing the toy models of universal spectral statistics expected at the edge of the metal-insulator transition. While conventional spectral statistics has received a detailed study in the context of RMT, quite a bit is known about parametric level statistics in non-Gaussian random matrix models. In this communication we report about exact solution to the problem of parametric level statistics in unitary invariant, U(N), non-Gaussian ensembles of N x N Hermitian random matrices with either soft or strong level confinement. The solution is formulated within the framework of the orthogonal polynomial technique and is shown to depend on both the unfolded two-point scalar kernel and the level confinement through a double integral transformation which, in turn, provides a constructive tool for description of parametric level correlations in non-Gaussian RMT. In the case of soft level confinement, the formalism developed is potentially applicable to a study of parametric level statistics in an important class of random matrix models with finite level compressibility expected to describe a disorder-induced metal-insulator transition. In random matrix ensembles with strong level confinement, the solution presented takes a particular simple form in the thermodynamic limit: In this case, a new intriguing connection relation between the parametric level statistics and the scalar two-point kernel of an unperturbed ensemble is demonstrated to emerge. Extension of the results obtained to higher-order parametric level statistics is

  17. Lessons on electronic decoherence in molecules from exact modeling

    Science.gov (United States)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  18. Security Transformation

    National Research Council Canada - National Science Library

    Metz, Steven

    2003-01-01

    ... adjustment. With American military forces engaged around the world in both combat and stabilization operations, the need for rigorous and critical analysis of security transformation has never been greater...

  19. Computing exact Fourier series coefficients of IC rectilinear polygons from low-resolution fast Fourier coefficients

    Science.gov (United States)

    Scheibler, Robin; Hurley, Paul

    2012-03-01

    We present a novel, accurate and fast algorithm to obtain Fourier series coefficients from an IC layer whose description consists of rectilinear polygons on a plane, and how to implement it using off-the-shelf hardware components. Based on properties of Fourier calculus, we derive a relationship between the Discrete Fourier Transforms of the sampled mask transmission function and its continuous Fourier series coefficients. The relationship leads to a straightforward algorithm for computing the continuous Fourier series coefficients where one samples the mask transmission function, compute its discrete Fourier transform and applies a frequency-dependent multiplicative factor. The algorithm is guaranteed to yield the exact continuous Fourier series coefficients for any sampling representing the mask function exactly. Computationally, this leads to significant saving by allowing to choose the maximal such pixel size and reducing the fast Fourier transform size by as much, without compromising accuracy. In addition, the continuous Fourier series is free from aliasing and follows closely the physical model of Fourier optics. We show that in some cases this can make a significant difference, especially in modern very low pitch technology nodes.

  20. Landskabets transformation

    DEFF Research Database (Denmark)

    Munck Petersen, Rikke

    2005-01-01

    Seminaroplæg fra forskere. Faglige seminarer på KA, forår 2005. Belyser transformation af det danske landskab fysisk som holdningsmæssigt, samt hvordan phd-arbejdets egen proces håndterer den.......Seminaroplæg fra forskere. Faglige seminarer på KA, forår 2005. Belyser transformation af det danske landskab fysisk som holdningsmæssigt, samt hvordan phd-arbejdets egen proces håndterer den....

  1. Covariant Transform

    OpenAIRE

    Kisil, Vladimir V.

    2010-01-01

    The paper develops theory of covariant transform, which is inspired by the wavelet construction. It was observed that many interesting types of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. Covariant transform extends an applicability of the popular wavelets construction to classic examples like the Hardy space H_2, Banach spaces, covariant functional calculus and many others. Keywords: Wavelets, cohe...

  2. Transforming Anatomy

    OpenAIRE

    Hall, Anndee

    2017-01-01

    Abstract: Transforming Anatomy Studying historic books allows people to witness the transformation of the world right before their very eyes. The Bruxellensis Icones Anatomicae[1] by Andreas Vesalius is a vital piece of evidence in the movement from a more rudimentary understanding of the human body into the more complex and accurate development of modern anatomy. Vesalius’ research worked to both refute and confirm findings of his predecessor, the great historical Greek philosopher, Galen...

  3. Exact Boundary Controllability of Electromagnetic Fields in a General Region

    International Nuclear Information System (INIS)

    Eller, M. M.; Masters, J. E.

    2002-01-01

    We prove exact controllability for Maxwell's system with variable coefficients in a bounded domain by a current flux in the boundary. The proof relies on a duality argument which reduces the proof of exact controllability to the proof of continuous observability for the homogeneous adjoint system. There is no geometric restriction imposed on the domain

  4. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  5. Exact solution for the generalized Telegraph Fisher's equation

    International Nuclear Information System (INIS)

    Abdusalam, H.A.; Fahmy, E.S.

    2009-01-01

    In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.

  6. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  7. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  8. Exact Cover Problem in Milton Babbitt's All-partition Array

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set...

  9. New exact solutions of the Dirac equation. 11

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Noskov, M.D.

    1984-01-01

    Investigations into determining new exact solutions of relativistic wave equations started in another paper were continued. Exact solutions of the Dirac, Klein-Gordon equations and classical relativistic equations of motion in four new types of external electromagnetic fields were found

  10. New exact travelling wave solutions for the Ostrovsky equation

    International Nuclear Information System (INIS)

    Kangalgil, Figen; Ayaz, Fatma

    2008-01-01

    In this Letter, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. In order to illustrate the validity and the advantages of the method we choose the Ostrovsky equation. As a result, many new and more general exact solutions have been obtained for the equation

  11. Energy vs. density on paths toward exact density functionals

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2018-01-01

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a “path”. Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness...

  12. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  13. Exact traveling wave solutions of the Boussinesq equation

    International Nuclear Information System (INIS)

    Ding Shuangshuang; Zhao Xiqiang

    2006-01-01

    The repeated homogeneous balance method is used to construct exact traveling wave solutions of the Boussinesq equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions of the Boussinesq equation are successfully obtained

  14. Exact Solutions of the Time Fractional BBM-Burger Equation by Novel (G′/G-Expansion Method

    Directory of Open Access Journals (Sweden)

    Muhammad Shakeel

    2014-01-01

    Full Text Available The fractional derivatives are used in the sense modified Riemann-Liouville to obtain exact solutions for BBM-Burger equation of fractional order. This equation can be converted into an ordinary differential equation by using a persistent fractional complex transform and, as a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions are attained. The performance of the method is reliable, useful, and gives newer general exact solutions with more free parameters than the existing methods. Numerical results coupled with the graphical representation completely reveal the trustworthiness of the method.

  15. Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks

    International Nuclear Information System (INIS)

    Dunne, Lawrence J; Manos, George

    2015-01-01

    Here we present a statistical mechanical lattice model which is exactly solvable using a matrix method and allows treatment of adsorption induced gate opening structural transformations of metal-organic frameworks which are nanoporous materials with exceptional adsorption properties. Modelling of these structural changes presents a serious theoretical challenge when the solid and gas species are treated in an even handed way. This exactly solvable model complements other simulation based approaches. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms. (paper)

  16. Trial function method and exact solutions to the generalized nonlinear Schrödinger equation with time-dependent coefficient

    International Nuclear Information System (INIS)

    Cao Rui; Zhang Jian

    2013-01-01

    In this paper, the trial function method is extended to study the generalized nonlinear Schrödinger equation with time-dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrödinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrödinger equation with time-dependent coefficients under constraint conditions. (general)

  17. Exact reconstruction formula for the spherical mean Radon transform on ellipsoids

    International Nuclear Information System (INIS)

    Haltmeier, Markus

    2014-01-01

    Many modern imaging and remote sensing applications require reconstructing a function from spherical averages (mean values). Examples include photoacoustic tomography, ultrasound imaging or SONAR. Several formulas of the back-projection type for recovering a function in n spatial dimensions from mean values over spheres centered on a sphere have been derived by D Finch, S K Patch and Rakesh (2004 SIAM J. Math. Anal. 35 1213–1240) for odd spatial dimension and by D Finch, M Haltmeier and Rakesh (2007 SIAM J. Appl. Math. 68 392–412) for even spatial dimension. In this paper we generalize some of these formulas to the case where the centers of integration lie on the boundary of an arbitrary ellipsoid. For the special cases n = 2 and n = 3 our results have recently been established by Y Salman (2014 J. Math. Anal. Appl. 420 612–20). For the higher dimensional case n>3 we establish proof techniques extending the ones in the above references. Back-projection type inversion formulas for recovering a function from spherical means with centers on an ellipsoid have first been derived by F Natterer (2012 Inverse Problems Imaging 6 315–20) for n = 3 and by V Palamodov (2012 Inverse Problems 28 065014) for arbitrary dimension. The results of Natterer have later been generalized to arbitrary dimension by M Haltmeier (2014 SIAM J. Math. Anal. 46 214–32). Note that these formulas are different from the ones derived in the present paper. (paper)

  18. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  19. Exact Solutions of Fragmentation Equations with General Fragmentation Rates and Separable Particles Distribution Kernels

    Directory of Open Access Journals (Sweden)

    S. C. Oukouomi Noutchie

    2014-01-01

    Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.

  20. On the exact solutions of high order wave equations of KdV type (I)

    Science.gov (United States)

    Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet

    2014-12-01

    In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.

  1. Lie group classification and exact solutions of the generalized Kompaneets equations

    Directory of Open Access Journals (Sweden)

    Oleksii Patsiuk

    2015-04-01

    Full Text Available We study generalized Kompaneets equations (GKEs with one functional parameter, and using the Lie-Ovsiannikov algorithm, we carried out the group classification. It is shown that the kernel algebra of the full groups of the GKEs is the one-dimensional Lie algebra. Using the direct method, we find the equivalence group. We obtain six non-equivalent (up to transformations from the equivalence group GKEs that allow wider invariance algebras than the kernel one. We find a number of exact solutions of the non-linear GKE which has the maximal symmetry properties.

  2. Exact soliton-like solutions of the radial Gross–Pitaevskii equation

    International Nuclear Information System (INIS)

    Toikka, L A; Hietarinta, J; Suominen, K-A

    2012-01-01

    We construct exact ring soliton-like solutions of the cylindrically symmetric (i.e. radial) Gross–Pitaevskii equation with a potential, using the similarity transformation method. Depending on the choice of the allowed free functions, the solutions can take the form of stationary dark or bright rings whose time dependence is in the phase dynamics only, or oscillating and bouncing solutions, related to the second Painlevé transcendent. In each case the potential can be chosen to be time independent. (paper)

  3. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    Energy Technology Data Exchange (ETDEWEB)

    Kamenov, O Y [Department of Applied Mathematics and Informatics, Technical University of Sofia, PO Box 384, 1000 Sofia (Bulgaria)], E-mail: okam@abv.bg

    2009-09-18

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): u{sub tt} = u{sub xx} + 3(u{sup 2}){sub xx} + u{sub xxxx} + {alpha}u{sub xxxxxx}, {alpha} in R, depending on the positive parameter {alpha}. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  4. Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-06-01

    Full Text Available We give a more generalized treatment of the 1D generalized Gross-Pitaevskii equation (GGPE with variable term coefficients. External harmonic trapping potential is fully considered and the nonlinear interaction term is of arbitrary polytropic index of superfluid wave function. We also eliminate the interdependence between variable coefficients of the equation terms avoiding the restrictions that occur in some other works. The exact soliton solutions of the GGPE are obtained through the delicate combined utilization of modified lens-type transformation and F-expansion method with dominant features like soliton type properties highlighted.

  5. Exact covariant results related to the redshift, aberration and luminosity distance for arbitrary spacetime and instantaneous observers

    Energy Technology Data Exchange (ETDEWEB)

    Calvao, Maurcio O.; Lago, Bruno L.; Reis, Ribamar R.R. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: We start by emphasizing the importance of formalizing the the concepts of a (classical) relativistic instantaneous observer, observer, frame of reference (as distinct from a coordinate system or tetrad) and a local Lorentz boost. Then, as a first result, we apply their concrete definitions to obtain exact covariant expressions for the redshift and aberration, as well as for the redshift transformation under local Lorentz boosts. Afterwards we revisit the notion of luminosity distance, providing some clarifications which render its definition manifestly valid in a completely general setting (not only for comoving observers in the Robertson-Walker spacetime); therefrom we see clearly that (not unexpectedly) the luminosity distance is dependent on the instantaneous observers and we derive its corresponding exact, covariant transformation law. By Etherington's reciprocity theorem, analogous transformation laws can be obtained for other relativistic distances, e.g. the angular size one. The exact covariant transformation law for the luminosity distance has a particularly relevant application for the determination of the impact of peculiar motions on type Ia supernovae observations and data analysis, which is supposed to be one of the main systematic effects plaguing that probe. The redshift and aberration results, on the other hand, might be of interest for precise redshift drift and astrometric (e.g. Gaia) measurements, respectively. We conclude by listing some open avenues for generalizations. (author)

  6. Dyons, Superstrings, and Wormholes: Exact Solutions of the Non-Abelian Dirac-Born-Infeld Action

    Directory of Open Access Journals (Sweden)

    Edward A. Olszewski

    2015-01-01

    Full Text Available We construct dyon solutions on coincident D4-branes, obtained by applying T-duality transformations to type I SO(32 superstring theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-like action. When one spatial dimension of the D4-branes is taken to be vanishingly small, the dyons are analogous to the ’t Hooft/Polyakov monopole residing in a 3+1-dimensional spacetime, where the component of the Yang-Mills potential transforming as a Lorentz scalar is reinterpreted as a Higgs boson transforming in the adjoint representation of the gauge group. Applying a T-duality transformation to the vanishingly small spatial dimension, we obtain a collection of D3-branes, not all of which are coincident. Two of the D3-branes, distinct from the others, acquire intrinsic, finite curvature and are connected by a wormhole. The dyons possess electric and magnetic charges whose values on each D3-brane are the negative of one another. The gravitational effects, which arise after the T-duality transformation, occur despite the fact that the action of the system does not explicitly include the gravitational interaction. These solutions provide a simple example of the subtle relationship between the Yang-Mills and gravitational interactions, that is, gauge/gravity duality.

