WorldWideScience

Sample records for exact cycle evolution

  1. Classification theorem for principal fibre bundles, Berry's phase, and exact cycle evolution

    International Nuclear Information System (INIS)

    Bohm, A.; Boya, L.J.; Mostafazadeh, A.; Rudolph, G.

    1993-03-01

    The relation between the two mathematical interpretations of the geometric (Berry) phase is discussed, using either the fibre bundle over parameter space or over projective Hilbert space. It turns out that these two geometric constructions are linked by the classification theorem for vector bundles. The classification theorem provides the means to classify the parameter space bundles for adiabatic evolution and for non-adiabatic cyclic evolution of the statevectors

  2. Symbolic computation of exact solutions for a nonlinear evolution equation

    International Nuclear Information System (INIS)

    Liu Yinping; Li Zhibin; Wang Kuncheng

    2007-01-01

    In this paper, by means of the Jacobi elliptic function method, exact double periodic wave solutions and solitary wave solutions of a nonlinear evolution equation are presented. It can be shown that not only the obtained solitary wave solutions have the property of loop-shaped, cusp-shaped and hump-shaped for different values of parameters, but also different types of double periodic wave solutions are possible, namely periodic loop-shaped wave solutions, periodic hump-shaped wave solutions or periodic cusp-shaped wave solutions. Furthermore, periodic loop-shaped wave solutions will be degenerated to loop-shaped solitary wave solutions for the same values of parameters. So do cusp-shaped solutions and hump-shaped solutions. All these solutions are new and first reported here

  3. A procedure to construct exact solutions of nonlinear evolution ...

    Indian Academy of Sciences (India)

    Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30. ... computer science, directly searching for solutions of nonlinear differential equations has become more and ... Right after this pioneer work, this ...

  4. Effective average action for gauge theories and exact evolution equations

    International Nuclear Information System (INIS)

    Reuter, M.; Wetterich, C.

    1993-11-01

    We propose a new nonperturbative evolution equation for Yang-Mills theories. It describes the scale dependence of an effective action. The running of the nonabelian gauge coupling in arbitrary dimension is computed. (orig.)

  5. Cubic and quartic planar differential systems with exact algebraic limit cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Bendjeddou

    2011-01-01

    Full Text Available We construct cubic and quartic polynomial planar differential systems with exact limit cycles that are ovals of algebraic real curves of degree four. The result obtained for the cubic case generalizes a proposition of [9]. For the quartic case, we deduce for the first time a class of systems with four algebraic limit cycles and another for which nested configurations of limit cycles occur.

  6. Structures in the Universe by Exact Methods: Formation, Evolution, Interactions

    Science.gov (United States)

    Bolejko, Krzysztof; Krasiński, Andrzej; Hellaby, Charles; Célérier, Marie-Noëlle

    2009-10-01

    As the structures in our Universe are mapped out on ever larger scales, and with increasing detail, the use of inhomogeneous models is becoming an essential tool for analyzing and understanding them. This book reviews a number of important developments in the application of inhomogeneous solutions of Einstein's field equations to cosmology. It shows how inhomogeneous models can be employed to study the evolution of structures such as galaxy clusters and galaxies with central black holes, and to account for cosmological observations like supernovae dimming, the cosmic microwave background, baryon acoustic oscillations or the dependence of the Hubble parameter on redshift within classical general relativity. Whatever 'dark matter' and 'dark energy' turn out to be, inhomogeneities exist on many scales and need to be investigated with all appropriate methods. This book is of great value to all astrophysicists and researchers working in cosmology, from graduate students to academic researchers. - Presents inhomogeneous cosmological models, allowing readers to familiarise themselves with basic properties of these models - Shows how inhomogeneous models can be used to analyse cosmological observations such as supernovae, cosmic microwave background, and baryon acoustic oscillations - Reviews important developments in the application of inhomogeneous solutions of Einstein's field equations to cosmology

  7. The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Liu Chunping; Liu Xiaoping

    2004-01-01

    First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions

  8. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  9. Exact many-body dynamics with stochastic one-body density matrix evolution

    International Nuclear Information System (INIS)

    Lacroix, D.

    2004-05-01

    In this article, we discuss some properties of the exact treatment of the many-body problem with stochastic Schroedinger equation (SSE). Starting from the SSE theory, an equivalent reformulation is proposed in terms of quantum jumps in the density matrix space. The technical details of the derivation a stochastic version of the Liouville von Neumann equation are given. It is shown that the exact Many-Body problem could be replaced by an ensemble of one-body density evolution, where each density matrix evolves according to its own mean-field augmented by a one-body noise. (author)

  10. Exact thermodynamic principles for dynamic order existence and evolution in chaos

    International Nuclear Information System (INIS)

    Mahulikar, Shripad P.; Herwig, Heinz

    2009-01-01

    The negentropy proposed first by Schroedinger is re-examined, and its conceptual and mathematical definitions are introduced. This re-definition of negentropy integrates Schroedinger's intention of its introduction, and the subsequent diverse notions in literature. This negentropy is further corroborated by its ability to state the two exact thermodynamic principles: negentropy principle for dynamic order existence and principle of maximum negentropy production (PMNEP) for dynamic order evolution. These principles are the counterparts of the existing entropy principle and the law of maximum entropy production, respectively. The PMNEP encompasses the basic concepts in the evolution postulates by Darwin and de Vries. Perspectives of dynamic order evolution in literature point to the validity of PMNEP as the law of evolution. These two additional principles now enable unified explanation of order creation, existence, evolution, and destruction; using thermodynamics.

  11. Nonlinear evolution-type equations and their exact solutions using inverse variational methods

    International Nuclear Information System (INIS)

    Kara, A H; Khalique, C M

    2005-01-01

    We present the role of invariants in obtaining exact solutions of differential equations. Firstly, conserved vectors of a partial differential equation (p.d.e.) allow us to obtain reduced forms of the p.d.e. for which some of the Lie point symmetries (in vector field form) are easily concluded and, therefore, provide a mechanism for further reduction. Secondly, invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. In this latter case, the reductions carry all the usual advantages regarding Noether symmetries and double reductions. The examples we consider are nonlinear evolution-type equations such as the Korteweg-deVries equation, but a detailed analysis is made on the Fisher equation (which describes reaction-diffusion waves in biology, inter alia). Other diffusion-type equations lend themselves well to the method we describe (e.g., the Fitzhugh Nagumo equation, which is briefly discussed). Some aspects of Painleve properties are also suggested

  12. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2017-11-01

    Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines

  13. Exact analytic expressions for the evolution of polarization for radiation propagating in a plasma with non uniformly sheared magnetic field

    International Nuclear Information System (INIS)

    Segre, S. E.

    2001-01-01

    The known analytic expressions for the evolution of the polarization of electromagnetic waves propagating in a plasma with uniformly sheared magnetic field are extended to the case where the shear is not constant. Exact analytic expressions are found for the case when the space variations of the medium are such that the magnetic field components and the plasma density satisfy a particular condition (eq. 13), possibly in a convenient reference frame of polarization space [it

  14. Understanding the Evolution of World Business Cycles

    OpenAIRE

    Ayhan Kose; Christopher Otrok; Charles H. Whiteman

    2005-01-01

    This paper studies the changes in world business cycles during 1960-2003. We employ a Bayesian dynamic latent factor model to estimate common and country-specific components in the main macroeconomic aggregates of the Group of Seven (G-7) countries. We then quantify the relative importance of these components in explaining comovement in each observable aggregate over three distinct time periods: the Bretton Woods (BW) period (1960-72), the period of common shocks (1972-86), and the globalizat...

  15. BOOK REVIEW: Structures in the Universe by Exact Methods: Formation, Evolutions, Interactions (Cambridge Monographs on Mathematical Physics) Structures in the Universe by Exact Methods: Formation, Evolutions, Interactions (Cambridge Monographs on Mathematical Physics)

    Science.gov (United States)

    Coley, Alan

    2010-05-01

    In this book the use of inhomogeneous models in cosmology, both in modelling structure formation and interpreting cosmological observations, is discussed. The authors concentrate on exact solutions, and particularly the Lemaitre-Tolman (LT) and Szekeres models (the important topic of averaging is not discussed). The book serves to demonstrate that inhomogeneous metrics can generate realistic models of cosmic structure formation and nonlinear evolution and shows that general relativity has a lot more to offer to cosmology than just the standard spatially homogeneous FLRW model. I would recommend this book to people working in theoretical cosmology. In the introduction (and in the concluding chapter and throughout the book) a reasonable discussion of the potential problems with the standard FLRW cosmology is presented, and a list of examples illustrating the limitations of standard FLRW cosmology are discussed (including potential problems with perturbation methods). In particular, the authors argue that the assumptions of isotropy and spatial homogeneity (and consequently the Copernican principle) must be properly challenged and revisited. Indeed, it is possible for `good old general relativity' to be used to explain cosmological observations without introducing speculative elements. In part I of the book the necessary background is presented (readers need a background in general relativity theory at an advanced undergraduate or graduate level). There is a good (and easy to read) review of the exact spherically symmetric dust Lemaitre-Tolman model (LT) (often denoted the LTB model) and the Lemaitre and Szekeres models. Light propogation (i.e. null geodesics, for both central and off-center observers) in exact inhomogeneous (LT) models is reviewed. In part II a number of applications of exact inhomogeneous models are presented (taken mainly from the authors' own work). In chapter 4, the evolution of exact inhomogeneous models (primarily the LT model, but also the

  16. Exact solutions for nonlinear evolution equations using Exp-function method

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2008-01-01

    In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations

  17. Evolutive Masing model, cycling plasticity, ageing and memory effects

    International Nuclear Information System (INIS)

    Sidoroff, F.

    1987-01-01

    Many models are proposed for the mechanical description of the cyclic behaviour of metals and used for structure analysis under cyclic loading. The evolutive Masing model has been proposed (Fougeres, Sidoroff, Vincent and Waille 1985) to combine - the accuracy of hereditary models for the description of hysteresis on each cycle, - the versatility of internal variables for the state description and evolution, - a sufficient microstructural basis to make the interaction easier with microstructural investigations. The purpose of the present work is to discuss this model and to compare different evolution assumptions with respect to some memory effects (cyclic hardening and softening, multilevel tests, ageing). Attention is limited to uniaxial, rate independent elasto-plastic behaviour. (orig./GL)

  18. Atypical ploidy cycles, Spo11, and the evolution of meiosis.

    Science.gov (United States)

    Bloomfield, Gareth

    2016-06-01

    The Spo11 protein induces DNA double strand breaks before the first division of meiosis, enabling the formation of the chiasmata that physically link homologous chromosomes as they align. Spo11 is an ancient and well conserved protein, related in sequence and structure to a DNA topoisomerase subunit found in Archaea as well as a subset of eukaryotes. However the origins of its meiotic function are unclear. This review examines some apparent exceptions to the rule that Spo11 activity is specific to, and required for meiosis. Spo11 appears to function in the context of unusual forms of ploidy reduction in some protists and fungi. One lineage of amoebae, the dictyostelids, is thought to undergo meiosis during its sexual cycle despite having lost Spo11 entirely. Further experimental characterisation of these and other non-canonical ploidy cycling mechanisms may cast light of the evolution of meiosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Economic Growth and the Evolution of Material Cycles

    DEFF Research Database (Denmark)

    Zhang, Chao; Chen, Wei Qiang; Liu, Gang

    2017-01-01

    Understanding the relationship between material cycles and economic growth is essential for relieving environmental pressures associated with material extraction, production, and consumption. We developed an integrated analytical framework of dematerialization analysis incorporating both material...... flow and stock indicators. A four-quadrant diagram is designed to classify different stages of dematerialization based on the elasticity of material flow/stock to economic output or well-being. We then conducted a case study on the long-term evolution of aluminum cycle in the U.S., and found...... and secondary material recycling, take effect at different stages of economic development. Comprehensive understanding of dematerialization depends on in-depth analysis on material-economy relationships from an integrated stock and flow perspective....

  20. The technical and industrial evolutions in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.P.; Guais, J.C.

    1989-01-01

    The fuel cycle industry is a vital part of nuclear energy generation. Producers in every step of this industry, from uranium to reprocessing are working to adapt their products and services both to the more and more competitive conditions of the market and to the utilities evoluting specific needs. For the next decade, the main trend is uranium economy and reduction of industrial costs. For the longer term, the difficult prevision of nuclear energy developments, in particular with new types of reactors necessitates a true capacity of adaptation both from the utilities and from the fuel cycle industry. Cogema has already demonstrated the ability to adapt its industrial capabilities and therefore can prepare confidently for the future challenges [fr

  1. Evolution of a Network of Vortex Loops in He-II: Exact Solution of the Rate Equation

    International Nuclear Information System (INIS)

    Nemirovskii, Sergey K.

    2006-01-01

    The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the ''rate equation'' for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact powerlike solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l)∝l -5/2 obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection

  2. Evolution of a network of vortex loops in He-II: exact solution of the rate equation.

    Science.gov (United States)

    Nemirovskii, Sergey K

    2006-01-13

    The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the "rate equation" for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact power-like solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l) proportional l(-5/2) obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection.

  3. On the connection between the macroscopical and microscopical evolution in an exactly soluble hopping model. II. Charged particles

    International Nuclear Information System (INIS)

    Banyai, L.; Gartner, P.

    1979-07-01

    The hopping rate equation for charged particles with self-consistent Coulomb interaction on an arbitrary periodic lattice can be solved exactly. It is shown that if one scales the time t and the distances x (including the characteristic length l as t → lambda 2 t, x → lambda x), then in the lambda → infinity limit the charge density and the potential tend to their macroscopical electrodynamic counterparts faster than lambda sup(-3) and lambda sup(-1) respectively. (author)

  4. Stress evolution and fault stability during the Weichselian glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph (Dept. of Earth Sciences, Uppsala Univ., Uppsala (Sweden))

    2009-10-15

    In this report we examine how the waxing and waning of an ice sheet during a glacial cycle affects the state of stress in the Earth, and how those changes in stress influence the stability of faults. We focus on the stresses at repository depth in Forsmark and Oskarshamn, and on the stability field at seismogenic depth at the proposed repository sites and at the Paervie endglacial fault in northern Sweden. This study is a modelling study, where we use 3-dimensional ice and earth models to calculate the glacial isostatic adjustment (GIA), i.e. the response of the Earth to an ice load, examining both displacements and stresses. We use a flat-earth finite element approach, based on Wu with some modifications. The result presented here is a continuation of previous studies in 2 dimensions and complement those studies in assessing how the 3-dimensionality of the problem affects the conclusions. We use the Fennoscandian ice model of Naeslund, which is a dynamic ice sheet model based on climate reconstructions with constraints from geological observations. The ice model spans the entire Weichselian glaciation but we only use the last 68 kyr, which includes the 2 major periods of ice cover as depicted in this ice sheet reconstruction. For the GIA calculation we use a number of different earth models, both with flat horizontal layers and with various 3D structures of lithosphere thickness. We don't include lateral variations in the viscosity of the mantle. Comparing the current day rebound velocities predicted by our models with GPS observations from the BIFROST project, we note that in general, we can obtain a reasonable fit to the observations with our models, and that the results are rather sensitive to the assumed viscosity of the mantle. We find that the differences between data and model results, for all earth models, have common features which we interpret as due to the ice model. These observations are in agreement with numerous other GIA studies. Our flat

  5. Stress evolution and fault stability during the Weichselian glacial cycle

    International Nuclear Information System (INIS)

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph

    2009-01-01

    In this report we examine how the waxing and waning of an ice sheet during a glacial cycle affects the state of stress in the Earth, and how those changes in stress influence the stability of faults. We focus on the stresses at repository depth in Forsmark and Oskarshamn, and on the stability field at seismogenic depth at the proposed repository sites and at the Paervie endglacial fault in northern Sweden. This study is a modelling study, where we use three-dimensional ice and earth models to calculate the glacial isostatic adjustment (GIA), i.e. the response of the Earth to an ice load, examining both displacements and stresses. We use a flat-earth finite element approach, based on Wu with some modifications. The result presented here is a continuation of previous studies in two dimensions and complement those studies in assessing how the three-dimensionality of the problem affects the conclusions. We use the Fennoscandian ice model of Naeslund, which is a dynamic ice sheet model based on climate reconstructions with constraints from geological observations. The ice model spans the entire Weichselian glaciation but we only use the last 68 kyr, which includes the two major periods of ice cover as depicted in this ice sheet reconstruction. For the GIA calculation we use a number of different earth models, both with flat horizontal layers and with various 3D structures of lithosphere thickness. We do not include lateral variations in the viscosity of the mantle. Comparing the current day rebound velocities predicted by our models with GPS observations from the BIFROST project, we note that in general, we can obtain a reasonable fit to the observations with our models, and that the results are rather sensitive to the assumed viscosity of the mantle. We also find that the differences between data and model results, for all earth models, have common features which we interpret as due to the ice model. These observations are in agreement with numerous other GIA studies

  6. A new type of exact arbitrarily inhomogeneous cosmology: evolution of deceleration in the flat homogeneous-on-average case

    Energy Technology Data Exchange (ETDEWEB)

    Hellaby, Charles, E-mail: Charles.Hellaby@uct.ac.za [Dept. of Maths. and Applied Maths, University of Cape Town, Rondebosch, 7701 (South Africa)

    2012-01-01

    A new method for constructing exact inhomogeneous universes is presented, that allows variation in 3 dimensions. The resulting spacetime may be statistically uniform on average, or have random, non-repeating variation. The construction utilises the Darmois junction conditions to join many different component spacetime regions. In the initial simple example given, the component parts are spatially flat and uniform, but much more general combinations should be possible. Further inhomogeneity may be added via swiss cheese vacuoles and inhomogeneous metrics. This model is used to explore the proposal, that observers are located in bound, non-expanding regions, while the universe is actually in the process of becoming void dominated, and thus its average expansion rate is increasing. The model confirms qualitatively that the faster expanding components come to dominate the average, and that inhomogeneity results in average parameters which evolve differently from those of any one component, but more realistic modelling of the effect will need this construction to be generalised.

  7. Evolution of high duty cycle echolocation in bats

    DEFF Research Database (Denmark)

    Fenton, M. B.; Faure, P. A.; Ratcliffe, J. M.

    2012-01-01

    Duty cycle describes the relative 'on time' of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track...... relative to background objects and their prey. HDC echolocators are particularly sensitive to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls produced at high duty cycle, and combined with neurobiological specializations for processing....... In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements...

  8. The evolution and future of Earth's nitrogen cycle.

    Science.gov (United States)

    Canfield, Donald E; Glazer, Alexander N; Falkowski, Paul G

    2010-10-08

    Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by ~2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however, the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N(2)O). Microbial processes will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated.

  9. The Evolution and Future of Earth's Nitrogen Cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Glazer, Alexander N.; Falkowski, Paul G.

    2010-01-01

    , the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N2O). Microbial processes......Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by similar to 2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however...... will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated....

  10. Exact milestoning

    International Nuclear Information System (INIS)

    Bello-Rivas, Juan M.; Elber, Ron

    2015-01-01

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied

  11. Predicting the evolution of social networks with life cycle events

    NARCIS (Netherlands)

    Sharmeen, F.; Arentze, T.A.; Timmermans, H.J.P.

    2015-01-01

    This paper presents a model of social network evolution, to predict and simulate changes in social networks induced by lifecycle events. We argue that social networks change with lifecycle events, and we extend a model of friendship selection to incorporate these dynamics of personal social

  12. Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles.

    Science.gov (United States)

    Massol, François; Débarre, Florence

    2015-07-01

    Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  13. The evolution of the fuel cycle in the Dukovany NPP

    Energy Technology Data Exchange (ETDEWEB)

    Bajgl, J [Jaderna Elektrarna, Dukovany (Czech Republic)

    1994-12-31

    The ten-year operational experience of four WWER-440 units in Dukovany NPP with a total number of 35 cycles is outlined. The strategy of fuel reloading has been changed from out-in schemes to low-leakage patterns. The linear pin power limitation will be introduced. The main physical limits and conditions for the NPP operation are listed. The main goal is to go to a full 4-year fuel cycle in which the burnup will be about 40 Mwd/kg U. 6 tabs.

  14. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... for assembling the same molecular machines just in time for action....

  15. Natural selection drives the evolution of ant life cycles.

    Science.gov (United States)

    Wilson, Edward O; Nowak, Martin A

    2014-09-02

    The genetic origin of advanced social organization has long been one of the outstanding problems of evolutionary biology. Here we present an analysis of the major steps in ant evolution, based for the first time, to our knowledge, on combined recent advances in paleontology, phylogeny, and the study of contemporary life histories. We provide evidence of the causal forces of natural selection shaping several key phenomena: (i) the relative lateness and rarity in geological time of the emergence of eusociality in ants and other animal phylads; (ii) the prevalence of monogamy at the time of evolutionary origin; and (iii) the female-biased sex allocation observed in many ant species. We argue that a clear understanding of the evolution of social insects can emerge if, in addition to relatedness-based arguments, we take into account key factors of natural history and study how natural selection acts on alleles that modify social behavior.

  16. Classifying stages of cirrus life-cycle evolution

    Science.gov (United States)

    Urbanek, Benedikt; Groß, Silke; Schäfler, Andreas; Wirth, Martin

    2018-04-01

    Airborne lidar backscatter data is used to determine in- and out-of-cloud regions. Lidar measurements of water vapor together with model temperature fields are used to calculate relative humidity over ice (RHi). Based on temperature and RHi we identify different stages of cirrus evolution: homogeneous and heterogeneous freezing, depositional growth, ice sublimation and sedimentation. We will present our classification scheme and first applications on mid-latitude cirrus clouds.

  17. Exact work

    International Nuclear Information System (INIS)

    Zeger, J.

    1993-01-01

    Organized criminals also tried to illegally transfer nuclear material through Austria. Two important questions have to be answered after the material is sized by police authorities: What is the composition of the material and where does it come from? By application of a broad range of analytical techniques, which were developed or refined by our experts, it is possible to measure the exact amount and isotopic composition of uranium and plutonium in any kind of samples. The criminalistic application is only a byproduct of the large scale work on controlling the peaceful application of nuclear energy, which is done in contract with the IAEA in the context of the 'Network of Analytical Laboratories'

  18. The precambrian crustal evolution and mineralization cycle of uranium in the northeast of norern China platform

    International Nuclear Information System (INIS)

    Guo Zhitian.

    1986-01-01

    According to the evolution history of the crust the region is divided into three Precambrian structural structural units: (1) Archaean craton; (2) Early Proterozoic zone of fold; (3) Middle-late Proterozoic depression zone. The Archaean-craton mainly consists of granite complex and metasediments. They form the first generation of uranium sources. Proterozoic is characterized by the obvious cycle of sedimentation which consists of the second generation of uranium source. There were multiplestage and congenetic nature in the formation of uranium deposit. The mineralization of uranium coincides with geotectonicdeveloping stage -- igneous activity -- metamorphism in their time. The formation of uranium deposits generally underwent the weathering and erosion of original uraniferous bodies-the migration, redeposition and reformed concentration by metamorphism and metamorphosed hydrothermal solution, and the mineralization was not only of intermittence, but also of inheritance. The evolutional process of forming uranium deposits undergoing various geological function of a structural cycle in the uranium geochemical anomalous area is called uranium mineralizational cycle. The Northeast of Northern China Platform had undergone multiple times structural movements causing migration and concentration of uranium and having mutiple cycle mineralizational character. Corresponding to the three main developing stages of the crustal evolution the Precambrian uranium mineralization in the Northeast of northern China platform area may be divided into three cycles: Late Archaeozoic mineralizational cycle, Early Proterozoic mineralizational cycle, and Middle Proterozoic mineralizational cycle. It is possible to search for potential uranium metallogenetic provinces to study the crustal evolution and the multiple cycle characters of uranium minerogenetic process in the Northern China platform

  19. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    Science.gov (United States)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  20. Microstructure evolution during high cycle fatigue in Mg–6Zn–1Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Daliang [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Zhang, Dingfei, E-mail: zhangdingfei@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Luo, Yuanxin [College of Mechanical Engineering, Chongqing University, Chongqing 400030 (China); Sun, Jing; Xu, Junyao [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China)

    2016-03-21

    Microstructure evolution during high cycle fatigue in extruded Mg–6Zn–1Mn alloy was investigated by servo-hydraulic fatigue testing machine with pull–push sinusoidal loading. The results show that in high stress cycles (cyclic stress≥129 MPa) high cycle fatigue tests promote deformation; however, in low stress cycles (cyclic stress≤125 MPa) high cycle fatigue tests make a contribution to room temperature recrystallization in Mg–6Zn–1Mn alloy. The grain refinement increased with increasing cycles. Electron Back-Scattered Diffraction (EBSD) analyses showed that dynamic recrystallization (DRX) has occurred in post-fatigued alloys, accompanied by the presence of a high number density of low-angle grain boundaries (LAGBs). LAGBs generated in the vicinity of initiation grain boundaries and subdivided coarse grains. In the specimens that subjected to higher cycles, the fraction of LAGBs decreased and high-angle grain boundaries (HAGBs) gradually increased. With the cyclic number increasing the texture intensity was significantly weakened. The DRX in post-fatigued specimens was related to Continuous DRX (CDRX) mechanism.

  1. The importance of snow albedo for ice sheet evolution over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Willeit

    2018-05-01

    Full Text Available The surface energy and mass balance of ice sheets strongly depends on the amount of solar radiation absorbed at the surface, which is mainly controlled by the albedo of snow and ice. Here, using an Earth system model of intermediate complexity, we explore the role played by surface albedo for the simulation of glacial cycles. We show that the evolution of the Northern Hemisphere ice sheets over the last glacial cycle is very sensitive to the representation of snow albedo in the model. It is well known that the albedo of snow depends strongly on snow grain size and the content of light-absorbing impurities. Excluding either the snow aging effect or the dust darkening effect on snow albedo leads to an excessive ice build-up during glacial times and consequently to a failure in simulating deglaciation. While the effect of snow grain growth on snow albedo is well constrained, the albedo reduction due to the presence of dust in snow is much more uncertain because the light-absorbing properties of dust vary widely as a function of dust mineral composition. We also show that assuming slightly different optical properties of dust leads to very different ice sheet and climate evolutions in the model. Conversely, ice sheet evolution is less sensitive to the choice of ice albedo in the model. We conclude that a proper representation of snow albedo is a fundamental prerequisite for a successful simulation of glacial cycles.

  2. THE EVOLUTION OF THE KREBS CYCLE: A PROMISING THEME FOR MEANINGFUL BIOCHEMISTRY LEARNING IN BIOLOGY

    Directory of Open Access Journals (Sweden)

    C. Costa

    2015-08-01

    Full Text Available INTRODUCTION: Evolution has been recognized as a key concept for biologists. In order to motivate biology undergraduates for contents of central energetic metabolism, we addressed the Krebs cycle structure and functions to an evolutionary view. To this end, we created a study guide which contextualizes the emergence of the cyclic pathway, in light of the prokaryotic influence since early Earth anaerobic condition to oxygen rise in atmosphere. OBJECTIVES: The main goal is to highlight the educational potential of the material whose subject is scarcely covered in biochemistry textbooks. MATERIALS AND METHODS: The study guide is composed by three interrelated sections, the problem (Section 1, designed to arouse curiosity, inform and motivate students; an introductory text (Section 2 about life evolution, including early micro-organisms and Krebs cycle emergence, and questions (Section 3 for debate. The activity consisted on a peer discussion session, with instructors tutoring. The questions were designed to foster exchange of ideas in an ever-increasing level of complexity, and cover subjects from early atmospheric conditions to organization of the metabolism along the subsequent geological ages. RESULTS AND DISCUSSION: We noticed that students were engaged and motivated by the task, especially during group discussion. Based on students’ feedbacks and class observations, we learned that the material raised curiosity and stimulated discussion among peers. It brought a historical and purposeful way of dealing with difficult biochemical concepts. CONCLUSIONS: The whole experience suggests that the study guide was a stimulus for broadening comprehension of the Krebs cycle, reinforcing the evolutionary stance as an important theme for biology and biochemistry understanding. On the other hand, we do not underestimate the fact that approaching Krebs cycle from an evolutionary standpoint is a quite complex discussion for the majority of students

  3. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P., E-mail: pkalisvaart@gmail.com [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Mitlin, David, E-mail: dmitlin@ualberta.ca [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada)

    2011-03-15

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  4. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi; Mitlin, David

    2011-01-01

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  5. The evolution of the Krebs cycle: A promising subject for meaningful learning of biochemistry.

    Science.gov (United States)

    da Costa, Caetano; Galembeck, Eduardo

    2016-05-06

    Evolution has been recognized as a key concept for biologists. To enhance comprehension and motivate biology undergraduates for the contents of central energetic metabolism, we addressed the Krebs cycle structure and functions in an evolutionary view. To this end, we created a study guide that contextualizes the emergence of the cyclic pathway, in light of the prokaryotic influence since the early anaerobic condition of the Earth to increase oxygen in the atmosphere. The study guide is composed of three interrelated sections: (1) a problem, designed to arouse curiosity, inform and motivate students, (2) a text about life evolution, including early microorganisms and the emergence of the Krebs cycle, and (3) questions for debate. The activity consisted on individual reading and peer discussion based on this written material, under the guidance of the instructors. The questions were designed to foster debate in an ever-increasing level of complexity and to strengthen the main contextual aspects leading to emergence, evolving, and permanency of a complex metabolic pathway. Based on classroom observation, analysis of student's written responses, and individual interviews, we noticed they were engaged and motivated by the task, especially during group discussion. The whole experience suggests that the study guide was a stimulus to broaden the comprehension of the Krebs cycle, reinforcing the evolutionary approach as an important subject for learning purposes. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:288-296, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution

    Science.gov (United States)

    Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.

