Exact results for the one dimensional asymmetric exclusion model
International Nuclear Information System (INIS)
Derrida, B.; Evans, M.R.; Pasquier, V.
1993-01-01
The asymmetric exclusion model describes a system of particles hopping in a preferred direction with hard core repulsion. These particles can be thought of as charged particles in a field, as steps of an interface, as cars in a queue. Several exact results concerning the steady state of this system have been obtained recently. The solution consists of representing the weights of the configurations in the steady state as products of non-commuting matrices. (author)
Exact stationary state for an asymmetric exclusion process with fully parallel dynamics
Gier, J.C.|info:eu-repo/dai/nl/170218430; Nienhuis, B.
The exact stationary state of an asymmetric exclusion process with fully parallel dynamics is obtained using the matrix product ansatz. We give a simple derivation for the deterministic case by a physical interpretation of the dimension of the matrices. We prove the stationarity via a cancellation
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
Boundary Value Problems for a Super-Sublinear Asymmetric Oscillator: The Exact Number of Solutions
Directory of Open Access Journals (Sweden)
Armands Gritsans
2013-01-01
Full Text Available Properties of asymmetric oscillator described by the equation (i, where and , are studied. A set of such that the problem (i, (ii, and (iii have a nontrivial solution, is called α-spectrum. We give full description of α-spectra in terms of solution sets and solution surfaces. The exact number of nontrivial solutions of the two-parameter Dirichlet boundary value problem (i, and (ii is given.
Optical asymmetric cryptography using a three-dimensional space-based model
International Nuclear Information System (INIS)
Chen, Wen; Chen, Xudong
2011-01-01
In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method
Space-time interdependence: evidence against asymmetric mapping between time and space.
Cai, Zhenguang G; Connell, Louise
2015-03-01
Time and space are intimately related, but what is the real nature of this relationship? Is time mapped metaphorically onto space such that effects are always asymmetric (i.e., space affects time more than time affects space)? Or do the two domains share a common representational format and have the ability to influence each other in a flexible manner (i.e., time can sometimes affect space more than vice versa)? In three experiments, we examined whether spatial representations from haptic perception, a modality of relatively low spatial acuity, would lead the effect of time on space to be substantially stronger than the effect of space on time. Participants touched (but could not see) physical sticks while listening to an auditory note, and then reproduced either the length of the stick or the duration of the note. Judgements of length were affected by concurrent stimulus duration, but not vice versa. When participants were allowed to see as well as touch the sticks, however, the higher acuity of visuohaptic perception caused the effects to converge so length and duration influenced each other to a similar extent. These findings run counter to the spatial metaphor account of time, and rather support the spatial representation account in which time and space share a common representational format and the directionality of space-time interaction depends on the perceptual acuity of the modality used to perceive space. Copyright © 2014 Elsevier B.V. All rights reserved.
The effects of asymmetric directional microphone fittings on acceptance of background noise.
Kim, Jong S; Bryan, Melinda Freyaldenhoven
2011-05-01
The effects of asymmetric directional microphone fittings (i.e., an omnidirectional microphone on one ear and a directional microphone on the other) on speech understanding in noise and acceptance of background noise were investigated in 15 full-time hearing aid users. Subjects were fitted binaurally with four directional microphone conditions (i.e., binaural omnidirectional, right asymmetric directional, left asymmetric directional and binaural directional microphones) using Siemens Intuis Directional behind-the-ear hearing aids. Speech understanding in noise was assessed using the Hearing in Noise Test, and acceptance of background noise was assessed using the Acceptable Noise Level procedure. Speech was presented from 0° while noise was presented from 180° azimuth. The results revealed that speech understanding in noise improved when using asymmetric directional microphones compared to binaural omnidirectional microphone fittings and was not significantly hindered compared to binaural directional microphone fittings. The results also revealed that listeners accepted more background noise when fitted with asymmetric directional microphones as compared to binaural omnidirectional microphones. Lastly, the results revealed that the acceptance of noise was further increased for the binaural directional microphones when compared to the asymmetric directional microphones, maximizing listeners' willingness to accept background noise in the presence of noise. Clinical implications will be discussed.
DEFF Research Database (Denmark)
Padmanaban, Sanjeevi Kumar; Grandi, Gabriele; Ojo, Joseph Olorunfemi
2016-01-01
In this paper, a six-phase (asymmetrical) machine is investigated, 300 phase displacement is set between two three-phase stator windings keeping deliberately in open-end configuration. Power supply consists of four classical three-phase voltage inverters (VSIs), each one connected to the open......-winding terminals. An original synchronous field oriented control (FOC) algorithm with three variables as degree of freedom is proposed, allowing power sharing among the four VSIs in symmetric/asymmetric conditions. A standard three-level space vector pulse width modulation (SVPWM) by nearest three vector (NTV......) approach was adopted for each couple of VSIs to operate as multilevel output voltage generators. The proposed power sharing algorithm is verified for the ac drive system by observing the dynamic behaviours in different set conditions by complete simulation modelling in software (Matlab...
Optical isolation based on space-time engineered asymmetric photonic band gaps
Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe
2017-10-01
Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.
International Nuclear Information System (INIS)
Leng Shuai; Zhuang Tingliang; Nett, Brian E; Chen Guanghong
2005-01-01
In this paper, we present a new algorithm designed for a specific data truncation problem in fan-beam CT. We consider a scanning configuration in which the fan-beam projection data are acquired from an asymmetrically positioned half-sized detector. Namely, the asymmetric detector only covers one half of the scanning field of view. Thus, the acquired fan-beam projection data are truncated at every view angle. If an explicit data rebinning process is not invoked, this data acquisition configuration will reek havoc on many known fan-beam image reconstruction schemes including the standard filtered backprojection (FBP) algorithm and the super-short-scan FBP reconstruction algorithms. However, we demonstrate that a recently developed fan-beam image reconstruction algorithm which reconstructs an image via filtering a backprojection image of differentiated projection data (FBPD) survives the above fan-beam data truncation problem. Namely, we may exactly reconstruct the whole image object using the truncated data acquired in a full scan mode (2π angular range). We may also exactly reconstruct a small region of interest (ROI) using the truncated projection data acquired in a short-scan mode (less than 2π angular range). The most important characteristic of the proposed reconstruction scheme is that an explicit data rebinning process is not introduced. Numerical simulations were conducted to validate the new reconstruction algorithm
Parallel coupling of symmetric and asymmetric exclusion processes
International Nuclear Information System (INIS)
Tsekouras, K; Kolomeisky, A B
2008-01-01
A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins
Direct catalytic asymmetric aldol-Tishchenko reaction.
Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu
2004-06-30
A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.
Exactly solvable string models of curved space-time backgrounds
Russo, J.G.; Russo, J G; Tseytlin, A A
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.
Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions
Directory of Open Access Journals (Sweden)
Armando Martínez-Pérez
2017-10-01
Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.
Unravelling Thiol’s Role in Directing Asymmetric Growth of Au Nanorod–Au Nanoparticle Dimers
Huang, Jianfeng
2015-12-15
Asymmetric nanocrystals have practical significance in nanotechnologies but present fundamental synthetic challenges. Thiol ligands have proven effective in breaking the symmetric growth of metallic nanocrystals but their exact roles in the synthesis remain elusive. Here, we synthesized an unprecedented Au nanorod-Au nanoparticle (AuNR-AuNP) dimer structure with the assistance of a thiol ligand. On the basis of our experimental observations, we unraveled for the first time that the thiol could cause an inhomogeneous distribution of surface strains on the seed crystals as well as a modulated reduction rate of metal precursors, which jointly induced the asymmetric growth of monometallic dimers. © 2015 American Chemical Society.
Exact probability function for bulk density and current in the asymmetric exclusion process
Depken, Martin; Stinchcombe, Robin
2005-03-01
We examine the asymmetric simple exclusion process with open boundaries, a paradigm of driven diffusive systems, having a nonequilibrium steady-state transition. We provide a full derivation and expanded discussion and digression on results previously reported briefly in M. Depken and R. Stinchcombe, Phys. Rev. Lett. 93, 040602 (2004). In particular we derive an exact form for the joint probability function for the bulk density and current, both for finite systems, and also in the thermodynamic limit. The resulting distribution is non-Gaussian, and while the fluctuations in the current are continuous at the continuous phase transitions, the density fluctuations are discontinuous. The derivations are done by using the standard operator algebraic techniques and by introducing a modified version of the original operator algebra. As a by-product of these considerations we also arrive at a very simple way of calculating the normalization constant appearing in the standard treatment with the operator algebra. Like the partition function in equilibrium systems, this normalization constant is shown to completely characterize the fluctuations, albeit in a very different manner.
Some exact solutions for maximally symmetric topological defects in Anti de Sitter space
Alvarez, Orlando; Haddad, Matthew
2018-03-01
We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.
Two particle states in an asymmetric box
Li, Xin; Liu, Chuan
2004-01-01
The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all three directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are obtained. These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by L\\"uscher before. In particular, the s-wave scattering length is related to the energy shift in the finite box. Possible applications of these f...
Two particle states in an asymmetric box
International Nuclear Information System (INIS)
Li Xin; Liu Chuan
2004-01-01
The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all three directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are obtained. These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by Luescher before. In particular, the s-wave scattering length is related to the energy shift in the finite box. Possible applications of these formulae are also discussed
International Nuclear Information System (INIS)
Wang Ling; Dong Zhongzhou; Liu Xiqiang
2008-01-01
By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.
Direct fourier method reconstruction based on unequally spaced fast fourier transform
International Nuclear Information System (INIS)
Wu Xiaofeng; Zhao Ming; Liu Li
2003-01-01
First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)
Exact moduli space metrics for hyperbolic vortex polygons
International Nuclear Information System (INIS)
Krusch, S.; Speight, J. M.
2010-01-01
Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as Σ n,m , are spaces of C n -invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of Σ n,m are investigated, and it is found that Σ n,n-1 is isometric to the hyperbolic plane of curvature -(3πn) -1 . The geodesic flow on Σ n,m and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys. Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.
Outage Analysis of Asymmetric RF-FSO Systems
Ansari, Imran Shafique
2017-03-20
In this work, the outage performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) channels cascaded with free-space optical (FSO) links is presented. The RF links are modeled by the Rayleigh fading distribution and the FSO links are modeled by Malaga (M) turbulence distribution. The FSO links account for pointing errors and both types of detection techniques (i.e. heterodyne detection as well as intensity modulation/direct detection (IM/DD)). Transmit diversity is applied at the source, selection combining is applied at the destination, and the relay is equipped with single RF receive antenna and single aperture for relaying the information over FSO links. With this model, a new exact closed-form expression is derived for the outage probability of the end-to- end signal-to-noise ratio of such communication systems in terms of the Meijer\\'s G function under fixed amplify-and-forward relay scheme. All new analytical results are verified via computer-based Monte-Carlo simulations and are illustrated by some selected numerical results.
Exactly solvable string models of curved space-time backgrounds
International Nuclear Information System (INIS)
Russo, J.G.
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)
Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability
Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.
2018-02-01
As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi-exactly
Two-channel totally asymmetric simple exclusion processes
International Nuclear Information System (INIS)
Pronina, Ekaterina; Kolomeisky, Anatoly B
2004-01-01
Totally asymmetric simple exclusion processes, consisting of two coupled parallel lattice chains with particles interacting with hard-core exclusion and moving along the channels and between them, are considered. In the limit of strong coupling between the channels, the particle currents, density profiles and a phase diagram are calculated exactly by mapping the system into an effective one-channel totally asymmetric exclusion model. For intermediate couplings, a simple approximate theory, that describes the particle dynamics in vertical clusters of two corresponding parallel sites exactly and neglects the correlations between different vertical clusters, is developed. It is found that, similarly to the case of one-channel totally asymmetric simple exclusion processes, there are three stationary state phases, although the phase boundaries and stationary properties strongly depend on inter-channel coupling. Extensive computer Monte Carlo simulations fully support the theoretical predictions
Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei
2014-02-25
Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.
Wang, C.-W.; Stark, W.
2005-01-01
This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.
Matching NLO parton shower matrix element with exact phase space case of $W\\to l\
Nanava, G; Was, Z
2010-01-01
In practical applications PHOTOS Monte Carlo is often used for simulation of QED effects in decay of intermediate particles and resonances. Generated in such a way that samples of events cover the whole bremsstrahlung phase space. With the help of selection cuts, experimental acceptance can be then taken into account. The program is based on exact multiphoton phase space. To evaluate the program precision it is necessary to control its matrix element. Generally it is obtained using iteration of the universal multidimensional kernel. In some cases it is however obtained from the exact first order matrix element. Then, as a consequence, all terms necessary for non-leading logarithms are taken into account. In the present paper we will focus on the decays W -> l nu and gamma^* -> pi^+ pi^-. The Born level cross sections for both processes approach zero in some points of the phase space. Process dependent, compensating weight is constructed to implement exact matrix element, but it will be recommended for use onl...
Asymmetric Vibrations of a Circular Elastic Plate on an Elastic Half Space
DEFF Research Database (Denmark)
Schmidt, H.; Krenk, Steen
1982-01-01
The asymmetric problem of a vibrating circular elastic plate in frictionless contact with an elastic half space is solved by an integral equation method, where the contact stress appears as the unknown function. By a trigonometric expansion, the problem is reduced to a number of uncoupled two...
International Nuclear Information System (INIS)
Raslan, K. R.; Ali, Khalid K.; EL-Danaf, Talaat S.
2017-01-01
In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation (CEWE) and the space-time fractional coupled modified equal width wave equation (CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels. (paper)
A direct derivation of the exact Fisther information matrix of Gaussian vector state space models
Klein, A.A.B.; Neudecker, H.
2000-01-01
This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be
Appropriate quantization of asymmetric games with continuous strategies
International Nuclear Information System (INIS)
Qin Gan; Chen Xi; Sun Min; Zhou Xianyi; Du Jiangfeng
2005-01-01
We establish a new quantization scheme to study the asymmetric Bertrand duopoly with differentiated products. This scheme is more efficient than the previous symmetric one because it can exactly make the optimal cooperative payoffs at quantum Nash equilibrium. It is also a necessary condition for general asymmetric games with continuous strategies to reach such payoffs
Real-space renormalization group approach to driven diffusive systems
Energy Technology Data Exchange (ETDEWEB)
Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)
2006-11-24
We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.
Real-space renormalization group approach to driven diffusive systems
International Nuclear Information System (INIS)
Hanney, T; Stinchcombe, R B
2006-01-01
We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase
Scattering analysis of asymmetric metamaterial resonators by the Riemann-Hilbert approach
DEFF Research Database (Denmark)
Kaminski, Piotr Marek; Ziolkowski, Richard W.; Arslanagic, Samel
2016-01-01
This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell with an ap......This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell...... with an aperture. Exact analytical solution of the problem is derived; it is based on the n-series approach which is casted into the equivalent Riemann-Hilbert problem. The examined configuration leads to large enhancements of the radiated field and to steerable Huygens-like directivity patterns. Particularly...
Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application
Energy Technology Data Exchange (ETDEWEB)
Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in
2016-08-15
Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.
SU(N) gauge theory couplings on asymmetric lattices
International Nuclear Information System (INIS)
Karsch, F.
1982-01-01
The connection between euclidean and hamiltonian lattice QCD requires the use of asymmetric lattices, which in turn implies the necessity of two coupling parameters. We analyse the dependence of space- and time-like couplings gsub(sigma) and gsub(tau) on the different lattice spacings a and asub(tau) in space and time directions. Using the background field method we determine the derivatives of the couplings with respect to the asymmetry factor xi = a/asub(tau) in the weak coupling limit, obtaining for xi = 1 the values (deltag -2 sub(sigma)/deltaxi)sub(xi = 1) = 0.11403, N = 2, 0.20161, N = 3, (deltag -2 sub(tau)/deltaxi)sub(xi = 1) = -0.06759, N = 2, -0.13195, N = 3. We argue that the sum of these derivatives has to be equal to b 0 = 11N/48π 2 and determine the Λ parameter for asymmetric lattices. In the limit xi → infinity all our results agree with those of A. and P. Hasenfratz. (orig.)
International Nuclear Information System (INIS)
Li Fengguo; Ai Baoquan
2011-01-01
Graphical abstract: The current J as a function of the phase shift φ and ε at a = 1/2π, b = 0.5/2π, k B T = 0.5, α = 0.1, and F 0 = 0.5. Highlights: → Unbiased forces and spatially modulated white noises affect the current. → In the adiabatic limit, the analytical expression of directed current is obtained. → Their competition will induce current reversals. → For negative asymmetric parameters of the force, there exists an optimum parameter. → The current increases monotonously for positive asymmetric parameters. - Abstract: Transport of Brownian particles in a symmetrically periodic tube is investigated in the presence of asymmetric unbiased external forces and spatially modulated Gaussian white noises. In the adiabatic limit, we obtain the analytical expression of the directed current. It is found that the temporal asymmetry can break thermodynamic equilibrium and induce a net current. Their competition between the temporal asymmetry force and the phase shift between the noise modulation and the tube shape will induce some peculiar phenomena, for example, current reversals. The current changes with the phase shift in the form of the sine function. For negative asymmetric parameters of the force, there exists an optimum parameter at which the current takes its maximum value. However, the current increases monotonously for positive asymmetric parameters.
Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback
Do, K. D.
2018-05-01
Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.
Wang, Rui; Wang, Linqing; Yang, Dongxu; Li, Dan; Liu, Xihong; Wang, Pengxin; Wang, Kezhou; Zhu, Haiyong; Bai, Lutao
2018-05-16
By employing a simple in-situ generated magnesium catalyst, the direct asymmetric reaction between hemiacetals and P-ylides is achieved via a tandem Wittig-oxa-Michael reaction sequence. Enantioenriched chromans, isochromans and tetrahydropyrans can be obtained in good chemical yields. (-)-Erythrococcamide B can be asymmetrically synthesized through this synthetic technique. In this work, the by-product, TPO, was identified as a necessary additive in this asymmetric synthetic method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asymmetric Lévy flights in the presence of absorbing boundaries
International Nuclear Information System (INIS)
De Mulatier, Clélia; Rosso, Alberto; Schehr, Grégory
2013-01-01
We consider a one-dimensional asymmetric random walk whose jumps are identical, independent and drawn from a distribution ϕ(η) displaying asymmetric power-law tails (i.e. ϕ(η) ∼ c/η α+1 for large positive jumps and ϕ(η) ∼ c/(γ|η| α+1 ) for large negative jumps, with 0 n , converges to an asymmetric Lévy stable law of stability index α and skewness parameter β = (γ − 1)/(γ + 1). In particular, the right tail of this PDF decays as c n/x n 1+α . Much less is known when the walker is confined, or partially confined, in a region of the space. In this paper we first study the case of a walker constrained to move on the positive semi-axis and absorbed once it changes sign. In this case, the persistence exponent θ + , which characterizes the algebraic large time decay of the survival probability, can be computed exactly and we show that, if θ + + )x n 1+α . This last result can be generalized in higher dimensions such as a two-dimensional random walker performing Lévy stable jumps and confined in a wedge with absorbing walls. Our results are corroborated by precise numerical simulations. (paper)
International Nuclear Information System (INIS)
Bello-Rivas, Juan M.; Elber, Ron
2015-01-01
A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied
Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays
Yang, Xiaoming
2013-01-01
Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.
Asymmetric hindwing foldings in rove beetles.
Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji
2014-11-18
Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.
International Nuclear Information System (INIS)
Castro Moreira, I. de.
1983-01-01
A method introduced by Lewis and Leach for the obtention of exact invariants of the form I = Σ p sup(n) F sub(n) (q,t) for hamiltonian systems, is generalized and applied directly on the equations of motion. It gives us a general procedure to generates exact invariants also for non hamiltonian systems. (Author) [pt
Quasi exactly solvable operators and abstract associative algebras
International Nuclear Information System (INIS)
Brihaye, Y.; Kosinski, P.
1998-01-01
We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra
Asymmetric Uncertainty Expression for High Gradient Aerodynamics
Pinier, Jeremy T
2012-01-01
When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.
A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation
Li, Yue-e.; Wang, Qiang
2011-11-01
This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.
The exact $C$-function in integrable $\\lambda$-deformed theories arXiv
Georgiou, George; Sagkrioti, Eftychia; Sfetsos, Konstantinos; Siampos, Konstantinos
By employing CFT techniques, we show how to compute in the context of \\lambda-deformations of current algebras and coset CFTs the exact in the deformation parameters C-function for a wide class of integrable theories that interpolate between a UV and an IR point. We explicitly consider RG flows for integrable deformations of left-right asymmetric current algebras and coset CFTs. In all cases, the derived exact C-functions obey all the properties asserted by Zamolodchikov's c-theorem in two-dimensions.
Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model
Directory of Open Access Journals (Sweden)
Dong Wang
2015-02-01
Full Text Available A modified Prandtl–Ishlinskii (PI model, referred to as a direct inverse asymmetric PI (DIAPI model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace and voltage-decrease-loop (retrace. A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM.
Snijkers, F.; Kirkwood, K. M.; Vlassopoulos, D.; Leal, L. G.; Nikopoulou, A.; Hadjichristidis, Nikolaos; Coppola, S.
2016-01-01
We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.
Snijkers, F.
2016-03-31
We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.
Invariance of directed spaces and persistence
DEFF Research Database (Denmark)
2006-01-01
With motivations arising from concurrency theory within Computer Science, a new field of research, directed algebraic topology, has emerged. The main characteristic is, that it involves spaces of "directed paths'' (or timed paths, executions) in a "directed space''; these directed paths can be co...
Inclined asymmetric librations in exterior resonances
Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.
2018-04-01
Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.
Gravitational redshift and asymmetric redshift-space distortions for stacked clusters
Cai, Yan-Chuan; Kaiser, Nick; Cole, Shaun; Frenk, Carlos
2017-06-01
We derive the expression for the observed redshift in the weak field limit in the observer's past light cone, including all relativistic terms up to second order in velocity. We then apply it to compute the cluster-galaxy cross-correlation functions (CGCF) using N-body simulations. The CGCF is asymmetric along the line of sight owing to the presence of the small second-order terms such as the gravitational redshift (GRedshift). We identify two systematics in the modelling of the GRedshift signal in stacked clusters. First, it is affected by the morphology of dark matter haloes and the large-scale cosmic-web. The non-spherical distribution of galaxies around the central halo and the presence of neighbouring clusters systematically reduce the GRedshift signal. This bias is approximately 20 per cent for Mmin ≃ 1014 M⊙ h-1, and is more than 50 per cent for haloes with Mmin ≃ 2 × 1013 M⊙ h-1 at r > 4 Mpc h-1. Secondly, the best-fitting GRedshift profiles as well as the profiles of all other relativistic terms are found to be significantly different in velocity space compared to their real space versions. We find that the relativistic Doppler redshift effect, like other second-order effects, is subdominant to the GRedshift signal. We discuss some subtleties relating to these effects in velocity space. We also find that the S/N of the GRedshift signal increases with decreasing halo mass.
Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.
2013-01-01
The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...
Optical design of transmitter lens for asymmetric distributed free space optical networks
Wojtanowski, Jacek; Traczyk, Maciej
2018-05-01
We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is
Energy Technology Data Exchange (ETDEWEB)
Menke, Lorenz Harry, E-mail: lnz2004@mindspring.com [University of Pittsburgh (United States)
2012-05-15
This paper derives all 36 analytical solutions of the energy eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor for polynomial degrees 1 through 4 using classical algebraic theory. By the use of double-parameterization the full general solution sets are illustrated in a compact, symmetric, structural, and usable form that is valid for asymmetry parameter {eta} is an element of (- {infinity}, + {infinity}). These results are useful for code developers in the area of Perturbed Angular Correlation (PAC), Nuclear Quadrupole Resonance (NQR) and rotational spectroscopy who want to offer exact solutions whenever possible, rather that resorting to numerical solutions. In addition, by using standard linear algebra methods, the characteristic equations of all integer and half-integer spins I from 0 to 15, inclusive are represented in a compact and naturally parameterized form that illustrates structure and symmetries. This extends Nielson's listing of characteristic equations for integer spins out to I = 15, inclusive.
Fuzziness and Foundations of Exact and Inexact Sciences
Dompere, Kofi Kissi
2013-01-01
The monograph is an examination of the fuzzy rational foundations of the structure of exact and inexact sciences over the epistemological space which is distinguished from the ontological space. It is thus concerned with the demarcation problem. It examines exact science and its critique of inexact science. The role of fuzzy rationality in these examinations is presented. The driving force of the discussions is the nature of the information that connects the cognitive relational structure of the epistemological space to the ontological space for knowing. The knowing action is undertaken by decision-choice agents who must process information to derive exact-inexact or true-false conclusions. The information processing is done with a paradigm and laws of thought that constitute the input-output machine. The nature of the paradigm selected depends on the nature of the information structure that is taken as input of the thought processing. Generally, the information structure received from the ontological space i...
Cyclodextrins in Asymmetric and Stereospecific Synthesis
Directory of Open Access Journals (Sweden)
Fliur Macaev
2015-09-01
Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.
Restoring directional growth sense to plants in space
Gorgolewski, S.
is due to the E vector acting selectively on negative ions (anions) giving them their directional growth sense towards the anode (+). It is obvious that the Et shall completely ignore the difference between terrestrial gravity or microgravity in space. The gravity acts on the plant as a whole and has nothing to do with Et, Ct or nEt. In Ct the roots also bend towards the anode. Besides we do not connect any current carrying electrodes to the plant roots or leaves in the true electrotropism Et as they do it in the Ct. They connect current carrying electrodes transversely to the roots exposed to the air, and removed from the soil. I hope these exact definitions of Et and Ct shall avoid confusion between the two completely different phenomena.
Direct convertor based upon space charge effects
International Nuclear Information System (INIS)
Gitomer, S.J.
1977-01-01
A device capable of converting directly the kinetic energy of charged particles into electrical energy is considered. The device differs from earlier ones (such as Post's periodic focus electrostatic direct convertor) in that it makes use of the space charge repulsion in a high density charged particle beam. The beam is directed into a monotonic decelerating electrostatic field of a several-stage planar-finned structure. The collector fins coincide with vacuum equipotential surfaces. Space charge blowup of the beam directs particles onto various collector fins. The energy efficiency of a 4-stage device has been determined using a numberical simulation approach. We find that efficiencies approaching 75 percent are possible. An approximate scaling law is derived for the space charge based direct converter and a comparison is made to the periodic focus direct convertor. We find the space charge based direct convertor to be superior to a number of ways
The exact value of Jung constants in a class of Orlicz function spaces
Yan, Y. Q.
2005-01-01
Let $\\Phi$ be an $N$-function. Then the Jung constants of the Orlicz function spaces $L^\\Phi[0,1]$ generated by $\\Phi$, equipped with the Luxemburg and Orlicz norms, have the following exact values: \\item{(i)} if $F_\\Phi(t)=t\\varphi(t)/\\Phi(t)$ is decreasing and $1 < C_\\Phi < 2$, then $$ JC(L^{(\\Phi)}[0,1])=JC(L^\\Phi[0,1])=2^{1/C_\\Phi-1}; $$ \\item{(ii)} if $F_\\Phi(t)$ is increasing and $C_\\Phi > 2$, then $$ JC(L^{(\\Phi)}[0,1])=JC(L^\\Phi[0,1])=2^{-1/C_\\Phi}, $$ where $$C_\\Phi=\\lim_{t\\to...
Tunneling and energy splitting in an asymmetric double-well potential
International Nuclear Information System (INIS)
Song, Dae-Yup
2008-01-01
An asymmetric double-well potential is considered, assuming that the minima of the wells are quadratic with a frequency ω and the difference of the minima is close to a multiple of hω. A WKB wave function is constructed on both sides of the local maximum between the wells, by matching the WKB function to the exact wave functions near the classical turning points. The continuities of the wave function and its first derivative at the local maximum then give the energy-level splitting formula, which not only reproduces the instanton result for a symmetric potential, but also elucidates the appearance of resonances of tunneling in the asymmetric potential
Learning and forgetting on asymmetric, diluted neural networks
International Nuclear Information System (INIS)
Derrida, B.; Nadal, J.P.
1987-01-01
It is possible to construct diluted asymmetric models of neural networks for which the dynamics can be calculated exactly. The authors test several learning schemes, in particular, models for which the values of the synapses remain bounded and depend on the history. Our analytical results on the relative efficiencies of the various learning schemes are qualitatively similar to the corresponding ones obtained numerically on fully connected symmetric networks
Symmetric vs. asymmetric punishment regimes for bribery
Engel, Christoph; Goerg, Sebastian J.; Yu, Gaoneng
2012-01-01
In major legal orders such as UK, the U.S., Germany, and France, bribers and recipients face equally severe criminal sanctions. In contrast, countries like China, Russia, and Japan treat the briber more mildly. Given these differences between symmetric and asymmetric punishment regimes for bribery, one may wonder which punishment strategy is more effective in curbing corruption. For this purpose, we designed and ran a lab experiment in Bonn (Germany) and Shanghai (China) with exactly the same...
Polarization-controlled asymmetric excitation of surface plasmons
Xu, Quan
2017-08-28
Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.
Exact classical scaling formalism for nonreactive processes
International Nuclear Information System (INIS)
DePristo, A.E.
1981-01-01
A general nonreactive collision system is considered with internal molecular variables (p, r) and/or (I, theta) of arbitrary dimensions and relative translational variables (P, R) of three or less dimensions. We derive an exact classical scaling formalism which relates the collisional change in any function of molecular variables directly to the initial values of these variables. The collision dynamics is then described by an explicit function of the initial point in the internal molecular phase space, for a fixed point in the relative translational phase space. In other words, the systematic variation of the internal molecular properties (e.g., actions and average internal kinetic energies) is given as a function of the initial internal action-angle variables. A simple three term approximation to the exact formalism is derived, the natural variables of which are the internal action I and internal linear momenta p. For the final average internal kinetic energies T, the result is T-T/sup( 0 ) = α+βp/sup( 0 )+γI/sup( 0 ), where the superscripted ''0'' indicates the initial value. The parameters α, β, and γ in this scaling theory are directly related to the moments of the change in average internal kinetic energy. Utilizing a very limited number of input moments generated from classical trajectory calculations, the scaling can be used to predict the entire distribution of final internal variables as a function of initial internal actions and linear momenta. Initial examples for atom--collinear harmonic oscillator collision systems are presented in detail, with the scaling predictions (e.g., moments and quasiclassical histogram transition probabilities) being generally very good to excellent quantitatively
Directory of Open Access Journals (Sweden)
Nikolay M. Bogoliubov
2009-04-01
Full Text Available The basic model of the non-equilibrium low dimensional physics the so-called totally asymmetric exclusion process is related to the 'crystalline limit' (q → ∞ of the SU_q(2 quantum algebra. Using the quantum inverse scattering method we obtain the exact expression for the time-dependent stationary correlation function of the totally asymmetric simple exclusion process on a one dimensional lattice with the periodic boundary conditions.
On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling
Korovinskiy, Daniil B.; Kubyshkina, Darya I.; Semenov, Vladimir S.; Kubyshkina, Marina V.; Erkaev, Nikolai V.; Kiehas, Stefan A.
