WorldWideScience

Sample records for exact diagonalization study

  1. Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study

    Science.gov (United States)

    Chandra, V. Ravi; Sahoo, Jyotisman

    2018-04-01

    We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .

  2. Periodic Anderson model with correlated conduction electrons: Variational and exact diagonalization study

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2012-06-01

    We investigate an extended version of the periodic Anderson model (the so-called periodic Anderson-Hubbard model) with the aim to understand the role of interaction between conduction electrons in the formation of the heavy-fermion and mixed-valence states. Two methods are used: (i) variational calculation with the Gutzwiller wave function optimizing numerically the ground-state energy and (ii) exact diagonalization of the Hamiltonian for short chains. The f-level occupancy and the renormalization factor of the quasiparticles are calculated as a function of the energy of the f orbital for a wide range of the interaction parameters. The results obtained by the two methods are in reasonably good agreement for the periodic Anderson model. The agreement is maintained even when the interaction between band electrons, Ud, is taken into account, except for the half-filled case. This discrepancy can be explained by the difference between the physics of the one- and higher-dimensional models. We find that this interaction shifts and widens the energy range of the bare f level, where heavy-fermion behavior can be observed. For large-enough Ud this range may lie even above the bare conduction band. The Gutzwiller method indicates a robust transition from Kondo insulator to Mott insulator in the half-filled model, while Ud enhances the quasiparticle mass when the filling is close to half filling.

  3. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  4. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    Science.gov (United States)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  5. Thermodynamics of Rh nuclear spins calculated by exact diagonalization

    DEFF Research Database (Denmark)

    Lefmann, K.; Ipsen, J.; Rasmussen, F.B.

    2000-01-01

    We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...

  6. Benchmarking GW against exact diagonalization for semiempirical models

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian Sommer

    2010-01-01

    We calculate ground-state total energies and single-particle excitation energies of seven pi-conjugated molecules described with the semiempirical Pariser-Parr-Pople model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW capt...... (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene....

  7. Off-diagonal Bethe ansatz for exactly solvable models

    CERN Document Server

    Wang, Yupeng; Cao, Junpeng; Shi, Kangjie

    2015-01-01

    This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix.  These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.

  8. Exact diagonalization: the Bose-Hubbard model as an example

    International Nuclear Information System (INIS)

    Zhang, J M; Dong, R X

    2010-01-01

    We take the Bose-Hubbard model to illustrate exact diagonalization techniques in a pedagogical way. We follow the route of first generating all the basis vectors, then setting up the Hamiltonian matrix with respect to this basis and finally using the Lanczos algorithm to solve low lying eigenstates and eigenvalues. Emphasis is placed on how to enumerate all the basis vectors and how to use the hashing trick to set up the Hamiltonian matrix or matrices corresponding to other quantities. Although our route is not necessarily the most efficient one in practice, the techniques and ideas introduced are quite general and may find use in many other problems.

  9. Exact diagonalization of quantum lattice models on coprocessors

    Science.gov (United States)

    Siro, T.; Harju, A.

    2016-10-01

    We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a single step in the Lanczos algorithm. We study two quantum lattice models with different particle numbers, and conclude that for small systems, the multi-core CPU is the fastest platform, while for large systems, the graphics processor is the clear winner, reaching speedups of up to 7.6 compared to the CPU. The Xeon Phi outperforms the CPU with sufficiently large particle number, reaching a speedup of 2.5.

  10. Diagonal chromatography to study plant protein modifications.

    Science.gov (United States)

    Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris

    2016-08-01

    An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Large-scale exact diagonalizations reveal low-momentum scales of nuclei

    Science.gov (United States)

    Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.

    2018-03-01

    Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

  12. Exact diagonalization of the D-dimensional spatially confined quantum harmonic oscillator

    Directory of Open Access Journals (Sweden)

    Kunle Adegoke

    2016-01-01

    Full Text Available In the existing literature various numerical techniques have been developed to quantize the confined harmonic oscillator in higher dimensions. In obtaining the energy eigenvalues, such methods often involve indirect approaches such as searching for the roots of hypergeometric functions or numerically solving a differential equation. In this paper, however, we derive an explicit matrix representation for the Hamiltonian of a confined quantum harmonic oscillator in higher dimensions, thus facilitating direct diagonalization.

  13. Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison.

    Science.gov (United States)

    Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim

    2017-12-15

    The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

  14. Non-LTE radiative transfer with lambda-acceleration - Convergence properties using exact full and diagonal lambda-operators

    Science.gov (United States)

    Macfarlane, J. J.

    1992-01-01

    We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.

  15. Independent oscillator model of a heat bath: exact diagonalization of the Hamiltonian

    International Nuclear Information System (INIS)

    Ford, G.W.; Lewis, J.T.; O'Connell, R.F.

    1988-01-01

    The problem of a quantum oscillator coupled to an independent-oscillator model of a heat bath is discussed. The transformation to normal coordinates is explicitly constructed using the method of Ullersma. With this transformation an alternative derivation of an exact formula for the oscillator free energy is constructed. The various contributions to the oscillator energy are calculated, with the aim of further understanding this formula. Finally, the limitations of linear coupling models, such as that used by Ullersma, are discussed in the form of some critical remarks

  16. Doing Very Big Calculations on Modest Size Computers: Reducing the Cost of Exact Diagonalization Using Singular Value Decomposition

    International Nuclear Information System (INIS)

    Weinstein, M.

    2012-01-01

    I will talk about a new way of implementing Lanczos and contraction algorithms to diagonalize lattice Hamiltonians that dramatically reduces the memory required to do the computation, without restricting to variational ansatzes. (author)

  17. Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)

    2013-08-15

    This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.

  18. Comparative study on diagonal equivalent methods of masonry infill panel

    Science.gov (United States)

    Amalia, Aniendhita Rizki; Iranata, Data

    2017-06-01

    ratio of height to width of 1 to 1.5. Load used in the experiment was based on Uniform Building Code (UBC) 1991. Every method compared was calculated first to get equivalent diagonal strut width. The second step was modelling method using structure analysis software as a frame with a diagonal in a linear mode. The linear mode was chosen based on structure analysis commonly used by structure designers. The frame was loaded and for every model, its load and deformation values were identified. The values of load - deformation of every method were compared to those of experimental test specimen by Mehrabi and open frame. From comparative study performed, Holmes' and Bazan-Meli's equations gave results the closest to the experimental test specimen by Mehrabi. Other equations that gave close values within the limit (by comparing it to the open frame) are Saneinejad-Hobbs, Stafford-Smith, Bazan-Meli, Liauw Kwan, Paulay and Priestley, FEMA 356, Durani Luo, Hendry, Papia and Chen-Iranata.

  19. Exact diagonalization of the interacting propagator for the 2D-electron gas in a magnetic field

    International Nuclear Information System (INIS)

    Burke, A.; Cabo, A.

    1990-07-01

    The spatial dependence of the exact one electron propagator for an interacting 2D-electron gas in a magnetic field is shown to be the same as for a non-interacting gas. This happens whenever the translational symmetry is unbroken in the ground state. The result may be extended to a more general class of systems. The translational symmetry also implies that the density of states has the same kind of discrete character as in the non-interacting case. This is shown explicitly in the Hartree-Fock approximation by solving the Dyson equation. (author). 10 refs

  20. Teaching the "Diagonalization Concept" in Linear Algebra with Technology: A Case Study at Galatasaray University

    Science.gov (United States)

    Yildiz Ulus, Aysegul

    2013-01-01

    This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…

  1. Using Volunteer Computing to Study Some Features of Diagonal Latin Squares

    Science.gov (United States)

    Vatutin, Eduard; Zaikin, Oleg; Kochemazov, Stepan; Valyaev, Sergey

    2017-12-01

    In this research, the study concerns around several features of diagonal Latin squares (DLSs) of small order. Authors of the study suggest an algorithm for computing minimal and maximal numbers of transversals of DLSs. According to this algorithm, all DLSs of a particular order are generated, and for each square all its transversals and diagonal transversals are constructed. The algorithm was implemented and applied to DLSs of order at most 7 on a personal computer. The experiment for order 8 was performed in the volunteer computing project Gerasim@home. In addition, the problem of finding pairs of orthogonal DLSs of order 10 was considered and reduced to Boolean satisfiability problem. The obtained problem turned out to be very hard, therefore it was decomposed into a family of subproblems. In order to solve the problem, the volunteer computing project SAT@home was used. As a result, several dozen pairs of described kind were found.

  2. Diagonal Arguments

    Czech Academy of Sciences Publication Activity Database

    Peregrin, Jaroslav

    -, č. 2 (2017), s. 33-43 ISSN 0567-8293 R&D Projects: GA ČR(CZ) GA17-15645S Institutional support: RVO:67985955 Keywords : diagonalization * cardinality * Russell’s paradox * incompleteness of arithmetic Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology

  3. Diagonalization of Hamiltonian; Diagonalization of Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, L M; Pascual, P

    1960-07-01

    We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.

  4. Exact diagonalization study of domain structures in integer filling factor quantum Hall ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Rezayi, E. H.; Jungwirth, Tomáš; MacDonald, A. H.; Haldane, F. D. M.

    2003-01-01

    Roč. 67, č. 20 (2003), s. 201305-1 - 201305-4 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : domain structure * integer filling factor * quantum Hall ferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  5. Self-consistent cluster theories for alloys with diagonal and off-diagonal disorder

    International Nuclear Information System (INIS)

    Gonis, A.; Garland, J.W.

    1978-01-01

    The molecular coherent-potential approximation (MCPA) and other, simpler cluster approximations for disordered alloys are studied both analytically and numerically for alloys with diagonal and off-diagonal disorder (ODD). First, the MCPA for alloys with only diagonal disorder is rederived within the interactor formalism of Blackman, Esterling, and Berk. This formalism, which simplifies the numerical implementation of the MCPA, is then used to generalize the MCPA so as to take account of ODD. It is shown that the analytic properties of the MCPA are preserved under this generalization. Also, two computationally simple cluster approximations, the self-consistent central-site approximation (SCCSA) and the self-consistent boundary-site approximation (SCBSA), are generalized to include the effects of ODD. It is shown that for one-dimensional systems with only nearest-neighbor hopping the SCBSA yields Green's functions which are identical to those given by the MCPA and thus are analytic, even in the presence of ODD. Finally, the results of numerical calculations are reported for one-dimensional systems with only nearest-neighbor hopping but with both diagonal and off-diagonal disorder. These calculations were performed using the single-site approximation of Blackman, Esterling, and Berk and three different cluster approximations: the multishell method previously proposed by the authors, the SCCSA, and the SCBSA. The results of these calculations are compared with exact results and with previous results obtained using the truncated t-matix approximation and the recent method of Kaplan and Gray. These comparisons suggest that the multishell method and the generalization of the SCBSA given in this paper are more efficient and accurate for the calculation of densities of states for systems with ODD. On the other hand, as expected, the SCCSA was found to yield severely nonanalytic results for the values of band parameters used

  6. Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks

    International Nuclear Information System (INIS)

    Cao Jiacong; Lin Xingchun

    2008-01-01

    An accurate forecast of solar irradiation is required for various solar energy applications and environmental impact analyses in recent years. Comparatively, various irradiation forecast models based on artificial neural networks (ANN) perform much better in accuracy than many conventional prediction models. However, the forecast precision of most existing ANN based forecast models has not been satisfactory to researchers and engineers so far, and the generalization capability of these networks needs further improving. Combining the prominent dynamic properties of a recurrent neural network (RNN) with the enhanced ability of a wavelet neural network (WNN) in mapping nonlinear functions, a diagonal recurrent wavelet neural network (DRWNN) is newly established in this paper to perform fine forecasting of hourly and daily global solar irradiance. Some additional steps, e.g. applying historical information of cloud cover to sample data sets and the cloud cover from the weather forecast to network input, are adopted to help enhance the forecast precision. Besides, a specially scheduled two phase training algorithm is adopted. As examples, both hourly and daily irradiance forecasts are completed using sample data sets in Shanghai and Macau, and comparisons between irradiation models show that the DRWNN models are definitely more accurate

  7. Quasi-exact solvability

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1992-01-01

    This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite

  8. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  9. Chaotic diagonal recurrent neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  10. Nonlinear Spinor Field in Non-Diagonal Bianchi Type Space-Time

    Directory of Open Access Journals (Sweden)

    Saha Bijan

    2018-01-01

    Full Text Available Within the scope of the non-diagonal Bianchi cosmological models we have studied the role of the spinor field in the evolution of the Universe. In the non-diagonal Bianchi models the spinor field distribution along the main axis is anisotropic and does not vanish in the absence of the spinor field nonlinearity. Hence within these models perfect fluid, dark energy etc. cannot be simulated by the spinor field nonlinearity. The equation for volume scale V in the case of non-diagonal Bianchi models contains a term with first derivative of V explicitly and does not allow exact solution by quadratures. Like the diagonal models the non-diagonal Bianchi space-time becomes locally rotationally symmetric even in the presence of a spinor field. It was found that depending on the sign of the coupling constant the model allows either an open Universe that rapidly grows up or a close Universe that ends in a Big Crunch singularity.

  11. Vaidya spacetime in the diagonal coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, V. A., E-mail: berezin@inr.ac.ru; Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru; Eroshenko, Yu. N., E-mail: eroshenko@inr.ac.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2017-03-15

    We have analyzed the transformation from initial coordinates (v, r) of the Vaidya metric with light coordinate v to the most physical diagonal coordinates (t, r). An exact solution has been obtained for the corresponding metric tensor in the case of a linear dependence of the mass function of the Vaidya metric on light coordinate v. In the diagonal coordinates, a narrow region (with a width proportional to the mass growth rate of a black hole) has been detected near the visibility horizon of the Vaidya accreting black hole, in which the metric differs qualitatively from the Schwarzschild metric and cannot be represented as a small perturbation. It has been shown that, in this case, a single set of diagonal coordinates (t, r) is insufficient to cover the entire range of initial coordinates (v, r) outside the visibility horizon; at least three sets of diagonal coordinates are required, the domains of which are separated by singular surfaces on which the metric components have singularities (either g{sub 00} = 0 or g{sub 00} = ∞). The energy–momentum tensor diverges on these surfaces; however, the tidal forces turn out to be finite, which follows from an analysis of the deviation equations for geodesics. Therefore, these singular surfaces are exclusively coordinate singularities that can be referred to as false fire-walls because there are no physical singularities on them. We have also considered the transformation from the initial coordinates to other diagonal coordinates (η, y), in which the solution is obtained in explicit form, and there is no energy–momentum tensor divergence.

  12. Analytic study of the off-diagonal mass generation for Yang-Mills theories in the maximal Abelian gauge

    International Nuclear Information System (INIS)

    Dudal, D.; Verschelde, H.; Gracey, J.A.; Lemes, V.E.R.; Sobreiro, R.F.; Sorella, S.P.; Sarandy, M.S.

    2004-01-01

    We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost operator of mass dimension two, which lowers the vacuum energy. We construct an effective potential for this operator by a combined use of the local composite operators technique with the algebraic renormalization and we discuss the gauge parameter independence of the results. We also show that it is possible to connect the vacuum energy, due to the mass dimension-two condensate discussed here, with the nontrivial vacuum energy originating from the condensate μ 2 >, which has attracted much attention in the Landau gauge

  13. Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li, E-mail: wlyang@nwu.edu.cn [Institute of Modern Physics, Northwest University, Xian 710069 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-01

    Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived.

  14. Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions

    International Nuclear Information System (INIS)

    Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2013-01-01

    Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived

  15. Computational Lower Bounds Using Diagonalization

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...

  16. Quantum Monte Carlo diagonalization method as a variational calculation

    International Nuclear Information System (INIS)

    Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio.

    1997-01-01

    A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)

  17. A progressive diagonalization scheme for the Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan, Feng; Guan, Xin; Wang, Yin; Draayer, J P

    2010-01-01

    A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit interacting with a single-mode radiation field via a dipole interaction, is proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly using a progressive scheme that involves a finite set of one variable polynomial equations. The scheme is especially efficient for the lower part of the spectrum. Some low-lying energy levels of the model with several sets of parameters are calculated and compared to those provided by the recently proposed generalized rotating-wave approximation and a full matrix diagonalization.

  18. Exact milestoning

    International Nuclear Information System (INIS)

    Bello-Rivas, Juan M.; Elber, Ron

    2015-01-01

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied

  19. TVT-Exact and midurethral sling (SLING-IUFT) operative procedures: a randomized study.

    Science.gov (United States)

    Aniuliene, Rosita; Aniulis, Povilas; Skaudickas, Darijus

    2015-01-01

    The aim of the study is to compare results, effectiveness and complications of TVT exact and midurethral sling (SLING-IUFT) operations in the treatment of female stress urinary incontinence (SUI). A single center nonblind, randomized study of women with SUI who were randomized to TVT-Exact and SLING-IUFT was performed by one surgeon from April 2009 to April 2011. SUI was diagnosed on coughing and Valsalva test and urodynamics (cystometry and uroflowmetry) were assessed before operation and 1 year after surgery. This was a prospective randomized study. The follow up period was 12 months. 76 patients were operated using the TVT-Exact operation and 78 patients - using the SLING-IUFT operation. There was no statistically significant differences between groups for BMI, parity, menopausal status and prolapsed stage (no patients had cystocele greater than stage II). Mean operative time was significantly shorter in the SLING-IUFT group (19 ± 5.6 min.) compared with the TVT-Exact group (27 ± 7.1 min.). There were statistically significant differences in the effectiveness of both procedures: TVT-Exact - at 94.5% and SLING-IUFT - at 61.2% after one year. Hospital stay was statistically significantly shorter in the SLING-IUFT group (1. 2 ± 0.5 days) compared with the TVT-Exact group (3.5 ± 1.5 days). Statistically significantly fewer complications occurred in the SLING-IUFT group. the TVT-Exact and SLING-IUFT operations are both effective for surgical treatment of female stress urinary incontinence. The SLING-IUFT involved a shorter operation time and lower complications rate., the TVT-Exact procedure had statistically significantly more complications than the SLING-IUFT operation, but a higher effectiveness.

  20. Diagonalization of the mass matrices

    International Nuclear Information System (INIS)

    Rhee, S.S.

    1984-01-01

    It is possible to make 20 types of 3x3 mass matrices which are hermitian. We have obtained unitary matrices which could diagonalize each mass matrix. Since the three elements of mass matrix can be expressed in terms of the three eigenvalues, msub(i), we can also express the unitary matrix in terms of msub(i). (Author)

  1. The micropolyurethane foam-coated Diagon/Gel4Two implant in aesthetic and reconstructive breast surgery – 3-year results of an ongoing study

    Directory of Open Access Journals (Sweden)

    Brunnert, Klaus E.

    2015-12-01

    Full Text Available Background: Breast implants are worldwide in use since 1962. Initially there were some problems with capsular contracture and the palpability of the rim of the implant. In 1968 this led to the introduction of the micropolyurethane foam-coating and then in 1970 to the first micropolyurethane foam-coated implant by F.A. Ashley. As a result of additional technical refinements in manufacturing this new implant design significantly reduced complications i.e. capsular contracture and implant rotation. Methods: This study reports a single surgeon’s experience with aesthetic and reconstructive breast surgery, in primary and secondary cases with the sole use of micropolyurethane foam-coated Diagon/gel4Two implants, partly in combination with the additional use of synthetic meshes, acellular dermal matrices and lipofilling. The trial is a prospective, single center cohort study designed to demonstrate the safety and effectiveness of the new implant design in primary and secondary aesthetic and reconstructive breast surgery. The reported data provide an interim report of the implantations performed from November 2010 to December 2013.Results: 90 patients were admitted to the study with 152 implants. The majority of the implants (n=95, 62.5% were used in reoperative cases for either oncological (n=52, 34.2% or aesthetic reasons (n=43, 28.3%. The median age of the study cohort was 45 years; the median body mass index was 21; the median observation time is 41 months. There was a very low complication rate, both short term within 6 weeks after the implantation of the silicone gel implant and in the follow up in November 2015. There were no serious complications needing explantation, no capsular fibrosis or implant rotation or rupture so far. There were only 4 minor complications (1.97%. There was 1 local recurrence 4 years after skin and nipple sparing mastectomy.Conclusion: The micropolyurethane foam-coated Diagon/gel4Two implant is a very reliable silicone

  2. Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al. I. Cuza' ' , Project IDEI, Iasi (Romania); Irwin, Klee [Quantum Gravity Research, Topanga, CA (United States)

    2017-01-15

    Geometric methods for constructing exact solutions of equations of motion with first order α{sup '} corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)

  3. Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity

    International Nuclear Information System (INIS)

    Vacaru, Sergiu I.; Irwin, Klee

    2017-01-01

    Geometric methods for constructing exact solutions of equations of motion with first order α ' corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)

  4. The modified Gauss diagonalization of polynomial matrices

    International Nuclear Information System (INIS)

    Saeed, K.

    1982-10-01

    The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)

  5. A comparative study on full diagonalization of Hessian matrix and Gradient-only technique to trace out reaction path in doped noble gas clusters using stochastic optimization

    International Nuclear Information System (INIS)

    Biring, Shyamal Kumar; Chaudhury, Pinaki

    2012-01-01

    Highlights: ► Estimation of critical points in Noble-gas clusters. ► Evaluation of first order saddle point or transition states. ► Construction of reaction path for structural change in clusters. ► Use of Monte-Carlo Simulated Annealing to study structural changes. - Abstract: This paper proposes Simulated Annealing based search to locate critical points in mixed noble gas clusters where Ne and Xe are individually doped in Ar-clusters. Using Lennard–Jones (LJ) atomic interaction we try to explore the search process of transformation through Minimum Energy Path (MEP) from one minimum energy geometry to another via first order saddle point on the potential energy surface of the clusters. Here we compare the results based on diagonalization of the full Hessian all through the search and quasi-gradient only technique to search saddle points and construction of reaction path (RP) for three sizes of doped Ar-clusters, (Ar) 19 Ne/Xe,(Ar) 24 Ne/Xe and (Ar) 29 Ne/Xe.

  6. MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming

    Directory of Open Access Journals (Sweden)

    Yuteng Xiao

    2017-01-01

    Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.

  7. Construction and study of exact ground states for a class of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Fannes, M.

    1989-01-01

    Techniques of quantum probability are used to construct the exact ground states for a class of quantum spin systems in one dimension. This class in particular contains the antiferromagnetic models introduced by various authors under the name of VBS-models. The construction permits a detailed study of these ground states. (A.C.A.S.) [pt

  8. New exact approaches to the nuclear eigenvalue problem

    International Nuclear Information System (INIS)

    Andreozzi, F.; Lo Iudice, N.; Porrino, A.; Knapp, F.; Kvasil, J.

    2005-01-01

    In a recent past some of us have developed a new algorithm for diagonalizing the shell model Hamiltonian which consists of an iterative sequence of diagonalization of sub-matrices of small dimensions. The method, apart from being easy to implement, is robust, yielding always stable numerical solutions, and free of ghost eigenvalues. Subsequently, we have endowed the algorithm with an importance sampling, which leads to a drastic truncation of the shell model space, while keeping the accuracy of the solutions under control. Applications to typical nuclei show that the sampling yields also an extrapolation law to the exact eigenvalues. Complementary to the shell model algorithm is a method we are developing for studying collective and non collective excitations. To this purpose we solve the nuclear eigenvalue problem in a space which is the direct sum of Tamm-Dancoff n-phonon subspaces (n=0,1, ...N). The multiphonon basis is constructed by an iterative equation of motion method, which generates an over complete set of n-phonon states from the (n-1)-phonon basis. The redundancy is removed completely and exactly by a method based on the Choleski decomposition. The full Hamiltonian matrix comes out to have a simple structure and, therefore, can be drastically truncated before diagonalization by the mentioned importance sampling method. The phonon composition of the basis states allows removing naturally and maximally the spurious admixtures induced by the centre of mass motion. An application of the method to 16 O will be given for illustrative purposes. (authors)

  9. Nondestructive identification of the Bell diagonal state

    International Nuclear Information System (INIS)

    Jin Jiasen; Yu Changshui; Song Heshan

    2011-01-01

    We propose a scheme for identifying an unknown Bell diagonal state. In our scheme the measurements are performed on the probe qubits instead of the Bell diagonal state. The distinct advantage is that the quantum state of the evolved Bell diagonal state ensemble plus probe states will still collapse on the original Bell diagonal state ensemble after the measurement on probe states; i.e., our identification is quantum state nondestructive. How to realize our scheme in the framework of cavity electrodynamics is also shown.

  10. Loading factor and inclination parameter of diagonal type MHD generators

    International Nuclear Information System (INIS)

    Ishikawa, Motoo

    1979-01-01

    Regarding diagonal type MHD generators is studied the relation between the loading factor and inclination parameter which is required for attaining the maximum power density with a given electrical efficiency on the assumption of infinitely segmented electrodes. The average current density on electrodes is calculated against the Hall parameter, loading factor, and inclination parameter. The diagonal type generator is compared with Faraday type generator regarding the average current density. Decreasing the loading factor from inlet to outlet is appropriate to small size generators but increasing to large size generators. The inclination parameter had better decrease in both generators, being smaller for small generators than for large ones. The average current density on electrodes of diagonal type generators varies less with the loading factor than the Faraday type. In large size generators its value can become smaller compared with that of the Faraday type. (author)

  11. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare the generalized gradient approximation to the hybrid functional approach of exact exchange for correlated electrons (EECE). In contrast to the former, the latter reproduces the insulating state of the compound and the midgap states. The EECE approach, in general, appears to be appropriate for describing stripe phases in systems with orbital degrees of freedom. Copyright © EPLA, 2009.

  12. Diagonal Limit for Conformal Blocks in d Dimensions

    CERN Document Server

    Hogervorst, Matthijs; Rychkov, Slava

    2013-01-01

    Conformal blocks in any number of dimensions depend on two variables z, zbar. Here we study their restrictions to the special "diagonal" kinematics z = zbar, previously found useful as a starting point for the conformal bootstrap analysis. We show that conformal blocks on the diagonal satisfy ordinary differential equations, third-order for spin zero and fourth-order for the general case. These ODEs determine the blocks uniquely and lead to an efficient numerical evaluation algorithm. For equal external operator dimensions, we find closed-form solutions in terms of finite sums of 3F2 functions.

  13. Breaking Megrelishvili protocol using matrix diagonalization

    Science.gov (United States)

    Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio

    2018-03-01

    In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.

  14. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  15. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  16. Strictly diagonal holomorphic functions on Banach spaces

    Directory of Open Access Journals (Sweden)

    O. I. Fedak

    2016-01-01

    Full Text Available In this paper we investigate the boundedness of holomorphic functionals on a Banach space with a normalized basis $\\{e_n\\}$ which have a very special form $f(x=f(0+\\sum_{n=1}^\\infty c_nx_n^n$ and which we call strictly diagonal. We consider under which conditions strictly diagonal functions are entire and uniformly continuous on every ball of a fixed radius.

  17. Diagonalization of quark mass matrices and the Cabibbo-Kobayashi-Maskawa matrix

    International Nuclear Information System (INIS)

    Rasin, A.

    1997-08-01

    I discuss some general aspect of diagonalizing the quark mass matrices and list all possible parametrizations of the Cabibbo-Kobayashi-Maskawa matrix (CKM) in terms of three rotation angles and a phase. I systematically study the relation between the rotations needed to diagonalize the Yukawa matrices and various parametrizations of the CKM. (author). 17 refs, 1 tab

  18. An exact approach for studying cargo transport by an ensemble of molecular motors

    International Nuclear Information System (INIS)

    Materassi, Donatello; Roychowdhury, Subhrajit; Hays, Thomas; Salapaka, Murti

    2013-01-01

    Intracellular transport is crucial for many cellular processes where a large fraction of the cargo is transferred by motor-proteins over a network of microtubules. Malfunctions in the transport mechanism underlie a number of medical maladies. Existing methods for studying how motor-proteins coordinate the transfer of a shared cargo over a microtubule are either analytical or are based on Monte-Carlo simulations. Approaches that yield analytical results, while providing unique insights into transport mechanism, make simplifying assumptions, where a detailed characterization of important transport modalities is difficult to reach. On the other hand, Monte-Carlo based simulations can incorporate detailed characteristics of the transport mechanism; however, the quality of the results depend on the number and quality of simulation runs used in arriving at results. Here, for example, it is difficult to simulate and study rare-events that can trigger abnormalities in transport. In this article, a semi-analytical methodology that determines the probability distribution function of motor-protein behavior in an exact manner is developed. The method utilizes a finite-dimensional projection of the underlying infinite-dimensional Markov model, which retains the Markov property, and enables the detailed and exact determination of motor configurations, from which meaningful inferences on transport characteristics of the original model can be derived. Under this novel probabilistic approach new insights about the mechanisms of action of these proteins are found, suggesting hypothesis about their behavior and driving the design and realization of new experiments. The advantages provided in accuracy and efficiency make it possible to detect rare events in the motor protein dynamics, that could otherwise pass undetected using standard simulation methods. In this respect, the model has allowed to provide a possible explanation for possible mechanisms under which motor proteins could

  19. Biomechanical pole and leg characteristics during uphill diagonal roller skiing.

    Science.gov (United States)

    Lindinger, Stefan Josef; Göpfert, Caroline; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer

    2009-11-01

    Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9 degrees; 11 km/h). Performance was correlated to cycle length (r = 0.77; P Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r= -0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.

  20. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  1. Exact work

    International Nuclear Information System (INIS)

    Zeger, J.

    1993-01-01

    Organized criminals also tried to illegally transfer nuclear material through Austria. Two important questions have to be answered after the material is sized by police authorities: What is the composition of the material and where does it come from? By application of a broad range of analytical techniques, which were developed or refined by our experts, it is possible to measure the exact amount and isotopic composition of uranium and plutonium in any kind of samples. The criminalistic application is only a byproduct of the large scale work on controlling the peaceful application of nuclear energy, which is done in contract with the IAEA in the context of the 'Network of Analytical Laboratories'

  2. Off-Diagonal Geometric Phase in a Neutron Interferometer Experiment

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Loidl, R.; Baron, M.; Badurek, G.; Rauch, H.