  7. Dissociation between exact and approximate addition in developmental dyslexia.

    Science.gov (United States)

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Sustainable transformation

    DEFF Research Database (Denmark)

    Andersen, Nicolai Bo

    This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuilt......, that it can be adapted to changing functional needs, and that it has an architectural and cultural value. A specific proposal for a transformation that enhances the architectural qualities and building heritage values of an existing building forms the empirical material, which is discussed using different...... theoretical lenses. It is proposed that three parameters concerning the ꞌtransformabilityꞌ of the building can contribute to a more nuanced understanding of sustainable transformation: technical aspects, programmatic requirements and narrative value. It is proposed that the concept of ꞌsustainable...

  9. Identity transformation

    DEFF Research Database (Denmark)

    Neergaard, Helle; Robinson, Sarah; Jones, Sally

    , as well as the resources they have when they come to the classroom. It also incorporates perspectives from (ii) transformational learning and explores the concept of (iii) nudging from a pedagogical viewpoint, proposing it as an important tool in entrepreneurship education. The study incorporates......This paper develops the concept of ‘pedagogical nudging’ and examines four interventions in an entrepreneurship classroom and the potential it has for student identity transformation. Pedagogical nudging is positioned as a tool, which in the hands of a reflective, professional......) assists students in straddling the divide between identities, the emotions and tensions this elicits, and (iv) transform student understanding. We extend nudging theory into a new territory. Pedagogical nudging techniques may be able to unlock doors and bring our students beyond the unacknowledged...

  10. Exact solutions of nonlinear differential equations using continued fractions

    International Nuclear Information System (INIS)

    Ditto, W.L.; Pickett, T.J.

    1990-01-01

    The continued-fraction conversion method (J. Math. Phys. (N.Y.), 29, 1761 (1988)) is used to generate a homologous family of exact solutions to the Lane-Emden equation φ(r) '' + 2φ(r)'/r + αφ(r) p = 0, for p=5. An exact solution is also obtained for a generalization of the Lane-Emden equation of the form -φ '' (r) -2φ(r)'/r + αφ(r) 2p+1 + λφ(r) 4p+1 = 0 for arbitrary α, γ and p. A condition is established for the generation of exact solutions from the method

  11. Exact Cover Problem in Milton Babbitt's All-partition Array

    OpenAIRE

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set, A, and a collection of distinct subsets of this set, S, then a subset of S is an exact cover of A if it exhaustively and exclu- sively partitions A. We provide a backtracking algorithm for solving ...

  12. The exact mass-gaps of the principal chiral models

    CERN Document Server

    Hollowood, Timothy J

    1994-01-01

    An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.

  13. Exact computation of the Voronoi Diagram of spheres in 3D, its topology and its geometric invariants

    DEFF Research Database (Denmark)

    Anton, François; Mioc, Darka; Santos, Marcelo

    2011-01-01

    In this paper, we are addressing the exact computation of the Delaunay graph (or quasi-triangulation) and the Voronoi diagram of spheres using Wu’s algorithm. Our main contribution is first a methodology for automated derivation of invariants of the Delaunay empty circumcircle predicate for spheres...... and the Voronoi vertex of four spheres, then the application of this methodology to get all geometrical invariants that intervene in this problem and the exact computation of the Delaunay graph and the Voronoi diagram of spheres. To the best of our knowledge, there does not exist a comprehensive treatment...... of the exact computation with geometrical invariants of the Delaunay graph and the Voronoi diagram of spheres. Starting from the system of equations defining the zero-dimensional algebraic set of the problem, we are following Wu’s algorithm to transform the initial system into an equivalent Wu characteristic...

  14. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  15. Coordinate transformations and matter waves cloaking

    International Nuclear Information System (INIS)

    Mohammadi, G.R.; Moghaddam, A.G.; Mohammadkhani, R.

    2016-01-01

    Transformation method provides an efficient tool to control wave propagation inside the materials. Using the coordinate transformation approach, we study invisibility cloaks with sphere, cylinder and ellipsoid structures for electronic waves propagation. The underlying physics behind this investigation is the fact that Schrödinger equation with position dependent mass tensor and potentials has a covariant form which follows the coordinate transformation. Using this technique we obtain the exact spatial form of the mass tensor and potentials for a variety of cloaks with different shapes. - Highlights: • Invisibility cloaks for matter waves with three different geometries. • Exact analytical form of the effective mass tensor and potential. • Analogy between cloaking for quantum mechanical waves with classical electromagnetic waves. • Possible experimental realization in engineered semiconducting structures.

  16. Exact solution for heat transfer free convection flow of Maxwell nanofluids with graphene nanoparticles

    Science.gov (United States)

    Aman, Sidra; Zuki Salleh, Mohd; Ismail, Zulkhibri; Khan, Ilyas

    2017-09-01

    This article focuses on the flow of Maxwell nanofluids with graphene nanoparticles over a vertical plate (static) with constant wall temperature. Possessing high thermal conductivity, engine oil is useful to be chosen as base fluid with free convection. The problem is modelled in terms of PDE’s with boundary conditions. Some suitable non-dimensional variables are interposed to transform the governing equations into dimensionless form. The generated equations are solved via Laplace transform technique. Exact solutions are evaluated for velocity and temperature. These solutions are significantly controlled by some parameters involved. Temperature rises with elevation in volume fraction while Velocity decreases with increment in volume fraction. A comparison with previous published results are established and discussed. Moreover, a detailed discussion is made for influence of volume fraction on the flow and heat profile.

  17. Maps on statistical manifolds exactly reduced from the Perron-Frobenius equations for solvable chaotic maps

    Science.gov (United States)

    Goto, Shin-itiro; Umeno, Ken

    2018-03-01

    Maps on a parameter space for expressing distribution functions are exactly derived from the Perron-Frobenius equations for a generalized Boole transform family. Here the generalized Boole transform family is a one-parameter family of maps, where it is defined on a subset of the real line and its probability distribution function is the Cauchy distribution with some parameters. With this reduction, some relations between the statistical picture and the orbital one are shown. From the viewpoint of information geometry, the parameter space can be identified with a statistical manifold, and then it is shown that the derived maps can be characterized. Also, with an induced symplectic structure from a statistical structure, symplectic and information geometric aspects of the derived maps are discussed.

  18. Sustainable transformation

    DEFF Research Database (Denmark)

    Andersen, Nicolai Bo

    This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuil...

  19. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  20. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  1. Superconducting transformer

    International Nuclear Information System (INIS)

    Murphy, J.H.

    1982-01-01

    A superconducting transformer having a winding arrangement that provides for current limitation when subjected to a current transient as well as more efficient utilization of radial spacing and winding insulation. Structural innovations disclosed include compressed conical shaped winding layers and a resistive matrix to promote rapid switching of current between parallel windings

  2. Transformation & Metamorphosis

    Science.gov (United States)

    Lott, Debra

    2009-01-01

    The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…

  3. Transforming Society

    DEFF Research Database (Denmark)

    Enemark, Stig; Dahl Højgaard, Pia

    2017-01-01

    , was a result of transforming society from a feudal system to a capitalistic and market based economy. This story is interesting in itself - but it also provides a key to understanding the cadastral system of today. The system has evolved over time and now serves a whole range of functions in society. The paper...

  4. A quantum analogy to the classical gravitomagnetic clock effect

    Science.gov (United States)

    Faruque, S. B.

    2018-06-01

    We present an approximation to the solution of Dirac equation in Schwarzschild field found through the use of Foldy-Wouthuysen Hamiltonian. We solve the equation for the positive energy states and found the frequencies by which the states oscillate. Difference of the periods of oscillation of the two states with two different total angular momentum quantum number j has an analogical form of the classical clock effect found in general relativity. But unlike the term that appears as clock effect in classical physics, here the term is quantized. Thus, we find a quantum analogue of the classical gravitomagnetic clock effect.

  5. The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference

    Science.gov (United States)

    Serang, Oliver

    2014-01-01

    Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234

  6. Exact scattering and diffraction of antiplane shear waves by a vertical edge crack

    Science.gov (United States)

    Tsaur, Deng-How

    2010-06-01

    Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.

  7. Efficient Calculation of Exact Exchange Within the Quantum Espresso Software Package

    Science.gov (United States)

    Barnes, Taylor; Kurth, Thorsten; Carrier, Pierre; Wichmann, Nathan; Prendergast, David; Kent, Paul; Deslippe, Jack

    Accurate simulation of condensed matter at the nanoscale requires careful treatment of the exchange interaction between electrons. In the context of plane-wave DFT, these interactions are typically represented through the use of approximate functionals. Greater accuracy can often be obtained through the use of functionals that incorporate some fraction of exact exchange; however, evaluation of the exact exchange potential is often prohibitively expensive. We present an improved algorithm for the parallel computation of exact exchange in Quantum Espresso, an open-source software package for plane-wave DFT simulation. Through the use of aggressive load balancing and on-the-fly transformation of internal data structures, our code exhibits speedups of approximately an order of magnitude for practical calculations. Additional optimizations are presented targeting the many-core Intel Xeon-Phi ``Knights Landing'' architecture, which largely powers NERSC's new Cori system. We demonstrate the successful application of the code to difficult problems, including simulation of water at a platinum interface and computation of the X-ray absorption spectra of transition metal oxides.

  8. Some exact solutions to the Lighthill–Whitham–Richards–Payne traffic flow equations

    International Nuclear Information System (INIS)

    Rowlands, G; Infeld, E; Skorupski, A A

    2013-01-01

    We find a class of exact solutions to the Lighthill–Whitham–Richards–Payne (LWRP) traffic flow equations. Using two consecutive Lagrangian transformations, a linearization is achieved. Next, depending on the initial density, we either apply (again two) Lambert functions and obtain exact formulae for the dependence of the car density and velocity on x, t, or else, failing that, the same result in a parametric representation. The calculation always involves two possible factorizations of a consistency condition. Both must be considered. In physical terms, the lineup usually separates into two offshoots at different velocities. Each velocity soon becomes uniform. This outcome in many ways resembles the two soliton solution to the Korteweg–de Vries equation. We check general conservation requirements. Although traffic flow research has developed tremendously since LWRP, this calculation, being exact, may open the door to solving similar problems, such as gas dynamics or water flow in rivers. With this possibility in mind, we outline the procedure in some detail at the end. (paper)

  9. Exact renormalization group as a scheme for calculations

    International Nuclear Information System (INIS)

    Mack, G.

    1985-10-01

    In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)

  10. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from

  11. New exact travelling wave solutions of bidirectional wave equations

    Indian Academy of Sciences (India)

    Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea. ∗ ... exact travelling wave solutions of system (1) using the modified tanh–coth function method ... The ordinary differential equation is then integrated.

  12. Exact solutions to some nonlinear PDEs, travelling profiles method

    Directory of Open Access Journals (Sweden)

    Noureddine Benhamidouche

    2008-04-01

    \\end{equation*} by a new method that we call the travelling profiles method. This method allows us to find several forms of exact solutions including the classical forms such as travelling-wave and self-similar solutions.

  13. Exact travelling wave solutions for some important nonlinear ...

    Indian Academy of Sciences (India)

    The study of nonlinear partial differential equations is an active area of research in applied mathematics, theoretical physics and engineering fields. In particular ... In [16–18], the author applied this method to construct the exact solutions of.

  14. Exact solutions to the Lienard equation and its applications

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2004-01-01

    In this paper, a kind of explicit exact solutions to the Lienard equation is obtained, and the applications of the result in seeking traveling solitary wave solution of the nonlinear Schroedinger equation are presented

  15. Exact Analysis of the Cache Behavior of Nested Loops

    National Research Council Canada - National Science Library

    Chatterjee, Siddhartha; Parker, Erin; Hanlon, Philip J; Lebeck, Alvin R

    2001-01-01

    The authors develop from first principles an exact model of the behavior of loop nests executing in a memory hierarchy by using a nontraditional classification of misses that has the key property of composability...

  16. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)

    Jefta M Sunzu

    2017-09-05

    Sep 5, 2017 ... The exact solutions corresponding to our models are found explicitly in terms of elementary ...... PD extends his appre- ciation to the President Office (Local Governments and ... Kwazulu-Natal, Howard College, April 2004).

  17. A procedure to construct exact solutions of nonlinear evolution ...

    Indian Academy of Sciences (India)

    Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30. ... computer science, directly searching for solutions of nonlinear differential equations has become more and ... Right after this pioneer work, this ...

  18. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  19. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  20. Exactness of supersymmetric WKB method for translational shape invariant potentials

    International Nuclear Information System (INIS)

    Cheng, K M; Leung, P T; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs

  1. Corollary from the Exact Expression for Enthalpy of Vaporization

    OpenAIRE

    A. A. Sobko

    2011-01-01

    A problem on determining effective volumes for atoms and molecules becomes actual due to rapidly developing nanotechnologies. In the present study an exact expression for enthalpy of vaporization is obtained, from which an exact expression is derived for effective volumes of atoms and molecules, and under certain assumptions on the form of an atom (molecule) it is possible to find their linear dimensions. The accuracy is only determined by the accuracy of measurements of thermodynamic paramet...

  2. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  3. Exact Lagrangian caps and non-uniruled Lagrangian submanifolds

    Science.gov (United States)

    Dimitroglou Rizell, Georgios

    2015-04-01

    We make the elementary observation that the Lagrangian submanifolds of C n , n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian caps, which obviously are non-uniruled in themselves. This property is also used to show that if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its Chekanov-Eliashberg algebra is acyclic.