    2017-01-01

    Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959

  7. THREE-DIMENSIONAL EVOLUTION OF SOLAR WIND DURING SOLAR CYCLES 22–24

    International Nuclear Information System (INIS)

    Manoharan, P. K.

    2012-01-01

    This paper presents an analysis of three-dimensional evolution of solar wind density turbulence and speed at various levels of solar activity between solar cycles 22 and 24. The solar wind data used in this study have been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, operating at 327 MHz. Results show that (1) on average, there was a downward trend in density turbulence from the maximum of cycle 22 to the deep minimum phase of cycle 23; (2) the scattering diameter of the corona around the Sun shrunk steadily toward the Sun, starting from 2003 to the smallest size at the deepest minimum, and it corresponded to a reduction of ∼50% in the density turbulence between the maximum and minimum phases of cycle 23; (3) the latitudinal distribution of the solar wind speed was significantly different between the minima of cycles 22 and 23. At the minimum phase of solar cycle 22, when the underlying solar magnetic field was simple and nearly dipole in nature, the high-speed streams were observed from the poles to ∼30° latitudes in both hemispheres. In contrast, in the long-decay phase of cycle 23, the sources of the high-speed wind at both poles, in accordance with the weak polar fields, occupied narrow latitude belts from poles to ∼60° latitudes. Moreover, in agreement with the large amplitude of the heliospheric current sheet, the low-speed wind prevailed in the low- and mid-latitude regions of the heliosphere. (4) At the transition phase between cycles 23 and 24, the high levels of density and density turbulence were observed close to the heliospheric equator and the low-speed solar wind extended from the equatorial-to-mid-latitude regions. The above results in comparison with Ulysses and other in situ measurements suggest that the source of the solar wind has changed globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has been significantly reduced

  8. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii

    Science.gov (United States)

    Ratcliff, William C.; Herron, Matthew D.; Howell, Kathryn; Pentz, Jennifer T.; Rosenzweig, Frank; Travisano, Michael

    2013-01-01

    The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. PMID:24193369

  9. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  10. On exactly soluble model in quantum electrodynamics

    International Nuclear Information System (INIS)

    Bogolubov, N.N.; Shumovsky, A.S.; Fam Le Kien

    1984-01-01

    Equations of motion describing the dynamics of three-level atom of ladder type interacting with two modes of quantized radiation field are solved exactly. Evolution of level population and photon rumbers under different unitial conditions is irvestigated

  11. Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle

    Directory of Open Access Journals (Sweden)

    S. Bonelli

    2009-07-01

    Full Text Available A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets.
    A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.

  12. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Nicola Vitulo

    2007-01-01

    Full Text Available The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confi rming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals fi ve distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.

  13. Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Willeit

    2015-09-01

    Full Text Available Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH permafrost–ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200–500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  14. Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle

    Science.gov (United States)

    Willeit, M.; Ganopolski, A.

    2015-09-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  15. Quasi-exact solvability

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1992-01-01

    This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite

  16. State-of-the-Art: Evolution of Software Life Cycle Process for NPPs

    International Nuclear Information System (INIS)

    Suh, Yong Suk; Park, Heui Youn; Son, Ki Sung; Lee, Ki Hyun; Kim, Hyeon Soo

    2007-01-01

    This paper is to investigate the evolution of software life cycle process (SLCP) for nuclear power plants (NPPs) based on IEEE Std 7-4.3.2 which has been updated twice (namely 1993 and 2003 ) since it was published in 1982 and relevant software certifications. IEEE Std 7-4.3.2 specifies additional computer specific requirements to supplement the criteria and requirements of IEEE Std 603. It also specifies the software quality requirements as follows: computer software shall be developed, modified, or accepted in accordance with an approved software quality assurance (QA) plan. IEEE Std 7-4.3.2-1982 specifies a minimum software development process as follows: plan, design and implementation. ANSI/ASME NQA-1-1979 is not directly related to software development process but to overall quality assurance criteria. IEEE Std 7-4.3.2-1993 addresses ASME NQA-2a-1990 Part 2.7 for software development requirements. ASME NQA-2a-1990 Part 2.7 which was interpreted into KEPIC QAP-2 II.7, specifies software development process in more detail as follows: requirements, design, implementation, test, installation and checkout, operation and maintenance, and retirement. Along with this, software QA plan is emphasized in IEEE Std 730-1989. In IEEE Std 7-4.3.2-2003, IEEE/EIA Std 12207.0-1996 replaces the ASME NQA as a requirement for software development. The evolution of SLCP from ASME NQA to IEEE/EIA Std 12207.0 is discussed in Section 2 of this paper. The publication of IEEE/EIA Std 12207.0 is motivated from industrial experiences and practices to promote the quality of software. In Section 3, three international software certifications relating to the IEEE/EIA Std 12207.0 are introduced

  17. [Prediction method of rural landscape pattern evolution based on life cycle: a case study of Jinjing Town, Hunan Province, China].

    Science.gov (United States)

    Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing

    2014-11-01

    Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.

  18. Precipitate evolution in underaged Al-Mg-Si alloy during thermal cycling between 25 deg. C and 65 deg. C

    International Nuclear Information System (INIS)

    Uan, J.-Y.; Cho, C.-Y.; Chen, Z.-M.; Lin, J.-K.

    2006-01-01

    The evolution of metastable precipitates and the aging response in underaged Al-Mg-Si alloy during environmental temperature cycling was investigated using transmission electron microscopy (TEM) and hardness tests. After the alloy underwent thermal cycling between 25 deg. C and 65 deg. C, the hardness tests revealed that hardness decreased slightly, rather than following a concave downward curve, with the cycle times. Needle-shaped G.P. zones transformed during the environmental thermal cycling. The fraction of the zones declined sharply from almost 100% to only approximately 10% after 90 cycles, accompanied by an increase in the fraction of lath-shaped precipitates and the formation of β'' precipitates in the matrix. The precipitate developed with the 25-65 deg. C cycling time as follows: needle-shaped G.P. zones → lath-shaped ppt + β'' ppt + needle-shaped G.P. zones → lath-shaped ppt + β'' ppt + rod-shaped ppt + needle-shaped G.P. zones. Therefore, three or four precipitates coexisted in the underaged alloy following prolonged cycling. The formation of a limited number of β'' precipitates and the presence of a rod-shaped phase in the alloy during environmental temperature cycling reduced the hardness as the cycle time increases

  19. Uranium cycle and tectono-metamorphic evolution of the Lufilian Pan-African orogenic belt (Zambia)

    International Nuclear Information System (INIS)

    Eglinger, Aurelien

    2013-01-01

    Uranium is an incompatible and lithophile element, and thus more concentrated in silicate melt produced by the partial melting of the mantle related to continental crust formation. Uranium can be used as a geochemical tracer to discuss the generation and the evolution of continental crust. This thesis, focused on the Pan-African Lufilian belt in Zambia, combines structural geology, metamorphic petrology and thermos-barometry, fluid inclusions, geochemistry and geochronology in order to characterize the uranium cycle for this crustal segment. Silici-clastic and evaporitic sediments have been deposited within an intra-continental rift during the dislocation of the Rodinia super-continent during the early Neo-proterozoic. U-Pb ages on detrital zircon grains in these units indicate a dominant Paleo-proterozoic provenance. The same zircon grains show sub-chondritic εHf (between 0 and -15) and yield Hf model ages between ∼2.9 and 2.5 Ga. These data suggest that the continental crust was generated before the end of the Archean (< 2.5 Ga) associated with uranium extraction from the mantle. This old crust has been reworked by deformation and metamorphism during the Proterozoic. Uranium has been re-mobilized and reconcentrated during several orogenic cycles until the Pan-African orogeny. During this Pan-African cycle, U-Pb and REY (REE and Yttrium) signatures of uranium oxides indicate a first mineralizing event at ca. 650 Ma during the continental rifting. This event is related to late diagenesis hydrothermal processes at the basement/cover interface with the circulation of basinal brines linked to evaporites of the Roan. The second stage, dated at 530 Ma, is connected to metamorphic highly saline fluid circulations, synchronous to the metamorphic peak of the Lufilian orogeny (P=9±3 kbar; T=610±30 deg. C). These fluids are derived from the Roan evaporite dissolution. Some late uranium re-mobilizations are described during exhumation of metamorphic rocks and their

  20. The thermodynamic evolution of the hurricane boundary layer during eyewall replacement cycles

    Science.gov (United States)

    Williams, Gabriel J.

    2017-12-01

    Eyewall replacement cycles (ERCs) are frequently observed during the lifecycle of mature tropical cyclones. Although the kinematic structure and intensity changes during an ERC have been well-documented, comparatively little research has been done to examine the evolution of the tropical cyclone boundary layer (TCBL) during an ERC. This study will examine how the inner core thermal structure of the TCBL is affected by the presence of multiple concentric eyewalls using a high-resolution moist, hydrostatic, multilayer diagnostic boundary layer model. Within the concentric eyewalls above the cloud base, latent heat release and vertical advection (due to the eyewall updrafts) dominate the heat and moisture budgets, whereas vertical advection (due to subsidence) and vertical diffusion dominate the heat and moisture budgets for the moat region. Furthermore, it is shown that the development of a moat region within the TCBL depends sensitively on the moat width in the overlying atmosphere and the relative strength of the gradient wind field in the overlying atmosphere. These results further indicate that the TCBL contributes to outer eyewall formation through a positive feedback process between the vorticity in the nascent outer eyewall, boundary layer convergence, and boundary layer moist convection.

  1. Energy Evolution Mechanism and Confining Pressure Effect of Granite under Triaxial Loading-Unloading Cycles

    Science.gov (United States)

    Wang, Hao; Miao, Sheng-jun

    2018-05-01

    Rock mass undergoes some deformational failure under the action of external loads, a process known to be associated with energy dissipation and release. A triaxial loading-unloading cycle test was conducted on granite in order to investigate the energy evolution pattern of rock mass under the action of external loads. The study results demonstrated: (1) The stress peaks increased by 50% and 22% respectively and the pre-peak weakening became more apparent in the ascending process of the confining pressure from 10MPa to 30MPa; the area enclosed by the hysteresis loop corresponding to 30MPa diminished by nearly 60% than that corresponding to 10MPa, indicating a higher confining pressure prohibits rock mass from plastic deformation and shifts strain toward elastic deformation. (2) In the vicinity of the strength limit, the slope of dissipation energy increased to 1.6 from the original 0.7 and the dissipation energy grew at an accelerating rate, demonstrating stronger propagation and convergence of internal cracks. (3) At a pressure of 70% of the stress peak, the elastic energy of the granite accounted for 88% of its peak value, suggesting the rock mechanical energy from the outside mostly changes into the elastic energy inside the rock, with little energy loss.(4) Prior to test specimen failure, the axial bearing capacity dropped with a decreasing confining pressure in an essentially linear way, and the existence of confirming pressure played a role in stabilizing the axial bearing capacity.

  2. Microstructure and kinetics evolution in MgH2–TiO2 pellets after hydrogen cycling

    International Nuclear Information System (INIS)

    Mirabile Gattia, D.; Di Girolamo, G.; Montone, A.

    2014-01-01

    Highlights: • MgH 2 was ball milled with TiO 2 anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH 2 powder with 5 wt.% TiO 2 was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H 2 absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction

  3. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  4. Remote Sensing of Clouds And Precipitation: Event-Based Characterization, Life Cycle Evolution, and Aerosol Influences

    Science.gov (United States)

    Esmaili, Rebekah Bradley

    Global climate models, numerical weather prediction, and flood models rely on accurate satellite precipitation products, which are the only datasets that are continuous in time and space across the globe. While there are more earth observing satellites than ever before, gaps in precipitation retrievals exist due to sensor and orbital limitations of low-earth (LEO) satellites, which are overcome by merging data from different sensors in satellite precipitation products (SPPs). Using cloud tracking at higher resolutions than the spatio-temporal scales of LEO satellites, this thesis examines how clouds typically form in the atmosphere, the rate that cloud size and temperature evolve over the life cycle, and the time of day that cloud development take place. This thesis found that cloud evolution was non-linear, which disagrees with the linear interpolation schemes used in SPPs. Longer lasting clouds tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lasting clouds. Over the ocean, longer lasting clouds were found to occur more frequently at night, while shorter lasting clouds were more common during the daytime. This thesis also examines whether large-scale Saharan dust outbreaks can impact the trajectories and intensity of cloud clusters in the tropical Atlantic, which is predicted by modeling studies. The presented results show that proximity to Saharan dust outbreaks shifts Atlantic cloud development northward and intense storms becoming more common, whereas on days with low dust loading small-scale, warmer clouds are more common. A simplified view of cloud evolution in merged rainfall retrievals is a possible source of errors, which can propagate into higher level analysis. This thesis investigates the difference in the intensity, duration, and frequency of precipitation in IMERG, a next-generation satellite precipitation product with ground radar observations over the

  5. Stepwise evolution of fuel assembly design toward a sustainable fuel cycle with hard neutron spectrum light water reactors

    International Nuclear Information System (INIS)

    Uchikawa, Sadao; Okubo, Tsutomu; Nakano, Yoshihiro

    2011-01-01

    An advanced LWR with hard neutron spectrum, FLWR, aims at efficient and flexible utilization of nuclear resources by evolving its fuel assembly design keeping the same core configuration. A proposed evolution process of the design toward a sustainable fuel cycle is composed of three stages, the first one based on the LWR fuel cycle infrastructures, the second one for transitioning from the LWR fuel cycle to the FR fuel cycle, and the third one based on the FR fuel cycle infrastructures. For the first stage, a fuel assembly design concept named FLWR/MIX has been developed in which enriched UO 2 fuel rods are arranged in the peripheral region of the assembly, surrounding the MOX fuel rods in the central region. The FLWR/MIX design realizes a breeder type operation under the framework of the LWR-MOX technologies and there experience. A modified FLWR/MIX design with low Pu inventory for the second stage has a potential of high Puf conversion ratio of 1.1 and can contribute to smooth and speedy transition from the LWR fuel cycle to the FR fuel cycle. For the third stage, the FLWR/MIX design is extended into a design with natural UO 2 fuel rods to realize multiple Pu recycling keeping a Puf conversion ratio of around 1.0. (author)

  6. Effects of gamma radiation on phases of evolutional cycle of Corcyra cephalonica (Stainton, 1865) (Lepidoptera pyralidae) in artificial diet

    International Nuclear Information System (INIS)

    Aguilar, J.A.D.

    1991-04-01

    The effects of the increase in the gamma radiation ( 60 Co) doses on different phases of the evolutional cycle of Corcyra cephalonica (Stainton, 1865) (Lepidoptera Pyraliade) are studied. A cobalt 60 source type gamma beam 650 was used and the activity was of approximately 2.91 x 10 14 Bq. The experiments were conducted under controlled conditions with temperature at 25 ± 2 0 C and relative humidity of 70 ± 10%. (M.A.C.)

  7. A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin.

    Science.gov (United States)

    Wagner, Andreas

    2014-07-07

    Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. New exact solutions of the mBBM equation

    International Nuclear Information System (INIS)

    Zhang Zhe; Li Desheng

    2013-01-01

    The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin-Bona-Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations. (authors)

  9. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts

  10. Microstructure and kinetics evolution in MgH{sub 2}–TiO{sub 2} pellets after hydrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mirabile Gattia, D., E-mail: daniele.mirabile@enea.it; Di Girolamo, G.; Montone, A.

    2014-12-05

    Highlights: • MgH{sub 2} was ball milled with TiO{sub 2} anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH{sub 2} powder with 5 wt.% TiO{sub 2} was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H{sub 2} absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction.

  11. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    Science.gov (United States)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often

  12. The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances

    Science.gov (United States)

    Stüeken, E. E.; Buick, R.; Bekker, A.; Catling, D.; Foriel, J.; Guy, B. M.; Kah, L. C.; Machel, H. G.; Montañez, I. P.; Poulton, S. W.

    2015-08-01

    The Earth's surface has undergone major transitions in its redox state over the past three billion years, which have affected the mobility and distribution of many elements. Here we use Se isotopic and abundance measurements of marine and non-marine mudrocks to reconstruct the evolution of the biogeochemical Se cycle from ∼3.2 Gyr onwards. The six stable isotopes of Se are predominantly fractionated during redox reactions under suboxic conditions, which makes Se a potentially valuable new tool for identifying intermediate stages from an anoxic to a fully oxygenated world. δ82/78Se shows small fractionations of mostly less than 2‰ throughout Earth's history and all are mass-dependent within error. In the Archean, especially after 2.7 Gyr, we find an isotopic enrichment in marine (+0.37 ± 0.27‰) relative to non-marine samples (-0.28 ± 0.67‰), paired with increasing Se abundances. Student t-tests show that these trends are statistically significant. Although we cannot completely rule out the possibility of volcanic Se addition, these trends may indicate the onset of oxidative weathering on land, followed by non-quantitative reduction of Se oxyanions during fluvial transport. The Paleoproterozoic Great Oxidation Event (GOE) is not reflected in the marine δ82/78Se record. However, we find a major inflection in the secular δ82/78Se trend during the Neoproterozoic, from a Precambrian mean of +0.42 ± 0.45‰ to a Phanerozoic mean of -0.19 ± 0.59‰. This drop probably reflects the oxygenation of the deep ocean at this time, stabilizing Se oxyanions throughout the water column. Since then, reduction of Se oxyanions has likely been restricted to anoxic basins and diagenetic environments in sediments. In light of recent Cr isotope data, it is likely that oxidative weathering before the Neoproterozoic produced Se oxyanions in the intermediate redox state SeIV, whereas the fully oxidized species SeVI became more abundant after the Neoproterozoic rise of

  13. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics.

    Science.gov (United States)

    Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu

    2017-12-21

    Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance

  14. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2013-01-01

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent......, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through...... reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly...

  15. Surveillance of evolution of defects in stainless steel piping subject to fatigue cycles in temperature

    International Nuclear Information System (INIS)

    Marini, J.

    1976-01-01

    The surveillance of internal crack growth in austenitic ICL 167 CN steel is possible by using ultrasonic techniques. The fracture mechanics allows to predict the evolution of these cracks under fatigue loading [fr

  16. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    Science.gov (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  17. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria.

    Science.gov (United States)

    Kwong, Waldan K; Zheng, Hao; Moran, Nancy A

    2017-04-28

    The tricarboxylic acid (TCA) cycle is central to energy production and biosynthetic precursor synthesis in aerobic organisms. There are few known variations of a complete TCA cycle, with the common notion being that the enzymes involved have already evolved towards optimal performance. Here, we present evidence that an alternative TCA cycle, in which acetate:succinate CoA-transferase (ASCT) replaces the enzymatic step typically performed by succinyl-CoA synthetase (SCS), has arisen in diverse bacterial groups, including microbial symbionts of animals such as humans and insects.

  18. The evolution of the Gutenberg-Richter, b-value, throughout periodic and aperiodic stick-slip cycles

    Science.gov (United States)

    Bolton, D. C.; Riviere, J.; Marone, C.; Johnson, P. A.

    2017-12-01

    The Gutenberg-Richter earthquake size statistic, b value, is a useful proxy for documenting the state of stress on a fault and understanding precursory phenomena preceding dynamic failure. It has been shown that the b value varies systematically as a function of position within the seismic cycle. Frictional studies on intact rock samples with saw-cut faults have shown that b value decreases continuously preceding failure. For intact rock samples, the spatiotemporal changes in b value are thought to be related to the evolution of asperities and micro-cracks. However, few studies have shown how b value evolves spatially and temporally for fault zones containing gouge and wear materials. We hypothesize that the micromechanical mechanisms acting within fault gouge, such as creation and destruction of force chains, grain rolling, sliding, jamming and fracturing play an important role in the evolution of b value and that they may have distinct signatures during periodic and aperiodic cycles of stick-slip frictional motion. We report results from experiments conducted on simulated fault gouge using a biaxial deformation apparatus in a double-direct shear configuration. Acoustic emissions (AEs) are recorded at 4 MHz from 36 P-polarized piezoelectric transducers, which are embedded in steel blocks located adjacent to the fault zone. We compute the frequency-magnitude distribution of detected AEs using a moving window in events where each window is overlapped by 75%. We report on the evolution of b value as a function of normal stress and gouge layer thickness. For periodic slip events, b value reaches a maximum value immediately after a slip event and decreases continuously until the next failure. Aperiodic slip events show similar trends in b-value initially, however unlike periodic slip events, b value reaches a steady state value before failure occurs. In addition, for periodic slip events the magnitude of the change in b value scales inversely with gouge layer thickness

  19. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  20. Evolution of cell resistance, threshold voltage and crystallization temperature during cycling of line-cell phase-change random access memory

    NARCIS (Netherlands)

    Oosthoek, J. L. M.; Attenborough, K.; Hurkx, G. A. M.; Jedema, F. J.; Gravesteijn, D. J.; Kooi, B. J.

    2011-01-01

    Doped SbTe phase change (PRAM) line cells produced by e-beam lithography were cycled 100 million times. During cell cycling the evolution of many cell properties were monitored, in particular the crystalline and amorphous resistance, amorphous resistance drift exponent, time-dependent threshold

  1. Evolution of morphology, ontogeny and life cycles within the Crustacea Thecostraca

    DEFF Research Database (Denmark)

    Høeg, Jens Thorvald; Perez-Losada, M; Glenner, H

    2009-01-01

    metamorphosis and endoparasitism known from the Rhizocephala and strongly indicated for the Facetotecta are the result of convergent evolution. We also discuss reproductive systems, which range from separate sexes, over hermaphrodites combined with a separate male sex (androdioecy), to pure hermaphroditism...

  2. Tracking the evolution of the disaster management cycle: A general system theory approach

    Directory of Open Access Journals (Sweden)

    Christo Coetzee

    2012-12-01

    Full Text Available Officials and scholars have used the disaster management cycle for the past 30 years to explain and manage impacts. Although very little understanding and agreement exist in terms of where the concept originated it is the purpose of this article to address the origins of the disaster management cycle. To achieve this, general system theory concepts of isomorphisms, equifinality, open systems and feedback arrangements were applied to linear disaster phase research (which emerged in the 1920s and disaster management cycles. This was done in order to determine whether they are related concepts with procedures such as emergency, relief, recovery and rehabilitation.

  3. The evolution of Candu fuel cycles and their potential contribution to world peace

    International Nuclear Information System (INIS)

    Whitlock, J.

    2001-01-01

    The Candu(r) reactor is the most versatile commercial power reactor in the world. It has the potential to extend resource utilization significantly, to allow countries with developing industrial infrastructures access to clean and abundant energy, and to destroy long-lived nuclear waste or surplus weapons plutonium. These benefits are available by choosing from an array of possible fuel cycles. Several factors, including Canada's early focus on heavy-water technology, limited heavy-industry infrastructure at the time, and a desire for both technological autonomy and energy self-sufficiency, contributed to the creation of the first Candu reactor in 1962. With the maturation of the CANDU industry, the unique design features of the now-familiar product - on-power refuelling, high neutron economy, and simple fuel design - make possible the realization of its potential fuel-cycle versatility. Several fuel-cycle options currently under development are described. (authors)

  4. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  5. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  6. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  7. Model of the Evolution of Deformation Defects and Irreversible Strain at Thermal Cycling of Stressed TiNi Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr E.

    2015-01-01

    Full Text Available This microstructural model deals with simulation both of the reversible and irreversible deformation of a shape memory alloy (SMA. The martensitic transformation and the irreversible deformation due to the plastic accommodation of martensite are considered on the microscopic level. The irreversible deformation is described from the standpoint of the plastic flow theory. Isotropic hardening and kinematic hardening are taken into account and are related to the densities of scattered and oriented deformation defects. It is supposed that the phase transformation and the micro plastic deformation are caused by the generalized thermodynamic forces, which are the derivatives of the Gibbs’ potential of the two-phase body. In terms of these forces conditions for the phase transformation and for the micro plastic deformation on the micro level are formulated. The macro deformation of the representative volume of the polycrystal is calculated by averaging of the micro strains related to the evolution of the martensite Bain’s variants in each grain comprising this volume. The proposed model allowed simulating the evolution of the reversible and of the irreversible strains of a stressed SMA specimen under thermal cycles. The results show a good qualitative agreement with available experimental data. Specifically, it is shown that the model can describe a rather big irreversible strain in the first thermocycle and its fast decrease with the number of cycles.

  8. Bond Coat Engineering Influence on the Evolution of the Microstructure, Bond Strength, and Failure of TBCs Subjected to Thermal Cycling

    Science.gov (United States)

    Lima, R. S.; Nagy, D.; Marple, B. R.

    2015-01-01

    Different types of thermal spray systems, including HVOF (JP5000 and DJ2600-hybrid), APS (F4-MB and Axial III), and LPPS (Oerlikon Metco system) were employed to spray CoNiCrAlY bond coats (BCs) onto Inconel 625 substrates. The chemical composition of the BC powder was the same in all cases; however, the particle size distribution of the powder employed with each torch was that specifically recommended for the torch. For optimization purposes, these BCs were screened based on initial evaluations of roughness, porosity, residual stress, relative oxidation, and isothermal TGO growth. A single type of standard YSZ top coat was deposited via APS (F4MB) on all the optimized BCs. The TBCs were thermally cycled by employing a furnace cycle test (FCT) (1080 °C-1 h—followed by forced air cooling). Samples were submitted to 10, 100, 400, and 1400 cycles as well as being cycled to failure. The behavior of the microstructures, bond strength values (ASTM 633), and the TGO evolution of these TBCs, were investigated for the as-sprayed and thermally cycled samples. During FCT, the TBCs found to be both the best and poorest performing and had their BCs deposited via HVOF. The results showed that engineering low-oxidized BCs does not necessarily lead to an optimal TBC performance. Moreover, the bond strength values decrease significantly only when the TBC is about to fail (top coat spall off) and the as-sprayed bond strength values cannot be used as an indicator of TBC performance.

  9. Interactions between Genetic and Ecological Effects on the Evolution of Life Cycles.

    Science.gov (United States)

    Rescan, Marie; Lenormand, Thomas; Roze, Denis

    2016-01-01

    Sexual reproduction leads to an alternation between haploid and diploid phases, whose relative length varies widely across taxa. Previous genetical models showed that diploid or haploid life cycles may be favored, depending on dominance interactions and on effective recombination rates. By contrast, niche differentiation between haploids and diploids may favor biphasic life cycles, in which development occurs in both phases. In this article, we explore the interplay between genetical and ecological factors, assuming that deleterious mutations affect the competitivity of individuals within their ecological niche and allowing different effects of mutations in haploids and diploids (including antagonistic selection). We show that selection on a modifier gene affecting the relative length of both phases can be decomposed into a direct selection term favoring the phase with the highest mean fitness (due to either ecological differences or differential effects of mutations) and an indirect selection term favoring the phase in which selection is more efficient. When deleterious alleles occur at many loci and in the presence of ecological differentiation between haploids and diploids, evolutionary branching often occurs and leads to the stable coexistence of alleles coding for haploid and diploid cycles, while temporal variations in niche sizes may stabilize biphasic cycles.

  10. Prepotential approach to exact and quasi-exact solvabilities

    International Nuclear Information System (INIS)

    Ho, C.-L.

    2008-01-01

    Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations

  11. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms

    Czech Academy of Sciences Publication Activity Database

    Allen, A. E.; Dupont, Ch. L.; Oborník, Miroslav; Horák, Aleš; Nunes-Nesi, A.; McCrow, J. P.; Zheng, H.; Johnson, D. A.; Hu, H.; Fernie, A. R.; Bowler, Ch.

    2011-01-01

    Roč. 473, č. 7346 (2011), s. 203-209 ISSN 0028-0836 R&D Projects: GA ČR GA206/08/1423 Institutional research plan: CEZ:AV0Z60220518 Keywords : CARBAMOYL-PHOSPHATE SYNTHETASE * PHAEODACTYLUM-TRICORNUTUM * MAXIMUM-LIKELIHOOD * PHYLOGENETIC RECONSTRUCTION * MOLECULAR EVOLUTION * SEQUENCE ALIGNMENT * DIVERGENCE TIMES * MARINE DIATOMS * MIXED MODELS * TREE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 36.280, year: 2011

  12. Evolution of life cycle, colony morphology, and host specificity in the family Hydractiniidae (Hydrozoa, Cnidaria).

    Science.gov (United States)

    Miglietta, Maria Pia; Cunningham, Clifford W

    2012-12-01

    Biased transitions are common throughout the tree of life. The class hydrozoa is no exception, having lost the feeding medusa stage at least 70 times. The family hydractiniidae includes one lineage with pelagic medusae (Podocoryna) and several without (e.g., Hydractinia). The benthic colony stage also varies widely in host specificity and in colony form. The five-gene phylogeny presented here requires multiple transitions between character states for medusae, host specificity, and colony phenotype. Significant phylogenetic correlations exist between medusoid form, colony morphology, and host specificity. Species with nonfeeding medusae are usually specialized on a single host type, and reticulate colonies are correlated with nonmotile hosts. The history of feeding medusae is less certain. Podocoryna is nested within five lineages lacking medusae. This requires either repeated losses of medusae, or the remarkable re-evolution of a feeding medusa after at least 150 million years. Traditional ancestral reconstruction favors medusa regain, but a likelihood framework testing biased transitions cannot distinguish between multiple losses versus regain. A hypothesis of multiple losses of feeding medusae requires transient selection pressure favoring such a loss. Populations of species with feeding medusae are always locally rare and lack of feeding medusae does not result in restricted species distribution around the world. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  13. Evolution of the global water cycle on Mars: The geological evidence

    Science.gov (United States)

    Baker, V. R.; Gulick, V. C.