    2001-01-01

    Off-diagonal geometric phases acquired by an evolution of a 1/2 -spin system have been observed by means of a polarized neutron interferometer. We have successfully measured the off-diagonal phase for noncyclic evolutions even when the diagonal geometric phase is undefined. Our data confirm theoretical predictions and the results illustrate the significance of the off-diagonal phase

  3. Virial expansion for almost diagonal random matrices

    International Nuclear Information System (INIS)

    Yevtushenko, Oleg; Kravtsov, Vladimir E

    2003-01-01

    Energy level statistics of Hermitian random matrices H-circumflex with Gaussian independent random entries H i≥j is studied for a generic ensemble of almost diagonal random matrices with (vertical bar H ii vertical bar 2 ) ∼ 1 and (vertical bar H i≠j vertical bar 2 ) bF(vertical bar i - j vertical bar) parallel 1. We perform a regular expansion of the spectral form-factor K(τ) = 1 + bK 1 (τ) + b 2 K 2 (τ) + c in powers of b parallel 1 with the coefficients K m (τ) that take into account interaction of (m + 1) energy levels. To calculate K m (τ), we develop a diagrammatic technique which is based on the Trotter formula and on the combinatorial problem of graph edges colouring with (m + 1) colours. Expressions for K 1 (τ) and K 2 (τ) in terms of infinite series are found for a generic function F(vertical bar i - j vertical bar ) in the Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE) and in the crossover between them (the almost unitary Gaussian ensemble). The Rosenzweig-Porter and power-law banded matrix ensembles are considered as examples

  4. Enumeration of diagonally colored Young diagrams

    OpenAIRE

    Gyenge, Ádám

    2015-01-01

    In this note we give a new proof of a closed formula for the multivariable generating series of diagonally colored Young diagrams. This series also describes the Euler characteristics of certain Nakajima quiver varieties. Our proof is a direct combinatorial argument, based on Andrews' work on generalized Frobenius partitions. We also obtain representations of these series in some particular cases as infinite products.

  5. Diagonal Pade approximations for initial value problems

    International Nuclear Information System (INIS)

    Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.

    1987-06-01

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab

  6. Diagonalizing quadratic bosonic operators by non-autonomous flow equations

    CERN Document Server

    Bach, Volker

    2016-01-01

    The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.

  7. A CLT on the SNR of Diagonally Loaded MVDR Filters

    Science.gov (United States)

    Rubio, Francisco; Mestre, Xavier; Hachem, Walid

    2012-08-01

    This paper studies the fluctuations of the signal-to-noise ratio (SNR) of minimum variance distorsionless response (MVDR) filters implementing diagonal loading in the estimation of the covariance matrix. Previous results in the signal processing literature are generalized and extended by considering both spatially as well as temporarily correlated samples. Specifically, a central limit theorem (CLT) is established for the fluctuations of the SNR of the diagonally loaded MVDR filter, under both supervised and unsupervised training settings in adaptive filtering applications. Our second-order analysis is based on the Nash-Poincar\\'e inequality and the integration by parts formula for Gaussian functionals, as well as classical tools from statistical asymptotic theory. Numerical evaluations validating the accuracy of the CLT confirm the asymptotic Gaussianity of the fluctuations of the SNR of the MVDR filter.

  8. A Diagonal-Steering-Based Binaural Beamforming Algorithm Incorporating a Diagonal Speech Localizer for Persons With Bilateral Hearing Impairment.

    Science.gov (United States)

    Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Kim, In Young

    2015-12-01

    Previously suggested diagonal-steering algorithms for binaural hearing support devices have commonly assumed that the direction of the speech signal is known in advance, which is not always the case in many real circumstances. In this study, a new diagonal-steering-based binaural speech localization (BSL) algorithm is proposed, and the performances of the BSL algorithm and the binaural beamforming algorithm, which integrates the BSL and diagonal-steering algorithms, were evaluated using actual speech-in-noise signals in several simulated listening scenarios. Testing sounds were recorded in a KEMAR mannequin setup and two objective indices, improvements in signal-to-noise ratio (SNRi ) and segmental SNR (segSNRi ), were utilized for performance evaluation. Experimental results demonstrated that the accuracy of the BSL was in the 90-100% range when input SNR was -10 to +5 dB range. The average differences between the γ-adjusted and γ-fixed diagonal-steering algorithms (for -15 to +5 dB input SNR) in the talking in the restaurant scenario were 0.203-0.937 dB for SNRi and 0.052-0.437 dB for segSNRi , and in the listening while car driving scenario, the differences were 0.387-0.835 dB for SNRi and 0.259-1.175 dB for segSNRi . In addition, the average difference between the BSL-turned-on and the BSL-turned-off cases for the binaural beamforming algorithm in the listening while car driving scenario was 1.631-4.246 dB for SNRi and 0.574-2.784 dB for segSNRi . In all testing conditions, the γ-adjusted diagonal-steering and BSL algorithm improved the values of the indices more than the conventional algorithms. The binaural beamforming algorithm, which integrates the proposed BSL and diagonal-steering algorithm, is expected to improve the performance of the binaural hearing support devices in noisy situations. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain

    OpenAIRE

    Imbrie, John Z

    2016-01-01

    We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a KAM-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor product basis into a complete set of exact many-body eigenfunctions.

  10. Fast Approximate Joint Diagonalization Incorporating Weight Matrices

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Yeredor, A.

    2009-01-01

    Roč. 57, č. 3 (2009), s. 878-891 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : autoregressive processes * blind source separation * nonstationary random processes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.212, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/tichavsky-fast approximate joint diagonalization incorporating weight matrices.pdf

  11. Diagonalizing sensing matrix of broadband RSE

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji

    2006-01-01

    For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described

  12. Numerical study of the t-J model: Exact ground state and flux phases

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Poilblanc, D.

    1990-01-01

    Strongly correlated 2D electrons described by the t-J model are investigated numerically. Exact ground state for one and two holes in a finite cluster with periodic boundary conditions are obtained by using the Lanczos algorithm. The effects of Coulomb repulsion of the holes on the nearest neighbor sites are taken into account. Commensurate flux phases are investigated for the same size of clusters. They are shown to be a good approximation for the ground state specially in the intermediate value of J/t. (author). 21 refs, 3 figs

  13. On diagonalization in map(M,G)

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1995-01-01

    Motivated by some questions in the path integral approach to (topological) gauge theories, we are led to address the following question: given a smooth map from a manifold M to a compact group G, is it possible to smoothly ''diagonalize'' it, i.e. conjugate it into a map to a maximal torus T of G? We analyze the local and global obstructions and give a complete solution to the problem for regular maps. We establish that these can always be smoothly diagonalized locally and that the obstructions to doing this globally are non-trivial Weyl group and torus bundles on M. We explain the relation of the obstructions to winding numbers of maps into G/T and restrictions of the structure group of a principal G bundle to T and examine the behaviour of gauge fields under this diagonalization. We also discuss the complications that arise in the presence of non-trivial G-bundles and for non-regular maps. We use these results to justify a Weyl integral formula for functional integrals which, as a novel feature not seen in the finite-dimensional case, contains a summation over all those topological T-sectors which arise as restrictions of a trivial principal G bundle and which was used previously to solve completely Yang-Mills theory and the G/ G model in two dimensions. (orig.)

  14. Simultaneous diagonal and off-diagonal order in the Bose-Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Scalettar, R.T.; Batrouni, G.G.; Kampf, A.P.; Zimanyi, G.T.

    1995-01-01

    The Bose-Hubbard model exhibits a rich phase diagram consisting both of insulating regimes where diagonal long-range (solid) order dominates as well as conducting regimes where off-diagonal long-range order (superfluidity) is present. In this paper we describe the results of quantum Monte Carlo calculations of the phase diagram, both for the hard- and soft-core cases, with a particular focus on the possibility of simultaneous superfluid and solid order. We also discuss the appearance of phase separation in the model. The simulations are compared with analytic calculations of the phase diagram and spin-wave dispersion

  15. Significance of matrix diagonalization in modelling inelastic electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)

    2017-04-15

    Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.

  16. ACORNS, Covariance and Correlation Matrix Diagonalization

    International Nuclear Information System (INIS)

    Szondi, E.J.

    1990-01-01

    1 - Description of program or function: The program allows the user to verify the different types of covariance/correlation matrices used in the activation neutron spectrometry. 2 - Method of solution: The program performs the diagonalization of the input covariance/relative covariance/correlation matrices. The Eigen values are then analyzed to determine the rank of the matrices. If the Eigen vectors of the pertinent correlation matrix have also been calculated, the program can perform a complete factor analysis (generation of the factor matrix and its rotation in Kaiser's 'varimax' sense to select the origin of the correlations). 3 - Restrictions on the complexity of the problem: Matrix size is limited to 60 on PDP and to 100 on IBM PC/AT

  17. Permuting sparse rectangular matrices into block-diagonal form

    Energy Technology Data Exchange (ETDEWEB)

    Aykanat, Cevdet; Pinar, Ali; Catalyurek, Umit V.

    2002-12-09

    This work investigates the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for the solution of the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Besides proposing the models to represent sparse matrices and investigating related combinatorial problems, we provide a detailed survey of relevant literature to bridge the gap between different societies, investigate existing techniques for partitioning and propose new ones, and finally present a thorough empirical study of these techniques. Our experiments on a wide range of matrices, using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaT oH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and run time.

  18. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  19. Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays

    Directory of Open Access Journals (Sweden)

    T. S. Doan

    2012-01-01

    Full Text Available We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.

  20. Multi-subject Manifold Alignment of Functional Network Structures via Joint Diagonalization.

    Science.gov (United States)

    Nenning, Karl-Heinz; Kollndorfer, Kathrin; Schöpf, Veronika; Prayer, Daniela; Langs, Georg

    2015-01-01

    Functional magnetic resonance imaging group studies rely on the ability to establish correspondence across individuals. This enables location specific comparison of functional brain characteristics. Registration is often based on morphology and does not take variability of functional localization into account. This can lead to a loss of specificity, or confounds when studying diseases. In this paper we propose multi-subject functional registration by manifold alignment via coupled joint diagonalization. The functional network structure of each subject is encoded in a diffusion map, where functional relationships are decoupled from spatial position. Two-step manifold alignment estimates initial correspondences between functionally equivalent regions. Then, coupled joint diagonalization establishes common eigenbases across all individuals, and refines the functional correspondences. We evaluate our approach on fMRI data acquired during a language paradigm. Experiments demonstrate the benefits in matching accuracy achieved by coupled joint diagonalization compared to previously proposed functional alignment approaches, or alignment based on structural correspondences.

  1. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlö gl, Udo; Schuster, Cosima B.; Fré sard, Raymond

    2009-01-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare

  2. Power calculations using exact data simulation: A useful tool for genetic study designs

    NARCIS (Netherlands)

    van der Sluis, S.; Dolan, C.V.; Neale, M.C.; Posthuma, D.

    2008-01-01

    Statistical power calculations constitute an essential first step in the planning of scientific studies. If sufficient summary statistics are available, power calculations are in principle straightforward and computationally light. In designs, which comprise distinct groups (e.g., MZ & DZ twins),

  3. Study of light baryons in the three-quark-cluster model: Exact calculations

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Gignoux, C.

    1985-01-01

    Within the nonrelativistic model, all the baryons built with three quarks of flavors, u, d, and s (N,Δ,Λ,Σ,Ψ,Ω) are studied with the Bhaduri-Cohler-Nogami potential. It is shown that the free-parameter simplest model is able to reproduce most of the experimental properties and allows the extraction of the rare effects which need a more elaborate model. The validity of the description in terms of a harmonic-oscillator basis is also tested

  4. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    International Nuclear Information System (INIS)

    Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong

    2015-01-01

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics

  5. Working memory and individual differences in the encoding of vertical, horizontal and diagonal symmetry.

    Science.gov (United States)

    Rossi-Arnaud, Clelia; Pieroni, Laura; Spataro, Pietro; Baddeley, Alan

    2012-09-01

    Previous studies, using a modified version of the sequential Corsi block task to examine the impact of symmetry on visuospatial memory, showed an advantage of vertical symmetry over non-symmetrical sequences, but no effect of horizontal or diagonal symmetry. The present four experiments investigated the mechanisms underlying the encoding of vertical, horizontal and diagonal configurations using simultaneous presentation and a dual-task paradigm. Results indicated that the recall of vertically symmetric arrays was always better than that of all other patterns and was not influenced by any of the concurrent tasks. Performance with horizontally or diagonally symmetrical patterns differed, with high performing participants showing little effect of concurrent tasks, while low performers were disrupted by concurrent visuospatial and executive tasks. A verbal interference had no effect on either group. Implications for processes involved in the encoding of symmetry are discussed, together with the crucial importance of individual differences. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data

    KAUST Repository

    Hu, Zongliang; Tong, Tiejun; Genton, Marc G.

    2017-01-01

    We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling's tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.

  7. Investigation of Diagonal Antenna-Chassis Mode in Mobile Terminal LTE MIMO Antennas for Bandwidth Enhancement

    DEFF Research Database (Denmark)

    Zhang, Shuai; Zhao, Kun; Ying, Zhinong

    2015-01-01

    mechanism of the mismatch of these three bandwidth ranges is also explained. Furthermore, the diagonal antenna-chassis mode is also studied for MIMO elements in the adjacent and diagonal corner locations. As a practical example, a wideband collocated LTE MIMO antenna is proposed and measured. It covers......A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...... the bands of 740960 and 1700-2700 MHz, where the total efficiencies are better than -3.4 and -1.8 dB, with lower than 0.5 and 0.1, respectively. The measurements agree well with the simulations. Since the proposed method only needs to modify the excitation locations of the MIMO elements on the chassis...

  8. Exact exchange and Wilson-Levy correlation: a pragmatic device for studying complex weakly-bonded systems.

    Science.gov (United States)

    Walsh, T R

    2005-02-07

    The Wilson-Levy (WL) correlation functional is used together with Hartree-Fock (HF) theory to evaluate interaction energies at intermediate separations (i.e. around equilibrium separation) for several weakly-bonded systems. The HF+WL approach reproduces binding trends for all complexes studied: selected rare-gas dimers, isomers of the methane dimer, benzene dimer and naphthalene dimer, and base-pair stacking structures for pyrimidine, cytosine, uracil and guanine dimers. These HF+WL data are contrasted against results obtained from some popular functionals (including B3LYP and PBE), as well as two newly-developed functionals, X3LYP and xPBE. The utility of HF+WL, with reference to exact-exchange (EXX) density-functional theory, is discussed in terms of a suggested EXXWL exchange-correlation functional.

  9. Quantum Glass of Interacting Bosons with Off-Diagonal Disorder

    Science.gov (United States)

    Piekarska, A. M.; Kopeć, T. K.

    2018-04-01

    We study disordered interacting bosons described by the Bose-Hubbard model with Gaussian-distributed random tunneling amplitudes. It is shown that the off-diagonal disorder induces a spin-glass-like ground state, characterized by randomly frozen quantum-mechanical U(1) phases of bosons. To access criticality, we employ the "n -replica trick," as in the spin-glass theory, and the Trotter-Suzuki method for decomposition of the statistical density operator, along with numerical calculations. The interplay between disorder, quantum, and thermal fluctuations leads to phase diagrams exhibiting a glassy state of bosons, which are studied as a function of model parameters. The considered system may be relevant for quantum simulators of optical-lattice bosons, where the randomness can be introduced in a controlled way. The latter is supported by a proposition of experimental realization of the system in question.

  10. Separability of three qubit Greenberger-Horne-Zeilinger diagonal states

    Science.gov (United States)

    Han, Kyung Hoon; Kye, Seung-Hyeok

    2017-04-01

    We characterize the separability of three qubit GHZ diagonal states in terms of entries. This enables us to check separability of GHZ diagonal states without decomposition into the sum of pure product states. In the course of discussion, we show that the necessary criterion of Gühne (2011 Entanglement criteria and full separability of multi-qubit quantum states Phys. Lett. A 375 406-10) for (full) separability of three qubit GHZ diagonal states is sufficient with a simpler formula. The main tool is to use entanglement witnesses which are tri-partite Choi matrices of positive bi-linear maps.

  11. Non-diagonal processes of singlet and ordinary quark production

    International Nuclear Information System (INIS)

    Bejlin, V.A.; Vereshkov, G.M.; Kuksa, V.I.

    1995-01-01

    Non-diagonal processes of singlet and ordinary quark production are analyzed in the model where the down singlet quark mixes with the ordinary ones. The possibility of experimental selection of h-quark effects is demonstrated

  12. Classical limit of diagonal form factors and HHL correlators

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Janik, Romuald A. [Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland)

    2017-01-16

    We propose an expression for the classical limit of diagonal form factors in which we integrate the corresponding observable over the moduli space of classical solutions. In infinite volume the integral has to be regularized by proper subtractions and we present the one, which corresponds to the classical limit of the connected diagonal form factors. In finite volume the integral is finite and can be expressed in terms of the classical infinite volume diagonal form factors and subvolumes of the moduli space. We analyze carefully the periodicity properties of the finite volume moduli space and found a classical analogue of the Bethe-Yang equations. By applying the results to the heavy-heavy-light three point functions we can express their strong coupling limit in terms of the classical limit of the sine-Gordon diagonal form factors.

  13. Evaluation of the ECAT EXACT HR+ 3D PET scanner in 15O-water brain activation studies

    International Nuclear Information System (INIS)

    Moreno-Cantu, J.J.; Thompson, C.J.; Zatorre, R.J.

    1996-01-01

    We evaluated the performance of the ECAT EXACT HR + 3D whole body PET scanner when employed to measure brain function using 15 O-water-bolus activation protocols in single data acquisition sessions. Using vibrotactile and auditory stimuli as independent activation tasks, we studied the scanner's performance under different imaging conditions in four healthy volunteers. Cerebral blood flow images were acquired from each volunteer using 15 O-water-bolus injections of activity varying from 5 to 20mCi. Performance characteristics. The scanner's dead time grew linearly with injected dose from 10% to 25%. Random events varied from 30% to 50% of the detected events. Scattered events were efficiently corrected at all doses. Noise-effective-count curves plateau at about 15mCi. One-session 12-injection bolus PET activation protocol. Using an acquisition protocol that accounts for the scanner's performance and the practical aspects of imaging volunteers and patients in one session, we assessed the correlation between the statistical significance of activation foci and the dose per injection used The one-session protocol employs 12 bolus injections per subject. We present evidence suggesting that 15-20mCi is the optimal dose per injection to be used routinely in one-time scanning sessions

  14. Determining Diagonal Branches in Mine Ventilation Networks

    Science.gov (United States)

    Krach, Andrzej

    2014-12-01

    The present paper discusses determining diagonal branches in a mine ventilation network by means of a method based on the relationship A⊗ PT(k, l) = M, which states that the nodal-branch incidence matrix A, modulo-2 multiplied by the transposed path matrix PT(k, l ) from node no. k to node no. l, yields the matrix M where all the elements in rows k and l - corresponding to the start and the end node - are 1, and where the elements in the remaining rows are 0, exclusively. If a row of the matrix M is to contain only "0" elements, the following condition has to be fulfilled: after multiplying the elements of a row of the matrix A by the elements of a column of the matrix PT(k, l), i.e. by the elements of a proper row of the matrix P(k, l ), the result row must display only "0" elements or an even number of "1" entries, as only such a number of "1" entries yields 0 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the path nodes level is 2 (apart from the nodes k and l, whose level is 1), then the number of "1" elements in a row has to be 0 or 2. If, in turn, the rows k and l of the matrix M are to contain only "1" elements, the following condition has to be fulfilled: after multiplying the elements of the row k or l of the matrix A by the elements of a column of the matrix PT(k, l), the result row must display an uneven number of "1" entries, as only such a number of "1" entries yields 1 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the level of the i and j path nodes is 1, then the number of "1" elements in a row has to be 1. The process of determining diagonal branches by means of this method was demonstrated using the example of a simple ventilation network with two upcast shafts and one downcast shaft. W artykule przedstawiono metodę wyznaczania bocznic przekątnych w sieci wentylacyjnej kopalni metodą bazującą na zależności A⊗PT(k, l) = M, która podaje, że macierz

  15. Causal Effect of Self-esteem on Cigarette Smoking Stages in Adolescents: Coarsened Exact Matching in a Longitudinal Study.

    Science.gov (United States)

    Khosravi, Ahmad; Mohammadpoorasl, Asghar; Holakouie-Naieni, Kourosh; Mahmoodi, Mahmood; Pouyan, Ali Akbar; Mansournia, Mohammad Ali

    2016-12-01

    Identification of the causal impact of self-esteem on smoking stages faces seemingly insurmountable problems in observational data, where self-esteem is not manipulable by the researcher and cannot be assigned randomly. The aim of this study was to find out if weaker self-esteem in adolescence is a risk factor of cigarette smoking in a longitudinal study in Iran. In this longitudinal study, 4,853 students (14-18 years) completed a self-administered multiple-choice anonym questionnaire. The students were evaluated twice, 12 months apart. Students were matched based on coarsened exact matching on pretreatment variables, including age, gender, smoking stages at the first wave of study, socioeconomic status, general risk-taking behavior, having a smoker in the family, having a smoker friend, attitude toward smoking, and self-injury, to ensure statistically equivalent comparison groups. Self-esteem was measured using the Rosenberg 10-item questionnaire and were classified using a latent class analysis. After matching, the effect of self-esteem was evaluated using a multinomial logistic model. In the causal fitted model, for adolescents with weaker self-esteem relative to those with stronger self-esteem, the relative risk for experimenters and regular smokers relative to nonsmokers would be expected to increase by a factor of 2.2 (1.9-2.6) and 2.0 (1.5-2.6), respectively. Using a causal approach, our study indicates that low self-esteem is consistently associated with progression in cigarette smoking stages.

  16. Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity

    Directory of Open Access Journals (Sweden)

    Sergiu I. Vacaru

    2016-01-01

    Full Text Available Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (inhomogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann–Lamaître–Robertson–Walker (FLRW coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé–Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.

  17. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, Andreas [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Kreutzer, Moritz [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Galgon, Martin [Bergische Universität Wuppertal (Germany); Fehske, Holger [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Hager, Georg [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Lang, Bruno [Bergische Universität Wuppertal (Germany); Wellein, Gerhard [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)

    2016-11-15

    We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.

  18. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  19. Study of electron-molecule collision via finite-element method and r-matrix propagation technique: Exact exchange

    International Nuclear Information System (INIS)

    Abdolsalami, F.; Abdolsalami, M.; Perez, L.; Gomez, P.

    1995-01-01

    The authors have applied the finite-element method to electron-molecule collision with the exchange effect implemented rigorously. All the calculations are done in the body-frame within the fixed-nuclei approximation, where the exact treatment of exchange as a nonlocal effect results in a set of coupled integro-differential equations. The method is applied to e-H 2 and e-N 2 scatterings and the cross sections obtained are in very good agreement with the corresponding results the authors have generated from the linear-algebraic approach. This confirms the significant difference observed between their results generated by linear-algebraic method and the previously published e-N 2 cross sections. Their studies show that the finite-element method is clearly superior to the linear-algebraic approach in both memory usage and CPU time especially for large systems such as e-N 2 . The system coefficient matrix obtained from the finite-element method is often sparse and smaller in size by a factor of 12 to 16, compared to the linear-algebraic technique. Moreover, the CPU time required to obtain stable results with the finite-element method is significantly smaller than the linear-algebraic approach for one incident electron energy. The usage of computer resources in the finite-element method can even be reduced much further when (1) scattering calculations involving multiple electron energies are performed in one computer run and (2) exchange, which is a short range effect, is approximated by a sparse matrix. 17 refs., 7 figs., 5 tabs

  20. Off-Diagonal Deformations of Kerr Black Holes in Einstein and Modified Massive Gravity and Higher Dimensions

    CERN Document Server

    Gheorghiu, Tamara; Vacaru, Sergiu I

    2014-01-01

    We find general parameterizations for generic off-diagonal spacetime metrics and matter sources in general relativity, GR, and modified gravity theories when the field equations decouple with respect to certain types of nonholonomic frames of reference. This allows us to construct various classes of exact solutions when the coefficients of fundamental geometric/ physical objects depend on all spacetime coordinates via corresponding classes of generating and integration functions and/or constants. Such (modified) spacetimes can be with Killing and non-Killing symmetries, describe nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants. Our method can be extended to higher dimensions which simplifies some proofs for imbedded and nonholonomically constrained four dimensional configurations. We reproduce the Kerr solution and show how to deform it nonholonomically into new classes of generic off-diagonal solutions depending on 3-8 spacetime coordinates. There are anal...

  1. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts

  2. Specific issues, exact locations: case study of a community mapping project to improve safety in a disadvantaged community.

    Science.gov (United States)

    Qummouh, Rana; Rose, Vanessa; Hall, Pat

    2012-12-01

    Safety is a health issue and a significant concern in disadvantaged communities. This paper describes an example of community-initiated action to address perceptions of fear and safety in a suburb in south-west Sydney which led to the development of a local, community-driven research project. As a first step in developing community capacity to take action on issues of safety, a joint resident-agency group implemented a community safety mapping project to identify the extent of safety issues in the community and their exact geographical location. Two aerial maps of the suburb, measuring one metre by two metres, were placed on display at different locations for four months. Residents used coloured stickers to identify specific issues and exact locations where crime and safety were a concern. Residents identified 294 specific safety issues in the suburb, 41.9% (n=123) associated with public infrastructure, such as poor lighting and pathways, and 31.9% (n=94) associated with drug-related issues such as drug activity and discarded syringes. Good health promotion practice reflects community need. In a very practical sense, this project responded to community calls for action by mapping resident knowledge on specific safety issues and exact locations and presenting these maps to local decision makers for further action.

  3. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-08-28

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.

  4. An exact solution to the extended Hubbard model in 2D for finite size system

    Science.gov (United States)

    Harir, S.; Bennai, M.; Boughaleb, Y.

    2008-08-01

    An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.

  5. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  6. A diagonal approach for the catalytic transformation of carbon dioxide

    International Nuclear Information System (INIS)

    Gomes, Christophe

    2013-01-01

    Emissions of carbon dioxide are growing with the massive utilization of hydrocarbons for the production of energy and chemicals, resulting in a threatening global warming. The development of a more sustainable economy is urging to reduce the fingerprint of our current way of life. In this perspective, the organic chemistry industry will face important challenges in the next decades to replace hydrocarbons as a feedstock and use carbon-free energy sources. To tackle this challenge, new catalytic processes have been designed to convert CO 2 to high energy and value-added chemicals (formamides, N-heterocycles and methanol), using a novel diagonal approach. The energy efficiency of the new transformations is ensured by the utilization of mild reductants such as hydro-silanes and hydro-boranes. Importantly the reactions are promoted by organic catalysts, which circumvent the problems of cost, abundance and toxicity usually encountered with metal complexes. Based on theoretical and experimental studies, the understanding of the mechanisms involved in these reactions allowed the rational optimization of the catalysts as well as the reaction conditions, in order to match the requirements of sustainable chemistry. (author) [fr

  7. Separability of diagonal symmetric states: a quadratic conic optimization problem

    Directory of Open Access Journals (Sweden)

    Jordi Tura

    2018-01-01

    Full Text Available We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS states. First, we show that separability in the case of DS in $C^d\\otimes C^d$ (symmetric qudits can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT is sufficient and necessary for separability of DS states for $d \\leq 4$. Furthermore, for $d \\geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.

  8. Power take-off analysis for diagonally connected MHD channels

    International Nuclear Information System (INIS)

    Pan, Y.C.; Doss, E.D.

    1980-01-01

    The electrical loading of the power take-off region of diagonally connected MHD channels is investigated by a two-dimensional model. The study examines the loading schemes typical of those proposed for the U-25 and U-25 Bypass channels. The model is applicable for the following four cases: (1) connection with diodes only, (2) connection with diodes and equal resistors, (3) connection with diodes and variable resistances to obtain a given current distribution, and (4) connection with diodes and variable resistors under changing load. The analysis is applicable for the power take-off regions of single or multiple-output systems. The general behaviors of the current and the potential distributions in all four cases are discussed. The analytical results are in good agreement with the experimental data. It is found possible to design the electrical circuit of the channel in the take-off region so as to achieve a fairly even load current output under changing total load current

  9. Spectral Sharpening of Color Sensors: Diagonal Color Constancy and Beyond

    OpenAIRE

    Vazquez-Corral, Javier; Bertalmío, Marcelo

    2014-01-01

    It has now been 20 years since the seminal work by Finlayson et al. on the use/nof spectral sharpening of sensors to achieve diagonal color constancy. Spectral sharpening is/nstill used today by numerous researchers for different goals unrelated to the original goal/nof diagonal color constancy e.g., multispectral processing, shadow removal, location of/nunique hues. This paper reviews the idea of spectral sharpening through the lens of what/nis known today in color constancy, describes the d...

  10. Topological order in an exactly solvable 3D spin model

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.

    2011-01-01

    Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on Ω(R 2 ) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.

  11. Diagonal earlobe crease: Prevalence and association with medical ailments

    Directory of Open Access Journals (Sweden)

    Yugantara Ramesh Kadam

    2018-01-01

    Full Text Available Context: It has been hypothesized that diagonal earlobe crease (DELC, “Frank's sign” is indicative of coronary artery disease (CAD and/or diabetes mellitus (DM. Several studies have confirmed an association between DELC and cardiac morbidity, mortality, and hypertension (HTN. However, some studies have not found any significant association. Aims: This study aims to find out the prevalence of DELC and its association with CAD, DM, and HTN. Settings and Design: Sangli-Miraj-Kupwad Corporation area. This was a cross-sectional analytical study. Subjects and Methods: Study participants: Adults from 18 to 60 years age. Inclusion criteria: willing to participate in the study Exclusion criteria: Wearing heavy ear rings and excessive normal generalized wrinkling of the skin. Sample size: Sample size 6310, determined after a pilot study revealing DELC in 1.5%. Sampling technique: Two-stage cluster sampling. Duration of study: 6 months. Study tools: Predesigned, pilot tested pro forma. Statistical Analysis: Statistical analysis was done by using SPSS 22 software. Prevalence and percentages were calculated, and Chi-square test was applied. Results: Out of 6638 participants, 179 had DELC. The prevalence of bilateral DELC was 2.7%. The prevalence was significantly high among males (4.13% and in the 51–60 years age group (5.29%. The prevalence of Grade 3 DELC was high and 91% of young adults had Grade 3 DELC. There were 408 (6.15% participants who gave a history of CAD, 827 (12.46% of DM, and 670 (10.09% HTN. Significantly high association observed between DELC and CAD, DM, and HTN. CAD, DM, and HTN were significantly associated with Grade 3. Conclusions: The prevalence of bilateral DELC was 2.7% and is significantly associated with CAD, DM, and HTN.

