Exact analytical solutions for ADAFs
Habibi, Asiyeh; Shadmehri, Mohsen
2016-01-01
We obtain two-dimensional exact analytic solutions for the structure of the hot accretion flows without wind. We assume that the only non-zero component of the stress tensor is $T_{r\\varphi}$. Furthermore we assume that the value of viscosity coefficient $\\alpha$ varies with $\\theta$. We find radially self-similar solutions and compare them with the numerical and the analytical solutions already studied in the literature. The no-wind solution obtained in this paper may be applied to the nuclei of some cool-core clusters.
Quantifying risks with exact analytical solutions of derivative pricing distribution
Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin
2017-04-01
Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.
Analytical exact solution of the non-linear Schroedinger equation
Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica
2011-07-01
Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)
XIAZhi
2004-01-01
Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and other exact analytical solution for Whitham-Broer-Kaup equations(WBK) are derived. These solutions contain Fan's, Xie's and Yan's results and other new types of analytical solutions, such as rational function solutions and periodic solutions. The method can also be applied to solve more nonlinear differential equations.
Ji Juan-Juan
2017-01-01
Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.
STUDY ON EXACT ANALYTICAL SOLUTIONS FOR TWO SYSTEMS OF NONLINEAR EVOLUTION EQUATIONS
闫振亚; 张鸿庆
2001-01-01
The homogeneous balance method was improved and applied to two systems of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.
Lindén, Fredrik; Zettergren, Henning
2016-01-01
We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.
Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields.
Kuru, S; Negro, J; Nieto, L M
2009-11-11
Exact analytical solutions for the bound states of a graphene Dirac electron in various magnetic fields with translational symmetry are obtained. In order to solve the time-independent Dirac-Weyl equation the factorization method used in supersymmetric quantum mechanics is adapted to this problem. The behavior of the discrete spectrum, probability and current densities are discussed.
Exact Analytical Solution of the Klein-Gordon Equation in the Generalized Woods-Saxon Potential
Bayrak, O.; Sahin, D.
2015-09-01
The exact analytical solution of the Klein-Gordon equation for the spin-0 particles in the generalized Woods-Saxon potential is presented. The bound state energy eigenvalues and corresponding wave functions are obtained in the closed forms. The correlations between the potential parameters and energy eigenvalues are examined for π0 particles.
Exact Analytical Solutions in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length
CHEN Yong; LI Biao; ZHENG Yu
2007-01-01
In the paper, the generalized Riccati equation rational expansion method is presented. Making use of the method and symbolic computation, we present three families of exact analytical solutions of Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Then the dynamics of two anlytical solutions are demonstrated by computer simulations under some selectable parameters including the Feshbach-managed nonlinear coefficient and the hyperbolic secant function coefficient.
New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods
S Saha, Ray
2016-04-01
In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.
Danish, Mohammad; Kumar, Shashi; Kumar, Surendra
2012-03-01
Exact analytical solutions for the velocity profiles and flow rates have been obtained in explicit forms for the Poiseuille and Couette-Poiseuille flow of a third grade fluid between two parallel plates. These exact solutions match well with their numerical counter parts and are better than the recently developed approximate analytical solutions. Besides, effects of various parameters on the velocity profile and flow rate have been studied.
Exact Analytical Solutions in Three-Body Problems and Model of Neutrino Generator
Takibayev N.Zh.
2010-04-01
Full Text Available Exact analytic solutions are obtained in three-body problem for the scattering of light particle on the subsystem of two ﬁxed centers in the case when pair potentials have a separable form. Solutions show an appearance of new resonance states and dependence of resonance energy and width on distance between two ﬁxed centers. The approach of exact analytical solutions is expanded to the cases when two-body scattering amplitudes have the Breit-Wigner’s form and employed for description of neutron resonance scattering on subsystem of two heavy nuclei ﬁxed in nodes of crystalline lattice. It is shown that some resonance states have widths close to zero at the certain values of distance between two heavy scatterer centers, this gives the possibility of transitions between states. One of these transitions between three-body resonance states could be connected with process of electron capture by proton with formation of neutron and emission of neutrino. This exoenergic process leading to the cooling of star without nuclear reactions is discussed.
Sharma, Pankaj; Parashar, Sandeep Kumar
2016-05-01
The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d15 effect. In piezoelectric actuators, the potential use of d15 effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d31 and d33. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton`s principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions.
Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H
2015-07-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.