    1993-01-01

    The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments?

  14. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates.

    Science.gov (United States)

    Poliakov, Eugenia; Gubin, Alexander N; Stearn, Olivia; Li, Yan; Campos, Maria Mercedes; Gentleman, Susan; Rogozin, Igor B; Redmond, T Michael

    2012-01-01

    In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc

  15. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury.

    Science.gov (United States)

    Canaud, Guillaume; Bonventre, Joseph V

    2015-04-01

    For several decades, acute kidney injury (AKI) was generally considered a reversible process leading to complete kidney recovery if the individual survived the acute illness. Recent evidence from epidemiologic studies and animal models, however, have highlighted that AKI can lead to the development of fibrosis and facilitate the progression of chronic renal failure. When kidney injury is mild and baseline function is normal, the repair process can be adaptive with few long-term consequences. When the injury is more severe, repeated, or to a kidney with underlying disease, the repair can be maladaptive and epithelial cell cycle arrest may play an important role in the development of fibrosis. Indeed, during the maladaptive repair after a renal insult, many tubular cells that are undergoing cell division spend a prolonged period in the G2/M phase of the cell cycle. These tubular cells recruit intracellular pathways leading to the synthesis and the secretion of profibrotic factors, which then act in a paracrine fashion on interstitial pericytes/fibroblasts to accelerate proliferation of these cells and production of interstitial matrix. Thus, the tubule cells assume a senescent secretory phenotype. Characteristic features of these cells may represent new biomarkers of fibrosis progression and the G2/M-arrested cells may represent a new therapeutic target to prevent, delay or arrest progression of chronic kidney disease. Here, we summarize recent advances in our understanding of the biology of the cell cycle and how cell cycle arrest links AKI to chronic kidney disease. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  16. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  17. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  18. Real-time materials evolution visualized within intact cycling alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gallaway, JW; Erdonmez, CK; Zhong, Z; Croft, M; Sviridov, LA; Sholklapper, TZ; Turney, DE; Banerjee, S; Steingart, DA

    2014-01-01

    The scientific community has focused on the problem of inexpensive, safe, and sustainable large-scale electrical energy storage, which is needed for a number of emerging societal reasons such as stabilizing intermittent renewables-based generation like solar and wind power. The materials used for large-scale storage will need to be low cost, earth-abundant, and safe at the desired scale. The Zn-MnO2 "alkaline" battery chemistry is associated with one-time use, despite being rechargeable. This is due to material irreversibilities that can be triggered in either the anode or cathode. However, as Zn and MnO2 have high energy density and low cost, they are economically attractive even at limited depth of discharge. As received, a standard bobbin-type alkaline cell costs roughly $20 per kW h. The U. S. Department of Energy ARPA-E $100 per kW h cost target for grid storage is thus close to the cost of alkaline consumer primary cells if re-engineered and/or cycled at 5-20% nominal capacity. Herein we use a deeply-penetrating in situ technique to observe ZnO precipitation near the separator in an alkaline cell anode cycled at 5% DOD, which is consistent with cell failures observed at high cycle life. Alkaline cells designed to avoid such causes of cell failure could serve as a low-cost baseload for large-scale storage.

  19. Characterization of pollutants cycles evolution in a coastal mediterranean area under summer conditions

    International Nuclear Information System (INIS)

    Plaza, J.; Artinano, B.

    1994-01-01

    This work performs a jointly interpretation of meteorological and pollutant concentration measurements during three experimental campaigns in the coastal and inland zones of Castellon, in summer time and prevailing local conditions. Thermal origin circulations, sea and land breezes, slope and valley winds, and local topography, give rise to daily cycle recirculation of pollutants, both at surface and higher levels. Related to the associated ozone levels, the observed natural background varies from 40-50 ppb, whom can be added 20-50 ppb as contribution by photochemical generation. This has been observed to be transported up to 100 Km inland and re-circulated again through the coastal Area. (Author) 7 refs

  20. The significance of biogeochemical cycles of macro- and microelements in connection with man-made evolution of the living matter

    International Nuclear Information System (INIS)

    Ermakov, V.V.

    2008-01-01

    Biogeochemistry as an integrated science studying the elemental composition of the living matter and its role in migration, transformation, accumulation of chemical elements and their compounds in the biosphere, has again become the leading scientific branch highlighting the man-made evolution of the planet and the pathways of interaction between the man and environment. Nowadays the central problem of biogeochemistry as science about the biosphere is that of pollution of the different taxons of the biosphere. In the most case man-made factors effect on the different organisms and the flow of chemical elements changing their local, regional and global biogeochemical cycles. The concept of balance of O 2 , CO 2 and H 2 O as general condition of the sustained development of the biosphere is considered. The questions of biological rhythms, appearance of microelementhoses and modern systemic biogeochemical methodology of assessment of taxons of the biosphere are considered too

  1. Fashion cycle dynamics in a model with endogenous discrete evolution of heterogeneous preferences

    Science.gov (United States)

    Naimzada, A. K.; Pireddu, M.

    2018-05-01

    We propose a discrete-time exchange economy evolutionary model, in which two groups of agents are characterized by different preference structures. The reproduction level of a group is related to its attractiveness degree, which depends on the social visibility level, determined by the consumption choices of the agents in that group. The attractiveness of a group is initially increasing with its visibility level, but it becomes decreasing when its visibility exceeds a given threshold value, due to a congestion effect. Thanks to the combined action of the price mechanism and of the share updating rule, the model is able to reproduce the recurrent dynamic behavior typical of the fashion cycle, presenting booms and busts both in the agents' consumption choices and in the population shares. More precisely, we investigate the existence of equilibria and their stability, and we perform a qualitative bifurcation analysis on varying the parameter describing the group's heterogeneity degree. From a global viewpoint, we detect, among others, multistability phenomena in which the group coexistence is dynamic, either regular or irregular, and the fashion cycle occurs. The existence of complex dynamics is proven via the method of the turbulent maps, working with homoclinic orbits. Finally, we provide a social and economic interpretation of the main scenarios.

  2. Evolution of in situ conductivity of polythiophene deposits by potential cycling

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G.; Schiavon, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1990-12-01

    In situ conductivity of polythiophene (PT) deposits from anodic coupling of thiophene (T), bithiophene (BT) and terthiophene (TT) increases with redox switching to an extent which depends on the monomer. Changes are considerable with TT, minor with BT and negligible with T, involving extra oxidative charges with the same trend, and are paralleled by evolution of electronic and infrared spectra and cyclic voltammograms. Results are explained by the occurrence of solid-state polymerization of oligomers leading ultimately to the same polymer with a conductivity of 1-3 S cm{sup -1}. PT from thiophene is much less conducting (0.06 S cm{sup -1}), because of oxidative degradation during deposition. (orig.).

  3. Evolution of Proton and Alpha Particle Velocities through the Solar Cycle

    Science.gov (United States)

    Ďurovcová, T.; Šafránková, J.; Němeček, Z.; Richardson, J. D.

    2017-12-01

    Relative properties of solar wind protons and α particles are often used as indicators of a source region on the solar surface, and analysis of their evolution along the solar wind path tests our understanding of physics of multicomponent magnetized plasma. The paper deals with the comprehensive analysis of the difference between proton and α particle bulk velocities at 1 au with a special emphasis on interplanetary coronal mass ejections (ICMEs). A comparison of about 20 years of Wind observations at 1 au with Helios measurements closer to the Sun (0.3-0.7 au) generally confirms the present knowledge that (1) the differential speed between both species increases with the proton speed; (2) the differential speed is lower than the local Alfvén speed; (3) α particles are faster than protons near the Sun, and this difference decreases with the increasing distance. However, we found a much larger portion of observations with protons faster than α particles in Wind than in Helios data and attributed this effect to a preferential acceleration of the protons in the solar wind. A distinct population characterized by a very small differential velocity and nearly equal proton and α particle temperatures that is frequently observed around the maximum of solar activity was attributed to ICMEs. Since this population does not exhibit any evolution with increasing collisional age, we suggest that, by contrast to the solar wind from other sources, ICMEs are born in an equilibrium state and gradually lose this equilibrium due to interactions with the ambient solar wind.

  4. Earth’s oxygen cycle and the evolution of animal life

    Science.gov (United States)

    Reinhard, Christopher T.; Planavsky, Noah J.; Olson, Stephanie L.; Lyons, Timothy W.; Erwin, Douglas H.

    2016-01-01

    The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth’s oxygen cycle—the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism’s life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8–0.8 billion years ago). PMID:27457943

  5. Exact Slater integrals

    International Nuclear Information System (INIS)

    Golden, L.B.

    1968-01-01

    In atomic structure calculations, one has to evaluate the Slater integrals. In the present program, the authors evaluate exactly the Slater integral when hydrogenic wave functions are used for the bound-state orbitals. When hydrogenic wave functions are used, the Slater integrals involve integrands which can be written in the form of a product of an exponential, exp(ax) and a known analytic polynomial function, f(x). By repeated partial integration such an integral can be expressed in terms of a finite series involving the exponential, the polynomial function and its derivatives. PL/1-FORMAC has a built-in subroutine that will analytically find the derivatives of any multinomial. Thus, the finite series and hence the Slater integral can be evaluated analytically. (Auth.)

  6. Temporal evolution of mechanisms controlling ocean carbon uptake during the last glacial cycle

    Science.gov (United States)

    Kohfeld, Karen E.; Chase, Zanna

    2017-08-01

    Many mechanisms have been proposed to explain the ∼85-90 ppm decrease in atmospheric carbon dioxide (CO2) during the last glacial cycle, between 127,000 and 18,000 yrs ago. When taken together, these mechanisms can, in some models, account for the full glacial-interglacial CO2 drawdown. Most proxy-based evaluations focus on the peak of the Last Glacial Maximum, 24,000-18,000 yrs ago, and little has been done to determine the sequential timing of processes affecting CO2 during the last glacial cycle. Here we use a new compilation of sea-surface temperature records together with time-sequenced records of carbon and Nd isotopes, and other proxies to determine when the most commonly proposed mechanisms could have been important for CO2 drawdown. We find that the initial major drawdown of 35 ppm 115,000 yrs ago was most likely a result of Antarctic sea ice expansion. Importantly, changes in deep ocean circulation and mixing did not play a major role until at least 30,000 yrs after the first CO2 drawdown. The second phase of CO2 drawdown occurred ∼70,000 yrs ago and was also coincident with the first significant influences of enhanced ocean productivity due to dust. Finally, minimum concentrations of atmospheric CO2 during the Last Glacial Maximum resulted from the combination of physical and biological factors, including the barrier effect of expanded Southern Ocean sea ice, slower ventilation of the deep sea, and ocean biological feedbacks.

  7. "Boom" and "Bust" cycles in virus growth suggest multiple selective forces in influenza a evolution

    Directory of Open Access Journals (Sweden)

    Marquart Mary E

    2011-04-01

    Full Text Available Abstract Background Influenza A virus evolution in humans is driven at least in part by mutations allowing the virus to escape antibody neutralization. Little is known about the evolution of influenza in birds, a major reservoir of influenza A. Methods Neutralizing polyclonal antiserum was raised in chicken against reassortant influenza virus, CalX, bearing the hemagglutinin (HA and neuraminidase (NA of A/California/7/2004 [H3N2]. CalX was serially passaged in the presence of anti-CalX polyclonal IgY to derive viruses capable of growth in the presence of antibody. Results Polyclonal chicken antibody neutralized both HA activity and infection by CalX, but had no effect on a strain bearing an earlier human H3 and an irrelevant neuraminidase (A/Memphis/71-Bellamy/42 [H3N1]. Surprisingly, most of the antibody-resistant viruses were still at least partially sensitive to neutralization of HA activity and viral infection. Although mutant HA genes bearing changes that might affect antibody neutralization were identified, the vast majority of HA sequences obtained were identical to wild type, and no individual mutant sequence was found in more than one passage, suggesting that those mutations that were observed did not confer sufficient selective advantage to come to dominate the population. Different passages yielded infectious foci of varying size and plaques of varying size and morphology. Yields of infectious virus and relative frequency of different morphologies changed markedly from passage to passage. Sequences of bulk, uncloned PCR products from antibody-resistant passages indicated changes in the PB2 and PA proteins with respect to the wild type virus. Conclusions Each antibody-selected passage consisted of a variety of different cocirculating populations, rather than pure populations of virus able to escape antibody by changes in antibody epitopes. The ability to escape antibody is apparently due to changes in genes encoding the viral

  8. Molybdenum and technetium cycle in the environment. Physical chemical evolution and mobility in soils and plants

    International Nuclear Information System (INIS)

    Saas, A.; Denardi, J.L.; Colle, C.; Quinault, J.M.

    1980-01-01

    Molybdenum 99 and technetium 99 from liquid discharges of base nuclear installations (reactors, reprocessing plants, UF 6 treatment, etc.) can reach the environment via irrigation waters and atmospheric deposits. The contribution to the soil by irrigation results in a physical-chemical transformation, the results of which, in the case of technetium 99, could be volatilization via microbes. The changes in the physical-chemical forms of technetium in different soils reveals the preponderant effect of the initial amount deposited. The determination of the rate of technetium and molybdenum assimilation shows a certain similarity in behaviour; yet the localization of these isotopes is not the same. The transfer of molybdenum and technetium via the root system is different in its intensity; this is mainly due to different physical-chemical forms. Finally, each isotope has an optimum assimilation threshold and a toxicity threshold. The study of the physical-chemical evolution and the mobility in the soil-plant-water table system of these two isotopes shows a new aspect with respect to certain transfer channels to the human being [fr

  9. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.

    Directory of Open Access Journals (Sweden)

    Monica M Horvath

    2007-07-01

    Full Text Available The p53 tumor suppressor is a sequence-specific pleiotropic transcription factor that coordinates cellular responses to DNA damage and stress, initiating cell-cycle arrest or triggering apoptosis. Although the human p53 binding site sequence (or response element [RE] is well characterized, some genes have consensus-poor REs that are nevertheless both necessary and sufficient for transactivation by p53. Identification of new functional gene regulatory elements under these conditions is problematic, and evolutionary conservation is often employed. We evaluated the comparative genomics approach for assessing evolutionary conservation of putative binding sites by examining conservation of 83 experimentally validated human p53 REs against mouse, rat, rabbit, and dog genomes and detected pronounced conservation differences among p53 REs and p53-regulated pathways. Bona fide NRF2 (nuclear factor [erythroid-derived 2]-like 2 nuclear factor and NFkappaB (nuclear factor of kappa light chain gene enhancer in B cells binding sites, which direct oxidative stress and innate immunity responses, were used as controls, and both exhibited high interspecific conservation. Surprisingly, the average p53 RE was not significantly more conserved than background genomic sequence, and p53 REs in apoptosis genes as a group showed very little conservation. The common bioinformatics practice of filtering RE predictions by 80% rodent sequence identity would not only give a false positive rate of approximately 19%, but miss up to 57% of true p53 REs. Examination of interspecific DNA base substitutions as a function of position in the p53 consensus sequence reveals an unexpected excess of diversity in apoptosis-regulating REs versus cell-cycle controlling REs (rodent comparisons: p < 1.0 e-12. While some p53 REs show relatively high levels of conservation, REs in many genes such as BAX, FAS, PCNA, CASP6, SIVA1, and P53AIP1 show little if any homology to rodent sequences. This

  10. Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Enfedaque, A.

    2014-03-01

    Full Text Available The current standards that regulate use of structural concrete have highlighted the durability of concrete. However, how the fracture energy of concrete evolves under the action of freeze-thaw cycles is not well known. The fracture energy of two types of concrete, one with an air-entraining additive and the other with silica fume addition, is studied after four, 14 and 28 freeze-thaw cycles. The results obtained show that the concrete with an air-entraining additive was undamaged and that fracture energy grew slightly. In addition to this, they also showed that the concrete with silica fume addition suffered severe surface scaling and its fracture energy changed due to the greater fracture areas generated.La actual normativa que rige el empleo de hormigón estructural ha puesto enfásis en la durabilidad del hormigón. Sin embargo, no se conoce cómo evoluciona la energía de fractura del hormigón sometido a ciclos hielo- deshielo, lo cual es de vital importancia para asegurar la durabilidad y el correcto comportamiento mecánico de las estructuras de hormigón en entornos con heladas durante su vida útil. Se ha estudiado la evolución de la energía de fractura de un hormigón con aireante y de un hormigón con humo de sílice después de 4, 14 y 28 ciclos hielo-deshielo realizando ensayos de fractura. Los resultados muestran cómo el hormigón con aireante no sufre daño por los ciclos hielo-deshielo y cómo la energía de fractura del mismo aumenta ligeramente. El hormigón con humo de sílice se daña por los ciclos hielo-deshielo y reduce su energía de fractura al aumentar el area fracturada.

  11. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  12. Fuel cycle design evolution from FDR-ITER to RTO/RC-ITER

    International Nuclear Information System (INIS)

    Murdoch, D.K.; Glugla, M.; Kveton, O.

    2000-01-01

    Instantaneous fuelling and plasma exhaust flow rates for the reduced technical objective/reduced cost version of International Thermonuclear Experimental Reactor (RTO/RC-ITER) are similar to those described in the Final Design Report (FDR) of ITER, despite the reduction in fusion power by a factor of about two. However, the reduced pulse length and the lower fraction of campaign time spent in burn mode, together with the lower integrated operating lifetime proposed, will generate cost savings in several systems of the fuel cycle. As the quantity of tritium handled per pulse is now smaller, this could be buffered, allowing systems in the tritium plant still to operate in steady state mode as in the FDR design, thereby increasing the potential for downsizing of system capacities. The lower operating time fraction will increase performance margins for some systems, for example, the Torus Exhaust Gas Processing System (TEGPS) which was designed to meet a specified daily release rate for the FDR design conditions which were more onerous than RTO/RC-ITER. As no break through of tritium into cooling water is now expected, the duties of the Water and Atmosphere Detritiation Systems are considerably reduced, and design concepts which are simpler, cheaper and more amenable to modular implementation can be adopted

  13. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    Science.gov (United States)

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  14. Reviews and syntheses: guiding the evolution of the observing system for the carbon cycle through quantitative network design

    Science.gov (United States)

    Kaminski, Thomas; Rayner, Peter Julian

    2017-10-01

    Various observational data streams have been shown to provide valuable constraints on the state and evolution of the global carbon cycle. These observations have the potential to reduce uncertainties in past, current, and predicted natural and anthropogenic surface fluxes. In particular such observations provide independent information for verification of actions as requested by the Paris Agreement. It is, however, difficult to decide which variables to sample, and how, where, and when to sample them, in order to achieve an optimal use of the observational capabilities. Quantitative network design (QND) assesses the impact of a given set of existing or hypothetical observations in a modelling framework. QND has been used to optimise in situ networks and assess the benefit to be expected from planned space missions. This paper describes recent progress and highlights aspects that are not yet sufficiently addressed. It demonstrates the advantage of an integrated QND system that can simultaneously evaluate a multitude of observational data streams and assess their complementarity and redundancy.

  15. Computer-Assisted Sperm Analysis (CASA) parameters and their evolution during preparation as predictors of pregnancy in intrauterine insemination with frozen-thawed donor semen cycles.

    Science.gov (United States)

    Fréour, Thomas; Jean, Miguel; Mirallié, Sophie; Dubourdieu, Sophie; Barrière, Paul

    2010-04-01

    To study the potential of CASA parameters in frozen-thawed donor semen before and after preparation on silica gradient as predictors of pregnancy in IUI with donor semen cycles. CASA parameters were measured in thawed donor semen before and after preparation on a silica gradient in 132 couples undergoing 168 IUI cycles with donor semen. The evolution of these parameters throughout this process was calculated. The relationship with cycle outcome was then studied. Clinical pregnancy rate was 18.4% per cycle. CASA parameters on donor semen before or after preparation were not significantly different between pregnancy and failure groups. However, amplitude of lateral head displacement (ALH) of spermatozoa improved in all cycles where pregnancy occurred, thus predicting pregnancy with a sensitivity of 100% and a specificity of 20%. Even if CASA parameters do not seem to predict pregnancy in IUI with donor semen cycles, their evolution during the preparation process should be evaluated, especially for ALH. However, the link between ALH improvement during preparation process and pregnancy remains to be explored. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  16. Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    International Nuclear Information System (INIS)

    Chvosta, Petr; Holubec, Viktor; Ryabov, Artem; Einax, Mario; Maass, Philipp

    2010-01-01

    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven at a constant rate. The time evolutions of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the work performed during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility

  17. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  18. CONDITIONS FOR EXACT CAVALIERI ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mónica Tinajero-Bravo

    2014-03-01

    Full Text Available Exact Cavalieri estimation amounts to zero variance estimation of an integral with systematic observations along a sampling axis. A sufficient condition is given, both in the continuous and the discrete cases, for exact Cavalieri sampling. The conclusions suggest improvements on the current stereological application of fractionator-type sampling.

  19. The petroleum prices evolution and the impact on the exaction of royalties in Brazil; A evolucao dos precos do petroleo e seu impacto sobre a arrecadacao de royalties no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Pinto Junior, Helder Queiroz; Fernandes, Camila

    2007-07-01

    From the examination on behavior of petroleum international prices, together with exchange ratio, this paper traces some sceneries for the year 2006 exaction. For this purpose some premises: very conservative, establishes a volume of monthly production at same level of the monthly average obtained from January to November, 2005 - circa 7.83 millions of m{sup 3} which means 1.65 millions bpd; assume three different parameters for the exchange average rate per annum; and, last but not least, establishes a variation interval on the year average quotation of the Brent petroleum between US$ 50 and US$ 60 per barrel.

  20. Exactly and completely integrable nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Leznov, A.N.; Savel'ev, M.V.

    1987-01-01

    The survey is devoted to a consitent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including generalized (periodic and finite nonperiodic Toda lattice, nonlinear Schroedinger, Korteweg-de Vries, Lotka-Volterra equations, etc.) For exactly integrable systems the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed. Application of the developed methods to a differential geometry problem of classification of the integrable manifolds embeddings is discussed. For exactly integrable systems the supersymmetric extensions are constructed. By the example of the generalized Toda lattice a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their desription in terms of the quantum algebras of the Hopf type. Among multidimensional systems the four-dimensional self-dual Yang-Mills equations are investigated most attentively with a goal of constructing their general solutions

  1. Exact theory of freeze-out

    International Nuclear Information System (INIS)

    Cannoni, Mirco

    2015-01-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x * = m χ /T * . The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y 0 , is where the maximum departure of the WIMPs abundance Y from the thermal value Y 0 is reached. For each mass m χ and total annihilation cross section left angle σ ann υ r right angle, the temperature x * and the actual WIMPs abundance Y(x * ) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x * . The matching of the two abundances at x * is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  2. Exact theory of freeze-out

    Science.gov (United States)

    Cannoni, Mirco

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.

  3. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  4. Structure evolution of the LiMnO{sub 2} lamellar oxide during electrochemical cycling; Evolution structurale de l`oxyde lamellaire LiMnO{sub 2} lors du cyclage electrochimique

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, C. [Centre National de la Recherche Scientifique (CNRS), 33 - Pessac (France). Institut de Chimie de la Matiere Condensee de Bordeaux; Capitaine, F.; Majastre [Bollore Technologies, 29 - Quimper (France); Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1996-12-31

    The LiMnO{sub 2} lamellar oxide, obtained by exchange reaction from its sodium homologue {alpha}-NaMnO{sub 2}, has been used as a positive electrode for lithium batteries. After the first electrochemical cycle, the shape of the potential-composition curve changes and indicates a change in the structure. This modification changes imperceptibly at each cycle and after about 40 cycles, a stationary state is reached. Powder spectra refinement using the Rietvelt method shows a migration of manganese ions from the thin sheets towards the inter-sheet space. After a single cycle, 8% of the manganese ions are already present in the lithium site and this rate reaches 13% after 3 cycles. During long cycling, a redistribution of ions and vacancies inside the cfc oxygenated pile leads to a structure very similar to the LiMn{sub 2}O{sub 4} spinel. This structure evolution is to be compared with the one obtained from the orthorhombic variety of LiMnO{sub 2} but the modification is more progressive with lamellar LiMnO{sub 2}. Abstract only. (J.S.)

  5. Structure evolution of the LiMnO{sub 2} lamellar oxide during electrochemical cycling; Evolution structurale de l`oxyde lamellaire LiMnO{sub 2} lors du cyclage electrochimique

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, C [Centre National de la Recherche Scientifique (CNRS), 33 - Pessac (France). Institut de Chimie de la Matiere Condensee de Bordeaux; Capitaine, F; Majastre, [Bollore Technologies, 29 - Quimper (France); Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1997-12-31

    The LiMnO{sub 2} lamellar oxide, obtained by exchange reaction from its sodium homologue {alpha}-NaMnO{sub 2}, has been used as a positive electrode for lithium batteries. After the first electrochemical cycle, the shape of the potential-composition curve changes and indicates a change in the structure. This modification changes imperceptibly at each cycle and after about 40 cycles, a stationary state is reached. Powder spectra refinement using the Rietvelt method shows a migration of manganese ions from the thin sheets towards the inter-sheet space. After a single cycle, 8% of the manganese ions are already present in the lithium site and this rate reaches 13% after 3 cycles. During long cycling, a redistribution of ions and vacancies inside the cfc oxygenated pile leads to a structure very similar to the LiMn{sub 2}O{sub 4} spinel. This structure evolution is to be compared with the one obtained from the orthorhombic variety of LiMnO{sub 2} but the modification is more progressive with lamellar LiMnO{sub 2}. Abstract only. (J.S.)

  6. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  7. 4D stress evolution models of the San Andreas Fault System: Investigating time- and depth-dependent stress thresholds over multiple earthquake cycles

    Science.gov (United States)

    Burkhard, L. M.; Smith-Konter, B. R.