2018-04-01
A specific class of solutions of the Vlasov-Maxwell equations, developed by means of generalization of the well-known Harris-Fadeev-Kan-Manankova family of exact two-dimensional equilibria, is studied. The examined model reproduces the current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The generalized model allows magnetic configurations with equatorial magnetic fields decreasing in a tailward direction as slow as 1/x, contrary to the original Kan model (1/x3); magnetic configurations with a single X point are also available. The analytical solution is compared with the empirical T96 model in terms of the magnetic flux tube volume. It is found that parameters of the analytical model may be adjusted to fit a wide range of averaged magnetotail configurations. The best agreement between analytical and empirical models is obtained for the midtail at distances beyond 10-15 RE at high levels of magnetospheric activity. The essential model parameters (current sheet scale, current density) are compared to Cluster data of magnetotail crossings. The best match of parameters is found for single-peaked current sheets with medium values of number density, proton temperature and drift velocity.
Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory
Directory of Open Access Journals (Sweden)
Matthew T. Aadne
2017-02-01
Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.
Transversal magnetotransport in Weyl semimetals: Exact numerical approach
Behrends, Jan; Kunst, Flore K.; Sbierski, Björn
2018-02-01
Magnetotransport experiments on Weyl semimetals are essential for investigating the intriguing topological and low-energy properties of Weyl nodes. If the transport direction is perpendicular to the applied magnetic field, experiments have shown a large positive magnetoresistance. In this work we present a theoretical scattering matrix approach to transversal magnetotransport in a Weyl node. Our numerical method confirms and goes beyond the existing perturbative analytical approach by treating disorder exactly. It is formulated in real space and is applicable to mesoscopic samples as well as in the bulk limit. In particular, we study the case of clean and strongly disordered samples.
Magnetically Modified Asymmetric Supercapacitors, Phase I
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....
Asymptotic behavior of observables in the asymmetric quantum Rabi model
Semple, J.; Kollar, M.
2018-01-01
The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.
An Exact Solution of the Binary Singular Problem
Directory of Open Access Journals (Sweden)
Baiqing Sun
2014-01-01
Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.
Exact gravitational quasinormal frequencies of topological black holes
International Nuclear Information System (INIS)
Birmingham, Danny; Mokhtari, Susan
2006-01-01
We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies
Directory of Open Access Journals (Sweden)
Shilin Chen
1994-01-01
Full Text Available An exact and direct modeling technique is proposed for modeling of rotor-bearing systems with arbitrary selected degrees-of-freedom. This technique is based on the combination of the transfer and dynamic stiffness matrices. The technique differs from the usual combination methods in that the global dynamic stiffness matrix for the system or the subsystem is obtained directly by rearranging the corresponding global transfer matrix. Therefore, the dimension of the global dynamic stiffness matrix is independent of the number of the elements or the substructures. In order to show the simplicity and efficiency of the method, two numerical examples are given.
F-door spaces and F-submaximal spaces
Directory of Open Access Journals (Sweden)
Lobna Dridi
2013-04-01
Full Text Available Submaximal spaces and door spaces play an enigmatic role in topology. In this paper, reinforcing this role, we are concerned with reaching two main goals: The first one is to characterize topological spaces X such that F(X is a submaximal space (resp., door space for some covariant functor Ff rom the category Top to itself. T0, and FH functors are completely studied. Secondly, our interest is directed towards the characterization of maps f given by a flow (X, f in the category Set, such that (X,P(f is submaximal (resp., door where P(f is a topology on X whose closed sets are exactly the f-invariant sets.
Asymmetric dark matter: residual annihilations and self-interactions arXiv
Baldes, Iason; Panci, Paolo; Petraki, Kalliopi; Sala, Filippo; Taoso, Marco
Dark matter (DM) coupled to light mediators has been invoked to resolve the putative discrepancies between collisionless cold DM and galactic structure observations. However, $\\gamma$-ray searches and the CMB strongly constrain such scenarios. To ease the tension, we consider asymmetric DM. We show that, contrary to the common lore, detectable annihilations occur even for large asymmetries, and derive bounds from the CMB, $\\gamma$-ray, neutrino and antiproton searches. We then identify the viable space for self-interacting DM. Direct detection does not exclude this scenario, but provides a way to test it.
Blocked inverted indices for exact clustering of large chemical spaces.
Thiel, Philipp; Sach-Peltason, Lisa; Ottmann, Christian; Kohlbacher, Oliver
2014-09-22
The calculation of pairwise compound similarities based on fingerprints is one of the fundamental tasks in chemoinformatics. Methods for efficient calculation of compound similarities are of the utmost importance for various applications like similarity searching or library clustering. With the increasing size of public compound databases, exact clustering of these databases is desirable, but often computationally prohibitively expensive. We present an optimized inverted index algorithm for the calculation of all pairwise similarities on 2D fingerprints of a given data set. In contrast to other algorithms, it neither requires GPU computing nor yields a stochastic approximation of the clustering. The algorithm has been designed to work well with multicore architectures and shows excellent parallel speedup. As an application example of this algorithm, we implemented a deterministic clustering application, which has been designed to decompose virtual libraries comprising tens of millions of compounds in a short time on current hardware. Our results show that our implementation achieves more than 400 million Tanimoto similarity calculations per second on a common desktop CPU. Deterministic clustering of the available chemical space thus can be done on modern multicore machines within a few days.
Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems.
Lowery, Arthur James
2016-02-22
Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is a technique that sacrifices spectral efficiency in order to transmit an orthogonally frequency-division multiplexed signal over a unipolar channel, such as a directly modulated direct-detection fiber or free-space channel. Several methods have been proposed to regain this spectral efficiency, including: asymmetrically clipped DC-biased optical OFDM (ADO-OFDM), enhanced U-OFDM (EU-OFDM), spectral and energy efficient OFDM (SEE-OFDM), Hybrid-ACO-OFDM and Layered-ACO-OFDM. This paper presents simulations up to high-order constellation sizes to show that Layered-ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficiencies above 3 bit/s/Hz. For comparison purposes, white Gaussian noise is added at the receiver, component nonlinearities are not considered, and the fiber is considered to be linear and dispersion-less. The simulations show that LACO-OFDM has a 7-dB sensitivity advantage over DC-biased OFDM (DCO-OFDM) for 1024-QAM at 87.5% of DCO-OFDM's spectral efficiency, at the same bit rate and optical power. This is approximately equivalent to a 4.4-dB advantage at the same spectral efficiency of 87.7% if 896-QAM were to be used for DCO-OFDM.
Occupation probabilities and fluctuations in the asymmetric simple inclusion process
Reuveni, Shlomi; Hirschberg, Ori; Eliazar, Iddo; Yechiali, Uri
2014-04-01
The asymmetric simple inclusion process (ASIP), a lattice-gas model of unidirectional transport and aggregation, was recently proposed as an "inclusion" counterpart of the asymmetric simple exclusion process. In this paper we present an exact closed-form expression for the probability that a given number of particles occupies a given set of consecutive lattice sites. Our results are expressed in terms of the entries of Catalan's trapezoids—number arrays which generalize Catalan's numbers and Catalan's triangle. We further prove that the ASIP is asymptotically governed by the following: (i) an inverse square-root law of occupation, (ii) a square-root law of fluctuation, and (iii) a Rayleigh law for the distribution of interexit times. The universality of these results is discussed.
Effect of dynamic and static friction on an asymmetric granular piston.
Talbot, Julian; Viot, Pascal
2012-02-01
We investigate the influence of dry friction on an asymmetric, granular piston of mass M, composed of two materials, undergoing inelastic collisions with bath particles of mass m. Numerical simulations of the Boltzmann-Lorentz equation reveal the existence of two scaling regimes depending on the friction strength. In the large friction limit, we introduce an exact model giving the asymptotic behavior of the Boltzmann-Lorentz equation. For small friction and for large mass ratio M/m, we derive a Fokker-Planck equation for which the exact solution is also obtained. Static friction attenuates the motor effect and results in a discontinuous velocity distribution. © 2012 American Physical Society
U(N) instantons on N=(1/2) superspace: Exact solution and geometry of moduli space
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Lunin, Oleg; Rey, Soo-Jong
2004-01-01
We construct the exact solution of one (anti-)instanton in N=(1/2) super Yang-Mills theory defined on non(anti-)commutative superspace. We first identify N=(1/2) superconformal invariance as maximal spacetime symmetry. For the gauge group U(2), the SU(2) part of the solution is given by the standard (anti-)instanton, but the U(1) field strength also turns out to be nonzero. The solution is SO(4) rotationally symmetric. For the gauge group U(N), in contrast with the U(2) case, we show that the entire U(N) part of the solution is deformed by non(anti-)commutativity and fermion zero modes. The solution is no longer rotationally symmetric; it is polarized into an axially symmetric configuration because of the underlying non(anti-)commutativity. We compute the 'information metric' of one (anti-)instanton. We find that the moduli space geometry is deformed from the hyperbolic space H 5 (Euclidean anti-de Sitter space) in a way anticipated from reduced spacetime symmetry. Remarkably, the volume measure of the moduli space turns out to be independent of the non(anti-)commutativity. Implications for D branes in the Ramond-Ramond flux background and the gauge-gravity correspondence are discussed
Horiuchi, Yoshihiro; Gnanadesikan, Vijay; Ohshima, Takashi; Masu, Hyuma; Katagiri, Kosuke; Sei, Yoshihisa; Yamaguchi, Kentaro; Shibasaki, Masakatsu
2005-09-05
The development of a direct catalytic asymmetric aldol-Tishchenko reaction and the nature of its catalyst are described. An aldol-Tishchenko reaction of various propiophenone derivatives with aromatic aldehydes was promoted by [LaLi3(binol)3] (LLB), and reactivity and enantioselectivity were dramatically enhanced by the addition of lithium trifluoromethanesulfonate (LiOTf). First, we observed a dynamic structural change of LLB by the addition of LiOTf using 13C NMR spectroscopy, electronspray ionization mass spectrometry (ESI-MS), and cold-spray ionization mass spectrometry (CSI-MS). X-ray crystallography revealed that the structure of the newly generated self-assembled complex was a binuclear [La2Li4(binaphthoxide)5] complex 6. A reverse structural change of complex 6 to LLB by the addition of one equivalent of Li2(binol) was also confirmed by ESI-MS and experimental results. The drastic concentration effects on the direct catalytic asymmetric aldol-Tishchenko reaction suggested that the addition of LiOTf to LLB generated an active oligomeric catalyst species.
The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update.
Harmon-Jones, Eddie; Gable, Philip A; Peterson, Carly K
2010-07-01
Conceptual and empirical approaches to the study of the role of asymmetric frontal cortical activity in emotional processes are reviewed. Although early research suggested that greater left than right frontal cortical activity was associated with positive affect, more recent research, primarily on anger, suggests that greater left than right frontal cortical activity is associated with approach motivation, which can be positive (e.g., enthusiasm) or negative in valence (e.g., anger). In addition to reviewing this research on anger, research on guilt, bipolar disorder, and various types of positive affect is reviewed with relation to their association with asymmetric frontal cortical activity. The reviewed research not only contributes to a more complete understanding of the emotive functions of asymmetric frontal cortical activity, but it also points to the importance of considering motivational direction as separate from affective valence in psychological models of emotional space. Copyright © 2009 Elsevier B.V. All rights reserved.
Asymmetric [14C]albumin transport across bullfrog alveolar epithelium
International Nuclear Information System (INIS)
Kim, K.J.; LeBon, T.R.; Shinbane, J.S.; Crandall, E.D.
1985-01-01
Bullfrog lungs were prepared as planar sheets and bathed with Ringer solution in Ussing chambers. In the presence of a constant electrical gradient (20, 0, or -20 mV) across the tissue, 14 C-labeled bovine serum albumin or inulin was instilled into the upstream reservoir and the rate of appearance of the tracer in the downstream reservoir was monitored. Two lungs from the same animal were used to determine any directional difference in tracer fluxes. An apparent permeability coefficient was estimated from a relationship between normalized downstream radioactivities and time. Results showed that the apparent permeability of albumin in the alveolar to pleural direction across the alveolar epithelial barrier is 2.3 X 10(-7) cm/s, significantly greater (P less than 0.0005) than that in the pleural to alveolar direction (5.3 X 10(-8) cm/s) when the tissue was short circuited. Permeability of inulin, on the other hand, did not show any directional dependence and averaged 3.1 X 10(-8) cm/s in both directions. There was no effect on radiotracer fluxes permeabilities of different electrical gradients across the tissue. Gel electrophoretograms and corresponding radiochromatograms suggest that the large and asymmetric isotope fluxes are not primarily due to digestion or degradation of labeled molecules. Inulin appears to traverse the alveolar epithelial barrier by simple diffusion through hydrated paracellular pathways. On the other hand, [ 14 C]albumin crosses the alveolar epithelium more rapidly than would be expected by simple diffusion. These asymmetric and large tracer fluxes suggest that a specialized mechanism is present in alveolar epithelium that may be capable of helping to remove albumin from the alveolar space
Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang
2018-04-01
Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.
Exact solutions, numerical relativity and gravitational radiation
International Nuclear Information System (INIS)
Winicour, J.
1986-01-01
In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful
Asymmetric impacts of international energy shocks on macroeconomic activities
International Nuclear Information System (INIS)
Yeh, Fang-Yu; Hu, Jin-Li; Lin, Cheng-Hsun
2012-01-01
While limited by its scarcity of natural resources, the impacts of energy price changes on Taiwan's economic activities have been an important issue for social public and government authorities. This study applies the multivariate threshold model to investigate the effects of various international energy price shocks on Taiwan's macroeconomic activity. By separating energy price changes into the so-called decrease and increase regimes, we can realize different impacts of energy price changes and their shocks on economic output. The results confirm that there is an asymmetric threshold effect for the energy-output nexus. The optimal threshold levels are exactly where the oil price change is at 2.48%, the natural gas price change is at 0.66%, and the coal price change is at 0.25%. The impulse response analysis suggests that oil price and natural gas shocks have a delayed negative impact on macroeconomic activities. - Highlights: ► This study applies multivariate threshold model to investigate the effects of various international energy price shocks on Taiwan's macroeconomic activity. ► The results confirm that there is an asymmetric threshold effect for energy-output nexus. ► The optimal threshold levels are exactly found where oil price change is at 2.48%, natural gas price change is at 0.66%, and coal price change is at 0.25%.
Prepotential approach to exact and quasi-exact solvabilities
International Nuclear Information System (INIS)
Ho, C.-L.
2008-01-01
Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations
International Nuclear Information System (INIS)
Fradkin, E.S.; Palchik, M.Ya.
1996-02-01
We study a family of exactly solvable models of conformally-invariant quantum field theory in D-dimensional space. We demonstrate the existence of D-dimensional analogs of primary and secondary fields. Under the action of energy-momentum tensor and conserved currents, the primary fields creates an infinite set of (tensor) secondary fields of different generations. The commutators of secondary fields with zero components of current and energy-momentum tensor include anomalous operator terms. We show that the Hilbert space of conformal theory has a special sector which structure is solely defined by the Ward identities independently on the choice of dynamical model. The states of this sector are constructed from secondary fields. Definite self-consistent conditions on the states of the latter sector fix the choice of the field model uniquely. In particular, Lagrangian models do belong to this class of models. The above self-consistent conditions are formulated as follows. Special superpositions Q s , s = 1,2,... of secondary fields are constructed. Each superposition is determined by the requirement that the form of its commutators with energy-momentum tensor and current (i.e. transformation properties) should be identical to that of a primary field. Each equation Q s (x) = 0 is consistent, and defines an exactly solvable model for D ≥ 3. The structure of these models are analogous to that of well-known two dimensional conformal models. The states Q s (x) modul 0> are analogous to the null-vectors of two dimensional theory. In each of these models one can obtain a closed set of differential equations for all the higher Green functions, as well as algebraic equations relating the scale dimension of fundamental field to the D-dimensional analog of a central charge. As an example, we present a detailed discussion of a pair of exactly solvable models in even-dimensional space D ≥ 4. (author). 28 refs
International Nuclear Information System (INIS)
Lin, Ta-Wei; Liao, Yunn-Shiuan; Chen, Chi-Feng; Yang, Jauh-Jung
2008-01-01
A dual-directional light-control film with a high-sag and high-asymmetric-shape long gapless hexagonal microlens array fabricated by an ultra-violent (UV) imprinting process is presented. Such a lens array is designed by ray-tracing simulation and fabricated by a micro-replication process including gray-scale lithography, electroplating process and UV curing. The shape of the designed lens array is similar to that of a near half-cylindrical lens array with a periodical ripple. The measurement results of a prototype show that the incident lights using a collimated LED with the FWHM of dispersion angle, 12°, are diversified differently in short and long axes. The numerical and experimental results show that the FWHMs of the view angle for angular brightness in long and short axis directions through the long hexagonal lens are about 34.3° and 18.1° and 31° and 13°, respectively. Compared with the simulation result, the errors in long and short axes are about 5% and 16%, respectively. Obviously, the asymmetric gapless microlens array can realize the aim of the controlled asymmetric angular brightness. Such a light-control film can be used as a power saving screen compared with convention diffusing film for the application of a rear projection display
Outage Analysis of Asymmetric RF-FSO Systems
Ansari, Imran Shafique; Abdallah, Mohamed M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.
2017-01-01
In this work, the outage performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) channels cascaded with free-space optical (FSO) links is presented. The RF links are modeled by the Rayleigh fading
Acoustics of finite asymmetric exotic beams: Examples of Airy and fractional Bessel beams
Mitri, F. G.
2017-12-01
The purpose of this investigation is to examine the properties of finite asymmetric exotic scalar (acoustic) beams with unusual properties using the angular spectrum decomposition in plane waves. Such beams possess intrinsic uncommon characteristics that make them attractive from the standpoint of particle manipulation, handling and rotation, and possibly other applications in particle clearing and separation. Assuming a specific apodization function at the acoustic source, the angular spectrum function is calculated and used to synthesize the radiated pressure field (i.e., excluding evanescent waves that decay away from the source) in the forward direction of wave motion (i.e., away from the source). Moreover, a generalized hybrid method combining the angular spectrum approach with the multipole expansion formalism in spherical coordinates is developed, which is applicable to any finite beam of arbitrary wavefront. The improved approach allows adequate computation of the resonance scattering, radiation force, and spin torque components on an object of arbitrary shape, located on or off the axis of the incident beam in space. Considering the illustrative example of a viscous fluid sphere submerged in a non-viscous liquid and illuminated by finite asymmetric beams such as the Airy and the Bessel vortex beam with fractional order, numerical computations for the scattering, radiation force, and torque components are performed with an emphasis on the distance from the source, the arbitrary location of the particle ,and the asymmetric nature of the incident field. Moreover, beamforming calculations are presented with supplementary animations for the pressure field distribution in space, with an emphasis on the intrinsic properties of the selected beams. The numerical predictions illustrate the scattering, radiation force, and spin torque properties depending on the beam parameters and the distance separating the sphere from the source. This study provides a generalized
No, Yeon A; Ahn, Byeong Heon; Kim, Beom Joon; Kim, Myeung Nam; Hong, Chang Kwon
2016-01-01
For correction of this asymmetrical hypertrophy, botulinum toxin type A (BTxA) injection is one of convenient treatment modalities. Unfortunately, physical examination of masseter muscle is not enough to estimate the exact volume of muscle hypertrophy difference. Two Koreans, male and female, of bilateral masseter hypertrophy with asymmetricity were evaluated. BTxA (NABOTA(®), Daewoong, Co. Ltd., Seoul, Korea) was injected at master muscle site with total 50 U (25 U at each side) and volume change was evaluated with three-dimensional (3D) CT image analysis. Maximum reduction of masseter hypertrophy was recognized at 2-month follow-up and reduced muscle size started to restore after 3 months. Mean reduction of masseter muscle volume was 36% compared with baseline. More hypertrophied side of masseter muscle presented 42% of volume reduction at 2-month follow-up but less hypertrophied side of masseter muscle showed 30% of volume shrinkage. In conclusion, 3D CT image analysis might be the exact evaluation tool for correction of asymmetrical masseter hypertrophy by botulinum toxin injection.
Aspects of collisionless magnetic reconnection in asymmetric systems
Energy Technology Data Exchange (ETDEWEB)
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha [Heliophysics Science Division, Code 670, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Zenitani, Seiji [National Astronomical Observatory of Japan, Tokyo (Japan); Birn, Joachim [Space Science Institute, Boulder, Colorado 80301 (United States)
2013-06-15
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.
Aspects of collisionless magnetic reconnection in asymmetric systems
International Nuclear Information System (INIS)
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim
2013-01-01
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide
Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems
Hesse, Michael; Aunai, Nicolas; Zeitani, Seiji; Kuznetsova, Masha; Birn, Joachim
2013-01-01
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with non-vanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.
Low momentum scattering of the Dirac particle with an asymmetric cusp potential
International Nuclear Information System (INIS)
Jiang, Yu.; Dong, Shi-Hai; Lozada-Cassou, M.; Antillon, A.
2006-01-01
We study the exact solutions of the bound and scattering states of the one-dimensional Dirac equation with an asymmetric cusp potential and derive the condition of the supercriticality for this quantum system. We find that the scattering properties are invariant under reflection of the potential's shape, and the supercritical value for the potential amplitude V 0 varies with the degree of the potential asymmetry. (orig.)
Feynman propagator and space-time transformation technique
International Nuclear Information System (INIS)
Nassar, A.B.
1987-01-01
We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)
Directory of Open Access Journals (Sweden)
Carlos Coimbra-Araujo
2017-08-01
Full Text Available For several reasons, the Exact Sciences have been shown as one of the areas of scientific knowledge that most demand actions in non-formal spaces of education. One of the main reasons lies in the fact that Mathematics, Physics, Chemistry and Astronomy are traditionally addressed, within the school environment and in the formal curriculum, unrelated to the student reality. Such subjects are often seen as a set of inflexible and incomprehensible principles. In this aspect, the present work reviews the main problems surrounding the teaching of the mentioned scientific areas, highlighting non-formal tools for the teaching of Mathematics, Physics, Chemistry, Astronomy and, in particular, the modern virtual environments of teaching modeled by Computing Science. Other historical difficulties that the formal education of Exact Sciences has suffered in Brazil are also presented, as well some of the main non-formal resources sought to complement the curriculum that is usually presented in the classroom.
Asymmetric Penning trap coherent states
International Nuclear Information System (INIS)
Contreras-Astorga, Alonso; Fernandez, David J.
2010-01-01
By using a matrix technique, which allows to identify directly the ladder operators, the coherent states of the asymmetric Penning trap are derived as eigenstates of the appropriate annihilation operators. They are compared with those obtained through the displacement operator method.
What Exactly is Space Logistics?
2011-01-01
series, movies, and video games. Such phrases as “the final frontier” (from the opening lines of Star Trek ) or “the ulti- mate high ground” (from...years as NASA , DoD, and commercial space launch customers brought individual requirements to the table; there was no single, focused development
Effects of asymmetrical stance and movement on body rotation in pushing.
Lee, Yun-Ju; Aruin, Alexander S
2015-01-21
Pushing objects in the presence of body asymmetries could increase the risk of back injury. Furthermore, when the object is heavy, it could exacerbate the effects induced by asymmetrical posture. We investigated how the use of asymmetrical posture and/or upper extremity movement affect vertical torque (Tz) and center of pressure (COP) displacement during pushing. Ten healthy volunteers were instructed to push objects of three different weights using two hands (symmetrical hand use) or one hand (asymmetrical hand use) while standing in symmetrical or asymmetrical foot-positions. The peak values of Tz and COP displacement in the medial-lateral direction (COPML) were analyzed. In cases of isolated asymmetry, changes in the Tz were mainly linked with effects of hand-use whereas effects of foot-position dominated changes in the COPML displacement. In cases of a combined asymmetry, the magnitudes of both Tz and COPML were additive when asymmetrical hand-use and foot-position induced the rotation of the lower and upper body in the same direction or subtractive when asymmetries resulted in the rotation of the body segments in the opposite directions. Moreover, larger Tz and COP displacements were seen when pushing the heavy weight. The results point out the importance of using Tz and COPML to describe the isolated or combined effects of asymmetrical upper extremity movement and asymmetrical posture on body rotation during pushing. Furthermore, it suggests that a proper combination of unilateral arm movement and foot placements could help to reduce body rotation even when pushing heavy objects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Asymmetric WIMP Dark Matter in the presence of DM/anti-DM oscillations
International Nuclear Information System (INIS)
Zaharijas, G.
2014-01-01
The general class of 'Asymmetric Dark Matter (DM)' scenarios assumes the existence of a primordial particle/anti-particle asymmetry in the dark matter sector related to the asymmetry in the baryonic one, as a way to achieve the observed similarity between the baryonic and dark matter energy densities today. Focusing on this framework we study the effect of oscillations between dark matter and its anti-particle on the re-equilibration of the initial asymmetry. We calculate the evolution of the dark matter relic abundance and show how oscillations re-open the parameter space of asymmetric dark matter models, in particular in the direction of allowing large (WIMP-scale) DM masses. We found in particular that a typical WIMP with a mass at the EW scale (about 1 TeV) having a primordial asymmetry of the same order as the baryon asymmetry, naturally gets the correct relic abundance if the δm mass term is in the ∼ meV range. This turns out to be a natural value for fermionic DM arising from the higher dimensional operator H 2 DM 2 /Λ where H is the Higgs field and Λ ∼ M Pl . Finally, we constrain the parameter space in this framework by applying up-to-date bounds from indirect detection signals on annihilating DM
Exactly marginal deformations from exceptional generalised geometry
Energy Technology Data Exchange (ETDEWEB)
Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)
2017-01-27
We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.
New exact approaches to the nuclear eigenvalue problem
International Nuclear Information System (INIS)
Andreozzi, F.; Lo Iudice, N.; Porrino, A.; Knapp, F.; Kvasil, J.
2005-01-01
In a recent past some of us have developed a new algorithm for diagonalizing the shell model Hamiltonian which consists of an iterative sequence of diagonalization of sub-matrices of small dimensions. The method, apart from being easy to implement, is robust, yielding always stable numerical solutions, and free of ghost eigenvalues. Subsequently, we have endowed the algorithm with an importance sampling, which leads to a drastic truncation of the shell model space, while keeping the accuracy of the solutions under control. Applications to typical nuclei show that the sampling yields also an extrapolation law to the exact eigenvalues. Complementary to the shell model algorithm is a method we are developing for studying collective and non collective excitations. To this purpose we solve the nuclear eigenvalue problem in a space which is the direct sum of Tamm-Dancoff n-phonon subspaces (n=0,1, ...N). The multiphonon basis is constructed by an iterative equation of motion method, which generates an over complete set of n-phonon states from the (n-1)-phonon basis. The redundancy is removed completely and exactly by a method based on the Choleski decomposition. The full Hamiltonian matrix comes out to have a simple structure and, therefore, can be drastically truncated before diagonalization by the mentioned importance sampling method. The phonon composition of the basis states allows removing naturally and maximally the spurious admixtures induced by the centre of mass motion. An application of the method to 16 O will be given for illustrative purposes. (authors)
Exact discretization of Schrödinger equation
Energy Technology Data Exchange (ETDEWEB)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2016-01-08
There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.
Exact discretization of Schrödinger equation
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2016-01-01
There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.
International Nuclear Information System (INIS)
Forrester, P.J.; Witte, N.S.
2000-01-01
Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s) e-b(s) for a simply related to a Painleve transcendent and b its anti-derivative. A formula consisting of the sum of two such terms is given for the symplectic case (Hermitian matrices with real quaternion elements)
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Vortex Dynamics of Asymmetric Heave Plates
Rusch, Curtis; Maurer, Benjamin; Polagye, Brian
2017-11-01
Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.
Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J
2018-07-01
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.
Asymmetric Price Responses of Gasoline Stations. Evidence for Heterogeneity of Retailers
Energy Technology Data Exchange (ETDEWEB)
Faber, R.P. [Erasmus University Rotterdam, Rotterdam (Netherlands)
2009-11-15
This paper studies asymmetric price responses of individual firms, via daily retail prices of almost all gasoline stations in the Netherlands and suggested prices of the five largest oil companies over more than two years. I find that 38% of the stations respond asymmetrically to changes in the spot market price. Hence, asymmetric pricing is not a feature of the market as a whole, but of individual firms. For asymmetrically pricing stations, the asymmetry is substantial directly after a change but disappears after one or two days. I study station-specific characteristics and conclude that asymmetric pricing seems to be a phenomenon that is randomly distributed across stations. I also find that none of the five largest oil companies adjust their suggested prices asymmetrically.
Asymmetric Price Responses of Gasoline Stations. Evidence for Heterogeneity of Retailers
International Nuclear Information System (INIS)
Faber, R.P.
2009-11-01
This paper studies asymmetric price responses of individual firms, via daily retail prices of almost all gasoline stations in the Netherlands and suggested prices of the five largest oil companies over more than two years. I find that 38% of the stations respond asymmetrically to changes in the spot market price. Hence, asymmetric pricing is not a feature of the market as a whole, but of individual firms. For asymmetrically pricing stations, the asymmetry is substantial directly after a change but disappears after one or two days. I study station-specific characteristics and conclude that asymmetric pricing seems to be a phenomenon that is randomly distributed across stations. I also find that none of the five largest oil companies adjust their suggested prices asymmetrically.
A case of asymmetrical arthrogryposis
International Nuclear Information System (INIS)
Hageman, G.; Vette, J.K.; Willemse, J.
1983-01-01
Following the introduction of the conception that arthrogryposis is a symptom and not a clinical entity, a case of the very rare asymmetric form of neurogenic arthrogryposis is presented. The asymmetry of congenital contractures and weakness is associated with hemihypotrophy. The value of muscular CT-scanning prior to muscle biopsy is demonstrated. Muscular CT-scanning shows the extension of adipose tissue, which has replaced damaged muscles and therby indicates the exact site for muscle biopsy. Since orthopaedic treatment in arthrogryposis can be unrewarding due to severe muscular degeneration, preoperative scanning may provide additional important information on muscular function and thus be of benefit for surgery. The advantage of muscular CT-scanning in other forms of arthrogryposis requires further determination. The differential diagnosis with Werdnig-Hoffmann disease is discussed. (author)
The Asymmetric Nebula Surrounding the Extreme Red Supergiant VY Canis Majoris
Smith, Nathan; Humphreys, Roberta M.; Davidson, Kris; Gehrz, Robert D.; Schuster, M. T.; Krautter, Joachim
2001-02-01
We present HST/WFPC2 images plus ground-based infrared images and photometry of the very luminous OH/IR star VY Canis Majoris. Our WFPC2 data show a complex distribution of knots and filamentary arcs in the asymmetric reflection nebula around the obscured central star. The reflection arcs may result from multiple, asymmetric ejection episodes due to localized events on VY CMa's surface. Such events probably involve magnetic fields and convection, by analogy with solar activity. Surface photometry indicates that the star may have experienced enhanced mass loss over the past 1000 yr. We also demonstrate that the apparent asymmetry of the nebula results from a combination of high extinction and backscattering by dust grains. Thermal-infrared images reveal a more symmetric distribution, elongated along a nearly east-west direction. VY CMa probably has a flattened disklike distribution of dust with a northeast-southwest polar axis and may be experiencing activity analogous to solar prominences. The presence of an axis of symmetry raises interesting questions for a star the size of Saturn's orbit. Magnetic fields and surface activity may play an important role in VY CMa's mass-loss history. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Tsuzuki, Satori; Yanagisawa, Daichi; Nishinari, Katsuhiro
2018-04-01
This study proposes a model of a totally asymmetric simple exclusion process on a single-channel lane with functions of site assignments along the pit lane. The system model attempts to insert a new particle to the leftmost site at a certain probability by randomly selecting one of the empty sites in the pit lane, and reserving it for the particle. Thereafter, the particle is directed to stop at the site only once during its travel. Recently, the system was determined to show a self-deflection effect, in which the site usage distribution biases spontaneously toward the leftmost site, and the throughput becomes maximum when the site usage distribution is slightly biased to the rightmost site. Our exact analysis describes this deflection effect and show a good agreement with simulations.