  4. New types of exact solutions for a breaking soliton equation

    International Nuclear Information System (INIS)

    Mei Jianqin; Zhang Hongqing

    2004-01-01

    In this paper based on a system of Riccati equations, we present a newly generally projective Riccati equation expansion method and its algorithm, which can be used to construct more new exact solutions of nonlinear differential equations in mathematical physics. A typical breaking soliton equation is chosen to illustrate our algorithm such that more families of new exact solutions are obtained, which contain soliton-like solutions and periodic solutions. This algorithm can also be applied to other nonlinear differential equations

  5. Exactness of supersymmetric WKB method for translational shape invariant potentials

    CERN Document Server

    Cheng, K M; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.

  6. Exact solutions to plaquette Ising models with free and periodic boundaries

    International Nuclear Information System (INIS)

    Mueller, Marco; Johnston, Desmond A.; Janke, Wolfhard

    2017-01-01

    An anisotropic limit of the 3d plaquette Ising model, in which the plaquette couplings in one direction were set to zero, was solved for free boundary conditions by Suzuki (1972) , who later dubbed it the fuki-nuke, or “no-ceiling”, model. Defining new spin variables as the product of nearest-neighbour spins transforms the Hamiltonian into that of a stack of (standard) 2d Ising models and reveals the planar nature of the magnetic order, which is also present in the fully isotropic 3d plaquette model. More recently, the solution of the fuki-nuke model was discussed for periodic boundary conditions, which require a different approach to defining the product spin transformation, by Castelnovo et al. (2010) . We clarify the exact relation between partition functions with free and periodic boundary conditions expressed in terms of original and product spin variables for the 2d plaquette and 3d fuki-nuke models, noting that the differences are already present in the 1d Ising model. In addition, we solve the 2d plaquette Ising model with helical boundary conditions. The various exactly solved examples illustrate how correlations can be induced in finite systems as a consequence of the choice of boundary conditions.

  7. Exact lattice supersymmetry: The two-dimensional N=2 Wess-Zumino model

    International Nuclear Information System (INIS)

    Catterall, Simon; Karamov, Sergey

    2002-01-01

    We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving exactly a single supersymmetric invariance at finite lattice spacing a. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga 2 ) where g is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing

  8. Discrete transforms

    CERN Document Server

    Firth, Jean M

    1992-01-01

    The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen­ tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...

  9. XML Transformations

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2012-04-01

    Full Text Available XSLT style sheets are designed to transform the XML documents into something else. The two most popular parsers of the moment are the Document Object Model (DOM and the Simple API for XML (SAX. DOM is an official recommendation of the W3C (available at http://www.w3.org/TR/REC-DOM-Level-1, while SAX is a de facto standard. A good parser should be fast, space efficient, rich in functionality and easy to use.

  10. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  11. Transformative Agency

    DEFF Research Database (Denmark)

    Majgaard, Klaus

    The purpose of this paper is to enhance the conceptual understanding of the mediatory relationship between paradoxes on an organizational and an individual level. It presents a concept of agency that comprises and mediates between a structural and individual pole. The constitution of this agency ...... is achieved through narrative activity that oscillates between the poles and transforms paradoxes through the configuration of plots and metaphors. Empirical cases are introduced in order to illustrate the implications of this understanding....

  12. Analysis of a rectangular ceramic plate in electrically forced thickness-twist vibration as a piezoelectric transformer.

    Science.gov (United States)

    Yang, Jiashi; Liu, Jinjin; Li, Jiangyu

    2007-04-01

    A rectangular ceramic plate with appropriate electrical load and operating mode is analyzed for piezoelectric transformer application. An exact solution from the three-dimensional equations of linear piezoelectricity is obtained. The solution simulates the real operating situation of a transformer as a vibrating piezoelectric body connected to a circuit. Transforming ratio, input admittance, and efficiency of the transformer are obtained.

  13. Electrical transformer handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Horne, D. (eds.)

    2005-07-01

    This handbook is a valuable user guide intended for electrical engineering and maintenance personnel, electrical contractors and electrical engineering students. It provides current information on techniques and technologies that can help extend the life of transformers. It discusses transformer testing, monitoring, design, commissioning, retrofitting and other elements involved in keeping electrical transformers in safe and efficient operation. It demonstrates how a power transformer can be put to use and common problems faced by owners. In addition to covering control techniques, testing and maintenance procedures, this handbook covers the power transformer; control electrical power transformer; electrical power transformer; electrical theory transformer; used electrical transformer; down electrical step transformer; electrical manufacturer transformer; electrical picture transformer; electrical transformer work; electrical surplus transformer; current transformer; step down transformer; voltage transformer; step up transformer; isolation transformer; low voltage transformer; toroidal transformer; high voltage transformer; and control power transformer. The handbook includes articles from leading experts on overcurrent protection of transformers; ventilated dry-type transformers; metered load factors for low-voltage, and dry-type transformers in buildings. The maintenance of both dry-type or oil-filled transformers was discussed with reference to sealing, gaskets, oils, moisture and testing. The adoption of dynamic load practices was also discussed along with the reclamation or recycling of used lube oil, transformer dielectric fluids and aged solid insulation. A buyer's guide and directory of transformer manufacturers and suppliers was also included. refs., tabs., figs.

  14. Exact solution of nonsteady thermal boundary layer equation

    International Nuclear Information System (INIS)

    Dorfman, A.S.

    1995-01-01

    There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs

  15. Constructing exact symmetric informationally complete measurements from numerical solutions

    Science.gov (United States)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  16. Hamlet's Transformation.

    Science.gov (United States)

    Usher, P. D.

    1997-12-01

    William Shakespeare's Hamlet has much evidence to suggest that the Bard was aware of the cosmological models of his time, specifically the geocentric bounded Ptolemaic and Tychonic models, and the infinite Diggesian. Moreover, Shakespeare describes how the Ptolemaic model is to be transformed to the Diggesian. Hamlet's "transformation" is the reason that Claudius, who personifies the Ptolemaic model, summons Rosencrantz and Guildenstern, who personify the Tychonic. Pantometria, written by Leonard Digges and his son Thomas in 1571, contains the first technical use of the word "transformation." At age thirty, Thomas Digges went on to propose his Perfit Description, as alluded to in Act Five where Hamlet's age is given as thirty. In Act Five as well, the words "bore" and "arms" refer to Thomas' vocation as muster-master and his scientific interest in ballistics. England's leading astronomer was also the father of the poet whose encomium introduced the First Folio of 1623. His oldest child Dudley became a member of the Virginia Company and facilitated the writing of The Tempest. Taken as a whole, such manifold connections to Thomas Digges support Hotson's contention that Shakespeare knew the Digges family. Rosencrantz and Guildenstern in Hamlet bear Danish names because they personify the Danish model, while the king's name is latinized like that of Claudius Ptolemaeus. The reason Shakespeare anglicized "Amleth" to "Hamlet" was because he saw a parallel between Book Three of Saxo Grammaticus and the eventual triumph of the Diggesian model. But Shakespeare eschewed Book Four, creating this particular ending from an infinity of other possibilities because it "suited his purpose," viz. to celebrate the concept of a boundless universe of stars like the Sun.

  17. TRANSFORMER APPARATUS

    Science.gov (United States)

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  18. Rotary Transformer

    Science.gov (United States)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  19. Exact deconstruction of the 6D (2,0) theory

    Science.gov (United States)

    Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodríguez-Gómez, D.

    2017-06-01

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: in the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the "half-BPS" limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 × T 2. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  20. Exact braneworld cosmology induced from bulk black holes

    International Nuclear Information System (INIS)

    Gregory, James P; Padilla, Antonio

    2002-01-01

    We use a new, exact approach in calculating the energy density measured by an observer living on a brane embedded in a charged black-hole spacetime. We find that the bulk Weyl tensor gives rise to nonlinear terms in the energy density and pressure in the FRW equations for the brane. Remarkably, these take exactly the same form as the 'unconventional' terms found in the cosmology of branes embedded in pure AdS, with extra matter living on the brane. Black-hole-driven cosmologies have the benefit that there is no ambiguity in splitting the braneworld energy momentum into tension and additional matter. We propose a new, enlarged relationship between the two descriptions of braneworld cosmology. We also study the exact thermodynamics of the field theory and present a generalized Cardy-Verlinde formula in this set-up

  1. Fuzziness and Foundations of Exact and Inexact Sciences

    CERN Document Server

    Dompere, Kofi Kissi

    2013-01-01

    The monograph is an examination of the fuzzy rational foundations of the structure of exact and inexact sciences over the epistemological space which is distinguished from the ontological space. It is thus concerned with the demarcation problem. It examines exact science and its critique of inexact science. The role of fuzzy rationality in these examinations is presented. The driving force of the discussions is the nature of the information that connects the cognitive relational structure of the epistemological space to the ontological space for knowing. The knowing action is undertaken by decision-choice agents who must process information to derive exact-inexact or true-false conclusions. The information processing is done with a paradigm and laws of thought that constitute the input-output machine. The nature of the paradigm selected depends on the nature of the information structure that is taken as input of the thought processing. Generally, the information structure received from the ontological space i...

  2. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  3. Quasitraces on exact C*-algebras are traces

    DEFF Research Database (Denmark)

    Haagerup, Uffe

    2014-01-01

    It is shown that all 2-quasitraces on a unital exact C ∗   -algebra are traces. As consequences one gets: (1) Every stably finite exact unital C ∗   -algebra has a tracial state, and (2) if an AW ∗   -factor of type II 1   is generated (as an AW ∗   -algebra) by an exact C ∗   -subalgebra, then i......, then it is a von Neumann II 1   -factor. This is a partial solution to a well known problem of Kaplansky. The present result was used by Blackadar, Kumjian and Rørdam to prove that RR(A)=0  for every simple non-commutative torus of any dimension...

  4. Electron transfer dynamics: Zusman equation versus exact theory

    International Nuclear Information System (INIS)

    Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing

    2009-01-01

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.

  5. Exact deconstruction of the 6D (2,0) theory

    Energy Technology Data Exchange (ETDEWEB)

    Hayling, J.; Papageorgakis, C. [Queen Mary Univ. of London (United Kingdom). CRST and School of Physics and Astronomy; Pomoni, E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Rodriguez-Gomez, D. [Oviedo Univ. (Spain). Dept. of Physics

    2017-06-15

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T{sup 2}, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the ''half-BPS'' limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S{sup 4} to the (2,0) partition function on S{sup 4} x T{sup 2}. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  6. Universality in exact quantum state population dynamics and control

    International Nuclear Information System (INIS)

    Wu, Lian-Ao; Segal, Dvira; Brumer, Paul; Egusquiza, Inigo L.

    2010-01-01

    We consider an exact population transition, defined as the probability of finding a state at a final time that is exactly equal to the probability of another state at the initial time. We prove that, given a Hamiltonian, there always exists a complete set of orthogonal states that can be employed as time-zero states for which this exact population transition occurs. The result is general: It holds for arbitrary systems, arbitrary pairs of initial and final states, and for any time interval. The proposition is illustrated with several analytic models. In particular, we demonstrate that in some cases, by tuning the control parameters, a complete transition might occur, where a target state, vacant at t=0, is fully populated at time τ.

  7. Exact deconstruction of the 6D (2,0) theory

    International Nuclear Information System (INIS)

    Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodriguez-Gomez, D.

    2017-06-01

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2 , starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the ''half-BPS'' limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 x T 2 . In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  8. A reversible transform for seismic data processing

    International Nuclear Information System (INIS)

    Burnett, William A; Ferguson, Robert J

    2011-01-01

    We use the nonstationary equivalent of the Fourier shift theorem to derive a general one-dimensional integral transform for the application and removal of certain seismic data processing steps. This transform comes from the observation that many seismic data processing steps can be viewed as nonstationary shifts. The continuous form of the transform is exactly reversible, and the discrete form provides a general framework for unitary and pseudounitary imaging operators. Any processing step which can be viewed as a nonstationary shift in any domain is a special case of this transform. Nonstationary shifts generally produce coordinate distortions between input and output domains, and those that preserve amplitudes do not conserve the energy of the input signal. The nonstationary frequency distortions, time distortions and nonphysical energy changes inherent to such operations are predicted and quantified by this transform. Processing steps of this type are conventionally implemented using interpolation operators to map discrete data values between input and output coordinate frames. Although not explicitly derived to perform interpolation, the transform here assumes the Fourier basis to predict values of the input signal between sampling locations. We demonstrate how interpolants commonly used in seismic data processing and imaging approximate the proposed method. We find that our transform is equivalent to the conventional sinc interpolant with no truncation. Once the transform is developed, we demonstrate its numerical implementation by matrix–vector multiplication. As an example, we use our transform to apply and remove normal moveout

  9. The Problem of Understanding of Nature in Exact Science

    Directory of Open Access Journals (Sweden)

    Leo Näpinen

    2014-10-01

    Full Text Available In this short inquiry I would like to defend the statement that exact science deals with the explanation of models, but not with the understanding (comprehending of nature. By the word ‘nature’ I mean nature as physis (as a self-moving and self-developing living organism to which humans also belong, not nature as natura naturata (as a nonevolving creature created by someone or something. The Estonian philosopher of science Rein Vihalemm (2008 has shown with his conception of phi-science (φ-science that exact science is itself an idealized model or theoretical object derived from Galilean mathematical physics.

  10. Exact solutions in string-motivated scalar-field cosmology

    International Nuclear Information System (INIS)

    Oezer, M.; Taha, M.O.

    1992-01-01

    Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era

  11. Exact, almost and delayed fault detection: An observer based approach

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    This paper consider the problem of fault detection and isolation in continuous- and discrete-time systems while using zero or almost zero threshold. A number of different fault detections and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability...... conditions are given for the formulated design problems together with methods for appropriate design of observer based fault detectors. The l-step delayed fault detection problem is also considered for discrete-time systems . Moreover, certain indirect fault detection methods such as unknown input observers...