  12. Exact solution of the XXX Gaudin model with generic open boundaries

    Science.gov (United States)

    Hao, Kun; Cao, Junpeng; Yang, Tao; Yang, Wen-Li

    2015-03-01

    The XXX Gaudin model with generic integrable open boundaries specified by the most general non-diagonal reflecting matrices is studied. Besides the inhomogeneous parameters, the associated Gaudin operators have six free parameters which break the U(1) -symmetry. With the help of the off-diagonal Bethe ansatz, we successfully obtained the eigenvalues of these Gaudin operators and the corresponding Bethe ansatz equations.

  13. AN EXACT GOODNESS-OF-FIT TEST BASED ON THE OCCUPANCY PROBLEMS TO STUDY ZERO-INFLATION AND ZERO-DEFLATION IN BIOLOGICAL DOSIMETRY DATA.

    Science.gov (United States)

    Fernández-Fontelo, Amanda; Puig, Pedro; Ainsbury, Elizabeth A; Higueras, Manuel

    2018-01-12

    The goal in biological dosimetry is to estimate the dose of radiation that a suspected irradiated individual has received. For that, the analysis of aberrations (most commonly dicentric chromosome aberrations) in scored cells is performed and dose response calibration curves are built. In whole body irradiation (WBI) with X- and gamma-rays, the number of aberrations in samples is properly described by the Poisson distribution, although in partial body irradiation (PBI) the excess of zeros provided by the non-irradiated cells leads, for instance, to the Zero-Inflated Poisson distribution. Different methods are used to analyse the dosimetry data taking into account the distribution of the sample. In order to test the Poisson distribution against the Zero-Inflated Poisson distribution, several asymptotic and exact methods have been proposed which are focused on the dispersion of the data. In this work, we suggest an exact test for the Poisson distribution focused on the zero-inflation of the data developed by Rao and Chakravarti (Some small sample tests of significance for a Poisson distribution. Biometrics 1956; 12 : 264-82.), derived from the problems of occupancy. An approximation based on the standard Normal distribution is proposed in those cases where the computation of the exact test can be tedious. A Monte Carlo Simulation study was performed in order to estimate empirical confidence levels and powers of the exact test and other tests proposed in the literature. Different examples of applications based on in vitro data and also data recorded in several radiation accidents are presented and discussed. A Shiny application which computes the exact test and other interesting goodness-of-fit tests for the Poisson distribution is presented in order to provide them to all interested researchers. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip

    2016-01-01

    We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...

  15. Diagonalization of Bounded Linear Operators on Separable Quaternionic Hilbert Space

    International Nuclear Information System (INIS)

    Feng Youling; Cao, Yang; Wang Haijun

    2012-01-01

    By using the representation of its complex-conjugate pairs, we have investigated the diagonalization of a bounded linear operator on separable infinite-dimensional right quaternionic Hilbert space. The sufficient condition for diagonalizability of quaternionic operators is derived. The result is applied to anti-Hermitian operators, which is essential for solving Schroedinger equation in quaternionic quantum mechanics.

  16. Diagonal Cracking and Shear Strength of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Zhang, Jin-Ping

    1997-01-01

    The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...

  17. On the states with positive energy which result from the hamiltonian diagonalization on the oscillator basis

    International Nuclear Information System (INIS)

    Filippov, G.F.; Chopovsky, L.L.; Vasilevsky, V.S.

    1982-01-01

    The states of continuous spectrum in a system of two interacting clusters are studied. It is shown that the Hamiltonian diagonalization on the oscillator basis isolates those states in a continuous spectrum whose amplitudes have a node at a certain number of oscillator quanta. As an example the interaction of the 4 He and 3 H nuclei is considered. These nuclei form a coupled system - 7 Li

  18. Direct current hopping conductance in one-dimensional diagonal disordered systems

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Xiao Jian-Rong

    2006-01-01

    Based on a tight-binding disordered model describing a single electron band, we establish a direct current (dc) electronic hopping transport conductance model of one-dimensional diagonal disordered systems, and also derive a dc conductance formula. By calculating the dc conductivity, the relationships between electric field and conductivity and between temperature and conductivity are analysed, and the role played by the degree of disorder in electronic transport is studied. The results indicate the conductivity of systems decreasing with the increase of the degree of disorder, characteristics of negative differential dependence of resistance on temperature at low temperatures in diagonal disordered systems, and the conductivity of systems decreasing with the increase of electric field, featuring the non-Ohm's law conductivity.

  19. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.

    Science.gov (United States)

    Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai

    2011-01-01

    Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.

  20. New approach to study mobility in the vicinity of dynamical arrest; exact application to a kinetically constrained model

    Science.gov (United States)

    DeGregorio, P.; Lawlor, A.; Dawson, K. A.

    2006-04-01

    We introduce a new method to describe systems in the vicinity of dynamical arrest. This involves a map that transforms mobile systems at one length scale to mobile systems at a longer length. This map is capable of capturing the singular behavior accrued across very large length scales, and provides a direct route to the dynamical correlation length and other related quantities. The ideas are immediately applicable in two spatial dimensions, and have been applied to a modified Kob-Andersen type model. For such systems the map may be derived in an exact form, and readily solved numerically. We obtain the asymptotic behavior across the whole physical domain of interest in dynamical arrest.

  1. Exact solutions and ladder operators for a new anharmonic oscillator

    International Nuclear Information System (INIS)

    Dong Shihai; Sun Guohua; Lozada-Cassou, M.

    2005-01-01

    In this Letter, we propose a new anharmonic oscillator and present the exact solutions of the Schrodinger equation with this oscillator. The ladder operators are established directly from the normalized radial wave functions and used to evaluate the closed expressions of matrix elements for some related functions. Some comments are made on the general calculation formula and recurrence relation for off-diagonal matrix elements. Finally, we show that this anharmonic oscillator possesses a hidden symmetry between E(r) and E(ir) by substituting r->ir

  2. Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data

    KAUST Repository

    Hu, Zongliang

    2017-10-27

    We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling\\'s tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.

  3. Exact Solution of Fractional Diffusion Model with Source Term used in Study of Concentration of Fission Product in Uranium Dioxide Particle

    International Nuclear Information System (INIS)

    Fang Chao; Cao Jianzhu; Sun Lifeng

    2011-01-01

    The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (UO 2 ) particle is built. The adsorption effect of the fission product on the surface of the UO 2 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor. (nuclear physics)

  4. Behavior of Shear Link of WF Section with Diagonal Web Stiffener of Eccentrically Braced Frame (EBF of Steel Structure

    Directory of Open Access Journals (Sweden)

    Yurisman

    2010-11-01

    Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test

  5. Diagonal form factors and hexagon form factors

    International Nuclear Information System (INIS)

    Jiang, Yunfeng; Petrovskii, Andrei

    2016-01-01

    We study the heavy-heavy-light (HHL) three-point functions in the planar N=4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program http://arxiv.org/abs/1505.06745. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  6. Diagonal form factors and hexagon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunfeng [Institute for Theoretical Physics, ETH Zürich,Honggerberg, Zürich, 8093 (Switzerland); Petrovskii, Andrei [Institut de Physique Théorique, CEA, URA 2306 CNRS Saclay,Gif-sur-Yvette, F91191 (France)

    2016-07-25

    We study the heavy-heavy-light (HHL) three-point functions in the planar N=4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program http://arxiv.org/abs/1505.06745. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  7. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  8. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  9. Surco diagonal en el lóbulo de la oreja: ¿signo de enfermedad arterial coronaria? Diagonal earlobe crease: a sign of coronary artery disease?

    Directory of Open Access Journals (Sweden)

    Sebastián B. Lamot

    2007-08-01

    Full Text Available El surco diagonal es un signo encontrado en el lóbulo de la oreja, que estaría relacionado con la enfermedad arterial coronaria. Nuestro objetivo fue estudiar la utilidad del signo. Se examinaron 104 pacientes (entre 30 y 80 años clasificados por sexo y edad. Cuarenta y nueve tenían enfermedad arterial coronaria diagnosticada por coronariografía (obstrucción > del 70% en una de las grandes arterias y/o gamagrafía de perfusión miocárdica con Talio 201 (defecto fijo. El grupo control estuvo compuesto por 55 pacientes (asintomáticos, con electrocardiograma normal. Los datos obtenidos fueron sensibilidad (61.2%, especificidad (78.2%, valor predictivo positivo de (71.4% y valor predictivo negativo (69.3%.. Observamos una relación significativa entre la presencia de surco diagonal y enfermedad arterial coronaria. Consideramos que este signo podría resultar de utilidad en la práctica clínica, fundamentalmente para los pacientes entre 30 y 60 años.The diagonal earlobe crease is a sign theorically related to coronary artery disease. The purpose of this study was to prove the usefulness of this sign. A total of 104 patients were examined (ages 30 to 80 grouped by age and sex. Forty nine of them were diagnosed of having coronary artery disease by coronary angiography (a 70% obstruction of one of the major arteries, and/or myocardial perfusion imaging with Thallium 201 (fixed defects. The control group included 55 patients (asymptomatic with normal electrocardiogram. Data here obtained included sensitivity (61.2%, specificity (78.2%, positive predictive value (71.4% and negative predictive value (69.3%. We found a significant relation between the presence of the diagonal earlobe crease and coronary artery disease. We consider it a sign that could prove useful in clinical practice, mainly among patients aged between 30 and 60.

  10. A diagonal address generator for a Josephson memory circuit

    International Nuclear Information System (INIS)

    Suzuki, H.; Hasuo, S.

    1987-01-01

    The authors propose that a diagonal D address generator, which is useful for a single flux quantum (SFQ) memory cell in the triple coincidence scheme, can be performed by a full adder circuit. For the purpose of evaluating the D address generator for a 16-kbit memory circuit, a 6-bit full adder circuit, using a current-steering flip-flop circuit, has been designed and fabricated with the lead-alloy process. Operating times for the address latch, carry generator, and sum generator were 150 ps, 250 ps/stage, and 1.4 ns, respectively. From these results, they estimate that the time necessary for the diagonal signal generation is 2.8 ns

  11. Isovector and flavor-diagonal charges of the nucleon

    Science.gov (United States)

    Gupta, Rajan; Bhattacharya, Tanmoy; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram

    2018-03-01

    We present an update on the status of the calculations of isovector and flavor-diagonal charges of the nucleon. The calculations of the isovector charges are being done using ten 2+1+1-flavor HISQ ensembles generated by the MILC collaboration covering the range of lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and three-states fits to the three-point correlators. The calculations of the disconnected diagrams needed to estimate flavor-diagonal charges are being done on a subset of six ensembles using the stocastic method. Final results are obtained using a simultaneous fit in M2π, the lattice spacing a and the finite volume parameter MπL keeping only the leading order corrections.

  12. Spectral properties and scaling relations in off diagonally disordered chains

    International Nuclear Information System (INIS)

    Ure, J.E.; Majlis, N.

    1987-07-01

    We obtain the localization length L as a function of the energy E and the disorder width W for an off-diagonally disordered chain. This is done performing numerical simulations involving the continued fraction representations of the transfer matrix. The scaling relation L=W s is obtained with values of the exponent s in agreement with calculations of other authors. We also obtain the relation L ∼ |E| v for E → 0, and use it in the Herbert-Spencer-Thouless formula for L to describe the singularity of the density of states near E=0. We show that the slightest diagonal disorder obliterates this singularity. A practical method is presented to calculate the Green function by exploiting its continued fraction expansion. (author). 20 refs, 4 figs

  13. An efficient numerical progressive diagonalization scheme for the quantum Rabi model revisited

    International Nuclear Information System (INIS)

    Pan, Feng; Bao, Lina; Dai, Lianrong; Draayer, Jerry P

    2017-01-01

    An efficient numerical progressive diagonalization scheme for the quantum Rabi model is revisited. The advantage of the scheme lies in the fact that the quantum Rabi model can be solved almost exactly by using the scheme that only involves a finite set of one variable polynomial equations. The scheme is especially efficient for a specified eigenstate of the model, for example, the ground state. Some low-lying level energies of the model for several sets of parameters are calculated, of which one set of the results is compared to that obtained from the Braak’s exact solution proposed recently. It is shown that the derivative of the entanglement measure defined in terms of the reduced von Neumann entropy with respect to the coupling parameter does reach the maximum near the critical point deduced from the classical limit of the Dicke model, which may provide a probe of the critical point of the crossover in finite quantum many-body systems, such as that in the quantum Rabi model. (paper)

  14. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    Science.gov (United States)

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  15. Prepotential approach to exact and quasi-exact solvabilities

    International Nuclear Information System (INIS)

    Ho, C.-L.

    2008-01-01

    Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations

  16. Direct calculation of off-diagonal matrix elements

    International Nuclear Information System (INIS)

    Killingbeck, J P; Jolicard, G

    2011-01-01

    Gauss elimination is used in a sequence of calculations which give the squares of the off-diagonal matrix elements of x between quartic oscillator eigenstates, in a modification of the original sum rule approach of Tipping et al to the problem. New and more flexible methods are then devised and tested and are shown to permit the isolation and calculation of individual squared matrix elements of x and x 2 .

  17. Why the South Pacific Convergence Zone is diagonal

    OpenAIRE

    Van Der Wiel, Karin; Matthews, Adrian; Joshi, Manoj; Stevens, David

    2016-01-01

    During austral summer, the majority of precipitation over the Pacific Ocean is concentrated in the South Pacific Convergence Zone (SPCZ). The surface boundary conditions required to support the diagonally (northwest-southeast) oriented SPCZ are determined through a series of experiments with an atmospheric general circulation model. Continental configuration and orography do not have a significant influence on SPCZ orientation and strength. The key necessary boundary condition is the zonally ...

  18. Exact models for isotropic matter

    Science.gov (United States)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  19. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  20. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  1. Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials

    DEFF Research Database (Denmark)

    Burrello, M.; Fulga, Ion Cosma; Lepori, L.

    2017-01-01

    of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes......We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general spaceindependent non-Abelian gauge potential. We first review and analyze the case...... of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction...

  2. Exact Slater integrals

    International Nuclear Information System (INIS)

    Golden, L.B.

    1968-01-01

    In atomic structure calculations, one has to evaluate the Slater integrals. In the present program, the authors evaluate exactly the Slater integral when hydrogenic wave functions are used for the bound-state orbitals. When hydrogenic wave functions are used, the Slater integrals involve integrands which can be written in the form of a product of an exponential, exp(ax) and a known analytic polynomial function, f(x). By repeated partial integration such an integral can be expressed in terms of a finite series involving the exponential, the polynomial function and its derivatives. PL/1-FORMAC has a built-in subroutine that will analytically find the derivatives of any multinomial. Thus, the finite series and hence the Slater integral can be evaluated analytically. (Auth.)

  3. Characteristics of 201Tl myocardial SPECT and left ventriculography in patients with acute diagonal branch myocardial infarction

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Aizawa, Tadanori; Katou, Kazuzo; Ogasawara, Ken; Kirigaya, Hajime

    1993-01-01

    Characteristics of 201 Tl myocardial SPECT and ventriculography were studied in 13 patients with acute diagonal branch myocardial infarction. Rest 201 Tl myocardial SPECT and left ventriculography were underwent in chronic phase. In 5 patients electrocardiogram (ECG) changes in acute phase were not definite. In 6 patients it was difficult to identify the obstructed coronary artery with coronary angiography in acute phase. Mean value of maximum creatine phosphokinese (CPK) was 854 (458-1,774) U/l. It seemed to be difficult to diagnose acute diagonal branch myocardial infarction with ECG and/or coronary angiography. In all patients defects were noted on 201 Tl SPECT. Defects were small and noted in the central anterior wall and not in the septum. In 2 patients defects were noted at apex. In left ventriculography dyskinetic motion was noted in 10 patients; one patient showed apical aneurysm and 3 patients showed anterior wall aneurysm. In 3 patients anterior wall showed akinesis. It was concluded that 201 Tl myocardial SPECT were useful for detecting diagonal branch lesion. In case of diagonal branch myocardial infarction size of defects were small and defects were not noted in the septum, however aneurysmal motion was frequently noted. (author)

  4. Off-diagonal series expansion for quantum partition functions

    Science.gov (United States)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  5. Exact solutions in dynamics of alternation open spin chains s = 1/2 with XY-Hamiltonian and its application to the problems of many-quantum dynamics and quantum information theory

    International Nuclear Information System (INIS)

    Kuznetsova, E.I.; Fel'dman, Eh.B.

    2006-01-01

    Paper deals with a method of exact diagonalization of XY-Hamiltonian of s=1/2 alternated open chain of spins based on the Jordan-Wigner transform and analysis of dynamics of spinless fermions. One studied the many-quantum spin dynamics of alternated chains under high temperatures and calculated the intensities of many-quantum coherencies. One attacked the problem dealing with transfer of a quantum state from one end of the alternated chain to the opposite end. It is shown that perfect transfer of cubits may take place in alternated chains with larger number of spins in contrast to homogeneous chains [ru

  6. Exact solutions in the dynamics of alternating open chains of spins s = 1/2 with the XY Hamiltonian and their application to problems of multiple-quantum dynamics and quantum information theory

    International Nuclear Information System (INIS)

    Kuznetsova, E. I.; Fel'dman, E. B.

    2006-01-01

    A method for exactly diagonalizing the XY Hamiltonian of an alternating open chain of spins s = 1/2 has been proposed on the basis of the Jordan-Wigner transformation and analysis of the dynamics of spinless fermions. The multiple-quantum spin dynamics of alternating open chains at high temperatures has been analyzed and the intensities of multiple-quantum coherences have been calculated. The problem of the transfer of a quantum state from one end of the alternating chain to the other is studied. It has been shown that the ideal transfer of qubits is possible in alternating chains with a larger number of spins than that in homogeneous chains

  7. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  8. Quantum speed limits for Bell-diagonal states

    International Nuclear Information System (INIS)

    Han Wei; Jiang Ke-Xia; Zhang Ying-Jie; Xia Yun-Jie

    2015-01-01

    The lower bounds of the evolution time between two distinguishable states of a system, defined as quantum speed limit time, can characterize the maximal speed of quantum computers and communication channels. We study the quantum speed limit time between the composite quantum states and their target states in the presence of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exact expressions of the quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating the quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical decoherence to quantum decoherence. (paper)

  9. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid

    2013-11-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.

  10. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress.

    Science.gov (United States)

    Chen, Jingchao; Huang, Zhaofeng; Huang, Hongjuan; Wei, Shouhui; Liu, Yan; Jiang, Cuilan; Zhang, Jie; Zhang, Chaoxian

    2017-04-21

    Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species.

  11. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    Science.gov (United States)

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  12. Study and obtention of exact, and approximation, algorithms and heuristics for a mesh partitioning problem under memory constraints

    International Nuclear Information System (INIS)

    Morais, Sebastien

    2016-01-01

    In many scientific areas, the size and the complexity of numerical simulations lead to make intensive use of massively parallel runs on High Performance Computing (HPC) architectures. Such computers consist in a set of processing units (PU) where memory is distributed. Distribution of simulation data is therefore crucial: it has to minimize the computation time of the simulation while ensuring that the data allocated to every PU can be locally stored in memory. For most of the numerical simulations, the physical and numerical data are based on a mesh. The computations are then performed at the cell level (for example within triangles and quadrilaterals in 2D, or within tetrahedrons and hexahedrons in 3D). More specifically, computing and memory cost can be associated to each cell. In our context, where the mathematical methods used are finite elements or finite volumes, the realization of the computations associated with a cell may require information carried by neighboring cells. The standard implementation relies to locally store useful data of this neighborhood on the PU, even if cells of this neighborhood are not locally computed. Such non computed but stored cells are called ghost cells, and can have a significant impact on the memory consumption of a PU. The problem to solve is thus not only to partition a mesh on several parts by affecting each cell to one and only one part while minimizing the computational load assigned to each part. It is also necessary to keep into account that the memory load of both the cells where the computations are performed and their neighbors has to fit into PU memory. This leads to partition the computations while the mesh is distributed with overlaps. Explicitly taking these data overlaps into account is the problem that we propose to study. (author) [fr

  13. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  14. Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states

    International Nuclear Information System (INIS)

    Tong, D.M.; Oh, C.H.; Sjoeqvist, Erik; Filipp, Stefan; Kwek, L.C.

    2005-01-01

    Off-diagonal geometric phases have been developed in order to provide information of the geometry of paths that connect noninterfering quantal states. We propose a kinematic approach to off-diagonal geometric phases for pure and mixed states. We further extend the mixed-state concept proposed in [Phys. Rev. Lett. 90, 050403 (2003)] to degenerate density operators. The first- and second-order off-diagonal geometric phases are analyzed for unitarily evolving pairs of pseudopure states

  15. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  16. Hopping transport and electrical conductivity in one-dimensional systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Ma Songshan; Xu Hui; Li Yanfeng; Song Zhaoquan

    2007-01-01

    In this paper, we present a model to describe hopping transport and electrical conductivity of one-dimensional systems with off-diagonal disorder, in which electrons are transported via hopping between localized states. We find that off-diagonal disorder leads to delocalization and drastically enhances the electrical conductivity of systems. The model also quantitatively explains the temperature and electrical field dependence of the conductivity in one-dimensional systems with off-diagonal disorder. In addition, we also show the dependence of the conductivity on the strength of off-diagonal disorder

  17. Self-consistent cluster theory for systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Leath, P.L.; Gray, L.J.; Diehl, H.W.

    1980-01-01

    A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and environmental disorder is presented. The theory is developed in augmented space where the configurational average over the disorder is replaced by a ground-state matrix element in a translationally invariant system. The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-consistent single-site and pair approximations are presented for the vibrational and electronic properties of disordered linear chains with diagonal, off-diagonal, and environmental disorder

  18. Diagonal ordering operation technique applied to Morse oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Dušan, E-mail: dusan_popov@yahoo.co.uk [Politehnica University Timisoara, Department of Physical Foundations of Engineering, Bd. V. Parvan No. 2, 300223 Timisoara (Romania); Dong, Shi-Hai [CIDETEC, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico D.F. 07700 (Mexico); Popov, Miodrag [Politehnica University Timisoara, Department of Steel Structures and Building Mechanics, Traian Lalescu Street, No. 2/A, 300223 Timisoara (Romania)

    2015-11-15

    We generalize the technique called as the integration within a normally ordered product (IWOP) of operators referring to the creation and annihilation operators of the harmonic oscillator coherent states to a new operatorial approach, i.e. the diagonal ordering operation technique (DOOT) about the calculations connected with the normally ordered product of generalized creation and annihilation operators that generate the generalized hypergeometric coherent states. We apply this technique to the coherent states of the Morse oscillator including the mixed (thermal) state case and get the well-known results achieved by other methods in the corresponding coherent state representation. Also, in the last section we construct the coherent states for the continuous dynamics of the Morse oscillator by using two new methods: the discrete–continuous limit, respectively by solving a finite difference equation. Finally, we construct the coherent states corresponding to the whole Morse spectrum (discrete plus continuous) and demonstrate their properties according the Klauder’s prescriptions.

  19. The Diagonal Compression Field Method using Circular Fans

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper presents a new design method, which is a modification of the diagonal compression field method, the modification consisting of the introduction of circular fan stress fields. The traditional method does not allow changes of the concrete compression direction throughout a given beam...... if equilibrium is strictly required. This is conservative, since it is not possible fully to utilize the concrete strength in regions with low shear stresses. The larger inclination (the smaller -value) of the uniaxial concrete stress the more transverse shear reinforcement is needed; hence it would be optimal...... if the -value for a given beam could be set to a low value in regions with high shear stresses and thereafter increased in regions with low shear stresses. Thus the shear reinforcement would be reduced and the concrete strength would be utilized in a better way. In the paper it is shown how circular fan stress...

  20. Bott–Kitaev periodic table and the diagonal map

    International Nuclear Information System (INIS)

    Kennedy, R; Zirnbauer, M R

    2015-01-01

    Building on the ten-way symmetry classification of disordered fermions, the authors have recently given a homotopy-theoretic proof of Kitaev's ‘periodic table’ for topological insulators and superconductors. The present paper offers an introduction to the physical setting and the mathematical model used. Basic to the proof is the so-called diagonal map, a natural transformation akin to the Bott map of algebraic topology, which increases by one unit both the momentum-space dimension and the symmetry index of translation-invariant ground states of gapped free-fermion systems. This mapping is illustrated here with a few examples of interest. (Based on a talk delivered by the senior author at the Nobel Symposium on ‘New Forms of Matter: Topological Insulators and Superconductors’; Stockholm, 13–15 June, 2014.) (topical article)

  1. Modified conjugate gradient method for diagonalizing large matrices.

    Science.gov (United States)

    Jie, Quanlin; Liu, Dunhuan

    2003-11-01

    We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.

  2. IMPACTS OF DIFFERENT JOINT ANGLES AND ADHESIVES ON DIAGONAL TENSION PERFORMANCES OF BOX-TYPE FURNITURE

    Directory of Open Access Journals (Sweden)

    Musa Atar

    2010-02-01

    Full Text Available The goal of this study was to determine the effects of different joint angles and adhesives on diagonal tension performances of the box-type furniture made from solid wood and medium density fiberboard (MDF. After drilling joints of 75º, 78º, 81º, 84º, and 87º degrees on Oriental beech, European oak, Scotch pine, and MDF samples, a diagonal tensile test was applied on corners glued with polyvinyl acetate (PVAc and polyurethane (D-VTKA = Desmodur-Vinyl Trieketonol Acetate according to ASTM D 1037 standard. With reference to the obtained results, the highest tensile strength was obtained in European oak with PVAc glue and joint angle of 84º, while the lowest value was obtained in MDF with D-VTKA glue and joint angle of 75º. Considering the interaction of wood, adhesive, and joint angle, the highest tensile strength was obtained in European oak with joint angle of 81º and D-VTKA glue (1.089 N.mm-2, whereas the lowest tensile strength was determined in MDF with joint angle of 75º and PVAc glue (0.163 N.mm-2. Therefore, PVAc as glue and 81º as joint angle could be suggested to obtain some advantageous on the dovetail joint process for box-type furniture made from both solid wood and MDF.

  3. Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data

    KAUST Repository

    Dong, Kai

    2015-09-16

    DNA sequencing techniques bring novel tools and also statistical challenges to genetic research. In addition to detecting differentially expressed genes, testing the significance of gene sets or pathway analysis has been recognized as an equally important problem. Owing to the “large pp small nn” paradigm, the traditional Hotelling’s T2T2 test suffers from the singularity problem and therefore is not valid in this setting. In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. We also suggest several different ways to derive the approximate null distribution under different scenarios of pp and nn for our proposed shrinkage-based test. Simulation studies show that the proposed method performs comparably to existing competitors when nn is moderate or large, but it is better when nn is small. In addition, we analyze four gene expression data sets and they demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.

  4. Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data

    KAUST Repository

    Dong, Kai; Pang, Herbert; Tong, Tiejun; Genton, Marc G.

    2015-01-01

    DNA sequencing techniques bring novel tools and also statistical challenges to genetic research. In addition to detecting differentially expressed genes, testing the significance of gene sets or pathway analysis has been recognized as an equally important problem. Owing to the “large pp small nn” paradigm, the traditional Hotelling’s T2T2 test suffers from the singularity problem and therefore is not valid in this setting. In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. We also suggest several different ways to derive the approximate null distribution under different scenarios of pp and nn for our proposed shrinkage-based test. Simulation studies show that the proposed method performs comparably to existing competitors when nn is moderate or large, but it is better when nn is small. In addition, we analyze four gene expression data sets and they demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.

  5. Modified Dynamical Supergravity Breaking and Off-Diagonal Super-Higgs Effects

    CERN Document Server

    Gheorghiu, Tamara; Vacaru, Sergiu

    2015-01-01

    We argue that generic off-diagonal vacuum and nonvacuum solutions for Einstein manifolds mimic physical effects in modified gravity theories (MGTs) and encode certain models of $f(R,T,...)$, Ho\\vrava type with dynamical Lorentz symmetry breaking, induced effective mass for graviton etc. Our main goal is to investigate the dynamical breaking of local supersymmetry determined by off--diagonal solutions in MGTs encoded as effective Einstein spaces. This includes the Deser-Zumino super--Higgs effect, for instance, for an one--loop potential in a (simple but representative) model of $\\mathcal{N}=1, D=4$ supergravity. We develop and apply a new geometric techniques which allows us to decouple the gravitational field equations and integrate them in very general forms with metrics and vierbein fields depending on all spacetime coordinates via various generating and integration functions and parameters. We study how solutions in MGTs may be related to dynamical generation of a gravitino mass and supergravity breaking.

  6. The Diagon/Gel Implant: A Preliminary Report of 894 Cases

    Directory of Open Access Journals (Sweden)

    Constantin Stan, MD

    2017-07-01

    Full Text Available Background:. The breast has always been perceived as the emblem of femininity. Desire of having an ideal breast form has been of interest for a long time. Methods:. This preliminary article is a retrospective analysis of 894 cases of breast augmentation with Diagon/Gel breast implants covered with a micropolyurethane foam (Microthane. The surgical technique employed is a modified dual plane, which enables us to use a new anatomical implant to move the glandular parenchyma into a higher position. Results:. The study extended from January 2010 to September 2015, during which no breast implant developed Baker grade III or IV capsular contracture (CC and only a few adverse events occurred. Patients reported to be highly satisfied with the final outcome, which was very natural both in the form and movement. Conclusions:. The new concept of Diagon/Gel represents the next step in the evolutionary progress of breast implants and allows the surgeon to perform not only a breast augmentation but also parenchymal elevation, which otherwise would have required a mastopexy, and we have called it breast enhancement.