Exact shock profile for the ASEP with sublattice-parallel update
International Nuclear Information System (INIS)
Jafarpour, F H; Ghafari, F E; Masharian, S R
2005-01-01
We analytically study the one-dimensional asymmetric simple exclusion process with open boundaries under sublattice-parallel updating scheme. We investigate the stationary state properties of this model conditioned on finding a given particle number in the system. Recent numerical investigations have shown that the model possesses three different phases in this case. Using a matrix product method we calculate both the exact canonical partition function and also density profiles of the particles in each phase. Application of the Yang-Lee theory reveals that the model undergoes two second-order phase transitions at critical points. These results confirm the correctness of our previous numerical studies
QUARTZ: a numerical simulation of an asymmetric electrostatic accelerator
International Nuclear Information System (INIS)
Wooten, J.W.; Drooks, L.J.; McCollough, D.H.; McGaffey, R.W.; Whealton, J.H.
1979-01-01
The physics and numerical aspects of the development of the computer code QUARTZ are given. This code includes the (1) use of a finite element code to obtain solutions of Poisson's equation in an asymmetric, three-dimensional volume; (2) inclusion of space charge neutralization by electrons; and (3) inclusion of ion space charge through an iterative procedure
Exact dimension estimation of interacting qubit systems assisted by a single quantum probe
Sone, Akira; Cappellaro, Paola
2017-12-01
Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.
Time-dependent Networks as Models to Achieve Fast Exact Time-table Queries
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Jacob, Rico
2001-01-01
We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models.......We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models....
Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.
2014-04-01
A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.
Asymmetric Shaped-Pattern Synthesis for Planar Antenna Arrays
Directory of Open Access Journals (Sweden)
T. M. Bruintjes
2016-01-01
Full Text Available A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog beamformer.
Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.
Didier, Gilles
2017-10-01
The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.
Evaluation of the Perceptual Characteristics of a Force Induced by Asymmetric Vibrations.
Tanabe, Takeshi; Yano, Hiroaki; Iwata, Hiroo
2017-08-29
This paper describes the properties of proprioceptive sensations induced by asymmetric vibration using a vibration speaker-type non-grounded haptic interface. We confirm that the vibration speaker generates a perceived force that pulls or pushes a user's hand in a particular direction when an asymmetric amplitude signal that is generated by inverting a part of a sine wave is input. In this paper, to verify the system with respect to various factors of force perception caused by asymmetric vibration, we conducted six experiments and the following results were obtained. (1) The force vector can be controlled by reversing the asymmetric waves. (2) By investigating the physical characteristics of the vibration, asymmetric vibration was confirmed. (3) The presentation of vibration in the shear direction on the finger pad is effective. (4) The point of subjective equality of the perceived force can be controlled by up to 0.43 N by changing the amplitude voltage of the input signals. (5) The minimum stimulation time required for force perception is 66.7 ms. (6) When the vibration is continuously presented for 40 to 50 s, the perceived force decreases because of adaptation. Hence, we confirmed that we can control both the direction and magnitude of the reaction force by changing the input signal of the vibration speaker.
Radiation emission as a virtually exact realization of Heisenbergs microscope
Energy Technology Data Exchange (ETDEWEB)
Andersen, K.K., E-mail: kka@phys.au.dk [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark); Brock, S. [Department of Culture and Society, Aarhus University, Jens Chr. Skous Vej 5, 8000 Aarhus C (Denmark); Esberg, J.; Thomsen, H.D.; Uggerhøj, U.I. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark)
2013-11-15
Through the concept of ‘formation length’, recently observed directly in the radiation emission from ultrarelativistic electrons and an essential component in the interpretation of strong field radiation from electrons penetrating single crystals, we discuss the indeterminacy in the location of radiation emission. The analogy with the indeterminacy in the Heisenberg microscope Gedanken experiment is demonstrated from a number of viewpoints to be almost exact. The positive attitude regarding photon emission as a process that is somehow located in space and time is emphasized. We therefore interpret the measurements of formation lengths in radiation emission as a practically realizable version – using virtual incident photons instead of real – of the Heisenberg microscope Gedanken experiment.
An exact solution of two friendly interacting directed walks near a sticky wall
International Nuclear Information System (INIS)
Tabbara, R; Owczarek, A L; Rechnitzer, A
2014-01-01
We find the exact solution of two interacting friendly directed walks (modelling polymers) on the square lattice. These walks are confined to the quarter plane by a horizontal attractive surface, to capture the effects of DNA-denaturation and adsorption. We find the solution to the model’s corresponding generating function by means of the obstinate kernel method. Specifically, we apply this technique in two different instances to establish partial solutions for two simplified generating functions of the same underlying model that ignore either surface or shared contacts. We then subsequently combine our two partial solutions to find the solution for the full generating function in terms of the two simpler variants. This expression guides our analysis of the model, where we find the system exhibits four phases, and proceed to delineate the full phase diagram, showing that all observed phase transitions are second-order. (paper)
Instantaneous Tunneling Flight Time for Wavepacket Transmission through Asymmetric Barriers.
Petersen, Jakob; Pollak, Eli
2018-04-12
The time it takes a particle to tunnel through the asymmetric Eckart barrier potential is investigated using Gaussian wavepackets, where the barrier serves as a model for the potential along a chemical reaction coordinate. We have previously shown that the, in principle experimentally measurable, tunneling flight time, which determines the time taken by the transmitted particle to traverse the barrier, vanishes for symmetric potentials like the Eckart and square barrier [ Petersen , J. ; Pollak , E. J. Phys. Chem. Lett. 2017 , 9 , 4017 ]. Here we show that the same result is obtained for the asymmetric Eckart barrier potential, and therefore, the zero tunneling flight time seems to be a general result for one-dimensional time-independent potentials. The wavepacket dynamics is simulated using both an exact quantum mechanical method and a classical Wigner prescription. The excellent agreement between the two methods shows that quantum coherences are not important in pure one-dimensional tunneling and reinforces the conclusion that the tunneling flight time vanishes.
Research on Retro-reflecting Modulation in Space Optical Communication System
Zhu, Yifeng; Wang, Guannan
2018-01-01
Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.
arXiv Integrable flows between exact CFTs
Georgiou, George
2017-11-14
We explicitly construct families of integrable σ-model actions smoothly inter-polating between exact CFTs. In the ultraviolet the theory is the direct product of two current algebras at levels k$_{1}$ and k$_{2}$. In the infrared and for the case of two deformation matrices the CFT involves a coset CFT, whereas for a single matrix deformation it is given by the ultraviolet direct product theories but at levels k$_{1}$ and k$_{2}$ − k$_{1}$. For isotropic deformations we demonstrate integrability. In this case we also compute the exact beta-function for the deformation parameters using gravitational methods. This is shown to coincide with previous results obtained using perturbation theory and non-perturbative symmetries.
Matrix product approach for the asymmetric random average process
International Nuclear Information System (INIS)
Zielen, F; Schadschneider, A
2003-01-01
We consider the asymmetric random average process which is a one-dimensional stochastic lattice model with nearest-neighbour interaction but continuous and unbounded state variables. First, the explicit functional representations, so-called beta densities, of all local interactions leading to steady states of product measure form are rigorously derived. This also completes an outstanding proof given in a previous publication. Then we present an alternative solution for the processes with factorized stationary states by using a matrix product ansatz. Due to continuous state variables we obtain a matrix algebra in the form of a functional equation which can be solved exactly
Subglottic cysts and asymmetrical subglottic narrowing on neck radiograph
International Nuclear Information System (INIS)
Holinger, L.D.; Torium, D.M.; Anandappa, E.C.
1988-01-01
The congenital subglottic hemangioma typically appears as an asymmetric subglottic narrowing or mass on frontal neck radiograph. Therefore, soft tissue neck radiography has been advocated as a definitive non-operative approach for diagnosing these lesions. However, we have noted similar asymmetric subglottic narrowing in patients with acquired subglottic cysts. These retention cysts occur following long-term intubation in the neonate. The mechanism probably involves subglottic fibrosis which obstructs glands with subsequent cyst formation. Acquired subglottic cysts typically appear as an asymmetric narrowing on frontal or lateral soft tissue neck radiographs. These lesions may produce airway compromise but are effectively treated by forceps or laser removal. Acquired subglottic cysts must be included in the differential diagnosis of asymmetric subglottic narrowing. The definitive diagnosis is made by direct laryngoscopy, not soft tissue neck radiograph. (orig.)
Novel correlations in two dimensions: Some exact solutions
International Nuclear Information System (INIS)
Murthy, M.V.; Bhaduri, R.K.; Sen, D.
1996-01-01
We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring. copyright 1996 The American Physical Society
Exact results for integrable asymptotically-free field theories
Evans, J M; Evans, Jonathan M; Hollowood, Timothy J
1995-01-01
An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).
Survey of beta-particle interaction experiments with asymmetric matter
Van Horn, J. David; Wu, Fei
2018-05-01
Asymmetry is a basic property found at multiple scales in the universe. Asymmetric molecular interactions are fundamental to the operation of biological systems in both signaling and structural roles. Other aspects of asymmetry are observed and useful in many areas of science and engineering, and have been studied since the discovery of chirality in tartrate salts. The observation of parity violation in beta decay provided some impetus for later experiments using asymmetric particles. Here we survey historical work and experiments related to electron (e-) or positron (e+) polarimetry and their interactions with asymmetric materials in gas, liquid and solid forms. Asymmetric interactions may be classified as: 1) stereorecognition, 2) stereoselection and 3) stereoinduction. These three facets of physical stereochemistry are unique but interrelated; and examples from chemistry and materials science illustrate these aspects. Experimental positron and electron interactions with asymmetric materials may be classified in like manner. Thus, a qualitative assessment of helical and polarized positron experiments with different forms of asymmetric matter from the past 40 years is presented, as well as recent experiments with left-hand and right-hand single crystal quartz and organic compounds. The purpose of this classification and review is to evaluate the field for potential new experiments and directions for positron (or electron) studies with asymmetric materials.
Exact solution of the hidden Markov processes
Saakian, David B.
2017-11-01
We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .
Grenier, Jason R; Fernandes, Luís A; Herman, Peter R
2015-06-29
Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.
Single-Bunch Stability With Direct Space Charge
Oeftiger, Adrian
2017-01-01
Previous studies have shown the suppressing effect of direct space charge on impedance-driven head-tail instabilities. The present work investigates transverse stability for the HL-LHC scenario based on our macro-particle simulation tool PyHEADTAIL using realistic bunch distributions. The impact of selfconsistent modelling is briefly discussed for non-linear space charge forces. We study how space charge pushes the instability threshold for the transverse mode coupling instability (TMCI) occurring between mode 0 and -1. Next we consider finite chromaticity: in absence of space charge, the impedance model predicts head-tail instabilities. For a selected case below TMCI threshold at Q0 = 5, we demonstrate the stabilising effect of space charge. Finally, we compare simulation results to past LHC measurements.
Study of spontaneously broken conformal symmetry in curved space-times
International Nuclear Information System (INIS)
Janson, M.M.
1977-05-01
Spontaneous breakdown of Weyl invariance (local scale invariance) in a conformally-invariant extension of a gauge model for weak and electromagnetic interactions is considered. The existence of an asymmetric vacuum for the Higgs field, phi, is seen to depend on the space-time structure via the Gursey-Penrose term, approximately phi + phi R, in the action. (R denotes the scalar curvature.) The effects of a prescribed space-time structure on spontaneously broken Weyl invariance is investigated. In a cosmological space-time, it is found that initially, in the primordial fireball, the symmetry must hold exactly. Spontaneous symmetry breaking (SSB) develops as the universe expands and cools. Consequences of this model include a dependence of G/sub F/, the effective weak interaction coupling strength, on ''cosmic time.'' It is seen to decrease monotonically; in the present epoch (G/sub F//G/sub F/)/sub TODAY/ approximately less than 10 -10 (year) -1 . The effects of the Schwarzschild geometry on SSB are explored. In the interior of a neutron star the Higgs vacuum expectation value, and consequently G/sub F/, is found to have a radial dependence. The magnitude of this variation does not warrant revision of present models of neutron star structures. Another perspective on the problem considered a theory of gravitation (conformal relativity) to be incorporated in the conformally invariant gauge model of weak and electromagnetic interactions. If SSB develops, the vacuum gravitational field equations are the Einstein field equations with a cosmological constant. The stability of the asymmetric vacuum solution is investigated to ascertain whether SSB can occur
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
Time-Dependent Networks as Models to Achieve Fast Exact Time-Table Queries
DEFF Research Database (Denmark)
Brodal, Gert Stølting; Jacob, Rico
2003-01-01
We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries for travelers using a train system. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models.......We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries for travelers using a train system. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models....
Emel'yanov, O. A.; Ivanov, I. O.
2018-01-01
A method to estimate the frequency dispersion of the impedance of capacitance structures with asymmetric opposite connection of electrodes is considered. The proposed equations are used to derive exact solutions for spatially nonuniform distributions of potential and current. The solutions are in agreement with the results of the 3D simulation using the COMSOL Multiphysics software. The frequency dispersion of the impedance must be taken into account in the development of modern capacitors needed for construction of efficient energy storages.
Asymmetric vibrations of shells of revolution having meridionally varying curvature and thickness
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Miura, Kazuyuki.
1988-01-01
An exact method using power series expansions is presented for solving asymmetric free vibration problems for shells of revolution having meridionally varying curvature and thickness. The gaverning equations of motion and the boundary conditions are derived from the stationary conditions of the Lagrangian of the shells of revolution. The method is demonstrated for shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The natural frequencies are numerically calculated for these shells having second degree thickness variation. (author)
Scans along arbitrary directions in reciprocal space and the analysis of GaN films on SiC
Energy Technology Data Exchange (ETDEWEB)
Poust, B [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Heying, B [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Hayashi, S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Ho, R [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Matney, K [Bede Scientific Inc., Englewood, CO 80112 (United States); Sandhu, R [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Wojtowicz, M [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Goorsky, M [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)
2005-05-21
Equations governing scans along arbitrary directions in reciprocal space were developed and used to map reciprocal lattice points (RLPs) with radial raster patterns to study mosaic structure in GaN thin films deposited on semi-insulating 4H-SiC substrates using AlN nucleation layers (NLs). The films were grown by molecular beam epitaxy, keeping the GaN growth conditions the same, but using different AlN NL growth conditions. Mosaic tilt angles determined from symmetric RLP breadth measurements were similar for all samples measured, consistent with screw and mixed dislocation densities determined from transmission electron microscopy (TEM) measurements. Mosaic twist was determined using off-axis skew-symmetric high resolution x-ray diffraction measurements of asymmetric RLP breadths, yielding results consistent with grazing incidence in-plane x-ray diffraction twist measurements. A clear correlation between the twist angle and the edge and mixed dislocation densities determined by TEM was not observed, warranting careful consideration of dislocation structure.
Scans along arbitrary directions in reciprocal space and the analysis of GaN films on SiC
International Nuclear Information System (INIS)
Poust, B; Heying, B; Hayashi, S; Ho, R; Matney, K; Sandhu, R; Wojtowicz, M; Goorsky, M
2005-01-01
Equations governing scans along arbitrary directions in reciprocal space were developed and used to map reciprocal lattice points (RLPs) with radial raster patterns to study mosaic structure in GaN thin films deposited on semi-insulating 4H-SiC substrates using AlN nucleation layers (NLs). The films were grown by molecular beam epitaxy, keeping the GaN growth conditions the same, but using different AlN NL growth conditions. Mosaic tilt angles determined from symmetric RLP breadth measurements were similar for all samples measured, consistent with screw and mixed dislocation densities determined from transmission electron microscopy (TEM) measurements. Mosaic twist was determined using off-axis skew-symmetric high resolution x-ray diffraction measurements of asymmetric RLP breadths, yielding results consistent with grazing incidence in-plane x-ray diffraction twist measurements. A clear correlation between the twist angle and the edge and mixed dislocation densities determined by TEM was not observed, warranting careful consideration of dislocation structure
Criteria for exact qudit universality
International Nuclear Information System (INIS)
Brennen, Gavin K.; O'Leary, Dianne P.; Bullock, Stephen S.
2005-01-01
We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H jk x =(ℎ/2π)Ω(vertical bar k> jk y =(ℎ/2π)Ω(i vertical bar k> jk x,y are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=(ℎ/2π)Ω vertical bar d-1,d-1> 87 Rb and construct an optimal gate sequence using Raman laser pulses
On the topology defined by Thurston's asymmetric metric
DEFF Research Database (Denmark)
Papadopoulos, Athanase; Theret, Guillaume
2007-01-01
that the topology that the asymmetric metric L induces on Teichmüller space is the same as the usual topology. Furthermore, we show that L satisfies the axioms of a (not necessarily symmetric) metric in the sense of Busemann and conclude that L is complete in the sense of Busemann....
Asymmetric and symmetric meta-correlations in financial markets
International Nuclear Information System (INIS)
Li Xiaohui; Shen Xiangying; Huang Jiping
2016-01-01
In financial markets, the relation between fluctuations of stock prices and trading behaviors is complex. It is intriguing to quantify this kind of meta-correlation between market fluctuations and the synchronous behaviors. We refine the theoretical index leverage model proposed by Reigneron et al. , to exactly quantify the meta-correlation under various levels of price fluctuations [Reigneron P A, Allez R and Bouchaud J P 2011 Physica A 390 3026]. The characteristics of meta-correlations in times of market losses, are found to be significantly different in Chinese and American financial markets. In addition, unlike the asymmetric results at the daily scale, the correlation behaviors are found to be symmetric at the high-frequency scale. (paper)
The exact mass-gaps of the principal chiral models
Hollowood, Timothy J
1994-01-01
An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.
Energy Technology Data Exchange (ETDEWEB)
Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, Keisuke; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)
2015-02-16
We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.
Analytic results for asymmetric random walk with exponential transition probabilities
International Nuclear Information System (INIS)
Gutkowicz-Krusin, D.; Procaccia, I.; Ross, J.
1978-01-01
We present here exact analytic results for a random walk on a one-dimensional lattice with asymmetric, exponentially distributed jump probabilities. We derive the generating functions of such a walk for a perfect lattice and for a lattice with absorbing boundaries. We obtain solutions for some interesting moment properties, such as mean first passage time, drift velocity, dispersion, and branching ratio for absorption. The symmetric exponential walk is solved as a special case. The scaling of the mean first passage time with the size of the system for the exponentially distributed walk is determined by the symmetry and is independent of the range
The Lambert-W step-potential – an exactly solvable confluent hypergeometric potential
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, A.M., E-mail: aishkhanyan@gmail.com [Institute for Physical Research, NAS of Armenia, 0203 Ashtarak (Armenia); Armenian State Pedagogical University, 0010 Yerevan (Armenia); Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation)
2016-02-15
We present an asymmetric step–barrier potential for which the one-dimensional stationary Schrödinger equation is exactly solved in terms of the confluent hypergeometric functions. The potential is given in terms of the Lambert W-function, which is an implicitly elementary function also known as the product logarithm. We present the general solution of the problem and consider the quantum reflection at transmission of a particle above this potential barrier. Compared with the abrupt-step and hyperbolic tangent potentials, which are reproduced by the Lambert potential in certain parameter and/or variable variation regions, the reflection coefficient is smaller because of the lesser steepness of the potential on the particle incidence side. Presenting the derivation of the Lambert potential we show that this is a four-parametric sub-potential of a more general five-parametric one also solvable in terms of the confluent hypergeometric functions. The latter potential, however, is a conditionally integrable one. Finally, we show that there exists one more potential the solution for which is written in terms of the derivative of a bi-confluent Heun function. - Highlights: • We introduce an asymmetric step-barrier potential for which the 1D Schrödinger equation is exactly solved in terms of confluent hypergeometric functions. • The potential is given in terms of the Lambert-function, which is an implicitly elementary function also known as the product logarithm. • This is a four-parametric specification of a more general five-parametric potential also solvable in terms of the confluent hypergeometric functions. • There exists one more potential the solution for which is written in terms of the derivative of a bi-confluent Heun function.
Plasma polymerization at different positions in an asymmetric ethylene discharge
International Nuclear Information System (INIS)
Trieschmann, Jan; Hegemann, Dirk
2011-01-01
The characteristics of plasma polymerization are investigated in an asymmetric, capacitively coupled plasma discharge. Here, the deposition in different plasma zones, i.e. on the driven electrode, within the plasma bulk and the plasma sheath as well as approximately at the plasma-sheath edge, is investigated. Principal expectations are perfectly met, though new interesting dependences of the obtained a-C : H coatings with respect to film properties and deposition rates are also found. That is, the deposition rates as measured on thin, small glass slides placed directly on the electrode are considerably higher than everywhere else in the plasma, yet only single-sided. In contrast, the deposition rates on the samples within the plasma are lowered depending on the exact placement, while a double-sided coating is obtained. Furthermore, film properties, such as the film density, are highly dependent on the sample placement in the plasma, which can even be higher under floating conditions. With simple physical arguments we are able to show the relations between the deposition rate and the energy input into the plasma as well as between the energy density during film growth and the film density itself.
Direct formulation of the supersonic acoustic intensity in space domain
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin
2012-01-01
into the far field. To date, its calculation has been formulated in the wave number domain, filtering out the evanescent waves outside the radiation circle and reconstructing the acoustic field with only the propagating waves. In this study, the supersonic intensity is calculated directly in space domain......This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...
Zhu, Shijin; Li, Li; Liu, Jiabin; Wang, Hongtao; Wang, Tian; Zhang, Yuxin; Zhang, Lili; Ruoff, Rodney S; Dong, Fan
2018-02-27
Two-dimensional birnessite has attracted attention for electrochemical energy storage because of the presence of redox active Mn 4+ /Mn 3+ ions and spacious interlayer channels available for ions diffusion. However, current strategies are largely limited to enhancing the electrical conductivity of birnessite. One key limitation affecting the electrochemical properties of birnessite is the poor utilization of the MnO 6 unit. Here, we assemble β-MnO 2 /birnessite core-shell structure that exploits the exposed crystal face of β-MnO 2 as the core and ultrathin birnessite sheets that have the structure advantage to enhance the utilization efficiency of the Mn from the bulk. Our birnessite that has sheets parallel to each other is found to have unusual crystal structure with interlayer spacing, Mn(III)/Mn(IV) ratio and the content of the balancing cations differing from that of the common birnessite. The substrate directed growth mechanism is carefully investigated. The as-prepared core-shell nanostructures enhance the exposed surface area of birnessite and achieve high electrochemical performances (for example, 657 F g -1 in 1 M Na 2 SO 4 electrolyte based on the weight of parallel birnessite) and excellent rate capability over a potential window of up to 1.2 V. This strategy opens avenues for fundamental studies of birnessite and its properties and suggests the possibility of its use in energy storage and other applications. The potential window of an asymmetric supercapacitor that was assembled with this material can be enlarged to 2.2 V (in aqueous electrolyte) with a good cycling ability.
Electron Raman scattering in asymmetrical multiple quantum wells
International Nuclear Information System (INIS)
Betancourt-Riera, R; Rosas, R; Marin-Enriquez, I; Riera, R; Marin, J L
2005-01-01
Optical properties of asymmetrical multiple quantum wells for the construction of quantum cascade lasers are calculated, and expressions for the electronic states of asymmetrical multiple quantum wells are presented. The gain and differential cross-section for an electron Raman scattering process are obtained. Also, the emission spectra for several scattering configurations are discussed, and the corresponding selection rules for the processes involved are studied; an interpretation of the singularities found in the spectra is given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers
A general model for metabolic scaling in self-similar asymmetric networks.
Directory of Open Access Journals (Sweden)
Alexander Byers Brummer
2017-03-01
Full Text Available How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE model argues that these two principles (space-filling and energy minimization are (i general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.
Simulation of Phenix EOL Asymmetric Test
Energy Technology Data Exchange (ETDEWEB)
Ha, Kwi Seok; Lee, Kwi Lim; Choi, Chi Woong; Kang, Seok Hun; Chang, Won Pyo; Jeong, Hae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2012-05-15
The asymmetric test of End-Of-Life (EOL) tests on the Phenix plant was used for the evaluation of the MARS-LMR in the Generation IV frame as a part of the code validation. The purpose of the test is to evaluate the ability of the system code to describe asymmetric situations and to identify important phenomena during asymmetrical transient such as a three dimensional effect, buoyancy influence, and thermal stratification in the hot and cold pools. 3-dimensional sodium coolant mixing in the pools has different characteristics from the one dimensional full instantaneous mixing. The velocities and temperatures at the core outlet level differ at each sub-assembly and the temperature in the center of the hot pool may be high because the driver fuels are located at the center region. The temperatures in the hot pool are not the same in the radial and axial locations due to the buoyancy effect. The temperatures in the cold pool also differ along with the elevations and azimuthal directions due to the outlet location of IHX and the thermal stratification
Exact solutions of the vacuum Einstein's equations allowing for two noncommuting Killing vectors
International Nuclear Information System (INIS)
Aliev, V.N.; Leznov, A.N.
1990-01-01
Einstein's equations are written in the form of covariant gauge theory in two-dimensional space with binomial solvable gauge group, with respect to two noncommutative of Killing vectors. The theory is exact integrable in one-dimensional case and series of partial exact solutions are constructed in two-dimensional. 5 refs
International Nuclear Information System (INIS)
Ushveridze, A.G.
1992-01-01
This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite
Al-Eryani, Yasser F.; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim
2017-01-01
In this paper, the performance of two-way relaying (TWR) multiuser mixed radio frequency/free space optical (RF/FSO) relay networks with opportunistic user scheduling and asymmetric channel fading is studied. First, closed-form expressions for the exact outage probability, asymptotic (high signal-to-noise ration (SNR)) outage probability, and average ergodic channel capacity are derived assuming heterodyne detection (HD) scheme. Additionally, impacts of several system parameters including number of users, pointing errors, and atmospheric turbulence conditions on the overall network performance are investigated. All the theoretical results are validated by Monte-Carlo simulations. The results show that the TWR scheme almost doubles the network ergodic capacity compared to that of one-way relaying (OWR) scheme with the same outage performance. Additionally, the overall diversity order of the network is shown to be affected not only by the number of users, but it is also a function of the pointing error and atmospheric turbulence conditions.
Al-Eryani, Yasser F.
2017-07-20
In this paper, the performance of two-way relaying (TWR) multiuser mixed radio frequency/free space optical (RF/FSO) relay networks with opportunistic user scheduling and asymmetric channel fading is studied. First, closed-form expressions for the exact outage probability, asymptotic (high signal-to-noise ration (SNR)) outage probability, and average ergodic channel capacity are derived assuming heterodyne detection (HD) scheme. Additionally, impacts of several system parameters including number of users, pointing errors, and atmospheric turbulence conditions on the overall network performance are investigated. All the theoretical results are validated by Monte-Carlo simulations. The results show that the TWR scheme almost doubles the network ergodic capacity compared to that of one-way relaying (OWR) scheme with the same outage performance. Additionally, the overall diversity order of the network is shown to be affected not only by the number of users, but it is also a function of the pointing error and atmospheric turbulence conditions.
Porter, David; Michael, Shona; Kirkwood, Craig
2008-09-01
It has been suggested that asymmetrical positioning of an infant with reduced mobility may lead to postural deformity becoming established over time. However, evidence to support or question this line of thinking is lacking. Therefore, the aim of this retrospective cohort study was to test the association between asymmetrical positioning in the first 12 months of life and the subsequent direction of postural deformity in non-ambulant people with cerebral palsy. The direction of scoliosis, pelvic obliquity and windswept hip pattern and also the side of unilateral hip subluxation/dislocation were determined for 246 young people ranging in age from 1 year and 2 months to 19 years (median age 10 years and 3 months). Parents/carers of the participants were interviewed to establish holding and feeding positions and preferred lying posture adopted in early life. Univariate analyses and multivariate logistic regression analyses were carried out. The study provided evidence of an association between asymmetrical lying posture adopted in the first year of life and the direction of the subsequent pattern of postural deformity. If the child's head had been rotated to the right during supine lying, it was more likely that the scoliosis would be convex to the left, pelvic obliquity would be lower on the left, windswept hip pattern would be to the right and hip subluxation/dislocation would occur on the left. The likelihood of the deformities occurring in the same direction was also increased if consistent side lying on the right had been preferred. Clinicians should be aware of positioning for children with severe disabilities particularly those who prefer supine lying with their head rotated to the side and those who prefer consistent side lying.
Twin Higgs Asymmetric Dark Matter.
García García, Isabel; Lasenby, Robert; March-Russell, John
2015-09-18
We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20 GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.
Baseline Testing of the Club Car Carryall With Asymmetric Ultracapacitors
Eichenberg, Dennis J.
2003-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the Club Car Carryall with asymmetric ultracapacitors as a way to reduce pollution in industrial settings, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The Carryall is a state of the art, ground up, electric utility vehicle. A unique aspect of the project was the use of a state of the art, long life ultracapacitor energy storage system. Innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The Carryall was tested with the standard lead acid battery energy storage system, as well as with an asymmetric ultracapacitor energy storage system. The report concludes that the Carryall provides excellent performance, and that the implementation of asymmetric ultracapacitors in the power system can provide significant performance improvements.
Energy Technology Data Exchange (ETDEWEB)
Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory
2016-05-09
For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.
Quantum computation via local control theory: Direct sum vs. direct product Hilbert spaces
International Nuclear Information System (INIS)
Sklarz, Shlomo E.; Tannor, David J.
2006-01-01
The central objective in any quantum computation is the creation of a desired unitary transformation; the mapping that this unitary transformation produces between the input and output states is identified with the computation. In [S.E. Sklarz, D.J. Tannor, arXiv:quant-ph/0404081 (submitted to PRA) (2004)] it was shown that local control theory can be used to calculate fields that will produce such a desired unitary transformation. In contrast with previous strategies for quantum computing based on optimal control theory, the local control scheme maintains the system within the computational subspace at intermediate times, thereby avoiding unwanted decay processes. In [S.E. Sklarz et al.], the structure of the Hilbert space had a direct sum structure with respect to the computational register and the mediating states. In this paper, we extend the formalism to the important case of a direct product Hilbert space. The final equations for the control algorithm for the two cases are remarkably similar in structure, despite the fact that the derivations are completely different and that in one case the dynamics is in a Hilbert space and in the other case the dynamics is in a Liouville space. As shown in [S.E. Sklarz et al.], the direct sum implementation leads to a computational mechanism based on virtual transitions, and can be viewed as an extension of the principles of Stimulated Raman Adiabatic Passage from state manipulation to evolution operator manipulation. The direct product implementation developed here leads to the intriguing concept of virtual entanglement - computation that exploits second-order transitions that pass through entangled states but that leaves the subsystems nearly separable at all intermediate times. Finally, we speculate on a connection between the algorithm developed here and the concept of decoherence free subspaces
Monte Carlo simulation of asymmetrical growth of cube-shaped nanoparticles
International Nuclear Information System (INIS)
Wang Yuanyuan; Xie Huaqing; Wu Zihua; Xing Jiaojiao
2016-01-01
We simulated the asymmetrical growth of cube-shaped nanoparticles by applying the Monte Carlo method. The influence of the specific mechanisms on the crystal growth of nanoparticles has been phenomenologically described by efficient growth possibilities along different directions (or crystal faces). The roles of the thermodynamic and kinetic factors have been evaluated in three phenomenological models. The simulation results would benefit the understanding about the cause and manner of the asymmetrical growth of nanoparticles. (paper)
Directory of Open Access Journals (Sweden)
Ji Juan-Juan
2017-01-01
Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.