Exact analytical solution for quantum spins mixing in spin-1 Bose-Einstein condensates
Chen Ai-Xi; Qiu Wan-Ying; Wang Zhi-Ping
2008-01-01
This paper solves exactly a set of fully quantized coupled equations describing the quantum dynamics of quantum spins mixing in spin-1 Bose-Einstein condensates by deriving the exact explicit analytical expressions for the evolution of creation and annihilation operators.
A New Rational Algebraic Approach to Find Exact Analytical Solutions to a (2+1)-Dimensional System
无
2007-01-01
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions.The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions,and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
AN EXACT ANALYTICAL SOLUTION FOR THE INTERSTELLAR MAGNETIC FIELD IN THE VICINITY OF THE HELIOSPHERE
Röken, Christian [Universität Regensburg, Fakultät für Mathematik, Regensburg (Germany); Kleimann, Jens; Fichtner, Horst, E-mail: christian.roeken@mathematik.uni-regensburg.de, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de [Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik IV, Bochum (Germany)
2015-06-01
An analytical representation of the interstellar magnetic field in the vicinity of the heliosphere is derived. The three-dimensional field structure close to the heliopause is calculated as a solution of the induction equation under the assumption that it is frozen into a prescribed plasma flow resembling the characteristic interaction of the solar wind with the local interstellar medium. The usefulness of this analytical solution as an approximation to self-consistent magnetic field configurations obtained numerically from the full MHD equations is illustrated by quantitative comparisons.
Construction of exact solutions to the modified forms of DP and CH equations by analytical methods
Jalil Manafian Heris
2015-11-01
Full Text Available In this work, we establish the exact solutions to the modified forms of Degasperis–Procesi (DP and Camassa–Holm (CH equations. The generalized (G’/G-expansion and generalized tanh-coth methods were used to construct solitary wave solutions of nonlinear evolution equations. The generalized (G’/G-expansion method presents a wider applicability for handling nonlinear wave equations. It is shown that the (G’/G-expansion method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.
Fang-fang LI; Jing LIU; Kai YUE
2009-01-01
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temper-ature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.
Hayek, Mohamed; Kosakowski, Georg; Churakov, Sergey
2011-07-01
We present exact analytical solutions for a one-dimensional diffusion problem coupled with the precipitation-dissolution reaction ? and feedback of porosity change. The solutions are obtained in the form of traveling waves and describe spatial and temporal evolutions of solute concentration, porosity, and mineral distribution for a set of initial and boundary conditions. The form of the solutions limits the choice of admissible boundary conditions, which might be difficult to adapt in natural systems, and thus, the solutions are of limited use for such a system. The main application of the derived solutions is therefore the benchmarking of numerical reactive transport codes for systems with strong porosity change. To test the performance of numerical codes, numerical solutions obtained by using a global implicit finite volume technique are compared to the analytical solutions. Good agreement is obtained between the analytical solutions and the numerical solutions when a sufficient spatial discretization resolves the spatial concentration gradients at any time. In the limit of fast kinetics (local equilibrium), steep concentration fronts cannot be resolved in a numerical discretization schema.
Fring, Andreas
2016-01-01
We propose a procedure to obtain exact analytical solutions to the time-dependent Schr\\"{o}dinger equations involving explicit time-dependent Hermitian Hamitonians from solutions to time-independent non-Hermitian Hamiltonian systems and the time-dependent Dyson relation together with the time-dependent quasi-Hermiticity relation. We illustrate the working of this method for a simple Hermitian Rabi-type model by relating it to a non-Hermitian time-independent system corresponding to the one-site lattice Yang-Lee model.
Fring, Andreas; Frith, Thomas
2017-01-01
We propose a procedure to obtain exact analytical solutions to the time-dependent Schrödinger equations involving explicit time-dependent Hermitian Hamiltonians from solutions to time-independent non-Hermitian Hamiltonian systems and the time-dependent Dyson relation, together with the time-dependent quasi-Hermiticity relation. We illustrate the working of this method for a simple Hermitian Rabi-type model by relating it to a non-Hermitian time-independent system corresponding to the one-site lattice Yang-Lee model.
Malkov, M A
2016-01-01
An analytic solution for a Fokker-Planck equation that describes propagation of energetic particles through a scattering medium is obtained. The solution is found in terms of an infinite series of mixed moments of particle distribution. The spatial dispersion of a particle cloud released at t=0 evolves through three phases, ballistic (t>Tc), where Tc is the collision time.The ballistic phase is characterized by a decelerating expansion of the initial point source in form of "box" distribution with broadening walls. The next, transdiffusive phase is marked by the box walls broadened to its size and a noticeable slow down of expansion. Finally, the evolution enters the conventional diffusion phase.