  7. An exploration of the influence of diagonal dissociation and moderate changes in speed on locomotor parameters in trotting horses

    Directory of Open Access Journals (Sweden)

    Sarah Jane Hobbs

    2016-06-01

    Full Text Available Background. Although the trot is described as a diagonal gait, contacts of the diagonal pairs of hooves are not usually perfectly synchronized. Although subtle, the timing dissociation between contacts of each diagonal pair could have consequences on gait dynamics and provide insight into the functional strategies employed. This study explores the mechanical effects of different diagonal dissociation patterns when speed was matched between individuals and how these effects link to moderate, natural changes in trotting speed. We anticipate that hind-first diagonal dissociation at contact increases with speed, diagonal dissociation at contact can reduce collision-based energy losses and predominant dissociation patterns will be evident within individuals. Methods. The study was performed in two parts: in the first 17 horses performed speed-matched trotting trials and in the second, five horses each performed 10 trotting trials that represented a range of individually preferred speeds. Standard motion capture provided kinematic data that were synchronized with ground reaction force (GRF data from a series of force plates. The data were analyzed further to determine temporal, speed, GRF, postural, mass distribution, moment, and collision dynamics parameters. Results. Fore-first, synchronous, and hind-first dissociations were found in horses trotting at (3.3 m/s ± 10%. In these speed-matched trials, mean centre of pressure (COP cranio-caudal location differed significantly between the three dissociation categories. The COP moved systematically and significantly (P = .001 from being more caudally located in hind-first dissociation (mean location = 0.41 ± 0.04 through synchronous (0.36 ± 0.02 to a more cranial location in fore-first dissociation (0.32 ± 0.02. Dissociation patterns were found to influence function, posture, and balance parameters. Over a moderate speed range, peak vertical forelimb GRF had a strong relationship with dissociation

  8. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  9. CONDITIONS FOR EXACT CAVALIERI ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mónica Tinajero-Bravo

    2014-03-01

    Full Text Available Exact Cavalieri estimation amounts to zero variance estimation of an integral with systematic observations along a sampling axis. A sufficient condition is given, both in the continuous and the discrete cases, for exact Cavalieri sampling. The conclusions suggest improvements on the current stereological application of fractionator-type sampling.

  10. Localization length and fractal dimension of band centre states for 1-d off-diagonal disordered systems

    International Nuclear Information System (INIS)

    Roman, E.; Wiecko, C.

    1985-08-01

    We study and characterize the eigenstates near the centre of the band of a 1-d tight binding model with off-diagonal disorder Wsub(T). We find a new exponent for the localization length lambda on an energy-dependent range of disorder Wsub(T). We correlate this feature with a change of structure of the wave-function displayed by the behaviour of its fractal dimensionality. (author)

  11. Diagonalization and Jordan Normal Form--Motivation through "Maple"[R

    Science.gov (United States)

    Glaister, P.

    2009-01-01

    Following an introduction to the diagonalization of matrices, one of the more difficult topics for students to grasp in linear algebra is the concept of Jordan normal form. In this note, we show how the important notions of diagonalization and Jordan normal form can be introduced and developed through the use of the computer algebra package…

  12. Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions <=10

    Science.gov (United States)

    Demaret, Jacques; de Rop, Yves; Henneaux, Marc

    1988-08-01

    It is shown that the chaotic oscillatory behaviour, absent in diagonal homogeneous cosmological models in spacetime dimensions between 5 and 10, can be reestablished when off-diagonal terms are included. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile

  13. Iterative algorithm for joint zero diagonalization with application in blind source separation.

    Science.gov (United States)

    Zhang, Wei-Tao; Lou, Shun-Tian

    2011-07-01

    A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.

  14. Exact quantum dynamics study of the O++H2(v=0,j=0)→OH++H ion-molecule reaction and comparison with quasiclassical trajectory calculations

    International Nuclear Information System (INIS)

    Martinez, Rodrigo; Lucas, Josep M.; Gimenez, Xavier; Aguilar, Antonio; Gonzalez, Miguel

    2006-01-01

    The close-coupling hyperspherical (CCH) exact quantum method was used to study the title barrierless reaction up to a collision energy (E T ) of 0.75 eV, and the results compared with quasiclassical trajectory (QCT) calculations to determine the importance of quantum effects. The CCH integral cross section decreased with E T and, although the QCT results were in general quite similar to the CCH ones, they presented a significant deviation from the CCH data within the 0.2-0.6 eV collision energy range, where the QCT method did not correctly describe the reaction probability. A very good accord between both methods was obtained for the OH + vibrational distribution, where no inversion of population was found. For the OH + rotational distributions, the agreement between the CCH and QCT results was not as good as in the vibrational case, but it was satisfactory in many conditions. The kk ' angular distribution showed a preferential forward character, and the CCH method produced higher forward peaks than the QCT one. All the results were interpreted considering the potential energy surface and plots of a representative sampling of reactive trajectories

  15. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  16. Nuclear fuel rod grip with modified diagonal spring structures

    International Nuclear Information System (INIS)

    DeMario, E.E.

    1990-01-01

    This patent describes a spring structure in a nuclear fuel rod grid including a plurality of inner and outer straps being interleaved with one another to form a matrix of hollow cells. Each of the cells is for receiving one fuel rod and being defined by pairs of opposing wall sections of the straps which wall sections are shared with adjacent cells. Each of the cells has a central longitudinal axis, a fuel rod engaging spring structure of resiliently yieldable material being integrally formed on each wall section of the inner straps. The spring structure comprising: a pair of spaced apart opposite outer portions being integrally attached at their outer ends to the respective wall section. The portions extending in alignment with one another and in generally diagonal relation to the direction of the central longitudinal axis of the one cell; and a middle portion disposed between and integrally connected at its outer ends with respective inner ends of the outer portions. The middle portion extending in generally transverse relation to the direction of the central longitudinal axis of the one cell

  17. Improvement of child survival in Mexico: the diagonal approach.

    Science.gov (United States)

    Sepúlveda, Jaime; Bustreo, Flavia; Tapia, Roberto; Rivera, Juan; Lozano, Rafael; Oláiz, Gustavo; Partida, Virgilio; García-García, Lourdes; Valdespino, José Luis

    2006-12-02

    Public health interventions aimed at children in Mexico have placed the country among the seven countries on track to achieve the goal of child mortality reduction by 2015. We analysed census data, mortality registries, the nominal registry of children, national nutrition surveys, and explored temporal association and biological plausibility to explain the reduction of child, infant, and neonatal mortality rates. During the past 25 years, child mortality rates declined from 64 to 23 per 1000 livebirths. A dramatic decline in diarrhoea mortality rates was recorded. Polio, diphtheria, and measles were eliminated. Nutritional status of children improved significantly for wasting, stunting, and underweight. A selection of highly cost-effective interventions bridging clinics and homes, what we called the diagonal approach, were central to this progress. Although a causal link to the reduction of child mortality was not possible to establish, we saw evidence of temporal association and biological plausibility to the high level of coverage of public health interventions, as well as significant association to the investments in women education, social protection, water, and sanitation. Leadership and continuity of public health policies, along with investments on institutions and human resources strengthening, were also among the reasons for these achievements.

  18. [Improvement of child survival in Mexico: the diagonal approach].

    Science.gov (United States)

    Sepúlveda, Jaime; Bustreo, Flavia; Tapia, Roberto; Rivera, Juan; Lozano, Rafael; Olaiz, Gustavo; Partida, Virgilio; García-García, Ma de Lourdes; Valdespino, José Luis

    2007-01-01

    Public health interventions aimed at children in Mexico have placed the country among the seven countries on track to achieve the goal of child mortality reduction by 2015. We analysed census data, mortality registries, the nominal registry of children, national nutrition surveys, and explored temporal association and biological plausibility to explain the reduction of child, infant, and neonatal mortality rates. During the past 25 years, child mortality rates declined from 64 to 23 per 1000 livebirths. A dramatic decline in diarrhoea mortality rates was recorded. Polio, diphtheria, and measles were eliminated. Nutritional status of children improved significantly for wasting, stunting, and underweight. A selection of highly cost-effective interventions bridging clinics and homes, what we called the diagonal approach, were central to this progress. Although a causal link to the reduction of child mortality was not possible to establish, we saw evidence of temporal association and biological plausibility to the high level of coverage of public health interventions, as well as significant association to the investments in women education, social protection, water, and sanitation. Leadership and continuity of public health policies, along with investments on institutions and human resources strengthening, were also among the reasons for these achievements.

  19. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  20. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains

    Directory of Open Access Journals (Sweden)

    Phillip Weinberg, Marin Bukov

    2017-02-01

    Full Text Available We present a new open-source Python package for exact diagonalization and quantum dynamics of spin(-photon chains, called QuSpin, supporting the use of various symmetries in 1-dimension and (imaginary time evolution for chains up to 32 sites in length. The package is well-suited to study, among others, quantum quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and other dynamical phase transitions, periodically-driven (Floquet systems, adiabatic and counter-diabatic ramps, and spin-photon interactions. Moreover, QuSpin's user-friendly interface can easily be used in combination with other Python packages which makes it amenable to a high-level customisation. We explain how to use QuSpin using four detailed examples: (i Standard exact diagonalisation of XXZ chain (ii adiabatic ramping of parameters in the many-body localised XXZ model, (iii heating in the periodically-driven transverse-field Ising model in a parallel field, and (iv quantised light-atom interactions: recovering the periodically-driven atom in the semi-classical limit of a static Hamiltonian.

  1. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    Science.gov (United States)

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  2. Exact results for the spectra of bosons and fermions with contact interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, Stefan [Schroedinger, 120 West 45th St., New York, NY 10036 (United States)]. E-mail: mash@mashke.org; Matveenko, Sergey [Landau Institute for Theoretical Physics, Kosygina Str. 2, 119334 Moscow (Russian Federation)]. E-mail: matveen@landau.ac.ru; Ouvry, Stephane [Laboratoire de Physique Theorique et Modeles Statistiques, Unite de Recherche de l' Universite Paris 11 associee au CNRS, UMR 8626., Bat. 100, Universite Paris-Sud, 91405 Orsay (France)]. E-mail: ouvry@lptms.u-psud.fr

    2007-02-19

    An N-body bosonic model with delta-contact interactions projected on the lowest Landau level is considered. For a given number of particles in a given angular momentum sector, any energy level can be obtained exactly by means of diagonalizing a finite matrix: they are roots of algebraic equations. A complete solution of the three-body problem is presented, some general properties of the N-body spectrum are pointed out, and a number of novel exact analytic eigenstates are obtained. The FQHE N-fermion model with Laplacian-delta interactions is also considered along the same lines of analysis. New exact eigenstates are proposed, along with the Slater determinant, whose eigenvalues are shown to be related to Catalan numbers.

  3. Exact vacuum polarization in 1 + 1 dimensional finite nuclei

    International Nuclear Information System (INIS)

    Ferree, T.C.

    1992-01-01

    There is considerable interest in the use of renormalizable quantum field theories to describe nuclear structure. In particular, theories which employ hadronic degrees of freedom are used widely and lead to efficient models which allow self-consistent solutions of the many-body problem. An interesting feature inherent to relativistic field theories (like QHD) is the presence of an infinite sea of negative energy fermion (nucleon) states, which interact dynamically with positive energy fermions via other fields. Such interactions give rise to, for example, vacuum polarization effects, in which virtual particle-antiparticle pairs interact with positive energy valence nucleons as well as with each other, and can significantly influence the ground and excited states of nuclear systems. Several authors have addressed this question in various approximations for finite nuclei, mostly based on extensions of results derived for a uniform system of nucleons. Some attempts have also been made to include vacuum effects in finite systems exactly, but the presence of a vector potential can be problematic when working in a spectral representation. In this paper, the author presents a computational method by which vacuum polarization effects in finite nuclei can be calculated exactly in the RHA by employing matrix diagonalization methods in a discrete Fourier representation of the Dirac equation, and an approximate method for including deep negative energy states based on a derivative expansion of the effective action. This efficient approach is shown to provide well-behaved vacuum polarization densities which remain so even in the presence of strong vector potential

  4. Exact Optimum Design of Segmented Thermoelectric Generators

    Directory of Open Access Journals (Sweden)

    M. Zare

    2016-01-01

    Full Text Available A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs. Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency.

  5. Exact solitary waves of the Fisher equation

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given

  6. Globally convergent optimization algorithm using conservative convex separable diagonal quadratic approximations

    NARCIS (Netherlands)

    Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.

    2009-01-01

    We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by

  7. Localization for off-diagonal disorder and for continuous Schroedinger operators

    International Nuclear Information System (INIS)

    Delyon, F.; Souillard, B.; Simon, B.

    1987-01-01

    We extend the proof of localization by Delyon, Levy, and Souillard to accommodate the Anderson model with off-diagonal disorder and the continuous Schroedinger equation with a random potential. (orig.)

  8. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  9. Algebraic aspects of exact models

    International Nuclear Information System (INIS)

    Gaudin, M.

    1983-01-01

    Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method

  10. Quantum mechanical calculations of vibrational population inversion in chemical reactions - Numerically exact L-squared-amplitude-density study of the H2Br reactive system

    Science.gov (United States)

    Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.

    1988-01-01

    Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.

  11. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  12. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  13. Criteria for exact qudit universality

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; O'Leary, Dianne P.; Bullock, Stephen S.

    2005-01-01

    We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H jk x =(ℎ/2π)Ω(vertical bar k> jk y =(ℎ/2π)Ω(i vertical bar k> jk x,y are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=(ℎ/2π)Ω vertical bar d-1,d-1> 87 Rb and construct an optimal gate sequence using Raman laser pulses

  14. The subgroups in the special linear group over a skew field that contain the group of diagonal matrices

    International Nuclear Information System (INIS)

    Bui Xuan Hai.

    1990-05-01

    For an arbitrary skew field T we study the lattice of subgroups of the special linear group Γ=SL(n,T) that contain the subgroup Δ-SD(n,T) of diagonal matrices with Dieudonne's determinant equal to 1. We show that the description of these subgroups is standard in the following sense: For any subgroup H,Δ≤H≤Γ there exists a unique unital net such that Γ(σ) ≤H≤N(σ), where Γ(σ) is the net subgroup that corresponds to the net σ and N(σ) is the normalizer of Γ(σ) in Γ. (author). 11 refs

  15. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.

    Science.gov (United States)

    Ramakrishnan, T S; Goode, P A

    2015-07-01

    The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  17. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    Science.gov (United States)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  18. Exact theory of freeze-out

    International Nuclear Information System (INIS)

    Cannoni, Mirco

    2015-01-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x * = m χ /T * . The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y 0 , is where the maximum departure of the WIMPs abundance Y from the thermal value Y 0 is reached. For each mass m χ and total annihilation cross section left angle σ ann υ r right angle, the temperature x * and the actual WIMPs abundance Y(x * ) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x * . The matching of the two abundances at x * is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  19. Exact theory of freeze-out

    Science.gov (United States)

    Cannoni, Mirco

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.

  20. Phylogeography of Partamona rustica (Hymenoptera, Apidae), an Endemic Stingless Bee from the Neotropical Dry Forest Diagonal.

    Science.gov (United States)

    Miranda, Elder Assis; Batalha-Filho, Henrique; Congrains, Carlos; Carvalho, Antônio Freire; Ferreira, Kátia Maria; Del Lama, Marco Antonio

    2016-01-01

    The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV). These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability.

  1. Phylogeography of Partamona rustica (Hymenoptera, Apidae, an Endemic Stingless Bee from the Neotropical Dry Forest Diagonal.

    Directory of Open Access Journals (Sweden)

    Elder Assis Miranda

    Full Text Available The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV. These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability.

  2. INDEFINITE COPOSITIVE MATRICES WITH EXACTLY ONE POSITIVE EIGENVALUE OR EXACTLY ONE NEGATIVE EIGENVALUE

    NARCIS (Netherlands)

    Jargalsaikhan, Bolor

    Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out

  3. INVESTIGATION OF THE EFFECTS OF DIFFERENT EDGE JOINT ELEMENTS ON DIAGONAL TENSILE STRENGTH IN FURNITURE EDGE JOINTS

    Directory of Open Access Journals (Sweden)

    Arif GÜRAY

    2002-01-01

    Full Text Available In this work, the diagonal tensile strength of furniture edge joints such as wooden dowel, minifix, and alyan screw was investigated in panel-constructed boards for Suntalam and MDF Lam. For this purpose, a diagonal tensile strength test was applied to the 72 samples. According to the results, the maximum diagonal tensile strength was found to be in MDF Lam boards that jointed with alyan screw.

  4. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts

    Science.gov (United States)

    Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.

    2017-12-01

    We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.

  5. Nonconformal scalar field in uniform isotropic space and the method of Hamiltonian diagonalization

    International Nuclear Information System (INIS)

    Pavlov, Yu.V.

    2001-01-01

    One diagonalized metric Hamiltonian of scalar field with arbitrary relation with curvature in N-dimensional uniform isotropic space. One derived spectrum of energies of the appropriate quasi-particles. One calculated energy of quasi-particle appropriate to the canonical Hamiltonian diagonal shape. One structured a modified tensor of energy-pulse with the following features. In case of conformal scalar field it coincides with the metric tensor of energy-pulse. When it is diagonalized the energies of the appropriate particles of nonconformal field are equal to oscillation frequency and the number of such particles produced in non-stationary metric is the finite one. It is shown that Hamiltonian calculated on the basis of the modified tensor of energy-pulse may be derived as a canonical one at certain selection of variables [ru

  6. A new three-dimensional equivalent circuit of diagonal type MHD generator

    International Nuclear Information System (INIS)

    Yoshida, Masahrau; Komaya, Kiyotoshi; Umoto, Juro

    1979-01-01

    For a large scale diagonal type generator with oil combustion gas plasma, a new three-dimensional equivalent circuit is proposed, in which threre are considered the leakage resistance of the duct insulator surface, the boundary layer, the ion slip, the effect of the finite electrode segmentation etc. Next, through the relation between the Hall voltage per one electrode pitch region and the load current obtained by use of the equivalent circuit, a suitable size and number of the space elements per region and determined. Further, by comparing in detail the electrical performances of two types of the diagonal generators with diagonal conducting and insulating sidewalls, three-dimensional effects of the sidewalls are discussed. (author)

  7. Novel Diagonal Reloading Based Direction of Arrival Estimation in Unknown Non-Uniform Noise

    Directory of Open Access Journals (Sweden)

    Hao Zhou

    2018-01-01

    Full Text Available Nested array can expand the degrees of freedom (DOF from difference coarray perspective, but suffering from the performance degradation of direction of arrival (DOA estimation in unknown non-uniform noise. In this paper, a novel diagonal reloading (DR based DOA estimation algorithm is proposed using a recently developed nested MIMO array. The elements in the main diagonal of the sample covariance matrix are eliminated; next the smallest MN-K eigenvalues of the revised matrix are obtained and averaged to estimate the sum value of the signal power. Further the estimated sum value is filled into the main diagonal of the revised matrix for estimating the signal covariance matrix. In this case, the negative effect of noise is eliminated without losing the useful information of the signal matrix. Besides, the degrees of freedom are expanded obviously, resulting in the performance improvement. Several simulations are conducted to demonstrate the effectiveness of the proposed algorithm.

  8. Biomechanical analysis of knee and trunk in badminton players with and without knee pain during backhand diagonal lunges.

    Science.gov (United States)

    Lin, Cheng-Feng; Hua, Shiang-Hua; Huang, Ming-Tung; Lee, Hsing-Hsan; Liao, Jen-Chieh

    2015-01-01

    The contribution of core neuromuscular control to the dynamic stability of badminton players with and without knee pain during backhand lunges has not been investigated. Accordingly, this study compared the kinematics of the lower extremity, the trunk movement, the muscle activation and the balance performance of knee-injured and knee-uninjured badminton players when performing backhand stroke diagonal lunges. Seventeen participants with chronic knee pain (injured group) and 17 healthy participants (control group) randomly performed two diagonal backhand lunges in the forward and backward directions, respectively. This study showed that the injured group had lower frontal and horizontal motions of the knee joint, a smaller hip-shoulder separation angle and a reduced trunk tilt angle. In addition, the injured group exhibited a greater left paraspinal muscle activity, while the control group demonstrated a greater activation of the vastus lateralis, vastus medialis and medial gastrocnemius muscle groups. Finally, the injured group showed a smaller distance between centre of mass (COM) and centre of pressure, and a lower peak COM velocity when performing the backhand backward lunge tasks. In conclusion, the injured group used reduced knee and trunk motions to complete the backhand lunge tasks. Furthermore, the paraspinal muscles contributed to the lunge performance of the individuals with knee pain, whereas the knee extensors and ankle plantar flexor played a greater role for those without knee pain.

  9. Statistical challenges in modelling the health consequences of social mobility: the need for diagonal reference models.

    Science.gov (United States)

    van der Waal, Jeroen; Daenekindt, Stijn; de Koster, Willem

    2017-12-01

    Various studies on the health consequences of socio-economic position address social mobility. They aim to uncover whether health outcomes are affected by: (1) social mobility, besides, (2) social origin, and (3) social destination. Conventional methods do not, however, estimate these three effects separately, which may produce invalid conclusions. We highlight that diagonal reference models (DRMs) overcome this problem, which we illustrate by focusing on overweight/obesity (OWOB). Using conventional methods (logistic-regression analyses with dummy variables) and DRMs, we examine the effects of intergenerational educational mobility on OWOB (BMI ≥ 25 kg/m 2 ) using survey data representative of the Dutch population aged 18-45 (1569 males, 1771 females). Conventional methods suggest that mobility effects on OWOB are present. Analyses with DRMs, however, indicate that no such effects exist. Conventional analyses of the health consequences of social mobility may produce invalid results. We, therefore, recommend the use of DRMs. DRMs also validly estimate the health consequences of other types of social mobility (e.g. intra- and intergenerational occupational and income mobility) and status inconsistency (e.g. in educational or occupational attainment between partners).

  10. Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review

    Science.gov (United States)

    Kennedy, Christopher A.; Carpenter, Mark H.

    2016-01-01

    A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.

  11. Feature fusion using kernel joint approximate diagonalization of eigen-matrices for rolling bearing fault identification

    Science.gov (United States)

    Liu, Yongbin; He, Bing; Liu, Fang; Lu, Siliang; Zhao, Yilei

    2016-12-01

    Fault pattern identification is a crucial step for the intelligent fault diagnosis of real-time health conditions in monitoring a mechanical system. However, many challenges exist in extracting the effective feature from vibration signals for fault recognition. A new feature fusion method is proposed in this study to extract new features using kernel joint approximate diagonalization of eigen-matrices (KJADE). In the method, the input space that is composed of original features is mapped into a high-dimensional feature space by nonlinear mapping. Then, the new features can be estimated through the eigen-decomposition of the fourth-order cumulative kernel matrix obtained from the feature space. Therefore, the proposed method could be used to reduce data redundancy because it extracts the inherent pattern structure of different fault classes as it is nonlinear by nature. The integration evaluation factor of between-class and within-class scatters (SS) is employed to depict the clustering performance quantitatively, and the new feature subset extracted by the proposed method is fed into a multi-class support vector machine for fault pattern identification. Finally, the effectiveness of the proposed method is verified by experimental vibration signals with different bearing fault types and severities. Results of several cases show that the KJADE algorithm is efficient in feature fusion for bearing fault identification.

  12. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  13. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  14. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    Science.gov (United States)

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  15. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Physik, WA THEP, Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-06-13

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These “exact effective couplings” encode the finite, relative renormalization between the N=2 and the N=4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  16. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  17. A geometric method of constructing exact solutions in modified f(R,T)-gravity with Yang-Mills and Higgs interactions

    CERN Document Server

    Vacaru, Sergiu I.; Yazici, Enis

    2014-01-01

    We show that a geometric techniques can be elaborated and applied for constructing generic off-diagonal exact solutions in $f(R,T)$--modified gravity for systems of gravitational-Yang-Mills-Higgs equations. The corresponding classes of metrics and generalized connections are determined by generating and integration functions which depend, in general, on all space and time coordinates and may possess, or not, Killing symmetries. For nonholonomic constraints resulting in Levi-Civita configurations, we can extract solutions of the Einstein-Yang-Mills-Higgs equations. We show that the constructions simplify substantially for metrics with at least one Killing vector. There are provided and analyzed some examples of exact solutions describing generic off-diagonal modifications to black hole/ellipsoid and solitonic configurations.

  18. Exact identification of the radion and its coupling to the observable sector

    International Nuclear Information System (INIS)

    Kofman, Lev; Martin, Johannes; Peloso, Marco

    2004-01-01

    Braneworld models in extra dimensions can be tested in laboratory by the coupling of the radion to the standard model fields. The identification of the radion as a canonically normalized field involves a careful general relativity treatment: if a bulk scalar is responsible for the stabilization of the system, its fluctuations are entangled with the perturbations of the metric and they also have to be taken into account (similarly to the well-developed theory of scalar metric perturbations in 4D cosmology with a scalar field). Extracting a proper dynamical variable in a warped geometry/scalar setting is a nontrivial task, performed so far only in the limit of negligible backreaction of the scalar field on the background geometry. We perform the general calculation, diagonalizing the action up to second order in the perturbations and identifying the physical eigenmodes of the system for any amplitude of the bulk scalar. This computation allows us to derive a very simple expression for the exact coupling of the eigenmodes to the standard model fields on the brane, valid for an arbitrary background configuration. As an application, we discuss the Goldberger-Wise mechanism for the stabilization of the radion in the Randall-Sundrum-type models. The existing studies, limited to small amplitude of the bulk scalar field, are characterized by a radion mass which is significantly below the physical scale at the observable brane. We extend them beyond the small backreaction regime. For intermediate amplitudes, the radion mass approaches the electroweak scale, while its coupling to the observable brane remains nearly constant. At very high amplitudes, the radion mass instead decreases, while the coupling sharply increases. Severe experimental constraints are expected in this regime

  19. Relation between Feynman Cycles and Off-Diagonal Long-Range Order

    International Nuclear Information System (INIS)

    Ueltschi, Daniel

    2006-01-01

    The usual order parameter for Bose-Einstein condensation involves the off-diagonal correlation function of Penrose and Onsager, but an alternative is Feynman's notion of infinite cycles. We present a formula that relates both order parameters. We discuss its validity with the help of rigorous results and heuristic arguments. The conclusion is that infinite cycles do not always represent the Bose condensate

  20. Stability of matrices with sufficiently strong negative-dominant-diagonal submatrices

    NARCIS (Netherlands)

    Nieuwenhuis, H.J.; Schoonbeek, L.

    A well-known sufficient condition for stability of a system of linear first-order differential equations is that the matrix of the homogeneous dynamics has a negative dominant diagonal. However, this condition cannot be applied to systems of second-order differential equations. In this paper we

  1. Correlation between eigenvalues and sorted diagonal matrix elements of a large dimensional matrix

    International Nuclear Information System (INIS)

    Arima, A.

    2008-01-01

    Functional dependences of eigenvalues as functions of sorted diagonal elements are given for realistic nuclear shell model (NSM) hamiltonian, the uniform distribution hamiltonian and the GOE hamiltonian. In the NSM case, the dependence is found to be linear. We discuss extrapolation methods for more accurate predictions for low-lying states. (author)

  2. A dynamical characterization of diagonal-preserving *-isomorphisms of graph C*-algebras

    DEFF Research Database (Denmark)

    Arklint, Sara; Eilers, Søren; Ruiz, Efren

    2017-01-01

    We characterize when there exists a diagonal-preserving (Formula presented.)-isomorphism between two graph (Formula presented.)-algebras in terms of the dynamics of the boundary path spaces. In particular, we refine the notion of ‘orbit equivalence’ between the boundary path spaces of the directe...

  3. Hamiltonian diagonalization in foliable space-times: A method to find the modes

    International Nuclear Information System (INIS)

    Castagnino, M.; Ferraro, R.

    1989-01-01

    A way to obtain modes diagonalizing the canonical Hamiltonian of a minimally coupled scalar quantum field, in a foliable space-time, is shown. The Cauchy data for these modes are found to be the eigenfunctions of a second-order differential operator that could be interpreted as the squared Hamiltonian for the first-quantized relativistic particle in curved space

  4. Relativistic density matrix in the diagonal momentum representation. Bose-gas

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1984-01-01

    The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed

  5. An integrated chronic disease management model: a diagonal approach to health system strengthening in South Africa.

    Science.gov (United States)

    Mahomed, Ozayr Haroon; Asmall, Shaidah; Freeman, Melvyn

    2014-11-01

    The integrated chronic disease management model provides a systematic framework for creating a fundamental change in the orientation of the health system. This model adopts a diagonal approach to health system strengthening by establishing a service-linked base to training, supervision, and the opportunity to try out, assess, and implement integrated interventions.

  6. An exact solution in Einstein-Cartan

    International Nuclear Information System (INIS)

    Roque, W.L.

    1982-01-01

    The exact solution of the field equations of the Einstein-Cartan theory is obtained for an artificial dust of radially polarized spins, with spherical symmetry and static. For a best estimation of the effect due the spin, the energy-momentum metric tensor is considered null. The gravitational field dynamics is studied for several torsion strengths, through the massive and spinless test-particle moviment, in particular for null torsion Schwarzschild solutions is again obtained. It is observed that the gravitational effects related to the torsin (spin) sometimes are attractives sometimes are repulsives, depending of the torsion values and of the test-particle position and velocity. (L.C.) [pt

  7. Exact renormalization group equations: an introductory review

    Science.gov (United States)

    Bagnuls, C.; Bervillier, C.

    2001-07-01

    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

  8. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from

  9. Exact travelling wave solutions for some important nonlinear ...

    Indian Academy of Sciences (India)

    The study of nonlinear partial differential equations is an active area of research in applied mathematics, theoretical physics and engineering fields. In particular ... In [16–18], the author applied this method to construct the exact solutions of.

  10. Iterating the Number of Intersection Points of the Diagonals of Irregular Convex Polygons, or C (n, 4) the Hard Way!

    Science.gov (United States)

    Hathout, Leith

    2007-01-01

    Counting the number of internal intersection points made by the diagonals of irregular convex polygons where no three diagonals are concurrent is an interesting problem in discrete mathematics. This paper uses an iterative approach to develop a summation relation which tallies the total number of intersections, and shows that this total can be…

  11. Diagonal K-matrices and transfer matrix eigenspectra associated with the G(1)2 R-matrix

    International Nuclear Information System (INIS)

    Yung, C.M.; Batchelor, M.T.