Directory of Open Access Journals (Sweden)
Jung-San Chen
2016-09-01
Full Text Available This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.
Motion in an Asymmetric Double Well
Brizard, Alain J.; Westland, Melissa C.
2016-01-01
The problem of the motion of a particle in an asymmetric double well is solved explicitly in terms of the Weierstrass and Jacobi elliptic functions. While the solution of the orbital motion is expressed simply in terms of the Weierstrass elliptic function, the period of oscillation is more directly expressed in terms of periods of the Jacobi elliptic functions.
Disease clusters, exact distributions of maxima, and P-values.
Grimson, R C
1993-10-01
This paper presents combinatorial (exact) methods that are useful in the analysis of disease cluster data obtained from small environments, such as buildings and neighbourhoods. Maxwell-Boltzmann and Fermi-Dirac occupancy models are compared in terms of appropriateness of representation of disease incidence patterns (space and/or time) in these environments. The methods are illustrated by a statistical analysis of the incidence pattern of bone fractures in a setting wherein fracture clustering was alleged to be occurring. One of the methodological results derived in this paper is the exact distribution of the maximum cell frequency in occupancy models.
Exactly integrable two-dimensional dynamical systems related with supersymmetric algebras
International Nuclear Information System (INIS)
Leznov, A.N.
1983-01-01
A wide class of exactly integrable dynamical systems in two-dimensional space related with superalgebras, which generalize supersymmetric Liouville equation, is constructed. The equations can be interpretated as nonlinearly interacting Bose and Fermi fields belonging within classical limit to even and odd parts of the Grassman space. Explicit expressions for the solutions of the constructed systems are obtained on the basis of standard perturbation theory
Calogero, Francesco
2001-01-01
This book focuses on exactly treatable classical (i.e. non-quantal non-relativistic) many-body problems, as described by Newton's equation of motion for mutually interacting point particles. Most of the material is based on the author's research and is published here for the first time in book form. One of the main novelties is the treatment of problems in two- and three-dimensional space. Many related techniques are presented, e.g. the theory of generalized Lagrangian-type interpolation in higher-dimensional spaces. This book is written for students as well as for researchers; it works out detailed examples before going on to treat more general cases. Many results are presented via exercises, with clear hints pointing to their solutions.
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
International Nuclear Information System (INIS)
Freier, Daria; Muhammad-Sukki, Firdaus; Abu-Bakar, Siti Hawa; Ramirez-Iniguez, Roberto; Abubakar Mas’ud, Abdullahi; Albarracín, Ricardo; Ardila-Rey, Jorge Alfredo; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Bani, Nurul Aini
2016-01-01
Highlights: • The performance of the RADTIRC was analysed under direct and diffuse radiation. • Optical gains of 4.66 under direct and 1.94 under diffuse light were achieved. • The experiments show good agreement with the simulations. • The RADTIRC is an attractive alternative for BICPV systems. - Abstract: Making housing carbon neutral is one of the European Union (EU) targets with the aim to reduce energy consumption and to increase on-site renewable energy generation in the domestic sector. Optical concentrators have a strong potential to minimise the cost of building integrated photovoltaic (BIPV) systems by replacing expensive photovoltaic (PV) material whilst maintaining the same electrical output. In this work, the performance of a recently patented optical concentrator known as the rotationally asymmetrical dielectric totally internally reflective concentrator (RADTIRC) was analysed under direct and diffuse light conditions. The RADTIRC has a geometrical concentration gain of 4.969 and two half acceptance angles of ±40° and ±30° respectively along the two axes. Simulation and experimental work has been carried out to determine the optical concentration gain and the angular response of the concentrator. It was found that the RADTIRC has an optical concentration gain of 4.66 under direct irradiance and 1.94 under diffuse irradiance. The experimental results for the single concentrator showed a reduction in concentration gain of 4.2% when compared with simulation data.
Statistics of a neuron model driven by asymmetric colored noise.
Müller-Hansen, Finn; Droste, Felix; Lindner, Benjamin
2015-02-01
Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise and signals in nerve cells shape neuronal firing statistics.
Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers
Directory of Open Access Journals (Sweden)
Arjunan Govindarajan
2017-06-01
Full Text Available We investigate modulational instability (MI in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD. In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.
Free Speech in a MySpace World
Baule, Steven M.; Kriha, Darcy L.
2008-01-01
In the potential shadow of a "Bong Hits for Jesus" banner, complicated student speech and discipline issues arise almost daily on the Internet. Whether it is a mock MySpace page set up to make fun of a teacher or a direct threat to an assistant principal, it is often unclear exactly where school ground discipline ends and student free speech…
Polarization dependent switching of asymmetric nanorings with a circular field
Directory of Open Access Journals (Sweden)
Nihar R. Pradhan
2016-01-01
Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.
Spin polarized states in strongly asymmetric nuclear matter
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2004-01-01
The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density
Directory of Open Access Journals (Sweden)
Julia Rieck
2013-05-01
Full Text Available In reverse logistics networks, products (e.g., bottles or containers have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.
Totally asymmetric exclusion processes with particles of arbitrary size
International Nuclear Information System (INIS)
Lakatos, Greg; Chou, Tom
2003-01-01
The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d ≥ 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results
Totally asymmetric exclusion processes with particles of arbitrary size
Energy Technology Data Exchange (ETDEWEB)
Lakatos, Greg; Chou, Tom [Department of Biomathematics and Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095 (United States)
2003-02-28
The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d {>=} 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results.
International Nuclear Information System (INIS)
Sasaki, Takuo; Shimomura, Kenichi; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Suzuki, Hidetoshi; Takahasi, Masamitu
2012-01-01
In-plane asymmetric strain relaxation in lattice-mismatched InGaAs/GaAs(001) heteroepitaxy is studied by in situ three-dimensional X-ray reciprocal space mapping. Repeating crystal growth and growth interruptions during measurements allows us to investigate whether the strain relaxation is limited at a certain thickness or saturated. We find that the degree of relaxation during growth interruption depends on both the film thickness and the in-plane directions. Significant lattice relaxation is observed in rapid relaxation regimes during interruption. This is a clear indication that relaxation is kinetically limited. In addition, relaxation along the [110] direction can saturate more readily than that along the [1-bar10] direction. We discuss this result in terms of the interaction between orthogonally aligned dislocations. (author)
Asymmetric vibrations of thick shells of revolution having meridionally varying curvature
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Yachita, Takumi.
1988-01-01
An exact method using power series expansions is presented for solving asymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is demonstrated for thick shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The results by the present method are compared with those by the thin shell theory and the effects of the rotatory inertia and the shear deformation upon the natural frequencies are clarified. (author)
Generation of exact solutions to the Einstein field equations for homogeneous space--time
International Nuclear Information System (INIS)
Hiromoto, R.E.
1978-01-01
A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon
Exact phase boundaries and topological phase transitions of the X Y Z spin chain
Jafari, S. A.
2017-07-01
Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.
International Nuclear Information System (INIS)
Poon, Phoenix S. Y.; Law, C. K.
2007-01-01
We show that the negativity of a general two-mode Gaussian state can be explicitly expressed in terms of an optimal uncertainty product in position-momentum space. Such an uncertainty product is shown to have the greatest violation of a separability criterion based on positive partial transposition. Our analytic formula indicates the observables determining the negativity. For asymmetric Gaussian states, we show that the negativity is controlled by an asymmetric parameter which sets an upper bound for the negativity
International Nuclear Information System (INIS)
Zou Jianping; Zhang Qing; Marzari, Nicola; Li Hong
2008-01-01
We have simulated short channel carbon nanotube field-effect transistors with asymmetric source and drain contacts using a coupled mode space approach within the non-equilibrium Green's function framework. The simulated results show that the asymmetric conduction properties under positive and negative drain-to-source voltages are caused by the asymmetric Schottky barriers to carriers at the source and drain contacts. Under negative drain-to-source voltages, hole and electron conduction are dominated by thermionic emission and tunneling through the Schottky barrier, respectively, leading to the different subthreshold behaviors of the hole and electron conduction. With increasing channel length, short channel effects can be suppressed effectively and ON/OFF ratio can be improved
Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure
Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan
2018-05-01
We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.
Exact symplectic structures and a classical model for the Dirac electron
International Nuclear Information System (INIS)
Rawnsley, J.
1992-01-01
We show how the classical model for the Dirac electron of Barut and coworkers can be obtained as a Hamiltonian theory by constructing an exact symplectic form on the total space of the spin bundle over spacetime. (orig.)
Climate agreements under limited participation, asymmetric information and market imperfections
Energy Technology Data Exchange (ETDEWEB)
Hagem, Cathrine
1996-12-31
This thesis relates to climate agreements and cost efficiency by analysing the formation of a system of quota leading to distributed discharge of emissions between countries. Main fields concerned are the greenhouse effect, the political process, efficient and cost-effective climate agreements, and climate agreements under limited participation, asymmetric information and market imperfections covering fields like limited participation in climate agreements, limited participation and indirect impact on non-participating countries` emissions, limited participation and direct impact on non-participating countries` emissions under asymmetric information, and non-competitive market for tradeable quotas. 166 refs., 7 tabs.
Gallager error-correcting codes for binary asymmetric channels
International Nuclear Information System (INIS)
Neri, I; Skantzos, N S; Bollé, D
2008-01-01
We derive critical noise levels for Gallager codes on asymmetric channels as a function of the input bias and the temperature. Using a statistical mechanics approach we study the space of codewords and the entropy in the various decoding regimes. We further discuss the relation of the convergence of the message passing algorithm with the endogenous property and complexity, characterizing solutions of recursive equations of distributions for cavity fields
Exact solutions of a class of fractional Hamiltonian equations involving Caputo derivatives
Energy Technology Data Exchange (ETDEWEB)
Baleanu, Dumitru [Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara 06530 (Turkey); Trujillo, Juan J [Departamento de Analisis Matematico, University of La Laguna, 38271 La Laguna, Tenerife (Spain)], E-mail: dumitru@cankaya.edu.tr, E-mail: JTrujill@ullmat.es, E-mail: baleanu@venus.nipne.ro
2009-11-15
The fractional Hamiltonian equations corresponding to the Lagrangians of constrained systems within Caputo derivatives are investigated. The fractional phase space is obtained and the exact solutions of some constrained systems are obtained.
Exact Solutions of the Harry-Dym Equation
International Nuclear Information System (INIS)
Mokhtari, Reza
2011-01-01
The aim of this paper is to generate exact travelling wave solutions of the Harry-Dym equation through the methods of Adomian decomposition, He's variational iteration, direct integration, and power series. We show that the two later methods are more successful than the two former to obtain more solutions of the equation. (general)
Holding-time-aware asymmetric spectrum allocation in virtual optical networks
Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.
Regarding on the exact solutions for the nonlinear fractional differential equations
Directory of Open Access Journals (Sweden)
Kaplan Melike
2016-01-01
Full Text Available In this work, we have considered the modified simple equation (MSE method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW and the modified equal width (mEW equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.
A procedure to construct exact solutions of nonlinear evolution ...
Indian Academy of Sciences (India)
Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30. ... computer science, directly searching for solutions of nonlinear differential equations has become more and ... Right after this pioneer work, this ...
Exact solutions to some modified sine-Gordon equations
International Nuclear Information System (INIS)
Saermark, K.
1983-01-01
Exact, translational solutions to a number of modified sine-Gordon equations are presented. In deriving the equations and the solutions use is made of results from the theory of ordinary differential equations without moving critical points as given by Ince. It is found that kink-like solutions exist also in cases where the coefficients of the trigonometric terms are space- and time-dependent. (Auth.)
Response actions influence the categorization of directions in auditory space
Directory of Open Access Journals (Sweden)
Marcella de Castro Campos Velten
2015-08-01
Full Text Available Spatial region concepts such as front, back, left and right reflect our typical interaction with space, and the corresponding surrounding regions have different statuses in memory. We examined the representation of spatial directions in the auditory space, specifically in how far natural response actions, such as orientation movements towards a sound source, would affect the categorization of egocentric auditory space. While standing in the middle of a circle with 16 loudspeakers, participants were presented acoustic stimuli coming from the loudspeakers in randomized order, and verbally described their directions by using the concept labels front, back, left, right, front-right, front-left, back-right and back-left. Response actions varied in three blocked conditions: 1 facing front, 2 turning the head and upper body to face the stimulus, and 3 turning the head and upper body plus pointing with the hand and outstretched arm towards the stimulus. In addition to a protocol of the verbal utterances, motion capture and video recording generated a detailed corpus for subsequent analysis of the participants’ behavior. Chi-square tests revealed an effect of response condition for directions within the left and right sides. We conclude that movement-based response actions influence the representation of auditory space, especially within the sides’ regions.
Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng
2017-10-01
Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.
Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng
2017-10-20
Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.
Asymmetric excitation of surface plasmons by dark mode coupling
Zhang, X.
2016-02-19
Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.
Asymmetric excitation of surface plasmons by dark mode coupling
Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.
2016-01-01
Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.
Does asymmetric correlation affect portfolio optimization?
Fryd, Lukas
2017-07-01
The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.
Bleeding complication with the TVT-Exact procedure: a report of two cases.
Masata, Jaromir; Svabik, Kamil; Martan, Alois
2015-02-01
Midurethral tension-free vaginal tapes (TVT), placed through the retropubic space or through the obturator foramina, are widely used for the surgical treatment of female stress urinary incontinence. Some complications are associated with retropubic tapes owing to the passage of the tape through the space of Retzius. One of the most frequent complications is bleeding, and if injury to major vessels is involved, this may be life-threatening. In 2010, the Gynecare TVT-Exact® Continence System was introduced onto the market, with a rigid trocar shaft measuring 3.0 mm in diameter. We have no clinical data regarding the complication rate, especially concerning bleeding, connected with this device; all data are related to the original size of the TVT inserter. The cases presented demonstrate that bleeding complications can occur with the TVT-Exact procedure.
Directory of Open Access Journals (Sweden)
Özkan Güner
2014-01-01
Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.
Representation of heading direction in far and near head space
Poljac, E.; Berg, A.V. van den
2003-01-01
Manipulation of objects around the head requires an accurate and stable internal representation of their locations in space, also during movements such as that of the eye or head. For far space, the representation of visual stimuli for goal-directed arm movements relies on retinal updating, if eye
Chilly dark sectors and asymmetric reheating
International Nuclear Information System (INIS)
Adshead, Peter; Cui, Yanou; Shelton, Jessie
2016-01-01
In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.
Chilly dark sectors and asymmetric reheating
Energy Technology Data Exchange (ETDEWEB)
Adshead, Peter [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Cui, Yanou [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Shelton, Jessie [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States)
2016-06-06
In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N{sub eff}, we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.
Chilly dark sectors and asymmetric reheating
Adshead, Peter; Cui, Yanou; Shelton, Jessie
2016-06-01
In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.
From design to manufacturing of asymmetric teeth gears using computer application
Suciu, F.; Dascalescu, A.; Ungureanu, M.
2017-05-01
The asymmetric cylindrical gears, with involutes teeth profiles having different base circle diameters, are nonstandard gears, used with the aim to obtain better function parameters for the active profile. We will expect that the manufacturing of these gears became possible only after the design and realization of some specific tools. The paper present how the computer aided design and applications developed in MATLAB, for obtain the geometrical parameters, in the same time for calculation some functional parameters like stress and displacements, transmission error, efficiency of the gears and the 2D models, generated with AUTOLISP applications, are used for computer aided manufacturing of asymmetric gears with standard tools. So the specific tools considered one of the disadvantages of these gears are not necessary and implicitly the expected supplementary costs are reduced. The calculus algorithm established for the asymmetric gear design application use the „direct design“ of the spur gears. This method offers the possibility of determining first the parameters of the gears, followed by the determination of the asymmetric gear rack’s parameters, based on those of the gears. Using original design method and computer applications have been determined the geometrical parameters, the 2D and 3D models of the asymmetric gears and on the base of these models have been manufacturing on CNC machine tool asymmetric gears.
Asymmetric quantum cloning machines
International Nuclear Information System (INIS)
Cerf, N.J.
1998-01-01
A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)
International Nuclear Information System (INIS)
Gurtovoi, V. L.; Dubonos, S. V.; Karpii, S. V.; Nikulov, A. V.; Tulin, V. A.
2007-01-01
Magnetic field dependences of critical current, resistance, and rectified voltage of asymmetric (half circles of different widths) and symmetrical (half circles of equal widths) aluminum rings close to the super-conducting transition were measured. All these dependences are periodic magnetic field functions with periods corresponding to the flux quantum in the ring. The periodic dependences of critical current measured in opposite directions were found to be close to each other for symmetrical rings and shifted with respect to each other by half the flux quantum in asymmetric rings with ratios between half circle widths of from 1.25 to 2. This shift of the dependences by a quarter of the flux quantum as the ring becomes asymmetric makes critical current anisotropic, which explains the effect of alternating current rectification observed for asymmetric rings. Shifts of the extrema of the periodic dependences of critical current by a quarter of the flux quantum directly contradict the results obtained by measuring asymmetric ring resistance oscillations, whose extrema are, as for symmetrical rings, observed at magnetic fluxes equal to an integer and a half of flux quanta
Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model
Pont, Federico M.; Osenda, Omar; Serra, Pablo
2018-05-01
The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
Asymmetric neighborhood functions accelerate ordering process of self-organizing maps
International Nuclear Information System (INIS)
Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji; Aoyagi, Toshio
2011-01-01
A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensional stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.
Symmetric and asymmetric nuclear matter in the relativistic approach
International Nuclear Information System (INIS)
Huber, H.; Weber, F.; Weigel, M.K.
1995-01-01
Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations
Amemiya, Tomo; Taki, Masato; Kanazawa, Toru; Arai, Shigehisa
2014-03-01
The asymmetric invisibility cloak is a special cloak with unidirectional transparency; that is, a person in the cloak should not be seen from the outside but should be able to see the outside. Existing theories of designing invisibility cloaks cannot be used for asymmetric cloaking because they are based on the transformation optics that uses Riemannian metric tensor independent of direction. To overcome this problem, we propose introducing directionality into invisibility cloaking. Our theory is based on ``the theory of effective magnetic field for photons'' proposed by Stanford University.[2] To realize asymmetric cloaking, we have extended the Stanford's theory to add the concept of ``effective electric field for photons.'' The effective electric and the magnetic field can be generated using a photonc resonator lattice, which is a kind of metamaterial. The Hamiltonian for photons in these fields has a similar form to that of the Hamiltonian for a charged particle in an electromagnetic field. An incident photon therefore experiences a ``Lorentz-like'' and a ``Coulomb-like'' force and shows asymmetric movement depending of its travelling direction.We show the procedure of designing actual invisibility cloaks using the photonc resonator lattice and confirm their operation with the aid of computer simulation. This work was supported in part by the MEXT; JSPS KAKENHI Grant Numbers #24246061, #24656046, #25420321, #25420322.
Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.
2017-12-01
In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the
Asymmetric cation-binding catalysis
DEFF Research Database (Denmark)
Oliveira, Maria Teresa; Lee, Jiwoong
2017-01-01
The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....
Exact collisional moments for plasma fluid theories
Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi
2017-10-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.
Exact many-body dynamics with stochastic one-body density matrix evolution
International Nuclear Information System (INIS)
Lacroix, D.
2004-05-01
In this article, we discuss some properties of the exact treatment of the many-body problem with stochastic Schroedinger equation (SSE). Starting from the SSE theory, an equivalent reformulation is proposed in terms of quantum jumps in the density matrix space. The technical details of the derivation a stochastic version of the Liouville von Neumann equation are given. It is shown that the exact Many-Body problem could be replaced by an ensemble of one-body density evolution, where each density matrix evolves according to its own mean-field augmented by a one-body noise. (author)
International Nuclear Information System (INIS)
Ivanov, G.G.
1985-01-01
In the non linear delta-model conserved tensor currents connected with the isometrical, homothetic and affine motions in the space Vsup(N) of the chiral field values are constructed. New classes of the exact solutions are obtained in the SO(3) and SO(5) invariant delta-models using the connection between the groups of isometrical and homothetic motions in the space-time and isometrical motions in Vsup(N). Some methods of obtaining exact solutions in 4-dimensional delta-model with non trivial topological charge are considered
Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader
2018-06-01
We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.
Direct asymmetric allylic alkenylation of N-itaconimides with Morita-Baylis-Hillman carbonates
Yang, Wenguo
2012-08-03
The asymmetric allylic alkenylation of Morita-Baylis-Hillman (MBH) carbonates with N-itaconimides as nucleophiles has been developed using a commercially available Cinchona alkaloid catalyst. A variety of multifunctional chiral α-methylene-β-maleimide esters were attained in moderate to excellent yields (up to 99%) and good to excellent enantioselectivities (up to 91% ee). The origin of the regio- and stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed regio- and enantioselectivity. © 2012 American Chemical Society.
Quan, Haiyang; Wu, Fan; Hou, Xi
2015-10-01
New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.
Exact solutions of some coupled nonlinear diffusion-reaction ...
Indian Academy of Sciences (India)
certain coupled diffusion-reaction (D-R) equations of very general nature. In recent years, various direct methods have been proposed to find the exact solu- tions not only of nonlinear partial differential equations but also of their coupled versions. These methods include unified ansatz approach [3], extended hyperbolic func ...
Exact solutions of the Wheeler–DeWitt equation and the Yamabe construction
Energy Technology Data Exchange (ETDEWEB)
Ita III, Eyo Eyo, E-mail: ita@usna.edu [Physics Department, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)
2015-08-15
Exact solutions of the Wheeler–DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrödinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.
Exact area devil's staircase for the sawtooth map
International Nuclear Information System (INIS)
Chen, Q.; Meiss, J.D.
1988-04-01
The sawtooth mapping is a family of uniformly hyperbolic, piecewise linear, area-preserving maps on the cylinder. We construct the resonances, cantori, and turnstiles of this family and derive exact formulas for the resonance areas and the escaping fluxes. These are of prime interst for an understanding of the deterministic transport which occurs the stochastic regime. The resonances are shown to fill the full measure of phase space. 9 refs., 4 figs
Directory of Open Access Journals (Sweden)
Orlando Ragnisco
2010-12-01
Full Text Available A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetry. The high number of symmetries (both geometrical and dynamical exhibited by the classical systems has a counterpart in the accidental degeneracy in the spectrum of the quantum systems. This family of quantum problem is completely solved with the techniques of the SUSYQM (supersymmetric quantum mechanics. We also analyze in detail the ordering problem arising in the quantization of the kinetic term of the classical Hamiltonian, stressing the link existing between two physically meaningful quantizations: the geometrical quantization and the position dependent mass quantization.
Exact lattice supersymmetry: The two-dimensional N=2 Wess-Zumino model
International Nuclear Information System (INIS)
Catterall, Simon; Karamov, Sergey
2002-01-01
We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving exactly a single supersymmetric invariance at finite lattice spacing a. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga 2 ) where g is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing
Directory of Open Access Journals (Sweden)
Yanfei Liu
2018-02-01
Full Text Available This study proposes using membrane distillation (MD as an alternative to the conventional multi-stage flushing (MSF process to concentrate a semi-product of organic fertilizer. By applying a unique asymmetric polyvinylidene fluoride (PVDF membrane, which was specifically designed for MD applications using a nonsolvent thermally induced phase separation (NTIPS method, the direct contact membrane distillation (DCMD performance was investigated in terms of its sustainability in permeation flux, fouling resistance, and anti-wetting properties. It was found that the permeation flux increased with increasing flow rate, while the top-surface facing feed mode was the preferred orientation to achieve 25% higher flux than the bottom-surface facing feed mode. Compared to the commercial polytetrafluoroethylene (PTFE membrane, the asymmetric PVDF membrane exhibited excellent anti-fouling and sustainable flux, with less than 8% flux decline in a 15 h continuous operation, i.e., flux decreased slightly and was maintained as high as 74 kg·m−2·h−1 at 70 °C. Meanwhile, the lost flux was easily recovered by clean water rinsing. Overall 2.6 times concentration factor was achieved in 15 h MD operation, with 63.4% water being removed from the fertilizer sample. Further concentration could be achieved to reach the desired industrial standard of 5x concentration factor.
Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter
DEFF Research Database (Denmark)
Masina, Isabella; Sannino, Francesco
2011-01-01
The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....
Homoclinic orbits around spinning black holes. I. Exact solution for the Kerr separatrix
International Nuclear Information System (INIS)
Levin, Janna; Perez-Giz, Gabe
2009-01-01
For equatorial Kerr orbits, we show that each separatrix between bound and plunging geodesics is a homoclinic orbit--an orbit that asymptotes to an energetically-bound, unstable circular orbit. We derive exact expressions for these trajectories in terms of elementary functions. We also clarify the formal connection between the separatrix and zoom-whirl orbits and show that, contrary to popular belief, zoom-whirl behavior is not intrinsically a near-separatrix phenomenon. This paper focuses on homoclinic behavior in physical space, while in a companion paper we paint the complementary phase space portrait. Although they refer to geodesic motion, the exact solutions for the Kerr separatrix could be useful for analytic or numerical studies of eccentric transitions from orbital to plunging motion under the dissipative effects of gravitational radiation.
Exact analytical solutions for nonlinear reaction-diffusion equations
International Nuclear Information System (INIS)
Liu Chunping
2003-01-01
By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way
Three components of postural control associated with pushing in symmetrical and asymmetrical stance.
Lee, Yun-Ju; Aruin, Alexander S
2013-07-01
A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. Bilateral EMG activity of the trunk and leg muscles and the center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the EPAs, APAs, and CPAs. The EMG activity and the COP displacement were different between the symmetrical and asymmetrical stance conditions. The COP displacements in the ML direction were significantly larger in staggered stance than in symmetrical stance. In staggered stance, the EPAs and APAs in the thigh muscles of the backward leg were significantly larger, and the CPAs were smaller than in the forward leg. There was no difference in the EMG activity of the trunk muscles between the stance conditions. The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.
Asymmetric Organocatalytic Cycloadditions
DEFF Research Database (Denmark)
Mose, Rasmus
2016-01-01
has gained broad recognition as it has found several applications in academia and industry. The [4+2] cycloaddition has also been performed in an enantioselective aminocatalytic fashion which allows the generation of optically active products. In this thesis it is demonstrated how trienamines can......Since the onset of the new millennium the field of organocatalysis has undergone a great expansion led by investigations in the field of aminocatalysis. This thesis will address some recent developments in aminocatalyzed cycloadditions and provide a theoretical background hereto. Cycloadditions...... undergo cascade reactions with different electron deficient dienophiles in Diels Alder – nucleophilic ring closing reactions. This methodology opens up for the direct asymmetric formation of hydroisochromenes and hydroisoquinolines which may possess interesting biological activities. It is also...
Zhong, Ying; Chai, Zhisheng; Liang, Zhimin; Sun, Peng; Xie, Weiguang; Zhao, Chuanxi; Mai, Wenjie
2017-10-04
Because of the popularity of smart electronics, multifunctional energy storage devices, especially electrochromic supercapacitors (SCs), have attracted tremendous research interest. Herein, a solid-state electrochromic asymmetric SC (ASC) window is designed and fabricated by introducing WO 3 and polyaniline as the negative and positive electrodes, respectively. The two complementary materials contribute to the outstanding electrochemical and electrochromic performances of the fabricated device. With an operating voltage window of 1.4 V and an areal capacitance of 28.3 mF cm -2 , the electrochromic devices show a high energy density of 7.7 × 10 -3 mW h cm -2 . Meanwhile, they exhibit an obvious and reversible color transition between light green (uncharged state) and dark blue (charged state), with an optical transmittance change between 55 and 12% at a wavelength of 633 nm. Hence, the energy storage level of the ASC is directly related to its color and can be determined by the naked eye, which means it can be incorporated with other energy cells to visual display their energy status. Particularly, a self-powered and color-indicated system is achieved by combining the smart windows with commercial solar cell panels. We believe that the novel electrochromic ASC windows will have great potential application for both smart electronics and smart buildings.
Exact string theory model of closed timelike curves and cosmological singularities
International Nuclear Information System (INIS)
Johnson, Clifford V.; Svendsen, Harald G.
2004-01-01
We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α ' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios
Using trees to compute approximate solutions to ordinary differential equations exactly
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
International Nuclear Information System (INIS)
Tupper, B.O.J.
1983-01-01
The work of a previous article is extended to show that space-times which are the exact solutions of the field equations for a perfect fluid also may be exact solutions of the field equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equivalence to exist and viscous magnetohydrodynamic solutions are found for a number of known perfect fluid space-times. (author)
A Data-Guided Lexisearch Algorithm for the Asymmetric Traveling Salesman Problem
Directory of Open Access Journals (Sweden)
Zakir Hussain Ahmed
2011-01-01
Full Text Available A simple lexisearch algorithm that uses path representation method for the asymmetric traveling salesman problem (ATSP is proposed, along with an illustrative example, to obtain exact optimal solution to the problem. Then a data-guided lexisearch algorithm is presented. First, the cost matrix of the problem is transposed depending on the variance of rows and columns, and then the simple lexisearch algorithm is applied. It is shown that this minor preprocessing of the data before the simple lexisearch algorithm is applied improves the computational time substantially. The efficiency of our algorithms to the problem against two existing algorithms has been examined for some TSPLIB and random instances of various sizes. The results show remarkably better performance of our algorithms, especially our data-guided algorithm.
An exactly conservative particle method for one dimensional scalar conservation laws
International Nuclear Information System (INIS)
Farjoun, Yossi; Seibold, Benjamin
2009-01-01
A particle scheme for scalar conservation laws in one space dimension is presented. Particles representing the solution are moved according to their characteristic velocities. Particle interaction is resolved locally, satisfying exact conservation of area. Shocks stay sharp and propagate at correct speeds, while rarefaction waves are created where appropriate. The method is variation diminishing, entropy decreasing, exactly conservative, and has no numerical dissipation away from shocks. Solutions, including the location of shocks, are approximated with second order accuracy. Source terms can be included. The method is compared to CLAWPACK in various examples, and found to yield a comparable or better accuracy for similar resolutions.
Asymmetric photoelectron angular distributions from interfering photoionization processes
International Nuclear Information System (INIS)
Yin, Y.; Chen, C.; Elliott, D.S.; Smith, A.V.
1992-01-01
We have measured asymmetric photoelectron angular distributions for atomic rubidium. Ionization is induced by a one-photon interaction with 280 nm light and by a two-photon interaction with 560 nm light. Interference between the even- and odd-parity free-electron wave functions allows us to control the direction of maximum electron flux by varying the relative phase of the two laser fields
Principles of asymmetric synthesis
Gawley, Robert E; Aube, Jeffrey
2012-01-01
The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...
Equivariant Homotopy Theory and K-Theory of Exact Categories with Duality
DEFF Research Database (Denmark)
Moi, Kristian Jonsson
This thesis has two main parts. The first part, which consists of two papers, is concerned with the role of equivariant loop spaces in the K-theory of exact categories with duality. We prove a group completion-type result for topological monoids with anti-involution. The methods in this proof als...
Efficiently computing exact geodesic loops within finite steps.