  12. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  13. Exact penalty results for mathematical programs with vanishing constraints

    Czech Academy of Sciences Publication Activity Database

    Hoheisel, T.; Kanzow, Ch.; Outrata, Jiří

    2010-01-01

    Roč. 72, č. 5 (2010), s. 2514-2526 ISSN 0362-546X R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mathematical programs with vanishing constraints * Mathematical programs with equilibrium constraints * Exact penalization * Calmness * Subdifferential calculus * Limiting normal cone Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-exact penalty results for mathematical programs with vanishing constraints.pdf

  14. Disease clusters, exact distributions of maxima, and P-values.

    Science.gov (United States)

    Grimson, R C

    1993-10-01

    This paper presents combinatorial (exact) methods that are useful in the analysis of disease cluster data obtained from small environments, such as buildings and neighbourhoods. Maxwell-Boltzmann and Fermi-Dirac occupancy models are compared in terms of appropriateness of representation of disease incidence patterns (space and/or time) in these environments. The methods are illustrated by a statistical analysis of the incidence pattern of bone fractures in a setting wherein fracture clustering was alleged to be occurring. One of the methodological results derived in this paper is the exact distribution of the maximum cell frequency in occupancy models.

  15. Clock Math — a System for Solving SLEs Exactly

    Directory of Open Access Journals (Sweden)

    Jakub Hladík

    2013-01-01

    Full Text Available In this paper, we present a GPU-accelerated hybrid system that solves ill-conditioned systems of linear equations exactly. Exactly means without rounding errors due to using integer arithmetics. First, we scale floating-point numbers up to integers, then we solve dozens of SLEs within different modular arithmetics and then we assemble sub-solutions back using the Chinese remainder theorem. This approach effectively bypasses current CPU floating-point limitations. The system is capable of solving Hilbert’s matrix without losing a single bit of precision, and with a significant speedup compared to existing CPU solvers.

  16. Exact solution for a non-Markovian dissipative quantum dynamics.

    Science.gov (United States)

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  17. Asymptotically exact solution of a local copper-oxide model

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu.

    1994-03-01

    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig

  18. Benchmarking GW against exact diagonalization for semiempirical models

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian Sommer

    2010-01-01

    We calculate ground-state total energies and single-particle excitation energies of seven pi-conjugated molecules described with the semiempirical Pariser-Parr-Pople model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW capt...... (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene....

  19. Novel correlations in two dimensions: Some exact solutions

    International Nuclear Information System (INIS)

    Murthy, M.V.; Bhaduri, R.K.; Sen, D.

    1996-01-01

    We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring. copyright 1996 The American Physical Society

  20. Exact results for integrable asymptotically-free field theories

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).

  1. Exact solution of matricial Φ23 quantum field theory

    Science.gov (United States)

    Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar

    2017-12-01

    We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.

  2. Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2016-08-15

    Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.

  3. Forestry transformation

    International Nuclear Information System (INIS)

    Beer, G.

    2003-01-01

    State forestry company Lesy, s.p., Banska Bystrica have chosen Austrian state forestry company to operate as their restructuring advisor. 20 million Sk (0.142 mn Euro) were assigned to transformation of Lesy SR from a state enterprise to a state-owned joint-stock company. The whole process should take two years. The joint-stock company should be established at the beginning of next year. 'What we have to do first is to define the objectives and perspectives of this restructuring,' claims new director, Karol Vins. The new boss recalled all directors of the 26 branches. They were given a lot of freedom to trade with wood. The new management wants to establish a profit-making company. At the moment the company has total claims of 600 million Sk (14.59 million Eur) it will have to provision for

  4. Transforming vulnerability.

    Science.gov (United States)

    Jones, Patricia S; Zhang, Xinwei Esther; Meleis, Afaf I

    2003-11-01

    Asian American immigrant women engaged in filial caregiving are at special risk for health problems due to complex contextual factors related to immigration, cultural traditions, and role transition. This study examines the experience of two groups of immigrant Asian American women who are caring for older parents. A total of 41 women (22 Chinese American and 19 Filipino American) were interviewed in a study based on Strauss and Corbin's grounded theory methodology. The women were determined to be loyal to their traditional culture, which included strong filial values, while adapting to a new culture. Through the struggle of meeting role expectations and coping with paradox, the women mobilized personal and family resources to transform vulnerability into strength and well-being.

  5. Radioactive transformations

    CERN Document Server

    Rutherford, Ernest

    2012-01-01

    Radioactive Transformations describes Ernest Rutherford's Nobel Prize-winning investigations into the mysteries of radioactive matter. In this historic work, Rutherford outlines the scientific investigations that led to and coincided with his own research--including the work of Wilhelm Rӧntgen, J. J. Thomson, and Marie Curie--and explains in detail the experiments that provided a glimpse at special relativity, quantum mechanics, and other concepts that would shape modern physics. This new edition features a comprehensive introduction by Nobel Laureate Frank Wilczek which engagingly explains how Rutherford's early research led to a better understanding of topics as diverse as the workings of the atom's nucleus, the age of our planet, and the fusion in stars.

  6. Exact algebraization of the signal equation of spoiled gradient echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dathe, Henning [Department of Orthodontics, Biomechanics Group, University Medical Centre, Goettingen (Germany); Helms, Gunther, E-mail: ghelms@gwdg.d [MR-Research in Neurology and Psychiatry, University Medical Centre, Goettingen (Germany)

    2010-08-07

    The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle {alpha} at a repetition time TR much shorter than the longitudinal relaxation time T{sub 1}. We describe two parameter transformations of {alpha} and TR/T{sub 1}, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small {alpha} and small TR/T{sub 1} with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in {alpha} and TR/T{sub 1}. This reveals a fundamental relationship between the square of the flip angle and TR/T{sub 1} which characterizes the Ernst angle, constant degree of T{sub 1}-weighting and the influence of the local radio-frequency field.

  7. Generation of exact solutions to the Einstein field equations for homogeneous space--time

    International Nuclear Information System (INIS)

    Hiromoto, R.E.

    1978-01-01

    A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon

  8. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems

    CERN Document Server

    Li, Tatsien; Gu, Qilong

    2016-01-01

    This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...

  9. New exact solutions of the generalized Zakharov–Kuznetsov ...

    Indian Academy of Sciences (India)

    In this paper, new exact solutions, including soliton, rational and elliptic integral function solutions, for the generalized Zakharov–Kuznetsov modified equal-width equation are obtained using a new approach called the extended trial equation method. In this discussion, a new version of the trial equation method for the ...

  10. New exact solutions of the Dirac equation. 8

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Sukhomlin, N.B.; Shapovalov, V.N.

    1978-01-01

    The paper continues the investigation into the exact solutions of the Dirac, Klein-Gordon, and Lorentz equations for a charge in an external electromagnetic field. The fields studied do not allow for separation of variables in the Dirac equation, but solutions to the Dirac equation are obtained

  11. Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact ...

    African Journals Online (AJOL)

    Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws. ... In this paper we study the combined sinh-cosh-Gordon equation, which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves.

  12. Fragments of reminiscences and exactly solvable nonrelativistic quantum models

    International Nuclear Information System (INIS)

    Zakhariev, B.N.

    1994-01-01

    Some exactly solvable nonrelativistic quantum models are discussed. Special attention is paid to the quantum inverse problem. It is pointed out that by analyzing the inverse problem pictures one can get a deeper insight into the laws of the microworld and acquire the ability to make the qualitative predictions without computers and formulae. 5 refs

  13. Exact quasinormal modes for a special class of black holes

    International Nuclear Information System (INIS)

    Oliva, Julio; Troncoso, Ricardo

    2010-01-01

    Analytic exact expressions for the quasinormal modes of scalar and electromagnetic perturbations around a special class of black holes are found in d≥3 dimensions. It is shown that the size of the black hole provides a lower bound for the angular momentum of the perturbation. Quasinormal modes appear when this bound is fulfilled; otherwise the excitations become purely damped.

  14. Timed Fast Exact Euclidean Distance (tFEED) maps

    NARCIS (Netherlands)

    Kehtarnavaz, Nasser; Schouten, Theo E.; Laplante, Philip A.; Kuppens, Harco; van den Broek, Egon

    2005-01-01

    In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. In a naive implementation, each object pixel feeds its (exact) ED to each background pixel; then the minimum of these values denotes the ED to

  15. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1982-12-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essencial singularity, when the excharge parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  16. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    Science.gov (United States)

    Zuevsky, A.

    2004-01-01

    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  17. The Alleged Crisis and the Illusion of Exact Replication

    NARCIS (Netherlands)

    Stroebe, Wolfgang; Strack, Fritz

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a replication crisis in psychology. Psychologists are encouraged to conduct more exact

  18. Exact solutions of continuous states for Hartmann potential

    International Nuclear Information System (INIS)

    Chen Changyuan; Lu Falin; Sun Dongsheng

    2004-01-01

    In this Letter, we obtain the exact solutions of continuous states for the Hartmann potential. The normalized wave functions of continuous states on the 'k/2π scale' and the calculation formula of phase shifts are presented. Analytical properties of the scattering amplitude are discussed

  19. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.

  20. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    Science.gov (United States)

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  1. Exact solutions of some coupled nonlinear diffusion-reaction ...

    Indian Academy of Sciences (India)

    certain coupled diffusion-reaction (D-R) equations of very general nature. In recent years, various direct methods have been proposed to find the exact solu- tions not only of nonlinear partial differential equations but also of their coupled versions. These methods include unified ansatz approach [3], extended hyperbolic func ...

  2. Exact boundary controllability for a series of membranes elastically connected

    Directory of Open Access Journals (Sweden)

    Waldemar D. Bastos

    2017-01-01

    Full Text Available In this article we study the exact controllability with Neumann boundary controls for a system of linear wave equations coupled in parallel by lower order terms on piecewise smooth domains of the plane. We obtain square integrable controls for initial state with finite energy and time of controllability near the optimal value.

  3. Exact solution of the neutron transport equation in spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters

    2017-03-15

    Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.

  4. Parametrices and exact paralinearization of semi-linear boundary problems

    DEFF Research Database (Denmark)

    Johnsen, Jon

    2008-01-01

    The subject is parametrices for semi-linear problems, based on parametrices for linear boundary problems and on non-linearities that decompose into solution-dependent linear operators acting on the solutions. Non-linearities of product type are shown to admit this via exact paralinearization...... of homogeneous distributions, tensor products and halfspace extensions have been revised. Examples include the von Karman equation....

  5. Exact solutions of generalized Zakharov and Ginzburg-Landau equations

    International Nuclear Information System (INIS)

    Zhang Jinliang; Wang Mingliang; Gao Kequan

    2007-01-01

    By using the homogeneous balance principle, the exact solutions of the generalized Zakharov equations and generalized Ginzburg-Landau equation are obtained with the aid of a set of subsidiary higher-order ordinary differential equations (sub-equations for short)

  6. Exact travelling wave solutions for some important nonlinear

    Indian Academy of Sciences (India)

    The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical ...

  7. Thermodynamics of Rh nuclear spins calculated by exact diagonalization

    DEFF Research Database (Denmark)

    Lefmann, K.; Ipsen, J.; Rasmussen, F.B.

    2000-01-01

    We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...

  8. A BEHAVIORAL-APPROACH TO LINEAR EXACT MODELING

    NARCIS (Netherlands)

    ANTOULAS, AC; WILLEMS, JC

    1993-01-01

    The behavioral approach to system theory provides a parameter-free framework for the study of the general problem of linear exact modeling and recursive modeling. The main contribution of this paper is the solution of the (continuous-time) polynomial-exponential time series modeling problem. Both

  9. Exact solutions, energy, and charge of stable Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Marques, M.A. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2016-05-15

    In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable. (orig.)

  10. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhu Jiamin; Ma Zhengyi

    2007-01-01

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions

  11. Exact analytical solutions for nonlinear reaction-diffusion equations

    International Nuclear Information System (INIS)

    Liu Chunping

    2003-01-01

    By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way

  12. Exact Controllability and Perturbation Analysis for Elastic Beams

    International Nuclear Information System (INIS)

    Moreles, Miguel Angel

    2004-01-01

    The Rayleigh beam is a perturbation of the Bernoulli-Euler beam. We establish convergence of the solution of the Exact Controllability Problem for the Rayleigh beam to the corresponding solution of the Bernoulli-Euler beam. Convergence is related to a Singular Perturbation Problem. The main tool in solving this perturbation problem is a weak version of a lower bound for hyperbolic polynomials

  13. Exact angular momentum projection based on cranked HFB solution

    Energy Technology Data Exchange (ETDEWEB)

    Enami, Kenichi; Tanabe, Kosai; Yosinaga, Naotaka [Saitama Univ., Urawa (Japan). Dept. of Physics

    1998-03-01

    Exact angular momentum projection of cranked HFB solutions is carried out. It is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus. The result also indicates that the energy correction from projection is important for further investigation of nuclear structure. (author)

  14. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  15. The potts chain in a random field: an exact solution

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.; Santos, Raimundo R. dos.

    1984-01-01

    An exact solution is presented for the one-dimensional q-state Potts model in a quenched random field. The ferromagnetic phase is unstable against any small random field perturbation. The correlation function and the Edwards-Anderson order parameter Q are discussed. For finite q only the phase with Q ≠ 0 is present. (Author) [pt

  16. Exact Solutions of the Harry-Dym Equation

    International Nuclear Information System (INIS)

    Mokhtari, Reza

    2011-01-01

    The aim of this paper is to generate exact travelling wave solutions of the Harry-Dym equation through the methods of Adomian decomposition, He's variational iteration, direct integration, and power series. We show that the two later methods are more successful than the two former to obtain more solutions of the equation. (general)

  17. Exact Repetition as Input Enhancement in Second Language Acquisition.

    Science.gov (United States)

    Jensen, Eva Dam; Vinther, Thora

    2003-01-01

    Reports on two studies on input enhancement used to support learners' selection of focus of attention in Spanish second language listening material. Input consisted of video recordings of dialogues between native speakers. Exact repetition and speech rate reduction were examined for effect on comprehension, acquisition of decoding strategies, and…

  18. Exact Rational Expectations, Cointegration, and Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  19. Exact rational expectations, cointegration, and reduced rank regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  20. Exact rational expectations, cointegration, and reduced rank regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    2008-01-01

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  1. Water hammer (with FSI): exact solution : parallelization and application

    NARCIS (Netherlands)

    Loh, K.; Tijsseling, A.S.