    2017-12-01

    4D simulations of stress evolution provide a rare insight into earthquake cycle crustal stress variations at seismogenic depths where earthquake ruptures nucleate. Paleoseismic estimates of earthquake offset and chronology, spanning multiple earthquakes cycles, are available for many well-studied segments of the San Andreas Fault System (SAFS). Here we construct new 4D earthquake cycle time-series simulations to further study the temporally and spatially varying stress threshold conditions of the SAFS throughout the paleoseismic record. Interseismic strain accumulation, co-seismic stress drop, and postseismic viscoelastic relaxation processes are evaluated as a function of variable slip and locking depths along 42 major fault segments. Paleoseismic earthquake rupture histories provide a slip chronology dating back over 1000 years. Using GAGE Facility GPS and new Sentinel-1A InSAR data, we tune model locking depths and slip rates to compute the 4D stress accumulation within the seismogenic crust. Revised estimates of stress accumulation rate are most significant along the Imperial (2.8 MPa/100yr) and Coachella (1.2 MPa/100yr) faults, with a maximum change in stress rate along some segments of 11-17% in comparison with our previous estimates. Revised estimates of earthquake cycle stress accumulation are most significant along the Imperial (2.25 MPa), Coachella (2.9 MPa), and Carrizo (3.2 MPa) segments, with a 15-29% decrease in stress due to locking depth and slip rate updates, and also postseismic relaxation from the El Mayor-Cucapah earthquake. Because stress drops of major strike-slip earthquakes rarely exceed 10 MPa, these models may provide a lower bound on estimates of stress evolution throughout the historical era, and perhaps an upper bound on the expected recurrence interval of a particular fault segment. Furthermore, time-series stress models reveal temporally varying stress concentrations at 5-10 km depths, due to the interaction of neighboring fault

  8. Exact solitary waves of the Fisher equation

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given

  9. Microwave radiation effects on the different stages of Sitophilus oryzae (Linne, 1763) (Coleoptera, Curculionidae) evolutive cycle in rice, focusing its control

    International Nuclear Information System (INIS)

    Franco, Jose G.; Franco, Suely S.H.; Franco, Caio H.; Arthur, Paula B.; Arthur, Valter

    2013-01-01

    As insects increase in radio tolerance as they develop and usually several developmental stages of pest may present in grain shipped commodity, it is important to know the microwave radiation susceptibility of stages of the target insect before the establishment of microwave radiation quarantine treatments. The current research had the aim to evaluate the microwave radiation effects on several phases of the rice weevil evolution cycle (S.oryzae), focusing its control. This specie is considered as on of the most serious worldwide pests for stored grains. The tests have been done in glass vials with 250 grams of whole grain (brown) rice and the irradiation was done in a 2,450 MHz commercial microwave oven, model Carousel II (potency of 800W). It was determined the exposure time needed to each phase control for the insect evolutive cycle, concluding that the immature phases (larvae and pupae), contained inside the rice, are more sensitive, requiring only 100 seconds to obtain 100% control while the egg phase requires a longer exposure (130 seconds). Referring to the grown phase, the time required to attain the lethal dose was 160 seconds. All the exposure time have been irradiated with a low potency (240 W). It also displayed that to greater quantities of rice (1.0 kg), with egg presence and forming a 2.0-centimeter layer on the microwave plate surface, it required an exposure time of 180 seconds. Therefore, in a more effective way, we can recommend these 180 seconds exposure time to the control of all phases concerning the insect evolutive cycle. (author)

  10. Microwave radiation effects on the different stages of Sitophilus oryzae (Linne, 1763) (Coleoptera, Curculionidae) evolutive cycle in rice, focusing its control

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose G.; Franco, Suely S.H., E-mail: gilmita@uol.com.br, E-mail: zegilmar60@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Franco, Caio H.; Arthur, Paula B.; Arthur, Valter, E-mail: caiohaddadfranco@lnbio.cnpem.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente

    2013-07-01

    As insects increase in radio tolerance as they develop and usually several developmental stages of pest may present in grain shipped commodity, it is important to know the microwave radiation susceptibility of stages of the target insect before the establishment of microwave radiation quarantine treatments. The current research had the aim to evaluate the microwave radiation effects on several phases of the rice weevil evolution cycle (S.oryzae), focusing its control. This specie is considered as on of the most serious worldwide pests for stored grains. The tests have been done in glass vials with 250 grams of whole grain (brown) rice and the irradiation was done in a 2,450 MHz commercial microwave oven, model Carousel II (potency of 800W). It was determined the exposure time needed to each phase control for the insect evolutive cycle, concluding that the immature phases (larvae and pupae), contained inside the rice, are more sensitive, requiring only 100 seconds to obtain 100% control while the egg phase requires a longer exposure (130 seconds). Referring to the grown phase, the time required to attain the lethal dose was 160 seconds. All the exposure time have been irradiated with a low potency (240 W). It also displayed that to greater quantities of rice (1.0 kg), with egg presence and forming a 2.0-centimeter layer on the microwave plate surface, it required an exposure time of 180 seconds. Therefore, in a more effective way, we can recommend these 180 seconds exposure time to the control of all phases concerning the insect evolutive cycle. (author)

  11. Exact theory of freeze-out

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x{sub *} = m{sub χ}/T{sub *}. The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y{sub 0}, is where the maximum departure of the WIMPs abundance Y from the thermal value Y{sub 0} is reached. For each mass m{sub χ} and total annihilation cross section left angle σ{sub ann}υ{sub r} right angle, the temperature x{sub *} and the actual WIMPs abundance Y(x{sub *}) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x{sub *}. The matching of the two abundances at x{sub *} is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  12. Exact combinatorial approach to finite coagulating systems

    Science.gov (United States)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  13. Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G., E-mail: giacomo.facheris@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, Villigen PSI (Switzerland); Pham, M.-S. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); High Temperature Integrity Group, Mechanics for Modelling and Simulation, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf (Switzerland); Janssens, K.G.F., E-mail: koen.janssens@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, Villigen PSI (Switzerland); Holdsworth, S.R. [High Temperature Integrity Group, Mechanics for Modelling and Simulation, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf (Switzerland)

    2013-12-10

    When subjected to controlled cyclic deformation, the response of austenitic stainless steel typically involves primary hardening followed by softening, and eventually cyclic stabilization with or without secondary hardening. If a continuously drifting mean strain is superposed to an alternating strain path (i.e. strain controlled ratcheting), the response in terms of mean stress and strain amplitude is significantly different. A series of low cycle fatigue and ratcheting experiments are performed at room temperature on round specimens extracted from a batch of AISI 316L hot rolled plate. The experiments are interrupted at cycle numbers selected to correspond with the different strain controlled cycle response stages. The as-received material and the fatigued specimens are analyzed by means of transmission electron microscopy to characterize the microstructure and its evolution with cyclic loading. The low cycle fatigue experiments, performed to establish a reference point for the zero mean strain loading condition, are in line with observations reported for AISI 316L stainless steel by other authors. The continuously increasing mean strain is found to induce higher dislocation densities in the channels of the evolving microstructure, being responsible for the macroscopically observed additional hardening. The observed polarized dislocation walls at least partially accommodate the continuously drifting mean strain and play a role in the non-zero mean stress response.

  14. Exact models for isotropic matter

    Science.gov (United States)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  15. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  16. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  17. Criteria for exact qudit universality

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; O'Leary, Dianne P.; Bullock, Stephen S.

    2005-01-01

    We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H jk x =(ℎ/2π)Ω(vertical bar k> jk y =(ℎ/2π)Ω(i vertical bar k> jk x,y are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=(ℎ/2π)Ω vertical bar d-1,d-1> 87 Rb and construct an optimal gate sequence using Raman laser pulses

  18. The SILCC (SImulating the LifeCycle of molecular Clouds) project - I. Chemical evolution of the supernova-driven ISM

    Czech Academy of Sciences Publication Activity Database

    Walch, S.; Girichidis, P.; Naab, T.; Gatto, A.; Glover, S.C.O.; Wünsch, Richard; Klessen, R.S.; Clark, P.C.; Peters, T.; Derigs, D.; Baczynski, C.

    2015-01-01

    Roč. 454, č. 1 (2015), s. 238-268 ISSN 0035-8711 R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : magnetodydrodynamics * ISM clouds * ISM evolution Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.952, year: 2015

  19. Exact solution for a non-Markovian dissipative quantum dynamics.

    Science.gov (United States)

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  20. [Polarized light microscopy for evaluation of oocytes as a prognostic factor in the evolution of a cycle in assisted reproduction].

    Science.gov (United States)

    González-Ortega, C; Cancino-Villarreal, P; Alonzo-Torres, V E; Martínez-Robles, I; Pérez-Peña, E; Gutiérrez-Gutiérrez, A M

    2016-04-01

    Identification of the best embryos to transfer is a key element for success in assisted reproduction. In the last decade, several morphological criteria of oocytes and embryos were evaluated with regard to their potential for predicting embryo viability. The introduction of polarization light microscopy systems has allowed the visualization of the meiotic spindle and the different layers of the zona pellucida in human oocytes on the basis of birefringence in a non-destructive way. Conflicting results have been reported regarding the predictive value in ICSI cycles. To assess the predictive ability of meiotic spindle and zona pellucida of human oocytes to implant by polarized microscopy in ICSI cycles. Prospective and observational clinical study. 903 oocytes from 94 ICSI cycles were analyzed with polarized microscopy. Meiotic spindle visualization and zona pellucida birefringence values by polarized microscopy were correlated with ICSI cycles results. Meiotic spindle visualization and birefringence values of zona pellucida decreased in a direct basis with increasing age. In patients aged over the 35 years, the percentage of a visible spindle and mean zona pellucida birefringence was lower than in younger patients. Fertilization rate were higher in oocytes with visible meiotic spindle (81.3% vs. 64%; p vs. 39%; p=0.01). Fertilization rate was higher in oocytes with positive values of birefringence (77.5 % vs. 68.5% p=0.005) with similar embryo quality. Conception cycles showed oocytes with higher mean value of zona birefringence and visible spindle vs. no-conception cycles (pPolarized light microscopy improves oocyte selection, which significantly impacts in the development of embryos with greater implantation potential. The use of polarized light microscopy with sperm selection methods, blastocyst culture and deferred embryo transfers will contribute to transfer fewer embryos without diminishing rates of live birth and single embryo transfer will be more feasible.

  1. Ex-situ tracking solid oxide cell electrode microstructural evolution in a redox cycle by high resolution ptychographic nanotomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Esposito, Vincenzo

    2017-01-01

    , the nickel and pore networks undergo major reorganization and the formation of internal voids is observed in the nickel-oxide particles after the oxidation. These observations are discussed in terms of reaction kinetics, electrode mechanical stress and the consequences of redox cycling on electrode...... towards this aim by visualizing a complete redox cycle in a solid oxide cell (SOC) electrode. The experiment demonstrates synchrotron-based ptychography as a method of imaging SOC electrodes, providing an unprecedented combination of 3D image quality and spatial resolution among non-destructive imaging...

  2. On approximating restricted cycle covers

    NARCIS (Netherlands)

    Manthey, Bodo

    2008-01-01

    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An $L$-cycle cover is a cycle cover in which the length of every cycle is in the set $L$. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to

  3. Effects of Amplitude Variations on Deformation and Damage Evolution in SnAgCu Solder in Isothermal Cycling

    Science.gov (United States)

    Wentlent, Luke; Alghoul, Thaer M.; Greene, Christopher M.; Borgesen, Peter

    2018-02-01

    Although apparently simpler than in thermal cycling, the behavior of SnAgCu (SAC) solder joints in cyclic bending or vibration is not currently well understood. The rate of damage has been shown to scale with the inelastic work per cycle, and excursions to higher amplitudes lead to an apparent softening, some of which remains so that damage accumulation is faster in subsequent cycling at lower amplitudes. This frequently leads to a dramatic breakdown of current damage accumulation rules. An empirical damage accumulation rule has been proposed to account for this, but any applicability to the extrapolation of accelerated test results to life under realistic long-term service conditions remains to be validated. This will require a better understanding of the underlying mechanisms. The present work provides experimental evidence to support recent suggestions that the observed behavior is a result of cycling-induced dislocation structures providing for increased diffusion creep. It is argued that this means that the measured work is an indicator of the instantaneous dislocation density, rather than necessarily reflecting the actual work involved in the creation of the damage.

  4. Neutron diffraction studies on lattice strain evolution around a crack-tip during tensile loading and unloading cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yinan [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States)]. E-mail: ysun1@utk.edu; Choo, Hahn [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Liaw, Peter K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Lu Yulin [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Yang Bing [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-10-15

    Elastic lattice-strain profiles ahead of a fatigue-crack-tip were measured during tensile loading and unloading cycles using neutron diffraction. The crack-closure phenomenon after an overload was observed. Furthermore, the plastic-zone size in front of the crack-tip was estimated from the diffraction-peak broadening, which showed good agreement with the calculated result.

  5. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    NARCIS (Netherlands)

    Zhang, X.; Van Hulzen, M.; Singh, D.P.; Brownrigg, A.W.; Wright, J.P.; Van Dijk, N.H.; Wagemaker, M.

    2015-01-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is

  6. Evolution and comparison of speed, cycle frequency, cycle length and cycle index on 200-m test in young paddlers Evolución y comparación de la velocidad, frecuencia, longitud e índice de ciclo sobre 200 m en palistas infantiles de diferentes modalidades

    Directory of Open Access Journals (Sweden)

    V. Ferrer

    2010-09-01

    Full Text Available

    Speed evolution, cycle frequency, cycle length and cycle index were analysed during a 200-m maximal test, in young paddlers (23 kayak men, 22 kayak women and 20 canoe men; 13-14 years-old. Recordings were taken from a boat following each test and switched from analogue to digital format to measure the variables cited above. Evolution was similar in three categories. The speed and cycle index decreased through the test after the first 50 m, while the cycle length was stable. The cycle frequency had a progressive decrease along the distance. Men kayak got higher values in all the variables than women kayak and canoeist, but only were significantly higher in speed and cycle index. Lower values of cycle length and cycle frequency were obtained from canoe men and kayak women, respectively.
    Key Words: speed, cycle frequency, cycle length, cycle index, paddlers.

    Un total de 65 palistas de categoría infantil (23 hombres kayak, 22 mujeres kayak y 20 hombres canoa entre 13 y 14 años de edad, realizaron un test máximo de 200 m en una calle acotada por boyas, que fue grabado desde una perspectiva lateral y posteriormente pasado a formato digital para determinar la evolución de la velocidad, frecuencia de ciclo, longitud de ciclo e índice de ciclo. Las variables analizadas mostraron una evolución similar en todas las categorías. La velocidad y el índice de ciclo tuvieron una tendencia decreciente a partir de los primeros 50 m, mientras que la longitud de ciclo se estabilizó a partir de esta distancia hasta el final de la prueba; la frecuencia de ciclo disminuyó progresivamente durante todo el test. Los hombres kayak obtuvieron valores superiores al resto de categorías en todas las variables analizadas, siendo las diferencias significativas en velocidad e índice de ciclo. La menor velocidad en las otras categorías fue el resultado de valores significativamente

  7. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  8. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  9. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, L.; Wang, H.; Liaw, P. K.; Brooks, C. R.; Klarstrom, D. L.

    2001-09-01

    High-speed, high-resolution infrared thermography, as a noncontact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to high-cycle fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. A constitutive model was developed for predicting the thermal and mechanical responses of the ULTIMET alloy subjected to cyclic deformation. The model was constructed in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress-strain and temperature responses were found to be in good agreement with the experimental results. In addition, the change of temperature during fatigue was employed to reveal the accumulation of fatigue damage, and the measured temperature was utilized as an index for fatigue-life prediction.

  10. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  11. THE BARYON CYCLE AT HIGH REDSHIFTS: EFFECTS OF GALACTIC WINDS ON GALAXY EVOLUTION IN OVERDENSE AND AVERAGE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sadoun, Raphael [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112-0830 (United States); Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio, E-mail: raphael.sadoun@utah.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  12. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  13. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  14. Ciclo evolutivo do Hepatozoon triatomae (Sporozoa, Haemogregarinidae parasita de triatomíneos Evolution cycle of the Hepatozoon triatomae (Sporozoa, Haemogregarinidae, parasite of triatominea

    Directory of Open Access Journals (Sweden)

    Eduardo Olavo da Rocha e Silva

    1975-09-01

    Full Text Available Relata-se o encontro no Estado de São Paulo, Brasil, de triatomíneos e lagartos, respectivamente o Triatoma arthurneivai e Tropidurus torquatus, parasitados por uma hemogregarina semelhante a Hepatozoon triatomae (Osimani, 1942 Reichenow, 1953. São apresentados aspectos da sua morfologia e estudadas as diversas fases do seu ciclo evolutivo, este inteiramente reproduzido em laboratório.The author relates the discovery of Triatoma arthurneivai and Tropidurus torquatus, in the localities of Lavras de Cima and Santo Antonio, State of São Paulo, Brazil, infected by a hemogregarine similar to Hepatozoon triatomae (Osimani, 1942 Reichenow 1953. He presents certain aspects of its morphology and also studies the several phases of its evolution cycle, which were completed in the laboratory.

  15. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Physik, WA THEP, Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-06-13

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These “exact effective couplings” encode the finite, relative renormalization between the N=2 and the N=4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  16. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  17. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.

    Science.gov (United States)

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2015-09-23

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  18. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex.

    Directory of Open Access Journals (Sweden)

    Keisha Findley

    Full Text Available Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT. The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α in which the MAT locus is unusually large (>100 kb and encodes >20 genes including homeodomain (HD and pheromone/receptor (P/R genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B locus sex-specific region is restricted (∼2 kb and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a of C. neoformans and Cryptococcus gattii. The P/R (A locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2 produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2, but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1. Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar and sexual reproduction (outcrossing versus inbreeding with

  19. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Schweda, Mario; Beck, Tilmann; Singheiser, Lorenz [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Werkstoffstruktur und Eigenschaften (IEK-2)

    2012-01-15

    The influence of roughness profile shape, roughness depth, bond coat creep strength and pre-oxidation on the thermal cycling damage evolution and lifetime of a plasma-sprayed ZrO{sub 2} thermal barrier coating system was investigated. A simplified model system was used where FeCrAlY substrates simulated the bond coat. Substrate creep was varied by using the oxide dispersoid strengthened alloy MA956 and the conventional material Fecralloy. Stochastic 3- and periodic 2-dimensional roughness profiles were produced by sand blasting and high speed turning. Damage evolution is significantly influenced by substrate creep with a trend to higher lifetimes for the fast creeping substrate. Pre-oxidation has no influence. Lifetimes of the periodically profiled samples are up to 100 times lower than these of stochastically profiled samples. In the case of periodically profiled samples, the highest lifetime was reached for the highest roughness depth combined with local undercuttings in the roughness profile. For stochastically profiled samples the influence of roughness depth could not be determined due to the wide lifetime scatter. (orig.)

  20. Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains.

    Science.gov (United States)

    Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles

    2013-07-01

    Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  2. The Rheological Evolution of Brittle-Ductile Transition Rocks During the Earthquake Cycle: Evidence for a Ductile Precursor to Pseudotachylyte in an Extensional Fault System, South Mountains, Arizona

    Science.gov (United States)

    Stewart, Craig A.; Miranda, Elena A.

    2017-12-01

    We investigate how the rheological evolution of shear zone rocks from beneath the brittle-ductile transition (BDT) is affected by coeval ductile shear and pseudotachylyte development associated with seismicity during the earthquake cycle. We focus our study on footwall rocks of the South Mountains core complex, and we use electron backscatter diffraction (EBSD) analyses to examine how strain is localized in granodiorite mylonites both prior to and during pseudotachylyte development beneath the BDT. In mylonites that are host to pseudotachylytes, deformation is partitioned into quartz, where quartz exhibits crystallographic-preferred orientation patterns and microstructures indicative of dynamic recrystallization during dislocation creep. Grain size reduction during dynamic recrystallization led to the onset of grain boundary sliding (GBS) accommodated by fluid-assisted grain size-sensitive (GSS) creep, localizing strain in quartz-rich layers prior to pseudotachylyte development. The foliation-parallel zones of GBS in the host mylonites, and the presence of GBS traits in polycrystalline quartz survivor clasts indicate that GBS zones were the ductile precursors to in situ pseudotachylyte generation. During pseudotachylyte development, strain was partitioned into the melt phase, and GSS deformation in the survivor clasts continued until crystallization of melt impeded flow, inducing pseudotachylyte development in other GBS zones. We interpret the coeval pseudotachylytes with ductile precursors as evidence of seismic events near the BDT. Grain size piezometry yields high differential stresses in both host mylonites ( 160 MPa) and pseudotachylyte survivor clasts (> 200 MPa), consistent with high stresses during interseismic and coseismic phases of the earthquake cycle, respectively.

  3. Long-term behaviour of binary Ti–49.7Ni (at.%) SMA actuators—the fatigue lives and evolution of strains on thermal cycling

    International Nuclear Information System (INIS)

    Karhu, Marjaana; Lindroos, Tomi

    2010-01-01

    Long-term behaviour and fatigue endurance are the key issues in the utilization of SMA actuators, but systematic research work is still needed in this field. This study concentrates on the effects of three major design parameters on the long-term behaviour of binary Ti–49.7Ni-based actuators: the effect of the temperature interval used in thermal cycling, the effect of the stress level used and the effect of the heat-treatment state of the wire used. The long-term behaviour of the wires was studied in a custom-built fatigue test frame in which the wires were thermally cycled under a constant stress level. The fatigue lives of tested specimens and the evolution of transformation and plastic strains on thermal cycling were recorded. Before the fatigue testing, a series of heat treatments was carried out to generate optimal actuator properties for the wires. One of the major conclusions of the study is that the temperature interval used for thermal cycling has a major effect on fatigue endurance: decreasing the temperature interval used for thermal cycling increased the fatigue life markedly. When the transformation is complete, a 20 °C increase of the final temperature reduced the fatigue lives at the most by half for the studied Ti–49.7Ni wires. With partial transformations the effect is more distinct: even the 5 °C increase in the final temperature reduced the fatigue life by half. The stress level and heat-treatment state used had a marked effect on the actuator properties of the wires, but the effects on fatigue endurance were minor. The fatigue test results reveal that designing and controlling long-term behaviour of binary Ti–49.7Ni actuators is very challenging because the properties are highly sensitive to the heat-treatment state of the wires. Even 5 min longer heat-treatment time could generate, at the most, double plastic strain values and 30% lower stabilized transformation strain values. The amount of plastic strain can be stated as one of

  4. Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Löfverström

    2014-07-01

    Full Text Available We present modelling results of the atmospheric circulation at the cold periods of marine isotope stage 5b (MIS 5b, MIS 4 and the Last Glacial Maximum (LGM, as well as the interglacial. The palaeosimulations are forced by ice-sheet reconstructions consistent with geological evidence and by appropriate insolation and greenhouse gas concentrations. The results suggest that the large-scale atmospheric winter circulation remained largely similar to the interglacial for a significant part of the glacial cycle. The proposed explanation is that the ice sheets were located in areas where their interaction with the mean flow is limited. However, the LGM Laurentide Ice Sheet induces a much larger planetary wave that leads to a zonalisation of the Atlantic jet. In summer, the ice-sheet topography dynamically induces warm temperatures in Alaska and central Asia that inhibits the expansion of the ice sheets into these regions. The warm temperatures may also serve as an explanation for westward propagation of the Eurasian Ice Sheet from MIS 4 to the LGM.

  5. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, Federico A.; Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67-Suc 28, Ciudad de Buenos Aires (Argentina); Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-08-10

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of {beta} than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfven waves in the photosphere, and mode conversion and damping in the low corona.

  6. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Kasper, J. C.; Stevens, M. L.; Korreck, K. E.; Maruca, B. A.; Kiefer, K. K.; Schwadron, N. A.; Lepri, S. T.

    2012-01-01

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (A He ≡ 100 × n He /n H ) by the Wind spacecraft are used to examine the dependence of A He on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of A He from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that A He in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, A He continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  7. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    International Nuclear Information System (INIS)

    Nuevo, Federico A.; Vásquez, Alberto M.; Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng

    2013-01-01

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of β than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfvén waves in the photosphere, and mode conversion and damping in the low corona

  8. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    : SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria, while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition “from specialist to generalist”. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.

  9. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  10. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  11. Effects of gamma radiation of Cobalt-60 on different phases of the evolutive cycle of pinworm - Tuta absoluta (Meyrich, 1917) (Lepidoptera,Gelechiidae)

    International Nuclear Information System (INIS)

    Groppo, Gerson Antonio

    1996-10-01

    The effects of different gamma radiation (Cobalt-60) doses on different phases of the evolutive cycle of Tuta absoluta (Meyrich, 1917) (Lepidoptera, Gelechiidae) have been studied under laboratory conditions in the laboratory of Entomology of Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo, Piracicaba, Sao Paulo State, Brazil. For all the treatments with gamma radiation a Cobalt-60 source type Gamma beam-650 was used. The doses utilized ranged from of 0,0 (Control) to 3250 Gy with a dose rate of 1110 Gy/h. The experiment was conducted under controlled conditions at 25± 2 deg C, 70 ± 5% of relative humidity and photo period of (12:12). It was verified that the lethal doses were: for eggs - 70 Gy; for larvae - 200 Gy e for pupae - 300 Gy. The sterilizing dose for adults from irradiated larvae was 45 Gy. The sterilizing dose for the crossing of irradiated female with normal males (FI X MN) was 100 Gy and for normal female with irradiated male (FN x MI) was 150 Gy, in the both crosses, doses refer to irradiation of pupae. The sterilizing dose for adults, of both sexes, irradiated and crossed with normal adults, (FI x MN) and (FN x MI, were 150 and 200 Gy, respectively. The average longevity of adults, of both sexes, irradiated and crossed with normal adults was 8,3 days. The immediate lethal dose for adults was 3250 Gy. (author)

  12. Seasonal changes in physiological performance in wild Clarkia xantiana populations: Implications for the evolution of a compressed life cycle and self-fertilization.

    Science.gov (United States)

    Dudley, Leah S; Hove, Alisa A; Emms, Simon K; Verhoeven, Amy S; Mazer, Susan J

    2015-06-01

    One explanation for the evolution of selfing, the drought escape hypothesis, proposes that self-fertilization may evolve under conditions of intensifying seasonal drought as part of a suite of traits that enable plants to accelerate the completion of their life cycle, thereby escaping late-season drought. Here, we test two fundamental assumptions of this hypothesis in Clarkia xantiana: (1) that a seasonal decline in precipitation causes an increase in drought stress and (2) that this results in changes in physiological performance, reflecting these deteriorating conditions. We examined seasonal and interannual variation in abiotic environmental conditions (estimated by ambient temperature, relative humidity, predawn leaf water potentials, and carbon isotope ratios) and physiological traits (photosynthesis, conductance, transpiration, instantaneous water-use efficiency, ascorbate peroxidase and glutathione reductase activities, quantum yield of photosystem II, PSII potential efficiency) in field populations of C. xantiana in 2009 and 2010. In both years, plants experienced intensifying drought across the growing season. Gas exchange rates decreased over the growing season and were lower in 2009 (a relatively dry year) than in 2010, suggesting that the temporal changes from early to late spring were directly linked to the deteriorating environmental conditions. Seasonal declines in transpiration rate may have increased survival by protecting plants from desiccation. Concomitant declines in photosynthetic rate likely reduced the availability of resources for seed production late in the season. Thus, the physiological patterns observed are consistent with the conditions required for the drought escape hypothesis. © 2015 Botanical Society of America, Inc.

  13. Extremal black holes as exact string solutions

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in α' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five-dimensional background which is proved to be an exact string solution

  14. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  15. On exact solutions of scattering problems

    International Nuclear Information System (INIS)

    Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.

    1982-01-01

    Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived

  16. Quasi exact solution of the Rabi Hamiltonian

    CERN Document Server

    Koç, R; Tuetuencueler, H

    2002-01-01

    A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.

  17. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  18. New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2008-01-01

    The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics

  19. Intermittency inhibited by transport: An exactly solvable model

    Science.gov (United States)

    Zanette, Damián H.

    1994-04-01

    Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic reactions of the type A-->2A and A-->0, whose population field is known to exhibit spatiotemporal intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as transport is strengthened, low-order population moments are affected before the high-order ones. Numerical simulations are presented to support the analytical results.

  20. Entanglement, decoherence and thermal relaxation in exactly solvable models

    International Nuclear Information System (INIS)

    Lychkovskiy, Oleg

    2011-01-01

    Exactly solvable models provide an opportunity to study different aspects of reduced quantum dynamics in detail. We consider the reduced dynamics of a single spin in finite XX and XY spin 1/2 chains. First we introduce a general expression describing the evolution of the reduced density matrix. This expression proves to be tractable when the combined closed system (i.e. open system plus environment) is integrable. Then we focus on comparing decoherence and thermalization timescales in the XX chain. We find that for a single spin these timescales are comparable, in contrast to what should be expected for a macroscopic body. This indicates that the process of quantum relaxation of a system with few accessible states can not be separated in two distinct stages - decoherence and thermalization. Finally, we turn to finite-size effects in the time evolution of a single spin in the XY chain. We observe three consecutive stages of the evolution: regular evolution, partial revivals, irregular (apparently chaotic) evolution. The duration of the regular stage is proportional to the number of spins in the chain. We observe a 'quiet and cold period' in the end of the regular stage, which breaks up abruptly at some threshold time.

  1. Evolution of the Large Scale Circulation, Cloud Structure and Regional Water Cycle Associated with the South China Sea Monsoon During May-June, 1998

    Science.gov (United States)

    Lau, William K.-M.; Li, Xiao-Fan

    2001-01-01

    In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the

  2. Evolution of complex life cycles

    NARCIS (Netherlands)

    ten Brink, J.A.

    2018-01-01

    The majority of all animal species have a metamorphosis, even though fossil evidence suggests that this life-history strategy only evolved a few times. It is thought that ontogenetic niche shifts, where individuals change their diet, habitat, and/or behaviour during their life, have been the first

  3. The evolution of sex roles in mate searching.

    Science.gov (United States)

    Fromhage, Lutz; Jennions, Michael; Kokko, Hanna

    2016-03-01

    Searching for mates is a critical stage in the life cycle of most internally, and many externally, fertilizing species. Males usually invest more in this costly activity than females, but the reasons for this are poorly understood. Previous models have shown that female-biased parental investment, including anisogamy, does not by itself select for male-biased mate searching, so it requires additional explanations. Here, we correct and expand upon earlier models, and present two novel hypotheses that might explain the evolution of male-biased mate searching. The "carry-over hypothesis" states that females benefit less from searching if the associated costs affect other stages of the life cycle, rather than arising only while searching. It is relevant to the evolution of morphological traits that improve searching efficiency but are also expressed in other contexts. The "mating window hypothesis" states that females benefit less from searching if their life cycle includes intervals during which the exact timing of mating does not matter for the appropriate timing of reproduction (e.g., due to sperm storage or delayed embryo implantation). Such intervals are more likely to exist for females given the general pattern of greater female parental investment. Our models shed new light on classic arguments about sex role evolution. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  5. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  6. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  7. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    Science.gov (United States)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  8. An Exact Confidence Region in Multivariate Calibration

    OpenAIRE

    Mathew, Thomas; Kasala, Subramanyam

    1994-01-01

    In the multivariate calibration problem using a multivariate linear model, an exact confidence region is constructed. It is shown that the region is always nonempty and is invariant under nonsingular transformations.

  9. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  10. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  11. Fast Exact Euclidean Distance (FEED) Transformation

    NARCIS (Netherlands)

    Schouten, Theo; Kittler, J.; van den Broek, Egon; Petrou, M.; Nixon, M.

    2004-01-01

    Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number

  12. New exact wave solutions for Hirota equation

    Indian Academy of Sciences (India)

    2Department of Engineering Sciences, Faculty of Technology and Engineering,. University ... of nonlinear partial differential equations (NPDEs) in mathematical physics. Keywords. ... This method has been successfully applied to obtain exact.

  13. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels

    2012-01-01

    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  14. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  15. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  16. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  17. Exact solution of the hidden Markov processes

    Science.gov (United States)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  18. Classes of exact Einstein Maxwell solutions

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  19. A computationally exact method of Dawson's model for hole dynamics of one-dimensional plasma

    International Nuclear Information System (INIS)

    Kitahara, Kazuo; Tanno, Kohki; Takada, Toshio; Hatori, Tadatsugu; Urata, Kazuhiro; Irie, Haruyuki; Nambu, Mitsuhiro; Saeki, Kohichi.