Xin, Shi-Qing; He, Ying; Fu, Chi-Wing
2012-06-01
Closed geodesics, or geodesic loops, are crucial to the study of differential topology and differential geometry. Although the existence and properties of closed geodesics on smooth surfaces have been widely studied in mathematics community, relatively little progress has been made on how to compute them on polygonal surfaces. Most existing algorithms simply consider the mesh as a graph and so the resultant loops are restricted only on mesh edges, which are far from the actual geodesics. This paper is the first to prove the existence and uniqueness of geodesic loop restricted on a closed face sequence; it contributes also with an efficient algorithm to iteratively evolve an initial closed path on a given mesh into an exact geodesic loop within finite steps. Our proposed algorithm takes only an O(k) space complexity and an O(mk) time complexity (experimentally), where m is the number of vertices in the region bounded by the initial loop and the resultant geodesic loop, and k is the average number of edges in the edge sequences that the evolving loop passes through. In contrast to the existing geodesic curvature flow methods which compute an approximate geodesic loop within a predefined threshold, our method is exact and can apply directly to triangular meshes without needing to solve any differential equation with a numerical solver; it can run at interactive speed, e.g., in the order of milliseconds, for a mesh with around 50K vertices, and hence, significantly outperforms existing algorithms. Actually, our algorithm could run at interactive speed even for larger meshes. Besides the complexity of the input mesh, the geometric shape could also affect the number of evolving steps, i.e., the performance. We motivate our algorithm with an interactive shape segmentation example shown later in the paper.
Cell chirality: its origin and roles in left-right asymmetric development.
Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji
2016-12-19
An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.
Cell chirality: its origin and roles in left–right asymmetric development
Inaki, Mikiko; Liu, Jingyang
2016-01-01
An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533
Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
Guo, Wei; Tian, Ye; Jiang, Lei
2013-12-17
Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct
Synthesis method of asymmetric gold particles.
Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P
2017-06-07
Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.
Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi
2016-01-01
In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances ...
Topological order in an exactly solvable 3D spin model
International Nuclear Information System (INIS)
Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.
2011-01-01
Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on Ω(R 2 ) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.
Exact and Heuristic Algorithms for Runway Scheduling
Malik, Waqar A.; Jung, Yoon C.
2016-01-01
This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.
A conditionally exactly solvable generalization of the inverse square root potential
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, A.M., E-mail: aishkhanyan@gmail.com [Institute for Physical Research, NAS of Armenia, Ashtarak 0203 (Armenia); Armenian State Pedagogical University, Yerevan 0010 (Armenia); Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation)
2016-11-25
We present a conditionally exactly solvable singular potential for the one-dimensional Schrödinger equation which involves the exactly solvable inverse square root potential. Each of the two fundamental solutions that compose the general solution of the problem is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. Discussing the bound-state wave functions vanishing both at infinity and in the origin, we derive the exact equation for the energy spectrum which is written using two Hermite functions of non-integer order. In specific auxiliary variables this equation becomes a mathematical equation that does not refer to a specific physical context discussed. In the two-dimensional space of these auxiliary variables the roots of this equation draw a countable infinite set of open curves with hyperbolic asymptotes. We present an analytic description of these curves by a transcendental algebraic equation for the involved variables. The intersections of the curves thus constructed with a certain cubic curve provide a highly accurate description of the energy spectrum. - Highlights: • We present a conditionally exactly solvable singular potential for 1D Schrödinger equation. • Each of the two fundamental solutions is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. • The exact equation for the energy spectrum is written using two Hermite functions that do not reduce to polynomials.
Rao, Siyuan; Si, Kae Jye; Yap, Lim Wei; Xiang, Yan; Cheng, Wenlong
2015-11-24
Natural cell membranes can directionally and selectively regulate the ion transport, which is critical for the functioning of living cells. Here, we report on the fabrication of an artificial membrane based on an asymmetric nanoparticle superlattice bilayered nanosheet, which exhibits similar ion transport characteristics. The superlattice nanosheets were fabricated via a drying-mediated self-assembly of polystyrene-capped gold nanoparticles at the liquid-air interface. By adopting a layer-by-layer assembly process, an asymmetric nanomembrane could be obtained consisting of two nanosheets with different nanoparticle size. The resulting nanomembranes exhibit an asymmetric ion transport behavior, and diode-like current-voltage curves were observed. The asymmetric ion transport is attributed to the cone-like nanochannels formed within the membranes, upon which a simulation map was established to illustrate the relationship between the channel structure and the ionic selectivity, in consistency with our experimental results. Our superlattice nanosheet-based design presents a promising strategy for the fabrication of next-generation smart nanomembranes for rationally and selectively regulating the ion transport even at a large ion flux, with potential applications in a wide range of fields, including biosensor devices, energy conversion, biophotonics, and bioelectronics.
Directory of Open Access Journals (Sweden)
Jaewook Jeong
2014-09-01
Full Text Available High performance a-IGZO thin-film transistors (TFTs are fabricated using an asymmetric graphene drain electrode structure. A-IGZO TFTs (channel length = 3 μm were successfully demonstrated with a saturation field-effect mobility of 6.6 cm2/Vs without additional processes between the graphene and a-IGZO layer. The graphene/a-IGZO junction exhibits Schottky characteristics and the contact property is affected not only by the Schottky barrier but also by the parasitic resistance from the depletion region under the graphene electrode. Therefore, to utilize the graphene layer as S/D electrodes for a-IGZO TFTs, an asymmetric electrode is essential, which can be easily applied to the conventional pixel electrode structure.
Random trees between two walls: exact partition function
International Nuclear Information System (INIS)
Bouttier, J; Di Francesco, P; Guitter, E
2003-01-01
We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labelled by integers representing their position in the target space, with the solid-on-solid constraint that adjacent vertices have labels differing by ±1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p function with constrained periods. These results are used to analyse the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs
Exact, multiple soliton solutions of the double sine Gordon equation
International Nuclear Information System (INIS)
Burt, P.B.
1978-01-01
Exact, particular solutions of the double sine Gordon equation in n dimensional space are constructed. Under certain restrictions these solutions are N solitons, where N <= 2q - 1 and q is the dimensionality of space-time. The method of solution, known as the base equation technique, relates solutions of nonlinear partial differential equations to solutions of linear partial differential equations. This method is reviewed and its applicability to the double sine Gordon equation shown explicitly. The N soliton solutions have the remarkable property that they collapse to a single soliton when the wave vectors are parallel. (author)
Muentz-Szasz type approximation in direct products of spaces
International Nuclear Information System (INIS)
Sedletskii, A M
2006-01-01
We consider the problem of completeness of the system of exponentials exp{-λ n t}, Re λ n >0, in direct products E=E 1 x E 2 of the spaces E 1 =E 1 (0,1) and E 2 =E 2 (1,∞) of functions defined on (0,1) and (1,∞), respectively. We describe rather broad classes of spaces E 1 and E 2 such that the well-known condition of Szasz is necessary for the completeness of the above system in E and sufficient for this completeness
International Nuclear Information System (INIS)
Li Liang; Chen Zhiqiang; Xing Yuxiang; Zhang Li; Kang Kejun; Wang Ge
2006-01-01
In recent years, image reconstruction methods for cone-beam computed tomography (CT) have been extensively studied. However, few of these studies discussed computing parallel-beam projections from cone-beam projections. In this paper, we focus on the exact synthesis of complete or incomplete parallel-beam projections from cone-beam projections. First, an extended central slice theorem is described to establish a relationship between the Radon space and the Fourier space. Then, data sufficiency conditions are proposed for computing parallel-beam projection data from cone-beam data. Using these results, a general filtered backprojection algorithm is formulated that can exactly synthesize parallel-beam projection data from cone-beam projection data. As an example, we prove that parallel-beam projections can be exactly synthesized in an angular range in the case of circular cone-beam scanning. Interestingly, this angular range is larger than that derived in the Feldkamp reconstruction framework. Numerical experiments are performed in the circular scanning case to verify our method
Totally asymmetric exclusion processes with particles of arbitrary size
Lakatos, G
2003-01-01
The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...
A unified form of exact-MSR codes via product-matrix frameworks
Lin, Sian Jheng
2015-02-01
Regenerating codes represent a class of block codes applicable for distributed storage systems. The [n, k, d] regenerating code has data recovery capability while possessing arbitrary k out of n code fragments, and supports the capability for code fragment regeneration through the use of other arbitrary d fragments, for k ≤ d ≤ n - 1. Minimum storage regenerating (MSR) codes are a subset of regenerating codes containing the minimal size of each code fragment. The first explicit construction of MSR codes that can perform exact regeneration (named exact-MSR codes) for d ≥ 2k - 2 has been presented via a product-matrix framework. This paper addresses some of the practical issues on the construction of exact-MSR codes. The major contributions of this paper include as follows. A new product-matrix framework is proposed to directly include all feasible exact-MSR codes for d ≥ 2k - 2. The mechanism for a systematic version of exact-MSR code is proposed to minimize the computational complexities for the process of message-symbol remapping. Two practical forms of encoding matrices are presented to reduce the size of the finite field.
A unified form of exact-MSR codes via product-matrix frameworks
Lin, Sian Jheng; Chung, Weiho; Han, Yunghsiangsam; Al-Naffouri, Tareq Y.
2015-01-01
Regenerating codes represent a class of block codes applicable for distributed storage systems. The [n, k, d] regenerating code has data recovery capability while possessing arbitrary k out of n code fragments, and supports the capability for code fragment regeneration through the use of other arbitrary d fragments, for k ≤ d ≤ n - 1. Minimum storage regenerating (MSR) codes are a subset of regenerating codes containing the minimal size of each code fragment. The first explicit construction of MSR codes that can perform exact regeneration (named exact-MSR codes) for d ≥ 2k - 2 has been presented via a product-matrix framework. This paper addresses some of the practical issues on the construction of exact-MSR codes. The major contributions of this paper include as follows. A new product-matrix framework is proposed to directly include all feasible exact-MSR codes for d ≥ 2k - 2. The mechanism for a systematic version of exact-MSR code is proposed to minimize the computational complexities for the process of message-symbol remapping. Two practical forms of encoding matrices are presented to reduce the size of the finite field.
Energy Technology Data Exchange (ETDEWEB)
Korhonen, Marko [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland); Lee, Eunghyun [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)
2014-01-15
We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.
International Nuclear Information System (INIS)
Corominas-Murtra, Bernat; Hanel, Rudolf; Thurner, Stefan
2016-01-01
It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such sample space reducing processes offer an alternative new mechanism to understand the emergence of scaling in countless processes. The corresponding power law exponents were shown to be related to noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are characterised by non-uniform prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents converge to −1 (Zipf’s law) for almost all prior distributions. As a consequence it becomes possible to fully understand targeted diffusion on weighted directed networks and its associated scaling laws in node visit distributions. The presence of cycles can be properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipf’s law emerges as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting times is related to the amount of cycles in a network could be relevant for a series of applications in traffic-, transport- and supply chain management. (paper)
Hierarchical analysis of urban space
Kataeva, Y.
2014-01-01
Multi-level structure of urban space, multitude of subjects of its transformation, which follow asymmetric interests, multilevel system of institutions which regulate interaction in the "population business government -public organizations" system, determine the use of hierarchic approach to the analysis of urban space. The article observes theoretical justification of using this approach to study correlations and peculiarities of interaction in urban space as in an intricately organized syst...
Roatta , Luca
2017-01-01
Assuming that space and time can only have discrete values, it is shown how deformed space and time cause gravitational attraction, whose law in a discrete context is slightly different from the Newtonian, but to it exactly coincident at large distance. This difference is directly connected to the existence of black holes, which result to have the structure of a hollow sphere.
Asymmetric forceps increase fighting success among males of similar size in the maritime earwig
Munoz, Nicole E.; Zink, Andrew G.
2012-01-01
Extreme asymmetric morphologies are hypothesized to serve an adaptive function that counteracts sexual selection for symmetry. However direct tests of function for asymmetries are lacking, particularly in the context of animal weapons. The weapon of the maritime earwig, Anisolabis maritima, exhibits sizeable variation in the extent of directional asymmetry within and across body sizes, making it an ideal candidate for investigating the function of asymmetry. In this study, we characterized the extent of weapon asymmetry, characterized the manner in which asymmetric weapons are used in contests, staged dyadic contests between males of different size classes and analyzed the correlates of fighting success. In contests between large males, larger individuals won more fights and emerged as the dominant male. In contests between small males, however, weapon asymmetry was more influential in predicting overall fighting success than body size. This result reveals an advantage of asymmetric weaponry among males that are below the mean size in the population. A forceps manipulation experiment suggests that asymmetry may be an indirect, correlate of a morphologically independent factor that affects fighting ability. PMID:22984320
Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length
Saakian, David B.
2017-08-01
We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.
Recent efforts directed to the development of more sustainable asymmetric organocatalysis.
Hernández, José G; Juaristi, Eusebio
2012-06-04
In line with the principles of "green" chemistry, organocatalysis seeks to reduce energy consumption and to optimize the use of the available resources, aiming to become a sustainable strategy in chemical transformations. Nevertheless, during the last decade diverse experimental protocols have made organocatalysis an even "greener" alternative by the use of friendlier reaction conditions, or via the application of solvent-free methodologies, or through the design and synthesis of more selective catalysts, or via the development of multicomponent one-pot organocatalytic reactions, or by the recycling and reuse of organocatalysts, or by means of the application of more energy-efficient activation techniques, among other approaches. In this feature article we review some of the remarkable advancements that have made it possible to develop even more sustainable asymmetric organocatalyzed methodologies.
Reversible rectification of vortex motion in magnetic and non-magnetic asymmetric pinning potentials
International Nuclear Information System (INIS)
Gonzalez, E.M.; Gonzalez, M.P.; Nunez, N.O.; Villegas, J.E.; Anguita, J.V.; Jaafa, M.; Asenjo, A.; Vicent, J.L.
2006-01-01
Nb films have been grown on arrays of asymmetric pinning centers. The lattice vortex dynamics could be modified, almost at will, by periodic pinning potentials. In the case of asymmetric pinning potentials a vortex ratchet effect occurs: the vortex lattice motion is rectified. That is, an injected ac current yields an output dc voltage, which polarity could be tuned. The output signal polarity could be switched with the applied magnetic field and the ac current strength. Ratchet effect occurs when asymmetric potentials induce outward particles flow under external fluctuations in the lack of driven direct outward forces. The output signal is similar using magnetic or non-magnetic submicrometric array of pinning centers. This device works as an adiabatic rocking ratchet. This superconducting ratchet could be a model to study biological motors
Relaxation in x-space magnetic particle imaging.
Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M
2012-12-01
Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.
Directory of Open Access Journals (Sweden)
Ping Wang
2016-09-01
Full Text Available Computer model experiments are applied to analyze hypoxia reductions for opposing wind directions under various speeds and durations in the north–south oriented, two-layer-circulated Chesapeake estuary. Wind’s role in destratification is the main mechanism in short-term reduction of hypoxia. Hypoxia can also be reduced by wind-enhanced estuarine circulation associated with winds that have down-estuary straining components that promote bottom-returned oxygen-rich seawater intrusion. The up-bay-ward along-channel component of straining by the southerly or easterly wind induces greater destratification than the down-bay-ward straining by the opposite wind direction, i.e., northerly or westerly winds. While under the modulation of the west-skewed asymmetric cross-channel bathymetry in the Bay’s hypoxic zone, the westward cross-channel straining by easterly or northerly winds causes greater destratification than its opposite wind direction. The wind-induced cross-channel circulation can be completed much more rapidly than the wind-induced along-channel circulation, and the former is usually more effective than the latter in destratification and hypoxia reduction in an early wind period. The relative importance of cross-channel versus along-channel circulation for a particular wind direction can change with wind speed and duration. The existence of month-long prevailing unidirectional winds in the Chesapeake is explored, and the relative hypoxia reductions among different prevailing directions are analyzed. Scenarios of wind with intermittent calm or reversing directions on an hourly scale are also simulated and compared.
Exact solution to the Coulomb wave using the linearized phase-amplitude method
Directory of Open Access Journals (Sweden)
Shuji Kiyokawa
2015-08-01
Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.
Continuous control of asymmetric forebody vortices in a bi-stable state
Wang, Qi-te; Cheng, Ke-ming; Gu, Yun-song; Li, Zhuo-qi
2018-02-01
Aiming at the problem of continuous control of asymmetric forebody vortices at a high angle of attack in a bi-stable regime, a dual synthetic jet actuator embedded in an ogive forebody was designed. Alternating unsteady disturbance with varying degree asymmetrical flow fields near the nozzles is generated by adjusting the duty cycle of the drive signal of the actuator, specifically embodying the asymmetric time-averaged pattern of jet velocity, vorticity, and turbulent kinetic energy. Experimental results show that within the range of relatively high angles of attack, including the angle-of-attack region in a bi-stable state, the lateral force of the ogive forebody is continuously controlled by adjusting the duty cycle of the drive signal; the position of the forebody vortices in space, the vorticity magnitude, the total pressure coefficient near the vortex core, and the vortex breakdown location are continuously changed with the duty cycle increased observed from the time-averaged flow field. Instantaneous flow field results indicate that although the forebody vortices are in an unsteady oscillation state, a continuous change in the forebody vortices' oscillation balance position as the duty cycle increases leads to a continuous change in the model's surface pressure distribution and time-averaged lateral force. Different from the traditional control principle, in this study, other different degree asymmetrical states of the forebody vortices except the bi-stable state are obtained using the dual synthetic jet control technology.
McAvoy, Alex; Hauert, Christoph
2015-01-01
Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326
Fleming, J.G.; Smith, B.K.
1995-10-10
A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.
Cilia are required for asymmetric nodal induction in the sea urchin embryo.
Tisler, Matthias; Wetzel, Franziska; Mantino, Sabrina; Kremnyov, Stanislav; Thumberger, Thomas; Schweickert, Axel; Blum, Martin; Vick, Philipp
2016-08-23
Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.
Application of Space Vector Modulation in Direct Torque Control of PMSM
Directory of Open Access Journals (Sweden)
Michal Malek
2008-01-01
Full Text Available The paper deals with an improvement of direct torque control method for permanent magnet synchronous motor drives. Electrical torque distortion of the machine under original direct torque control is relatively high and if proper measures are taken it can be substantially decreased. The proposed solution here is to combine direct torque control with the space vector modulation technique. Such approach can eliminate torque distortion while preserving the simplicity of the original method.
Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers
Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru
2018-06-01
The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.
Roy, Dibyendu
2010-01-01
We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...
Cinchona alkaloids in asymmetric organocatalysis
Marcelli, T.; Hiemstra, H.
2010-01-01
This article reviews the applications of cinchona alkaloids as asymmetric catalysts. In the last few years, characterized by the resurgence of interest in asymmetric organocatalysis, cinchona derivatives have been shown to catalyze an outstanding array of chemical reactions, often with remarkable
Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution
Baradaran, M.; Panahi, H.
2018-05-01
Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.
New Exact Solutions for the Wick-Type Stochastic Kudryashov–Sinelshchikov Equation
International Nuclear Information System (INIS)
Ray, S. Saha; Singh, S.
2017-01-01
In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space. (paper)
Alternative Asymmetric Stochastic Volatility Models
M. Asai (Manabu); M.J. McAleer (Michael)
2010-01-01
textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is
Exact-to-precision generalized perturbation theory for source-driven systems
International Nuclear Information System (INIS)
Wang Congjian; Abdel-Khalik, Hany S.
2011-01-01
Highlights: ► We present a new development in higher order generalized perturbation theory. ► The method addresses the explosion in the flux phase space, input parameters, and responses. ► The method hybridizes first-order GPT and proper orthogonal decomposition snapshots method. ► A simplified 1D and realistic 2D assembly models demonstrate applicability of the method. ► The accuracy of the method is compared to exact direct perturbations and first-order GPT. - Abstract: Presented in this manuscript are new developments to perturbation theory which are intended to extend its applicability to estimate, with quantifiable accuracy, the exact variations in all responses calculated by the model with respect to all possible perturbations in the model's input parameters. The new developments place high premium on reducing the associated computational overhead in order to enable the use of perturbation theory in routine reactor design calculations. By way of examples, these developments could be employed in core simulation to accurately estimate the few-group cross-sections variations resulting from perturbations in neutronics and thermal-hydraulics core conditions. These variations are currently being described using a look-up table approach, where thousands of assembly calculations are performed to capture few-group cross-sections variations for the downstream core calculations. Other applications include the efficient evaluation of surrogates for applications that require repeated model runs such as design optimization, inverse studies, uncertainty quantification, and online core monitoring. The theoretical background of these developments applied to source-driven systems and supporting numerical experiments are presented in this manuscript. Extension to eigenvalue problems will be presented in a future article.
Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.
1997-01-01
An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.
International Nuclear Information System (INIS)
Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M.; Xu, Bingqian
2014-01-01
The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation
Muentz-Szasz type approximation in direct products of spaces
Energy Technology Data Exchange (ETDEWEB)
Sedletskii, A M [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2006-10-31
We consider the problem of completeness of the system of exponentials exp{l_brace}-{lambda}{sub n}t{r_brace}, Re {lambda}{sub n}>0, in direct products E=E{sub 1} x E{sub 2} of the spaces E{sub 1}=E{sub 1}(0,1) and E{sub 2}=E{sub 2}(1,{infinity}) of functions defined on (0,1) and (1,{infinity}), respectively. We describe rather broad classes of spaces E{sub 1} and E{sub 2} such that the well-known condition of Szasz is necessary for the completeness of the above system in E and sufficient for this completeness.
CW 100MW microwave power transfer in space
International Nuclear Information System (INIS)
Takayama, K.; Hiramatsu, S.; Shiho, M.
1991-01-01
A proposal is made for high-power microwave transfer in space. The concept consists in a microwave power station integrating a multistage microwave free-electron laser and asymmetric dual-reflector system. Its use in space is discussed. 9 refs., 2 figs., 1 tab
A proposed experimental search for chameleons using asymmetric parallel plates
International Nuclear Information System (INIS)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A.
2016-01-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.
A proposed experimental search for chameleons using asymmetric parallel plates
Energy Technology Data Exchange (ETDEWEB)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)
2016-08-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.
Duality invariant class of exact string backgrounds
Klimcík, C
1994-01-01
We consider a class of $2+D$ - dimensional string backgrounds with a target space metric having a covariantly constant null Killing vector and flat `transverse' part. The corresponding sigma models are invariant under $D$ abelian isometries and are transformed by $O(D,D)$ duality into models belonging to the same class. The leading-order solutions of the conformal invariance equations (metric, antisymmetric tensor and dilaton), as well as the action of $O(D,D)$ duality transformations on them, are exact, i.e. are not modified by $\\a'$-corrections. This makes a discussion of different space-time representations of the same string solution (related by $O(D,D|Z)$ duality subgroup) rather explicit. We show that the $O(D,D)$ duality may connect curved $2+D$-dimensional backgrounds with solutions having flat metric but, in general, non-trivial antisymmetric tensor and dilaton. We discuss several particular examples including the $2+D=4$ - dimensional background that was recently interpreted in terms of a WZW model.
Instantaneous sediment transport model for asymmetric oscillatory sheet flow.
Directory of Open Access Journals (Sweden)
Xin Chen
Full Text Available On the basis of advanced concentration and velocity profiles above a mobile seabed, an instantaneous analytical model is derived for sediment transport in asymmetric oscillatory flow. The applied concentration profile is obtained from the classical exponential law based on mass conservation, and asymmetric velocity profile is developed following the turbulent boundary layer theory and the asymmetric wave theory. The proposed model includes two parts: the basic part that consists of erosion depth and free stream velocity, and can be simplified to the total Shields parameter power 3/2 in accordance with the classical empirical models, and the extra vital part that consists of phase-lead, boundary layer thickness and erosion depth. The effects of suspended sediment, phase-lag and asymmetric boundary layer development are considered particularly in the model. The observed instantaneous transport rate proportional to different velocity exponents due to phase-lag is unified and summarised by the proposed model. Both instantaneous and half period empirical formulas are compared with the developed model, using extensive data on a wide range of flow and sediment conditions. The synchronous variation in instantaneous transport rate with free stream velocity and its decrement caused by increased sediment size are predicted correctly. Net transport rates, especially offshore transport rates with large phase-lag under velocity skewed flows, which existing instantaneous type formulas failed to predict, are predicted correctly in both direction and magnitude by the proposed model. Net sediment transport rates are affected not only by suspended sediment and phase-lag, but also by the boundary layer difference between onshore and offshore.
Non-singular string-cosmologies from exact conformal field theories
International Nuclear Information System (INIS)
Vega, H.J. de; Larsen, A.L.; Sanchez, N.
2001-01-01
Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation
Expansion of direction space around the cardinal axes revealed by smooth pursuit eye movements
Krukowski, Anton E.; Stone, Leland S.
2005-01-01
It is well established that perceptual direction discrimination shows an oblique effect; thresholds are higher for motion along diagonal directions than for motion along cardinal directions. Here, we compare simultaneous direction judgments and pursuit responses for the same motion stimuli and find that both pursuit and perceptual thresholds show similar anisotropies. The pursuit oblique effect is robust under a wide range of experimental manipulations, being largely resistant to changes in trajectory (radial versus tangential motion), speed (10 versus 25 deg/s), directional uncertainty (blocked versus randomly interleaved), and cognitive state (tracking alone versus concurrent tracking and perceptual tasks). Our data show that the pursuit oblique effect is caused by an effective expansion of direction space surrounding the cardinal directions and the requisite compression of space for other directions. This expansion suggests that the directions around the cardinal directions are in some way overrepresented in the visual cortical pathways that drive both smooth pursuit and perception.
Modeling and control of flexible space structures
Wie, B.; Bryson, A. E., Jr.
1981-01-01
The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.
Dissipation induced asymmetric steering of distant atomic ensembles
Cheng, Guangling; Tan, Huatang; Chen, Aixi
2018-04-01
The asymmetric steering effects of separated atomic ensembles denoted by the effective bosonic modes have been explored by the means of quantum reservoir engineering in the setting of the cascaded cavities, in each of which an atomic ensemble is involved. It is shown that the steady-state asymmetric steering of the mesoscopic objects is unconditionally achieved via the dissipation of the cavities, by which the nonlocal interaction occurs between two atomic ensembles, and the direction of steering could be easily controlled through variation of certain tunable system parameters. One advantage of the present scheme is that it could be rather robust against parameter fluctuations, and does not require the accurate control of evolution time and the original state of the system. Furthermore, the double-channel Raman transitions between the long-lived atomic ground states are used and the atomic ensembles act as the quantum network nodes, which makes our scheme insensitive to the collective spontaneous emission of atoms.
Information Theoretical Limits of Free-Space Optical Links
Ansari, Imran Shafique
2016-08-25
Generalized fading has been an imminent part and parcel of wireless communications. It not only characterizes the wireless channel appropriately but also allows its utilization for further performance analysis of various types of wireless communication systems. Under the umbrella of generalized fading channels, a unified ergodic capacity analysis of a free-space optical (FSO) link under both types of detection techniques (i.e., intensity modulation/direct detection (IM/DD) as well as heterodyne detection) over generalized atmospheric turbulence channels that account for generalized pointing errors is presented. Specifically, unified exact closed-form expressions for the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system are presented. Subsequently, capitalizing on these unified statistics, unified exact closed-form expressions for ergodic capacity performance metric of FSO link transmission systems is offered. Additionally, for scenarios wherein the exact closed-form solution is not possible to obtain, some asymptotic results are derived in the high SNR regime. All the presented results are verified via computer-based Monte-Carlo simulations.
Rentscher, Kelly E.; Rohrbaugh, Michael J.; Shoham, Varda; Mehl, Matthias R.
2014-01-01
Recent research links first-person plural pronoun use (we-talk) by individual romantic partners to adaptive relationship functioning and individual health outcomes. To examine a possible boundary condition of adaptive we-talk in couples coping with health problems, we correlated asymmetric couple-level we/I-ratios (more we-talk relative to I-talk by the spouse than the patient) with a concurrent pattern of directional demand-withdraw (D-W) interaction in which the spouse demands change while the patient withdraws. Couples in which a partner who abused alcohol (n = 65), smoked cigarettes despite having heart or lung disease (n = 24), or had congestive heart failure (n = 58) discussed a health-related disagreement during a video-recorded interaction task. Transcripts of these conversations provided measures of pronoun use for each partner, and trained observers coded D-W patterns from the recordings. As expected, partner asymmetry in we/I-ratio scores predicted directional demand-withdraw, such that spouses who used more we-talk (relative to I-talk) than patients tended to assume the demand role in concurrent D-W interaction. Asymmetric I-talk rather than we-talk accounted for this association, and asymmetric you-talk contributed independently as well. In contrast to previous studies of we-talk by individual partners, the present results identify dyad-level pronoun patterns that clearly do not mark beneficent processes: asymmetric partner we/I-ratios and you-talk reflect problematic demand-withdraw interaction. PMID:24098961
International Nuclear Information System (INIS)
Nie, Qing-Miao; Zhang, Sha-Sha; Chen, Qing-Hu; Zhou, Wei
2012-01-01
On the basis of resistively-shunted junction dynamics, we study vortex dynamics in two-dimensional Josephson junction arrays with asymmetrically single and bimodulated periodic pinning potential for the full range of vortex density f. The ratchet effect occurring at a certain range of temperature, current, and f, is observed in our simulation. We explain the microscopic behavior behind this effect by analyzing the vortex distribution and interaction. The reversal of the ratchet effect can be observed at several f values for a small driven current. This effect is stronger when the asymmetric potential is simultaneously introduced in two directions. -- Highlights: ► The ratchet effect in Josephson junction arrays strongly depends on vortex density. ► The reversed ratchet effect can be observed at several f for a small current. ► The interaction between vortices can explain the reversed ratchet effect. ► The ratchet effect is enhanced by injecting the bimodulated asymmetric potential.
Worst Asymmetrical Short-Circuit Current
DEFF Research Database (Denmark)
Arana Aristi, Iván; Holmstrøm, O; Grastrup, L
2010-01-01
In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...
Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard
2015-01-01
Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.
Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi
2018-06-01
The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.
Multijet final states: exact results and the leading pole approximation
International Nuclear Information System (INIS)
Ellis, R.K.; Owens, J.F.
1984-09-01
Exact results for the process gg → ggg are compared with those obtained using the leading pole approximation. Regions of phase space where the approximation breaks down are discussed. A specific example relevant for background estimates to W boson production is presented. It is concluded that in this instance the leading pole approximation may underestimate the standard QCD background by more than a factor of two in certain kinematic regions of physical interest
Exact cosmological solutions for MOG
International Nuclear Information System (INIS)
Roshan, Mahmood
2015-01-01
We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)
International Nuclear Information System (INIS)
Brenner, S.E.; Gandyl', E.M.; Podkopaev, A.P.
1995-01-01
The dynamics of high-current relativistic electron beam moving trough the cylindrical drift space has been modelled by the large particles, the shape of which allows to solve the Poisson equations exactly, and in such a way to avoid the linearization being usually used in those problems. The expressions for the components of own electric field of electron beam passing through the cylindrical drift space have been obtained. (author). 11 refs., 1 fig
Exact solutions for a discrete unidimensional Boltzmann model satisfying all conservation laws
International Nuclear Information System (INIS)
Cornille, H.