    1995-01-01

    We find all the diagonal K-matrices for the R-matrix associated with the minimal representation of the exceptional affine algebra G (1) 2 . The corresponding transfer matrices are diagonalized with a variation of the analytic Bethe ansatz. We find many similarities with the case of the Izergin-Korepin R-matrix associated with the affine algebra A (2) 2 . ((orig.))

  12. Diagonal Earlobe Crease (Frank's Sign): A Predictor of Cerebral Vascular Events.

    Science.gov (United States)

    Nazzal, Saleh; Hijazi, Basem; Khalila, Luai; Blum, Arnon

    2017-11-01

    Frank's sign was first described in 1973 by an American physician (Sonders T. Frank). It is a diagonal crease in the earlobe that starts from the tragus to the edge of the auricle in an angle of 45° in varying depths. Frank's sign was described as a predictor of future coronary heart disease and peripheral vascular diseases. The aim of the study was to examine the association between Frank's sign and the development of ischemic stroke. This was a prospective study that enrolled consecutive patients admitted with an acute ischemic stroke. Frank's sign was tested in both ears. Clinical data included age, gender, type 2 diabetes mellitus, and hypertension. The study was approved by the institutional review board (the institutional ethics committee). A total of 241 consecutive patients who were hospitalized with an acute stroke and were eligible to take part in the study were recruited. Frank's sign was present in 190 patients (78.8%). Patients were divided according to clinical findings and the findings from brain computed tomography. There were 153 patients with transient ischemic attacks (63.6% of the patients) and 88 with cerebrovascular accidents (36.4% of the patients). A total of 112 patients with transient ischemic attacks had Frank's sign (73.2%), and 78 patients with cerebrovascular accidents had Frank's sign (88.6%), with a statistically significant difference (P <.01). Frank's sign could predict ischemic cerebrovascular events. Patients with classical cardiovascular risk factors had Frank's sign at a higher frequency. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Stochastic epidemic-type model with enhanced connectivity: exact solution

    International Nuclear Information System (INIS)

    Williams, H T; Mazilu, I; Mazilu, D A

    2012-01-01

    We present an exact analytical solution to a one-dimensional model of the susceptible–infected–recovered (SIR) epidemic type, with infection rates dependent on nearest-neighbor occupations. We use a quantum mechanical approach, transforming the master equation via a quantum spin operator formulation. We calculate exactly the time-dependent density of infected, recovered and susceptible populations for random initial conditions. Our results compare well with those of previous work, validating the model as a useful tool for additional and extended studies in this important area. Our model also provides exact solutions for the n-point correlation functions, and can be extended to more complex epidemic-type models

  14. Exact theory of freeze-out

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x{sub *} = m{sub χ}/T{sub *}. The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y{sub 0}, is where the maximum departure of the WIMPs abundance Y from the thermal value Y{sub 0} is reached. For each mass m{sub χ} and total annihilation cross section left angle σ{sub ann}υ{sub r} right angle, the temperature x{sub *} and the actual WIMPs abundance Y(x{sub *}) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x{sub *}. The matching of the two abundances at x{sub *} is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  15. Rotational Angles and Velocities During Down the Line and Diagonal Across Court Volleyball Spikes

    Directory of Open Access Journals (Sweden)

    Justin R. Brown

    2014-05-01

    Full Text Available The volleyball spike is an explosive movement that is frequently used to end a rally and earn a point. High velocity spikes are an important skill for a successful volleyball offense. Although the influence of vertical jump height and arm velocity on spiked ball velocity (SBV have been investigated, little is known about the relationship of shoulder and hip angular kinematics with SBV. Other sport skills, like the baseball pitch share similar movement patterns and suggest trunk rotation is important for such movements. The purpose of this study was to examine the relationship of both shoulder and hip angular kinematics with ball velocity during the volleyball spike. Methods: Fourteen Division I collegiate female volleyball players executed down the line (DL and diagonally across-court (DAC spikes in a laboratory setting to measure shoulder and hip angular kinematics and velocities. Each spike was analyzed using a 10 Camera Raptor-E Digital Real Time Camera System.  Results: DL SBV was significantly greater than for DAC, respectively (17.54±2.35 vs. 15.97±2.36 m/s, p<0.05.  The Shoulder Hip Separation Angle (S-HSA, Shoulder Angular Velocity (SAV, and Hip Angular Velocity (HAV were all significantly correlated with DAC SBV. S-HSA was the most significant predictor of DAC SBV as determined by regression analysis.  Conclusions: This study provides support for a relationship between a greater S-HSA and SBV. Future research should continue to 1 examine the influence of core training exercise and rotational skill drills on SBV and 2 examine trunk angular velocities during various types of spikes during play.

  16. Evolution of the low-energy excitation spectrum from the pure Hubbard ladder to the SO(5) ladder: A numerical study

    International Nuclear Information System (INIS)

    Duffy, D.; Haas, S.; Kim, E.

    1998-01-01

    The Hubbard Hamiltonian on a two-leg ladder is studied numerically using quantum Monte Carlo and exact diagonalization techniques. A rung interaction, V, is turned on such that the resulting model has an exact SO(5) symmetry when V=-U. The evolution of the low-energy excitation spectrum is presented from the pure Hubbard ladder to the SO(5) ladder. It is shown that the low-energy excitations in the pure Hubbard ladder have an approximate SO(5) symmetry. copyright 1998 The American Physical Society

  17. Corollary from the Exact Expression for Enthalpy of Vaporization

    OpenAIRE

    A. A. Sobko

    2011-01-01

    A problem on determining effective volumes for atoms and molecules becomes actual due to rapidly developing nanotechnologies. In the present study an exact expression for enthalpy of vaporization is obtained, from which an exact expression is derived for effective volumes of atoms and molecules, and under certain assumptions on the form of an atom (molecule) it is possible to find their linear dimensions. The accuracy is only determined by the accuracy of measurements of thermodynamic paramet...

  18. Exact simulation of max-stable processes.

    Science.gov (United States)

    Dombry, Clément; Engelke, Sebastian; Oesting, Marco

    2016-06-01

    Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.

  19. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  20. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  1. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Razali, Azhani Mohd, E-mail: azhani@nuclearmalaysia.gov.my; Abdullah, Jaafar, E-mail: jaafar@nuclearmalaysia.gov.my [Plant Assessment Technology (PAT) Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  2. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    International Nuclear Information System (INIS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-01-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm

  3. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Science.gov (United States)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  4. The resolution of field identification fixed points in diagonal coset theories

    International Nuclear Information System (INIS)

    Fuchs, J.; Schellekens, B.; Schweigert, C.

    1995-09-01

    The fixed point resolution problem is solved for diagonal coset theories. The primary fields into which the fixed points are resolved are described by submodules of the branching spaces, obtained as eigenspaces of the automorphisms that implement field identification. To compute the characters and the modular S-matrix we use ''orbit Lie algebras'' and ''twining characters'', which were introduced in a previous paper. The characters of the primary fields are expressed in terms branching functions of twining characters. This allows us to express the modular S-matrix through the S-matrices of the orbit Lie algebras associated to the identification group. Our results can be extended to the larger class of ''generalized diagonal cosets''. (orig.)

  5. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    Science.gov (United States)

    Wu, Sheng-Jhih; Chu, Moody T.

    2017-08-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.

  6. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    International Nuclear Information System (INIS)

    Wu, Sheng-Jhih; Chu, Moody T

    2017-01-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing–Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations. (paper)

  7. Improved diagonal queue medical image steganography using Chaos theory, LFSR, and Rabin cryptosystem.

    Science.gov (United States)

    Jain, Mamta; Kumar, Anil; Choudhary, Rishabh Charan

    2017-06-01

    In this article, we have proposed an improved diagonal queue medical image steganography for patient secret medical data transmission using chaotic standard map, linear feedback shift register, and Rabin cryptosystem, for improvement of previous technique (Jain and Lenka in Springer Brain Inform 3:39-51, 2016). The proposed algorithm comprises four stages, generation of pseudo-random sequences (pseudo-random sequences are generated by linear feedback shift register and standard chaotic map), permutation and XORing using pseudo-random sequences, encryption using Rabin cryptosystem, and steganography using the improved diagonal queues. Security analysis has been carried out. Performance analysis is observed using MSE, PSNR, maximum embedding capacity, as well as by histogram analysis between various Brain disease stego and cover images.

  8. Diagonalization of propagators in thermo field dynamics for relativistic quantum fields

    International Nuclear Information System (INIS)

    Henning, P.A.; Umezawa, H.

    1992-09-01

    Two-point functions for interacting quantum fields in statistical systems can be diagnolized by matrix transformations. It is shown, that within the framework of time-dependent Thermo Field Dynamics this diagonalization can be understood as a thermal Bogoliubov transformation to non-interacting statistical quasi-particles. The condition for their unperturbed propagation relates these states to the thermodynamic properties of the system: It requires global equilibrium for stationary situations, or specifies the time evolution according to a kinetic equation. (orig.)

  9. Gradient $L^q$ theory for a class of non-diagonal nonlinear elliptic systems

    Czech Academy of Sciences Publication Activity Database

    Bulíček, M.; Kalousek, M.; Kaplický, P.; Mácha, Václav

    2018-01-01

    Roč. 171, June (2018), s. 156-169 ISSN 0362-546X R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : regularity * gradient estimates * non-diagonal elliptic systems Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0362546X18300385

  10. Off-diagonal helicity density matrix elements for vector mesons produced at LEP

    International Nuclear Information System (INIS)

    Anselmino, M.; Bertini, M.; Quintairos, P.

    1997-05-01

    Final state q q-bar interactions may give origin to non zero values of the off-diagonal element ρ 1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ and D * 's. Predictions are given for ρ1,-1 of several mesons produced at large z and small PT, collinear with the parent jet; the values obtained for θ and D * are in agreement with data. (author)

  11. Gradient $L^q$ theory for a class of non-diagonal nonlinear elliptic systems

    Czech Academy of Sciences Publication Activity Database

    Bulíček, M.; Kalousek, M.; Kaplický, P.; Mácha, Václav

    2018-01-01

    Roč. 171, June (2018), s. 156-169 ISSN 0362-546X R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : regularity * gradient estimates * non-diagonal elliptic systems Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 https://www.sciencedirect.com/science/article/pii/S0362546X18300385

  12. Workshop report on large-scale matrix diagonalization methods in chemistry theory institute

    Energy Technology Data Exchange (ETDEWEB)

    Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.

    1996-10-01

    The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of

  13. Diagonally arranged louvers in integrated facade systems - effects on the interior lighting environment

    Directory of Open Access Journals (Sweden)

    Yutaka Misawa

    2015-06-01

    Full Text Available Building facades play an important role in creating the urban landscape and they can be used effectively to reduce energy usage and environmental impacts, while also incorporating structural seismic-resistant elements in the building perimeter zone. To address these opportunities, the authors propose an integrated facade concept which satisfies architectural facade and environmental design requirements. In Europe, remarkable facade engineering developments have taken place over the last two decades resulting in elegant facades and a reduction in environmental impact; however modifications are needed in Japan to take account of the different seismic and environmental situations. To satisfy these requirements, this paper proposes the use of a diagonally disposed louver system. Diagonally arranged louvers have the potential to provide both seismic resistance and environment adaptation. In many cases, louvers have been designed but not installed due to concerns relating to restricted external sight lines and low levels of natural lighting in the building interior. To overcome these problems, full-scale diagonally arranged louver mock-ups were created to evaluate illumination levels, the quality of the internal daylight environment and external appearance. Interior illumination levels resulting from a series of mock-up experiments were evaluated and correlated with results from a daylight analysis tool.

  14. Images of a Bose-Einstein condensates: diagonal dynamical Bogoliubov vacuum

    International Nuclear Information System (INIS)

    Dziarmaga, J.; Sacha, K.; Karkuszewski, Z.

    2005-01-01

    Evolution of a Bose-Einstein condensate subject to a time-dependent external perturbation can be described by a time-dependent Bogoliubov theory: a condensate initially in its ground state evolves into a time-dependent excited state which can be formally written as a time-dependent Bogoliubov vacuum annihilated by time-dependent quasiparticle annihilation operators. We prove that any Bogoliubov vacuum can be brought to a diagonal form in a time-dependent orthonormal basis. This diagonal form is taylored for simulations of quantum measurements on excited condensates. As an example we work out a model of atomic interferometer where a trap potential is split in two parts by a potential barrier, and then atoms are released by opening the double-well trap potential. In the Gross-Pitaevskii approximation the released atoms give a high contrast interference pattern with repeatable position of interference fringes. In the two-mode tight-binding approximation the effect of phase diffusion makes the position of fringes fluctuate from experiment to experiment but every single realisation of experiment gives a high quality interference pattern. The time-dependent Bogoliubov theory is a more realistic description of the experiment which goes beyond both approximations. Using the diagonal time-dependent Bogoliubov vacuum we show that in addition to position fluctuations the interference pattern is also loosing its high quality contrast. (author)

  15. Adaptive PVD Steganography Using Horizontal, Vertical, and Diagonal Edges in Six-Pixel Blocks

    Directory of Open Access Journals (Sweden)

    Anita Pradhan

    2017-01-01

    Full Text Available The traditional pixel value differencing (PVD steganographical schemes are easily detected by pixel difference histogram (PDH analysis. This problem could be addressed by adding two tricks: (i utilizing horizontal, vertical, and diagonal edges and (ii using adaptive quantization ranges. This paper presents an adaptive PVD technique using 6-pixel blocks. There are two variants. The proposed adaptive PVD for 2×3-pixel blocks is known as variant 1, and the proposed adaptive PVD for 3×2-pixel blocks is known as variant 2. For every block in variant 1, the four corner pixels are used to hide data bits using the middle column pixels for detecting the horizontal and diagonal edges. Similarly, for every block in variant 2, the four corner pixels are used to hide data bits using the middle row pixels for detecting the vertical and diagonal edges. The quantization ranges are adaptive and are calculated using the correlation of the two middle column/row pixels with the four corner pixels. The technique performs better as compared to the existing adaptive PVD techniques by possessing higher hiding capacity and lesser distortion. Furthermore, it has been proven that the PDH steganalysis and RS steganalysis cannot detect this proposed technique.

  16. Off-diagonal generalization of the mixed-state geometric phase

    International Nuclear Information System (INIS)

    Filipp, Stefan; Sjoeqvist, Erik

    2003-01-01

    The concept of off-diagonal geometric phases for mixed quantal states in unitary evolution is developed. We show that these phases arise from three basic ideas: (1) fulfillment of quantum parallel transport of a complete basis, (2) a concept of mixed-state orthogonality adapted to unitary evolution, and (3) a normalization condition. We provide a method for computing the off-diagonal mixed-state phases to any order for unitarities that divide the parallel transported basis of Hilbert space into two parts: one part where each basis vector undergoes cyclic evolution and one part where all basis vectors are permuted among each other. We also demonstrate a purification based experimental procedure for the two lowest-order mixed-state phases and consider a physical scenario for a full characterization of the qubit mixed-state geometric phases in terms of polarization-entangled photon pairs. An alternative second order off-diagonal mixed-state geometric phase, which can be tested in single-particle experiments, is proposed

  17. Diagonal arguments

    Directory of Open Access Journals (Sweden)

    Jaroslav Peregrin

    2017-11-01

    Full Text Available It is a trivial fact that if we have a square table filled with numbers, we can always form a column which is not yet contained in the table. Despite its apparent triviality, this fact can lead us the most of the path-breaking results of logic in the second half of the nineteenth and the first half of the twentieth century. We explain how this fact can be used to show that there are more sequences of natural numbers than there are natural numbers, that there are more real numbers than natural numbers and that every set has more subsets than elements (all results due to Cantor; we indicate how this fact can be seen as underlying the celebrated Russell’s paradox; and we show how it can be employed to expose the most fundamental result of mathematical logic of the twentieth century, Gödel’s incompleteness theorem. Finally, we show how this fact yields the unsolvability of the halting problem for Turing machines.

  18. Extremal black holes as exact string solutions

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in α' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five-dimensional background which is proved to be an exact string solution

  19. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  20. On exact solutions of scattering problems

    International Nuclear Information System (INIS)

    Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.

    1982-01-01

    Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived

  1. Quasi exact solution of the Rabi Hamiltonian

    CERN Document Server

    Koç, R; Tuetuencueler, H

    2002-01-01

    A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.

  2. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  3. Exact solutions to chaotic and stochastic systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.; Guerrero, L. E.

    2001-03-01

    We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of these functions can produce truly random numbers. For the first time, we present solutions to random maps. This allows us to check, analytically, some recent results about the complexity of random dynamical systems. We confirm the result that a negative Lyapunov exponent does not imply predictability in random systems. We test the effectiveness of forecasting methods in distinguishing between chaotic and random time series. Using the explicit random functions, we can give explicit analytical formulas for the output signal in some systems with stochastic resonance. We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our models we can predict specific patterns in the output signal of stochastic resonance systems.

  4. Vibrational deactivation on chemically reactive potential surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD and D + FH

    International Nuclear Information System (INIS)

    Schatz, G.C.; Kuppermann, A.

    1980-01-01

    We study vibrational deactivation processes on chemically reactive potential energy surfaces by examining accurate quantum mechanical transition probabilities and rate constants for the collinear H + FH(v), D + FD(v), H + FD(v), and D + FH(v) reactions. A low barrier (1.7 kcal/mole) potential surface is used in these calculations, and we find that for all four reactions, the reactive inelastic rate constants are larger than the nonreactive ones for the same initial and final vibrational states. However, the ratios of these reactive and nonreactive rate constants depend strongly on the vibrational quantum number v and the isotopic composition of the reagents. Nonreactive and reactive transition probabilities for multiquantum jump transitions are generally comparable to those for single quantum transitions. This vibrationally nonadiabatic behavior is a direct consequence of the severe distortion of the diatomic that occurs in a collision on a low barrier reactive surface, and can make chemically reactive atoms like H or D more efficient deactivators of HF or DF than nonreactive collision partners. Many conclusions are in at least qualitative agreement with those of Wilkin's three dimensional quasiclassical trajectory study on the same systems using a similar surface. We also present results for H + HF(v) collisions which show that for a higher barrier potential surface (33 rather than 1.7 kcal/mole), the deactivation process becomes similar in character to that for nonreactive partners, with v→v-1 processes dominating

  5. Exact Dispersion Study of an Asymmetric Thin Planar Slab Dielectric Waveguide without Computing {d^2}β/{d{k^2}} Numerically

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Palodiya, Vikram

    2017-08-01

    Waveguide dispersion can be tailored but not the material dispersion. Hence, the total dispersion can be shifted at any desired band by adjusting the waveguide dispersion. Waveguide dispersion is proportional to {d^2}β/d{k^2} and need to be computed numerically. In this paper, we have tried to compute analytical expression for {d^2}β/d{k^2} in terms of {d^2}β/d{k^2} accurately with numerical technique, ≈ 10^{-5} decimal point. This constraint sometimes generates the error in calculation of waveguide dispersion. To formulate the problem we will use the graphical method. Our study reveals that we can compute the waveguide dispersion enough accurately for various modes by knowing - β only.

  6. Oxygen titration after resuscitation from out-of-hospital cardiac arrest: a multi-centre, randomised controlled pilot study (the EXACT pilot trial).

    Science.gov (United States)

    Bray, Janet E; Hein, Cindy; Smith, Karen; Stephenson, Michael; Grantham, Hugh; Finn, Judith; Stub, Dion; Cameron, Peter

    2018-04-20

    Recent studies suggest the administration of 100% oxygen to hyperoxic levels following return-of-spontaneous-circulation (ROSC) post-cardiac arrest may be harmful. However, the feasibility and safety of oxygen titration in the prehospital setting is unknown. We conducted a multi-centre, phase-2 study testing whether prehospital titration of oxygen results in an equivalent number of patients arriving at hospital with oxygen saturations SpO2 ≥ 94%. We enrolled unconscious adults with: sustained ROSC; initial shockable rhythm; an advanced airway; and an SpO2 ≥ 95%. Initially (Sept 2015-March 2016) patients were randomised 1:1 to either 2 litres/minute (L/min) oxygen (titrated) or >10 L/min oxygen (control) via a bag-valve reservoir. However, one site experienced a high number of desaturations (SpO2 titrated arm and this arm was changed (April 2016) to an initial reduction of oxygen to 4 L/min then, if tolerated, to 2 L/min, and the desaturation limit was decreased to titrated (n = 37: 2L/min = 20 and 2-4 L/min = 17) oxygen or control (n = 24). Patients allocated to titrated oxygen were more likely to desaturate compared to controls ((SpO2 titrated: 90% vs. control: 100%) and all patients had a SpO2 ≥ 90%. One patient (control) re-arrested. Survival to hospital discharge was similar. Oxygen titration post-ROSC is feasible in the prehospital environment, but incremental titration commencing at 4L/min oxygen flow may be needed to maintain an oxygen saturation >90% (NCT02499042). Copyright © 2018. Published by Elsevier B.V.

  7. Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange.

    Science.gov (United States)

    Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J

    2017-01-25

    The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε 1 phase and a higher pressure NM ε 0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O 2 molecules in the (O 2 ) 4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O 2 ) 4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O 2 ) 4 unit cell for the low-pressure regime of the ε phase.

  8. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  9. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  10. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  11. An Exact Confidence Region in Multivariate Calibration

    OpenAIRE

    Mathew, Thomas; Kasala, Subramanyam

    1994-01-01

    In the multivariate calibration problem using a multivariate linear model, an exact confidence region is constructed. It is shown that the region is always nonempty and is invariant under nonsingular transformations.

  12. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  13. Fast Exact Euclidean Distance (FEED) Transformation

    NARCIS (Netherlands)

    Schouten, Theo; Kittler, J.; van den Broek, Egon; Petrou, M.; Nixon, M.

    2004-01-01

    Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number

  14. New exact wave solutions for Hirota equation

    Indian Academy of Sciences (India)

    2Department of Engineering Sciences, Faculty of Technology and Engineering,. University ... of nonlinear partial differential equations (NPDEs) in mathematical physics. Keywords. ... This method has been successfully applied to obtain exact.

  15. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels

    2012-01-01

    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  16. On exactly soluble model in quantum electrodynamics

    International Nuclear Information System (INIS)

    Bogolubov, N.N.; Shumovsky, A.S.; Fam Le Kien

    1984-01-01

    Equations of motion describing the dynamics of three-level atom of ladder type interacting with two modes of quantized radiation field are solved exactly. Evolution of level population and photon rumbers under different unitial conditions is irvestigated

  17. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  18. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  19. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.

    Science.gov (United States)

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2014-11-07

    Zero-point and excited level splittings due to double-proton tunneling are calculated for porphycene and the results are compared with experiment. The calculation makes use of a multidimensional imaginary-mode Hamiltonian, diagonalized directly by an effective reduction of its dimensionality. Porphycene has a complex potential energy surface with nine stationary configurations that allow a variety of tunneling paths, many of which include classically accessible regions. A symmetry-based approach is used to show that the zero-point level, although located above the cis minimum, corresponds to concerted tunneling along a direct trans - trans path; a corresponding cis - cis path is predicted at higher energy. This supports the conclusion of a previous paper [Z. Smedarchina, W. Siebrand, and A. Fernández-Ramos, J. Chem. Phys. 127, 174513 (2007)] based on the instanton approach to a model Hamiltonian of correlated double-proton transfer. A multidimensional tunneling Hamiltonian is then generated, based on a double-minimum potential along the coordinate of concerted proton motion, which is newly evaluated at the RI-CC2/cc-pVTZ level of theory. To make it suitable for diagonalization, its dimensionality is reduced by treating fast weakly coupled modes in the adiabatic approximation. This results in a coordinate-dependent mass of tunneling, which is included in a unique Hermitian form into the kinetic energy operator. The reduced Hamiltonian contains three symmetric and one antisymmetric mode coupled to the tunneling mode and is diagonalized by a modified Jacobi-Davidson algorithm implemented in the Jadamilu software for sparse matrices. The results are in satisfactory agreement with the observed splitting of the zero-point level and several vibrational fundamentals after a partial reassignment, imposed by recently derived selection rules. They also agree well with instanton calculations based on the same Hamiltonian.

  20. Single-Channel Noise Reduction using Unified Joint Diagonalization and Optimal Filtering

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom

    2014-01-01

    consider two cases, where, respectively, no distortion and distortion are incurred on the desired signal. The former can be achieved when the covariance matrix of the desired signal is rank deficient, which is the case, for example, for voiced speech. In the latter case, the covariance matrix......In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and noise signals. More specifically, the eigenvectors from the joint...

  1. Caracterización constitutiva de las arenas limosas de Diagonal Mar

    OpenAIRE

    Sánchez Rodríguez, Raúl

    2004-01-01

    La construcción del centro comercial Diagonal Mar en el extremo este del litoral de Barcelona, sobre el depósito deltaico del río Besòs, requirió la ejecución de una gran excavación en arenas limosas saturadas, que alcanzara la cota -18.00 metros con respecto al nivel del mar, protegida por pantallas de unos 60 metros de profundidad. Desde las primeras fases de su ejecución, la instrumentación instalada detectó un comportamiento no esperado por parte del conjunto pantalla/terreno que poní...

  2. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV and ULLIV). In addition we show how the subspace-based algorithms can be evaluated and compared by means of simple FIR filter interpretations. The algorithms are illustrated...... with working Matlab code and applications in speech processing....

  3. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity

    International Nuclear Information System (INIS)

    Toh, S. P.; Zainuddin Hishamuddin; Foo Kim Eng

    2012-01-01

    A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2√2. Based on this geometric representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one. (general)

  4. The Alleged Crisis and the Illusion of Exact Replication

    NARCIS (Netherlands)

    Stroebe, Wolfgang; Strack, Fritz

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a replication crisis in psychology. Psychologists are encouraged to conduct more exact

  5. Exact braneworld cosmology induced from bulk black holes

    International Nuclear Information System (INIS)

    Gregory, James P; Padilla, Antonio

    2002-01-01

    We use a new, exact approach in calculating the energy density measured by an observer living on a brane embedded in a charged black-hole spacetime. We find that the bulk Weyl tensor gives rise to nonlinear terms in the energy density and pressure in the FRW equations for the brane. Remarkably, these take exactly the same form as the 'unconventional' terms found in the cosmology of branes embedded in pure AdS, with extra matter living on the brane. Black-hole-driven cosmologies have the benefit that there is no ambiguity in splitting the braneworld energy momentum into tension and additional matter. We propose a new, enlarged relationship between the two descriptions of braneworld cosmology. We also study the exact thermodynamics of the field theory and present a generalized Cardy-Verlinde formula in this set-up

  6. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  7. Electron transfer dynamics: Zusman equation versus exact theory

    International Nuclear Information System (INIS)

    Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing

    2009-01-01

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.

  8. Exact solution for a non-Markovian dissipative quantum dynamics.

    Science.gov (United States)

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  9. The effects of skiing velocity on mechanical aspects of diagonal cross-country skiing.

    Science.gov (United States)

    Andersson, Erik; Pellegrini, Barbara; Sandbakk, Oyvind; Stüggl, Thomas; Holmberg, Hans-Christer

    2014-09-01

    Cycle and force characteristics were examined in 11 elite male cross-country skiers using the diagonal stride technique while skiing uphill (7.5°) on snow at moderate (3.5 ± 0.3 m/s), high (4.5 ± 0.4 m/s), and maximal (5.6 ± 0.6 m/s) velocities. Video analysis (50 Hz) was combined with plantar (leg) force (100 Hz), pole force (1,500 Hz), and photocell measurements. Both cycle rate and cycle length increased from moderate to high velocity, while cycle rate increased and cycle length decreased at maximal compared to high velocity. The kick time decreased 26% from moderate to maximal velocity, reaching 0.14 s at maximal. The relative kick and gliding times were only altered at maximal velocity, where these were longer and shorter, respectively. The rate of force development increased with higher velocity. At maximal velocity, sprint-specialists were 14% faster than distance-specialists due to greater cycle rate, peak leg force, and rate of leg force development. In conclusion, large peak leg forces were applied rapidly across all velocities and the shorter relative gliding and longer relative kick phases at maximal velocity allow maintenance of kick duration for force generation. These results emphasise the importance of rapid leg force generation in diagonal skiing.

  10. Spectral/spatial optical CDMA code based on Diagonal Eigenvalue Unity

    Science.gov (United States)

    Najjar, Monia; Jellali, Nabiha; Ferchichi, Moez; Rezig, Houria

    2017-11-01

    A new two dimensional Diagonal Eigenvalue Unity (2D-DEU) code is developed for the spectral⧹spatial optical code division multiple access (OCDMA) system. It has a lower cross correlation value compared to two dimensional diluted perfect difference (2D-DPD), two dimensional Extended Enhanced Double Weight (2D-Extended-EDW) codes. Also, for the same code length, the number of users can be generated by the 2D-DEU code is higher than that provided by the others codes. The Bit Error Rate (BER) numerical analysis is developed by considering the effects of shot noise, phase induced intensity noise (PIIN), and thermal noise. The main result shows that BER is strongly affected by PIIN for the higher source power. The 2D-DEU code performance is compared with 2D-DPD, 2D-Extended-EDW and two dimensional multi-diagonals (2D-MD) codes. This comparison proves that the proposed 2D-DEU system outperforms the related codes.

  11. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    Science.gov (United States)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  12. A combined joint diagonalization-MUSIC algorithm for subsurface targets localization

    Science.gov (United States)

    Wang, Yinlin; Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon

    2014-06-01

    This paper presents a combined joint diagonalization (JD) and multiple signal classification (MUSIC) algorithm for estimating subsurface objects locations from electromagnetic induction (EMI) sensor data, without solving ill-posed inverse-scattering problems. JD is a numerical technique that finds the common eigenvectors that diagonalize a set of multistatic response (MSR) matrices measured by a time-domain EMI sensor. Eigenvalues from targets of interest (TOI) can be then distinguished automatically from noise-related eigenvalues. Filtering is also carried out in JD to improve the signal-to-noise ratio (SNR) of the data. The MUSIC algorithm utilizes the orthogonality between the signal and noise subspaces in the MSR matrix, which can be separated with information provided by JD. An array of theoreticallycalculated Green's functions are then projected onto the noise subspace, and the location of the target is estimated by the minimum of the projection owing to the orthogonality. This combined method is applied to data from the Time-Domain Electromagnetic Multisensor Towed Array Detection System (TEMTADS). Examples of TEMTADS test stand data and field data collected at Spencer Range, Tennessee are analyzed and presented. Results indicate that due to its noniterative mechanism, the method can be executed fast enough to provide real-time estimation of objects' locations in the field.