    2014-01-01

    The 1D fully coupled Fluid-Structure Interaction (FSI) model can adequately describe the water hammer effect on the fluid, and the structural behaviour of the pipe. This paper attempts to increase the capability of using an exact solution of the 1D FSI problem applied to a straight pipe with a

  2. Exact performance analysis of decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel; Alouini, Mohamed-Slim; Yang, Hongchuan

    2010-01-01

    the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation

  3. Exact solution for the interior of a black hole

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.

    2008-01-01

    Within the Relativistic Theory of Gravitation it is shown that the equation of state p = rho holds near the center of a black hole. For the stiff equation of state p = rho - rho(c) the interior metric is solved exactly. It is matched with the Schwarzschild metric, which is deformed in a narrow range

  4. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  5. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1983-01-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essential singularity, when the exchange parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  6. The functional variable method for finding exact solutions of some ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we implemented the functional variable method and the modified. Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled. KdV system. This method is extremely simple ...

  7. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com

    2008-04-14

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  8. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2008-01-01

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  9. The exact probability law for the approximated similarity from the ...

    African Journals Online (AJOL)

    The exact probability law for the approximated similarity from the Minhashing method. Soumaila Dembele, Gane Samb Lo. Abstract. We propose a probabilistic setting in which we study the probability law of the Rajaraman and Ullman RU algorithm and a modied version of it denoted by RUM. These algorithms aim at ...

  10. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  11. Analytical method for solving radioactive transformations

    International Nuclear Information System (INIS)

    Vukadin, Z.

    1999-01-01

    The exact method of solving radioactive transformations is presented. Nonsingular Bateman coefficients, which can be computed using recurrence formulas, greatly reduce computational time and eliminate singularities that often arise in problems involving nuclide transmutations. Depletion function power series expansion enables high accuracy of the performed calculations, specially in a case of a decay constants with closely spaced values. Generality and simplicity of the method make the method useful for many practical applications. (author)

  12. Ancilla-approximable quantum state transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blass, Andreas [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Gurevich, Yuri [Microsoft Research, Redmond, Washington 98052 (United States)

    2015-04-15

    We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation.

  13. Ancilla-approximable quantum state transformations

    International Nuclear Information System (INIS)

    Blass, Andreas; Gurevich, Yuri

    2015-01-01

    We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation

  14. Darboux transformation for two-level system

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.; Baldiotti, M.; Gitman, D.; Shamshutdinova, V. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2005-06-01

    We develop the Darboux procedure for the case of the two-level system. In particular, it is demonstrated that one can construct the Darboux intertwining operator that does not violate the specific structure of the equations of the two-level system, transforming only one real potential into another real potential. We apply the obtained Darboux transformation to known exact solutions of the two-level system. Thus, we find three classes of new solutions for the two-level system and the corresponding new potentials that allow such solutions. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  15. Exactly solved mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy

    International Nuclear Information System (INIS)

    Lisnyi, Bohdan; Strečka, Jozef

    2015-01-01

    The mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration–iteration transformation and the transfer-matrix method. The decoration–iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume–Emery–Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively. - Highlights: • Mixed spin-(1,1/2) Ising–Heisenberg diamond chain is exactly solved. • Quantum ground states with a singlet-dimer state of the Heisenberg spins are found. • Magnetization curve displays intermediate plateaus at zero and half of full magnetization. • Thermal dependences of specific heat may display up to four distinct peaks

  16. Exact solution and thermodynamics of a spin chain with long-range elliptic interactions

    International Nuclear Information System (INIS)

    Finkel, Federico; González-López, Artemio

    2014-01-01

    We solve in closed form the simplest (su(1|1)) supersymmetric version of Inozemtsev's elliptic spin chain, as well as its infinite (hyperbolic) counterpart. The solution relies on the equivalence of these models to a system of free spinless fermions and on the exact computation of the Fourier transform of the resulting elliptic hopping amplitude. We also compute the thermodynamic functions of the finite (elliptic) chain and their low temperature limit and show that the energy levels become normally distributed in the thermodynamic limit. Our results indicate that at low temperatures the su(1|1) elliptic chain behaves as a critical XX model and deviates in an essential way from the Haldane–Shastry chain. (paper)

  17. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  18. On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid

    Science.gov (United States)

    Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.

    2010-02-01

    This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.

  19. Dirac delta representation by exact parametric equations.. Application to impulsive vibration systems

    Science.gov (United States)

    Chicurel-Uziel, Enrique

    2007-08-01

    A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.

  20. Integral transform method for solving time fractional systems and fractional heat equation

    Directory of Open Access Journals (Sweden)

    Arman Aghili

    2014-01-01

    Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.

  1. Transforming giants.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  2. Canonical reduction of self-dual Yang-Mills equations to Fitzhugh-Nagumo equation and exact solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.M. [Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt); Mathematics Department, P.O. Box 1144, Tabouk Teacher College, Ministry of Education (Saudi Arabia)], E-mail: eaashour@lycos.com; Gharib, G.M. [Mathematics Department, P.O. Box 1144, Tabouk Teacher College, Ministry of Education (Saudi Arabia)

    2009-01-30

    The (constrained) canonical reduction of four-dimensional self-dual Yang-Mills theory to two-dimensional Fitzhugh-Nagumo and the real Newell-Whitehead equations are considered. On the other hand, other methods and transformations are developed to obtain exact solutions for the original two-dimensional Fitzhugh-Nagumo and Newell-Whitehead equations. The corresponding gauge potential A{sub {mu}} and the gauge field strengths F{sub {mu}}{sub {nu}} are also obtained. New explicit and exact traveling wave and solitary solutions (for Fitzhugh-Nagumo and Newell-Whitehead equations) are obtained by using an improved sine-cosine method and the Wu's elimination method with the aid of Mathematica.

  3. Canonical reduction of self-dual Yang-Mills equations to Fitzhugh-Nagumo equation and exact solutions

    International Nuclear Information System (INIS)

    Sayed, S.M.; Gharib, G.M.

    2009-01-01

    The (constrained) canonical reduction of four-dimensional self-dual Yang-Mills theory to two-dimensional Fitzhugh-Nagumo and the real Newell-Whitehead equations are considered. On the other hand, other methods and transformations are developed to obtain exact solutions for the original two-dimensional Fitzhugh-Nagumo and Newell-Whitehead equations. The corresponding gauge potential A μ and the gauge field strengths F μν are also obtained. New explicit and exact traveling wave and solitary solutions (for Fitzhugh-Nagumo and Newell-Whitehead equations) are obtained by using an improved sine-cosine method and the Wu's elimination method with the aid of Mathematica.

  4. Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada–Kotera–Ito equation

    Directory of Open Access Journals (Sweden)

    Emrullah Yaşar

    Full Text Available In this paper Lie symmetry analysis of the seventh-order time fractional Sawada–Kotera–Ito (FSKI equation with Riemann–Liouville derivative is performed. Using the Lie point symmetries of FSKI equation, it is shown that it can be transformed into a nonlinear ordinary differential equation of fractional order with a new dependent variable. In the reduced equation the derivative is in Erdelyi–Kober sense. Furthermore, adapting the Ibragimov’s nonlocal conservation method to time fractional partial differential equations, we obtain conservation laws of the underlying equation. In addition, we construct some exact travelling wave solutions for the FSKI equation using the sub-equation method. Keywords: Fractional Sawada–Kotera–Ito equation, Lie symmetry, Riemann–Liouville fractional derivative, Conservation laws, Exact solutions

  5. Exact Solution of Space-Time Fractional Coupled EW and Coupled MEW Equations Using Modified Kudryashov Method

    International Nuclear Information System (INIS)

    Raslan, K. R.; Ali, Khalid K.; EL-Danaf, Talaat S.

    2017-01-01

    In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation (CEWE) and the space-time fractional coupled modified equal width wave equation (CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels. (paper)

  6. Vertex function for the coupling of an electron with intramolecular phonons: Exact results in the antiadiabatic limit

    International Nuclear Information System (INIS)

    Takada, Y.; Higuchi, T.

    1995-01-01

    The Green's-function techniques, especially the one developed in the preceding paper [Takada, Phys. Rev. B 52, 12 708 (1995)], are employed to calculate the electron-phonon vertex part as well as the electronic self-energy exactly on both real- and imaginary-frequency axes in the electron-phonon Holstein model with the on-site Coulomb repulsion in the limit in which the intramolecular phonon energy ω 0 is much larger than the electronic bandwidth. The rigorous vertex part is found to diverge at the frequencies at which an electron is locked by such local phonons with an infinitely strong effective coupling. Characteristic frequencies of this divergence, which are not equal to multiples of ω 0 , are calculated as a function of the electron-phonon bare coupling constant. Our results for the self-energy are checked successfully with the exact ones obtained by the Lang-Firsov canonical transformation

  7. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    Science.gov (United States)

    Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar

    2018-03-01

    We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.

  8. arXiv Integrable flows between exact CFTs

    CERN Document Server

    Georgiou, George

    2017-11-14

    We explicitly construct families of integrable σ-model actions smoothly inter-polating between exact CFTs. In the ultraviolet the theory is the direct product of two current algebras at levels k$_{1}$ and k$_{2}$. In the infrared and for the case of two deformation matrices the CFT involves a coset CFT, whereas for a single matrix deformation it is given by the ultraviolet direct product theories but at levels k$_{1}$ and k$_{2}$ − k$_{1}$. For isotropic deformations we demonstrate integrability. In this case we also compute the exact beta-function for the deformation parameters using gravitational methods. This is shown to coincide with previous results obtained using perturbation theory and non-perturbative symmetries.

  9. Some exact velocity profiles for granular flow in converging hoppers

    Science.gov (United States)

    Cox, Grant M.; Hill, James M.

    2005-01-01

    Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.

  10. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  11. Exact performance analysis of decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel

    2010-06-01

    In this paper, we investigate a dual-hop decode-and-forward opportunistic relaying scheme where the source may or may not be able to communicate directly with the destination. In our study, we consider a regenerative relaying scheme in which the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact statistics of each hop. Unlike existing works where the analysis focused on high signal-to-noise ratio (SNR) regime, such results are important to enable the designers to take decisions regarding practical systems that operate at low SNR regime. We show that performance simulation results coincide with our analytical results.

  12. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  13. Exactly solvable models in many-body theory

    CERN Document Server

    March, N H

    2016-01-01

    The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.

  14. Exactly soluble two-state quantum models with linear couplings

    International Nuclear Information System (INIS)

    Torosov, B T; Vitanov, N V

    2008-01-01

    A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of π/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model

  15. Exact analytic solutions for Mikheyev-Smirnov-Wolfenstein level crossings

    International Nuclear Information System (INIS)

    Noetzold, D.

    1987-01-01

    An exact formula for the transition probability in level-crossing phenomena is derived for a general case, ranging from adiabatic to sudden crossings. This is done in the context of neutrino flavor oscillations for the Mikheyev-Smirnov-Wolfenstein (MSW) effect, where hitherto only numerical or approximate solutions were obtained. The matter density or level splitting is assumed to be governed by a hyperbolic-tangent function which, however, can change arbitrarily fast between two constant values. For example, in context of the MSW effect this furnishes a nice fit to the solar density determining the level crossing of solar neutrinos. In the quasiadiabatic limit the exact Landau-Zener factor can be read off, correcting some expressions obtained so far. Even in the opposite limit of a sudden level crossing a conversion is found, which can have far-reaching consequences for neutrino detection on Earth

  16. Computing exact bundle compliance control charts via probability generating functions.

    Science.gov (United States)

    Chen, Binchao; Matis, Timothy; Benneyan, James

    2016-06-01

    Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.

  17. Exact results for Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Fiol, Bartomeu; Torrents, Genís [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain)

    2014-01-08

    We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of N=4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.

  18. On the exact interpolating function in ABJ theory

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2016-12-16

    Based on the recent indications of integrability in the planar ABJ model, we conjecture an exact expression for the interpolating function h(λ{sub 1},λ{sub 2}) in this theory. Our conjecture is based on the observation that the integrability structure of the ABJM theory given by its Quantum Spectral Curve is very rigid and does not allow for a simple consistent modification. Under this assumption, we revised the previous comparison of localization results and exact all loop integrability calculations done for the ABJM theory by one of the authors and Grigory Sizov, fixing h(λ{sub 1},λ{sub 2}). We checked our conjecture against various weak coupling expansions, at strong coupling and also demonstrated its invariance under the Seiberg-like duality. This match also gives further support to the integrability of the model. If our conjecture is correct, it extends all the available integrability results in the ABJM model to the ABJ model.

  19. Watermelon configurations with wall interaction: exact and asymptotic results

    Energy Technology Data Exchange (ETDEWEB)

    Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)

    2006-06-15

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  20. Watermelon configurations with wall interaction: exact and asymptotic results

    International Nuclear Information System (INIS)

    Krattenthaler, C

    2006-01-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature

  1. Watermelon configurations with wall interaction: exact and asymptotic results

    Science.gov (United States)

    Krattenthaler, C.

    2006-06-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  2. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  3. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    Science.gov (United States)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  4. Cesarean section and the manipulation of exact delivery time.