Romano, Marcello
2012-01-01
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipso...
Meleshko, Sergey V
2005-01-01
Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.
无
2011-01-01
The velocity field and the adequate shear stress corresponding to the longitudinal flow of a fractional second grade fluid,between two infinite coaxial circular cylinders,are determined by applying the Laplace and finite Hankel transforms.Initially the fluid is at rest,and at time t=0~+, the inner cylinder suddenly begins to translate along the common axis with constant acceleration. The solutions that have been obtained are presented in terms of generalized G functions.Moreover, these solutions satisfy ...
Guo Jun-Hong; Liu Guan-Ting
2008-01-01
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric collinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
An analytical method for finding exact solutions of modified Korteweg–de Vries equation
Md. Shafiqul Islam
2015-01-01
Full Text Available In this present work, we have studied new extension of the (G′/G-expansion method for finding the solitary wave solutions of the modified Korteweg–de Vries (mKdV equation. It has been shown that the proposed method is effective and can be used for many other nonlinear evolution equations (NLEEs in mathematical physics. The obtained results show that the method is very powerful and convenient mathematical tool for nonlinear evolution equations in science and engineering.
Romano, Marcello
2012-01-01
The exact analytic solution is introduced for the rotational motion of a rigid body having three equal principal moments of inertia and subjected to an external torque vector which is constant for an observer fixed with the body, and to arbitrary initial angular velocity. In the paper a parametrization of the rotation by three complex numbers is used. In particular, the rows of the rotation matrix are seen as elements of the unit sphere and projected, by stereographic projection, onto points on the complex plane. In this representation, the kinematic differential equation reduces to an equation of Riccati type, which is solved through appropriate choices of substitutions, thereby yielding an analytic solution in terms of confluent hypergeometric functions. The rotation matrix is recovered from the three complex rotation variables by inverse stereographic map. The results of a numerical experiment confirming the exactness of the analytic solution are reported. The newly found analytic solution is valid for any...
Pannone, Marilena
2012-08-01
This paper shows how an exact analytical solution for the transient-state spatial moments of the cross-sectional average tracer concentration in large open channel flows can be derived from the depth-averaged advection-diffusion equation resorting to the method of Green's functions, without any simplifying assumption about the regularity of the actual concentration field, the smallness of the fluctuations, or the large space-time scale of variation of the average concentration gradient (justifying the a priori localization of the problem), which were the basis of the classic Taylor dispersion theory. The results reveal that in agreement with the findings by Aris (1956) and later by others for flows within a conduit, there are an initial centroid displacement and a variance deficit dependent on the specific position and dimension of the initial injection. The second central moment asymptotically tends to the linearly increasing function predictable on the basis of Taylor's classic theory, and the skewness, which is constantly zero for the cross-sectionally uniform injection, in the case of nonuniform initial distributions tends to slowly vanish after having reached a maximum. Thus, the persistent asymmetry exhibited by the field concentration data, as well as the retardations and the accelerations in the peak trajectory, can be justified without making any a priori assumption about the physical mechanism underlying their appearance, like transient storage phenomena, just by rigorously solving the governing equation for the cross-sectional average concentration in the presence of nonuniform, asymmetrically located solute injections.
Ivan D. Lobanov
2016-06-01
Full Text Available In this article, the problem of the number of spikes (level crossings of the stationary narrowband Gaussian process has been considered. The process was specified by an exponentially-cosine autocorrelation function. The problem had been solved earlier by Rice in terms of the joint probabilities’ density of the process and its derivative with respect to time, but in our article we obtained the solution using the functional of probabilities’ density (the functional was obtained by Amiantov, as well as an expansion of the canonical stochastic process. In this article, the optimal canonical expansion of a narrowband stochastic process based on the work of Filimonov and Denisov was also considered to solve the problem. The application of all these resources allowed obtaining an exact analytical solution of the problem on spikes of stationary narrowband Gaussian process. The obtained formulae could be used to solve, for example, some problems about the residual resource of some radiotechnical products, about the breaking sea waves and others.
Exact Solutions to Maccari's System
PAN Jun-Ting; GONG Lun-Xun
2007-01-01
Based on the generalized Riccati relation, an algebraic method to construct a series of exact solutions to nonlinear evolution equations is proposed. Being concise and straightforward, the method is applied to Maccari's system, and some exact solutions of the system are obtained. The method is of important significance in exploring exact solutions for other nonlinear evolution equations.