  13. Theory and applications of generalized operator transforms for diagonalization of spin hamiltonians

    International Nuclear Information System (INIS)

    Schweiger, A.; Graf, F.; Rist, G.; Guenthard, Hs.H.

    1976-01-01

    A generalized transform formalism for vector operators is devised for diagonalization of a rather wide class of spin hamiltonians. The operator technique leads to equations for transformation matrices, for which analytical solutions are given. These allow analytical formulation of the transformed electron Zeeman term, the sum of the magnetic hyperfine and nuclear Zeeman term, the electric quadrupole term and the electronic and nuclear Zeeman coupling terms. The angular dependence of energy eigenvalues, frequencies and line strengths of ESR and ENDOR transitions to first order will be expressed as compact bilinear and quadratic forms of the columns of the matrix relating the molecular coordinate system to the laboratory system. Thereby the explicit calculation of rotation matrices may be completely avoided, though the latter formally express the operator transforms. The generalized operator transform is also carried out for the off-diagonal blocks originating from hyperfine interaction terms. This allows the second order energy terms to be expressed explicitly as compact hermitean forms of a simple structure, in particular the explicit structure of mixing terms between hyperfine interactions of different (sets of) nuclei is obtained. The relationship to the conventional Bleaney transform is discussed and the analogy to the generalized operator transform is worked out. (Auth.)

  14. Impact of off-diagonal cross-shell interaction on 14C

    Science.gov (United States)

    Yuan, Cen-Xi

    2017-10-01

    A shell-model investigation is performed to show the impact on the structure of 14C from the off-diagonal cross-shell interaction, 〈pp|V|sdsd〉, which represents the mixing between the 0 and 2ħω configurations in the psd model space. The observed levels of the positive states in 14C can be nicely described in 0-4ħω or a larger model space through the well defined Hamiltonians, YSOX and WBP, with a reduction of the strength of the 〈pp|V|sdsd〉 interaction in the latter. The observed B(GT) values for 14C can be generally described by YSOX, while WBP and their modifications of the 〈pp|V|sdsd〉 interaction fail for some values. Further investigation shows the effect of such interactions on the configuration mixing and occupancy. The present work shows examples of how the off-diagonal cross-shell interaction strongly drives the nuclear structure. Supported by National Natural Science Foundation of China (11305272), Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund (the second phase), the Guangdong Natural Science Foundation (2014A030313217), the Pearl River S&T Nova Program of Guangzhou (201506010060), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (2016TQ03N575), and the Fundamental Research Funds for the Central Universities (17lgzd34)

  15. Exact renormalization group for gauge theories

    International Nuclear Information System (INIS)

    Balaban, T.; Imbrie, J.; Jaffe, A.

    1984-01-01

    Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study

  16. New exact solutions of the Dirac equation. 8

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Sukhomlin, N.B.; Shapovalov, V.N.

    1978-01-01

    The paper continues the investigation into the exact solutions of the Dirac, Klein-Gordon, and Lorentz equations for a charge in an external electromagnetic field. The fields studied do not allow for separation of variables in the Dirac equation, but solutions to the Dirac equation are obtained

  17. Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact ...

    African Journals Online (AJOL)

    Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws. ... In this paper we study the combined sinh-cosh-Gordon equation, which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves.

  18. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.

  19. Exact boundary controllability for a series of membranes elastically connected

    Directory of Open Access Journals (Sweden)

    Waldemar D. Bastos

    2017-01-01

    Full Text Available In this article we study the exact controllability with Neumann boundary controls for a system of linear wave equations coupled in parallel by lower order terms on piecewise smooth domains of the plane. We obtain square integrable controls for initial state with finite energy and time of controllability near the optimal value.

  20. A BEHAVIORAL-APPROACH TO LINEAR EXACT MODELING

    NARCIS (Netherlands)

    ANTOULAS, AC; WILLEMS, JC

    1993-01-01

    The behavioral approach to system theory provides a parameter-free framework for the study of the general problem of linear exact modeling and recursive modeling. The main contribution of this paper is the solution of the (continuous-time) polynomial-exponential time series modeling problem. Both

  1. Exact solutions, energy, and charge of stable Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Marques, M.A. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2016-05-15

    In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable. (orig.)

  2. Exact Repetition as Input Enhancement in Second Language Acquisition.

    Science.gov (United States)

    Jensen, Eva Dam; Vinther, Thora

    2003-01-01

    Reports on two studies on input enhancement used to support learners' selection of focus of attention in Spanish second language listening material. Input consisted of video recordings of dialogues between native speakers. Exact repetition and speech rate reduction were examined for effect on comprehension, acquisition of decoding strategies, and…

  3. The exact probability law for the approximated similarity from the ...

    African Journals Online (AJOL)

    The exact probability law for the approximated similarity from the Minhashing method. Soumaila Dembele, Gane Samb Lo. Abstract. We propose a probabilistic setting in which we study the probability law of the Rajaraman and Ullman RU algorithm and a modied version of it denoted by RUM. These algorithms aim at ...

  4. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  5. Exact solution of the hidden Markov processes

    Science.gov (United States)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  6. Classes of exact Einstein Maxwell solutions

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  7. Exactly solvable birth and death processes

    International Nuclear Information System (INIS)

    Sasaki, Ryu

    2009-01-01

    Many examples of exactly solvable birth and death processes, a typical stationary Markov chain, are presented together with the explicit expressions of the transition probabilities. They are derived by similarity transforming exactly solvable 'matrix' quantum mechanics, which is recently proposed by Odake and the author [S. Odake and R. Sasaki, J. Math. Phys. 49, 053503 (2008)]. The (q-) Askey scheme of hypergeometric orthogonal polynomials of a discrete variable and their dual polynomials play a central role. The most generic solvable birth/death rates are rational functions of q x (with x being the population) corresponding to the q-Racah polynomial.

  8. Exact finite volume expectation values of local operators in excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pozsgay, B. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Szécsényi, I.M. [Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Institute of Theoretical Physics, Eötvös Loránd University,Pázmány Péter sétány 1/A, 1117 Budapest (Hungary); Takács, G. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics,Budafoki út 8, 1111 Budapest (Hungary)

    2015-04-07

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.

  9. Multishell method: Exact treatment of a cluster in an effective medium

    International Nuclear Information System (INIS)

    Gonis, A.; Garland, J.W.

    1977-01-01

    A method is presented for the exact determination of the Green's function of a cluster embedded in a given effective medium. This method, the multishell method, is applicable even to systems with off-diagonal disorder, extended-range hopping, multiple bands, and/or hybridization, and is computationally practicable for any system described by a tight-binding or interpolation-scheme Hamiltonian. It allows one to examine the effects of local environment on the densities of states and site spectral weight functions of disordered systems. For any given analytic effective medium characterized by a non-negative density of states the method yields analytic cluster Green's functions and non-negative site spectral weight functions. Previous methods used for the calculation of the Green's function of a cluster embedded in a given effective medium have not been exact. The results of numerical calculations for model systems show that even the best of these previous methods can lead to substantial errors, at least for small clusters in two- and three-dimensional lattices. These results also show that fluctuations in local environment have large effects on site spectral weight functions, even in cases in which the single-site coherent-potential approximation yields an accurate overall density of states

  10. Construction of exact constants of motion and effective models for many-body localized systems

    Science.gov (United States)

    Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.

    2018-04-01

    One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.

  11. Exact finite volume expectation values of local operators in excited states

    International Nuclear Information System (INIS)

    Pozsgay, B.; Szécsényi, I.M.; Takács, G.

    2015-01-01

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.

  12. A variational master equation approach to quantum dynamics with off-diagonal coupling in a sub-Ohmic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ke-Wei [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Fujihashi, Yuta; Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-05-28

    A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagrams are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.

  13. Exactly solvable energy-dependent potentials

    International Nuclear Information System (INIS)

    Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.

    2009-01-01

    We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.

  14. Exact relativistic cylindrical solution of disordered radiation

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da; Wolk, I.; Som, M.M.

    1976-05-01

    A source free disordered distribution of electromagnetic radiation is considered in Einstein' theory, and a time independent exact solution with cylindrical symmetry is obtained. The gravitation and pressure effects of the radiation alone are sufficient to give the distribution an equilibrium. A finite maximum concentration is found on the axis of symmetry, and decreases monotonically to zero outwards. Timelike and null geodesics are discussed

  15. New exact solutions for two nonlinear equations

    International Nuclear Information System (INIS)

    Wang Quandi; Tang Minying

    2008-01-01

    In this Letter, we investigate two nonlinear equations given by u t -u xxt +3u 2 u x =2u x u xx +uu xxx and u t -u xxt +4u 2 u x =3u x u xx +uu xxx . Through some special phase orbits we obtain four new exact solutions for each equation above. Some previous results are extended

  16. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  17. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  18. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  19. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  20. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  1. Finite element analysis of multi-material models using a balancing domain decomposition method combined with the diagonal scaling preconditioner

    International Nuclear Information System (INIS)

    Ogino, Masao

    2016-01-01

    Actual problems in science and industrial applications are modeled by multi-materials and large-scale unstructured mesh, and the finite element analysis has been widely used to solve such problems on the parallel computer. However, for large-scale problems, the iterative methods for linear finite element equations suffer from slow or no convergence. Therefore, numerical methods having both robust convergence and scalable parallel efficiency are in great demand. The domain decomposition method is well known as an iterative substructuring method, and is an efficient approach for parallel finite element methods. Moreover, the balancing preconditioner achieves robust convergence. However, in case of problems consisting of very different materials, the convergence becomes bad. There are some research to solve this issue, however not suitable for cases of complex shape and composite materials. In this study, to improve convergence of the balancing preconditioner for multi-materials, a balancing preconditioner combined with the diagonal scaling preconditioner, called Scaled-BDD method, is proposed. Some numerical results are included which indicate that the proposed method has robust convergence for the number of subdomains and shows high performances compared with the original balancing preconditioner. (author)

  2. SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE

    Directory of Open Access Journals (Sweden)

    Guinter Neutzling Schneid

    2016-01-01

    Full Text Available The dimensional stability of the paper may change due to middle exchange moisture, releasing the latent stress acquired into the manufacturing process. One result of this tension release is the diagonal curl. This study aims to conduct a sensitivity analysis of the different input’s variables of an industrial paper machine, along with some laboratory measurements, in order to identify the importance in production of paperboard quality control and relate to the property of the paper called twist. A survey was made of the production history, relating to 2012, to observe the products with the highest quality losses. From this, they were correlated with the critical points of measurement profile in the machine cross direction and consequently with the paper. It was found some changes once the variables correlated with twist, referring to the three analyzes of the profile (tender side, middle and drive side. It was revealed, from the sensitivity analysis, that the most important and sensitive variables, respectively for the tender side, middle and drive side, were total flow from the top layer, vapor pressure in the 6th group of drying cylinders and mass flow side of the bottom layer of the formation of paperboard.

  3. Generation of second harmonic in off-diagonal magneto-impedance in Co-based amorphous ribbons

    International Nuclear Information System (INIS)

    Buznikov, N A; Yoon, S S; Jin, L; Kim, C O; Kim, C G

    2006-01-01

    The off-diagonal magneto-impedance in Co-based amorphous ribbons was measured using a pick-up coil wound around the sample. The ribbons were annealed in air or in vacuum in the presence of a weak magnetic field. The evolution of the first and second harmonics in the pick-up coil voltage as a function of the current amplitude was studied. At low current amplitudes, the first harmonic dominates in the frequency spectrum of the voltage, and at sufficiently high current amplitudes, the amplitude of the second harmonic becomes higher than that of the first harmonic. For air-annealed ribbons, the asymmetric two-peak behaviour of the field dependences of the harmonic amplitudes was observed, which is related to the coupling between the amorphous phase and surface crystalline layers appearing after annealing. For vacuum-annealed samples, the first harmonic has a maximum at zero external field, and the field dependence of the second harmonic exhibits symmetric two-peak behaviour. The experimental results are interpreted in terms of a quasi-static rotational model. It is shown that the appearance of the second harmonic in the pick-up coil voltage is related to the anti-symmetrical distribution of the transverse field induced by the current. The calculated dependences are in qualitative agreement with the experimental data

  4. Experimental evidence of off-diagonal transport term and the discrepancy between energy/particle balance and perturbation analyses

    International Nuclear Information System (INIS)

    Nagashima, Keisuke; Fukuda, Takeshi

    1991-12-01

    Evidence of temperature gradient driven particle flux was observed from the sawtooth induced density propagation phenomenon in JT-60. This off-diagonal particle flux was confirmed using the numerical calculation of measured chord integrated electron density. It was shown that the discrepancies between thermal and particle diffusivities estimated from the perturbation method and energy/particle balance analysis can be explained by considering the flux equations with off-diagonal transport terms. These flux equations were compared with the E x B convective fluxes in an electro-static drift wave instability and it was found that the E x B fluxes are consistent with several experimental observations. (author)

  5. Off-diagonal mass generation for Yang-Mills theories in the maximal Abelian gauge

    International Nuclear Information System (INIS)

    Dudal, D.; Verschelde, H.; Sarandy, M.S.

    2007-01-01

    We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost operator of mass dimension two, which lowers the vacuum energy. We construct an effective potential for this operator by a combined use of the local composite operators technique with algebraic renormalization and we discuss the gauge parameter independence of the results. We also show that it is possible to connect the vacuum energy, due to the mass dimension two condensate discussed here, with the non-trivial vacuum energy originating from the condensate 2 μ >, which has attracted much attention in the Landau gauge. (author)

  6. Measurement-induced nonlocality in arbitrary dimensions in terms of the inverse approximate joint diagonalization

    Science.gov (United States)

    Zhang, Li-qiang; Ma, Ting-ting; Yu, Chang-shui

    2018-03-01

    The computability of the quantifier of a given quantum resource is the essential challenge in the resource theory and the inevitable bottleneck for its application. Here we focus on the measurement-induced nonlocality and present a redefinition in terms of the skew information subject to a broken observable. It is shown that the obtained quantity possesses an obvious operational meaning, can tackle the noncontractivity of the measurement-induced nonlocality and has analytic expressions for pure states, (2 ⊗d )-dimensional quantum states, and some particular high-dimensional quantum states. Most importantly, an inverse approximate joint diagonalization algorithm, due to its simplicity, high efficiency, stability, and state independence, is presented to provide almost-analytic expressions for any quantum state, which can also shed light on other aspects in physics. To illustrate applications as well as demonstrate the validity of the algorithm, we compare the analytic and numerical expressions of various examples and show their perfect consistency.

  7. The "Geomorphologic Diagonal" of Central Europe - towards a new morphotectonic interpretation of macroforms in average mountains

    Science.gov (United States)

    Zoeller, Ludwig

    2016-04-01

    Modern methods of low temperature thermochronology are able to throw light on the geomorphological development of macrorelief landforms. A rarely investigated problem concerns the orientation and morphotectonic evolution of Central European uplands (low to mid-elevation mountain ranges). A conspicuous NW-SE striking boundary takes course through Germany from the Osning and Teutoburg Forest in the NW to the Bavarian Forest in the SE. I call this line the "geomorphological diagonal". East of this line, more or less NW-SE striking morphotectonic features (e.g., Harz Mountains, Sudety) dominate the macrorelief up to the eastern border of Central Europe (Thornquist-Teysseire Lineament), with the exception of the Ohre Rift and Central Bohemia. West of this line, the macrorelief is either characterized by NNE-SSW to N-S oriented structures (e.g., Upper Rhine Rift) and, to a lesser extent, by (S)SW-(E)NE mountain ranges (southern Rhenish Slate Mountains and Ore Mountains) or by no predominance at all. In the Lower Rhine Embayment and along the Middle Rhine River, (N)NW-(S)SE directed morphotectonic features influence the low mountain ranges. In several cases geologists have proven that NW-SE morphotectonic structures are related to the Upper Cretaceous (Santonian to Campanian) "basin inversion" (e.g., von Eynatten et al. 2008). A compilation of low temperature thermochronological data (AFT, [U-Th]/He) from Central Europe clearly supports strong crustal cooling during the Upper Cretaceous and lowermost Tertiary in morphotectonically protruded crustal blocks east of the geomorphological diagonal, whereas west of it the age data available so far exhibit a much larger scatter from Upper Paleozoic to Tertiary without clear evidence of an outstanding Upper Cretaceous crustal cooling event. Based on this data I hypothesize that east of the diagonal macroforms of uplifted denudation surfaces ("peneplains" or "etchplains") may be inherited from the Cretaceous whereas west of it

  8. Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Mateeva, N; Niculescu, H; Schlenoff, J; Testardi, L

    1997-07-01

    Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.

  9. Leak detection of complex pipelines based on the filter diagonalization method: robust technique for eigenvalue assessment

    International Nuclear Information System (INIS)

    Lay-Ekuakille, Aimé; Pariset, Carlo; Trotta, Amerigo

    2010-01-01

    The FDM (filter diagonalization method), an interesting technique used in nuclear magnetic resonance data processing for tackling FFT (fast Fourier transform) limitations, can be used by considering pipelines, especially complex configurations, as a vascular apparatus with arteries, veins, capillaries, etc. Thrombosis, which might occur in humans, can be considered as a leakage for the complex pipeline, the human vascular apparatus. The choice of eigenvalues in FDM or in spectra-based techniques is a key issue in recovering the solution of the main equation (for FDM) or frequency domain transformation (for FFT) in order to determine the accuracy in detecting leaks in pipelines. This paper deals with the possibility of improving the leak detection accuracy of the FDM technique thanks to a robust algorithm by assessing the problem of eigenvalues, making it less experimental and more analytical using Tikhonov-based regularization techniques. The paper starts from the results of previous experimental procedures carried out by the authors

  10. A class of symmetric Bell diagonal entanglement witnesses—a geometric perspective

    International Nuclear Information System (INIS)

    Chruściński, Dariusz

    2014-01-01

    We provide a class of Bell diagonal entanglement witnesses displaying an additional local symmetry—a maximal commutative subgroup of the unitary group U(n). Remarkably, this class of witnesses is parameterized by a torus being a maximal commutative subgroup of an orthogonal group SO(n−1). It is shown that a generic element from the class defines an indecomposable entanglement witness. The paper provides a geometric perspective for some aspects of the entanglement theory and an interesting interplay between group theory and block-positive operators in C n ⊗C n . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’. (paper)

  11. Solving block linear systems with low-rank off-diagonal blocks is easily parallelizable

    Energy Technology Data Exchange (ETDEWEB)

    Menkov, V. [Indiana Univ., Bloomington, IN (United States)

    1996-12-31

    An easily and efficiently parallelizable direct method is given for solving a block linear system Bx = y, where B = D + Q is the sum of a non-singular block diagonal matrix D and a matrix Q with low-rank blocks. This implicitly defines a new preconditioning method with an operation count close to the cost of calculating a matrix-vector product Qw for some w, plus at most twice the cost of calculating Qw for some w. When implemented on a parallel machine the processor utilization can be as good as that of those operations. Order estimates are given for the general case, and an implementation is compared to block SSOR preconditioning.

  12. A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations

    Science.gov (United States)

    Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei

    2015-12-01

    In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 ⁡ M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.

  13. Fabricating off-diagonal components of frequency-dependent linear and nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α xy , α yx ), first nonlinear (β xyy , β yxx ), and second nonlinear (γ xxyy , γ yyxx ) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities

  14. Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect

    International Nuclear Information System (INIS)

    Gvozdikov, V M; Taut, M

    2009-01-01

    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.

  15. Comparative DMFT study of the eg-orbital Hubbard model in thin films

    Science.gov (United States)

    Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.

    2014-02-01

    Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.

  16. Diagonal form factors and heavy-heavy-light three-point functions at weak coupling

    International Nuclear Information System (INIS)

    Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei

    2015-01-01

    In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.

  17. Diagonal form factors and heavy-heavy-light three-point functions at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)

    2015-09-18

    In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.

  18. Wireless three-hop networks with stealing II : exact solutions through boundary value problems

    NARCIS (Netherlands)

    Guillemin, F.; Knessl, C.; Leeuwaarden, van J.S.H.

    2013-01-01

    We study the stationary distribution of a random walk in the quarter plane arising in the study of three-hop wireless networks with stealing. Our motivation is to find exact tail asymptotics (beyond logarithmic estimates) for the marginal distributions, which requires an exact solution for the

  19. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  20. Exact computation of the 9-j symbols

    International Nuclear Information System (INIS)

    Lai Shantao; Chiu Jingnan

    1992-01-01

    A useful algebraic formula for the 9-j symbol has been rewritten for convenient use on a computer. A simple FORTRAN program for the exact computation of 9-j symbols has been written for the VAX with VMS version V5,4-1 according to this formula. The results agree with the approximate values in existing literature. Some specific values of 9-j symbols needed for the intensity and alignments of three-photon nonresonant transitions are tabulated. Approximate 9-j symbol values beyond the limitation of the computer can also be computed by this program. The computer code of the exact computation of 3-j, 6-j and 9-j symbols are available through electronic mail upon request. (orig.)

  1. Lattice sigma models with exact supersymmetry

    International Nuclear Information System (INIS)

    Simon Catterall; Sofiane Ghadab

    2004-01-01

    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)

  2. Model checking exact cost for attack scenarios

    DEFF Research Database (Denmark)

    Aslanyan, Zaruhi; Nielson, Flemming

    2017-01-01

    Attack trees constitute a powerful tool for modelling security threats. Many security analyses of attack trees can be seamlessly expressed as model checking of Markov Decision Processes obtained from the attack trees, thus reaping the benefits of a coherent framework and a mature tool support....... However, current model checking does not encompass the exact cost analysis of an attack, which is standard for attack trees. Our first contribution is the logic erPCTL with cost-related operators. The extended logic allows to analyse the probability of an event satisfying given cost bounds and to compute...... the exact cost of an event. Our second contribution is the model checking algorithm for erPCTL. Finally, we apply our framework to the analysis of attack trees....

  3. Exact folded-band chaotic oscillator.

    Science.gov (United States)

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  4. Exact geodesic distances in FLRW spacetimes

    Science.gov (United States)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  5. New exact solutions of the Dirac equation

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Lavrov, P.M.; Shapovalov, V.N.

    1980-01-01

    Search for new exact solutions of the Dirac and Klein-Gordon equations are in progress. Considered are general properties of the Dirac equation solutions for an electron in a purely magnetic field, in combination with a longitudinal magnetic and transverse electric fields. New solutions for the equations of charge motion in an electromagnetic field of axial symmetry and in a nonstationary field of a special form have been found for potentials selected concretely

  6. Exact BPS bound for noncommutative baby Skyrmions

    International Nuclear Information System (INIS)

    Domrin, Andrei; Lechtenfeld, Olaf; Linares, Román; Maceda, Marco

    2013-01-01

    The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory

  7. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  8. Exactly and completely integrable nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Leznov, A.N.; Savel'ev, M.V.

    1987-01-01

    The survey is devoted to a consitent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including generalized (periodic and finite nonperiodic Toda lattice, nonlinear Schroedinger, Korteweg-de Vries, Lotka-Volterra equations, etc.) For exactly integrable systems the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed. Application of the developed methods to a differential geometry problem of classification of the integrable manifolds embeddings is discussed. For exactly integrable systems the supersymmetric extensions are constructed. By the example of the generalized Toda lattice a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their desription in terms of the quantum algebras of the Hopf type. Among multidimensional systems the four-dimensional self-dual Yang-Mills equations are investigated most attentively with a goal of constructing their general solutions

  9. Exact Theory of Compressible Fluid Turbulence

    Science.gov (United States)

    Drivas, Theodore; Eyink, Gregory

    2017-11-01

    We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.

  10. Introduction to Computational Chemistry: Teaching Hu¨ckel Molecular Orbital Theory Using an Excel Workbook for Matrix Diagonalization

    Science.gov (United States)

    Litofsky, Joshua; Viswanathan, Rama

    2015-01-01

    Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…

  11. Aumento de la sobrevida en menores de cinco años en México: la estrategia diagonal Improvement of child survival in Mexico: the diagonal approach

    Directory of Open Access Journals (Sweden)

    Jaime Sepúlveda

    2007-01-01

    Full Text Available Las intervenciones en salud pública dirigidas a niños en México han ubicado a este país entre los siete países encaminados a cumplir las metas de reducción de la mortalidad infantil para 2015. La información para este estudio se ha tomado de diferentes fuentes: los censos poblacionales; los registros de mortalidad de la Secretaría de Salud y del Instituto Nacional de Estadística, Geografía e Informática; el registro nominal de niños recolectado por el Programa de Vacunación Universal; y las encuestas nacionales de nutrición. Con estos datos se estudió la asociación temporal y la plausibilidad biológica de las diferentes intervenciones en salud pública, para explicar la reducción de las tasas de mortalidad entre niños, infantes y recién nacidos. Las tasas de mortalidad en menores de cinco años han descendido de casi 64 muertes a menos de 23 por cada 1 000 niños nacidos vivos registrados en los últimos 25 años. Se observó una reducción drástica en las tasas de mortalidad por diarrea, junto con la eliminación de polio, difteria y sarampión. El estado nutricional de los niños mejoró de manera significativa en cuanto a bajo peso para la talla, baja talla para la edad y bajo peso para la edad. En los últimos 25 años, se mantuvieron intervenciones altamente costo-efectivas que acercaron los servicios de salud de atención primaria a los hogares, lo que aquí se ha llamado estrategia diagonal. A pesar de que no es posible establecer una relación de causalidad entre la reducción de la mortalidad en menores de cinco años y los factores investigados, se presenta evidencia basada en la asociación temporal y en la plausibilidad biológica que indica que la alta cobertura de las intervenciones de salud pública, los avances en educación de las mujeres, protección social, disponibilidad de agua potable y saneamiento, así como nutrición, impactaron en el resultado observado. Por otro lado, el liderazgo y la continuidad

  12. Quasi-exact solutions of nonlinear differential equations

    OpenAIRE

    Kudryashov, Nikolay A.; Kochanov, Mark B.

    2014-01-01

    The concept of quasi-exact solutions of nonlinear differential equations is introduced. Quasi-exact solution expands the idea of exact solution for additional values of parameters of differential equation. These solutions are approximate solutions of nonlinear differential equations but they are close to exact solutions. Quasi-exact solutions of the the Kuramoto--Sivashinsky, the Korteweg--de Vries--Burgers and the Kawahara equations are founded.

  13. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  14. Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation

    International Nuclear Information System (INIS)

    Miara, Bernadette; Muench, Arnaud

    2009-01-01

    We study the exact controllability of a three-dimensional body made of a material whose constitutive law introduces an elasticity-electricity coupling. We show that a coupled elastic-electric control acting on the whole boundary of the body drives the system to rest after time large enough. Two-dimensional numerical experiments suggest that controllability can still be achieved by relaxing this restrictive condition using either both controls on a reduced support or elastic control alone

  15. Exact interior solutions in 2 + 1-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Biswas, Ritabrata [Indian Institute of Engineering Sceince and Technology Shibpur, Howrah, West Bengal (India); Usmani, A.A. [Aligarh Muslim University, Department of Physics, Aligarh, Uttar Pradesh (India)

    2014-04-15

    We provide a new class of exact solutions for the interior in 2 + 1-dimensional spacetime. The solutions obtained for the perfect fluid model both with and without cosmological constant (Λ) are found to be regular and singularity free. It assumes very simple analytical forms that help us to study the various physical properties of the configuration. Solutions without Λ are found to be physically acceptable. (orig.)

  16. Stripping reactions in a three-body system. Comparison of DWBA and exact solutions

    International Nuclear Information System (INIS)

    Brinati, J.R.

    1976-01-01

    Stripping reactions 'a estados no continuo' are studied in a three particle system. Since the three-body problem has an exact treatment, comparison will be made between the exact solution and the DWBA model solution. This problem is more complex in the continuous case, as shown in the convergence problem of the standard DWBA amplitude radial integral

  17. Exact performance analysis of decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel

    2010-06-01

    In this paper, we investigate a dual-hop decode-and-forward opportunistic relaying scheme where the source may or may not be able to communicate directly with the destination. In our study, we consider a regenerative relaying scheme in which the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact statistics of each hop. Unlike existing works where the analysis focused on high signal-to-noise ratio (SNR) regime, such results are important to enable the designers to take decisions regarding practical systems that operate at low SNR regime. We show that performance simulation results coincide with our analytical results.

  18. Exact wavefunctions for a time-dependent Coulomb potential

    International Nuclear Information System (INIS)

    Menouar, S; Maamache, M; Saadi, Y; Choi, J R

    2008-01-01

    The one-dimensional Schroedinger equation associated with a time-dependent Coulomb potential is studied. The invariant operator method (Lewis and Riesenfeld) and unitary transformation approach are employed to derive quantum solutions of the system. We obtain an ordinary second-order differential equation whose analytical exact solution has been unknown. It is confirmed that the form of this equation is similar to the radial Schroedinger equation for the hydrogen atom in a (arbitrary) strong magnetic field. The qualitative properties for the eigenstates spectrum are described separately for the different values of the parameter ω 0 appearing in the x 2 term, x being the position, i.e., ω 0 > 0, ω 0 0 = 0. For the ω 0 = 0 case, the eigenvalue equation of invariant operator reduces to a solvable form and, consequently, we have provided exact eigenstates of the time-dependent Hamiltonian system

  19. Watermelon configurations with wall interaction: exact and asymptotic results

    Energy Technology Data Exchange (ETDEWEB)

    Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)

    2006-06-15

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  20. Watermelon configurations with wall interaction: exact and asymptotic results

    International Nuclear Information System (INIS)

    Krattenthaler, C

    2006-01-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature

  1. Watermelon configurations with wall interaction: exact and asymptotic results

    Science.gov (United States)

    Krattenthaler, C.