1989-01-01
We consider a four-velocity discrete and unidimensional Boltzmann model. The mass, momentum and energy conservation laws being satisfied we can define a temperature. We report the exact positive solutions which have been found: periodic in the space and propagating or not when the time is growing, shock waves similarity solutions and (1 + 1)-dimensional solutions [fr
Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter
Cirelli, Marco; Servant, Geraldine; Zaharijas, Gabrijela
2012-01-01
Assuming the existence of a primordial asymmetry in the dark sector, a scenario usually dubbed Asymmetric Dark Matter (aDM), we study the effect of oscillations between dark matter and its antiparticle on the re-equilibration of the initial asymmetry before freeze-out, which enable efficient annihilations to recouple. We calculate the evolution of the DM relic abundance and show how oscillations re-open the parameter space of aDM models, in particular in the direction of allowing large (WIMP-scale) DM masses. A typical wimp with a mass at the EW scale (\\sim 100 GeV - 1 TeV) presenting a primordial asymmetry of the same order as the baryon asymmetry naturally gets the correct relic abundance if the DM-number-violating Delta(DM) = 2 mass term is in the \\sim meV range. The re-establishment of annihilations implies that constraints from the accumulation of aDM in astrophysical bodies are evaded. On the other hand, the ordinary bounds from BBN, CMB and indirect detection signals on annihilating DM have to be consi...
Global structure of exact scalar hairy dynamical black holes
Energy Technology Data Exchange (ETDEWEB)
Fan, Zhong-Ying [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Chen, Bin [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Collaborative Innovation Center of Quantum Matter,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing, 100875 P.R. (China)
2016-05-30
We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/(n−1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.
Interference-exact radiative transfer equation
DEFF Research Database (Denmark)
Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani
2017-01-01
Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....
Exirifard, Qasem
2013-01-01
We present a phenomenological model for the nature in the Finsler and Randers space-time geometries. We show that the parity-odd light speed anisotropy perpendicular to the gravitational equipotential surfaces encodes the deviation from the Riemann geometry toward the Randers geometry. We utilize an asymmetrical ring resonator and propose a setup in order to directly measure this deviation. We address the constraints that the current technology will impose on the deviation should the anisotro...
Extended asymmetric-cut multilayer X-ray gratings.
Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša
2015-06-15
The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.
International Nuclear Information System (INIS)
Zhang Huiqun
2009-01-01
By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.
High-performance noncontact thermal diode via asymmetric nanostructures
Shen, Jiadong; Liu, Xianglei; He, Huan; Wu, Weitao; Liu, Baoan
2018-05-01
Electric diodes, though laying the foundation of modern electronics and information processing industries, suffer from ineffectiveness and even failure at high temperatures. Thermal diodes are promising alternatives to relieve above limitations, but usually possess low rectification ratios, and how to obtain a high-performance thermal rectification effect is still an open question. This paper proposes an efficient contactless thermal diode based on the near-field thermal radiation of asymmetric doped silicon nanostructures. The rectification ratio computed via exact scattering theories is demonstrated to be as high as 10 at a nanoscale gap distance and period, outperforming the counterpart flat-plate diode by more than one order of magnitude. This extraordinary performance mainly lies in the higher forward and lower reverse radiative heat flux within the low frequency band compared with the counterpart flat-plate diode, which is caused by a lower loss and smaller cut-off wavevector of nanostructures for the forward and reversed scheme, respectively. This work opens new routes to realize high performance thermal diodes, and may have wide applications in efficient thermal computing, thermal information processing, and thermal management.
A set of exact two soliton wave solutions to Einstein field equations
International Nuclear Information System (INIS)
Wang Youtang; He Zhixian
1991-09-01
A set of exact solutions of Einstein equations in vacuum is obtained. Taking this set of solutions as seed solutions and making use of the Belinsky-Zakharov generation technique a set of generated solutions is constructed. Both set of exact solutions and a set of generated solutions describe two solition waves, which propagate in opposite directions and collide with each other, and then recover their original shapes. The singularities of the two set of solutions are analyzed. The relationship between our solutions and other solutions is also discussed. (author). 11 refs, 4 figs
Physics and design issues of asymmetric storage ring colliders as B-factories
International Nuclear Information System (INIS)
Chattopadhyay, S.
1989-08-01
This paper concentrates on generic R ampersand D and design issues of asymmetric colliders via a specific example, namely a 9 GeV x 3 GeV collider based on PEP at SLAC. An asymmetric e + -e - collider at the Y(4s) and with sufficiently high luminosity (10 33 -10 34 cm -2 s -1 ) offers the possibility of studying mixing, rare decays, and CP violation in the B bar B meson system, as well as ''beautiful'' tau-charm physics, and has certain qualitative advantages from detection and machine design points of view. These include: the energy constraint; clean environment (∼25% B + B - , B 0 bar B 0 ); large cross section (1 nb); vertex reconstruction (from the time development of space-time separated B and bar B decays due to moving center-of-mass); reduced backgrounds; greatest sensitivity to CP violation in B → CP eigenstate; the possibility of using higher collision frequencies, up to 100 MHz, in a head-on colliding mode using magnetic separation. It is estimated that for B → ΨK s , an asymmetric collider has an advantage equivalent to a factor of five in luminosity relative to a symmetric one. There are, however, questions with regard to the physics of the asymmetric beam-beam coulomb interaction that may limit the intrinsic luminosity and the possibility of realizing the small beam pipes necessary to determine the vertices. 16 refs., 2 figs
Exact distributions of two-sample rank statistics and block rank statistics using computer algebra
Wiel, van de M.A.
1998-01-01
We derive generating functions for various rank statistics and we use computer algebra to compute the exact null distribution of these statistics. We present various techniques for reducing time and memory space used by the computations. We use the results to write Mathematica notebooks for
Quasi-exact solutions of nonlinear differential equations
Kudryashov, Nikolay A.; Kochanov, Mark B.
2014-01-01
The concept of quasi-exact solutions of nonlinear differential equations is introduced. Quasi-exact solution expands the idea of exact solution for additional values of parameters of differential equation. These solutions are approximate solutions of nonlinear differential equations but they are close to exact solutions. Quasi-exact solutions of the the Kuramoto--Sivashinsky, the Korteweg--de Vries--Burgers and the Kawahara equations are founded.
DEFF Research Database (Denmark)
Tullis, Joshua S.; Helquist, Paul; Rein, Tobias
1999-01-01
Asymmetric HWE condensations of meso-dialdehyde 1 with chiral phosphonates containing 8-phenylmenthol very directly generate chiral moieties that are seen in a number of cytotoxic natural products. The HWE reactions proceed in good yields with synthetically useful geometric and diastereoselectivi...
International Nuclear Information System (INIS)
Zekri, L.; Zekri, N.; Bouamrane, R.
1999-10-01
We present a new numerical method for determining exactly the effective conductivity and the local field for random RLC networks. This method is compared to a real space renormalization group method and the Frank and Lobb method. Although our method is slower than the Frank and Lobb method, it also computes exactly the local field for large size systems. We also show that the renormalization group method fails in determining the local field. (author)
Reversal modes in asymmetric Ni nanowires
Energy Technology Data Exchange (ETDEWEB)
Leighton, B.; Pereira, A. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)
2012-11-15
We have investigated the evolution of the magnetization reversal mechanism in asymmetric Ni nanowires as a function of their geometry. Circular nanowires are found to reverse their magnetization by the propagation of a vortex domain wall, while in very asymmetric nanowires the reversal is driven by the propagation of a transverse domain wall. The effect of shape asymmetry of the wire on coercivity and remanence is also studied. Angular dependence of the remanence and coercivity is also addressed. Tailoring the magnetization reversal mechanism in asymmetric nanowires can be useful for magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls. Finally, an alternative method to detect the presence of magnetic drops is proposed. - Highlights: Black-Right-Pointing-Pointer Asymmetry strongly modifies the magnetic behavior of a wire. Black-Right-Pointing-Pointer Very asymmetric nanowires reverse their magnetization by a transverse domain wall. Black-Right-Pointing-Pointer An alternative method to detect the presence of magnetic drops is proposed. Black-Right-Pointing-Pointer Tailoring the reversal mode in asymmetric nanowires can be useful for potential applications.
Grigoriadis, Christos; Niebel, Claude; Ruzié, Christian; Geerts, Yves H; Floudas, George
2014-02-06
The morphology, the viscoelastic, the dielectric properties and the dynamics of phase transformation are studied in symmetrically and asymmetrically substituted alkyl[1]benzothieno[3,2-b][1]benzothiophenes (C8-BTBT) by X-ray scattering, rheology, and dielectric spectroscopy. The interlayer spacing reflects the molecular and supramolecular ordering, respectively, in the symmetrically and asymmetrically substituted BTBTs. In the asymmetric BTBT, the core layer is double in size with a broader network of intermolecular interactions though the increased S-S contacts that is prerequisite for the development of high performance OFET devices. Two crystal states with elastic and viscoelastic responses were identified in the symmetric compound. In contrast, the SmA phase in the asymmetric compound is a viscoelastic solid. A path-dependent dielectric environment with a switchable dielectric permittivity was found in both compounds by cooling below 0 °C with possible implications to charge transport. The kinetics of phase transformation to the crystalline and SmA phases revealed a nucleation and growth mechanism with rates dominated by the low activation barriers.
Effects of scene content and layout on the perceived light direction in 3D spaces.
Xia, Ling; Pont, Sylvia C; Heynderickx, Ingrid
2016-08-01
The lighting and furnishing of an interior space (i.e., the reflectance of its materials, the geometries of the furnishings, and their arrangement) determine the appearance of this space. Conversely, human observers infer lighting properties from the space's appearance. We conducted two psychophysical experiments to investigate how the perception of the light direction is influenced by a scene's objects and their layout using real scenes. In the first experiment, we confirmed that the shape of the objects in the scene and the scene layout influence the perceived light direction. In the second experiment, we systematically investigated how specific shape properties influenced the estimation of the light direction. The results showed that increasing the number of visible faces of an object, ultimately using globally spherical shapes in the scene, supported the veridicality of the estimated light direction. Furthermore, symmetric arrangements in the scene improved the estimation of the tilt direction. Thus, human perception of light should integrally consider materials, scene content, and layout.
Asymmetric cryptography based on wavefront sensing.
Peng, Xiang; Wei, Hengzheng; Zhang, Peng
2006-12-15
A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.
Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma
Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.
2017-12-01
Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).
Rocking Rotation of a Rigid Disk Embedded in a Transversely Isotropic Half-Space
Directory of Open Access Journals (Sweden)
Seyed Ahmadi
2014-06-01
Full Text Available The asymmetric problem of rocking rotation of a circular rigid disk embedded in a finite depth of a transversely isotropic half-space is analytically addressed. The rigid disk is assumed to be in frictionless contact with the elastic half-space. By virtue of appropriate Green's functions, the mixed boundary value problem is written as a dual integral equation. Employing further mathematical techniques, the integral equation is reduced to a well-known Fredholm integral equation of the second kind. The results related to the contact stress distribution across the disk region and the equivalent rocking stiffness of the system are expressed in terms of the solution of the obtained Fredholm integral equation. When the rigid disk is located on the surface or at the remote boundary, the exact closed-form solutions are presented. For verification purposes, the limiting case of an isotropic half-space is considered and the results are verified with those available in the literature. The jump behavior in the results at the edge of the rigid disk for the case of an infinitesimal embedment is highlighted analytically for the first time. Selected numerical results are depicted for the contact stress distribution across the disk region, rocking stiffness of the system, normal stress, and displacement components along the radial axis. Moreover, effects of anisotropy on the rocking stiffness factor are discussed in detail.
Tang, Chun-hua; Yin, Xuesong; Gong, Hao
2013-11-13
Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.
Zeng, Ping; Sun, Shujie; Li, Li'an; Xu, Feng; Cheng, Guangming
2014-03-01
In this paper, an asymmetrical inertial impact driving principle is first proposed, and accordingly a novel piezoelectrically actuated linear micro-motor is developed. It is driven by the inertial impact force generated by piezoelectric smart cantilever (PSC) with asymmetrical clamping locations during a driving cycle. When the PSC is excited by typical harmonic voltage signals, different equivalent stiffness will be induced due to its asymmetrical clamping locations when it is vibrating back and forth, leading to a tiny displacement difference on the two opposite directions in a cycle, and then the accumulation of tiny displacement difference will allow directional movements. A prototype of the proposed motor has been developed and investigated by means of experimental tests. The motion and dynamics characteristics of the prototype are well studied. The experimental results demonstrate that the resolution of the micro-motor is 0.02 μm, the maximum velocity is 16.87 mm/s, and the maximum loading capacity can reach up to 1 kg with a voltage of 100 V and 35 Hz.
Exact model reduction of combinatorial reaction networks
Directory of Open Access Journals (Sweden)
Fey Dirk
2008-08-01
Full Text Available Abstract Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.
Quantifying social asymmetric structures.
Solanas, Antonio; Salafranca, Lluís; Riba, Carles; Sierra, Vicenta; Leiva, David
2006-08-01
Many social phenomena involve a set of dyadic relations among agents whose actions may be dependent. Although individualistic approaches have frequently been applied to analyze social processes, these are not generally concerned with dyadic relations, nor do they deal with dependency. This article describes a mathematical procedure for analyzing dyadic interactions in a social system. The proposed method consists mainly of decomposing asymmetric data into their symmetric and skew-symmetric parts. A quantification of skew symmetry for a social system can be obtained by dividing the norm of the skew-symmetric matrix by the norm of the asymmetric matrix. This calculation makes available to researchers a quantity related to the amount of dyadic reciprocity. With regard to agents, the procedure enables researchers to identify those whose behavior is asymmetric with respect to all agents. It is also possible to derive symmetric measurements among agents and to use multivariate statistical techniques.
Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.
Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi
2018-04-12
Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.
Шелег, В. К.; Молочко, В. И.; Данильчик, С. С.
2015-01-01
The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration a...
Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan
2018-01-01
In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.
Directory of Open Access Journals (Sweden)
Ivan V. Bazarov
2008-10-01
Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.
Algebraic and coordinate space potentials from heavy ion scattering
International Nuclear Information System (INIS)
Amos, K.; Berge, L.; Allen, L.J.; Fiedeldey, H.
1993-01-01
An inversion scheme is presented to derive the potentials of algebraic scattering theory from the corresponding S-functions. Representative heavy ion scattering data of 12 C, 14 N and 16 O ions on 208 Pb, accurately fitted by McIntyre strong absorption type S-functions, are employed to obtain exact algebraic potentials and to generalize the analytical shapes proposed previously by Alhassid et al. The coordinate space potentials corresponding to a number of S-functions are also obtained via semiclassical inversion. The major advantage of the algebraic potentials is that, at a theoretical level they are more directly related to the S-functions than are coordinate space potentials. 16 refs., 1 tab., 9 figs
Large-scale exact diagonalizations reveal low-momentum scales of nuclei
Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.
2018-03-01
Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.
Designing asymmetric multiferroics with strong magnetoelectric coupling
Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team
2015-03-01
Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.
Exact solutions of space-time fractional EW and modified EW equations
International Nuclear Information System (INIS)
Korkmaz, Alper
2017-01-01
The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both equations.
DEFF Research Database (Denmark)
Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede
2002-01-01
DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...
Chaos of several typical asymmetric systems
International Nuclear Information System (INIS)
Feng Jingjing; Zhang Qichang; Wang Wei
2012-01-01
The threshold for the onset of chaos in asymmetric nonlinear dynamic systems can be determined using an extended Padé method. In this paper, a double-well asymmetric potential system with damping under external periodic excitation is investigated, as well as an asymmetric triple-well potential system under external and parametric excitation. The integrals of Melnikov functions are established to demonstrate that the motion is chaotic. Threshold values are acquired when homoclinic and heteroclinic bifurcations occur. The results of analytical and numerical integration are compared to verify the effectiveness and feasibility of the analytical method.
Exact performance analysis of decode-and-forward opportunistic relaying
Tourki, Kamel
2010-06-01
In this paper, we investigate a dual-hop decode-and-forward opportunistic relaying scheme where the source may or may not be able to communicate directly with the destination. In our study, we consider a regenerative relaying scheme in which the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact statistics of each hop. Unlike existing works where the analysis focused on high signal-to-noise ratio (SNR) regime, such results are important to enable the designers to take decisions regarding practical systems that operate at low SNR regime. We show that performance simulation results coincide with our analytical results.
Fast Exact Euclidean Distance (FEED): A new class of adaptable distance transforms
Schouten, Theo E.; van den Broek, Egon
2014-01-01
A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast Exact Euclidean Distance (FEED) transforms. FEED class algorithms calculate the DT starting directly from the definition or rather its inverse. The principle of FEED class algorithms is
Direct and Indirect Information in Urban Space Planning
Directory of Open Access Journals (Sweden)
Alessandro Bove
2013-06-01
Full Text Available The relationship between new technologies and urban space has become, especially with the introduction of the concept of smart city, the key in the definition of management options in the city itself.The opportunities provided by the use of new technologies to manage the complexity of multiple aspects on the relationship between city and people can address strategies and innovation in order to improve the quality of life of the inhabitants. In smart cities different groups of people with different instances can be directly involved in the transformation process and the planners’ choices can be supported by information that once would have required costly research. This possibility is granted by the availability of great quantities of data that can be collected and analyzed. Direct information can be gathered by multiple sensors (accelerometer, a geomagnetic sensor, and proximity sensor, etc. that offer an immediate evaluation of a specific phenomenon. At the same time other aspects can be evaluated by information obtained in social networks: these can contribute to the definition of urban design as the result of a multi criteria analyses. The way to achieve these strategies is a process of interaction between spatial reality and perceived reality made available by passive forms of participation that can help planners in understanding territorial actors’ / territorial users’ needs and requirements.Through this approach, the design and decisions about urban space are not to be indifferent to the needs expressed by various categories of population.
Chiral cell sliding drives left-right asymmetric organ twisting
Inaki, Mikiko; Hatori, Ryo; Nakazawa, Naotaka; Okumura, Takashi; Ishibashi, Tomoki; Kikuta, Junichi; Ishii, Masaru
2018-01-01
Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified ‘cell sliding,’ a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. PMID:29891026
Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.
Mukherjee, Subhas; Brat, Daniel J
2017-01-01
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.
Congenital asymmetric crying face: a case report
Directory of Open Access Journals (Sweden)
Semra Kara
2011-12-01
Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.
Brygo, Anais; Sarakoglou, Ioannis; Grioli, Giorgio; Tsagarakis, Nikos
2017-01-01
Endowing tele-manipulation frameworks with the capability to accommodate a variety of robotic hands is key to achieving high performances through permitting to flexibly interchange the end-effector according to the task considered. This requires the development of control policies that not only cope with asymmetric master–slave systems but also whose high-level components are designed in a unified space in abstraction from the devices specifics. To address this dual challenge, a novel synergy port is developed that resolves the kinematic, sensing, and actuation asymmetries of the considered system through generating motion and force feedback references in the hardware-independent hand postural synergy space. It builds upon the concept of the Cartesian-based synergy matrix, which is introduced as a tool mapping the fingertips Cartesian space to the directions oriented along the grasp principal components. To assess the effectiveness of the proposed approach, the synergy port has been integrated into the control system of a highly asymmetric tele-manipulation framework, in which the 3-finger hand exoskeleton HEXOTRAC is used as a master device to control the SoftHand, a robotic hand whose transmission system relies on a single motor to drive all joints along a soft synergistic path. The platform is further enriched with the vision-based motion capture system Optitrack to monitor the 6D trajectory of the user’s wrist, which is used to control the robotic arm on which the SoftHand is mounted. Experiments have been conducted with the humanoid robot COMAN and the KUKA LWR robotic manipulator. Results indicate that this bilateral interface is highly intuitive and allows users with no prior experience to reach, grasp, and transport a variety of objects exhibiting very different shapes and impedances. In addition, the hardware and control solutions proved capable of accommodating users with different hand kinematics. Finally, the proposed control framework offers a
Brygo, Anais; Sarakoglou, Ioannis; Grioli, Giorgio; Tsagarakis, Nikos
2017-01-01
Endowing tele-manipulation frameworks with the capability to accommodate a variety of robotic hands is key to achieving high performances through permitting to flexibly interchange the end-effector according to the task considered. This requires the development of control policies that not only cope with asymmetric master-slave systems but also whose high-level components are designed in a unified space in abstraction from the devices specifics. To address this dual challenge, a novel synergy port is developed that resolves the kinematic, sensing, and actuation asymmetries of the considered system through generating motion and force feedback references in the hardware-independent hand postural synergy space. It builds upon the concept of the Cartesian-based synergy matrix, which is introduced as a tool mapping the fingertips Cartesian space to the directions oriented along the grasp principal components. To assess the effectiveness of the proposed approach, the synergy port has been integrated into the control system of a highly asymmetric tele-manipulation framework, in which the 3-finger hand exoskeleton HEXOTRAC is used as a master device to control the SoftHand, a robotic hand whose transmission system relies on a single motor to drive all joints along a soft synergistic path. The platform is further enriched with the vision-based motion capture system Optitrack to monitor the 6D trajectory of the user's wrist, which is used to control the robotic arm on which the SoftHand is mounted. Experiments have been conducted with the humanoid robot COMAN and the KUKA LWR robotic manipulator. Results indicate that this bilateral interface is highly intuitive and allows users with no prior experience to reach, grasp, and transport a variety of objects exhibiting very different shapes and impedances. In addition, the hardware and control solutions proved capable of accommodating users with different hand kinematics. Finally, the proposed control framework offers a
Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.
Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo
2015-11-20
While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.
International Nuclear Information System (INIS)
Saveliev, M.V.
1983-01-01
A method is proposed for classification of exactly and completely integrable embeddings of two dimensional manifoilds into Riemann or non-Riemann enveloping space, which are based on the algebraic approach to the integration of nonlinear dynamical systems.Here the grading conditions and spectral structure of the Lax-pair operators taking the values in a graded Lie algebra that pick out the integrable class of nonlinear systems are formulated 1n terms of a structure of the 3-d fundamental form tensors. Corresponding to every embedding of three-dimensional subalgebra sb(2) into a simple finite-dimensional (infinite-dimensional of finite growth) Lie algebra L is a definite class of exactly (completely) integrable embeddings of two dimensional manifold into the corresponding enveloping space supplied with the structure of L
Exact piecewise flat gravitational waves
van de Meent, M.
2011-01-01
We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to
On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation
International Nuclear Information System (INIS)
Barannik, L.L.
1996-01-01
Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained
Exact solitary waves of the Fisher equation
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2005-01-01
New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given
Direct adaptive control of manipulators in Cartesian space
Seraji, H.
1987-01-01
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.
Moving mode shape function approach for spinning disk and asymmetric disc brake squeal
Kang, Jaeyoung
2018-06-01
The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.
International Nuclear Information System (INIS)
Ando, S; Nara, T; Kurihara, T
2014-01-01
Spatial filtering velocimetry was proposed in 1963 by Ator as a velocity-sensing technique for aerial camera-control systems. The total intensity of a moving surface is observed through a set of parallel-slit reticles, resulting in a narrow-band temporal signal whose frequency is directly proportional to the image velocity. However, even despite its historical importance and inherent technical advantages, the mathematical formulation of this technique is only valid when infinite-length observation in both space and time is possible, which causes significant errors in most applications where a small receptive window and high resolution in both axes are desired. In this study, we apply a novel mathematical technique, the weighted integral method, to solve this problem, and obtain exact sensing schemes and algorithms for finite (arbitrarily small but non-zero) size reticles and short-time estimation. Practical considerations for utilizing these schemes are also explored both theoretically and experimentally. (paper)
A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading
Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo
A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).
Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel
2014-06-03
Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.
Exact relations for energy transfer in self-gravitating isothermal turbulence.
Banerjee, Supratik; Kritsuk, Alexei G
2017-11-01
Self-gravitating isothermal supersonic turbulence is analyzed in the asymptotic limit of large Reynolds numbers. Based on the inviscid invariance of total energy, an exact relation is derived for homogeneous (not necessarily isotropic) turbulence. A modified definition for the two-point energy correlation functions is used to comply with the requirement of detailed energy equipartition in the acoustic limit. In contrast to the previous relations (S. Galtier and S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.134501; S. Banerjee and S. Galtier, Phys. Rev. E 87, 013019 (2013)PLEEE81539-375510.1103/PhysRevE.87.013019), the current exact relation shows that the pressure dilatation terms play practically no role in the energy cascade. Both the flux and source terms are written in terms of two-point differences. Sources enter the relation in a form of mixed second-order structure functions. Unlike the kinetic and thermodynamic potential energies, the gravitational contribution is absent from the flux term. An estimate shows that, for the isotropic case, the correlation between density and gravitational acceleration may play an important role in modifying the energy transfer in self-gravitating turbulence. The exact relation is also written in an alternative form in terms of two-point correlation functions, which is then used to describe scale-by-scale energy budget in spectral space.
Migration and Morphology of Asymmetric Barchans in the Central Hexi Corridor of Northwest China
Directory of Open Access Journals (Sweden)
Zhengcai Zhang
2018-06-01
Full Text Available Crescent-shaped barchan dunes often display an asymmetric shape, with one limb longer than the other. As shown in previous studies, asymmetric bimodal winds constitute one major cause of barchan asymmetry, but the heterogeneous conditions of sand availability or flux, as well as topographic influences, may be also important. Understanding the morphology and dynamics of asymmetric barchans may have an impact in a broad range of areas, particularly as these dunes may serve as a proxy for planetary wind regimes and soil conditions in extraterrestrial environments. However, in addition to the existing theories and numerical models that explain barchan asymmetry, direct measurements of migration rates and morphologic changes of real asymmetric barchans over a time span of several years would be beneficial. Therefore, here we report such measurements, which we have acquired by investigating asymmetric barchans in the Hexi Corridor, northwest of China. We have found that dune interactions and asymmetric influx conditions are the most important causes of barchan asymmetry in this field. Particle size distributions in the Hexi Corridor display strong variations over different parts of the asymmetric barchans, as well as over different dunes, with gravel particles being incorporated from the substrate as the dunes migrate. Our observations have shown that upwind sediment sources are important for dune formation in the Hexi Corridor, and that interdune interactions affect dune shape in different ways, depending on their offset. The asymmetric barchans in the Hexi Corridor are active, with an average migration rate (MR between 8 and 53 m year−1, in spite of the different asymmetric shapes. Our data for dune migration rates can be described well by a scaling of MR = A/(W + W0, where W is the barchan cross-wind width, A ≈ 2835 m2 s−1, and W0 ≈ 44 m. A similar scaling fits very well the migration rate as a function of dune along-wind width L, (i.e., MR
Large scale exact quantum dynamics calculations: Ten thousand quantum states of acetonitrile
Halverson, Thomas; Poirier, Bill
2015-03-01
'Exact' quantum dynamics (EQD) calculations of the vibrational spectrum of acetonitrile (CH3CN) are performed, using two different methods: (1) phase-space-truncated momentum-symmetrized Gaussian basis and (2) correlated truncated harmonic oscillator basis. In both cases, a simple classical phase space picture is used to optimize the selection of individual basis functions-leading to drastic reductions in basis size, in comparison with existing methods. Massive parallelization is also employed. Together, these tools-implemented into a single, easy-to-use computer code-enable a calculation of tens of thousands of vibrational states of CH3CN to an accuracy of 0.001-10 cm-1.
Asymmetric step-like characteristics in a tilted rocking ratchet potential
International Nuclear Information System (INIS)
Lee, A. Khangjune; Lee, Jong-Rim; Lee, K.H.
2012-01-01
The overdamped Langevin dynamics has been employed to study the directional transport of particles driven in a tilted rocking ratchet potential. The system subjected to a constant direct force undergoes an asymmetrical dynamic transition from a static state to a sliding state at two different critical forces that are consistent with the predicted values. When an additional alternating force is applied to the system, the time-averaged velocity shows several steps of equal height as the direct force increases. These steps are similar to the Shapiro steps in an rf-driven Josephson junction, and appear whenever the system's natural frequency given by the direct force matches an integer multiple of the applied frequency. When the alternating force exceeds a certain critical value which can be also estimated for a slow rocking, a directional motion known as the rectification effect occurs even at zero direct force.
Multicatalyst system in asymmetric catalysis
Zhou, Jian
2014-01-01
This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis. Helps organic chemists perform more efficient catalysis with step-by-step methods Overviews new concepts and progress for greener and economic catalytic reactions Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance
Kinematics of roller chain drives - Exact and approximate analysis
DEFF Research Database (Denmark)
Fuglede, Niels; Thomsen, Jon Juel
2016-01-01
An exact and approximate kinematic analysis of a roller chain drive modeled as a four-bar mechanism is presented. The span connects the sprockets such that they rotate in the same direction, and the sprocket size, number of teeth, and shaft center distance can be arbitrary. The driven sprocket...... to be very good agreement. All together this gives new insights into the characteristics of chain drive kinematics and the influence of main design parameters....
Allison, Garry T; Morris, Sue L; Lay, Brendan
2008-05-01
response. This is the first study to show that the feedforward activity of the TrA is specific to the direction of arm movement and not bilaterally symmetrical. The asymmetry of TrA activity during arm raising suggests that the interpretation of the role of TrA as a bilateral stabilizer during anticipatory postural adjustments needs to be revised. Future research needs to examine muscle synergies associated with the asymmetrical function of the TrA and the underlying mechanism associated with low-load stability training. Therapy, level 5.
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
CONDITIONS FOR EXACT CAVALIERI ESTIMATION
Directory of Open Access Journals (Sweden)
Mónica Tinajero-Bravo
2014-03-01
Full Text Available Exact Cavalieri estimation amounts to zero variance estimation of an integral with systematic observations along a sampling axis. A sufficient condition is given, both in the continuous and the discrete cases, for exact Cavalieri sampling. The conclusions suggest improvements on the current stereological application of fractionator-type sampling.
Atypical extended electronic states in an infinite Vicsek fractal: An exact result
International Nuclear Information System (INIS)
Chakrabarti, A.; Bhattacharyya, B.
1996-01-01
We present a class of extended electronic wave functions on a Vicsek fractal. The transmittivity of arbitrarily large fractal lattices corresponding to these particular extended-state eigenvalues exhibits a power-law decay with increasing system size. The eigenvalues corresponding to the above extended states as well as the scaling law for the transmittivity have been exactly calculated using a real-space renormalization-group method. copyright 1996 The American Physical Society
Exact scattering and diffraction of antiplane shear waves by a vertical edge crack
Tsaur, Deng-How
2010-06-01
Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.
An exact linear dispersion relation for CRM instability
International Nuclear Information System (INIS)
Choyal, Y; Minami, K
2011-01-01
An exact self-consistent linear dispersion relation of a large orbit electron beam including two principles of cyclotron emission with oscillation frequencies above and below the relativistic electron frequency is derived and analyzed numerically for the first time in the literature. The two principles are cyclotron resonance maser (CRM) instability and Cherenkov instability in the azimuthal direction. Self-consistency in the formulation and inclusion of proper boundary conditions have removed the unphysical instability existing for infinitely large k z observed in conventional dispersion relations of CRM instability.
Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools.
Schoppik, David; Bianco, Isaac H; Prober, David A; Douglass, Adam D; Robson, Drew N; Li, Jennifer M B; Greenwood, Joel S F; Soucy, Edward; Engert, Florian; Schier, Alexander F
2017-11-22
Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without
Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel
Jhorar, R.; Tripathi, D.; Bhatti, M. M.; Ellahi, R.