    Science.gov (United States)

    Fabbri, Daniele; Monfardini, Chiara; Castaldini, Ilaria; Protonotari, Adalgisa

    2016-07-01

    Physicians are often alleged responsible for the manipulation of delivery timing. We investigate this issue in a setting that negates the influence of financial incentives on physician's behavior. Working on a sample of women admitted at the onset of labor in a big public hospital in Italy we estimate a model for the exact time of delivery as driven by individual Indication to Cesarean Section (ICS) and covariates. We find that ICS does not affect the day of delivery but leads to a circadian rhythm in the likelihood of delivery. The pattern is consistent with the postponement of high ICS deliveries in the late night\\early morning shift. Our evidence hardly supports the manipulation of timing of births as driven by medical staff's "demand for leisure". Physicians seem to manipulate the exact timing of delivery to reduce exposure to risk factors extant during off-peak periods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Six-term exact sequences for smooth generalized crossed products

    DEFF Research Database (Denmark)

    Gabriel, Olivier; Grensing, Martin

    2013-01-01

    We define smooth generalized crossed products and prove six-term exact sequences of Pimsner–Voiculescu type. This sequence may, in particular, be applied to smooth subalgebras of the quantum Heisenberg manifolds in order to compute the generators of their cyclic cohomology. Further, our results...... include the known results for smooth crossed products. Our proof is based on a combination of arguments from the setting of (Cuntz–)Pimsner algebras and the Toeplitz proof of Bott periodicity....

  6. Energy vs. density on paths toward more exact density functionals.

    Science.gov (United States)

    Kepp, Kasper P

    2018-03-14

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.

  7. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  8. New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bingzhuang Liu

    2014-01-01

    Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.

  9. Exact equivalent straight waveguide model for bent and twisted waveguides

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2008-01-01

    Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling...... of in-plane curved or helically wound waveguides with use of available simulators for straight waveguides without the restrictions of the known approximate equivalent-index formulas....

  10. Exact nonparametric confidence bands for the survivor function.

    Science.gov (United States)

    Matthews, David

    2013-10-12

    A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.

  11. Boundary conditions of the exact impulse wave function

    International Nuclear Information System (INIS)

    Gravielle, M.; Miraglia, J.E.

    1997-01-01

    The behavior of the exact impulse wave function is investigated at intermediate and high impact energies. Numerical details of the wave function and its perturbative potential are reported. We conclude that the impulse wave function does not tend to the proper Coulomb asymptotic limit. For electron capture, however, it is shown that the impulse wave function produces reliable probabilities even for intermediate velocities and symmetric collision systems. copyright 1997 The American Physical Society

  12. Exactly averaged equations for flow and transport in random media

    International Nuclear Information System (INIS)

    Shvidler, Mark; Karasaki, Kenzi

    2001-01-01

    It is well known that exact averaging of the equations of flow and transport in random porous media can be realized only for a small number of special, occasionally exotic, fields. On the other hand, the properties of approximate averaging methods are not yet fully understood. For example, the convergence behavior and the accuracy of truncated perturbation series. Furthermore, the calculation of the high-order perturbations is very complicated. These problems for a long time have stimulated attempts to find the answer for the question: Are there in existence some exact general and sufficiently universal forms of averaged equations? If the answer is positive, there arises the problem of the construction of these equations and analyzing them. There exist many publications related to these problems and oriented on different applications: hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in random fields, etc. We present a method of finding the general form of exactly averaged equations for flow and transport in random fields by using (1) an assumption of the existence of Green's functions for appropriate stochastic problems, (2) some general properties of the Green's functions, and (3) the some basic information about the random fields of the conductivity, porosity and flow velocity. We present a general form of the exactly averaged non-local equations for the following cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. Transient flow with sources in compressible media with random conductivity and porosity. 3. Non-reactive solute transport in random porous media. We discuss the problem of uniqueness and the properties of the non-local averaged equations, for the cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we analyze the hypothesis of the structure non-local equations in general case of stochastically homogeneous fields. (author)

  13. Polymers undergoing inhomogeneous adsorption: exact results and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, G K [Department of Mathematics, University of Melbourne, Parkville, Victoria (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G, E-mail: giliev@yorku.ca [Department of Chemistry, University of Toronto, Toronto (Canada)

    2011-10-07

    We consider several types of inhomogeneous polymer adsorption. In each case, the inhomogeneity is regular and resides in the surface, in the polymer or in both. We consider two different polymer models: a directed walk model that can be solved exactly and a self-avoiding walk model which we investigate using Monte Carlo methods. In each case, we compute the phase diagram. We compare and contrast the phase diagrams and give qualitative arguments about their forms. (paper)

  14. Exact solutions to some modified sine-Gordon equations

    International Nuclear Information System (INIS)

    Saermark, K.

    1983-01-01

    Exact, translational solutions to a number of modified sine-Gordon equations are presented. In deriving the equations and the solutions use is made of results from the theory of ordinary differential equations without moving critical points as given by Ince. It is found that kink-like solutions exist also in cases where the coefficients of the trigonometric terms are space- and time-dependent. (Auth.)

  15. Kinematics of roller chain drives - Exact and approximate analysis

    DEFF Research Database (Denmark)

    Fuglede, Niels; Thomsen, Jon Juel

    2016-01-01

    An exact and approximate kinematic analysis of a roller chain drive modeled as a four-bar mechanism is presented. The span connects the sprockets such that they rotate in the same direction, and the sprocket size, number of teeth, and shaft center distance can be arbitrary. The driven sprocket...... to be very good agreement. All together this gives new insights into the characteristics of chain drive kinematics and the influence of main design parameters....

  16. Exact nonparametric inference for detection of nonlinear determinism

    OpenAIRE

    Luo, Xiaodong; Zhang, Jie; Small, Michael; Moroz, Irene

    2005-01-01

    We propose an exact nonparametric inference scheme for the detection of nonlinear determinism. The essential fact utilized in our scheme is that, for a linear stochastic process with jointly symmetric innovations, its ordinary least square (OLS) linear prediction error is symmetric about zero. Based on this viewpoint, a class of linear signed rank statistics, e.g. the Wilcoxon signed rank statistic, can be derived with the known null distributions from the prediction error. Thus one of the ad...

  17. Exact solutions to a nonlinear dispersive model with variable coefficients

    International Nuclear Information System (INIS)

    Yin Jun; Lai Shaoyong; Qing Yin

    2009-01-01

    A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.

  18. New Exact Solutions for New Model Nonlinear Partial Differential Equation

    OpenAIRE

    Maher, A.; El-Hawary, H. M.; Al-Amry, M. S.

    2013-01-01

    In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.

  19. Products of composite operators in the exact renormalization group formalism

    Science.gov (United States)

    Pagani, C.; Sonoda, H.

    2018-02-01

    We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.

  20. Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation

    International Nuclear Information System (INIS)

    Miara, Bernadette; Muench, Arnaud

    2009-01-01

    We study the exact controllability of a three-dimensional body made of a material whose constitutive law introduces an elasticity-electricity coupling. We show that a coupled elastic-electric control acting on the whole boundary of the body drives the system to rest after time large enough. Two-dimensional numerical experiments suggest that controllability can still be achieved by relaxing this restrictive condition using either both controls on a reduced support or elastic control alone

  1. Exact area devil's staircase for the sawtooth map

    International Nuclear Information System (INIS)

    Chen, Q.; Meiss, J.D.

    1988-04-01

    The sawtooth mapping is a family of uniformly hyperbolic, piecewise linear, area-preserving maps on the cylinder. We construct the resonances, cantori, and turnstiles of this family and derive exact formulas for the resonance areas and the escaping fluxes. These are of prime interst for an understanding of the deterministic transport which occurs the stochastic regime. The resonances are shown to fill the full measure of phase space. 9 refs., 4 figs

  2. Exact results for the one dimensional asymmetric exclusion model

    International Nuclear Information System (INIS)

    Derrida, B.; Evans, M.R.; Pasquier, V.

    1993-01-01

    The asymmetric exclusion model describes a system of particles hopping in a preferred direction with hard core repulsion. These particles can be thought of as charged particles in a field, as steps of an interface, as cars in a queue. Several exact results concerning the steady state of this system have been obtained recently. The solution consists of representing the weights of the configurations in the steady state as products of non-commuting matrices. (author)

  3. Exact interior solutions in 2 + 1-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Biswas, Ritabrata [Indian Institute of Engineering Sceince and Technology Shibpur, Howrah, West Bengal (India); Usmani, A.A. [Aligarh Muslim University, Department of Physics, Aligarh, Uttar Pradesh (India)

    2014-04-15

    We provide a new class of exact solutions for the interior in 2 + 1-dimensional spacetime. The solutions obtained for the perfect fluid model both with and without cosmological constant (Λ) are found to be regular and singularity free. It assumes very simple analytical forms that help us to study the various physical properties of the configuration. Solutions without Λ are found to be physically acceptable. (orig.)

  4. Multijet final states: exact results and the leading pole approximation

    International Nuclear Information System (INIS)

    Ellis, R.K.; Owens, J.F.

    1984-09-01

    Exact results for the process gg → ggg are compared with those obtained using the leading pole approximation. Regions of phase space where the approximation breaks down are discussed. A specific example relevant for background estimates to W boson production is presented. It is concluded that in this instance the leading pole approximation may underestimate the standard QCD background by more than a factor of two in certain kinematic regions of physical interest

  5. Exact error estimation for solutions of nuclide chain equations

    International Nuclear Information System (INIS)

    Tachihara, Hidekazu; Sekimoto, Hiroshi

    1999-01-01

    The exact solution of nuclide chain equations within arbitrary figures is obtained for a linear chain by employing the Bateman method in the multiple-precision arithmetic. The exact error estimation of major calculation methods for a nuclide chain equation is done by using this exact solution as a standard. The Bateman, finite difference, Runge-Kutta and matrix exponential methods are investigated. The present study confirms the following. The original Bateman method has very low accuracy in some cases, because of large-scale cancellations. The revised Bateman method by Siewers reduces the occurrence of cancellations and thereby shows high accuracy. In the time difference method as the finite difference and Runge-Kutta methods, the solutions are mainly affected by the truncation errors in the early decay time, and afterward by the round-off errors. Even though the variable time mesh is employed to suppress the accumulation of round-off errors, it appears to be nonpractical. Judging from these estimations, the matrix exponential method is the best among all the methods except the Bateman method whose calculation process for a linear chain is not identical with that for a general one. (author)

  6. Dynamical Response of Networks Under External Perturbations: Exact Results

    Science.gov (United States)

    Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2015-04-01

    We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.

  7. Exact coefficients for higher dimensional operators with sixteen supersymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ming [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, Congkao [INFN Sezione di Roma “Tor Vergata' ,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-09-15

    We consider constraints on higher-dimensional operators for supersymmetric effective field theories. In four dimensions with maximal supersymmetry and SU(4) R-symmetry, we demonstrate that the coefficients of abelian operators F{sup n} with MHV helicity configurations must satisfy a recursion relation, and are completely determined by that of F{sup 4}. As the F{sup 4} coefficient is known to be one-loop exact, this allows us to derive exact coefficients for all such operators. We also argue that the results are consistent with the SL(2,Z) duality symmetry. Breaking SU(4) to Sp(4), in anticipation for the Coulomb branch effective action, we again find an infinite class of operators whose coefficients are determined exactly. We also consider three-dimensional N=8 as well as six-dimensional N=(2,0),(1,0) and (1,1) theories. In all cases, we demonstrate that the coefficient of dimension-six operator must be proportional to the square of that of dimension-four.

  8. Exact scattering solutions in an energy sudden (ES) representation

    International Nuclear Information System (INIS)

    Chang, B.; Eno, L.; Rabitz, H.

    1983-01-01

    In this paper, we lay down the theoretical foundations for computing exact scattering wave functions in a reference frame which moves in unison with the system internal coordinates. In this frame the (internal) coordinates appear to be fixed and its adoption leads very naturally (in zeroth order) to the energy sudden (ES) approximation [and the related infinite order sudden (IOS) method]. For this reason we call the new representation for describing the exact dynamics of a many channel scattering problem, the ES representation. Exact scattering solutions are derived in both time dependent and time independent frameworks for the representation and many interesting results in these frames are established. It is shown, e.g., that in a time dependent frame the usual Schroedinger propagator factorizes into internal Hamiltonian, ES, and energy correcting propagators. We also show that in a time independent frame the full Green's functions can be similarly factorized. Another important feature of the new representation is that it forms a firm foundation for seeking corrections to the ES approximation. Thus, for example, the singularity which arises in conventional perturbative expansions of the full Green's functions (with the ES Green's function as the zeroth order solution) is avoided in the ES representation. Finally, a number of both time independent and time dependent ES correction schemes are suggested

  9. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  10. A fast exact sequential algorithm for the partial digest problem.

    Science.gov (United States)

    Abbas, Mostafa M; Bahig, Hazem M

    2016-12-22

    Restriction site analysis involves determining the locations of restriction sites after the process of digestion by reconstructing their positions based on the lengths of the cut DNA. Using different reaction times with a single enzyme to cut DNA is a technique known as a partial digestion. Determining the exact locations of restriction sites following a partial digestion is challenging due to the computational time required even with the best known practical algorithm. In this paper, we introduce an efficient algorithm to find the exact solution for the partial digest problem. The algorithm is able to find all possible solutions for the input and works by traversing the solution tree with a breadth-first search in two stages and deleting all repeated subproblems. Two types of simulated data, random and Zhang, are used to measure the efficiency of the algorithm. We also apply the algorithm to real data for the Luciferase gene and the E. coli K12 genome. Our algorithm is a fast tool to find the exact solution for the partial digest problem. The percentage of improvement is more than 75% over the best known practical algorithm for the worst case. For large numbers of inputs, our algorithm is able to solve the problem in a suitable time, while the best known practical algorithm is unable.

  11. A new exact path integral treatment of the hydrogen atom

    International Nuclear Information System (INIS)

    Pak, N.K.; Sokmen, I.