    2006-06-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  2. Exactly soluble problems in statistical mechanics

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    In the last few years, a number of two-dimensional classical and one-dimensional quantum mechanical problems in statistical mechanics have been exactly solved. Although these problems range over models of diverse physical interest, their solutions were obtained using very similar mathematical methods. In these lectures, the main points of the methods are discussed. In this introductory lecture, an overall survey of all these problems without going into the detailed method of solution is given. In later lectures, they shall concentrate on one particular problem: the delta function interaction in one dimension, and go into the details of that problem

  3. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...... optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem....

  4. Measles and rubella elimination: learning from polio eradication and moving forward with a diagonal approach.

    Science.gov (United States)

    Goodson, James L; Alexander, James P; Linkins, Robert W; Orenstein, Walter A

    2017-12-01

    In 1988, an estimated 350,000 children were paralyzed by polio and 125 countries reported polio cases, the World Health Assembly passed a resolution to achieve polio eradication by 2000, and the Global Polio Eradication Initiative (GPEI) was established as a partnership focused on eradication. Today, following eradication efforts, polio cases have decreased >99% and eradication of all three types of wild polioviruses is approaching. However, since polio resources substantially support disease surveillance and other health programs, losing polio assets could reverse progress toward achieving Global Vaccine Action Plan goals. Areas covered: As the end of polio approaches and GPEI funds and capacity decrease, we document knowledge, experience, and lessons learned from 30 years of polio eradication. Expert commentary: Transitioning polio assets to measles and rubella (MR) elimination efforts would accelerate progress toward global vaccination coverage and equity. MR elimination feasibility and benefits have long been established. Focusing efforts on MR elimination after achieving polio eradication would make a permanent impact on reducing child mortality but should be done through a 'diagonal approach' of using measles disease transmission to identify areas possibly susceptible to other vaccine-preventable diseases and to strengthen the overall immunization and health systems to achieve disease-specific goals.

  5. Bending Response of Cross-Ply Laminated Composite Plates with Diagonally Perturbed Localized Interfacial Degeneration

    Directory of Open Access Journals (Sweden)

    Chee Zhou Kam

    2013-01-01

    Full Text Available A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.

  6. Triple Diagonal modeling: A mechanism to focus productivity improvement for business success

    Energy Technology Data Exchange (ETDEWEB)

    Levine, L.O. [Pacific Northwest Lab., Richland, WA (United States); Villareal, L.D. [Army Depot, Corpus Christi, TX (United States)

    1993-09-01

    Triple Diagonal (M) modeling is a technique to help quickly diagnose an organization`s existing production system and to identify significant improvement opportunities in executing, controlling, and planning operations. TD modeling is derived from ICAM Definition Language (IDEF 0)-also known as Structured Analysis and Design Technique. It has been used successfully at several Department of Defense remanufacturing facilities trying to accomplish significant production system modernization. TD has several advantages over other modeling techniques. First, it quickly does ``As-ls`` analysis and then moves on to identify improvements. Second, creating one large diagram makes it easier to share the TD model throughout an organization, rather than the many linked 8 1/2 {times} 11`` drawings used in traditional decomposition approaches. Third, it acts as a communication mechanism to share understanding about improvement opportunities that may cross existing functional/organizational boundaries. Finally, TD acts as a vehicle to build a consensus on a prioritized list of improvement efforts that ``hangs togethers as an agenda for systemic changes in the production system and the improved integration of support functions.

  7. Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices

    Science.gov (United States)

    de Dominicis, C.; Carlucci, D. M.; Temesvári, T.

    1997-01-01

    The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.

  8. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    Science.gov (United States)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  9. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  11. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access

    Science.gov (United States)

    Ahmed, Hassan Yousif; Nisar, K. S.

    2013-08-01

    Code with ideal in-phase cross correlation (CC) and practical code length to support high number of users are required in spectral amplitude coding-optical code division multiple access (SAC-OCDMA) systems. SAC systems are getting more attractive in the field of OCDMA because of its ability to eliminate the influence of multiple access interference (MAI) and also suppress the effect of phase induced intensity noise (PIIN). In this paper, we have proposed new Diagonal Eigenvalue Unity (DEU) code families with ideal in-phase CC based on Jordan block matrix with simple algebraic ways. Four sets of DEU code families based on the code weight W and number of users N for the combination (even, even), (even, odd), (odd, odd) and (odd, even) are constructed. This combination gives DEU code more flexibility in selection of code weight and number of users. These features made this code a compelling candidate for future optical communication systems. Numerical results show that the proposed DEU system outperforms reported codes. In addition, simulation results taken from a commercial optical systems simulator, Virtual Photonic Instrument (VPI™) shown that, using point to multipoint transmission in passive optical network (PON), DEU has better performance and could support long span with high data rate.

  12. Two-band model with off-diagonal occupation dependent hopping rate

    International Nuclear Information System (INIS)

    Zawadowski, A.

    1989-01-01

    In this paper two-band hopping model is treated on a two-dimensional square lattice. The atoms are located at the corners and the middles of the edges of the squares. In addition to the strongly overlapping orbitals of the atoms, there are extra orbitals at the corners, which are weakly hybridized. The assumption is made that the Fermi level is inside the broad band and is every near to the narrow band formed by the extra orbitals. The hamiltonian is Hubbard type, but the off-diagonal part of the two-site interaction t is kept also where one creation or annihilation operator acts on the extra orbital and the others on one of its neighbors. The weak coupling t is enhanced by the on-site Coulomb repulsion at the corners, which enhancement is a power function of the ratio of the broad band width and the narrow bank position measured from the Fermi level. That enhancement is obtained by summation of logarithmic Kondo-type corrections of orbital origin, which reflects the formation of a ground state of new type with strong orbital and spin correlations. Interaction between the particles of the broad band is generated by processes with one heavy and one light particle in the intermediate state

  13. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and "hidden" dimensions.

    Science.gov (United States)

    Meng, Xi; Nguyen, Bao D; Ridge, Clark; Shaka, A J

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to "reduced-dimensionality" strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths.

  14. Fault Diagnosis of Rotating Machinery Based on the Multiscale Local Projection Method and Diagonal Slice Spectrum

    Directory of Open Access Journals (Sweden)

    Yong Lv

    2018-04-01

    Full Text Available The vibration signals of bearings and gears measured from rotating machinery usually have nonlinear, nonstationary characteristics. The local projection algorithm cannot only reduce the noise of the nonlinear system, but can also preserve the nonlinear deterministic structure of the signal. The influence of centroid selection on the performance of noise reduction methods is analyzed, and the multiscale local projection method of centroid was proposed in this paper. This method considers both the geometrical shape and statistical error of the signal in high dimensional phase space, which can effectively eliminate the noise and preserve the complete geometric structure of the attractors. The diagonal slice spectrum can identify the frequency components of quadratic phase coupling and enlarge the coupled frequency component in the nonlinear signal. Therefore, the proposed method based on the above two algorithms can achieve more accurate results of fault diagnosis of gears and rolling bearings. The simulated signal is used to verify its effectiveness in a numerical simulation. Then, the proposed method is conducted for fault diagnosis of gears and rolling bearings in application researches. The fault characteristics of faulty bearings and gears can be extracted successfully in the researches. The experimental results indicate the effectiveness of the novel proposed method.

  15. Diagonal Born-Oppenheimer correction for coupled-cluster wave-functions

    Science.gov (United States)

    Shamasundar, K. R.

    2018-06-01

    We examine how geometry-dependent normalisation freedom of electronic wave-functions affects extraction of a meaningful diagonal Born-Oppenheimer correction (DBOC) to the ground-state Born-Oppenheimer potential energy surface (PES). By viewing this freedom as a kind of gauge-freedom, it is shown that DBOC and the resulting associated mass-dependent adiabatic PES are gauge-invariant quantities. A sum-over-states (SOS) formula for DBOC which explicitly exhibits this invariance is derived. A biorthogonal formulation suitable for DBOC computations using standard unnormalised coupled-cluster (CC) wave-functions is presented. This is shown to lead to a biorthogonal version of SOS formula with similar properties. On this basis, different computational schemes for evaluating DBOC using approximate CC wave-functions are derived. One of this agrees with the formula used in the current literature. The connection to adiabatic-to-diabatic transformations in non-adiabatic dynamics is explored and complications arising from biorthogonal nature of CC theory are identified.

  16. Energy vs. density on paths toward more exact density functionals.

    Science.gov (United States)

    Kepp, Kasper P

    2018-03-14

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.

  17. Exact nonparametric confidence bands for the survivor function.

    Science.gov (United States)

    Matthews, David

    2013-10-12

    A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.

  18. Exact error estimation for solutions of nuclide chain equations

    International Nuclear Information System (INIS)

    Tachihara, Hidekazu; Sekimoto, Hiroshi

    1999-01-01

    The exact solution of nuclide chain equations within arbitrary figures is obtained for a linear chain by employing the Bateman method in the multiple-precision arithmetic. The exact error estimation of major calculation methods for a nuclide chain equation is done by using this exact solution as a standard. The Bateman, finite difference, Runge-Kutta and matrix exponential methods are investigated. The present study confirms the following. The original Bateman method has very low accuracy in some cases, because of large-scale cancellations. The revised Bateman method by Siewers reduces the occurrence of cancellations and thereby shows high accuracy. In the time difference method as the finite difference and Runge-Kutta methods, the solutions are mainly affected by the truncation errors in the early decay time, and afterward by the round-off errors. Even though the variable time mesh is employed to suppress the accumulation of round-off errors, it appears to be nonpractical. Judging from these estimations, the matrix exponential method is the best among all the methods except the Bateman method whose calculation process for a linear chain is not identical with that for a general one. (author)

  19. Exact EGB models for spherical static perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hansraj, Sudan; Chilambwe, Brian; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2015-06-15

    We obtain a new exact solution to the field equations for a 5-dimensional spherically symmetric static distribution in the Einstein-Gauss-Bonnet modified theory of gravity. By using a transformation, the study is reduced to the analysis of a single second order nonlinear differential equation. In general the condition of pressure isotropy produces a first order differential equation which is an Abel equation of the second kind. An exact solution is found. The solution is examined for physical admissibility. In particular a set of constants is found which ensures that a pressure-free hypersurface exists which defines the boundary of the distribution. Additionally the isotropic pressure and the energy density are shown to be positive within the radius of the sphere. The adiabatic sound-speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution. On setting the Gauss-Bonnet coupling to zero, an exact solution for 5-dimensional perfect fluids in the standard Einstein theory is obtained. Plots of the dynamical quantities for the Gauss-Bonnet and the Einstein case reveal that the pressure is unaffected, while the energy density increases under the influence of the Gauss-Bonnet term. (orig.)

  20. Exact and Heuristic Algorithms for Runway Scheduling

    Science.gov (United States)

    Malik, Waqar A.; Jung, Yoon C.

    2016-01-01

    This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.

  1. Exact model reduction of combinatorial reaction networks

    Directory of Open Access Journals (Sweden)

    Fey Dirk

    2008-08-01

    Full Text Available Abstract Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.

  2. Exact combinatorial approach to finite coagulating systems

    Science.gov (United States)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  3. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  4. Explicitly broken supersymmetry with exactly massless moduli

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Freedman, Daniel Z. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Zhao, Yue [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-16

    The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a supergravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.

  5. The Q,T-catalan numbers and the space of diagonal harmonics with an appendix on the combinatorics of Macdonald polynomials

    CERN Document Server

    Haglund, James

    2007-01-01

    This book contains detailed descriptions of the many exciting recent developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials, which are described in Appendix A. The book is appropriate as a text for a topics course in algebraic combinatorics, a volume for self-study, or a reference text for researchers in any area which involves symmetric functions or lattice path combinatorics. The book contains expository discussions of some topics in the theory of symmetric functions, such as the practical uses of plethystic substitutions, which are not treated in depth in other texts. Exercises are interspersed throughout the text in strategic locations, with full solutions given in Appendix C.

  6. Efficient diagonalization of the sparse matrices produced within the framework of the UK R-matrix molecular codes

    Science.gov (United States)

    Galiatsatos, P. G.; Tennyson, J.

    2012-11-01

    The most time consuming step within the framework of the UK R-matrix molecular codes is that of the diagonalization of the inner region Hamiltonian matrix (IRHM). Here we present the method that we follow to speed up this step. We use shared memory machines (SMM), distributed memory machines (DMM), the OpenMP directive based parallel language, the MPI function based parallel language, the sparse matrix diagonalizers ARPACK and PARPACK, a variation for real symmetric matrices of the official coordinate sparse matrix format and finally a parallel sparse matrix-vector product (PSMV). The efficient application of the previous techniques rely on two important facts: the sparsity of the matrix is large enough (more than 98%) and in order to get back converged results we need a small only part of the matrix spectrum.

  7. On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel

    KAUST Repository

    Abediseid, Walid

    2013-06-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria. In this paper, we analyze in detail the performance of diagonal lattice space-time codes under lattice decoding. We present both upper and lower bounds on the average error probability. We derive a new closed form expression of the lower bound using the so-called sphere-packing bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is simply derived using the union-bound and demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. © 2013 IEEE.

  8. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes.

    Science.gov (United States)

    Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang

    2014-01-01

    We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.

  9. Exact solutions for some discrete models of the Boltzmann equation

    International Nuclear Information System (INIS)

    Cabannes, H.; Hong Tiem, D.

    1987-01-01

    For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr

  10. An accelerated conjugate gradient algorithm to compute low-lying eigenvalues - a study for the Dirac operator in SU(2) lattice QCD

    International Nuclear Information System (INIS)

    Kalkreuter, T.; Simma, H.

    1995-07-01

    The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4 4 - 16 4 an acceleration of the pure CG method by a factor of 4 - 8 is found. (orig.)

  11. Exact Solution and Exotic Fluid in Cosmology

    Directory of Open Access Journals (Sweden)

    Phillial Oh

    2012-09-01

    Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.

  12. A search for exact superstring vacua

    CERN Document Server

    Peterman, Andreas; Zichichi, Antonino

    1994-01-01

    We investigate $2d$ sigma-models with a $2+N$ dimensional Minkowski signature target space metric and Killing symmetry, specifically supersymmetrized, and see under which conditions they might lead to corresponding exact string vacua. It appears that the issue relies heavily on the properties of the vector $M_{\\mu}$, a reparametrization term, which needs to possess a definite form for the Weyl invariance to be satisfied. We give, in the $n = 1$ supersymmetric case, two non-renormalization theorems from which we can relate the $u$ component of $M_{\\mu}$ to the $\\beta^G_{uu}$ function. We work out this $(u,u)$ component of the $\\beta^G$ function and find a non-vanishing contribution at four loops. Therefore, it turns out that at order $\\alpha^{\\prime 4}$, there are in general non-vanishing contributions to $M_u$ that prevent us from deducing superstring vacua in closed form.

  13. Interference-exact radiative transfer equation

    DEFF Research Database (Denmark)

    Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani

    2017-01-01

    Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....

  14. Exact iterative reconstruction for the interior problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2009-01-01

    There is a trend in single photon emission computed tomography (SPECT) that small and dedicated imaging systems are becoming popular. For example, many companies are developing small dedicated cardiac SPECT systems with different designs. These dedicated systems have a smaller field of view (FOV) than a full-size clinical system. Thus data truncation has become the norm rather than the exception in these systems. Therefore, it is important to develop region of interest (ROI) reconstruction algorithms using truncated data. This paper is a stepping stone toward this direction. This paper shows that the common generic iterative image reconstruction algorithms are able to exactly reconstruct the ROI under the conditions that the convex ROI is fully sampled and the image value in a sub-region within the ROI is known. If the ROI includes a sub-region that is outside the patient body, then the conditions can be easily satisfied.

  15. On truncations of the exact renormalization group

    CERN Document Server

    Morris, T R

    1994-01-01

    We investigate the Exact Renormalization Group (ERG) description of (Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,\\dots, obtained by expanding about the field \\varphi=0 and discarding all powers \\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.

  16. Exact solutions to operator differential equations

    International Nuclear Information System (INIS)

    Bender, C.M.

    1992-01-01

    In this talk we consider the Heisenberg equations of motion q = -i(q, H), p = -i(p, H), for the quantum-mechanical Hamiltonian H(p, q) having one degree of freedom. It is a commonly held belief that such operator differential equations are intractable. However, a technique is presented here that allows one to obtain exact, closed-form solutions for huge classes of Hamiltonians. This technique, which is a generalization of the classical action-angle variable methods, allows us to solve, albeit formally and implicitly, the operator differential equations of two anharmonic oscillators whose Hamiltonians are H = p 2 /2 + q 4 /4 and H = p 4 /4 + q 4 /4

  17. Exactly soluble QCD and confinement of quarks

    International Nuclear Information System (INIS)

    Rusakov, B.

    1997-01-01

    An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)

  18. Exact classical scaling formalism for nonreactive processes

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1981-01-01

    A general nonreactive collision system is considered with internal molecular variables (p, r) and/or (I, theta) of arbitrary dimensions and relative translational variables (P, R) of three or less dimensions. We derive an exact classical scaling formalism which relates the collisional change in any function of molecular variables directly to the initial values of these variables. The collision dynamics is then described by an explicit function of the initial point in the internal molecular phase space, for a fixed point in the relative translational phase space. In other words, the systematic variation of the internal molecular properties (e.g., actions and average internal kinetic energies) is given as a function of the initial internal action-angle variables. A simple three term approximation to the exact formalism is derived, the natural variables of which are the internal action I and internal linear momenta p. For the final average internal kinetic energies T, the result is T-T/sup( 0 ) = α+βp/sup( 0 )+γI/sup( 0 ), where the superscripted ''0'' indicates the initial value. The parameters α, β, and γ in this scaling theory are directly related to the moments of the change in average internal kinetic energy. Utilizing a very limited number of input moments generated from classical trajectory calculations, the scaling can be used to predict the entire distribution of final internal variables as a function of initial internal actions and linear momenta. Initial examples for atom--collinear harmonic oscillator collision systems are presented in detail, with the scaling predictions (e.g., moments and quasiclassical histogram transition probabilities) being generally very good to excellent quantitatively

  19. New exact solutions of the mBBM equation

    International Nuclear Information System (INIS)

    Zhang Zhe; Li Desheng

    2013-01-01

    The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin-Bona-Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations. (authors)

  20. Approximate joint diagonalization and geometric mean of symmetric positive definite matrices.

    Directory of Open Access Journals (Sweden)

    Marco Congedo

    Full Text Available We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD matrices and their approximate joint diagonalization (AJD. Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations.

  1. Approximate joint diagonalization and geometric mean of symmetric positive definite matrices.

    Science.gov (United States)

    Congedo, Marco; Afsari, Bijan; Barachant, Alexandre; Moakher, Maher

    2014-01-01

    We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations.

  2. Exact solitary waves of the Korteveg - de Vries - Burgers equation

    OpenAIRE

    Kudryashov, N. A.

    2004-01-01

    New approach is presented to search exact solutions of nonlinear differential equations. This method is used to look for exact solutions of the Korteveg -- de Vries -- Burgers equation. New exact solitary waves of the Korteveg -- de Vries -- Burgers equation are found.

  3. A Collaborative Diagonal Learning Network: The role of formal and informal professional development in elementary science reform

    Science.gov (United States)

    Cooke-Nieves, Natasha Anika

    Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal

  4. A quasi-exactly solvable Lipkin-Meshkov-Glick model

    International Nuclear Information System (INIS)

    Pan Feng; Lin Jijie; Xue Xiaogang; Draayer, J P

    2010-01-01

    We prove that a special Lipkin-Meshkov-Glick model is quasi-exactly solvable with solutions that can be expressed in the SU(2) coherent state form. Ground-state properties of the model are studied analytically. We also show that the model reduces to the standard two-site Bose-Hubbard model in the large-N limit for finite U/t or large (N - 1)|U|/t cases with finite N, which proves that in these cases the ground state of the standard two-site Bose-Hubbard model is an SU(2) coherent state.

  5. Transversal magnetotransport in Weyl semimetals: Exact numerical approach

    Science.gov (United States)

    Behrends, Jan; Kunst, Flore K.; Sbierski, Björn

    2018-02-01

    Magnetotransport experiments on Weyl semimetals are essential for investigating the intriguing topological and low-energy properties of Weyl nodes. If the transport direction is perpendicular to the applied magnetic field, experiments have shown a large positive magnetoresistance. In this work we present a theoretical scattering matrix approach to transversal magnetotransport in a Weyl node. Our numerical method confirms and goes beyond the existing perturbative analytical approach by treating disorder exactly. It is formulated in real space and is applicable to mesoscopic samples as well as in the bulk limit. In particular, we study the case of clean and strongly disordered samples.

  6. Mass Deformed Exact S-parameter in Conformal Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    the existence of a universal lower bound on the opportunely normalized S parameter and explore its theoretical and phenomenological implications. Our exact results constitute an ideal framework to correctly interpret the lattice studies of the conformal window of strongly interacting theories....... leads to drastically different limiting values of S. Our results apply to any fermion matter representation and can be used as benchmark for the determination of certain relevant properties of the conformal window of any generic vector like gauge theory with fermionic matter. We finally suggest...

  7. Exact renormalization group equation for the Lifshitz critical point

    Science.gov (United States)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  8. Exact solutions of Lovelock-Born-Infeld black holes

    International Nuclear Information System (INIS)

    Aiello, Matias; Ferraro, Rafael; Giribet, Gaston

    2004-01-01

    The exact five-dimensional charged black hole solution in Lovelock gravity coupled to Born-Infeld electrodynamics is presented. This solution interpolates between the Hoffmann black hole for the Einstein-Born-Infeld theory and other solutions in the Lovelock theory previously studied in the literature. It is shown how the conical singularity of the metric around the origin can be removed by a proper choice of the black hole parameters. The differences existing with the Reissner-Nordstroem black holes are discussed. In particular, we show the existence of charged black holes with a unique horizon

  9. The Hall module of an exact category with duality

    OpenAIRE

    Young, Matthew B.

    2012-01-01

    We construct from a finitary exact category with duality a module over its Hall algebra, called the Hall module, encoding the first order self-dual extension structure of the category. We study in detail Hall modules arising from the representation theory of a quiver with involution. In this case we show that the Hall module is naturally a module over the specialized reduced sigma-analogue of the quantum Kac-Moody algebra attached to the quiver. For finite type quivers, we explicitly determin...

  10. Exact results in a lattice model of a binary reactant mixture

    International Nuclear Information System (INIS)

    Thomas, P.B.

    1995-01-01

    We study phase separation in a binary mixture of two particles, which can react with each other and form a third compound. We determine the exact phase boundaries for a restricted range of the interaction parameters

  11. Patterns of Direct Projections from the Hippocampus to the Medial Septum-Diagonal Band Complex : Anterograde Tracing with Phaseolus vulgaris Leucoagglutinin Combined with Immunohistochemistry of Choline Acetyltransferase

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Kuil, J. van der; Hersh, L.B.; Luiten, P.G.M.

    1991-01-01

    The projections from the Ammon's horn to the cholinergic cell groups in the medial septal and diagonal band nuclei were investigated with anterograde tracing of Phaseolus vulgaris leucoagglutinin combined with immunocytochemical detection of choline acetyltransferase, in the rat. Tracer injections

  12. Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Sun Chengfeng; Gao Hongjun

    2009-01-01

    The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.

  13. Duality invariant class of exact string backgrounds

    CERN Document Server

    Klimcík, C

    1994-01-01

    We consider a class of $2+D$ - dimensional string backgrounds with a target space metric having a covariantly constant null Killing vector and flat `transverse' part. The corresponding sigma models are invariant under $D$ abelian isometries and are transformed by $O(D,D)$ duality into models belonging to the same class. The leading-order solutions of the conformal invariance equations (metric, antisymmetric tensor and dilaton), as well as the action of $O(D,D)$ duality transformations on them, are exact, i.e. are not modified by $\\a'$-corrections. This makes a discussion of different space-time representations of the same string solution (related by $O(D,D|Z)$ duality subgroup) rather explicit. We show that the $O(D,D)$ duality may connect curved $2+D$-dimensional backgrounds with solutions having flat metric but, in general, non-trivial antisymmetric tensor and dilaton. We discuss several particular examples including the $2+D=4$ - dimensional background that was recently interpreted in terms of a WZW model.

  14. Exact-exchange-based quasiparticle calculations

    International Nuclear Information System (INIS)

    Aulbur, Wilfried G.; Staedele, Martin; Goerling, Andreas

    2000-01-01

    One-particle wave functions and energies from Kohn-Sham calculations with the exact local Kohn-Sham exchange and the local density approximation (LDA) correlation potential [EXX(c)] are used as input for quasiparticle calculations in the GW approximation (GWA) for eight semiconductors. Quasiparticle corrections to EXX(c) band gaps are small when EXX(c) band gaps are close to experiment. In the case of diamond, quasiparticle calculations are essential to remedy a 0.7 eV underestimate of the experimental band gap within EXX(c). The accuracy of EXX(c)-based GWA calculations for the determination of band gaps is as good as the accuracy of LDA-based GWA calculations. For the lowest valence band width a qualitatively different behavior is observed for medium- and wide-gap materials. The valence band width of medium- (wide-) gap materials is reduced (increased) in EXX(c) compared to the LDA. Quasiparticle corrections lead to a further reduction (increase). As a consequence, EXX(c)-based quasiparticle calculations give valence band widths that are generally 1-2 eV smaller (larger) than experiment for medium- (wide-) gap materials. (c) 2000 The American Physical Society

  15. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  16. STELLAR: fast and exact local alignments

    Directory of Open Access Journals (Sweden)

    Weese David

    2011-10-01

    Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

  17. Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix

    Science.gov (United States)

    Llama, Eduardo Garcia

    2011-01-01

    In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.

  18. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order

    International Nuclear Information System (INIS)

    Reiher, Markus; Wolf, Alexander

    2004-01-01

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented

  19. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.

    Science.gov (United States)

    Reiher, Markus; Wolf, Alexander

    2004-12-08

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.

  20. Frames for exact inversion of the rank order coder.

    Science.gov (United States)

    Masmoudi, Khaled; Antonini, Marc; Kornprobst, Pierre

    2012-02-01

    Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe et al. who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in [1] a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to [1]. Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.

  1. Pure N=2 super Yang-Mills and exact WKB

    International Nuclear Information System (INIS)

    Kashani-Poor, Amir-Kian; Troost, Jan

    2015-01-01

    We apply exact WKB methods to the study of the partition function of pure N=2ϵ i -deformed gauge theory in four dimensions in the context of the 2d/4d correspondence. We study the partition function at leading order in ϵ 2 /ϵ 1 (i.e. at large central charge) and in an expansion in ϵ 1 . We find corrections of the form ∼exp [−((/tiny SW periods)/(ϵ 1 ))] to this expansion. We attribute these to the exchange of the order of summation over gauge instanton number and over powers of ϵ 1 when passing from the Nekrasov form of the partition function to the topological string theory inspired form. We conjecture that such corrections should be computable from a worldsheet perspective on the partition function. Our results follow upon the determination of the Stokes graphs associated to the Mathieu equation with complex parameters and the application of exact WKB techniques to compute the Mathieu characteristic exponent.

  2. A fast, exact code for scattered thermal radiation compared with a two-stream approximation

    International Nuclear Information System (INIS)

    Cogley, A.C.; Pandey, D.K.

    1980-01-01

    A two-stream accuracy study for internally (thermal) driven problems is presented by comparison with a recently developed 'exact' adding/doubling method. The resulting errors in external (or boundary) radiative intensity and flux are usually larger than those for the externally driven problems and vary substantially with the radiative parameters. Error predictions for a specific problem are difficult. An unexpected result is that the exact method is computationally as fast as the two-stream approximation for nonisothermal media

  3. String propagation in an exact four-dimensional black hole background

    International Nuclear Information System (INIS)

    Mahapatra, S.

    1997-01-01

    We study string propagation in an exact, stringy, four-dimensional dyonic black hole background. The exact solutions in terms of elliptic functions describing string configurations in the J=0 limit are obtained by solving the string equations of motion and constraints. By using the covariant formalism, we also investigate the propagation of physical perturbations along the string in the given curved background. copyright 1997 The American Physical Society

  4. Time measurement - technical importance of most exact clocks

    International Nuclear Information System (INIS)

    Goebel, E.O.; Riehle, F.

    2004-01-01

    The exactness of the best atomic clocks currently shows a temporal variation of 1 second in 30 million years. This means that we have reached the point of the most exact frequency and time measurement ever. In the past, there was a trend towards increasing the exactness in an increasingly fast sequence. Will this trend continue? And who will profit from it? This article is meant to give answers to these questions. This is done by presenting first the level reached currently with the best atomic clocks and describing the research activities running worldwide with the aim of achieving even more exact clocks. In the second part, we present examples of various areas of technical subjects and research in which the most exact clocks are being applied presently and even more exact ones will be needed in the future [de

  5. Upper bounds on minimum cardinality of exact and approximate reducts

    KAUST Repository

    Chikalov, Igor

    2010-01-01

    In the paper, we consider the notions of exact and approximate decision reducts for binary decision tables. We present upper bounds on minimum cardinality of exact and approximate reducts depending on the number of rows (objects) in the decision table. We show that the bound for exact reducts is unimprovable in the general case, and the bound for approximate reducts is almost unimprovable in the general case. © 2010 Springer-Verlag Berlin Heidelberg.

  6. A class of exact solutions to the Einstein field equations

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R K

    2012-01-01

    The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)

  7. Exact gravitational quasinormal frequencies of topological black holes

    International Nuclear Information System (INIS)

    Birmingham, Danny; Mokhtari, Susan

    2006-01-01

    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies

  8. Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes

    International Nuclear Information System (INIS)

    Anselmino, M.; Murgia, F.; Quintairos, P.

    1999-04-01

    Final state q q-bar interactions give origin to non zero values of the off-diagonal element ρ 1,-1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ, D * and K * 's. New predictions are given for ρ 1,-1 of several mesons produced at large x E and small p T - i.e. collinear with the parent jet - in the annihilation of polarized 3 + and 3 - , the results depend strongly on the elementary dynamics and allow further non trivial tests of the standard model. (author)

  9. Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka

    2010-07-01

    Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.