2018-05-01
This article addresses the electrokinetically modulated biomechanical transport through a two-dimensional asymmetric microchannel induced by peristaltic waves. Electrokinetic transport with peristaltic phenomena grabbed a significant attention due to its novel applications in engineering. Electrical fields also provide an excellent mode for regulating flows. The electrohydrodynamics problem is modified by means of Debye-Hückel linearization. Firstly, the governing flow problem is described by continuity and momentum equations in the presence of electrokinetic forces in Cartesian coordinates, then long wavelength and low/zero Reynolds ("neglecting the inertial forces") approximations are applied to modify the governing flow problem. The resulting differential equations are solved analytically in order to obtain exact solutions for velocity profile whereas the numerical integration is carried out to analyze the pumping characteristics. The physical behaviour of sundry parameters is discussed for velocity profile, pressure rise and volume flow rate. In particular, the behaviour of electro-osmotic parameter, phase difference, and Helmholtz-Smoluchowski velocity is examined and discussed. The trapping mechanism is also visualized by drawing streamlines against the governing parameters. The present study offers various interesting results that warrant further study on electrokinetic transport with peristalsis.
Czech Academy of Sciences Publication Activity Database
Uchytil, Petr; Loimer, T.
2014-01-01
Roč. 470, NOV 15 (2014), s. 451-457 ISSN 0376-7388 R&D Projects: GA MŠk 7AMB12AT010; GA MŠk(CZ) 7AMB14AT011 Institutional support: RVO:67985858 Keywords : condensation * vapor permeation * asymmetric membrane s Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 5.056, year: 2014
Exact Heat Kernel on a Hypersphere and Its Applications in Kernel SVM
Directory of Open Access Journals (Sweden)
Chenchao Zhao
2018-01-01
Full Text Available Many contemporary statistical learning methods assume a Euclidean feature space. This paper presents a method for defining similarity based on hyperspherical geometry and shows that it often improves the performance of support vector machine compared to other competing similarity measures. Specifically, the idea of using heat diffusion on a hypersphere to measure similarity has been previously proposed and tested by Lafferty and Lebanon [1], demonstrating promising results based on a heuristic heat kernel obtained from the zeroth order parametrix expansion; however, how well this heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown. This paper presents a higher order parametrix expansion of the heat kernel on a unit hypersphere and discusses several problems associated with this expansion method. We then compare the heuristic kernel with an exact form of the heat kernel expressed in terms of a uniformly and absolutely convergent series in high-dimensional angular momentum eigenmodes. Being a natural measure of similarity between sample points dwelling on a hypersphere, the exact kernel often shows superior performance in kernel SVM classifications applied to text mining, tumor somatic mutation imputation, and stock market analysis.
Exact solutions for rotating charged dust
International Nuclear Information System (INIS)
Islam, J.N.
1984-01-01
Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)
Properties of the ellipse-line-ellipse trajectory with asymmetrical variations
Guo, Zijia; Noo, Frédéric; Maier, Andreas; Lauritsch, Guenter
2016-03-01
Three-dimensional cone-beam (CB) imaging using a multi-axis floor-mounted (or ceiling-mounted) C-arm system has become an important tool in interventional radiology. This success motivates new developments to improve image quality. One direction in which advancement is sought is the data acquisition geometry and related CB artifacts. Currently, data acquisition is performed using the circular short-scan trajectory, which yields limited axial coverage and also provides incomplete data for accurate reconstruction. To improve the image quality, as well as to increase the coverage in the longitudinal direction of the patient, we recently introduced the ellipse- line-ellipse trajectory and showed that this trajectory provides full R-line coverage within the field-of-view, which is a key property for accurate reconstruction from truncated data. An R-line is any segment of line that connects two source positions. Here, we examine how the application of asymmetrical variations to the definition of the ELE trajectory impacts the R-line coverage. This question is significant to understand how much flexibility can be used in the implementation of the ELE trajectory, particularly to adapt the scan to patient anatomy and imaging task of interest. Two types of asymmetrical variations, called axial and angular variations, are investigated.
Ansari, Imran Shafique
2015-03-01
Generalized fading has been an imminent part and parcel of wireless communications. It not only characterizes the wireless channel appropriately but also allows its utilization for further performance analysis of various types of wireless communication systems. Under the umbrella of generalized fading channels, a unified performance analysis of a free-space optical (FSO) link over the Malaga (M) atmospheric turbulence channel that accounts for pointing errors and both types of detection techniques (i.e. indirect modulation/direct detection (IM/DD) as well as heterodyne detection) is presented. Specifically, unified exact closed-form expressions for the probability density function (PDF), the cumulative distribution function (CDF), the moment generating function (MGF), and the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system are presented, all in terms of the Meijer\\'s G function except for the moments that is in terms of simple elementary functions. Then capitalizing on these unified results, unified exact closed-form expressions for various performance metrics of FSO link transmission systems are offered, such as, the outage probability (OP), the higher-order amount of fading (AF), the average error rate for binary and M-ary modulation schemes, and the ergodic capacity (except for IM/DD technique, where closed-form lower bound results are presented), all in terms of Meijer\\'s G functions except for the higher-order AF that is in terms of simple elementary functions. Additionally, the asymptotic results are derived for all the expressions derived earlier in terms of the Meijer\\'s G function in the high SNR regime in terms of simple elementary functions via an asymptotic expansion of the Meijer\\'s G function. Furthermore, new asymptotic expressions for the ergodic capacity in the low as well as high SNR regimes are derived in terms of simple elementary functions via utilizing moments. All the presented results are
On the performance of mixed RF/FSO variable gain dual-hop transmission systems with pointing errors
Ansari, Imran Shafique
2013-09-01
In this work, the performance analysis of a dualhop relay transmission system composed of asymmetric radiofrequency (RF) and unified free-space optical (FSO) links subject to pointing errors is presented. These unified FSO links account for both types of detection techniques (i.e. indirect modulation/ direct detection (IM/DD) as well as heterodyne detection). More specifically, we derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio of these systems in terms of the Meijer\\'s G function. We then capitalize on these results to offer new exact closed-form expressions for the outage probability, higherorder amount of fading, average error rate for binary and Mary modulation schemes, and ergodic capacity, all in terms of Meijer\\'s G functions. All our new analytical results are verified via computer-based Monte-Carlo simulations. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer
2016-05-15
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.
Frames for exact inversion of the rank order coder.
Masmoudi, Khaled; Antonini, Marc; Kornprobst, Pierre
2012-02-01
Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe et al. who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in [1] a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to [1]. Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.
International Nuclear Information System (INIS)
Zhang Hongdi; An Yukai; Mai Zhenhong; Lu Huibin; Zhao Kun; Pan Guoqiang; Li Ruipeng; Fan Rong
2008-01-01
The thickness dependence of microstructures of La 0.9 Sr 0.1 MnO 3 (LSMO) thin films grown on exact-cut and miscut SrTiO 3 (STO) substrates, respectively, was investigated by high-angle X-ray diffraction (HXRD), X-ray small-angle reflection (XSAR), X-ray reciprocal space mapping and atomic force microscopy (AFM). Results show that the LSMO films are in pseudocubic structure and are highly epitaxial [0 0 1]-oriented growth on the (0 0 1) STO substrates. The crystalline quality of the LSMO film is improved with thickness. The epitaxial relationship between the LSMO films and the STO substrates is [0 0 1] LSMO -parallel [0 0 1] EXACT-STO , and the LSMO films have a slight mosaic structure along the q x direction for the samples grown on the exact-cut STO substrates. However, an oriented angle of about 0.24 deg. exists between [0 0 1] LSMO and [0 0 1] MISCUT-STO , and the LSMO films have a mosaic structure along the q z direction for that grown on the miscut STO substrates. The mosaic structure of both groups of the samples tends to reduce with thickness. The diffraction intensity of the (0 0 4) peaks increases with thickness of the LSMO film. The XSAR and AFM observations show that for both groups, the interface is sharp and the surface is rather smooth. The mechanism was discussed briefly
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer; Laleg-Kirati, Taous-Meriem; Liu, Da Yan
2016-01-01
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic
Renewable resource management under asymmetric information
DEFF Research Database (Denmark)
Jensen, Frank; Andersen, Peder; Nielsen, Max
2013-01-01
Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis....... In this paper, we study asymmetric information about productivity within a principal-agent framework and a tax on fishing effort is considered. It is shown that a second best optimum can be achieved if the effort tax is designed such that low-productivity agents rent is exhausted, while high-productivity agents...... receive an information rent. The information rent is equivalent to the total incentive cost. The incentive costs arise as we want to reveal the agent's type....
Computing exact bundle compliance control charts via probability generating functions.
Chen, Binchao; Matis, Timothy; Benneyan, James
2016-06-01
Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.
Fold catastrophe model of dynamic pillar failure in asymmetric mining
Energy Technology Data Exchange (ETDEWEB)
Yue Pan; Ai-wu Li; Yun-song Qi [Qingdao Technological University, Qingdao (China). College of Civil Engineering
2009-01-15
A rock burst disaster not only destroys the pit facilities and results in economic loss but it also threatens the life of the miners. Pillar rock burst has a higher frequency of occurrence in the pit compared to other kinds of rock burst. Understanding the cause, magnitude and prevention of pillar rock burst is a significant undertaking. Equations describing the bending moment and displacement of the rock beam in asymmetric mining have been deduced for simplified asymmetric beam-pillar systems. Using the symbolic operation software MAPLE 9.5 a catastrophe model of the dynamic failure of an asymmetric rock-beam pillar system has been established. The differential form of the total potential function deduced from the law of conservation of energy was used for this deduction. The critical conditions and the initial and final positions of the pillar during failure have been given in analytical form. The amount of elastic energy released by the rock beam at the instant of failure is determined as well. A diagrammatic form showing the pillar failure was plotted using MATLAB software. This graph contains a wealth of information and is important for understanding the behavior during each deformation phase of the rock-beam pillar system. The graphic also aids in distinguishing the equivalent stiffness of the rock beam in different directions. 11 refs., 8 figs.
Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat.
Guo, Xiang; Han, Fangpu
2014-11-01
rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. © 2014 American Society of Plant Biologists. All rights reserved.
Subcopula-based measure of asymmetric association for contingency tables.
Wei, Zheng; Kim, Daeyoung
2017-10-30
For the analysis of a two-way contingency table, a new asymmetric association measure is developed. The proposed method uses the subcopula-based regression between the discrete variables to measure the asymmetric predictive powers of the variables of interest. Unlike the existing measures of asymmetric association, the subcopula-based measure is insensitive to the number of categories in a variable, and thus, the magnitude of the proposed measure can be interpreted as the degree of asymmetric association in the contingency table. The theoretical properties of the proposed subcopula-based asymmetric association measure are investigated. We illustrate the performance and advantages of the proposed measure using simulation studies and real data examples. Copyright © 2017 John Wiley & Sons, Ltd.
The evolution of texture in aluminum alloy sheet during asymmetric rolling
International Nuclear Information System (INIS)
Kim, K-H.; Lee, D.N.
2000-01-01
Asymmetric rolling, in which the upper and lower roll radii are different, imposes shear deformation on sheets through the thickness, which in turn gives rise to shear deformation textures in the sheets through the thickness. A component of ND// in the shear deformation textures can improve the plastic strain ratios of aluminum sheets. In order to understand the evolution of ND// , the strain histories and distributions in the sheets during the asymmetric rolling are calculated by the finite element method. The strain history and distribution are used to calculate crystallographic orientations and stable orientations based on the Taylor-Bishop-Hill theory and the Renouward-Wintenberger theory. The shear deformation texture can vary with the ratio of shear to normal strain increments. As the ratio increases from zero to infinity, the texture moves from the plane strain compression texture (β fiber) to the ideal shear deformation texture consisting of {001} , {111} , and {111} . The ratio increases with rolling reduction per pass in asymmetric rolling. However, it is practically difficult to the rolling reduction per pass high enough to obtain the ideal shear deformation texture. Imposing the positive and negative shear deformations on the sheet by reversing the shearing direction can give rise to the ideal shear deformation texture. This has been discussed. (author)
A search for exact superstring vacua
Peterman, Andreas; Zichichi, Antonino
1994-01-01
We investigate $2d$ sigma-models with a $2+N$ dimensional Minkowski signature target space metric and Killing symmetry, specifically supersymmetrized, and see under which conditions they might lead to corresponding exact string vacua. It appears that the issue relies heavily on the properties of the vector $M_{\\mu}$, a reparametrization term, which needs to possess a definite form for the Weyl invariance to be satisfied. We give, in the $n = 1$ supersymmetric case, two non-renormalization theorems from which we can relate the $u$ component of $M_{\\mu}$ to the $\\beta^G_{uu}$ function. We work out this $(u,u)$ component of the $\\beta^G$ function and find a non-vanishing contribution at four loops. Therefore, it turns out that at order $\\alpha^{\\prime 4}$, there are in general non-vanishing contributions to $M_u$ that prevent us from deducing superstring vacua in closed form.
Modelling asymmetric growth in crowded plant communities
DEFF Research Database (Denmark)
Damgaard, Christian
2010-01-01
A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....
Voluntary eye movements direct attention on the mental number space.
Ranzini, Mariagrazia; Lisi, Matteo; Zorzi, Marco
2016-05-01
Growing evidence suggests that orienting visual attention in space can influence the processing of numerical magnitude, with leftward orienting speeding up the processing of small numbers relative to larger ones and the converse for rightward orienting. The manipulation of eye movements is a convenient way to direct visuospatial attention, but several aspects of the complex relationship between eye movements, attention orienting and number processing remain unexplored. In a previous study, we observed that inducing involuntary, reflexive eye movements by means of optokinetic stimulation affected number processing only when numerical magnitude was task relevant (i.e., during magnitude comparison, but not during parity judgment; Ranzini et al., in J Cogn Psychol 27, 459-470, (2015). Here, we investigated whether processing of task-irrelevant numerical magnitude can be modulated by voluntary eye movements, and whether the type of eye movements (smooth pursuit vs. saccades) would influence this interaction. Participants tracked with their gaze a dot while listening to a digit. The numerical task was to indicate whether the digit was odd or even through non-spatial, verbal responses. The dot could move leftward or rightward either continuously, allowing tracking by smooth pursuit eye movements, or in discrete steps across a series of adjacent locations, triggering a sequence of saccades. Both smooth pursuit and saccadic eye movements similarly affected number processing and modulated response times for large numbers as a function of direction of motion. These findings suggest that voluntary eye movements redirect attention in mental number space and highlight that eye movements should play a key factor in the investigation of number-space interactions.
Haataja, J. S.; Houbenov, N.; Aseyev, V.; Fragouli, P.; Iatrou, H.; Sougrat, Rachid; Hadjichristidis, Nikolaos; Ikkala, O.
2018-01-01
Polystyrene-block-poly(1,4-isoprene)-block-poly(dimethyl siloxane)-block-poly(tert-butyl methacrylate)-block-poly(2-vinyl pyridine), PS-b-PI-b-PDMS-b-PtBMA-b-P2VP, self-assembles in acetone into polymersomes with asymmetric (directional) PI
International Nuclear Information System (INIS)
Kullig, Julius; Wiersig, Jan
2016-01-01
In optical microdisk cavities with boundary deformations the backscattering between clockwise and counter-clockwise propagating waves is in general asymmetric. The striking consequence of this asymmetry is that these apparently weakly open systems show pronounced non-Hermitian phenomena. The optical modes appear in non-orthogonal pairs, where both modes copropagate in a preferred sense of rotation, i.e. the modes exhibit a finite chirality. Full asymmetry in the backscattering results in a non-Hermitian degeneracy (exceptional point) where the deviation from closed system evolution is strongest. We study the effects of asymmetric backscattering in ray dynamics. For this purpose, we construct a finite approximation of the Frobenius–Perron operator for deformed microdisk cavities, which describes the dynamics of intensities in phase space. Eigenstates of the Frobenius–Perron operator show nice analogies to optical modes: they come in non-orthogonal copropagating pairs and have a finite chirality. We introduce a new cavity system with a smooth asymmetric boundary deformation where we demonstrate our results and we illustrate the main aspects with the help of a simple analytically solvable 1D model. (paper)
Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin
2015-12-04
A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.
Exact result in strong wave turbulence of thin elastic plates
Düring, Gustavo; Krstulovic, Giorgio
2018-02-01
An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.
Bianchi type I cyclic cosmology from Lie-algebraically deformed phase space
International Nuclear Information System (INIS)
Vakili, Babak; Khosravi, Nima
2010-01-01
We study the effects of noncommutativity, in the form of a Lie-algebraically deformed Poisson commutation relations, on the evolution of a Bianchi type I cosmological model with a positive cosmological constant. The phase space variables turn out to correspond to the scale factors of this model in x, y, and z directions. According to the conditions that the structure constants (deformation parameters) should satisfy, we argue that there are two types of noncommutative phase space with Lie-algebraic structure. The exact classical solutions in commutative and type I noncommutative cases are presented. In the framework of this type of deformed phase space, we investigate the possibility of building a Bianchi I model with cyclic scale factors in which the size of the Universe in each direction experiences an endless sequence of contractions and reexpansions. We also obtain some approximate solutions for the type II noncommutative structure by numerical methods and show that the cyclic behavior is repeated as well. These results are compared with the standard commutative case, and similarities and differences of these solutions are discussed.
Asymmetric Frontal Brain Activity and Parental Rejection
Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.
2013-01-01
Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts
Towards exact solutions of the non-linear Heisenberg-Pauli-Weyl spinor equation
International Nuclear Information System (INIS)
Mielke, E.W.
1980-03-01
In ''color geometrodynamics'' fundamental spinor fields are assumed to obey a GL(2f,C) x GL(2c,C) gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl type. Quark confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor ''gluons'' of strong gravity. This hypothesis is incorporated into the model by considering the nonlinear Dirac equation in a curved space-time of hadronic dimensions. Disregarding internal degrees of freedom, it is then feasible, for a particular background space-time, to obtain exact solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are made. (author)
Sefc, Kristina M; Hermann, Caroline M; Steinwender, Bernd; Brindl, Hanna; Zimmermann, Holger; Mattersdorfer, Karin; Postl, Lisbeth; Makasa, Lawrence; Sturmbauer, Christian; Koblmüller, Stephan
2015-04-01
Assortative mating promotes reproductive isolation and allows allopatric speciation processes to continue in secondary contact. As mating patterns are determined by mate preferences and intrasexual competition, we investigated male-male competition and behavioral isolation in simulated secondary contact among allopatric populations. Three allopatric color morphs of the cichlid fish Tropheus were tested against each other. Dyadic male-male contests revealed dominance of red males over bluish and yellow-blotch males. Reproductive isolation in the presence of male-male competition was assessed from genetic parentage in experimental ponds and was highly asymmetric among pairs of color morphs. Red females mated only with red males, whereas the other females performed variable degrees of heteromorphic mating. Discrepancies between mating patterns in ponds and female preferences in a competition-free, two-way choice paradigm suggested that the dominance of red males interfered with positive assortative mating of females of the subordinate morphs and provoked asymmetric hybridization. Between the nonred morphs, a significant excess of negative assortative mating by yellow-blotch females with bluish males did not coincide with asymmetric dominance among males. Hence, both negative assortative mating preferences and interference of male-male competition with positive assortative preferences forestall premating isolation, the latter especially in environments unsupportive of competition-driven spatial segregation.
Method development of damage detection in asymmetric buildings
Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy
2018-01-01
Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results
Asymmetric Synthesis via Chiral Aziridines
DEFF Research Database (Denmark)
Tanner, David Ackland; Harden, Adrian; Wyatt, Paul
1996-01-01
A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...
Optimal multicopy asymmetric Gaussian cloning of coherent states
International Nuclear Information System (INIS)
Fiurasek, Jaromir; Cerf, Nicolas J.
2007-01-01
We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward
Optimal multicopy asymmetric Gaussian cloning of coherent states
Fiurášek, Jaromír; Cerf, Nicolas J.
2007-05-01
We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.
Diabetic Retinopathy Is Associated With Elevated Serum Asymmetric and Symmetric Dimethylarginines
Abhary, Sotoodeh; Kasmeridis, Nicholas; Burdon, Kathryn P.; Kuot, Abraham; Whiting, Malcolm J.; Yew, Wai Ping; Petrovsky, Nikolai; Craig, Jamie E.
2009-01-01
OBJECTIVE Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and l-arginine directly influence nitric oxide production. Our objective was to test whether serum ADMA, SDMA, or l-arginine levels correlate with diabetic retinopathy subtype or severity. RESEARCH DESIGN AND METHODS A total of 162 subjects with type 1 diabetes and 343 with type 2 diabetes, of whom 329 subjects had no diabetic retinopathy, 27 had nonproliferative diabetic retinopathy (NPDR), 101 had proliferative...
National Aeronautics and Space Administration — To meet the challenges of rapid prototyping, direct hardware fabrication, and on-the-spot repairs on the ground and on NASA space platforms, Physical Optics...
Reverse Importing and Asymmetric Trade and FDI: A Networks Explanation
Theresa Greaney
2002-01-01
This paper considers the impact of business and social networks on international trade and foreign direct investment (FDI). I propose that differences in the strength of network effects across countries can produce asymmetric trade and investment flows that may lead to trade friction. This proposition is examined using a model of multi-product producers of a differentiated product. A firm from a country with strong network effects has a cost advantage in selling to buyers from its own country...
On exact solutions of scattering problems
International Nuclear Information System (INIS)
Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.
1982-01-01
Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived
Exact partition functions for gauge theories on Rλ3
Directory of Open Access Journals (Sweden)
Jean-Christophe Wallet
2016-11-01
Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Exact Solution of Klein-Gordon and Dirac Equations with Snyder-de Sitter Algebra
Merad, M.; Hadj Moussa, M.
2018-01-01
In this paper, we present the exact solution of the (1+1)-dimensional relativistic Klein-Gordon and Dirac equations with linear vector and scalar potentials in the framework of deformed Snyder-de Sitter model. We introduce some changes of variables, we show that a one-dimensional linear potential for the relativistic system in a space deformed can be equivalent to the trigonometric Rosen-Morse potential in a regular space. In both cases, we determine explicitly the energy eigenvalues and their corresponding eigenfunctions expressed in terms of Romonovski polynomials. The limiting cases are analyzed for α 1 and α 2 → 0 and are compared with those of literature.
Temporomandibular joint space in children without joint disease
International Nuclear Information System (INIS)
Larheim, T.A.
1981-01-01
Bilateral assessment of the temporomandibular joint space in children without joint disease is reported. Twenty-eight children were examined with conventional radiography and 23 with tomography. High prevalence of asymmetric joint spaces with both techniques indicated that great care should be taken when using narrowing or widening of the joint space as a diagnostic criterion in children with juvenile rheumatoid arthritis. Other signs, such as restricted translation of the mandibular head, and clinical symptoms should be evaluated. (Auth.)
Directory of Open Access Journals (Sweden)
F.G. Arenas
2001-10-01
Full Text Available In this paper we introduce the concept of directed fractal structure, which is a generalization of the concept of fractal structure (introduced by the authors. We study the relation with transitive quasiuniformities and inverse limits of posets. We define the concept of GF-compactification and apply it to prove that the Stone-Cech compactification can be obtained as the GF-compactification of the directed fractal structure associated to the Pervin quasi-uniformity.
Weakly infinite-dimensional spaces
International Nuclear Information System (INIS)
Fedorchuk, Vitalii V
2007-01-01
In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.
Observation of asymmetric transverse voltage in granular high-T c superconductors
International Nuclear Information System (INIS)
Luz, M.S. da; Carvalho, F.J.H. de; Santos, C.A.M. dos; Shigue, C.Y.; Machado, A.J.S.; Ricardo da Silva, R.
2005-01-01
This work reports the influence of the granularity on the transverse voltage as a function of the temperature, V XY (T), in polycrystalline samples of Bi 2 Sr 2 Ca 0.8 Pr 0.2 Cu 2 O 8+δ composition. It is observed nonzero transverse voltage at zero external magnetic field in the vicinity of the superconducting transition while far away from it, both above and below, no such voltage was detected. Measurements of V XY (T) in both directions of magnetic field allowed to calculate the symmetric and asymmetric transverse voltages in the full range of the applied magnetic field studied (zero up to 9 T). The symmetric transverse voltage as a function of the temperature presents sign reversal of the Hall resistance and positive Hall voltage at normal state such as expected for hole-doped high critical temperature superconductors. On the other hand, the asymmetric component of V XY (T) shows a peak near the superconducting transition which has been recently reported in literature. V XY (T) curves measured in a sample with double superconducting transition, which was confirmed by ac-susceptibility measurements and hysteresis loops of the magneto-resistance, present two peaks in the asymmetric component. These peaks are related to the intergranular and intragranular transitions and can be explained within the framework of Josephson and Abrikosov vortices and anti-vortices motion. By comparing the temperature dependence of the asymmetric transverse voltage and the derivative of longitudinal voltage is possible to observe a specific relation between both transport properties, which is noted to be valid not only at zero applied magnetic field but also under applied field
Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis
Energy Technology Data Exchange (ETDEWEB)
Mansuripur, T S [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Pascall, A J; Squires, T M [Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 (United States)], E-mail: squires@engineering.ucsb.edu
2009-07-15
We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.
Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis
International Nuclear Information System (INIS)
Mansuripur, T S; Pascall, A J; Squires, T M
2009-01-01
We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.
Stephen, Lincy; Yogesh, N.; Subramanian, V.
2018-01-01
The giant optical activity of chiral metamaterials (CMMs) holds great potential for tailoring the polarization state of an electromagnetic (EM) wave. In controlling the polarization state, the aspect of asymmetric transmission (AT), where a medium allows the EM radiation to pass through in one direction while restricting it in the opposite direction, adds additional degrees of freedom such as one-way channelling functionality. In this work, a CMM formed by a pair of mutually twisted slanted complementary metal strips is realized for broadband AT accompanied with cross-polarization (CP) conversion for linearly polarized EM waves. Numerically, the proposed ultra-thin (˜λ/42) CMM shows broadband AT from 8.58 GHz to 9.73 GHz (bandwidth of 1.15 GHz) accompanied with CP transmission magnitude greater than 0.9. The transmission and reflection spectra reveal the origin of the asymmetric transmission as the direction sensitive cross polarization conversion and anisotropic electric coupling occurring in the structure which is then elaborated with the surface current analysis and electric field distribution within the structure. An experiment is carried out to verify the broadband AT based CP conversion of the proposed CMM at microwave frequencies, and a reliable agreement between numerical and experimental results is obtained. Being ultra-thin, the reported broadband AT based CP conversion of the proposed CMM is useful for controlling radiation patterns in non-reciprocal EM devices and communication networks.
Exact many-electron ground states on diamond and triangle Hubbard chains
International Nuclear Information System (INIS)
Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter
2009-01-01
We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)
Asymmetric mass models of disk galaxies. I. Messier 99
Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke
2016-04-01
Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.
Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi
2018-03-01
The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.
Symmetrical waveguide devices fabricated by direct UV writing
DEFF Research Database (Denmark)
Færch, Kjartan Ullitz; Svalgaard, Mikael
2002-01-01
Power splitters and directional couplers fabricated by direct UV writing in index matched silica-on-silicon samples can suffer from an asymmetrical device performance, even though the UV writing is carried out in a symmetrical fashion. This effect originates from a reduced photosensitivity...
Energy Technology Data Exchange (ETDEWEB)
Troxel, M. A.; Ishak, Mustapha; Peel, Austin, E-mail: troxel@utdallas.edu, E-mail: mishak@utdallas.edu, E-mail: austin.peel@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX 75080 (United States)
2014-03-01
The study of relativistic, higher order, and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are thus naturally included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observables like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of such clusters. The resulting relative difference in various geometries can be as large as approximately 2%, 8%, and 24% in the measure of convergence (1−κ) for levels of anisotropy of 5%, 10%, and 15%, respectively, as a fraction of total cluster mass. For the total magnitude of shear, the relative difference can grow near the center of the structure to be as large as 15%, 32%, and 44% for the same levels of anisotropy, averaged over the two extreme geometries. The convergence is impacted most strongly for rays which pass in directions along the axis of maximum dipole anisotropy in the structure, while the shear is most strongly impacted for rays which pass in directions orthogonal to this axis, as expected. The rich features found in the lensing signal due to anisotropic substructure are nearly entirely lost when one treats the cluster in the traditional FLRW lensing framework. These effects due to anisotropic structures are thus likely to
Asymmetric magnetization reversal in exchange-biased Co/Pt multilayers
Energy Technology Data Exchange (ETDEWEB)
Dijken, Sebastiaan van [SFI Trintiy Nanoscience Laboratory, Physics Department, Trinity College, Dublin 2 (Ireland); Czapkiewicz, M.; Zoladz, M.; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, Krakow 30-059 (Poland)
2006-01-01
A detailed study of the magnetization reversal process in [20 Aa Pt/t Aa Co]{sub 3}/100 Aa IrMn/20 Aa Pt multilayers with 4 Aa{<=}t{<=}9 Aa is presented. The hysteresis of as-deposited films with t{>=} 5Aa is found to be asymmetric. This asymmetry is explained by a lateral variation in the perpendicular exchange bias direction due to the growth of IrMn onto multi-domain Co/Pt multilayers. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Time measurement - technical importance of most exact clocks
International Nuclear Information System (INIS)
Goebel, E.O.; Riehle, F.
2004-01-01
The exactness of the best atomic clocks currently shows a temporal variation of 1 second in 30 million years. This means that we have reached the point of the most exact frequency and time measurement ever. In the past, there was a trend towards increasing the exactness in an increasingly fast sequence. Will this trend continue? And who will profit from it? This article is meant to give answers to these questions. This is done by presenting first the level reached currently with the best atomic clocks and describing the research activities running worldwide with the aim of achieving even more exact clocks. In the second part, we present examples of various areas of technical subjects and research in which the most exact clocks are being applied presently and even more exact ones will be needed in the future [de
On the performance of hybrid RF and RF/FSO dual-hop transmission systems
Ansari, Imran Shafique
2013-10-01
In this work, we present the performance analysis of a dual-branch transmission system composed of a direct radio frequency (RF) link and a dual-hop relay composed of asymmetric RF and free-space optical (FSO) links. The FSO link accounts for pointing errors and both types of detection techniques (i.e. intensity modulation/direct detection (IM/DD) as well as heterodyne detection). The performance is evaluated under the assumption of selection combining (SC) diversity scheme. RF links are modeled by Rayleigh fading distribution whereas the FSO link is modeled by a unified Gamma-Gamma fading distribution. Specifically, we derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio of such systems in terms of the Meijer\\'s G function. We then capitalize on these results to offer new exact closed-form expressions for the outage probability, higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and ergodic capacity, all in terms of Meijer\\'s G functions. © 2013 IEEE.
Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach
Directory of Open Access Journals (Sweden)
Pankaj Chauhan
2012-12-01
Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.
Hole subbands in quantum wells: exact solution for six-dimensional Luttinger–Kohn Hamiltonian
International Nuclear Information System (INIS)
Belykh, V G; Tulupenko, V N
2009-01-01
The exact solution for wavefunctions of six-dimensional Luttinger–Kohn Hamiltonian, describing the valence band of cubic semiconductors in the effective mass approximation, is derived. The problem of space quantization for a rectangular quantum well with finite depth is solved. The wavefunctions of carriers in the quantum well are built up of a complete set of exact wavefunctions for the bulk materials constituting the heterojunction. Obtained formulae for wavefunctions permit one to derive the analytical expression for a determinant, which nulls give the allowed energy values. Comparison of the energy spectra for the Si/Si 0.88 Ge 0.12 quantum well obtained in the framework of the developed technique, and using four-dimensional Luttinger–Kohn Hamiltonian allows us to trace clearly the impact of the spin–orbit interaction on the formation of the energy spectrum for the quantum well
Asymmetric strand segregation: epigenetic costs of genetic fidelity?