    1990-01-01

    We show a simple but computationally exact solution of the one-dimensional plasma model, so-called 'Dawson's model'. Using this solution, we can describe the evolution of the plasma and find the relative stabilization of a big hole after the instability of two streams. (author)

  20. Exactly solvable birth and death processes

    International Nuclear Information System (INIS)

    Sasaki, Ryu

    2009-01-01

    Many examples of exactly solvable birth and death processes, a typical stationary Markov chain, are presented together with the explicit expressions of the transition probabilities. They are derived by similarity transforming exactly solvable 'matrix' quantum mechanics, which is recently proposed by Odake and the author [S. Odake and R. Sasaki, J. Math. Phys. 49, 053503 (2008)]. The (q-) Askey scheme of hypergeometric orthogonal polynomials of a discrete variable and their dual polynomials play a central role. The most generic solvable birth/death rates are rational functions of q x (with x being the population) corresponding to the q-Racah polynomial.

  1. Exactly solvable energy-dependent potentials

    International Nuclear Information System (INIS)

    Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.

    2009-01-01

    We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.

  2. Exact relativistic cylindrical solution of disordered radiation

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da; Wolk, I.; Som, M.M.

    1976-05-01

    A source free disordered distribution of electromagnetic radiation is considered in Einstein' theory, and a time independent exact solution with cylindrical symmetry is obtained. The gravitation and pressure effects of the radiation alone are sufficient to give the distribution an equilibrium. A finite maximum concentration is found on the axis of symmetry, and decreases monotonically to zero outwards. Timelike and null geodesics are discussed

  3. New exact solutions for two nonlinear equations

    International Nuclear Information System (INIS)

    Wang Quandi; Tang Minying

    2008-01-01

    In this Letter, we investigate two nonlinear equations given by u t -u xxt +3u 2 u x =2u x u xx +uu xxx and u t -u xxt +4u 2 u x =3u x u xx +uu xxx . Through some special phase orbits we obtain four new exact solutions for each equation above. Some previous results are extended

  4. Exact Optimum Design of Segmented Thermoelectric Generators

    Directory of Open Access Journals (Sweden)

    M. Zare

    2016-01-01

    Full Text Available A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs. Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency.

  5. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  6. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  7. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  8. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  9. Cycles atmosphériques O2-C02. Evolution, sédimentation et mise en réserve de l'énergie solaire (résumé Atmospheric O2-Co2 Cycles. Evolution, Sedimentation and Solar Energy Storage (Summary

    Directory of Open Access Journals (Sweden)

    Brunn J. H.

    2006-10-01

    is proposed, as a line for research and correlations, that cyclic reactions between C02 producing volcanism and 02 producing plants govern some aspects of evolution and sedimentation, in particular that of iron and organic matter coumpounds. Under Archean anoxic atmosphere and slow initial evolution, cycles were limited to the sea, with feed-back oscillations between ferrous iron and oxydising bacteria (Berckner and Marshall, Cloud. Development of blue Algue increased the O content. Insoluble ferric oxydes were retained on the continents (first Red Beds. Metazoa appeared, but being shelless (Ediacara fauna, they indicate that C02 content remained high until Lower Cambrian, when shells appeared. Poorly diversified floras induce ample cycles between Upper Precambrian and Upper Jurassic. Depletion of CO2 (Cambrian, Devonian, Permian favours animals especially Vertebrates development, deposition of Red Beds, limestones, evaporites (nebulosity low, climatic contrasts ; recharge of CO2 through volcanic-orogenic-activity (Ordovician, Dinantian, Upper Trias stimulates plant life, increases nebulosity, reduces climatic contrasts but precipitations develop polar ice caps. Easily achieved reducing conditions enable the accumulation of organic matter (Silurian, Pennsylvanian, Lias. Marine iron deposits occur at transition periods: Lower Ordovician, Lower Devonian, Upper Lias. From Upper Jurassic onwards, increasing complexity of floras reduce the amplitude of atmospheric cycles, but tendancies towards Red Beds, evaporites or organic matter deposits still alternate to some extent.

  10. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  11. Exact solutions and symmetry analysis for the limiting probability distribution of quantum walks

    International Nuclear Information System (INIS)

    Xu, Xin-Ping; Ide, Yusuke

    2016-01-01

    In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coin and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.

  12. Exact solutions and symmetry analysis for the limiting probability distribution of quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xin-Ping, E-mail: xuxp@mail.ihep.ac.cn [School of Physical Science and Technology, Soochow University, Suzhou 215006 (China); Ide, Yusuke [Department of Information Systems Creation, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, 221-8686 (Japan)

    2016-10-15

    In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coin and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.

  13. Periodic isolation of the southern coastal plain of South Africa and the evolution of modern humans over late Quaternary glacial to interglacial cycles

    Science.gov (United States)

    Compton, J. S.

    2012-04-01

    Humans evolved in Africa, but where in Africa and by what mechanisms remain unclear. The evolution of modern humans over the last million years is associated with the onset of major global climate fluctuations, glacial to interglacial cycles, related to the build up and melting of large ice sheets in the Northern Hemisphere. During interglacial periods, such as today, warm and wet climates favored human expansion but during cold and dry glacial periods conditions were harsh and habitats fragmented. These large climate fluctuations periodically expanded and contracted African ecosystems and led to human migrations to more hospitable glacial refugia. Periodic isolation of relatively small numbers of humans may have allowed for their rapid evolutionary divergence from the rest of Africa. During climate transitions these divergent groups may have then dispersed and interbred with other groups (hybridization). Two areas at the opposite ends of Africa stand out as regions that were periodically isolated from the rest of Africa: North Africa (the Maghreb) and the southern coastal plain (SCP) of South Africa. The Maghreb is isolated by the Sahara Desert which periodically greens and is reconnected to the rest of Africa during the transition from glacial to interglacial periods. The SCP of South Africa is isolated from the rest of Africa by the rugged mountains of the Cape Fold Belt associated with inedible vegetation and dry climates to the north. The SCP is periodically opened when sea level falls by up to 130 m during glacial maxima to expose the present day submerged inner continental shelf. A five-fold expansion of the SCP receiving more rainfall in glacial periods may have served as a refuge to humans and large migratory herds. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to

  14. Neutronic evolution of SENA reactor during the first and second cycles. Comparison between the experimental power distributions obtained from the in-core instrumentation evaluation code CIRCE and the theoretical power values computed with the two-dimensional diffusion-evolution code EVOE

    International Nuclear Information System (INIS)

    Andrieux, Chantal

    1976-03-01

    The neutronic evolution of the reacteur Sena during the first and second cycles is presented. The experimental power distributions, obtained from the in-core instrumentation evaluation code CIRCE are compared with the theoretical powers calculated with the two-dimensional diffusion-evolution code EVOE. The CIRCE code allows: the study of the evolution of the principal parameters of the core, the comparison of the results of measured and theoretical estimates. Therefore this study has a great interest for the knowledge of the neutronic evolution of the core, as well as the validation of the refinement of theoretical estimation methods. The core calculation methods and requisite data for the evaluation of the measurements are presented after a brief description of the SENA core and its inner instrumentation. The principle of the in-core instrumentation evaluation code CIRCE, and calculation of the experimental power distributions and nuclear core parameters are then exposed. The results of the evaluation are discussed, with a comparison of the theoretical and experimental results. Taking account of the approximations used, these results, as far as the first and second cycles at SENA are concerned, are satisfactory, the deviations between theoretical and experimental power distributions being lower than 3% at the middle of the reactor and 9% at the periphery [fr

  15. Exactly energy conserving semi-implicit particle in cell formulation

    International Nuclear Information System (INIS)

    Lapenta, Giovanni

    2017-01-01

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These

  16. Exactly energy conserving semi-implicit particle in cell formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be

    2017-04-01

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These

  17. Exact Markov chains versus diffusion theory for haploid random mating.

    Science.gov (United States)

    Tyvand, Peder A; Thorvaldsen, Steinar

    2010-05-01

    Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck. 2010 Elsevier Inc. All rights reserved.

  18. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  19. Exact computation of the 9-j symbols

    International Nuclear Information System (INIS)

    Lai Shantao; Chiu Jingnan

    1992-01-01

    A useful algebraic formula for the 9-j symbol has been rewritten for convenient use on a computer. A simple FORTRAN program for the exact computation of 9-j symbols has been written for the VAX with VMS version V5,4-1 according to this formula. The results agree with the approximate values in existing literature. Some specific values of 9-j symbols needed for the intensity and alignments of three-photon nonresonant transitions are tabulated. Approximate 9-j symbol values beyond the limitation of the computer can also be computed by this program. The computer code of the exact computation of 3-j, 6-j and 9-j symbols are available through electronic mail upon request. (orig.)

  20. Lattice sigma models with exact supersymmetry

    International Nuclear Information System (INIS)

    Simon Catterall; Sofiane Ghadab

    2004-01-01

    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)

  1. Model checking exact cost for attack scenarios

    DEFF Research Database (Denmark)

    Aslanyan, Zaruhi; Nielson, Flemming

    2017-01-01

    Attack trees constitute a powerful tool for modelling security threats. Many security analyses of attack trees can be seamlessly expressed as model checking of Markov Decision Processes obtained from the attack trees, thus reaping the benefits of a coherent framework and a mature tool support....... However, current model checking does not encompass the exact cost analysis of an attack, which is standard for attack trees. Our first contribution is the logic erPCTL with cost-related operators. The extended logic allows to analyse the probability of an event satisfying given cost bounds and to compute...... the exact cost of an event. Our second contribution is the model checking algorithm for erPCTL. Finally, we apply our framework to the analysis of attack trees....

  2. Exact folded-band chaotic oscillator.

    Science.gov (United States)

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  3. Exact geodesic distances in FLRW spacetimes

    Science.gov (United States)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  4. New exact solutions of the Dirac equation

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Lavrov, P.M.; Shapovalov, V.N.

    1980-01-01

    Search for new exact solutions of the Dirac and Klein-Gordon equations are in progress. Considered are general properties of the Dirac equation solutions for an electron in a purely magnetic field, in combination with a longitudinal magnetic and transverse electric fields. New solutions for the equations of charge motion in an electromagnetic field of axial symmetry and in a nonstationary field of a special form have been found for potentials selected concretely

  5. Exact BPS bound for noncommutative baby Skyrmions

    International Nuclear Information System (INIS)

    Domrin, Andrei; Lechtenfeld, Olaf; Linares, Román; Maceda, Marco

    2013-01-01

    The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory

  6. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  7. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  8. Exact Theory of Compressible Fluid Turbulence

    Science.gov (United States)

    Drivas, Theodore; Eyink, Gregory

    2017-11-01

    We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.

  9. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  10. Exact solutions of (3 + 1-dimensional generalized KP equation arising in physics

    Directory of Open Access Journals (Sweden)

    Syed Tauseef Mohyud-Din

    Full Text Available In this work, we have obtained some exact solutions to (3 + 1-dimensional generalized KP Equation. The improved tanϕ(ξ2-expansion method has been introduced to construct the exact solutions of nonlinear evolution equations. The obtained solutions include hyperbolic function solutions, trigonometric function solutions, exponential solutions, and rational solutions. Our study has added some new varieties of solutions to already available solutions. It is also worth mentioning that the computational work has been reduced significantly. Keywords: Improved tanϕ(ξ2-expansion method, Hyperbolic function solution, Trigonometric function solution, Rational solution, (3 + 1-dimensional generalized KP equation

  11. EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Abundant new travelling wave solutions to the BBM (Benjamin-Bona-Mahoni) equation are obtained by the generalized Jacobian elliptic function method. This method can be applied to other nonlinear evolution equations.

  12. Fluvial evolution of the Rhine during the last interglacial-glacial cycle in the southern North Sea basin : A review and look forward

    NARCIS (Netherlands)

    Peeters, Jan; Busschers, Freek S.; Stouthamer, Esther

    2015-01-01

    This paper presents the current state of knowledge on the evolution and depositional history of the River Rhine in the southern part of the North Sea basin during the upper Middle and Late Pleistocene, and its response to climate change, sea-level oscillation and glacio-isostasy. The study focuses

  13. Fluvial evolution of the Rhine during the last interglacial-glacial cycle in the southern North Sea basin: A review and look forward

    NARCIS (Netherlands)

    Peeters, J.; Busschers, F.S.; Stouthamer, E.

    2015-01-01

    This paper presents the current state of knowledge on the evolution and depositional history of the River Rhine in the southern part of the North Sea basin during the upper Middle and Late Pleistocene, and its response to climate change, sea-level oscillation and glacio-isostasy. The study focuses

  14. Quasi-exact solutions of nonlinear differential equations

    OpenAIRE

    Kudryashov, Nikolay A.; Kochanov, Mark B.

    2014-01-01

    The concept of quasi-exact solutions of nonlinear differential equations is introduced. Quasi-exact solution expands the idea of exact solution for additional values of parameters of differential equation. These solutions are approximate solutions of nonlinear differential equations but they are close to exact solutions. Quasi-exact solutions of the the Kuramoto--Sivashinsky, the Korteweg--de Vries--Burgers and the Kawahara equations are founded.

  15. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr

    Science.gov (United States)

    Li, Dawei; Zhao, Meixun; Tian, Jun

    2017-09-01

    Variability of the East Asian winter monsoon (EAWM), stronger during glacials and weaker during interglacials, has been tightly linked to the wax and wane of the Northern Hemisphere ice sheets (NHIS) via the Siberian High over the last 2.8 million years (Myr). However, the long eccentricity cycle (ca. 400 kyr) in the EAWM record from the late Pliocene to early-Pleistocene (2.8-1.2 Ma) could not be linked to NHIS changes, which lacked the long eccentricity cycle in the Pleistocene. Here, we present the first low latitude EAWM record of the last 2.8 Myr using surface and subsurface temperature difference from the northern South China Sea to evaluate interactions between tropical ocean and EAWM changes. The results show that the EAWM variability displayed significant 400 kyr cycle between 2.8 Ma and 1.2 Ma, with weak (strong) EAWM during high (low) earth orbital eccentricity state. A super El Niño-Southern Oscillation (ENSO) proxy record, calculated using west-east equatorial Pacific sea surface temperature differences, revealed 400 kyr cycles throughout the last 2.8 Myr with warm phase during high eccentricity state. Thus, we propose that super ENSO mean state strongly modulated the EAWM strength through remote forcing to generate the 400 kyr cycle between 2.8 Ma and 1.2 Ma, while low NHIS volume was not sufficient to dominate the EAWM variation as it did over the last 0.9 Myr with 100 kyr cycles in dominance.

  16. [Contribution to the study of Microphallidae Travassos 1920 (trematoda). XXXII. Microphallus breviatus n. sp., a species with an abbreviated evolutive cycle from a Mediterranean pond in the Languedoc].

    Science.gov (United States)

    Deblock, S; Maillard, C

    1975-01-01

    Contribution to the study of Microphallidae Travassos, 1920 (Trematoda). XXXII. - Microphallus breviatus n. sp., a short life-cycle species of a mediterranean pond of Languedoc. The whole larval life-cycle of M. breviatus takes place in one host, Hydrobia ventrosa (Montagu), Mollusc Hydrobiidae. Hepato-pancreatic sporocysts produce morphologically altered xiphidio-cercariae which become encysted metacercariae in the sporocyts themselves. This species is defined in the genus by the anatomic characteristics of its cercariae and metacercariae, allied with its uncommon biology including two hosts only.

  17. Exact tensor network ansatz for strongly interacting systems

    Science.gov (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  18. Evolution of gas turbine SGT5-4000F. Experiences at combined cycle plant Mainz-Wiesbaden; Die Evolution der Gasturbine SGT5-4000F. Erfahrungen im GuD-Kraftwerk Mainz-Wiesbaden

    Energy Technology Data Exchange (ETDEWEB)

    Taud, R.; Kreyenberg, O. [Siemens Power Generation, Nuernberg (Germany); Thun, O. [Kraftwerke Mainz-Wiesbaden AG, Mainz (Germany)

    2007-07-01

    Large combined-cycle plants using natural gas emerged as the outstanding trend in electricity production in the 1990s. Pacemaker for this development has been modern gas turbine technology. High efficiency and reliability, low emissions, high operating and fuel flexibility at low investment, together with short construction times, provide extremely attractive features to the customer. (orig.)

  19. Evolutionary relationships among cyst-forming coccidia Sarcocystis spp. (Alveolata: Apicomplexa: Coccidea) in endemic African tree vipers and perspective for evolution of heteroxenous life cycle

    Czech Academy of Sciences Publication Activity Database

    Šlapeta, Jan Roger; Modrý, David; Votýpka, Jan; Jirků, Milan; Lukeš, Julius; Koudela, Břetislav

    2003-01-01

    Roč. 27, č. 3 (2003), s. 464-475 ISSN 1055-7903 R&D Projects: GA ČR GA524/00/P015; GA AV ČR KSK6005114 Grant - others:GA FRVŠ(CZ) 1268/2001 Institutional research plan: CEZ:AV0Z6022909 Keywords : coccidia * Sarcocystis * evolution Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.826, year: 2003

  20. Observation Of Electron-beam-induced Phase Evolution Mimicking The Effect Of Charge-discharge Cycle In Li-rich Layered Cathode Materials Used For Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping; Yan, Pengfei; Romero, Eric; Spoerke, Erik D.; Zhang, Jiguang; Wang, Chong M.

    2015-02-24

    Capacity loss, and voltage fade upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O2 , TM = Ni, Co or Fe) have recently been identified to be correlated to the gradual phase transformation, featuring the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5 nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O2 (LMR) particles, which are identical to those reported due to the charge-discharge cycle but are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200 kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by energy dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LMR is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. This study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.

  1. An exact solution in Einstein-Cartan

    International Nuclear Information System (INIS)

    Roque, W.L.

    1982-01-01

    The exact solution of the field equations of the Einstein-Cartan theory is obtained for an artificial dust of radially polarized spins, with spherical symmetry and static. For a best estimation of the effect due the spin, the energy-momentum metric tensor is considered null. The gravitational field dynamics is studied for several torsion strengths, through the massive and spinless test-particle moviment, in particular for null torsion Schwarzschild solutions is again obtained. It is observed that the gravitational effects related to the torsin (spin) sometimes are attractives sometimes are repulsives, depending of the torsion values and of the test-particle position and velocity. (L.C.) [pt

  2. Exact renormalization group equations: an introductory review

    Science.gov (United States)

    Bagnuls, C.; Bervillier, C.

    2001-07-01

    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

  3. Exactly soluble problems in statistical mechanics

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    In the last few years, a number of two-dimensional classical and one-dimensional quantum mechanical problems in statistical mechanics have been exactly solved. Although these problems range over models of diverse physical interest, their solutions were obtained using very similar mathematical methods. In these lectures, the main points of the methods are discussed. In this introductory lecture, an overall survey of all these problems without going into the detailed method of solution is given. In later lectures, they shall concentrate on one particular problem: the delta function interaction in one dimension, and go into the details of that problem

  4. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...... optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem....

  5. Relic neutrino asymmetry evolution from first principles

    International Nuclear Information System (INIS)

    Bell, N.F.; Volkas, R.R.; Wong, Y.Y.Y.

    1998-09-01

    The exact Quantum Kinetic Equations for a two-flavour active-sterile neutrino system are used to provide a systematic derivation of approximate evolution equations for the relic neutrino asymmetry. An extension of the adiabatic approximation for matter-affected neutrino oscillations is developed which incorporates decoherence due to collisions. Exact and approximate expressions for the decoherence and repopulation functions are discussed. A first pass is made over the exact treatment of multi-flavour partially incoherent oscillations. (authors)

  6. The extended hyperbolic function method and exact solutions of the long-short wave resonance equations

    International Nuclear Information System (INIS)

    Shang Yadong

    2008-01-01

    The extended hyperbolic functions method for nonlinear wave equations is presented. Based on this method, we obtain a multiple exact explicit solutions for the nonlinear evolution equations which describe the resonance interaction between the long wave and the short wave. The solutions obtained in this paper include (a) the solitary wave solutions of bell-type for S and L, (b) the solitary wave solutions of kink-type for S and bell-type for L, (c) the solitary wave solutions of a compound of the bell-type and the kink-type for S and L, (d) the singular travelling wave solutions, (e) periodic travelling wave solutions of triangle function types, and solitary wave solutions of rational function types. The variety of structure to the exact solutions of the long-short wave equation is illustrated. The methods presented here can also be used to obtain exact solutions of nonlinear wave equations in n dimensions

  7. Exact and Heuristic Algorithms for Runway Scheduling

    Science.gov (United States)

    Malik, Waqar A.; Jung, Yoon C.

    2016-01-01

    This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.

  8. Exact model reduction of combinatorial reaction networks

    Directory of Open Access Journals (Sweden)

    Fey Dirk

    2008-08-01

    Full Text Available Abstract Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.

  9. Exact simulation of max-stable processes.

    Science.gov (United States)

    Dombry, Clément; Engelke, Sebastian; Oesting, Marco

    2016-06-01

    Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.

  10. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  11. Explicitly broken supersymmetry with exactly massless moduli

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Freedman, Daniel Z. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Zhao, Yue [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-16

    The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a supergravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.

  12. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    Science.gov (United States)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  13. Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap

    Science.gov (United States)

    Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi

    2018-05-01

    We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.

  14. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  15. Exact solutions for some discrete models of the Boltzmann equation

    International Nuclear Information System (INIS)

    Cabannes, H.; Hong Tiem, D.

    1987-01-01

    For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr

  16. Exact Solution and Exotic Fluid in Cosmology

    Directory of Open Access Journals (Sweden)

    Phillial Oh

    2012-09-01

    Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.

  17. A search for exact superstring vacua

    CERN Document Server

    Peterman, Andreas; Zichichi, Antonino

    1994-01-01

    We investigate $2d$ sigma-models with a $2+N$ dimensional Minkowski signature target space metric and Killing symmetry, specifically supersymmetrized, and see under which conditions they might lead to corresponding exact string vacua. It appears that the issue relies heavily on the properties of the vector $M_{\\mu}$, a reparametrization term, which needs to possess a definite form for the Weyl invariance to be satisfied. We give, in the $n = 1$ supersymmetric case, two non-renormalization theorems from which we can relate the $u$ component of $M_{\\mu}$ to the $\\beta^G_{uu}$ function. We work out this $(u,u)$ component of the $\\beta^G$ function and find a non-vanishing contribution at four loops. Therefore, it turns out that at order $\\alpha^{\\prime 4}$, there are in general non-vanishing contributions to $M_u$ that prevent us from deducing superstring vacua in closed form.

  18. Interference-exact radiative transfer equation

    DEFF Research Database (Denmark)

    Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani

    2017-01-01

    Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....

  19. Exact iterative reconstruction for the interior problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2009-01-01

    There is a trend in single photon emission computed tomography (SPECT) that small and dedicated imaging systems are becoming popular. For example, many companies are developing small dedicated cardiac SPECT systems with different designs. These dedicated systems have a smaller field of view (FOV) than a full-size clinical system. Thus data truncation has become the norm rather than the exception in these systems. Therefore, it is important to develop region of interest (ROI) reconstruction algorithms using truncated data. This paper is a stepping stone toward this direction. This paper shows that the common generic iterative image reconstruction algorithms are able to exactly reconstruct the ROI under the conditions that the convex ROI is fully sampled and the image value in a sub-region within the ROI is known. If the ROI includes a sub-region that is outside the patient body, then the conditions can be easily satisfied.

  20. On truncations of the exact renormalization group

    CERN Document Server

    Morris, T R

    1994-01-01

    We investigate the Exact Renormalization Group (ERG) description of (Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,\\dots, obtained by expanding about the field \\varphi=0 and discarding all powers \\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.

  1. Exact solutions to operator differential equations

    International Nuclear Information System (INIS)

    Bender, C.M.

    1992-01-01

    In this talk we consider the Heisenberg equations of motion q = -i(q, H), p = -i(p, H), for the quantum-mechanical Hamiltonian H(p, q) having one degree of freedom. It is a commonly held belief that such operator differential equations are intractable. However, a technique is presented here that allows one to obtain exact, closed-form solutions for huge classes of Hamiltonians. This technique, which is a generalization of the classical action-angle variable methods, allows us to solve, albeit formally and implicitly, the operator differential equations of two anharmonic oscillators whose Hamiltonians are H = p 2 /2 + q 4 /4 and H = p 4 /4 + q 4 /4

  2. Exact solutions to chaotic and stochastic systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.; Guerrero, L. E.

    2001-03-01

    We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of these functions can produce truly random numbers. For the first time, we present solutions to random maps. This allows us to check, analytically, some recent results about the complexity of random dynamical systems. We confirm the result that a negative Lyapunov exponent does not imply predictability in random systems. We test the effectiveness of forecasting methods in distinguishing between chaotic and random time series. Using the explicit random functions, we can give explicit analytical formulas for the output signal in some systems with stochastic resonance. We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our models we can predict specific patterns in the output signal of stochastic resonance systems.

  3. Exactly soluble QCD and confinement of quarks

    International Nuclear Information System (INIS)

    Rusakov, B.

    1997-01-01

    An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)

  4. Exact classical scaling formalism for nonreactive processes

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1981-01-01

    A general nonreactive collision system is considered with internal molecular variables (p, r) and/or (I, theta) of arbitrary dimensions and relative translational variables (P, R) of three or less dimensions. We derive an exact classical scaling formalism which relates the collisional change in any function of molecular variables directly to the initial values of these variables. The collision dynamics is then described by an explicit function of the initial point in the internal molecular phase space, for a fixed point in the relative translational phase space. In other words, the systematic variation of the internal molecular properties (e.g., actions and average internal kinetic energies) is given as a function of the initial internal action-angle variables. A simple three term approximation to the exact formalism is derived, the natural variables of which are the internal action I and internal linear momenta p. For the final average internal kinetic energies T, the result is T-T/sup( 0 ) = α+βp/sup( 0 )+γI/sup( 0 ), where the superscripted ''0'' indicates the initial value. The parameters α, β, and γ in this scaling theory are directly related to the moments of the change in average internal kinetic energy. Utilizing a very limited number of input moments generated from classical trajectory calculations, the scaling can be used to predict the entire distribution of final internal variables as a function of initial internal actions and linear momenta. Initial examples for atom--collinear harmonic oscillator collision systems are presented in detail, with the scaling predictions (e.g., moments and quasiclassical histogram transition probabilities) being generally very good to excellent quantitatively

  5. INDEFINITE COPOSITIVE MATRICES WITH EXACTLY ONE POSITIVE EIGENVALUE OR EXACTLY ONE NEGATIVE EIGENVALUE

    NARCIS (Netherlands)

    Jargalsaikhan, Bolor

    Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out

  6. Annual cycle of Scots pine photosynthesis

    Directory of Open Access Journals (Sweden)

    P. Hari

    2017-12-01

    Full Text Available Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity, using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L. photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  7. Annual cycle of Scots pine photosynthesis

    Science.gov (United States)

    Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana

    2017-12-01

    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  8. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles.

    Science.gov (United States)

    Liu, Yang; Hudak, Nicholas S; Huber, Dale L; Limmer, Steven J; Sullivan, John P; Huang, Jian Yu

    2011-10-12

    Lithiation-delithiation cycles of individual aluminum nanowires (NWs) with naturally oxidized Al(2)O(3) surface layers (thickness 4-5 nm) were conducted in situ in a transmission electron microscope. Surprisingly, the lithiation was always initiated from the surface Al(2)O(3) layer, forming a stable Li-Al-O glass tube with a thickness of about 6-10 nm wrapping around the NW core. After lithiation of the surface Al(2)O(3) layer, lithiation of the inner Al core took place, which converted the single crystal Al to a polycrystalline LiAl alloy, with a volume expansion of about 100%. The Li-Al-O glass tube survived the 100% volume expansion, by enlarging through elastic and plastic deformation, acting as a solid electrolyte with exceptional mechanical robustness and ion conduction. Voids were formed in the Al NWs during the initial delithiation step and grew continuously with each subsequent delithiation, leading to pulverization of the Al NWs to isolated nanoparticles confined inside the Li-Al-O tube. There was a corresponding loss of capacity with each delithiation step when arrays of NWs were galvonostatically cycled. The results provide important insight into the degradation mechanism of lithium-alloy electrodes and into recent reports about the performance improvement of lithium ion batteries by atomic layer deposition of Al(2)O(3) onto the active materials or electrodes.

  9. On the ability of some cyclic plasticity models to predict the evolution of stored energy in a type 304L stainless steel submitted to high cycle fatigue

    International Nuclear Information System (INIS)

    Vincent, L.