  10. Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end

    International Nuclear Information System (INIS)

    Yang Wenli; Chen Xi; Feng Jun; Hao Kun; Shi Kangjie; Sun Chengyi; Yang Zhanying; Zhang Yaozhong

    2011-01-01

    With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex SOS model, we derive the recursion relations of the partition function for the eight-vertex model with a generic non-diagonal reflecting end and domain wall boundary condition. Solving the recursion relations, we obtain the explicit determinant expression of the partition function. Our result shows that, contrary to the eight-vertex model without a reflecting end, the partition function can be expressed as a single determinant.

  11. A Class of Quasi-exact Solutions of Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.

    2007-01-01

    A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.

  12. The exact wavefunction factorization of a vibronic coupling system

    International Nuclear Information System (INIS)

    Chiang, Ying-Chih; Klaiman, Shachar; Otto, Frank; Cederbaum, Lorenz S.

    2014-01-01

    We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation

  13. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    International Nuclear Information System (INIS)

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-01

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q y transition dipole moments in Chl b homodimers is larger by about 9 ∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b

  14. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2015-01-21

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q{sub y} transition dipole moments in Chl b homodimers is larger by about 9{sup ∘} than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  15. Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system

    KAUST Repository

    Côrtes, A.M.A.

    2015-02-20

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.

  16. Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system

    KAUST Repository

    Cô rtes, A.M.A.; Coutinho, A.L.G.A.; Dalcin, L.; Calo, Victor M.

    2015-01-01

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.

  17. Angles of total shifts and angles of maxumum crop during development of faces diagonal to seam strike directions

    Directory of Open Access Journals (Sweden)

    Н. А. Колесник

    2017-06-01

    Full Text Available When predicting deformations and determining measures to protect underworked objects, angular parameters are used: the boundary angles, the angles of total shift, the angle of maximum crop. The values of these angular parameters are given in the normative documents, but only for sections across and along the strike of the formation. However, at present, longwall face mining is mainly being carried out along a diagonal direction to the strike of the formation. In connection with this, the determination of the values of the angular parameters for such conditions is a topical task.The method of determination and the analytical dependences of the angles of total shifts and angles of maximum crop in sections of the longitudinal and transverse axes of coal-mining faces developed along diagonal directions to the strike of the formation are proposed. These angular parameters are used for prognosis of deformations of the earth's surface and for determining the characteristic zones of influence of mine workings on the local places.

  18. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  19. Exact Boundary Controllability of Electromagnetic Fields in a General Region

    International Nuclear Information System (INIS)

    Eller, M. M.; Masters, J. E.

    2002-01-01

    We prove exact controllability for Maxwell's system with variable coefficients in a bounded domain by a current flux in the boundary. The proof relies on a duality argument which reduces the proof of exact controllability to the proof of continuous observability for the homogeneous adjoint system. There is no geometric restriction imposed on the domain

  20. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  1. Exact solution for the generalized Telegraph Fisher's equation

    International Nuclear Information System (INIS)

    Abdusalam, H.A.; Fahmy, E.S.

    2009-01-01

    In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.

  2. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  3. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  4. Exact Cover Problem in Milton Babbitt's All-partition Array

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set...

  5. New exact solutions of the Dirac equation. 11

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Noskov, M.D.

    1984-01-01

    Investigations into determining new exact solutions of relativistic wave equations started in another paper were continued. Exact solutions of the Dirac, Klein-Gordon equations and classical relativistic equations of motion in four new types of external electromagnetic fields were found

  6. New exact travelling wave solutions for the Ostrovsky equation

    International Nuclear Information System (INIS)

    Kangalgil, Figen; Ayaz, Fatma

    2008-01-01

    In this Letter, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. In order to illustrate the validity and the advantages of the method we choose the Ostrovsky equation. As a result, many new and more general exact solutions have been obtained for the equation

  7. Energy vs. density on paths toward exact density functionals

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2018-01-01

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a “path”. Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness...

  8. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  9. Exact traveling wave solutions of the Boussinesq equation

    International Nuclear Information System (INIS)

    Ding Shuangshuang; Zhao Xiqiang

    2006-01-01

    The repeated homogeneous balance method is used to construct exact traveling wave solutions of the Boussinesq equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions of the Boussinesq equation are successfully obtained

  10. Exactly solvable nonequilibrium Langevin relaxation of a trapped nanoparticle

    International Nuclear Information System (INIS)

    Salazar, Domingos S P; Lira, Sérgio A

    2016-01-01

    In this work, we study the nonequilibrium statistical properties of the relaxation dynamics of a nanoparticle trapped in a harmonic potential. We report an exact time-dependent analytical solution to the Langevin dynamics that arises from the stochastic differential equation of our system’s energy in the underdamped regime. By utilizing this stochastic thermodynamics approach, we are able to completely describe the heat exchange process between the nanoparticle and the surrounding environment. As an important consequence of our results, we observe the validity of the heat exchange fluctuation theorem in our setup, which holds for systems arbitrarily far from equilibrium conditions. By extending our results for the case of N noninterating nanoparticles, we perform analytical asymptotic limits and direct numerical simulations that corroborate our analytical predictions. (paper)

  11. Exact decoherence dynamics of a single-mode optical field

    International Nuclear Information System (INIS)

    An, J.-H.; Yeo Ye; Oh, C.H.

    2009-01-01

    We apply the influence-functional method of Feynman and Vernon to the study of a single-mode optical field that interacts with an environment at zero temperature. Using the coherent-state formalism of the path integral, we derive a generalized master equation for the single-mode optical field. Our analysis explicitly shows how non-Markovian effects manifest in the exact decoherence dynamics for different environmental correlation time scales. Remarkably, when these are equal to or greater than the time scale for significant change in the system, the interplay between the backaction-induced coherent oscillation and the dissipative effect of the environment causes the non-Markovian effect to have a significant impact not only on the short-time behavior but also on the long-time steady-state behavior of the system.

  12. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Hendriks, E.M.

    1983-01-01

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  13. Jurin's law revisited: Exact meniscus shape and column height.

    Science.gov (United States)

    Liu, Sai; Li, Shanpeng; Liu, Jianlin

    2018-03-30

    Capillary rise of a liquid column is a historical problem, which has normally been formulated by Jurin's law. In the present study, we investigate the exact solutions of the column height, considering the real shape of the meniscus according to the Young-Laplace equation. The analytical solution in the planar model and the numerical solution in the axisymmetric model on the meniscus shape are both given, which are compared with the results from Jurin's law, modified Jurin's law and Surface Evolver simulation. The results quantitatively show that when the distance between the two plates or the diameter of the tube becomes bigger, Jurin's law and modified Jurin's law would cause serious errors, and the profile morphology of the meniscus must be calculated according to the Young-Laplace equation. These findings are beneficial for us to better understand the mechanism of capillarity and wetting, which are promising for such areas as oil displacement, ore floatation, building materials, fabrics, etc.

  14. Efficiently computing exact geodesic loops within finite steps.

    Science.gov (United States)

    Xin, Shi-Qing; He, Ying; Fu, Chi-Wing

    2012-06-01

    Closed geodesics, or geodesic loops, are crucial to the study of differential topology and differential geometry. Although the existence and properties of closed geodesics on smooth surfaces have been widely studied in mathematics community, relatively little progress has been made on how to compute them on polygonal surfaces. Most existing algorithms simply consider the mesh as a graph and so the resultant loops are restricted only on mesh edges, which are far from the actual geodesics. This paper is the first to prove the existence and uniqueness of geodesic loop restricted on a closed face sequence; it contributes also with an efficient algorithm to iteratively evolve an initial closed path on a given mesh into an exact geodesic loop within finite steps. Our proposed algorithm takes only an O(k) space complexity and an O(mk) time complexity (experimentally), where m is the number of vertices in the region bounded by the initial loop and the resultant geodesic loop, and k is the average number of edges in the edge sequences that the evolving loop passes through. In contrast to the existing geodesic curvature flow methods which compute an approximate geodesic loop within a predefined threshold, our method is exact and can apply directly to triangular meshes without needing to solve any differential equation with a numerical solver; it can run at interactive speed, e.g., in the order of milliseconds, for a mesh with around 50K vertices, and hence, significantly outperforms existing algorithms. Actually, our algorithm could run at interactive speed even for larger meshes. Besides the complexity of the input mesh, the geometric shape could also affect the number of evolving steps, i.e., the performance. We motivate our algorithm with an interactive shape segmentation example shown later in the paper.

  15. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  16. Dissociation between exact and approximate addition in developmental dyslexia.

    Science.gov (United States)

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Exact solutions of nonlinear differential equations using continued fractions

    International Nuclear Information System (INIS)

    Ditto, W.L.; Pickett, T.J.

    1990-01-01

    The continued-fraction conversion method (J. Math. Phys. (N.Y.), 29, 1761 (1988)) is used to generate a homologous family of exact solutions to the Lane-Emden equation φ(r) '' + 2φ(r)'/r + αφ(r) p = 0, for p=5. An exact solution is also obtained for a generalization of the Lane-Emden equation of the form -φ '' (r) -2φ(r)'/r + αφ(r) 2p+1 + λφ(r) 4p+1 = 0 for arbitrary α, γ and p. A condition is established for the generation of exact solutions from the method

  18. Exact Cover Problem in Milton Babbitt's All-partition Array

    OpenAIRE

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set, A, and a collection of distinct subsets of this set, S, then a subset of S is an exact cover of A if it exhaustively and exclu- sively partitions A. We provide a backtracking algorithm for solving ...

  19. The exact mass-gaps of the principal chiral models

    CERN Document Server

    Hollowood, Timothy J

    1994-01-01

    An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.

  20. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  1. Absorption Spectrum and Density of States of Square, Rectangular, and Triangular Frenkel Exciton Systems with Gaussian Diagonal Disorder

    Directory of Open Access Journals (Sweden)

    Ibrahim Avgin

    2017-01-01

    Full Text Available Using the coherent potential approximation, we investigate the effects of disorder on the optical absorption and the density of states of Frenkel exciton systems on square, rectangular, and triangular lattices with nearest-neighbor interactions and a Gaussian distribution of transition energies. The analysis is based on an elliptic integral approach that gives results over the entire spectrum. The results for the square lattice are in good agreement with the finite-array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of two-dimensional systems with dominant nearest-neighbor interactions and Gaussian diagonal disorder provided the optically active states are Frenkel excitons.

  2. Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model

    Science.gov (United States)

    Pont, Federico M.; Osenda, Omar; Serra, Pablo

    2018-05-01

    The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.

  3. The Alleged Crisis and the Illusion of Exact Replication.

    Science.gov (United States)

    Stroebe, Wolfgang; Strack, Fritz

    2014-01-01

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a "replication crisis" in psychology. Psychologists are encouraged to conduct more "exact" replications of published studies to assess the reproducibility of psychological research. This article argues that the alleged "crisis of replicability" is primarily due to an epistemological misunderstanding that emphasizes the phenomenon instead of its underlying mechanisms. As a consequence, a replicated phenomenon may not serve as a rigorous test of a theoretical hypothesis because identical operationalizations of variables in studies conducted at different times and with different subject populations might test different theoretical constructs. Therefore, we propose that for meaningful replications, attempts at reinstating the original circumstances are not sufficient. Instead, replicators must ascertain that conditions are realized that reflect the theoretical variable(s) manipulated (and/or measured) in the original study. © The Author(s) 2013.

  4. Improvement of the characteristics of a diagonal-flow fan in low flow range with casing-bleed-holes; Keshingu kiko ni yoru sharyu sofuki no teiryu ryoiki tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoichi; Sasaki, Kazuto; Yamaguchi, Sumio; Yamashita, Shoji; Shimada, Taichiro

    1999-09-01

    Generally, a high specific speed diagonal flow fan with a small pressure rise coefficient has a slight positive gradient part of the pressure rise - flow rate characteristics. In addition, the pressure fall is small, between the flow rate at which the impeller stall in the throttle closer and the stalling flow rate. In the case, Kaneko et al. suggest a way of improvement on performance characteristics by an inlet annular wing which removes a low-momentum fluid from a rotor tip region. However, in case of a fan that has a sharp drop of pressure rise in the stall characteristics, it is not clear that the stall characteristics can be improved by this way. In this study, in order to improve the unstable characteristics of a high pressure rise coefficient diagonal flow fan, Tip clearance flow has been investigated on five rotor-casings with various holes to bleed low-momentum fluid in the range of flow rate from design point to stall point. (author)

  5. Exact renormalization group as a scheme for calculations

    International Nuclear Information System (INIS)

    Mack, G.

    1985-10-01

    In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)

  6. New exact travelling wave solutions of bidirectional wave equations

    Indian Academy of Sciences (India)

    Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea. ∗ ... exact travelling wave solutions of system (1) using the modified tanh–coth function method ... The ordinary differential equation is then integrated.

  7. Exact solutions to some nonlinear PDEs, travelling profiles method

    Directory of Open Access Journals (Sweden)

    Noureddine Benhamidouche

    2008-04-01

    \\end{equation*} by a new method that we call the travelling profiles method. This method allows us to find several forms of exact solutions including the classical forms such as travelling-wave and self-similar solutions.

  8. Exact solutions to the Lienard equation and its applications

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2004-01-01

    In this paper, a kind of explicit exact solutions to the Lienard equation is obtained, and the applications of the result in seeking traveling solitary wave solution of the nonlinear Schroedinger equation are presented

  9. Exact Analysis of the Cache Behavior of Nested Loops

    National Research Council Canada - National Science Library

    Chatterjee, Siddhartha; Parker, Erin; Hanlon, Philip J; Lebeck, Alvin R

    2001-01-01

    The authors develop from first principles an exact model of the behavior of loop nests executing in a memory hierarchy by using a nontraditional classification of misses that has the key property of composability...

  10. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)

    Jefta M Sunzu

    2017-09-05

    Sep 5, 2017 ... The exact solutions corresponding to our models are found explicitly in terms of elementary ...... PD extends his appre- ciation to the President Office (Local Governments and ... Kwazulu-Natal, Howard College, April 2004).

  11. A procedure to construct exact solutions of nonlinear evolution ...

    Indian Academy of Sciences (India)

    Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30. ... computer science, directly searching for solutions of nonlinear differential equations has become more and ... Right after this pioneer work, this ...

  12. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  13. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  14. Exactness of supersymmetric WKB method for translational shape invariant potentials

    International Nuclear Information System (INIS)

    Cheng, K M; Leung, P T; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs

  15. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  16. Exact Lagrangian caps and non-uniruled Lagrangian submanifolds

    Science.gov (United States)

    Dimitroglou Rizell, Georgios

    2015-04-01

    We make the elementary observation that the Lagrangian submanifolds of C n , n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian caps, which obviously are non-uniruled in themselves. This property is also used to show that if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its Chekanov-Eliashberg algebra is acyclic.

  17. New types of exact solutions for a breaking soliton equation

    International Nuclear Information System (INIS)

    Mei Jianqin; Zhang Hongqing

    2004-01-01

    In this paper based on a system of Riccati equations, we present a newly generally projective Riccati equation expansion method and its algorithm, which can be used to construct more new exact solutions of nonlinear differential equations in mathematical physics. A typical breaking soliton equation is chosen to illustrate our algorithm such that more families of new exact solutions are obtained, which contain soliton-like solutions and periodic solutions. This algorithm can also be applied to other nonlinear differential equations

  18. Exactness of supersymmetric WKB method for translational shape invariant potentials

    CERN Document Server

    Cheng, K M; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.

  19. Non-Fermi-liquid behavior: Exact results for ensembles of magnetic impurities

    CERN Document Server

    Zvyagin, A A

    2002-01-01

    In this work we consider several exactly solvable models of magnetic impurities in critical quantum antiferromagnetic spin chains and multichannel Kondo impurities. Their ground state properties are studied and the finite set of nonlinear integral equations, which exactly describe the thermodynamics of the models, is constructed. We obtain several analytic low-energy expressions for the temperature, magnetic field, and frequency dependences of important characteristics of exactly solvable disordered quantum spin models and disordered multichannel Kondo impurities with essential many-body interactions. We show that the only low-energy parameter that gets renormalized is the velocity of the low-lying excitations (or the effective crossover scale connected with each impurity); the others appear to be universal. In our study several kinds of strong disorder important for experiments were used. Some of them produce low divergences in certain characteristics of our strongly disordered critical systems (compared wit...

  20. Multiplicity fluctuations in a hadron gas with exact conservation laws

    International Nuclear Information System (INIS)

    Becattini, Francesco; Keraenen, Antti; Ferroni, Lorenzo; Gabbriellini, Tommaso

    2005-01-01

    The study of fluctuations of particle multiplicities in relativistic heavy-ion reactions has drawn much attention in recent years, because they have been proposed as a probe for underlying dynamics and possible formation of quark-gluon plasma. Thus it is of uttermost importance to describe the baseline of statistical fluctuations in the hadron gas phase in a correct way. We performed a comprehensive study of multiplicity distributions in the full ideal hadron-resonance gas in different ensembles, namely grand canonical, canonical, and microcanonical, by using two different methods: Asymptotic expansions and full Monte Carlo simulations. The method based on asymptotic expansion allows a quick numerical calculation of dispersions in the hadron gas with three conserved charges at the primary hadron level, while the Monte Carlo simulation is suitable for studying the effect of resonance decays. Even though mean multiplicities converge to the same values, major differences in fluctuations for these ensembles persist in the thermodynamic limit, as pointed out in recent studies. We observe that this difference is ultimately related to the nonadditivity of the variances in the ensembles with exact conservation of extensive quantities

  1. Exact and microscopic one-instanton calculations in N=2 supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ito, K.; Sasakura, N.

    1997-01-01

    We study the low-energy effective theory in N=2 super Yang-Mills theories by microscopic and exact approaches. We calculate the one-instanton correction to the prepotential for any simple Lie group from the microscopic approach. We also study the Picard-Fuchs equations and their solutions in the semi-classical regime for classical gauge groups with rank r≤3. We find that for gauge groups G=A r , B r , C r (r≤3) the microscopic results agree with those from the exact solutions. (orig.)

  2. Exact discretization of Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2016-01-08

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  3. Exact discretization of Schrödinger equation

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2016-01-01

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  4. Exact RG flow equations and quantum gravity

    Science.gov (United States)

    de Alwis, S. P.

    2018-03-01

    We discuss the different forms of the functional RG equation and their relation to each other. In particular we suggest a generalized background field version that is close in spirit to the Polchinski equation as an alternative to the Wetterich equation to study Weinberg's asymptotic safety program for defining quantum gravity, and argue that the former is better suited for this purpose. Using the heat kernel expansion and proper time regularization we find evidence in support of this program in agreement with previous work.

  5. Dilatonic imprints on exact gravitational wave signatures

    Science.gov (United States)

    McCarthy, Fiona; KubizÅák, David; Mann, Robert B.

    2018-05-01

    By employing the moduli space approximation, we analytically calculate the gravitational wave signatures emitted upon the merger of two extremally charged dilatonic black holes. We probe several values of the dilatonic coupling constant a , and find significant departures from the Einstein-Maxwell (a =0 ) counterpart studied in [Phys. Rev. D 96, 061501 (2017), 10.1103/PhysRevD.96.061501]. For (low-energy) string theory black holes (a =1 ) there are no coalescence orbits and only a memory effect is observed, whereas for an intermediate value of the coupling (a =1 /√{3 } ) the late-time merger signature becomes exponentially suppressed, compared to the polynomial decay in the a =0 case without a dilaton. Such an imprint shows a clear difference between the case with and without a scalar field (as, for example, predicted by string theory) in black hole mergers.

  6. So what exactly is nursing knowledge?

    Science.gov (United States)

    Clarke, L

    2011-06-01

    This paper aims to present a discussion about intrinsic nursing knowledge. The paper stems from the author's study of knowledge claims enshrined in nursing journal articles, books and conference speeches. It is argued that claims by academic nurses have largely depended on principles drawn from continental and not Analytic (British-American) philosophy. Thus, claims are credible only insofar as they defer propositional logic. This is problematic inasmuch as nursing is a practice-based activity usually carried out in medical settings. Transpersonal nursing models are particularly criticizable in respect of their unworldly character as are also concepts based on shallow usages of physics or mathematics. I argue that sensible measurements of the 'real world' are possible--without endorsing positivism--and that nursing requires little recourse to logically unsustainable claims. The paper concludes with an analysis of a recent review of nursing knowledge, which analysis indicates the circularity that attends many discussions on the topic. © 2011 Blackwell Publishing.

  7. Exact generating function for 2-convex polygons

    International Nuclear Information System (INIS)

    James, W R G; Jensen, I; Guttmann, A J

    2008-01-01

    Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their 'concavity index', m. Such polygons are called m-convex polygons and are characterized by having up to m indentations in their perimeter. We first describe how we conjectured the (isotropic) generating function for the case m = 2 using a numerical procedure based on series expansions. We then proceed to prove this result for the more general case of the full anisotropic generating function, in which steps in the x and y directions are distinguished. In doing so, we develop tools that would allow for the case m > 2 to be studied

  8. Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory

    Science.gov (United States)

    Franzke, Yannick J.; Middendorf, Nils; Weigend, Florian

    2018-03-01

    We present an efficient algorithm for one- and two-component analytical energy gradients with respect to nuclear displacements in the exact two-component decoupling approach to the one-electron Dirac equation (X2C). Our approach is a generalization of the spin-free ansatz by Cheng and Gauss [J. Chem. Phys. 135, 084114 (2011)], where the perturbed one-electron Hamiltonian is calculated by solving a first-order response equation. Computational costs are drastically reduced by applying the diagonal local approximation to the unitary decoupling transformation (DLU) [D. Peng and M. Reiher, J. Chem. Phys. 136, 244108 (2012)] to the X2C Hamiltonian. The introduced error is found to be almost negligible as the mean absolute error of the optimized structures amounts to only 0.01 pm. Our implementation in TURBOMOLE is also available within the finite nucleus model based on a Gaussian charge distribution. For a X2C/DLU gradient calculation, computational effort scales cubically with the molecular size, while storage increases quadratically. The efficiency is demonstrated in calculations of large silver clusters and organometallic iridium complexes.

  9. Exact solutions of the Dirac equation with a Coulomb plus scalar potential in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Dong, Shihai; Gu, Xiaoyan; Ma, Zhongqi; Dong, Shishan

    2002-01-01

    The exact solutions of the (2+1)-dimensional Dirac equation with a Coulomb potential and a scalar one are analytically presented by studying the second-order differential equations obtained from a pair of coupled first-order ones. The eigenvalues are studied in some detail. (author)

  10. Exact conserved quantities on the cylinder I: conformal case

    International Nuclear Information System (INIS)

    Fioravanti, Davide; Rossi, Marco

    2003-01-01

    The nonlinear integral equations describing the spectra of the left and right (continuous) quantum KdV equations on the cylinder are derived from integrable lattice field theories, which turn out to allow the Bethe Ansatz equations of a twisted 'spin -1/2' chain. A very useful mapping to the more common nonlinear integral equation of the twisted continuous spin +1/2 chain is found. The diagonalization of the transfer matrix is performed. The vacua sector is analysed in detail detecting the primary states of the minimal conformal models and giving integral expressions for the eigenvalues of the transfer matrix. Contact with the seminal papers by Bazhanov, Lukyanov and Zamolodchikov is realised. General expressions for the eigenvalues of the infinite-dimensional abelian algebra of local integrals of motion are given and explicitly calculated at the free fermion point.(author)

  11. Mean field approximation versus exact treatment of collisions in few-body systems

    International Nuclear Information System (INIS)

    Lemm, J.; Weiguny, A.; Giraud, B.G.

    1990-01-01

    A variational principle for calculating matrix elements of the full resolvent operator for a many-body system is studied. Its mean field approximation results in non-linear equations of Hartree (-Fock) type, with initial and final channel wave functions as driving terms. The mean field equations will in general have many solutions whereas the exact problem being linear, has a unique solution. In a schematic model with separable forces the mean field equations are analytically soluble, and for the exact problem the resulting integral equations are solved numerically. Comparing exact and mean field results over a wide range of system parameters, the mean field approach proves to be a very reliable approximation, which is not plagued by the notorious problem of defining asymptotic channels in the time-dependent mean field method. (orig.)

  12. Exact analysis of the response of quantum systems to two-photons using a QSDE approach

    International Nuclear Information System (INIS)

    Pan, Yu; Dong, Daoyi; Zhang, Guofeng

    2016-01-01

    We introduce the quantum stochastic differential equation (QSDE) approach to exactly analyze the response of quantum systems to a continuous-mode two-photon input. The QSDE description of the two-photon process allows us to integrate the input–output analysis with the quantum network theory, and so the analytical computability of the output state of a general quantum system can be addressed within this framework. We show that the time-domain two-photon output states can be exactly calculated for a large class of quantum systems including passive linear networks, optomechanical oscillators and two-level emitter in waveguide systems. In particular, we propose to utilise the results for the exact simulation of the stimulated emission as well as the study of the scattering of two-mode photon wave packets. (paper)

  13. Exact critical properties of two-dimensional polymer networks from conformal invariance

    International Nuclear Information System (INIS)

    Duplantier, B.

    1988-03-01

    An infinity of exact critical exponents for two-dimensional self-avoiding walks can be derived from conformal invariance and Coulomb gas techniques applied to the O(n) model and to the Potts model. They apply to polymer networks of any topology, for which a general scaling theory is given, valid in any dimension d. The infinite set of exponents has also been calculated to O(ε 2 ), for d=4-ε. The 2D study also includes other universality classes like the dense polymers, the Hamiltonian walks, the polymers at their θ-point. Exact correlation functions can be further given for Hamiltonian walks, and exact winding angle probability distributions for the self-avoiding walks

  14. Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory

    Science.gov (United States)

    Gould, Tim; Kronik, Leeor; Pittalis, Stefano

    2018-05-01

    By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.

  15. Exact solutions and symmetry analysis for the limiting probability distribution of quantum walks

    International Nuclear Information System (INIS)

    Xu, Xin-Ping; Ide, Yusuke

    2016-01-01

    In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coin and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.

  16. Exact solutions and symmetry analysis for the limiting probability distribution of quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xin-Ping, E-mail: xuxp@mail.ihep.ac.cn [School of Physical Science and Technology, Soochow University, Suzhou 215006 (China); Ide, Yusuke [Department of Information Systems Creation, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, 221-8686 (Japan)

    2016-10-15

    In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coin and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.

  17. New approach to the exact solution of viscous flow due to stretching (shrinking and porous sheet

    Directory of Open Access Journals (Sweden)

    Azhar Ali

    Full Text Available Exact analytical solutions for the generalized stretching (shrinking of a porous surface, for the variable suction (injection velocity, is presented in this paper. The solution is generalized in the sense that the existing solutions that correspond to various stretching velocities are recovered as a special case of this study. A suitable similarity transformation is introduced to find self-similar solution of the non-linear governing equations. The flow is characterized by a few non-dimensional parameters signifying the problem completely. These parameters are such that the whole range of stretching (shrinking problems discussed earlier can be recovered by assigning appropriate values to these parameters. A key point of the whole narrative is that a number of earlier works can be abridged into one generalized problem through the introduction of a new similarity transformation and finding its exact solution encompassing all the earlier solutions. Keywords: Exact solutions, New similarities, Permeable and moving sheet

  18. Di(2-ethylhexyl)phthalate Alters the Synthesis and β-Oxidation of Fatty Acids and Hinders ATP Supply in Mouse Testes via UPLC-Q-Exactive Orbitrap MS-Based Metabonomics Study.

    Science.gov (United States)

    Shen, Guolin; Zhou, Lili; Liu, Wei; Cui, Yuan; Xie, Wenping; Chen, Huiming; Yu, Wenlian; Li, Wentao; Li, Haishan

    2017-06-21

    Di(2-ethylhexyl) phthalate (DEHP) is considered to be an environmental endocrine disruptor at high levels of general exposure. Studies show that DEHP may cause testicular toxicity on human being. In this study, metabonomics techniques were used to identify differential endogenous metabolites, draw the network metabolic pathways, and conduct network analysis, to determine the underlying mechanisms of testicular toxicity induced by DEHP. The results showed that DEHP inhibited synthesis and accelerated β-oxidation of fatty acids and impaired the tricarboxylic acid cycle (TCA cycle) and gluconeogenesis, resulting in lactic acid accumulation and an insufficient ATP supply in the microenvironment of the testis. These alterations led to testicular atrophy and, thus, may be the underlying causes of testicular toxicity. DEHP also inhibited peroxisome proliferator activated receptors in the testis, which may be another potential reason for the testicular atrophy. These findings provided new insights to better understand the mechanisms of testicular toxicity induced by DEHP exposure.

  19. Implementation of the diagonalization-free algorithm in the self-consistent field procedure within the four-component relativistic scheme.

    Science.gov (United States)

    Hrdá, Marcela; Kulich, Tomáš; Repiský, Michal; Noga, Jozef; Malkina, Olga L; Malkin, Vladimir G

    2014-09-05

    A recently developed Thouless-expansion-based diagonalization-free approach for improving the efficiency of self-consistent field (SCF) methods (Noga and Šimunek, J. Chem. Theory Comput. 2010, 6, 2706) has been adapted to the four-component relativistic scheme and implemented within the program package ReSpect. In addition to the implementation, the method has been thoroughly analyzed, particularly with respect to cases for which it is difficult or computationally expensive to find a good initial guess. Based on this analysis, several modifications of the original algorithm, refining its stability and efficiency, are proposed. To demonstrate the robustness and efficiency of the improved algorithm, we present the results of four-component diagonalization-free SCF calculations on several heavy-metal complexes, the largest of which contains more than 80 atoms (about 6000 4-spinor basis functions). The diagonalization-free procedure is about twice as fast as the corresponding diagonalization. Copyright © 2014 Wiley Periodicals, Inc.

  20. Electronic structure of disordered alloys - I: self-consistent cluster CPA incorporating off-diagonal disorder and short-range order

    International Nuclear Information System (INIS)

    Kumar, V.; Mookerjee, A.; Srivastava, V.K.

    1980-09-01

    We have developed here a self-consistent coherent potential approximation generalized to take into account effect of clusters. Off-diagonal disorder and short-range order are taken into account. A graphical method married to the recursion technique, enables us to work on realistic three-dimensional lattices. Calculations are shown for a binary alloy on a diamond lattice. (author)