    1983-08-01

    Using a recently developed general new-time transformation method, free of operator ordering ambiguities by construction we reconsider the hydrogen atom problem. We solve the problem direcly without any dimension raising trick. (author)

  12. Transformer Protection Using the Wavelet Transform

    OpenAIRE

    ÖZGÖNENEL, Okan; ÖNBİLGİN, Güven; KOCAMAN, Çağrı

    2014-01-01

    This paper introduces a novel approach for power transformer protection algorithm. Power system signals such as current and voltage have traditionally been analysed by the Fast Fourier Transform. This paper aims to prove that the Wavelet Transform is a reliable and computationally efficient tool for distinguishing between the inrush currents and fault currents. The simulated results presented clearly show that the proposed technique for power transformer protection facilitates the a...

  13. General exact harmonic analysis of in-plane timoshenko beam structures

    Directory of Open Access Journals (Sweden)

    C. A. N. Dias

    Full Text Available The exact solution for the problem of damped, steady state response, of in-plane Timoshenko frames subjected to harmonically time varying external forces is here described. The solution is obtained by using the classical dynamic stiffness matrix (DSM, which is non-linear and transcendental in respect to the excitation frequency, and by performing the harmonic analysis using the Laplace transform. As an original contribution, the partial differential coupled governing equations, combining displacements and forces, are directly subjected to Laplace transforms, leading to the member DSM and to the equivalent load vector formulations. Additionally, the members may have rigid bodies attached at any of their ends where, optionally, internal forces can be released. The member matrices are then used to establish the global matrices that represent the dynamic equilibrium of the overall framed structure, preserving close similarity to the finite element method. Several application examples prove the certainty of the proposed method by comparing the model results with the ones available in the literature or with finite element analyses.

  14. The Bargmann transform and canonical transformations

    International Nuclear Information System (INIS)

    Villegas-Blas, Carlos

    2002-01-01

    This paper concerns a relationship between the kernel of the Bargmann transform and the corresponding canonical transformation. We study this fact for a Bargmann transform introduced by Thomas and Wassell [J. Math. Phys. 36, 5480-5505 (1995)]--when the configuration space is the two-sphere S 2 and for a Bargmann transform that we introduce for the three-sphere S 3 . It is shown that the kernel of the Bargmann transform is a power series in a function which is a generating function of the corresponding canonical transformation (a classical analog of the Bargmann transform). We show in each case that our canonical transformation is a composition of two other canonical transformations involving the complex null quadric in C 3 or C 4 . We also describe quantizations of those two other canonical transformations by dealing with spaces of holomorphic functions on the aforementioned null quadrics. Some of these quantizations have been studied by Bargmann and Todorov [J. Math. Phys. 18, 1141-1148 (1977)] and the other quantizations are related to the work of Guillemin [Integ. Eq. Operator Theory 7, 145-205 (1984)]. Since suitable infinite linear combinations of powers of the generating functions are coherent states for L 2 (S 2 ) or L 2 (S 3 ), we show finally that the studied Bargmann transforms are actually coherent states transforms

  15. Lie symmetry analysis and reduction for exact solution of (2+1)-dimensional Bogoyavlensky-Konopelchenko equation by geometric approach

    Science.gov (United States)

    Ray, S. Saha

    2018-04-01

    In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.

  16. Feynman propagator and space-time transformation technique

    International Nuclear Information System (INIS)

    Nassar, A.B.

    1987-01-01

    We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)

  17. Improved effective potential by nonlinear canonical transformations

    International Nuclear Information System (INIS)

    Ritschel, U.

    1990-01-01

    We generalize the familiar gaussian-effective-potential formalism to a class of non-gaussian trial states. With the help of exact nonlinear canonical transformations, expectation values can be calculated analytically and in closed form. A detailed description of our method, particularly for quadratic and cubic transformations, and of the related renormalization procedure is given. Applications to φ 4 -models in various dimensionalities are treated. We find the expected critical behaviour in two space-time dimensions. In three and four dimensions we observe instabilities which go back the incompleteness of the gaussian-based renormalization. In the appendices it is shown that the quadratic transformation leads to a coherent state in a certain limiting case, and the generalization to systems at finite temperature is performed. (orig.)

  18. Some generalizations of the nonlocal transformations approach

    Directory of Open Access Journals (Sweden)

    V. A. Tychynin

    2015-02-01

    Full Text Available Some generalizations of a method of nonlocal transformations are proposed: a con­nection of given equations via prolonged nonlocal transformations and finding of an adjoint solution to the solutions of initial equation are considered. A concept of nonlocal transformation with additional variables is introduced, developed and used for searching symmetries of differential equations. A problem of inversion of the nonlocal transforma­tion with additional variables is investigated and in some cases solved. Several examples are presented. Derived technique is applied for construction of the algorithms and for­mulae of generation of solutions. The formulae derived are used for construction of exact solutions of some nonlinear equations.

  19. Generalized Fourier transforms classes

    DEFF Research Database (Denmark)

    Berntsen, Svend; Møller, Steen

    2002-01-01

    The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory foll...... follows that integral transform with kernels which are products of a Bessel and a Hankel function or which is of a certain general hypergeometric type have inverse transforms of the same structure....

  20. Path Following in the Exact Penalty Method of Convex Programming.

    Science.gov (United States)

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  1. Exact reliability quantification of highly reliable systems with maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Bris, Radim, E-mail: radim.bris@vsb.c [VSB-Technical University Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Applied Mathematics, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic)

    2010-12-15

    When a system is composed of highly reliable elements, exact reliability quantification may be problematic, because computer accuracy is limited. Inaccuracy can be due to different aspects. For example, an error may be made when subtracting two numbers that are very close to each other, or at the process of summation of many very different numbers, etc. The basic objective of this paper is to find a procedure, which eliminates errors made by PC when calculations close to an error limit are executed. Highly reliable system is represented by the use of directed acyclic graph which is composed from terminal nodes, i.e. highly reliable input elements, internal nodes representing subsystems and edges that bind all of these nodes. Three admissible unavailability models of terminal nodes are introduced, including both corrective and preventive maintenance. The algorithm for exact unavailability calculation of terminal nodes is based on merits of a high-performance language for technical computing MATLAB. System unavailability quantification procedure applied to a graph structure, which considers both independent and dependent (i.e. repeatedly occurring) terminal nodes is based on combinatorial principle. This principle requires summation of a lot of very different non-negative numbers, which may be a source of an inaccuracy. That is why another algorithm for exact summation of such numbers is designed in the paper. The summation procedure uses benefits from a special number system with the base represented by the value 2{sup 32}. Computational efficiency of the new computing methodology is compared with advanced simulation software. Various calculations on systems from references are performed to emphasize merits of the methodology.

  2. An exactly soluble Hartree problem in an external potential

    International Nuclear Information System (INIS)

    Gunn, J.C.; Gunn, J.M.F.

    1987-09-01

    The problem of N bosons interacting with each other via repulsive delta function interactions and with an external, attractive, delta function potential is solved within the Hartree approximation, exactly. It is found that if the interparticle interactions are above a certain value, there is no bound state. Thus the bound state does not just expand to compensate for the increase in the repulsive Hartree potential. Moreover as the interaction strength is increased to that value, the ground state wave function develops a pole at the position of the attractive potential. (author)

  3. A quasi-exactly solvable Lipkin-Meshkov-Glick model

    International Nuclear Information System (INIS)

    Pan Feng; Lin Jijie; Xue Xiaogang; Draayer, J P

    2010-01-01

    We prove that a special Lipkin-Meshkov-Glick model is quasi-exactly solvable with solutions that can be expressed in the SU(2) coherent state form. Ground-state properties of the model are studied analytically. We also show that the model reduces to the standard two-site Bose-Hubbard model in the large-N limit for finite U/t or large (N - 1)|U|/t cases with finite N, which proves that in these cases the ground state of the standard two-site Bose-Hubbard model is an SU(2) coherent state.

  4. Transversal magnetotransport in Weyl semimetals: Exact numerical approach

    Science.gov (United States)

    Behrends, Jan; Kunst, Flore K.; Sbierski, Björn

    2018-02-01

    Magnetotransport experiments on Weyl semimetals are essential for investigating the intriguing topological and low-energy properties of Weyl nodes. If the transport direction is perpendicular to the applied magnetic field, experiments have shown a large positive magnetoresistance. In this work we present a theoretical scattering matrix approach to transversal magnetotransport in a Weyl node. Our numerical method confirms and goes beyond the existing perturbative analytical approach by treating disorder exactly. It is formulated in real space and is applicable to mesoscopic samples as well as in the bulk limit. In particular, we study the case of clean and strongly disordered samples.

  5. Intermittency inhibited by transport: An exactly solvable model

    Science.gov (United States)

    Zanette, Damián H.

    1994-04-01

    Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic reactions of the type A-->2A and A-->0, whose population field is known to exhibit spatiotemporal intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as transport is strengthened, low-order population moments are affected before the high-order ones. Numerical simulations are presented to support the analytical results.

  6. Exact Methods for Solving the Train Departure Matching Problem

    DEFF Research Database (Denmark)

    Haahr, Jørgen Thorlund; Bull, Simon Henry

    In this paper we consider the train departure matching problem which is an important subproblem of the Rolling Stock Unit Management on Railway Sites problem introduced in the ROADEF/EURO Challenge 2014. The subproblem entails matching arriving train units to scheduled departing trains at a railway...... site while respecting multiple physical and operational constraints. In this paper we formally define that subproblem, prove its NP- hardness, and present two exact method approaches for solving the problem. First, we present a compact Mixed Integer Program formulation which we solve using a MIP solver...

  7. Mass Deformed Exact S-parameter in Conformal Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    the existence of a universal lower bound on the opportunely normalized S parameter and explore its theoretical and phenomenological implications. Our exact results constitute an ideal framework to correctly interpret the lattice studies of the conformal window of strongly interacting theories....... leads to drastically different limiting values of S. Our results apply to any fermion matter representation and can be used as benchmark for the determination of certain relevant properties of the conformal window of any generic vector like gauge theory with fermionic matter. We finally suggest...

  8. An Exact Solution of The Neutron Slowing Down Equation

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovic, D [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1970-07-01

    The slowing down equation for an infinite homogeneous monoatomic medium is solved exactly. The cross sections depend on neutron energy. The solution is given in analytical form within each of the lethargy intervals. This analytical form is the sum of probabilities which are given by the Green functions. The calculated collision density is compared with the one obtained by Bednarz and also with an approximate Wigner formula for the case of a resonance not wider than one collision interval. For the special case of hydrogen, the present solution reduces to Bethe's solution. (author)

  9. Exact bidirectional X -wave solutions in fiber Bragg gratings

    Science.gov (United States)

    Efremidis, Nikolaos K.; Nye, Nicholas S.; Christodoulides, Demetrios N.

    2017-10-01

    We find exact solutions describing bidirectional pulses propagating in fiber Bragg gratings. They are derived by solving the coupled-mode theory equations and are expressed in terms of products of modified Bessel functions with algebraic functions. Depending on the values of the two free parameters, the general bidirectional X -wave solution can also take the form of a unidirectional pulse. We analyze the symmetries and the asymptotic properties of the solutions and also discuss additional waveforms that are obtained by interference of more than one solution. Depending on their parameters, such pulses can create a sharp focus with high contrast.

  10. Improved exact method for the double TSP with multiple stacks

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper

    2011-01-01

    and delivery problems. The results suggest an impressive improvement, and we report, for the first time, optimal solutions to several unsolved instances from the literature containing 18 customers. Instances with 28 customers are also shown to be solvable within a few percent of optimality. © 2011 Wiley...... the first delivery, and the container cannot be repacked once packed. In this paper we improve the previously proposed exact method of Lusby et al. (Int Trans Oper Res 17 (2010), 637–652) through an additional preprocessing technique that uses the longest common subsequence between the respective pickup...

  11. Exact renormalization group equation for the Lifshitz critical point

    Science.gov (United States)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  12. Exact solutions of Lovelock-Born-Infeld black holes

    International Nuclear Information System (INIS)

    Aiello, Matias; Ferraro, Rafael; Giribet, Gaston

    2004-01-01

    The exact five-dimensional charged black hole solution in Lovelock gravity coupled to Born-Infeld electrodynamics is presented. This solution interpolates between the Hoffmann black hole for the Einstein-Born-Infeld theory and other solutions in the Lovelock theory previously studied in the literature. It is shown how the conical singularity of the metric around the origin can be removed by a proper choice of the black hole parameters. The differences existing with the Reissner-Nordstroem black holes are discussed. In particular, we show the existence of charged black holes with a unique horizon

  13. Exact diagonalization: the Bose-Hubbard model as an example

    International Nuclear Information System (INIS)

    Zhang, J M; Dong, R X

    2010-01-01

    We take the Bose-Hubbard model to illustrate exact diagonalization techniques in a pedagogical way. We follow the route of first generating all the basis vectors, then setting up the Hamiltonian matrix with respect to this basis and finally using the Lanczos algorithm to solve low lying eigenstates and eigenvalues. Emphasis is placed on how to enumerate all the basis vectors and how to use the hashing trick to set up the Hamiltonian matrix or matrices corresponding to other quantities. Although our route is not necessarily the most efficient one in practice, the techniques and ideas introduced are quite general and may find use in many other problems.

  14. Supersymmetric construction of exactly solvable potentials and nonlinear algebras

    International Nuclear Information System (INIS)

    Junker, G.; Roy, P.

    1998-01-01

    Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found that these ladder operators together with the Hamilton operator form a nonlinear algebra which is of quadratic and cubic type for the SUSY partners of the linear and radial harmonic oscillator

  15. An exact solution for quantum tunneling in a dissipative system

    International Nuclear Information System (INIS)

    Yu, L.H.