Ahmad Neirameh
2016-01-01
Full Text Available This paper obtains solutions as well as other solutions to the 3D- Gross–Pitaevskii equation, which is called the non-linear Schrodinger equation under the conditions of Kudryashov method that appear in various areas of mathematical physics. This equation describes Bose–Einstein condensates in the low temperature regime. These new exact solutions will complement previous results and help further to understand the physical structures.
Md. Nur Alam
2016-06-01
Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
Exact solution for generalized pairing
Pan, Feng; J.P. Draayer
1997-01-01
An infinite dimensional algebra, which is useful for deriving exact solutions of the generalized pairing problem, is introduced. A formalism for diagonalizing the corresponding Hamiltonian is also proposed. The theory is illustrated with some numerical examples.
Exact cosmological solutions for MOG
Roshan, Mahmood [Ferdowsi University of Mashhad, Department of Physics, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)
2015-09-15
We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)
王晓冬; 朱光亚; 王磊
2015-01-01
By defining new dimensionless variables, nonlinear mathematical models for one-dimensional flow with unknown moving boundaries in semi-infinite porous media are modified to be solved analytically. The exact analytical solutions for both constant-rate and constant-pressure inner boundary constraint problems are obtained by applying the Green’s function. Two transcendental equations for moving boundary problems are obtained and solved using the Newton-Raphson iteration. The exact analytical solutions are then compared with the approximate solutions. The Pascal’s approximate formula in reference is fairly accurate for the moving boundary development under the constant-rate condition. But another Pascal’s approximate formula given in reference is not very robust for constant-pressure condition problems during the early production period, and could lead to false results at the maximum moving boundary distance. Our results also show that, in presence of larger TPG, more pressure drop is required to maintain a constant-rate production. Under the constant-pressure producing condition, the flow rate may decline dramatically due to a large TPG. What’s more, there exists a maximum distance for a given TPG, beyond which the porous media is not disturbed.
Exact solution to fractional logistic equation
West, Bruce J.
2015-07-01
The logistic equation is one of the most familiar nonlinear differential equations in the biological and social sciences. Herein we provide an exact solution to an extension of this equation to incorporate memory through the use of fractional derivatives in time. The solution to the fractional logistic equation (FLE) is obtained using the Carleman embedding technique that allows the nonlinear equation to be replaced by an infinite-order set of linear equations, which we then solve exactly. The formal series expansion for the initial value solution of the FLE is shown to be expressed in terms of a series of weighted Mittag-Leffler functions that reduces to the well known analytic solution in the limit where the fractional index for the derivative approaches unity. The numerical integration to the FLE provides an excellent fit to the analytic solution. We propose this approach as a general technique for solving a class of nonlinear fractional differential equations.
Solitons in nonlocal nonlinear media: Exact solutions
Krolikowski, Wieslaw; Bang, Ole
2001-01-01
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...
夏志
2004-01-01
Based on the homogenous balance method and with the help of mathematica,the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and other exact analytical solution for Whitham-Broer-Kaup equations(WBK) are derived. These solutions contain Fan's, Xie's and Yan's results and other new types of analytical solutions, such as rational function solutions and periodic solutions. The method can also be applied to solve more nonlinear differential equations.
Exact Analytical Solution of the Magnetohydrodynamic Sink Flow%精确的磁流体动力学汇流解析解
章骥; 方铁钢; 钟永芳; 黄锋
2011-01-01
An exact analytical solution of the famous Falkner-Skan equation for magneto-hydro-dynamic (MHD) flow was obtained for a special case, namely the sink flow with a velocity power index of -1. The solution was given in a closed form. Multiple solution branches were observed. The effects of the magnetic parameter and the wall stretching parameter were analyzed. Interesting velocity profiles were observed with reversal flow regions even for a stationary wall. These solutions provide a rare case of the Falkner-Skan MHD flow with exact analytical closed form formula and greatly enrich the analytical solution to the celebrated Falkner-Skan equation and the understanding of this important and interesting equation.%就一个特殊的磁流体动力学(MHD)流动,即速度幂指数为-1时的汇流,得到著名的Falkner-Skan方程精确的解析解.解析解是封闭的,并有多重解分支.分析了磁场参数和壁面伸长参数的影响.发现了有趣的速度分布现象:即使壁面固定,回流区域依然出现.在一个罕见的FalknerSkan MHD流动中,得到了一组解,以精确封闭的解析公式表示,极大地丰富了著名的Falkner-Skan方程的解析解,也加深了对这重要又有趣方程的理解.