    2008-01-01

    Fatigue analyses of materials are generally based on a so-called stabilized cycle, on which plastic strain amplitude, plastic energy, maximum shear stress and so on are determined. The part of plastic energy which is dissipated in heat cannot be used to accumulate damage and it should be worthwhile extracting only the part of plastic energy which is stored in material microstructure in order to build a consistent damage model. In this paper, some cyclic plasticity models including a polycrystalline model are reformulated in the thermodynamic framework in order to test their capacity to predict both the stress-strain behaviour and the partition of plastic energy for a high cycle fatigue test on a type 304L stainless steel. For an equivalent description of stress-strain loops, the number of kinematic hardening variables chosen in a model may qualitatively alter the prediction of plastic energy partition due to the modification of the isotropic hardening variable. Measurements of the specimen temperature increase due to plastic dissipation is therefore proposed as a convenient complementary experimental data to identify the constitutive equation of the isotropic hardening variable of a cyclic plasticity model. (author)

  10. Evolution of the microstructure and follow-up of the damage in a duplex steel fatigued in a low number of cycles

    International Nuclear Information System (INIS)

    Martinelli, Ma C; Alvarez, I; Malarria, J.A

    2004-01-01

    This work involves carrying out a follow-up of the surface damage to super duplex SAF 2507 stainless steel, cycle deformed with a total deformation range Δε t = 0.8%, until the first fissures appear and correlate with the structure of dislocations. A thin layer preparation technique for transmission electron microscopy was used for this purpose, which preserves one of the faces of the fatigued test piece containing all the surface information. The dislocation structures, crystallographic characteristics and the initiation of fissures in the deformation bands with the surface damage can be studied and correlated. The mechanical tests were carried out for deformation control with a deformation speed of dε/dt = 3 x 10 -3 s -1 . The tests were done for different numbers of cycles and the surface damage was observed under an optic microscope with the contrasting differential interference technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The propagation of the slippage lines on the surface could be observed from the austenitic to the ferritic phase, as well as bands of intense deformation and the formation of persistent slippage bands (PSBs), initiation and propagation of fissures relating the structure of dislocations on the surface and just below this in order to connect the location of the plastic deformation and the beginning of the fissure (CW)

  11. Exact solitary waves of the Korteveg - de Vries - Burgers equation

    OpenAIRE

    Kudryashov, N. A.

    2004-01-01

    New approach is presented to search exact solutions of nonlinear differential equations. This method is used to look for exact solutions of the Korteveg -- de Vries -- Burgers equation. New exact solitary waves of the Korteveg -- de Vries -- Burgers equation are found.

  12. Approximating maximum weight cycle covers in directed graphs with weights zero and one

    NARCIS (Netherlands)

    Bläser, Markus; Manthey, Bodo

    2005-01-01

    A cycle cover of a graph is a spanning subgraph each node of which is part of exactly one simple cycle. A $k$-cycle cover is a cycle cover where each cycle has length at least $k$. Given a complete directed graph with edge weights zero and one, Max-$k$-DCC(0, 1) is the problem of finding a k-cycle

  13. First-cycle defect evolution of Li1-xNi1/3Mn1/3Co1/3O2 lithium ion battery electrodes investigated by positron annihilation spectroscopy

    Science.gov (United States)

    Seidlmayer, Stefan; Buchberger, Irmgard; Reiner, Markus; Gigl, Thomas; Gilles, Ralph; Gasteiger, Hubert A.; Hugenschmidt, Christoph

    2016-12-01

    In this study the structure and evolution of vacancy type defects in lithium ion batteries are investigated in respect of crystallographic properties. The relation between positron annihilation and electronic structure is discussed in terms of structural dynamics during the lithiation process. Samples of Li1-xNi1/3Mn1/3Co1/3O2 (NMC-111) electrodes with decreasing lithium content (x = 0-0.7) covering the whole range of state of charge were electrochemically prepared for the non-destructive analysis using positron coincidence Doppler broadening spectroscopy (CDBS). The positron measurements allowed us to observe the evolution of the defect structure caused by the delithiation process in the NMC-111 electrodes. The combination of CDBS with X-ray diffraction for the characterization of the lattice structures enabled the analysis of the well-known kinetic-hindrance-effect in the first charge-discharge cycle and possible implications of vacancy ordering. In particular, CDBS revealed the highest degree of relithiation after discharge to 3.0 V at 55 °C. For the first time, we report on the successful application of CDBS on NMC-111 electrodes yielding new insights in the important role of defects caused by the delithiation process and the kinetic hindrance effect.

  14. Global structure of exact scalar hairy dynamical black holes

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Chen, Bin [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Collaborative Innovation Center of Quantum Matter,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing, 100875 P.R. (China)

    2016-05-30

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/(n−1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  15. Pressure in an exactly solvable model of active fluid

    Science.gov (United States)

    Marini Bettolo Marconi, Umberto; Maggi, Claudio; Paoluzzi, Matteo

    2017-07-01

    We consider the pressure in the steady-state regime of three stochastic models characterized by self-propulsion and persistent motion and widely employed to describe the behavior of active particles, namely, the Active Brownian particle (ABP) model, the Gaussian colored noise (GCN) model, and the unified colored noise approximation (UCNA) model. Whereas in the limit of short but finite persistence time, the pressure in the UCNA model can be obtained by different methods which have an analog in equilibrium systems, in the remaining two models only the virial route is, in general, possible. According to this method, notwithstanding each model obeys its own specific microscopic law of evolution, the pressure displays a certain universal behavior. For generic interparticle and confining potentials, we derive a formula which establishes a correspondence between the GCN and the UCNA pressures. In order to provide explicit formulas and examples, we specialize the discussion to the case of an assembly of elastic dumbbells confined to a parabolic well. By employing the UCNA we find that, for this model, the pressure determined by the thermodynamic method coincides with the pressures obtained by the virial and mechanical methods. The three methods when applied to the GCN give a pressure identical to that obtained via the UCNA. Finally, we find that the ABP virial pressure exactly agrees with the UCNA and GCN results.

  16. Construction of exact solutions for the Stern-Gerlach effect

    International Nuclear Information System (INIS)

    Diaz Bulnes, J.; Oliveira, I.S.

    2001-01-01

    We obtain exact solutions for the Schroedinger-Pauli matrix equation for a neutral particle of spin 1/2 in a magnetic field with a field gradient. The analytical wave functions are written on the symmetry plane Y = 0, which contains the incident and splitted beams, in terms of the Airy functions. The time-evolution of the probability, |Ψ+| 2 and |Ψ-| 2 , and the eigenenergies are calculated. The include a small contribution from the field gradient, α, proportional to (α ℎ) 2/3 , which amount to equal energy displacements on both magnetic levels. The results are generalized for spin S = 3/2, and in this case we found that the m = ±1/2 and m = ±3/2 magnetic sublevels are unequally splitted by the field gradient, being the difference in energy of the order 0.4 MHz. Replacing real experimental parameters we obtained a spatial splitting of the spin up and spin down states of the order Δz ≅4 mm, in accordance to a real Stern-Gerlach experiment. (author)

  17. Duality invariant class of exact string backgrounds

    CERN Document Server

    Klimcík, C

    1994-01-01

    We consider a class of $2+D$ - dimensional string backgrounds with a target space metric having a covariantly constant null Killing vector and flat `transverse' part. The corresponding sigma models are invariant under $D$ abelian isometries and are transformed by $O(D,D)$ duality into models belonging to the same class. The leading-order solutions of the conformal invariance equations (metric, antisymmetric tensor and dilaton), as well as the action of $O(D,D)$ duality transformations on them, are exact, i.e. are not modified by $\\a'$-corrections. This makes a discussion of different space-time representations of the same string solution (related by $O(D,D|Z)$ duality subgroup) rather explicit. We show that the $O(D,D)$ duality may connect curved $2+D$-dimensional backgrounds with solutions having flat metric but, in general, non-trivial antisymmetric tensor and dilaton. We discuss several particular examples including the $2+D=4$ - dimensional background that was recently interpreted in terms of a WZW model.

  18. Exact-exchange-based quasiparticle calculations

    International Nuclear Information System (INIS)

    Aulbur, Wilfried G.; Staedele, Martin; Goerling, Andreas

    2000-01-01

    One-particle wave functions and energies from Kohn-Sham calculations with the exact local Kohn-Sham exchange and the local density approximation (LDA) correlation potential [EXX(c)] are used as input for quasiparticle calculations in the GW approximation (GWA) for eight semiconductors. Quasiparticle corrections to EXX(c) band gaps are small when EXX(c) band gaps are close to experiment. In the case of diamond, quasiparticle calculations are essential to remedy a 0.7 eV underestimate of the experimental band gap within EXX(c). The accuracy of EXX(c)-based GWA calculations for the determination of band gaps is as good as the accuracy of LDA-based GWA calculations. For the lowest valence band width a qualitatively different behavior is observed for medium- and wide-gap materials. The valence band width of medium- (wide-) gap materials is reduced (increased) in EXX(c) compared to the LDA. Quasiparticle corrections lead to a further reduction (increase). As a consequence, EXX(c)-based quasiparticle calculations give valence band widths that are generally 1-2 eV smaller (larger) than experiment for medium- (wide-) gap materials. (c) 2000 The American Physical Society

  19. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  20. STELLAR: fast and exact local alignments

    Directory of Open Access Journals (Sweden)

    Weese David

    2011-10-01

    Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

  1. Exact renormalization group for gauge theories

    International Nuclear Information System (INIS)

    Balaban, T.; Imbrie, J.; Jaffe, A.

    1984-01-01

    Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study

  2. Lie symmetries for systems of evolution equations

    Science.gov (United States)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2018-01-01

    The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.

  3. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Science.gov (United States)

    Xu, Weimu; Ruhl, Micha; Jenkyns, Hugh C.; Leng, Melanie J.; Huggett, Jennifer M.; Minisini, Daniel; Ullmann, Clemens V.; Riding, James B.; Weijers, Johan W. H.; Storm, Marisa S.; Percival, Lawrence M. E.; Tosca, Nicholas J.; Idiz, Erdem F.; Tegelaar, Erik W.; Hesselbo, Stephen P.

    2018-02-01

    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13 C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition.

  4. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles

    Science.gov (United States)

    Malakhova, Valentina V.; Eliseev, Alexey V.

    2017-10-01

    Climate warming may lead to degradation of the subsea permafrost developed during Pleistocene glaciations and release methane from the hydrates, which are stored in this permafrost. It is important to quantify time scales at which this release is plausible. While, in principle, such time scale might be inferred from paleoarchives, this is hampered by considerable uncertainty associated with paleodata. In the present paper, to reduce such uncertainty, one-dimensional simulations with a model for thermal state of subsea sediments forced by the data obtained from the ice core reconstructions are performed. It is shown that heat propagates in the sediments with a time scale of ∼ 10-20 kyr. This time scale is longer than the present interglacial and is determined by the time needed for heat penetration in the unfrozen part of thick sediments. We highlight also that timings of shelf exposure during oceanic regressions and flooding during transgressions are important for simulating thermal state of the sediments and methane hydrates stability zone (HSZ). These timings should be resolved with respect to the contemporary shelf depth (SD). During glacial cycles, the temperature at the top of the sediments is a major driver for moving the HSZ vertical boundaries irrespective of SD. In turn, pressure due to oceanic water is additionally important for SD ≥ 50 m. Thus, oceanic transgressions and regressions do not instantly determine onsets of HSZ and/or its disappearance. Finally, impact of initial conditions in the subsea sediments is lost after ∼ 100 kyr. Our results are moderately sensitive to intensity of geothermal heat flux.

  5. The software life cycle

    CERN Document Server

    Ince, Darrel

    1990-01-01

    The Software Life Cycle deals with the software lifecycle, that is, what exactly happens when software is developed. Topics covered include aspects of software engineering, structured techniques of software development, and software project management. The use of mathematics to design and develop computer systems is also discussed. This book is comprised of 20 chapters divided into four sections and begins with an overview of software engineering and software development, paying particular attention to the birth of software engineering and the introduction of formal methods of software develop

  6. Evolution of biogeochemical cycling of phosphorus during 45~50 Ma revealed by sequential extraction analysis of IODP Expedition 302 cores from the Arctic Ocean

    Science.gov (United States)

    Hashimoto, S.; Yamaguchi, K. E.; Takahashi, K.

    2012-12-01

    The modern Arctic Ocean plays crucial roles in controlling global climate system with the driving force of global thermohaline circulation through the formation of dense deep water and high albedo due to the presence of perennial sea-ice. However, the Arctic sea-ice has not always existed in the past. Integrated Ocean Drilling Program (IODP) Expedition 302 Arctic Coring Expedition (ACEX) has clarified that global warming (water temperature: ca. 14~16○C) during 48~49 Ma Azolla Event induced the loss of sea-ice and desalination of surface ocean, and that sea-ice formed again some million years later (45 Ma). In the Arctic Ocean, warming and cooling events repeated over and over (e.g., Brinkhuis et al., 2006; Moran et al., 2006; März et al., 2010). Large variations in the extent of thermohaline circulation through time often caused stagnation of seawater and appearance of anaerobic environment where hydrogen sulfide was produced by bacterial sulfate reduction. Ogawa et al. (2009) confirmed occurrence of framboidal pyrite in the ACEX sediments, and suggested that the Arctic Ocean at the time was anoxic, analogous to the modern Black Sea, mainly based on sulfur isotope analysis. To further clarify the variations in the nutrient status of the Arctic Ocean, we focus on the geochemical cycle of phosphorus. We performed sequential extraction analysis of sedimentary phosphorus in the ACEX sediments, using the method that we improvped based on the original SEDEX method by Ruttenberg (1992) and Schenau et al. (2000). In our method, phosphorus fractions are divided into five forms; (1) absorbed P, (2) Feoxide-P, (4) carbonate fluorapatite (CFAP) + CaCO3-P + hydroxylapatite (HAP), (4) detrital P, and (5) organic P. Schenau et al. (2000) divided the (3) fraction into non-biological CFAP and biological HAP and CaCO3-P. When the Arctic Ocean was closed and in its warming period, the water mass was most likely stratified and an anaerobic condition would have prevailed where

  7. Time measurement - technical importance of most exact clocks

    International Nuclear Information System (INIS)

    Goebel, E.O.; Riehle, F.

    2004-01-01

    The exactness of the best atomic clocks currently shows a temporal variation of 1 second in 30 million years. This means that we have reached the point of the most exact frequency and time measurement ever. In the past, there was a trend towards increasing the exactness in an increasingly fast sequence. Will this trend continue? And who will profit from it? This article is meant to give answers to these questions. This is done by presenting first the level reached currently with the best atomic clocks and describing the research activities running worldwide with the aim of achieving even more exact clocks. In the second part, we present examples of various areas of technical subjects and research in which the most exact clocks are being applied presently and even more exact ones will be needed in the future [de

  8. Upper bounds on minimum cardinality of exact and approximate reducts

    KAUST Repository

    Chikalov, Igor

    2010-01-01

    In the paper, we consider the notions of exact and approximate decision reducts for binary decision tables. We present upper bounds on minimum cardinality of exact and approximate reducts depending on the number of rows (objects) in the decision table. We show that the bound for exact reducts is unimprovable in the general case, and the bound for approximate reducts is almost unimprovable in the general case. © 2010 Springer-Verlag Berlin Heidelberg.

  9. A class of exact solutions to the Einstein field equations

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R K

    2012-01-01

    The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)

  10. Exact gravitational quasinormal frequencies of topological black holes

    International Nuclear Information System (INIS)

    Birmingham, Danny; Mokhtari, Susan

    2006-01-01

    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies

  11. A Class of Quasi-exact Solutions of Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.

    2007-01-01

    A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.

  12. The exact wavefunction factorization of a vibronic coupling system

    International Nuclear Information System (INIS)

    Chiang, Ying-Chih; Klaiman, Shachar; Otto, Frank; Cederbaum, Lorenz S.

    2014-01-01

    We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation

  13. Lessons on electronic decoherence in molecules from exact modeling

    Science.gov (United States)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  14. Glitches: The Exact Quantum Signatures of Pulsars Metamorphosis

    Science.gov (United States)

    Hujeirat, A. A.

    2018-03-01

    The observed recurrence of glitches in pulsars and neutron stars carries rich information about the evolution of their internal structures. In this article, I show that the glitch-events observed in pulsars are exact quantum signatures for their metamorphosis into dark super-baryons (SBs), whose interiors are made of purely incompressible superconducting gluon-quark superfluids. Here the quantum nuclear shell model is adopted to describe the permitted energy levels of the SB, which are assumed to be identical to the discrete spinning rates Ω_{SB} that SBs are allowed to rotate with. Accordingly, a glitch-event corresponds to a prompt spin-down of the superconducting SB from one energy level to the next, thereby expelling a certain number of vortices, which in turn spins up the ambient medium. The process is provoked mainly by the negative torque of the ambient dissipative nuclear fluid and by a universal scalar field φ at the background of a supranuclear dense matter. As dictated by the Onsager-Feynman equation, the prompt spin-down must be associated with increase of the dimensions of the embryonic SB to finally convert the entire pulsar into SB-Objects on the scale of Gyrs. Based on our calculations, a Vela-like pulsar should display billions of glitches during its lifetime, before it metamorphoses entirely into a maximally compact SB-object and disappears from our observational windows. The present model predicts the mass of SBs and ΔΩ/Ω in young pulsars to be relatively lower than their older counterparts

  15. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  16. Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

    Science.gov (United States)

    Yuan, Na

    2018-04-01

    With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.

  17. Exact Boundary Controllability of Electromagnetic Fields in a General Region

    International Nuclear Information System (INIS)

    Eller, M. M.; Masters, J. E.

    2002-01-01

    We prove exact controllability for Maxwell's system with variable coefficients in a bounded domain by a current flux in the boundary. The proof relies on a duality argument which reduces the proof of exact controllability to the proof of continuous observability for the homogeneous adjoint system. There is no geometric restriction imposed on the domain

  18. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  19. Exact solution for the generalized Telegraph Fisher's equation

    International Nuclear Information System (INIS)

    Abdusalam, H.A.; Fahmy, E.S.

    2009-01-01

    In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.

  20. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  1. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  2. Exact Cover Problem in Milton Babbitt's All-partition Array

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set...

  3. New exact solutions of the Dirac equation. 11

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Noskov, M.D.

    1984-01-01

    Investigations into determining new exact solutions of relativistic wave equations started in another paper were continued. Exact solutions of the Dirac, Klein-Gordon equations and classical relativistic equations of motion in four new types of external electromagnetic fields were found

  4. New exact travelling wave solutions for the Ostrovsky equation

    International Nuclear Information System (INIS)

    Kangalgil, Figen; Ayaz, Fatma

    2008-01-01

    In this Letter, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. In order to illustrate the validity and the advantages of the method we choose the Ostrovsky equation. As a result, many new and more general exact solutions have been obtained for the equation

  5. Energy vs. density on paths toward exact density functionals

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2018-01-01

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a “path”. Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness...

  6. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  7. Exact traveling wave solutions of the Boussinesq equation

    International Nuclear Information System (INIS)

    Ding Shuangshuang; Zhao Xiqiang

    2006-01-01

    The repeated homogeneous balance method is used to construct exact traveling wave solutions of the Boussinesq equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions of the Boussinesq equation are successfully obtained

  8. Exact Solutions of Fragmentation Equations with General Fragmentation Rates and Separable Particles Distribution Kernels

    Directory of Open Access Journals (Sweden)

    S. C. Oukouomi Noutchie

    2014-01-01

    Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.

  9. Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations

    International Nuclear Information System (INIS)

    Chen Yong; Wang Qi; Li Biao

    2005-01-01

    Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham-Broer-Kaup equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our proposed method with the method by Fan [Chaos, Solitons and Fractals 2004;20:609], are also clarified generally

  10. Exact series solution to the two flavor neutrino oscillation problem in matter

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy

    2004-01-01

    In this paper, we present a real nonlinear differential equation for the two flavor neutrino oscillation problem in matter with an arbitrary density profile. We also present an exact series solution to this nonlinear differential equation. In addition, we investigate numerically the convergence of this solution for different matter density profiles such as constant and linear profiles as well as the Preliminary Reference Earth Model describing the Earth's matter density profile. Finally, we discuss other methods used for solving the neutrino flavor evolution problem

  11. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  12. Dissociation between exact and approximate addition in developmental dyslexia.

    Science.gov (United States)

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Evolution of the Joint ATO Cycle

    National Research Council Canada - National Science Library

    Winkler, Robert P

    2006-01-01

    .... The paper shows that the command and control process in current Joint Doctrine evolved over time to with particular attention paid to meeting the land component objectives using AirLand battle doctrine...

  14. Exact solutions of nonlinear differential equations using continued fractions

    International Nuclear Information System (INIS)

    Ditto, W.L.; Pickett, T.J.

    1990-01-01

    The continued-fraction conversion method (J. Math. Phys. (N.Y.), 29, 1761 (1988)) is used to generate a homologous family of exact solutions to the Lane-Emden equation φ(r) '' + 2φ(r)'/r + αφ(r) p = 0, for p=5. An exact solution is also obtained for a generalization of the Lane-Emden equation of the form -φ '' (r) -2φ(r)'/r + αφ(r) 2p+1 + λφ(r) 4p+1 = 0 for arbitrary α, γ and p. A condition is established for the generation of exact solutions from the method

  15. Exact Cover Problem in Milton Babbitt's All-partition Array

    OpenAIRE

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set, A, and a collection of distinct subsets of this set, S, then a subset of S is an exact cover of A if it exhaustively and exclu- sively partitions A. We provide a backtracking algorithm for solving ...

  16. Stochastic epidemic-type model with enhanced connectivity: exact solution

    International Nuclear Information System (INIS)

    Williams, H T; Mazilu, I; Mazilu, D A

    2012-01-01

    We present an exact analytical solution to a one-dimensional model of the susceptible–infected–recovered (SIR) epidemic type, with infection rates dependent on nearest-neighbor occupations. We use a quantum mechanical approach, transforming the master equation via a quantum spin operator formulation. We calculate exactly the time-dependent density of infected, recovered and susceptible populations for random initial conditions. Our results compare well with those of previous work, validating the model as a useful tool for additional and extended studies in this important area. Our model also provides exact solutions for the n-point correlation functions, and can be extended to more complex epidemic-type models

  17. The exact mass-gaps of the principal chiral models

    CERN Document Server

    Hollowood, Timothy J

    1994-01-01

    An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.

  18. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  19. Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term

    International Nuclear Information System (INIS)

    Shang Yadong

    2005-01-01

    In this paper, the evolution equations with strong nonlinear term describing the resonance interaction between the long wave and the short wave are studied. Firstly, based on the qualitative theory and bifurcation theory of planar dynamical systems, all of the explicit and exact solutions of solitary waves are obtained by qualitative seeking the homoclinic and heteroclinic orbits for a class of Lienard equations. Then the singular travelling wave solutions, periodic travelling wave solutions of triangle functions type are also obtained on the basis of the relationships between the hyperbolic functions and that between the hyperbolic functions with the triangle functions. The varieties of structure of exact solutions of the generalized long-short wave equation with strong nonlinear term are illustrated. The methods presented here also suitable for obtaining exact solutions of nonlinear wave equations in multidimensions

  20. Topological soliton solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-03-01

    Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.

  1. Explicatory Dictionary for Exact Sciences. Romanian/English/French

    International Nuclear Information System (INIS)

    Dragan, Gleb; Rapeanu, S.N.; Comsa, Olivia

    1999-01-01

    The explicative dictionary for general terminology for nuclear energy accomplished in the frame of the Commission for Scientific Terminology of the Romanian Academy represents the first issue in a series devoted to definition of most utilised terms in various fields of nuclear energy, nuclear power, nuclear fuel cycle, radioactive waste, nuclear safety, radioprotection and dosimetry, nuclear reactors, safeguards, nuclear sciences and technologies, legal aspects and regulations, etc. The main body of the dictionary's contents was selected out by specialists working with the Center of Technology and Engineering for Nuclear Projects - CITON, based on their experience of more than 20 years in introducing and implementing nuclear power in Romania, as well as, on collaboration with research institutes of the nuclear physics and energy. Under the guidance of continuos build-up and evolution the present work is intended to be upgraded permanently. The explanation of the terms was based on SR ISO standards, terminology adopted by Organization for Economic and Cooperation Development, OECD/NEA, and IAEA. This series is targeting translators specialists, and the public at large

  2. Cretaceous paleogeography and depositional cycles of western South America

    Science.gov (United States)

    Macellari, C. E.

    The western margin of South America was encroached upon by a series of marine advances that increased in extent from the Early Cretaceous to a maximum in the early Late Cretaceous for northern South America (Venezuela to Peru). In southern South America, however, the area covered by the marine advances decreased from a maximum in the Early Cretaceous to a minimum during mid-Cretaceous time, followed by a widespread advance at the end of the period. A series of unconformity-bounded depositional cycles was recognized in these sequences: five cycles in northern South America, and six (but not exactly equivalent) cycles in the Cretaceous back-arc basins of southern South America (Neuquén and Austral, or Magallanes, Basins). Both widespread anoxic facies and maximum flooding of the continent in northern South America coincide in general terms with recognized global trends, but this is not the case in southern South America. Here, anoxic facies are restricted to the Lower Cretaceous and seem to be controlled by local aspects of the basin evolution and configuration. The contrasts observed between northern and southern South America can be explained by differences in tectonic setting and evolution. To the north, sediments were deposited around the tectonically stable Guayana-Brazilian Massifs, and thus registered global "signals" such as anoxic events and major eustatic changes. The southern portion of the continent, on the contrary, developed in an active tectonic setting. Here, the mid-Cretaceous Peruvian Orogeny overprinted, to a large extent, world-wide trends and only the earliest and latest Cretaceous conform to global depositional patterns.

  3. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    Science.gov (United States)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  4. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  5. Exact renormalization group as a scheme for calculations

    International Nuclear Information System (INIS)

    Mack, G.

    1985-10-01

    In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)

  6. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from

  7. New exact travelling wave solutions of bidirectional wave equations

    Indian Academy of Sciences (India)

    Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea. ∗ ... exact travelling wave solutions of system (1) using the modified tanh–coth function method ... The ordinary differential equation is then integrated.

  8. Exact solutions to some nonlinear PDEs, travelling profiles method

    Directory of Open Access Journals (Sweden)

    Noureddine Benhamidouche

    2008-04-01

    \\end{equation*} by a new method that we call the travelling profiles method. This method allows us to find several forms of exact solutions including the classical forms such as travelling-wave and self-similar solutions.

  9. Exact travelling wave solutions for some important nonlinear ...

    Indian Academy of Sciences (India)

    The study of nonlinear partial differential equations is an active area of research in applied mathematics, theoretical physics and engineering fields. In particular ... In [16–18], the author applied this method to construct the exact solutions of.

  10. Exact solutions to the Lienard equation and its applications

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2004-01-01

    In this paper, a kind of explicit exact solutions to the Lienard equation is obtained, and the applications of the result in seeking traveling solitary wave solution of the nonlinear Schroedinger equation are presented

  11. Exact Analysis of the Cache Behavior of Nested Loops

    National Research Council Canada - National Science Library

    Chatterjee, Siddhartha; Parker, Erin; Hanlon, Philip J; Lebeck, Alvin R

    2001-01-01

    The authors develop from first principles an exact model of the behavior of loop nests executing in a memory hierarchy by using a nontraditional classification of misses that has the key property of composability...

  12. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)

    Jefta M Sunzu

    2017-09-05

    Sep 5, 2017 ... The exact solutions corresponding to our models are found explicitly in terms of elementary ...... PD extends his appre- ciation to the President Office (Local Governments and ... Kwazulu-Natal, Howard College, April 2004).

  13. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  14. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  15. Exactness of supersymmetric WKB method for translational shape invariant potentials

    International Nuclear Information System (INIS)

    Cheng, K M; Leung, P T; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs

  16. Corollary from the Exact Expression for Enthalpy of Vaporization

    OpenAIRE

    A. A. Sobko

    2011-01-01

    A problem on determining effective volumes for atoms and molecules becomes actual due to rapidly developing nanotechnologies. In the present study an exact expression for enthalpy of vaporization is obtained, from which an exact expression is derived for effective volumes of atoms and molecules, and under certain assumptions on the form of an atom (molecule) it is possible to find their linear dimensions. The accuracy is only determined by the accuracy of measurements of thermodynamic paramet...

  17. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  18. Exact Lagrangian caps and non-uniruled Lagrangian submanifolds

    Science.gov (United States)

    Dimitroglou Rizell, Georgios

    2015-04-01

    We make the elementary observation that the Lagrangian submanifolds of C n , n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian caps, which obviously are non-uniruled in themselves. This property is also used to show that if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its Chekanov-Eliashberg algebra is acyclic.

  19. New types of exact solutions for a breaking soliton equation

    International Nuclear Information System (INIS)

    Mei Jianqin; Zhang Hongqing

    2004-01-01

    In this paper based on a system of Riccati equations, we present a newly generally projective Riccati equation expansion method and its algorithm, which can be used to construct more new exact solutions of nonlinear differential equations in mathematical physics. A typical breaking soliton equation is chosen to illustrate our algorithm such that more families of new exact solutions are obtained, which contain soliton-like solutions and periodic solutions. This algorithm can also be applied to other nonlinear differential equations

  20. Exactness of supersymmetric WKB method for translational shape invariant potentials

    CERN Document Server

    Cheng, K M; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.

  1. Exact discretization of Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2016-01-08

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  2. Exact discretization of Schrödinger equation

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2016-01-01

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  3. Exact solutions for scalar field cosmology in f(R) gravity

    Science.gov (United States)

    Maharaj, S. D.; Goswami, R.; Chervon, S. V.; Nikolaev, A. V.