    1996-01-01

    Applying a technique developed recently for a harmonic oscillator coupled to a bath of harmonic oscillators, we present an exact solution for the tunneling problem in an Ohmic dissipative system with inverted harmonic potential. The result shows that while the dissipation tends to suppress the tunneling, the Brownian motion tends to enhance the tunneling. Whether the tunneling rate increases or not would then depend on the initial conditions. We give a specific formula to calculate the tunneling probability determined by various parameters and the initial conditions

  16. Exact partition functions for gauge theories on Rλ3

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Wallet

    2016-11-01

    Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  17. Exact effective-stress rules in rock mechanics

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1992-01-01

    The standard paradigm for analysis of rock deformation arises from postulating the existence of ''an equivalent homogeneous porous rock.'' However, data on the pore-pressure dependence of fluid permeability for some rocks cannot be explained using any equivalent homogeneous porous medium. In contrast, a positive result shows that deformation measurements on both high-porosity sandstones and low-porosity granites can be explained adequately in terms of an equivalent two-constituent model of porous rocks, for which exact results have recently been discovered

  18. Exact, multiple soliton solutions of the double sine Gordon equation

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact, particular solutions of the double sine Gordon equation in n dimensional space are constructed. Under certain restrictions these solutions are N solitons, where N <= 2q - 1 and q is the dimensionality of space-time. The method of solution, known as the base equation technique, relates solutions of nonlinear partial differential equations to solutions of linear partial differential equations. This method is reviewed and its applicability to the double sine Gordon equation shown explicitly. The N soliton solutions have the remarkable property that they collapse to a single soliton when the wave vectors are parallel. (author)

  19. New family of exact solutions for colliding plane gravitational waves

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    We construct an infinite-parameter family of exact solutions to the vacuum Einstein field equations describing colliding gravitational plane waves with parallel polarizations. The interaction regions of the solutions in this family are locally isometric to the interiors of those static axisymmetric (Weyl) black-hole solutions which admit both a nonsingular horizon, and an analytic extension of the exterior metric to the interior of the horizon. As a member of this family of solutions we also obtain, for the first time, a colliding plane-wave solution where both of the two incoming plane waves are purely anastigmatic, i.e., where both incoming waves have equal focal lengths

  20. Exact solutions and ladder operators for a new anharmonic oscillator

    International Nuclear Information System (INIS)

    Dong Shihai; Sun Guohua; Lozada-Cassou, M.

    2005-01-01

    In this Letter, we propose a new anharmonic oscillator and present the exact solutions of the Schrodinger equation with this oscillator. The ladder operators are established directly from the normalized radial wave functions and used to evaluate the closed expressions of matrix elements for some related functions. Some comments are made on the general calculation formula and recurrence relation for off-diagonal matrix elements. Finally, we show that this anharmonic oscillator possesses a hidden symmetry between E(r) and E(ir) by substituting r->ir

  1. Exact relativistic solution of disordered radiation with planar symmetry

    International Nuclear Information System (INIS)

    Teixeira, A.F. Da F.; Wolk, I.; Som, M.M.

    1977-01-01

    An exact solution of the Einstein equations corresponding to and equilibrium distribution of disordered electromagnetic radiation with planar symmetry is obtained. This equilibrium is due solely to the gravitational and pressure effects inherent to the radiation. The distribution of radiation is found to be maximum and finite at the plane of symmetry, and to decrease monotonically in directions normal to this plane. The solution tends asymptotically to the static plane symmetric vacuum solution obtained by Levi-Civita (Atti. Accad. Naz. Lincei Rc.; 27:240 (1918)). Time-like and null geodesics are discussed. (author)

  2. Exact non-linear equations for cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)

    2017-10-01

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  3. Exactly solvable irreversible processes on one-dimensional lattices

    International Nuclear Information System (INIS)

    Wolf, N.O.; Evans, J.W.; Hoffman, D.K.

    1984-01-01

    We consider the kinetics of a process where the sites of an infinite 1-D lattice are filled irreversibly and, in general, cooperatively by N-mers (taking N consecutive sites at a time). We extend the previously available exact solution for nearest neighbor cooperative effects to range N cooperative effects. Connection with the continuous ''cooperative car parking problem'' is indicated. Both uniform and periodic lattices, and empty and certain partially filled lattice initial conditions are considered. We also treat monomer ''filling in stages'' for certain highly autoinhibitory cooperative effects of arbitrary range

  4. The Hall module of an exact category with duality

    OpenAIRE

    Young, Matthew B.

    2012-01-01

    We construct from a finitary exact category with duality a module over its Hall algebra, called the Hall module, encoding the first order self-dual extension structure of the category. We study in detail Hall modules arising from the representation theory of a quiver with involution. In this case we show that the Hall module is naturally a module over the specialized reduced sigma-analogue of the quantum Kac-Moody algebra attached to the quiver. For finite type quivers, we explicitly determin...

  5. The exact fundamental solution for the Benes tracking problem

    Science.gov (United States)

    Balaji, Bhashyam

    2009-05-01

    The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.

  6. Class of nonsingular exact solutions for Laplacian pattern formation

    International Nuclear Information System (INIS)

    Mineev-Weinstein, M.B.; Dawson, S.P.

    1994-01-01

    We present a class of exact solutions for the so-called Laplacian growth equation describing the zero-surface-tension limit of a variety of two-dimensional pattern formation problems. These solutions are free of finite-time singularities (cusps) for quite general initial conditions. They reproduce various features of viscous fingering observed in experiments and numerical simulations with surface tension, such as existence of stagnation points, screening, tip splitting, and coarsening. In certain cases the asymptotic interface consists of N separated moving Saffman-Taylor fingers

  7. An exact linear dispersion relation for CRM instability

    International Nuclear Information System (INIS)

    Choyal, Y; Minami, K

    2011-01-01

    An exact self-consistent linear dispersion relation of a large orbit electron beam including two principles of cyclotron emission with oscillation frequencies above and below the relativistic electron frequency is derived and analyzed numerically for the first time in the literature. The two principles are cyclotron resonance maser (CRM) instability and Cherenkov instability in the azimuthal direction. Self-consistency in the formulation and inclusion of proper boundary conditions have removed the unphysical instability existing for infinitely large k z observed in conventional dispersion relations of CRM instability.

  8. 5D Lovelock gravity: New exact solutions with torsion

    Science.gov (United States)

    Cvetković, B.; Simić, D.

    2016-10-01

    Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.

  9. Army Maintenance System Transformation

    National Research Council Canada - National Science Library

    Gilbertson, Frank V

    2006-01-01

    .... Used in conjunction with pertinent historical data and developed with Army transformation goals in mind, General Systems thinking can provide the framework for guiding maintenance transformation...

  10. Multiple-copy entanglement transformation and entanglement catalysis

    International Nuclear Information System (INIS)

    Duan Runyao; Feng Yuan; Li Xin; Ying Mingsheng

    2005-01-01

    We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarily large number of copies of state should be considered in multiple-copy entanglement transformations

  11. Exact Solutions for Unsteady Free Convection Flow of Casson Fluid over an Oscillating Vertical Plate with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2015-01-01

    Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

  12. Exact fan-beam and 4π-acquisition cone-beam SPECT algorithms with uniform attenuation correction

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L.; Wu Jiansheng; Gullberg, Grant T.

    2005-01-01

    This paper presents analytical fan-beam and cone-beam reconstruction algorithms that compensate for uniform attenuation in single photon emission computed tomography. First, a fan-beam algorithm is developed by obtaining a relationship between the two-dimensional (2D) Fourier transform of parallel-beam projections and fan-beam projections. Using this relationship, 2D Fourier transforms of equivalent parallel-beam projection data are obtained from the fan-beam projection data. Then a quasioptimal analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan, is used to reconstruct the image. A cone-beam algorithm is developed by extending the fan-beam algorithm to 4π solid angle geometry. The cone-beam algorithm is also an exact algorithm

  13. Exact partial solution to the compressible flow problems of jet formation and penetration in plane, steady flow

    International Nuclear Information System (INIS)

    Karpp, R.R.

    1984-01-01

    The particle solution of the problem of the symmetric impact of two compressible fluid stream is derived. The plane two-dimensional flow is assumed to be steady, and the inviscid compressible fluid is of the Chaplygin (tangent gas) type. The equations governing this flow are transformed to the hodograph plane where an exact, closed-form solution for the stream function is obtained. The distribution of fluid properties along the plane of symmetry and the shape of free surface streamlines are determined by transformation back to the physical plane. The problem of a compressible fluid jet penetrating an infinite target of similar material is also solved by considering a limiting case of this solution. Differences between compressible and incompressible flows of the type considered are illustrated

  14. Pure N=2 super Yang-Mills and exact WKB

    International Nuclear Information System (INIS)

    Kashani-Poor, Amir-Kian; Troost, Jan

    2015-01-01

    We apply exact WKB methods to the study of the partition function of pure N=2ϵ i -deformed gauge theory in four dimensions in the context of the 2d/4d correspondence. We study the partition function at leading order in ϵ 2 /ϵ 1 (i.e. at large central charge) and in an expansion in ϵ 1 . We find corrections of the form ∼exp [−((/tiny SW periods)/(ϵ 1 ))] to this expansion. We attribute these to the exchange of the order of summation over gauge instanton number and over powers of ϵ 1 when passing from the Nekrasov form of the partition function to the topological string theory inspired form. We conjecture that such corrections should be computable from a worldsheet perspective on the partition function. Our results follow upon the determination of the Stokes graphs associated to the Mathieu equation with complex parameters and the application of exact WKB techniques to compute the Mathieu characteristic exponent.

  15. New exact approaches to the nuclear eigenvalue problem

    International Nuclear Information System (INIS)

    Andreozzi, F.; Lo Iudice, N.; Porrino, A.; Knapp, F.; Kvasil, J.

    2005-01-01

    In a recent past some of us have developed a new algorithm for diagonalizing the shell model Hamiltonian which consists of an iterative sequence of diagonalization of sub-matrices of small dimensions. The method, apart from being easy to implement, is robust, yielding always stable numerical solutions, and free of ghost eigenvalues. Subsequently, we have endowed the algorithm with an importance sampling, which leads to a drastic truncation of the shell model space, while keeping the accuracy of the solutions under control. Applications to typical nuclei show that the sampling yields also an extrapolation law to the exact eigenvalues. Complementary to the shell model algorithm is a method we are developing for studying collective and non collective excitations. To this purpose we solve the nuclear eigenvalue problem in a space which is the direct sum of Tamm-Dancoff n-phonon subspaces (n=0,1, ...N). The multiphonon basis is constructed by an iterative equation of motion method, which generates an over complete set of n-phonon states from the (n-1)-phonon basis. The redundancy is removed completely and exactly by a method based on the Choleski decomposition. The full Hamiltonian matrix comes out to have a simple structure and, therefore, can be drastically truncated before diagonalization by the mentioned importance sampling method. The phonon composition of the basis states allows removing naturally and maximally the spurious admixtures induced by the centre of mass motion. An application of the method to 16 O will be given for illustrative purposes. (authors)

  16. Exact vacuum polarization in 1 + 1 dimensional finite nuclei

    International Nuclear Information System (INIS)

    Ferree, T.C.

    1992-01-01

    There is considerable interest in the use of renormalizable quantum field theories to describe nuclear structure. In particular, theories which employ hadronic degrees of freedom are used widely and lead to efficient models which allow self-consistent solutions of the many-body problem. An interesting feature inherent to relativistic field theories (like QHD) is the presence of an infinite sea of negative energy fermion (nucleon) states, which interact dynamically with positive energy fermions via other fields. Such interactions give rise to, for example, vacuum polarization effects, in which virtual particle-antiparticle pairs interact with positive energy valence nucleons as well as with each other, and can significantly influence the ground and excited states of nuclear systems. Several authors have addressed this question in various approximations for finite nuclei, mostly based on extensions of results derived for a uniform system of nucleons. Some attempts have also been made to include vacuum effects in finite systems exactly, but the presence of a vector potential can be problematic when working in a spectral representation. In this paper, the author presents a computational method by which vacuum polarization effects in finite nuclei can be calculated exactly in the RHA by employing matrix diagonalization methods in a discrete Fourier representation of the Dirac equation, and an approximate method for including deep negative energy states based on a derivative expansion of the effective action. This efficient approach is shown to provide well-behaved vacuum polarization densities which remain so even in the presence of strong vector potential

  17. Semiclassical versus exact quantization of the Sinh-Gordon model

    Energy Technology Data Exchange (ETDEWEB)

    Grossehelweg, Juliane

    2009-12-15

    In this work we investigate the semiclassics of the Sinh-Gordon model. The Sinh-Gordon model is integrable, its explicit solutions of the classical and the quantum model are well known. This allows for a comprehensive investigation of the semiclassical quantization of the classical model as well as of the semiclassical limit of the exact quantum solution. Semiclassical means in this case that the key objects of quantum theory are constructed as formal power series. A quantity playing an important role in the quantum theory is the Q-function. The purpose of this work is to investigate to what extend the classical integrability of the model admits of a construction of the semiclassical expansion of the Q-function. Therefore we used two conceptual independent approaches. In the one approach we start from the exact nonperturbative solution of the quantum model and calculate the semiclassical limit up to the next to leading order. Thereby we found the spectral curve, as well as the semiclassical expansion of the Q-function and of the eigenvalue of the monodromy matrix. In the other approach we constructed the first two orders of the semiclassical expansion of the Q-function, starting from the classical solution theory. The results of both approaches coincide. (orig.)

  18. Quasi-exactly solvable relativistic soft-core Coulomb models

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  19. Exact result in strong wave turbulence of thin elastic plates

    Science.gov (United States)

    Düring, Gustavo; Krstulovic, Giorgio

    2018-02-01

    An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.

  20. Exact complexity: The spectral decomposition of intrinsic computation

    International Nuclear Information System (INIS)

    Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.

    2016-01-01

    We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.