Directory of Open Access Journals (Sweden)
Diane P Genereux
2009-06-01
Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.
Ideal 3D asymmetric concentrator
Energy Technology Data Exchange (ETDEWEB)
Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)
2009-01-15
Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)
Baby, Rakhi Raghavan; Alhebshi, Nuha; Anjum, Dalaver H.; Alshareef, Husam N.
2014-01-01
Porous cobalt sulfide (Co9S8) nanostructures with tunable morphology, but identical crystal phase and composition, have been directly nucleated over carbon fiber and evaluated as electrodes for asymmetric hybrid supercapacitors. As the morphology is changed from two-dimensional (2D) nanoflakes to 3D octahedra, dramatic changes in supercapacitor performance are observed. In three-electrode configuration, the binder-free Co9S82D nanoflake electrodes show a high specific capacitance of 1056 F g-1at 5 mV s-1vs. 88 F g-1for the 3D electrodes. As sulfides are known to have low operating potential, for the first time, asymmetric hybrid supercapacitors are constructed from Co9S8nanostructures and activated carbon (AC), providing an operation potential from 0 to 1.6 V. At a constant current density of 1 A g-1, the 2D Co9S8, nanoflake//AC asymmetric hybrid supercapacitor exhibits a gravimetric cell capacitance of 82.9 F g-1, which is much higher than that of an AC//AC symmetric capacitor (44.8 F g-1). Moreover, the asymmetric hybrid supercapacitor shows an excellent energy density of 31.4 W h kg-1at a power density of 200 W Kg-1and an excellent cycling stability with a capacitance retention of ∼90% after 5000 cycles. This journal is
Serial position markers in space: visuospatial priming of serial order working memory retrieval.
Directory of Open Access Journals (Sweden)
Maya De Belder
Full Text Available Most general theories on serial order working memory (WM assume the existence of position markers that are bound to the to-be-remembered items to keep track of the serial order. So far, the exact cognitive/neural characteristics of these markers have remained largely underspecified, while direct empirical evidence for their existence is mostly lacking. In the current study we demonstrate that retrieval from verbal serial order WM can be facilitated or hindered by spatial cuing: begin elements of a verbal WM sequence are retrieved faster after cuing the left side of space, while end elements are retrieved faster after cuing the right side of space. In direct complement to our previous work--where we showed the reversed impact of WM retrieval on spatial processing--we argue that the current findings provide us with a crucial piece of evidence suggesting a direct and functional involvement of space in verbal serial order WM. We outline the idea that serial order in verbal WM is coded within a spatial coordinate system with spatial attention being involved when searching through WM, and we discuss how this account can explain several hallmark observations related to serial order WM.
Exact complexity: The spectral decomposition of intrinsic computation
International Nuclear Information System (INIS)
Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.
2016-01-01
We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.
Space Adaptation Back Pain: A Retrospective Study
Kerstman, Eric
2009-01-01
Astronaut back pain is frequently reported in the early phase of space flight as they adapt to microgravity. The epidemiology of space adaptation back pain (SABP) has not been well established. This presentation seeks to determine the exact incidence of SABP among astronauts, develop a case definition of SABP, delineate the nature and pattern of SABP, review available treatments and their effectiveness in relieving SABP; and identify any operational impact of SABP. A retrospective review of all available mission medical records of astronauts in the U.S. space program was performed. It was revealed that the incidence of SABP has been determined to be 53% among astronauts in the U.S. space program; most cases of SABP are mild, self-limited, or respond to available treatment; there are no currently accepted preventive measures for SABP; it is difficult to predict who will develop SABP; the precise mechanism and spinal structures responsible for SABP are uncertain; there was no documented evidence of direction operational mission impact related to SABP; and, that there was the potential for mission impact related to uncontrolled pain, sleep disturbance, or the adverse side effects pf anti-inflammatory medications
Phases of a stack of membranes in a large number of dimensions of configuration space
Borelli, M. E.; Kleinert, H.
2001-05-01
The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.
On the performance of hybrid RF and RF/FSO fixed gain dual-hop transmission systems
Ansari, Imran Shafique
2013-04-01
In this work, we present the performance analysis of a dual-branch transmission system composed of a direct radio frequency (RF) link and a dual-hop relay composed of asymmetric RF and free-space optical (FSO) links and compare it without having a direct RF path to see the effects of diversity on our system. The FSO link accounts for pointing errors and both types of detection techniques (i.e. indirect modulation/direct detection (IM/DD) as well as heterodyne detection). The performance is evaluated under the assumption of selection combining diversity scheme. RF links are modeled by Rayleigh fading distribution whereas the FSO link is modeled by a unified Gamma-Gamma fading distribution. Specifically, we derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio of these systems in terms of the Meijer\\'s G function. We then capitalize on these results to offer new exact closed-form expressions for the outage probability, higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and ergodic capacity, all in terms of Meijer\\'s G functions. All our new analytical results are also verified via computer-based Monte-Carlo simulations. © 2013 IEEE.
Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals
Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.
2018-02-01
Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ physiological data after shuffling or with a group of symmetric synthetic time series.
Path integration on space times with symmetry
International Nuclear Information System (INIS)
Low, S.G.
1985-01-01
Path integration on space times with symmetry is investigated using a definition of path integration of Gaussian integrators. Gaussian integrators, systematically developed using the theory of projective distributions, may be defined in terms of a Jacobi operator Green function. This definition of the path integral yields a semiclassical expansion of the propagator which is valid on caustics. The semiclassical approximation to the free particle propagator on symmetric and reductive homogeneous spaces is computed in terms of the complete solution of the Jacobi equation. The results are used to test the validity of using the Schwinger-DeWitt transform to compute an approximation to the coincidence limit of a field theory Green function from a WKB propagator. The method is found not to be valid except for certain special cases. These cases include manifolds constructed from the direct product of flat space and group manifolds, on which the free particle WKB approximation is exact and two sphere. The multiple geodesic contribution to 2 > on Schwarzschild in the neighborhood of rho = 3M is computed using the transform
International Nuclear Information System (INIS)
Krbalek, Milan; Hrabak, Pavel
2011-01-01
We consider the one-dimensional totally asymmetric simple exclusion process (TASEP model) with open boundary conditions and present the analytical computations leading to the exact formula for distance clearance distribution, i.e. probability density for a clear distance between subsequent particles of the model. The general relation is rapidly simplified for the middle part of the one-dimensional lattice. Both the analytical formulas and their approximations are compared with the numerical representation of the TASEP model. Such a comparison is presented for particles occurring in the internal part as well as in the boundary part of the lattice. Furthermore, we introduce the pertinent estimation for the so-called spectral rigidity of the model. The results obtained are sequentially discussed within the scope of vehicular traffic theory.
Planck scale physics and topology change through an exactly solvable model
Energy Technology Data Exchange (ETDEWEB)
Lobo, Francisco S.N., E-mail: flobo@cii.fc.ul.pt [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa (Portugal); Martinez-Asencio, Jesus, E-mail: jesusmartinez@ua.es [Departamento de Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-03690 (Spain); Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia – CSIC, Universidad de Valencia, Burjassot, 46100, Valencia (Spain); Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, Paraíba (Brazil); Rubiera-Garcia, D., E-mail: drubiera@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, Paraíba (Brazil)
2014-04-04
We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated à la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space–time and the meaning of curvature divergences in this theory.
Planck scale physics and topology change through an exactly solvable model
International Nuclear Information System (INIS)
Lobo, Francisco S.N.; Martinez-Asencio, Jesus; Olmo, Gonzalo J.; Rubiera-Garcia, D.
2014-01-01
We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated à la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space–time and the meaning of curvature divergences in this theory.
New exact solutions of the mBBM equation
International Nuclear Information System (INIS)
Zhang Zhe; Li Desheng
2013-01-01
The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin-Bona-Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations. (authors)
Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions
International Nuclear Information System (INIS)
Hsieh, S. H.; Chu, C. S.
2016-01-01
Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. This is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions
Symmetric and asymmetric ternary fission of hot nuclei
International Nuclear Information System (INIS)
Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.; Siemssen, R.H.; Wilschut, H.W.; Grotowski, K.; Panasiewicz, A.; Sosin, Z.; Wieloch, A.
1993-01-01
Emission of α particles accompanying fusion-fission processes in the 40 Ar + 232 Th reaction at E( 40 Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of α particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission, and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7x10 -20 s) and the motion during the descent to scission almost completely damped
International Nuclear Information System (INIS)
Shabbir, Ghulam; Khan, Suhail
2010-01-01
In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times. (general)
DEFF Research Database (Denmark)
Nørrelykke, Simon F; Flyvbjerg, Henrik
2011-01-01
The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...
Adsorption of asymmetric rigid rods or heteronuclear diatomic moleculeson homogeneous surfaces
Engl, W.; Courbin, L.; Panizza, P.
2004-10-01
We treat the adsorption on homogeneous surfaces of asymmetric rigid rods (like for instance heteronuclear diatomic molecules). We show that the n→0 vector spin formalism is well suited to describe such a problem. We establish an isomorphism between the coupling constants of the magnetic Hamiltonian and the adsorption parameters of the rigid rods. By solving this Hamiltonian within a mean-field approximation, we obtain analytical expressions for the densities of the different rod’s configurations, both isotherm and isobar adsorptions curves. The most probable configurations of the molecules (normal or parallel to the surface) which depends on temperature and energy parameters are summarized in a diagram. We derive that the variation of Qv , the heat of adsorption at constant volume, with the temperature is a direct signature of the adsorbed molecules configuration change. We show that this formalism can be generalized to more complicated problems such as for instance the adsorption of symmetric and asymmetric rigid rods mixtures in the presence or not of interactions.
Exactly soluble QCD and confinement of quarks
International Nuclear Information System (INIS)
Rusakov, B.
1997-01-01
An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)
Exact evaluation of entropic quantities in a solvable two-particle model
International Nuclear Information System (INIS)
Glasser, M.L.; Nagy, I.
2013-01-01
It has long been known that the von Neumann entropy S N and the Jozsa–Robb–Wootters subentropy Q JRW [R. Jozsa, et al., Phys. Rev. A 49 (1994) 668] are, respectively, upper and lower bounds on the accessible information one can obtain about the identity of a pure state by performing a quantum measurement on a system whose pure state is initially unknown. We determine these bounds exactly in terms of the occupation numbers of normalized natural orbitals of an externally confined interacting two-particle model system. The occupation numbers are obtained via a sign-correct direct decomposition of the underlying exact Schrödinger wave function in terms of an infinite sum of products of Löwdin's natural orbitals, avoiding thus the solution of the eigenvalue problem with the corresponding reduced one-particle matrix.
Exact evaluation of entropic quantities in a solvable two-particle model
Energy Technology Data Exchange (ETDEWEB)
Glasser, M.L., E-mail: laryg@clarkson.edu [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States); Donostia International Physics Center, P. Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Nagy, I. [Donostia International Physics Center, P. Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)
2013-11-08
It has long been known that the von Neumann entropy S{sub N} and the Jozsa–Robb–Wootters subentropy Q{sub JRW} [R. Jozsa, et al., Phys. Rev. A 49 (1994) 668] are, respectively, upper and lower bounds on the accessible information one can obtain about the identity of a pure state by performing a quantum measurement on a system whose pure state is initially unknown. We determine these bounds exactly in terms of the occupation numbers of normalized natural orbitals of an externally confined interacting two-particle model system. The occupation numbers are obtained via a sign-correct direct decomposition of the underlying exact Schrödinger wave function in terms of an infinite sum of products of Löwdin's natural orbitals, avoiding thus the solution of the eigenvalue problem with the corresponding reduced one-particle matrix.
Eigenstates and dynamics of Hooke's atom: Exact results and path integral simulations
Gholizadehkalkhoran, Hossein; Ruokosenmäki, Ilkka; Rantala, Tapio T.
2018-05-01
The system of two interacting electrons in one-dimensional harmonic potential or Hooke's atom is considered, again. On one hand, it appears as a model for quantum dots in a strong confinement regime, and on the other hand, it provides us with a hard test bench for new methods with the "space splitting" arising from the one-dimensional Coulomb potential. Here, we complete the numerous previous studies of the ground state of Hooke's atom by including the excited states and dynamics, not considered earlier. With the perturbation theory, we reach essentially exact eigenstate energies and wave functions for the strong confinement regime as novel results. We also consider external perturbation induced quantum dynamics in a simple separable case. Finally, we test our novel numerical approach based on real-time path integrals (RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach with exact account of electronic correlations for solving the eigenstates and dynamics without the conventional restrictions of electronic structure methods.
Entanglement of Exact Excited Eigenstates of the Hubbard Model in Arbitrary Dimension
Directory of Open Access Journals (Sweden)
Oskar Vafek, Nicolas Regnault, B. Andrei Bernevig
2017-12-01
Full Text Available We compute exactly the von Neumann entanglement entropy of the eta-pairing states - a large set of exact excited eigenstates of the Hubbard Hamiltonian. For the singlet eta-pairing states the entropy scales with the logarithm of the spatial dimension of the (smaller partition. For the eta-pairing states with finite spin magnetization density, the leading term can scale as the volume or as the area-times-log, depending on the momentum space occupation of the Fermions with flipped spins. We also compute the corrections to the leading scaling. In order to study the eigenstate thermalization hypothesis (ETH, we also compute the entanglement Renyi entropies of such states and compare them with the corresponding entropies of thermal density matrix in various ensembles. Such states, which we find violate strong ETH, may provide a useful platform for a detailed study of the time-dependence of the onset of thermalization due to perturbations which violate the total pseudospin conservation.
Asymmetric active nano-particles for directive near-field radiation
DEFF Research Database (Denmark)
Arslanagic, Samel; Thorsen, Rasmus O.
2016-01-01
In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....
PLNoise: a package for exact numerical simulation of power-law noises
Milotti, Edoardo
2006-08-01
Many simulations of stochastic processes require colored noises: here I describe a small program library that generates samples with a tunable power-law spectral density: the algorithm can be modified to generate more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen in the case of astronomical data, see e.g. [N.R. Lomb, Astrophys. Space Sci. 39 (1976) 447]. The method is exact in the sense that it reproduces a process that is theoretically guaranteed to produce a range-limited power-law spectrum 1/f with -1uk/summaries/ADXV_v1_0.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler No. of lines in distributed program, including test data, etc.:6238 No. of bytes in distributed program, including test data, etc.:52 387 Distribution format:tar.gz RAM: The code of the test program is very compact (about 50 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run (like the one discussed in Section 4 in the long write-up) with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes. External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell, ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes
Phase-only asymmetric optical cryptosystem based on random modulus decomposition
Xu, Hongfeng; Xu, Wenhui; Wang, Shuaihua; Wu, Shaofan
2018-06-01
We propose a phase-only asymmetric optical cryptosystem based on random modulus decomposition (RMD). The cryptosystem is presented for effectively improving the capacity to resist various attacks, including the attack of iterative algorithms. On the one hand, RMD and phase encoding are combined to remove the constraints that can be used in the attacking process. On the other hand, the security keys (geometrical parameters) introduced by Fresnel transform can increase the key variety and enlarge the key space simultaneously. Numerical simulation results demonstrate the strong feasibility, security and robustness of the proposed cryptosystem. This cryptosystem will open up many new opportunities in the application fields of optical encryption and authentication.
Polymers undergoing inhomogeneous adsorption: exact results and Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Iliev, G K [Department of Mathematics, University of Melbourne, Parkville, Victoria (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G, E-mail: giliev@yorku.ca [Department of Chemistry, University of Toronto, Toronto (Canada)
2011-10-07
We consider several types of inhomogeneous polymer adsorption. In each case, the inhomogeneity is regular and resides in the surface, in the polymer or in both. We consider two different polymer models: a directed walk model that can be solved exactly and a self-avoiding walk model which we investigate using Monte Carlo methods. In each case, we compute the phase diagram. We compare and contrast the phase diagrams and give qualitative arguments about their forms. (paper)
Asymmetric Spatial Processing Under Cognitive Load.
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.
Asymmetric Spatial Processing Under Cognitive Load
Directory of Open Access Journals (Sweden)
Lien Naert
2018-04-01
Full Text Available Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right hemispace under high verbal working memory (WM load are discussed.
Mens, Lucas H M
2011-01-01
To test speech understanding in noise using array microphones integrated in an eyeglass device and to test if microphones placed anteriorly at the temple provide better directivity than above the pinna. Sentences were presented from the front and uncorrelated noise from 45, 135, 225 and 315°. Fifteen hearing impaired participants with a significant speech discrimination loss were included, as well as 5 normal hearing listeners. The device (Varibel) improved speech understanding in noise compared to most conventional directional devices with a directional benefit of 5.3 dB in the asymmetric fit mode, which was not significantly different from the bilateral fully directional mode (6.3 dB). Anterior microphones outperformed microphones at a conventional position above the pinna by 2.6 dB. By integrating microphones in an eyeglass frame, a long array can be used resulting in a higher directionality index and improved speech understanding in noise. An asymmetric fit did not significantly reduce performance and can be considered to increase acceptance and environmental awareness. Directional microphones at the temple seemed to profit more from the head shadow than above the pinna, better suppressing noise from behind the listener.
Asymmetric Aldol Additions: A Guided-Inquiry Laboratory Activity on Catalysis
King, Jorge H. Torres; Wang, Hong; Yezierski, Ellen J.
2018-01-01
Despite the importance of asymmetric catalysis in both the pharmaceutical and commodity chemicals industries, asymmetric catalysis is under-represented in undergraduate chemistry laboratory curricula. A novel guided-inquiry experiment based on the asymmetric aldol addition was developed. Students conduct lab work to compare the effectiveness of…
Multipartite asymmetric quantum cloning
International Nuclear Information System (INIS)
Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.
2005-01-01
We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized
Exact finite volume expectation values of local operators in excited states
Energy Technology Data Exchange (ETDEWEB)
Pozsgay, B. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Szécsényi, I.M. [Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Institute of Theoretical Physics, Eötvös Loránd University,Pázmány Péter sétány 1/A, 1117 Budapest (Hungary); Takács, G. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics,Budafoki út 8, 1111 Budapest (Hungary)
2015-04-07
We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.
Exact finite volume expectation values of local operators in excited states
International Nuclear Information System (INIS)
Pozsgay, B.; Szécsényi, I.M.; Takács, G.
2015-01-01
We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.
Seasonally asymmetric enhancement of northern vegetation productivity
Park, T.; Myneni, R.
2017-12-01
Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.
Exact relativistic solution of disordered radiation with planar symmetry
International Nuclear Information System (INIS)
Teixeira, A.F. Da F.; Wolk, I.; Som, M.M.
1977-01-01
An exact solution of the Einstein equations corresponding to and equilibrium distribution of disordered electromagnetic radiation with planar symmetry is obtained. This equilibrium is due solely to the gravitational and pressure effects inherent to the radiation. The distribution of radiation is found to be maximum and finite at the plane of symmetry, and to decrease monotonically in directions normal to this plane. The solution tends asymptotically to the static plane symmetric vacuum solution obtained by Levi-Civita (Atti. Accad. Naz. Lincei Rc.; 27:240 (1918)). Time-like and null geodesics are discussed. (author)
Directed energy deflection laboratory measurements of common space based targets
Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick
2016-09-01
We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so
Klein, A.A.B.; Melard, G.; Zahaf, T.
2000-01-01
The Fisher information matrix is of fundamental importance for the analysis of parameter estimation of time series models. In this paper the exact information matrix of a multivariate Gaussian time series model expressed in state space form is derived. A computationally efficient procedure is used
International Nuclear Information System (INIS)
Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.
1997-07-01
We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates (BEC) at T = 0 in (possibly asymmetric) double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. The evolution of the inter-well fractional population imbalance (related to the condensate phase difference) is obtained in terms of elliptic functions, generalizing well-known Josephson effects such as the 'ac' effect, the 'plasma oscillations', and the resonant Shapiro effect, to the nonsiusoidal regimes. We also present exact solutions for a novel 'macroscopic quantum self-trapping' effect arising from nonlinear atomic self-interaction in the GPE. The coherent BEC tunneling signatures are obtained in terms of the oscillations periods and the Fourier spectrum of the imbalance oscillations, as a function of the initial values of GPE parameters. Experimental procedures are suggested to make contact with theoretical predictions. (author). 44 refs, 8 figs
Observation of asymmetric electromagnetic field profiles in chiral metamaterials
Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi
2018-02-01
We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.
Exact analysis of discrete data
Hirji, Karim F
2005-01-01
Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...
Exact, almost and delayed fault detection
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.
1999-01-01
Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....
Directory of Open Access Journals (Sweden)
Kivelä Antti
2012-10-01
Full Text Available Abstract Background Neointimal formation in atherosclerosis has been subject for intense research. However, good animal models mimicking asymmetrical lesion formation in human subjects have been difficult to establish. The aim of this study was to develop a model which would lead to the formation of eccentric lesions under macroscopically intact non-denuded endothelium. Methods We have developed a new collar model where we placed two cushions or dots inside the collar. Arterial lesions were characterized using histology and ultrasound methods. Results When this dotted collar was placed around carotid and femoral arteries it produced asymmetrical pressure on adventitia and a mild flow disturbance, and hence a change in shear stress. Our hypothesis was that this simple procedure would reproducibly produce asymmetrical lesions without any intraluminal manipulations. Intima/media ratio increased towards the distal end of the collar with the direction of blood flow under macroscopically intact endothelium. Macrophages preferentially accumulated in areas of the thickest neointima thus resembling early steps in human atherosclerotic plaque formation. Proliferating cells in these lesions and underlying media were scarce at eight weeks time point. Conclusion The improved dotted collar model produces asymmetrical human-like atherosclerotic lesions in rabbits. This model should be useful in studies regarding the pathogenesis and formation of eccentric atherosclerotic lesions.
Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise.
Wang, Hui; Cheng, Xiujun; Duan, Jinqiao; Kurths, Jürgen; Li, Xiaofan
2018-01-01
This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Lévy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β≈-0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point phenomena do not occur in the symmetric noise case (β = 0). While in the multiplicative noise case, non-Gaussianity index value α = 1 is a separating point or line for both the MFET and the FEP. We also investigate the noise enhanced stability phenomenon. Additionally, we are able to specify the regions in the whole parameter space for the asymmetric noise, in which we attain desired likelihood for transcription. We have conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes. This work offers insights for possible ways of achieving gene regulation in experimental research.
Exact Solution and Exotic Fluid in Cosmology
Directory of Open Access Journals (Sweden)
Phillial Oh
2012-09-01
Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.
Perturbation of an exact strong gravity solution
International Nuclear Information System (INIS)
Baran, S.A.
1982-10-01
Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)
A new convenient asymmetric approach to herbarumin Ⅲ
Institute of Scientific and Technical Information of China (English)
Xue Song Chen; Shi Jun Da; Li Hong Yang; Bo Yan Xu; Zhi Xiang Xie; Ying Li
2007-01-01
The asymmetric total synthesis of herbarumin Ⅲ 3, a naturally occurred phytotoxin, along with 8-epi-herbarumin Ⅲ 22, was succeeded in 12 steps from n-butyraldehyde based on Brown's asymmetric allylation, taking modified Julia olefination and Yamaguchi's macro-lactonization as key steps.
Fourier synthesis of asymmetrical optical potentials for atoms
International Nuclear Information System (INIS)
Ritt, G.
2007-01-01
In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)
Exact solutions of the Navier-Stokes equations generalized for flow in porous media
Daly, Edoardo; Basser, Hossein; Rudman, Murray
2018-05-01
Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.
Crystal manyfold universes in /AdS space
Kaloper, N.
2000-02-01
We derive crystal braneworld solutions, comprising of intersecting families of parallel /n+2-branes in a /4+n-dimensional /AdS space. Each family consists of alternating positive and negative tension branes. In the simplest case of exactly orthogonal families, there arise different crystals with unbroken /4D Poincaré invariance on the intersections, where our world can reside. A crystal can be finite along some direction, either because that direction is compact, or because it ends on a segment of /AdS bulk, or infinite, where the branes continue forever. If the crystal is interlaced by connected /3-branes directed both along the intersections and orthogonal to them, it can be viewed as an example of a Manyfold universe proposed recently by Arkani-Hamed, Dimopoulos, Dvali and the author. There are new ways for generating hierarchies, since the bulk volume of the crystal and the lattice spacing affect the /4D Planck mass. The low energy physics is sensitive to the boundary conditions in the bulk, and has to satisfy the same constraints discussed in the Manyfold universe. Phenomenological considerations favor either finite crystals, or crystals which are infinite but have broken translational invariance in the bulk. The most distinctive signature of the bulk structure is that the bulk gravitons are Bloch waves, with a band spectrum, which we explicitly construct in the case of a /5-dimensional theory.
Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates
Reichhardt, C.; Ray, D.; Olson Reichhardt, C. J.
2015-07-01
We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized. Skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.
Engineered Asymmetric Composite Membranes with Rectifying Properties.
Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei
2016-01-27
Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Constraining Asymmetric Dark Matter through observations of compact stars
DEFF Research Database (Denmark)
Kouvaris, Christoforos; Tinyakov, Peter
2011-01-01
We put constraints on asymmetric dark matter candidates with spin-dependent interactions based on the simple existence of white dwarfs and neutron stars in globular clusters. For a wide range of the parameters (WIMP mass and WIMP-nucleon cross section), WIMPs can be trapped in progenitors in large...... numbers and once the original star collapses to a white dwarf or a neutron star, these WIMPs might self-gravitate and eventually collapse forming a mini-black hole that eventually destroys the star. We impose constraints competitive to direct dark matter search experiments, for WIMPs with masses down...
DEFF Research Database (Denmark)
Schneider, Jesper Wiborg; Borlund, Pia
2009-01-01
into the maps as relationships become overt. Finally, the study discusses how high publication activity influences mapping results considerably. To counter this effect, we demonstrate the appropriateness of correcting data for main effects by use of an asymmetric proximity measure of odds ratios....... of the author's dual roles of citing and being cited in a reference network. We model a set of 31 authors and compare the results to a recent author co-citation study of Information Science. We find that multidimensional unfolding is a reliable and insightful technique for modelling authors' citing and cited...... dimensions simultaneously. The common space of citing and cited positions exemplify that some authors have substantial discrepancies between their citing behaviour and the way their works are used by peers in the set. Further, modelling mutual relationships as asymmetric brings more accuracy and nuances...
An exact solution of three interacting friendly walks in the bulk
International Nuclear Information System (INIS)
Tabbara, R; Owczarek, A L; Rechnitzer, A
2016-01-01
We find the exact solution of three interacting friendly directed walks on the square lattice in the bulk, modelling a system of homopolymers that can undergo a multiple polymer fusion or zipping transition by introducing two distinct interaction parameters that differentiate between the zipping of only two or all three walks. We establish functional equations for the model’s corresponding generating function that are subsequently solved exactly by means of the obstinate kernel method. We then proceed to analyse our model, first considering the case where triple-walk interaction effects are ignored, finding that our model exhibits two phases which we classify as free and gelated (or zipped) regions, with the system exhibiting a second-order phase transition. We then analyse the full model where both interaction parameters are incorporated, presenting the full phase diagram and highlighting the additional existence of a first-order gelation (zipping) boundary. (paper)
Shcherbakova, Elena G; Brega, Valentina; Lynch, Vincent M; James, Tony D; Anzenbacher, Pavel
2017-07-26
A simple and efficient method for determination of the yield, enantiomeric/diasteriomeric excess (ee/de), and absolute configuration of crude chiral diols without the need of work-up and product isolation in a high throughput setting is described. This approach utilizes a self-assembled iminoboronate ester formed as a product by dynamic covalent self-assembly of a chiral diol with an enantiopure fluorescent amine such as tryptophan methyl ester or tryptophanol and 2-formylphenylboronic acid. The resulting diastereomeric boronates display different photophysical properties and allow for fluorescence-based ee determination of molecules containing a 1,2- or 1,3-diol moiety. This method has been utilized for the screening of ee in a number of chiral diols including atorvastatin, a statin used for the treatment of hypercholesterolemia. Noyori asymmetric hydrogenation of benzil was performed in a highly parallel fashion with errors products from the parallel asymmetric synthesis in real time and in a high-throughput screening (HTS) fashion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Epidemic spreading through direct and indirect interactions.
Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Saha, Sudipta
2014-09-01
In this paper we study the susceptible-infected-susceptible epidemic dynamics, considering a specialized setting where popular places (termed passive entities) are visited by agents (termed active entities). We consider two types of spreading dynamics: direct spreading, where the active entities infect each other while visiting the passive entities, and indirect spreading, where the passive entities act as carriers and the infection is spread via them. We investigate in particular the effect of selection strategy, i.e., the way passive entities are chosen, in the spread of epidemics. We introduce a mathematical framework to study the effect of an arbitrary selection strategy and derive formulas for prevalence, extinction probabilities, and epidemic thresholds for both indirect and direct spreading. We also obtain a very simple relationship between the extinction probability and the prevalence. We pay special attention to preferential selection and derive exact formulas. The analysis reveals that an increase in the diversity in the selection process lowers the epidemic thresholds. Comparing the direct and indirect spreading, we identify regions in the parameter space where the prevalence of the indirect spreading is higher than the direct one.
Variable angle asymmetric cut monochromator
International Nuclear Information System (INIS)
Smither, R.K.; Fernandez, P.B.
1993-09-01
A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS
Classes of exact Einstein Maxwell solutions
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
Zheng, Jun; You, Shu-Li
2014-11-24
Enantioselective construction of axially chiral biaryls by direct C-H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C-H bond olefination of biaryl compounds, using a chiral [Cp*Rh(III)] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium-catalyzed asymmetric conjugate additions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct observation of rectified motion of vortices by Lorentz microscopy
Indian Academy of Sciences (India)
We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric ...
Asymmetric double Langmuir probe: Small signal application
International Nuclear Information System (INIS)
Uckan, T.
1987-11-01
We discuss the asymmetric double Langmuir probe (ADLP) and demonstrate the possibility of using it to measure plasma temperature T/sub e/ and density n when it is operated in the region of small signal response. The area of one of the ADLP collectors is considerably larger than the other. This probe can be operated at a relatively low applied voltage, eV/sub a/T/sub e/ < 1, and still provides sufficient information to determine the plasma T/sub e/ and n. There is no need for a direct measurement of the ion saturation current, which can be on the order of a few amperes in large fusion devices. This reduces the requirements on the probe power supply. 6 refs., 6 figs
Exact optics - III. Schwarzschild's spectrograph camera revised
Willstrop, R. V.
2004-03-01
Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.
A Three-Stage Supply Chain Investment Model under Asymmetric Information
DEFF Research Database (Denmark)
Agrell, Per J.; Bogetoft, Peter
for the economic performance of three scenarios under asymmetric information on investment cost: direct contracting with an integrated CM-supplier, decentralized contracting to tier-1 suppliers and centralized contracting to tier-1 and tier-2 suppliers. The results show that the observed practice to delegate...... investments to tier-1 and possibly tier-2 suppliers leads to relatively poor performance due to under-investments. The superior arrangement is the centralized conditional model, where the OEM forces coordination among upstream suppliers by offering conditional financing. We close the paper with an analogy...
Fast and Exact Fiber Surfaces for Tetrahedral Meshes.
Klacansky, Pavol; Tierny, Julien; Carr, Hamish; Zhao Geng
2017-07-01
Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.