    2017-09-01

    We study scalar field FLRW cosmology in the content of f(R) gravity. Our consideration is restricted to the spatially flat Friedmann universe. We derived the general evolution equations of the model, and showed that the scalar field equation is automatically satisfied for any form of the f(R) function. We also derived representations for kinetic and potential energies, as well as for the acceleration in terms of the Hubble parameter and the form of the f(R) function. Next we found the exact cosmological solutions in modified gravity without specifying the f(R) function. With negligible acceleration of the scalar curvature, we found that the de Sitter inflationary solution is always attained. Also we obtained new solutions with special restrictions on the integration constants. These solutions contain oscillating, accelerating, decelerating and even contracting universes. For further investigation, we selected special cases which can be applied with early or late inflation. We also found exact solutions for the general case for the model with negligible acceleration of the scalar curvature in terms of special Airy functions. Using initial conditions which represent the universe at the present epoch, we determined the constants of integration. This allows for the comparison of the scale factor in the new solutions with that for current stage of the universe evolution in the ΛCDM model.

  4. Research on the Evolution of Internet Enterprise Business Model in its Life Cycle --A Case Study of Tencent%互联网企业发展过程中商业模式的演变——基于腾讯的案例研究

    Institute of Scientific and Technical Information of China (English)

    罗小鹏; 刘莉

    2012-01-01

    of index values and logical relations, we developed the cobweb model and logical diagram of Tencent's business model, which explained the transformation and logical relations of business model modular index visually. Besides, We analyzed the induction conditions and characteristic. Secondly, based on the change of modular indexes, we identified the innovation type of business model in initiation, growth and mature period are successively reconfiguration, variation and perfection type, which exactly confirm the"3 -4 -8" theory. Different level of business model innovation results in different type of enterprise that competes not only on the value proposition of its products or service, but aligns its profit formula, resources, and processes to enhance that value proposition, capture new market segments, and alienate competitors. Thirdly We summarized successful experience and existing problems of business model innovation of Tencent, and concluded inspirations from environment,industry and enterprise level that other internet enterprises should fol low when innovating their business model. As a whole, we got four inspirations for business innovation. (i) There coexists opportunity and risk in rapidly developing Internet industry, Innovating business model is a effective way to enhance enterprises'value and competitiveness, it depends on the entrepreneurs'innovation capability. (ii) Innovation of business model is a gradual process, enterprises should make effects to let it more forward - looking, competitive and feasible in every period of life cycle. Enterprise should conduct innovation based on the changes in the external environment especially industry evolution tendency, its resources and life cycle, to make the existing business and newly - build business be more cohesive , to construct the new business model for the development of their own, and push the business model evolves into higher level. (iii) all for the user value, enterprises

  5. Teaching Real Business Cycles to Undergraduates

    Science.gov (United States)

    Brevik, Frode; Gartner, Manfred

    2007-01-01

    The authors review the graphical approach to teaching the real business cycle model introduced in Barro. They then look at where this approach cuts corners and suggest refinements. Finally, they compare graphical and exact models by means of impulse-response functions. The graphical models yield reliable qualitative results. Sizable quantitative…

  6. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  7. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  8. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  9. Exact solution of nonsteady thermal boundary layer equation

    International Nuclear Information System (INIS)

    Dorfman, A.S.

    1995-01-01

    There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs

  10. Constructing exact symmetric informationally complete measurements from numerical solutions

    Science.gov (United States)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  11. Symbolic Computations and Exact and Explicit Solutions of Some Nonlinear Evolution Equations in Mathematical Physics

    International Nuclear Information System (INIS)

    Oezis, Turgut; Aslan, Imail

    2009-01-01

    With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G'/G-expansion method, where the new and more general forms of solutions are also constructed. When the parameters are taken as special values, the previously known solutions are recovered. (general)

  12. Exact deconstruction of the 6D (2,0) theory

    Science.gov (United States)

    Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodríguez-Gómez, D.

    2017-06-01

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: in the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the "half-BPS" limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 × T 2. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  13. Exact braneworld cosmology induced from bulk black holes

    International Nuclear Information System (INIS)

    Gregory, James P; Padilla, Antonio

    2002-01-01

    We use a new, exact approach in calculating the energy density measured by an observer living on a brane embedded in a charged black-hole spacetime. We find that the bulk Weyl tensor gives rise to nonlinear terms in the energy density and pressure in the FRW equations for the brane. Remarkably, these take exactly the same form as the 'unconventional' terms found in the cosmology of branes embedded in pure AdS, with extra matter living on the brane. Black-hole-driven cosmologies have the benefit that there is no ambiguity in splitting the braneworld energy momentum into tension and additional matter. We propose a new, enlarged relationship between the two descriptions of braneworld cosmology. We also study the exact thermodynamics of the field theory and present a generalized Cardy-Verlinde formula in this set-up

  14. Fuzziness and Foundations of Exact and Inexact Sciences

    CERN Document Server

    Dompere, Kofi Kissi

    2013-01-01

    The monograph is an examination of the fuzzy rational foundations of the structure of exact and inexact sciences over the epistemological space which is distinguished from the ontological space. It is thus concerned with the demarcation problem. It examines exact science and its critique of inexact science. The role of fuzzy rationality in these examinations is presented. The driving force of the discussions is the nature of the information that connects the cognitive relational structure of the epistemological space to the ontological space for knowing. The knowing action is undertaken by decision-choice agents who must process information to derive exact-inexact or true-false conclusions. The information processing is done with a paradigm and laws of thought that constitute the input-output machine. The nature of the paradigm selected depends on the nature of the information structure that is taken as input of the thought processing. Generally, the information structure received from the ontological space i...

  15. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  16. Quasitraces on exact C*-algebras are traces

    DEFF Research Database (Denmark)

    Haagerup, Uffe

    2014-01-01

    It is shown that all 2-quasitraces on a unital exact C ∗   -algebra are traces. As consequences one gets: (1) Every stably finite exact unital C ∗   -algebra has a tracial state, and (2) if an AW ∗   -factor of type II 1   is generated (as an AW ∗   -algebra) by an exact C ∗   -subalgebra, then i......, then it is a von Neumann II 1   -factor. This is a partial solution to a well known problem of Kaplansky. The present result was used by Blackadar, Kumjian and Rørdam to prove that RR(A)=0  for every simple non-commutative torus of any dimension...

  17. Electron transfer dynamics: Zusman equation versus exact theory

    International Nuclear Information System (INIS)

    Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing

    2009-01-01

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.

  18. Symmetry and exact solutions of nonlinear spinor equations

    International Nuclear Information System (INIS)

    Fushchich, W.I.; Zhdanov, R.Z.

    1989-01-01

    This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)

  19. Exact deconstruction of the 6D (2,0) theory

    Energy Technology Data Exchange (ETDEWEB)

    Hayling, J.; Papageorgakis, C. [Queen Mary Univ. of London (United Kingdom). CRST and School of Physics and Astronomy; Pomoni, E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Rodriguez-Gomez, D. [Oviedo Univ. (Spain). Dept. of Physics

    2017-06-15

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T{sup 2}, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the ''half-BPS'' limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S{sup 4} to the (2,0) partition function on S{sup 4} x T{sup 2}. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  20. Universality in exact quantum state population dynamics and control

    International Nuclear Information System (INIS)

    Wu, Lian-Ao; Segal, Dvira; Brumer, Paul; Egusquiza, Inigo L.

    2010-01-01

    We consider an exact population transition, defined as the probability of finding a state at a final time that is exactly equal to the probability of another state at the initial time. We prove that, given a Hamiltonian, there always exists a complete set of orthogonal states that can be employed as time-zero states for which this exact population transition occurs. The result is general: It holds for arbitrary systems, arbitrary pairs of initial and final states, and for any time interval. The proposition is illustrated with several analytic models. In particular, we demonstrate that in some cases, by tuning the control parameters, a complete transition might occur, where a target state, vacant at t=0, is fully populated at time τ.

  1. Exact deconstruction of the 6D (2,0) theory

    International Nuclear Information System (INIS)

    Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodriguez-Gomez, D.

    2017-06-01

    The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2 , starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the ''half-BPS'' limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 x T 2 . In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.

  2. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  3. Differentiation of Teaching Learning Process in the area of ​​Exact Sciences in IPUEC of the province of Pinar del Río

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Caraballo Carmona

    2004-06-01

    Full Text Available This article presents some hints About the historical development of the differentiation of the Teaching Learning Process in the area of Exact Sciences knowledge in Pinar del Rio provincie IPUECs, and it Permits the observation of the evolution of the problem, ITS Successes and errors in the strategies Followed.

  4. The Problem of Understanding of Nature in Exact Science

    Directory of Open Access Journals (Sweden)

    Leo Näpinen

    2014-10-01

    Full Text Available In this short inquiry I would like to defend the statement that exact science deals with the explanation of models, but not with the understanding (comprehending of nature. By the word ‘nature’ I mean nature as physis (as a self-moving and self-developing living organism to which humans also belong, not nature as natura naturata (as a nonevolving creature created by someone or something. The Estonian philosopher of science Rein Vihalemm (2008 has shown with his conception of phi-science (φ-science that exact science is itself an idealized model or theoretical object derived from Galilean mathematical physics.

  5. Exact solutions in string-motivated scalar-field cosmology

    International Nuclear Information System (INIS)

    Oezer, M.; Taha, M.O.

    1992-01-01

    Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era

  6. Exact, almost and delayed fault detection: An observer based approach

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    This paper consider the problem of fault detection and isolation in continuous- and discrete-time systems while using zero or almost zero threshold. A number of different fault detections and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability...... conditions are given for the formulated design problems together with methods for appropriate design of observer based fault detectors. The l-step delayed fault detection problem is also considered for discrete-time systems . Moreover, certain indirect fault detection methods such as unknown input observers...

  7. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  8. Exact penalty results for mathematical programs with vanishing constraints

    Czech Academy of Sciences Publication Activity Database

    Hoheisel, T.; Kanzow, Ch.; Outrata, Jiří

    2010-01-01

    Roč. 72, č. 5 (2010), s. 2514-2526 ISSN 0362-546X R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mathematical programs with vanishing constraints * Mathematical programs with equilibrium constraints * Exact penalization * Calmness * Subdifferential calculus * Limiting normal cone Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-exact penalty results for mathematical programs with vanishing constraints.pdf

  9. Disease clusters, exact distributions of maxima, and P-values.

    Science.gov (United States)

    Grimson, R C

    1993-10-01

    This paper presents combinatorial (exact) methods that are useful in the analysis of disease cluster data obtained from small environments, such as buildings and neighbourhoods. Maxwell-Boltzmann and Fermi-Dirac occupancy models are compared in terms of appropriateness of representation of disease incidence patterns (space and/or time) in these environments. The methods are illustrated by a statistical analysis of the incidence pattern of bone fractures in a setting wherein fracture clustering was alleged to be occurring. One of the methodological results derived in this paper is the exact distribution of the maximum cell frequency in occupancy models.

  10. Clock Math — a System for Solving SLEs Exactly

    Directory of Open Access Journals (Sweden)

    Jakub Hladík

    2013-01-01

    Full Text Available In this paper, we present a GPU-accelerated hybrid system that solves ill-conditioned systems of linear equations exactly. Exactly means without rounding errors due to using integer arithmetics. First, we scale floating-point numbers up to integers, then we solve dozens of SLEs within different modular arithmetics and then we assemble sub-solutions back using the Chinese remainder theorem. This approach effectively bypasses current CPU floating-point limitations. The system is capable of solving Hilbert’s matrix without losing a single bit of precision, and with a significant speedup compared to existing CPU solvers.

  11. Exact Solutions to a Combined sinh-cosh-Gordon Equation

    International Nuclear Information System (INIS)

    Wei Long

    2010-01-01

    Based on a transformed Painleve property and the variable separated ODE method, a function transformation method is proposed to search for exact solutions of some partial differential equations (PDEs) with hyperbolic or exponential functions. This approach provides a more systematical and convenient handling of the solution process of this kind of nonlinear equations. Its key point is to eradicate the hyperbolic or exponential terms by a transformed Painleve property and reduce the given PDEs to a variable-coefficient ordinary differential equations, then we seek for solutions to the resulting equations by some methods. As an application, exact solutions for the combined sinh-cosh-Gordon equation are formally derived. (general)

  12. Asymptotically exact solution of a local copper-oxide model

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu.

    1994-03-01

    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig

  13. Benchmarking GW against exact diagonalization for semiempirical models

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian Sommer

    2010-01-01

    We calculate ground-state total energies and single-particle excitation energies of seven pi-conjugated molecules described with the semiempirical Pariser-Parr-Pople model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW capt...... (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene....

  14. Novel correlations in two dimensions: Some exact solutions

    International Nuclear Information System (INIS)

    Murthy, M.V.; Bhaduri, R.K.; Sen, D.

    1996-01-01

    We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring. copyright 1996 The American Physical Society

  15. Exact results for integrable asymptotically-free field theories

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).

  16. Exact solution of matricial Φ23 quantum field theory

    Science.gov (United States)

    Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar

    2017-12-01

    We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.

  17. Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2016-08-15

    Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.

  18. The Limits of Schumpeter's Business Cycles

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2006-01-01

    Schumpeter designed Business Cycles as his major work, but it has never received much attention. The problem is partly related to its complex treatment of the theory of waveform economic evolution and the related study of the statistics and history of 150 years of capitalist evolution, but the book...

  19. The sunspot cycle revisited

    International Nuclear Information System (INIS)

    Lomb, Nick

    2013-01-01

    The set of sunspot numbers observed since the invention of the telescope is one of the most studied time series in astronomy and yet it is also one of the most complex. Fourteen frequencies are found in the yearly mean sunspot numbers from 1700 to 2011using the Lomb-Scargle periodogram and prewhitening. All of the frequencies corresponding to shorter term periods can be matched with simple algebraic combinations of the frequency of the main 11-year period and the frequencies of the longer term periods in the periodogram. This is exactly what can be expected from amplitude and phase modulation of an 11.12-year periodicity by longer term variations. Similar, though not identical, results are obtained after correcting the sunspot number series as proposed by Svalgaard. On looking separately at the amplitude and phase modulation a clear relationship is found between the two modulations although this relationship has broken down for the last four solar cycles. The phase modulation implies that there is a definite underlying period for the solar cycle. Such a clock mechanism does seem to be a possibility in models of the solar dynamo incorporating a conveyor-belt-like meridional circulation between high polar latitudes and the equator.

  20. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems

    CERN Document Server

    Li, Tatsien; Gu, Qilong

    2016-01-01

    This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...

  1. New exact solutions of the generalized Zakharov–Kuznetsov ...

    Indian Academy of Sciences (India)

    In this paper, new exact solutions, including soliton, rational and elliptic integral function solutions, for the generalized Zakharov–Kuznetsov modified equal-width equation are obtained using a new approach called the extended trial equation method. In this discussion, a new version of the trial equation method for the ...

  2. New exact solutions of the Dirac equation. 8

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Sukhomlin, N.B.; Shapovalov, V.N.

    1978-01-01

    The paper continues the investigation into the exact solutions of the Dirac, Klein-Gordon, and Lorentz equations for a charge in an external electromagnetic field. The fields studied do not allow for separation of variables in the Dirac equation, but solutions to the Dirac equation are obtained

  3. Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact ...

    African Journals Online (AJOL)

    Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws. ... In this paper we study the combined sinh-cosh-Gordon equation, which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves.

  4. Fragments of reminiscences and exactly solvable nonrelativistic quantum models

    International Nuclear Information System (INIS)

    Zakhariev, B.N.

    1994-01-01

    Some exactly solvable nonrelativistic quantum models are discussed. Special attention is paid to the quantum inverse problem. It is pointed out that by analyzing the inverse problem pictures one can get a deeper insight into the laws of the microworld and acquire the ability to make the qualitative predictions without computers and formulae. 5 refs

  5. Exact quasinormal modes for a special class of black holes

    International Nuclear Information System (INIS)

    Oliva, Julio; Troncoso, Ricardo

    2010-01-01

    Analytic exact expressions for the quasinormal modes of scalar and electromagnetic perturbations around a special class of black holes are found in d≥3 dimensions. It is shown that the size of the black hole provides a lower bound for the angular momentum of the perturbation. Quasinormal modes appear when this bound is fulfilled; otherwise the excitations become purely damped.

  6. Timed Fast Exact Euclidean Distance (tFEED) maps

    NARCIS (Netherlands)

    Kehtarnavaz, Nasser; Schouten, Theo E.; Laplante, Philip A.; Kuppens, Harco; van den Broek, Egon

    2005-01-01

    In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. In a naive implementation, each object pixel feeds its (exact) ED to each background pixel; then the minimum of these values denotes the ED to

  7. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1982-12-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essencial singularity, when the excharge parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  8. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    Science.gov (United States)

    Zuevsky, A.

    2004-01-01

    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  9. The Alleged Crisis and the Illusion of Exact Replication

    NARCIS (Netherlands)

    Stroebe, Wolfgang; Strack, Fritz

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a replication crisis in psychology. Psychologists are encouraged to conduct more exact

  10. Canonical transformations and exact invariants for dissipative systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1986-01-01

    A simple treatment to the problem of finding exact invariants and related auxiliary equations for time-dependent oscillators with friction is presented. The treatment is based on the use of a time-dependent canonical transformation and an auxiliary transformation. (Author) [pt

  11. Exact solutions of continuous states for Hartmann potential

    International Nuclear Information System (INIS)

    Chen Changyuan; Lu Falin; Sun Dongsheng

    2004-01-01

    In this Letter, we obtain the exact solutions of continuous states for the Hartmann potential. The normalized wave functions of continuous states on the 'k/2π scale' and the calculation formula of phase shifts are presented. Analytical properties of the scattering amplitude are discussed

  12. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.

  13. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    Science.gov (United States)

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  14. Exact solutions of some coupled nonlinear diffusion-reaction ...

    Indian Academy of Sciences (India)

    certain coupled diffusion-reaction (D-R) equations of very general nature. In recent years, various direct methods have been proposed to find the exact solu- tions not only of nonlinear partial differential equations but also of their coupled versions. These methods include unified ansatz approach [3], extended hyperbolic func ...

  15. Exact boundary controllability for a series of membranes elastically connected

    Directory of Open Access Journals (Sweden)

    Waldemar D. Bastos

    2017-01-01

    Full Text Available In this article we study the exact controllability with Neumann boundary controls for a system of linear wave equations coupled in parallel by lower order terms on piecewise smooth domains of the plane. We obtain square integrable controls for initial state with finite energy and time of controllability near the optimal value.

  16. Exact solution of the neutron transport equation in spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters

    2017-03-15

    Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.

  17. Parametrices and exact paralinearization of semi-linear boundary problems

    DEFF Research Database (Denmark)

    Johnsen, Jon

    2008-01-01

    The subject is parametrices for semi-linear problems, based on parametrices for linear boundary problems and on non-linearities that decompose into solution-dependent linear operators acting on the solutions. Non-linearities of product type are shown to admit this via exact paralinearization...... of homogeneous distributions, tensor products and halfspace extensions have been revised. Examples include the von Karman equation....

  18. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  19. Exact solutions of generalized Zakharov and Ginzburg-Landau equations

    International Nuclear Information System (INIS)

    Zhang Jinliang; Wang Mingliang; Gao Kequan

    2007-01-01

    By using the homogeneous balance principle, the exact solutions of the generalized Zakharov equations and generalized Ginzburg-Landau equation are obtained with the aid of a set of subsidiary higher-order ordinary differential equations (sub-equations for short)

  20. Exact travelling wave solutions for some important nonlinear

    Indian Academy of Sciences (India)

    The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical ...

  1. A simple method for generating exactly solvable quantum mechanical potentials

    CERN Document Server

    Williams, B W

    1993-01-01

    A simple transformation method permitting the generation of exactly solvable quantum mechanical potentials from special functions solving second-order differential equations is reviewed. This method is applied to Gegenbauer polynomials to generate an attractive radial potential. The relationship of this method to the determination of supersymmetric quantum mechanical superpotentials is discussed, and the superpotential for the radial potential is also derived. (author)

  2. Thermodynamics of Rh nuclear spins calculated by exact diagonalization

    DEFF Research Database (Denmark)

    Lefmann, K.; Ipsen, J.; Rasmussen, F.B.

    2000-01-01

    We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...

  3. A BEHAVIORAL-APPROACH TO LINEAR EXACT MODELING

    NARCIS (Netherlands)

    ANTOULAS, AC; WILLEMS, JC

    1993-01-01

    The behavioral approach to system theory provides a parameter-free framework for the study of the general problem of linear exact modeling and recursive modeling. The main contribution of this paper is the solution of the (continuous-time) polynomial-exponential time series modeling problem. Both

  4. Exact solutions, energy, and charge of stable Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Marques, M.A. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2016-05-15

    In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable. (orig.)

  5. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhu Jiamin; Ma Zhengyi

    2007-01-01

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions

  6. Exact analytical solutions for nonlinear reaction-diffusion equations

    International Nuclear Information System (INIS)

    Liu Chunping

    2003-01-01

    By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way

  7. Exact Controllability and Perturbation Analysis for Elastic Beams

    International Nuclear Information System (INIS)

    Moreles, Miguel Angel

    2004-01-01

    The Rayleigh beam is a perturbation of the Bernoulli-Euler beam. We establish convergence of the solution of the Exact Controllability Problem for the Rayleigh beam to the corresponding solution of the Bernoulli-Euler beam. Convergence is related to a Singular Perturbation Problem. The main tool in solving this perturbation problem is a weak version of a lower bound for hyperbolic polynomials

  8. Exact angular momentum projection based on cranked HFB solution

    Energy Technology Data Exchange (ETDEWEB)

    Enami, Kenichi; Tanabe, Kosai; Yosinaga, Naotaka [Saitama Univ., Urawa (Japan). Dept. of Physics

    1998-03-01

    Exact angular momentum projection of cranked HFB solutions is carried out. It is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus. The result also indicates that the energy correction from projection is important for further investigation of nuclear structure. (author)

  9. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  10. The potts chain in a random field: an exact solution

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.; Santos, Raimundo R. dos.

    1984-01-01

    An exact solution is presented for the one-dimensional q-state Potts model in a quenched random field. The ferromagnetic phase is unstable against any small random field perturbation. The correlation function and the Edwards-Anderson order parameter Q are discussed. For finite q only the phase with Q ≠ 0 is present. (Author) [pt

  11. Exact Synthesis of Reversible Circuits Using A* Algorithm

    Science.gov (United States)

    Datta, K.; Rathi, G. K.; Sengupta, I.; Rahaman, H.

    2015-06-01

    With the growing emphasis on low-power design methodologies, and the result that theoretical zero power dissipation is possible only if computations are information lossless, design and synthesis of reversible logic circuits have become very important in recent years. Reversible logic circuits are also important in the context of quantum computing, where the basic operations are reversible in nature. Several synthesis methodologies for reversible circuits have been reported. Some of these methods are termed as exact, where the motivation is to get the minimum-gate realization for a given reversible function. These methods are computationally very intensive, and are able to synthesize only very small functions. There are other methods based on function transformations or higher-level representation of functions like binary decision diagrams or exclusive-or sum-of-products, that are able to handle much larger circuits without any guarantee of optimality or near-optimality. Design of exact synthesis algorithms is interesting in this context, because they set some kind of benchmarks against which other methods can be compared. This paper proposes an exact synthesis approach based on an iterative deepening version of the A* algorithm using the multiple-control Toffoli gate library. Experimental results are presented with comparisons with other exact and some heuristic based synthesis approaches.

  12. Exact Solutions of the Harry-Dym Equation

    International Nuclear Information System (INIS)

    Mokhtari, Reza

    2011-01-01

    The aim of this paper is to generate exact travelling wave solutions of the Harry-Dym equation through the methods of Adomian decomposition, He's variational iteration, direct integration, and power series. We show that the two later methods are more successful than the two former to obtain more solutions of the equation. (general)

  13. Exact Repetition as Input Enhancement in Second Language Acquisition.

    Science.gov (United States)

    Jensen, Eva Dam; Vinther, Thora

    2003-01-01

    Reports on two studies on input enhancement used to support learners' selection of focus of attention in Spanish second language listening material. Input consisted of video recordings of dialogues between native speakers. Exact repetition and speech rate reduction were examined for effect on comprehension, acquisition of decoding strategies, and…

  14. Exact Rational Expectations, Cointegration, and Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  15. Exact rational expectations, cointegration, and reduced rank regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  16. Exact rational expectations, cointegration, and reduced rank regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    2008-01-01

    We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...

  17. Water hammer (with FSI): exact solution : parallelization and application

    NARCIS (Netherlands)

    Loh, K.; Tijsseling, A.S.

    2014-01-01

    The 1D fully coupled Fluid-Structure Interaction (FSI) model can adequately describe the water hammer effect on the fluid, and the structural behaviour of the pipe. This paper attempts to increase the capability of using an exact solution of the 1D FSI problem applied to a straight pipe with a

  18. Exact performance analysis of decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel; Alouini, Mohamed-Slim; Yang, Hongchuan

    2010-01-01

    the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation

  19. Exact solution for the interior of a black hole

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.

    2008-01-01

    Within the Relativistic Theory of Gravitation it is shown that the equation of state p = rho holds near the center of a black hole. For the stiff equation of state p = rho - rho(c) the interior metric is solved exactly. It is matched with the Schwarzschild metric, which is deformed in a narrow range

  20. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  1. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1983-01-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essential singularity, when the exchange parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  2. The functional variable method for finding exact solutions of some ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we implemented the functional variable method and the modified. Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled. KdV system. This method is extremely simple ...

  3. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com

    2008-04-14

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  4. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2008-01-01

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  5. The exact probability law for the approximated similarity from the ...

    African Journals Online (AJOL)

    The exact probability law for the approximated similarity from the Minhashing method. Soumaila Dembele, Gane Samb Lo. Abstract. We propose a probabilistic setting in which we study the probability law of the Rajaraman and Ullman RU algorithm and a modied version of it denoted by RUM. These algorithms aim at ...

  6. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  7. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  8. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  9. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  10. Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback

    Science.gov (United States)

    Do, K. D.

    2018-05-01

    Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.

  11. Gauge invariant sub-structures of tree-level double-emission exact QCD spin amplitudes

    CERN Document Server

    Van Hameren, A

    2009-01-01

    In this note we discuss possible separations of exact, massive, tree-level spin amplitudes into gauge invariant parts. We concentrate our attention on processes involving two quarks entering a color- neutral current and, thanks to the QCD interactions, two extra external gluons. We will search for forms compatible with parton shower languages, without applying approximations or restrictions on phase space regions. Special emphasis will be put on the isolation of parts necessary for the construction of evolution kernels for individual splittings and to some degree for the running coupling constant as well. Our aim is to better understand the environment necessary to optimally match hard matrix elements with partons shower algorithms. To avoid complications and ambiguities related to regularization schemes, we ignore, at this point, virtual corrections. Our representation is quite universal: any color-neutral current can be used, in particular our approach is not restricted to vector currents only.

  12. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    Science.gov (United States)

    Sone, Akira; Cappellaro, Paola

    2017-12-01

    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.

  13. New exact travelling wave solutions of nonlinear physical models

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Cevikel, Adem C.

    2009-01-01

    In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The ((G ' )/G )-expansion method presents a wider applicability for handling nonlinear wave equations.

  14. Heteroclinic cycles in the repressilator model

    International Nuclear Information System (INIS)

    Kuznetsov, A.; Afraimovich, V.

    2012-01-01

    Highlights: ► We conduct analysis at infinity in the phase space of the repressilator model. ► We study two models with the original linear and a new saturable degradation terms. ► We link the evolution of an oscillatory solution with a heteroclinic cycle. ► The transition studied here presents a new bifurcation scenario. - Abstract: A repressilator is a synthetic regulatory network that produces self-sustained oscillations. We analyze the evolution of the oscillatory solution in the repressilator model. We have established a connection between the evolution of the oscillatory solution and formation of a heteroclinic cycle at infinity. The convergence of the limit cycle to the heteroclinic cycle occurs very differently compared to the well-studied cases. The transition studied here presents a new bifurcation scenario.

  15. Ammonium generation during SRAT cycle

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    During the IDMS noble-metal demonstration runs ammonium nitrate deposition was found in the vessel vent system of the feed preparation area. In the bench-scale experiments of studying the hydrogen generation during the sludge treatment cycle, ammonium ion production was also monitored. It was found that: During a simulation of the DWPF Cold Chemical Runs SRAT cycle no detectable amount of ammonium ions was generated when treating a non-noble-metal containing sludge simulant according to the nitric acid flowsheet. Ammonium ions were generated during the SRAT-SME cycle when treating the noble-metal containing sludge with either formic acid or nitric acid/late-washing PHA. This is due to the reaction between formic acid and nitrate catalyzed by the noble metals in the sludge simulant. Ammonium ion production closely followed the hydrogen evolution from the catalytic decomposition of formic acid. This report summarizes the results of the production of ammonia during the SRAT cycle

  16. Exactly solvable models of growing interfaces and lattice gases: the Arcetri models, ageing and logarithmic sub-ageing

    Science.gov (United States)

    Durang, Xavier; Henkel, Malte

    2017-12-01

    Motivated by an analogy with the spherical model of a ferromagnet, the three Arcetri models are defined. They present new universality classes, either for the growth of interfaces, or else for lattice gases. They are distinct from the common Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes. Their non-equilibrium evolution can be studied by the exact computation of their two-time correlators and responses. In both interpretations, the first model has a critical point in any dimension and shows simple ageing at and below criticality. The exact universal exponents are found. The second and third model are solved at zero temperature, in one dimension, where both show logarithmic sub-ageing, of which several distinct types are identified. Physically, the second model describes a lattice gas and the third model describes interface growth. A clear physical picture on the subsequent time and length scales of the sub-ageing process emerges.

  17. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  18. arXiv Integrable flows between exact CFTs

    CERN Document Server

    Georgiou, George

    2017-11-14

    We explicitly construct families of integrable σ-model actions smoothly inter-polating between exact CFTs. In the ultraviolet the theory is the direct product of two current algebras at levels k$_{1}$ and k$_{2}$. In the infrared and for the case of two deformation matrices the CFT involves a coset CFT, whereas for a single matrix deformation it is given by the ultraviolet direct product theories but at levels k$_{1}$ and k$_{2}$ − k$_{1}$. For isotropic deformations we demonstrate integrability. In this case we also compute the exact beta-function for the deformation parameters using gravitational methods. This is shown to coincide with previous results obtained using perturbation theory and non-perturbative symmetries.

  19. Some exact velocity profiles for granular flow in converging hoppers

    Science.gov (United States)

    Cox, Grant M.; Hill, James M.

    2005-01-01

    Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.

  20. Exact performance analysis of decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel

    2010-06-01

    In this paper, we investigate a dual-hop decode-and-forward opportunistic relaying scheme where the source may or may not be able to communicate directly with the destination. In our study, we consider a regenerative relaying scheme in which the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact statistics of each hop. Unlike existing works where the analysis focused on high signal-to-noise ratio (SNR) regime, such results are important to enable the designers to take decisions regarding practical systems that operate at low SNR regime. We show that performance simulation results coincide with our analytical results.

  1. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  2. Exactly solvable models in many-body theory

    CERN Document Server

    March, N H

    2016-01-01

    The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.

  3. Exactly soluble two-state quantum models with linear couplings

    International Nuclear Information System (INIS)

    Torosov, B T; Vitanov, N V

    2008-01-01

    A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of π/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model

  4. Exact wavefunctions for a time-dependent Coulomb potential

    International Nuclear Information System (INIS)

    Menouar, S; Maamache, M; Saadi, Y; Choi, J R

    2008-01-01

    The one-dimensional Schroedinger equation associated with a time-dependent Coulomb potential is studied. The invariant operator method (Lewis and Riesenfeld) and unitary transformation approach are employed to derive quantum solutions of the system. We obtain an ordinary second-order differential equation whose analytical exact solution has been unknown. It is confirmed that the form of this equation is similar to the radial Schroedinger equation for the hydrogen atom in a (arbitrary) strong magnetic field. The qualitative properties for the eigenstates spectrum are described separately for the different values of the parameter ω 0 appearing in the x 2 term, x being the position, i.e., ω 0 > 0, ω 0 0 = 0. For the ω 0 = 0 case, the eigenvalue equation of invariant operator reduces to a solvable form and, consequently, we have provided exact eigenstates of the time-dependent Hamiltonian system

  5. Exact analytic solutions for Mikheyev-Smirnov-Wolfenstein level crossings

    International Nuclear Information System (INIS)

    Noetzold, D.

    1987-01-01

    An exact formula for the transition probability in level-crossing phenomena is derived for a general case, ranging from adiabatic to sudden crossings. This is done in the context of neutrino flavor oscillations for the Mikheyev-Smirnov-Wolfenstein (MSW) effect, where hitherto only numerical or approximate solutions were obtained. The matter density or level splitting is assumed to be governed by a hyperbolic-tangent function which, however, can change arbitrarily fast between two constant values. For example, in context of the MSW effect this furnishes a nice fit to the solar density determining the level crossing of solar neutrinos. In the quasiadiabatic limit the exact Landau-Zener factor can be read off, correcting some expressions obtained so far. Even in the opposite limit of a sudden level crossing a conversion is found, which can have far-reaching consequences for neutrino detection on Earth

  6. Computing exact bundle compliance control charts via probability generating functions.

    Science.gov (United States)

    Chen, Binchao; Matis, Timothy; Benneyan, James

    2016-06-01

    Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.

  7. Exact results for Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Fiol, Bartomeu; Torrents, Genís [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain)

    2014-01-08

    We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of N=4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.

  8. On the exact interpolating function in ABJ theory

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2016-12-16

    Based on the recent indications of integrability in the planar ABJ model, we conjecture an exact expression for the interpolating function h(λ{sub 1},λ{sub 2}) in this theory. Our conjecture is based on the observation that the integrability structure of the ABJM theory given by its Quantum Spectral Curve is very rigid and does not allow for a simple consistent modification. Under this assumption, we revised the previous comparison of localization results and exact all loop integrability calculations done for the ABJM theory by one of the authors and Grigory Sizov, fixing h(λ{sub 1},λ{sub 2}). We checked our conjecture against various weak coupling expansions, at strong coupling and also demonstrated its invariance under the Seiberg-like duality. This match also gives further support to the integrability of the model. If our conjecture is correct, it extends all the available integrability results in the ABJM model to the ABJ model.

  9. Watermelon configurations with wall interaction: exact and asymptotic results

    Energy Technology Data Exchange (ETDEWEB)

    Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)

    2006-06-15

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  10. Watermelon configurations with wall interaction: exact and asymptotic results

    International Nuclear Information System (INIS)

    Krattenthaler, C

    2006-01-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature

  11. Watermelon configurations with wall interaction: exact and asymptotic results

    Science.gov (United States)

    Krattenthaler, C.

    2006-06-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  12. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  13. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    Science.gov (United States)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  14. Cesarean section and the manipulation of exact delivery time.

    Science.gov (United States)

    Fabbri, Daniele; Monfardini, Chiara; Castaldini, Ilaria; Protonotari, Adalgisa

    2016-07-01

    Physicians are often alleged responsible for the manipulation of delivery timing. We investigate this issue in a setting that negates the influence of financial incentives on physician's behavior. Working on a sample of women admitted at the onset of labor in a big public hospital in Italy we estimate a model for the exact time of delivery as driven by individual Indication to Cesarean Section (ICS) and covariates. We find that ICS does not affect the day of delivery but leads to a circadian rhythm in the likelihood of delivery. The pattern is consistent with the postponement of high ICS deliveries in the late night\\early morning shift. Our evidence hardly supports the manipulation of timing of births as driven by medical staff's "demand for leisure". Physicians seem to manipulate the exact timing of delivery to reduce exposure to risk factors extant during off-peak periods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Six-term exact sequences for smooth generalized crossed products

    DEFF Research Database (Denmark)

    Gabriel, Olivier; Grensing, Martin

    2013-01-01

    We define smooth generalized crossed products and prove six-term exact sequences of Pimsner–Voiculescu type. This sequence may, in particular, be applied to smooth subalgebras of the quantum Heisenberg manifolds in order to compute the generators of their cyclic cohomology. Further, our results...... include the known results for smooth crossed products. Our proof is based on a combination of arguments from the setting of (Cuntz–)Pimsner algebras and the Toeplitz proof of Bott periodicity....

  16. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  17. Energy vs. density on paths toward more exact density functionals.

    Science.gov (United States)

    Kepp, Kasper P

    2018-03-14

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.

  18. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  19. New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bingzhuang Liu

    2014-01-01

    Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.

  20. Exact equivalent straight waveguide model for bent and twisted waveguides

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2008-01-01

    Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling...... of in-plane curved or helically wound waveguides with use of available simulators for straight waveguides without the restrictions of the known approximate equivalent-index formulas....

  1. Exact nonparametric confidence bands for the survivor function.

    Science.gov (United States)

    Matthews, David

    2013-10-12

    A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.

  2. Boundary conditions of the exact impulse wave function

    International Nuclear Information System (INIS)

    Gravielle, M.; Miraglia, J.E.

    1997-01-01

    The behavior of the exact impulse wave function is investigated at intermediate and high impact energies. Numerical details of the wave function and its perturbative potential are reported. We conclude that the impulse wave function does not tend to the proper Coulomb asymptotic limit. For electron capture, however, it is shown that the impulse wave function produces reliable probabilities even for intermediate velocities and symmetric collision systems. copyright 1997 The American Physical Society

  3. Exactly averaged equations for flow and transport in random media

    International Nuclear Information System (INIS)

    Shvidler, Mark; Karasaki, Kenzi

    2001-01-01

    It is well known that exact averaging of the equations of flow and transport in random porous media can be realized only for a small number of special, occasionally exotic, fields. On the other hand, the properties of approximate averaging methods are not yet fully understood. For example, the convergence behavior and the accuracy of truncated perturbation series. Furthermore, the calculation of the high-order perturbations is very complicated. These problems for a long time have stimulated attempts to find the answer for the question: Are there in existence some exact general and sufficiently universal forms of averaged equations? If the answer is positive, there arises the problem of the construction of these equations and analyzing them. There exist many publications related to these problems and oriented on different applications: hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in random fields, etc. We present a method of finding the general form of exactly averaged equations for flow and transport in random fields by using (1) an assumption of the existence of Green's functions for appropriate stochastic problems, (2) some general properties of the Green's functions, and (3) the some basic information about the random fields of the conductivity, porosity and flow velocity. We present a general form of the exactly averaged non-local equations for the following cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. Transient flow with sources in compressible media with random conductivity and porosity. 3. Non-reactive solute transport in random porous media. We discuss the problem of uniqueness and the properties of the non-local averaged equations, for the cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we analyze the hypothesis of the structure non-local equations in general case of stochastically homogeneous fields. (author)

  4. Polymers undergoing inhomogeneous adsorption: exact results and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, G K [Department of Mathematics, University of Melbourne, Parkville, Victoria (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G, E-mail: giliev@yorku.ca [Department of Chemistry, University of Toronto, Toronto (Canada)

    2011-10-07

    We consider several types of inhomogeneous polymer adsorption. In each case, the inhomogeneity is regular and resides in the surface, in the polymer or in both. We consider two different polymer models: a directed walk model that can be solved exactly and a self-avoiding walk model which we investigate using Monte Carlo methods. In each case, we compute the phase diagram. We compare and contrast the phase diagrams and give qualitative arguments about their forms. (paper)

  5. Exact solutions to sine-Gordon-type equations

    International Nuclear Information System (INIS)

    Liu Shikuo; Fu Zuntao; Liu Shida

    2006-01-01

    In this Letter, sine-Gordon-type equations, including single sine-Gordon equation, double sine-Gordon equation and triple sine-Gordon equation, are systematically solved by Jacobi elliptic function expansion method. It is shown that different transformations for these three sine-Gordon-type equations play different roles in obtaining exact solutions, some transformations may not work for a specific sine-Gordon equation, while work for other sine-Gordon equations

  6. Exact solutions to some modified sine-Gordon equations

    International Nuclear Information System (INIS)

    Saermark, K.

    1983-01-01

    Exact, translational solutions to a number of modified sine-Gordon equations are presented. In deriving the equations and the solutions use is made of results from the theory of ordinary differential equations without moving critical points as given by Ince. It is found that kink-like solutions exist also in cases where the coefficients of the trigonometric terms are space- and time-dependent. (Auth.)

  7. Kinematics of roller chain drives - Exact and approximate analysis

    DEFF Research Database (Denmark)

    Fuglede, Niels; Thomsen, Jon Juel

    2016-01-01

    An exact and approximate kinematic analysis of a roller chain drive modeled as a four-bar mechanism is presented. The span connects the sprockets such that they rotate in the same direction, and the sprocket size, number of teeth, and shaft center distance can be arbitrary. The driven sprocket...... to be very good agreement. All together this gives new insights into the characteristics of chain drive kinematics and the influence of main design parameters....

  8. Exact nonparametric inference for detection of nonlinear determinism

    OpenAIRE

    Luo, Xiaodong; Zhang, Jie; Small, Michael; Moroz, Irene

    2005-01-01

    We propose an exact nonparametric inference scheme for the detection of nonlinear determinism. The essential fact utilized in our scheme is that, for a linear stochastic process with jointly symmetric innovations, its ordinary least square (OLS) linear prediction error is symmetric about zero. Based on this viewpoint, a class of linear signed rank statistics, e.g. the Wilcoxon signed rank statistic, can be derived with the known null distributions from the prediction error. Thus one of the ad...

  9. Exact solutions to a nonlinear dispersive model with variable coefficients

    International Nuclear Information System (INIS)

    Yin Jun; Lai Shaoyong; Qing Yin

    2009-01-01

    A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.

  10. New Exact Solutions for New Model Nonlinear Partial Differential Equation

    OpenAIRE

    Maher, A.; El-Hawary, H. M.; Al-Amry, M. S.

    2013-01-01

    In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.

  11. Products of composite operators in the exact renormalization group formalism

    Science.gov (United States)

    Pagani, C.; Sonoda, H.

    2018-02-01

    We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.

  12. Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation

    International Nuclear Information System (INIS)

    Miara, Bernadette; Muench, Arnaud

    2009-01-01

    We study the exact controllability of a three-dimensional body made of a material whose constitutive law introduces an elasticity-electricity coupling. We show that a coupled elastic-electric control acting on the whole boundary of the body drives the system to rest after time large enough. Two-dimensional numerical experiments suggest that controllability can still be achieved by relaxing this restrictive condition using either both controls on a reduced support or elastic control alone

  13. Exact area devil's staircase for the sawtooth map

    International Nuclear Information System (INIS)

    Chen, Q.; Meiss, J.D.

    1988-04-01

    The sawtooth mapping is a family of uniformly hyperbolic, piecewise linear, area-preserving maps on the cylinder. We construct the resonances, cantori, and turnstiles of this family and derive exact formulas for the resonance areas and the escaping fluxes. These are of prime interst for an understanding of the deterministic transport which occurs the stochastic regime. The resonances are shown to fill the full measure of phase space. 9 refs., 4 figs

  14. Exact results for the one dimensional asymmetric exclusion model

    International Nuclear Information System (INIS)

    Derrida, B.; Evans, M.R.; Pasquier, V.

    1993-01-01

    The asymmetric exclusion model describes a system of particles hopping in a preferred direction with hard core repulsion. These particles can be thought of as charged particles in a field, as steps of an interface, as cars in a queue. Several exact results concerning the steady state of this system have been obtained recently. The solution consists of representing the weights of the configurations in the steady state as products of non-commuting matrices. (author)

  15. Exact interior solutions in 2 + 1-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Biswas, Ritabrata [Indian Institute of Engineering Sceince and Technology Shibpur, Howrah, West Bengal (India); Usmani, A.A. [Aligarh Muslim University, Department of Physics, Aligarh, Uttar Pradesh (India)

    2014-04-15

    We provide a new class of exact solutions for the interior in 2 + 1-dimensional spacetime. The solutions obtained for the perfect fluid model both with and without cosmological constant (Λ) are found to be regular and singularity free. It assumes very simple analytical forms that help us to study the various physical properties of the configuration. Solutions without Λ are found to be physically acceptable. (orig.)

  16. Multijet final states: exact results and the leading pole approximation

    International Nuclear Information System (INIS)

    Ellis, R.K.; Owens, J.F.

    1984-09-01

    Exact results for the process gg → ggg are compared with those obtained using the leading pole approximation. Regions of phase space where the approximation breaks down are discussed. A specific example relevant for background estimates to W boson production is presented. It is concluded that in this instance the leading pole approximation may underestimate the standard QCD background by more than a factor of two in certain kinematic regions of physical interest

  17. Exact error estimation for solutions of nuclide chain equations

    International Nuclear Information System (INIS)

    Tachihara, Hidekazu; Sekimoto, Hiroshi

    1999-01-01

    The exact solution of nuclide chain equations within arbitrary figures is obtained for a linear chain by employing the Bateman method in the multiple-precision arithmetic. The exact error estimation of major calculation methods for a nuclide chain equation is done by using this exact solution as a standard. The Bateman, finite difference, Runge-Kutta and matrix exponential methods are investigated. The present study confirms the following. The original Bateman method has very low accuracy in some cases, because of large-scale cancellations. The revised Bateman method by Siewers reduces the occurrence of cancellations and thereby shows high accuracy. In the time difference method as the finite difference and Runge-Kutta methods, the solutions are mainly affected by the truncation errors in the early decay time, and afterward by the round-off errors. Even though the variable time mesh is employed to suppress the accumulation of round-off errors, it appears to be nonpractical. Judging from these estimations, the matrix exponential method is the best among all the methods except the Bateman method whose calculation process for a linear chain is not identical with that for a general one. (author)

  18. Dynamical Response of Networks Under External Perturbations: Exact Results

    Science.gov (United States)

    Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2015-04-01

    We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.

  19. Exact coefficients for higher dimensional operators with sixteen supersymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ming [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, Congkao [INFN Sezione di Roma “Tor Vergata' ,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-09-15

    We consider constraints on higher-dimensional operators for supersymmetric effective field theories. In four dimensions with maximal supersymmetry and SU(4) R-symmetry, we demonstrate that the coefficients of abelian operators F{sup n} with MHV helicity configurations must satisfy a recursion relation, and are completely determined by that of F{sup 4}. As the F{sup 4} coefficient is known to be one-loop exact, this allows us to derive exact coefficients for all such operators. We also argue that the results are consistent with the SL(2,Z) duality symmetry. Breaking SU(4) to Sp(4), in anticipation for the Coulomb branch effective action, we again find an infinite class of operators whose coefficients are determined exactly. We also consider three-dimensional N=8 as well as six-dimensional N=(2,0),(1,0) and (1,1) theories. In all cases, we demonstrate that the coefficient of dimension-six operator must be proportional to the square of that of dimension-four.

  20. Exact scattering solutions in an energy sudden (ES) representation

    International Nuclear Information System (INIS)

    Chang, B.; Eno, L.; Rabitz, H.

    1983-01-01

    In this paper, we lay down the theoretical foundations for computing exact scattering wave functions in a reference frame which moves in unison with the system internal coordinates. In this frame the (internal) coordinates appear to be fixed and its adoption leads very naturally (in zeroth order) to the energy sudden (ES) approximation [and the related infinite order sudden (IOS) method]. For this reason we call the new representation for describing the exact dynamics of a many channel scattering problem, the ES representation. Exact scattering solutions are derived in both time dependent and time independent frameworks for the representation and many interesting results in these frames are established. It is shown, e.g., that in a time dependent frame the usual Schroedinger propagator factorizes into internal Hamiltonian, ES, and energy correcting propagators. We also show that in a time independent frame the full Green's functions can be similarly factorized. Another important feature of the new representation is that it forms a firm foundation for seeking corrections to the ES approximation. Thus, for example, the singularity which arises in conventional perturbative expansions of the full Green's functions (with the ES Green's function as the zeroth order solution) is avoided in the ES representation. Finally, a number of both time independent and time dependent ES correction schemes are suggested

  1. Exact EGB models for spherical static perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hansraj, Sudan; Chilambwe, Brian; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2015-06-15

    We obtain a new exact solution to the field equations for a 5-dimensional spherically symmetric static distribution in the Einstein-Gauss-Bonnet modified theory of gravity. By using a transformation, the study is reduced to the analysis of a single second order nonlinear differential equation. In general the condition of pressure isotropy produces a first order differential equation which is an Abel equation of the second kind. An exact solution is found. The solution is examined for physical admissibility. In particular a set of constants is found which ensures that a pressure-free hypersurface exists which defines the boundary of the distribution. Additionally the isotropic pressure and the energy density are shown to be positive within the radius of the sphere. The adiabatic sound-speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution. On setting the Gauss-Bonnet coupling to zero, an exact solution for 5-dimensional perfect fluids in the standard Einstein theory is obtained. Plots of the dynamical quantities for the Gauss-Bonnet and the Einstein case reveal that the pressure is unaffected, while the energy density increases under the influence of the Gauss-Bonnet term. (orig.)

  2. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  3. A fast exact sequential algorithm for the partial digest problem.

    Science.gov (United States)

    Abbas, Mostafa M; Bahig, Hazem M

    2016-12-22

    Restriction site analysis involves determining the locations of restriction sites after the process of digestion by reconstructing their positions based on the lengths of the cut DNA. Using different reaction times with a single enzyme to cut DNA is a technique known as a partial digestion. Determining the exact locations of restriction sites following a partial digestion is challenging due to the computational time required even with the best known practical algorithm. In this paper, we introduce an efficient algorithm to find the exact solution for the partial digest problem. The algorithm is able to find all possible solutions for the input and works by traversing the solution tree with a breadth-first search in two stages and deleting all repeated subproblems. Two types of simulated data, random and Zhang, are used to measure the efficiency of the algorithm. We also apply the algorithm to real data for the Luciferase gene and the E. coli K12 genome. Our algorithm is a fast tool to find the exact solution for the partial digest problem. The percentage of improvement is more than 75% over the best known practical algorithm for the worst case. For large numbers of inputs, our algorithm is able to solve the problem in a suitable time, while the best known practical algorithm is unable.

  4. Galactic evolution

    International Nuclear Information System (INIS)

    Pagel, B.

    1979-01-01

    Ideas are considered concerning the evolution of galaxies which are closely related to those of stellar evolution and the origin of elements. Using information obtained from stellar spectra, astronomers are now able to consider an underlying process to explain the distribution of various elements in the stars, gas and dust clouds of the galaxies. (U.K.)

  5. Darwinian evolution

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.; Spijkerboer, Hendrik Pieter; Koelewijn, Hans Peter

    2016-01-01

    Darwinian evolution is a central tenet in biology. Conventionally, the defi nition of Darwinian evolution is linked to a population-based process that can be measured by focusing on changes in DNA/allele frequencies. However, in some publications it has been suggested that selection represents a

  6. New lumps of Veselov-Novikov integrable nonlinear equation and new exact rational potentials of two-dimensional stationary Schroedinger equation via ∂-macron-dressing method

    International Nuclear Information System (INIS)

    Dubrovsky, V.G.; Formusatik, I.B.

    2003-01-01

    The scheme for calculating via Zakharov-Manakov ∂-macron-dressing method of new rational solutions with constant asymptotic values at infinity of the famous two-dimensional Veselov-Novikov (VN) integrable nonlinear evolution equation and new exact rational potentials of two-dimensional stationary Schroedinger (2DSchr) equation with multiple pole wave functions is developed. As examples new lumps of VN nonlinear equation and new exact rational potentials of 2DSchr equation with multiple pole of order two wave functions are calculated. Among the constructed rational solutions are as nonsingular and also singular

  7. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation

    International Nuclear Information System (INIS)

    Sabry, R.; Zahran, M.A.; Fan Engui

    2004-01-01

    A generalized expansion method is proposed to uniformly construct a series of exact solutions for general variable coefficients non-linear evolution equations. The new approach admits the following types of solutions (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave solutions. The efficiency of the method has been demonstrated by applying it to a generalized variable coefficients KdV equation. Then, new and rich variety of exact explicit solutions have been found

  8. Limit cycles in quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Patrick

    2015-04-27

    In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.

  9. The exact distributions of F(IS under partial asexuality in small finite populations with mutation.

    Directory of Open Access Journals (Sweden)

    Solenn Stoeckel

    Full Text Available Reproductive systems like partial asexuality participate to shape the evolution of genetic diversity within populations, which is often quantified by the inbreeding coefficient F IS. Understanding how those mating systems impact the possible distributions of F IS values in theoretical populations helps to unravel forces shaping the evolution of real populations. We proposed a population genetics model based on genotypic states in a finite population with mutation. For populations with less than 400 individuals, we assessed the impact of the rates of asexuality on the full exact distributions of F IS, the probabilities of positive and negative F IS, the probabilities of fixation and the probabilities to observe changes in the sign of F IS over one generation. After an infinite number of generations, we distinguished three main patterns of effects of the rates of asexuality on genetic diversity that also varied according to the interactions of mutation and genetic drift. Even rare asexual events in mainly sexual populations impacted the balance between negative and positive F IS and the occurrence of extreme values. It also drastically modified the probability to change the sign of F IS value at one locus over one generation. When mutation prevailed over genetic drift, increasing rates of asexuality continuously increased the variance of F IS that reached its highest value in fully asexual populations. In consequence, even ancient asexual populations showed the entire F IS spectrum, including strong positive F IS. The prevalence of heterozygous loci only occurred in full asexual populations when genetic drift dominated.

  10. Safe cycling!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle!   With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...

  11. Cycle 22

    International Nuclear Information System (INIS)

    Kappernman, J.G.; Albertson, V.D.

    1991-01-01

    This paper reports that for many electric utility systems, Solar Cycle 22 has been the first introduction to the phenomena of Geomagnetic Disturbances and the disrupting and damaging effects that they can have upon modern power systems. For all intents and purposes, Power Industry awareness of Cycle 22 started with a bang during the Great Geomagnetic Storm of March 13, 1989. This storm caused a blackout to the entire Province of Quebec, permanently damaged a large nuclear plant GSU transformer in New Jersey, and created enough havoc across the entire North American power grid to create the plausible threat of a massive power system blackout. The flurry of activity and investigation that followed has led many engineers to realize that their power systems are indeed vulnerable to this phenomena and if anything are becoming ever more vulnerable as the system grows to meet future requirements. As a result some organizations such as Hydro Quebec, PSE and G, and the PJM Pool now implement strategic measures as a remedial response to detection of geomagnetic storm conditions. Many more companies pay particularly close attention to storm forecasts and alerts, and the industry in general has accelerated research and monitoring activities through their own means of in concert with the Electric Power Research Institute (EPRI)

  12. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  13. Frames for exact inversion of the rank order coder.

    Science.gov (United States)

    Masmoudi, Khaled; Antonini, Marc; Kornprobst, Pierre

    2012-02-01

    Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe et al. who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in [1] a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to [1]. Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.

  14. Path Following in the Exact Penalty Method of Convex Programming.

    Science.gov (United States)

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  15. Exact reliability quantification of highly reliable systems with maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Bris, Radim, E-mail: radim.bris@vsb.c [VSB-Technical University Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Applied Mathematics, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic)

    2010-12-15

    When a system is composed of highly reliable elements, exact reliability quantification may be problematic, because computer accuracy is limited. Inaccuracy can be due to different aspects. For example, an error may be made when subtracting two numbers that are very close to each other, or at the process of summation of many very different numbers, etc. The basic objective of this paper is to find a procedure, which eliminates errors made by PC when calculations close to an error limit are executed. Highly reliable system is represented by the use of directed acyclic graph which is composed from terminal nodes, i.e. highly reliable input elements, internal nodes representing subsystems and edges that bind all of these nodes. Three admissible unavailability models of terminal nodes are introduced, including both corrective and preventive maintenance. The algorithm for exact unavailability calculation of terminal nodes is based on merits of a high-performance language for technical computing MATLAB. System unavailability quantification procedure applied to a graph structure, which considers both independent and dependent (i.e. repeatedly occurring) terminal nodes is based on combinatorial principle. This principle requires summation of a lot of very different non-negative numbers, which may be a source of an inaccuracy. That is why another algorithm for exact summation of such numbers is designed in the paper. The summation procedure uses benefits from a special number system with the base represented by the value 2{sup 32}. Computational efficiency of the new computing methodology is compared with advanced simulation software. Various calculations on systems from references are performed to emphasize merits of the methodology.

  16. Piecewise adiabatic following in non-Hermitian cycling

    Science.gov (United States)

    Gong, Jiangbin; Wang, Qing-hai

    2018-05-01

    The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.

  17. An exactly soluble Hartree problem in an external potential

    International Nuclear Information System (INIS)

    Gunn, J.C.; Gunn, J.M.F.

    1987-09-01

    The problem of N bosons interacting with each other via repulsive delta function interactions and with an external, attractive, delta function potential is solved within the Hartree approximation, exactly. It is found that if the interparticle interactions are above a certain value, there is no bound state. Thus the bound state does not just expand to compensate for the increase in the repulsive Hartree potential. Moreover as the interaction strength is increased to that value, the ground state wave function develops a pole at the position of the attractive potential. (author)

  18. A quasi-exactly solvable Lipkin-Meshkov-Glick model

    International Nuclear Information System (INIS)

    Pan Feng; Lin Jijie; Xue Xiaogang; Draayer, J P

    2010-01-01

    We prove that a special Lipkin-Meshkov-Glick model is quasi-exactly solvable with solutions that can be expressed in the SU(2) coherent state form. Ground-state properties of the model are studied analytically. We also show that the model reduces to the standard two-site Bose-Hubbard model in the large-N limit for finite U/t or large (N - 1)|U|/t cases with finite N, which proves that in these cases the ground state of the standard two-site Bose-Hubbard model is an SU(2) coherent state.

  19. Transversal magnetotransport in Weyl semimetals: Exact numerical approach

    Science.gov (United States)

    Behrends, Jan; Kunst, Flore K.; Sbierski, Björn

    2018-02-01

    Magnetotransport experiments on Weyl semimetals are essential for investigating the intriguing topological and low-energy properties of Weyl nodes. If the transport direction is perpendicular to the applied magnetic field, experiments have shown a large positive magnetoresistance. In this work we present a theoretical scattering matrix approach to transversal magnetotransport in a Weyl node. Our numerical method confirms and goes beyond the existing perturbative analytical approach by treating disorder exactly. It is formulated in real space and is applicable to mesoscopic samples as well as in the bulk limit. In particular, we study the case of clean and strongly disordered samples.

  20. Exact Methods for Solving the Train Departure Matching Problem

    DEFF Research Database (Denmark)

    Haahr, Jørgen Thorlund; Bull, Simon Henry

    In this paper we consider the train departure matching problem which is an important subproblem of the Rolling Stock Unit Management on Railway Sites problem introduced in the ROADEF/EURO Challenge 2014. The subproblem entails matching arriving train units to scheduled departing trains at a railway...... site while respecting multiple physical and operational constraints. In this paper we formally define that subproblem, prove its NP- hardness, and present two exact method approaches for solving the problem. First, we present a compact Mixed Integer Program formulation which we solve using a MIP solver...