A Family of Exact Solutions for the Nonlinear Schrodinger Equation
无
2001-01-01
In this paper, the nonlinear Schrodinger (NLS) equation was analytically solved. Firstly, the stationary solutions of NLSequation were explicitly given by the elliptic functions. Then a family of exact solutions of NLS equation were obtained from these sta-tionary solutions by a method for finding new exact solutions from the stationary solutions of integrable evolution equations.
Dalir, Nemat
2014-01-01
An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.
Exact solutions for nonlinear foam drainage equation
Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani
2016-09-01
In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G) -expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.
Exact solutions for nonlinear foam drainage equation
Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani
2017-02-01
In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.
Mahabaleshwar, U. S.; Nagaraju, K. R.; Vinay Kumar, P. N.; Baleanu, Dumitru; Lorenzini, Giulio
2017-03-01
In this paper, we investigate the theoretical analysis for the unsteady magnetohydrodynamic laminar boundary layer flow due to impulsively stretching sheet. The third-order highly nonlinear partial differential equation modeling the unsteady boundary layer flow brought on by an impulsively stretching flat sheet was solved by applying Adomian decomposition method and Pade approximants. The exact analytical solution so obtained is in terms of rapidly converging power series and each of the variants are easily computable. Variations in parameters such as mass transfer (suction/injection) and Chandrasekhar number on the velocity are observed by plotting the graphs. This particular problem is technically sound and has got applications in expulsion process and related process in fluid dynamics problems.
Mahabaleshwar, U. S.; Nagaraju, K. R.; Vinay Kumar, P. N.; Baleanu, Dumitru; Lorenzini, Giulio
2016-12-01
In this paper, we investigate the theoretical analysis for the unsteady magnetohydrodynamic laminar boundary layer flow due to impulsively stretching sheet. The third-order highly nonlinear partial differential equation modeling the unsteady boundary layer flow brought on by an impulsively stretching flat sheet was solved by applying Adomian decomposition method and Pade approximants. The exact analytical solution so obtained is in terms of rapidly converging power series and each of the variants are easily computable. Variations in parameters such as mass transfer (suction/injection) and Chandrasekhar number on the velocity are observed by plotting the graphs. This particular problem is technically sound and has got applications in expulsion process and related process in fluid dynamics problems.
Majid SHAHBABAEI
2014-03-01
Full Text Available In the present study, the problem of nonlinear equations arising in a convective porous fin with a variable cross section is investigated using a Collocation Method (CM. The obtained results from this method are compared with the Homotopy Perturbation Method (HPM, Variation Iteration Method (VIM, and those from a numerical solution, namely the Boundary Value Problem method (BVP, to verify the accuracy of the proposed method. It is found that the CM can achieve suitable results in predicting the solutions of such problems.
Exact Solutions in Modified Gravity Models
Valery V. Obukhov
2012-06-01
Full Text Available We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.
Exact Solutions in Modified Gravity Models
Makarenko, Andrey N
2012-01-01
We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.
Exact solution of the neutron transport equation in spherical geometry
Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters
2017-03-15
Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.
WU Ying; YANG Xiao-Xue
2002-01-01
We present the analytical solutions to the two-mode mean-field model for a split Bose Einstein condensate.These explicit solutions completely determine the system's dynamics under the two-mode mean-field approximation for all possible initial conditions.
Exact Solutions for Einstein's Hyperbolic Geometric Flow
HE Chun-Lei
2008-01-01
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.
New exact solutions in standard inflationary models
Chervon, S V; Shchigolev, V K
1997-01-01
The exact solutions in the standard inflationary model based on the self-interacting scalar field minimally coupled to gravity are considered. The shape's freedom of the self-interacting potential $V(\\phi)$ is postulated to obtain a new set of the exact solutions in the framework of Friedmann-Robertson-Walker Universes. The general solution was found in the case of power law inflation. We obtained new solutions and compared them with obtained ones earlir for the exponential type inflation.
Analytical Special Solutions of the Bohr Hamiltonian
Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I
2005-01-01
The following special solutions of the Bohr Hamiltonian are briefly described: 1) Z(5) (approximately separable solution in five dimensions with gamma close to 30 degrees), 2) Z(4) (exactly separable gamma-rigid solution in four dimensions with gamma = 30 degrees), 3) X(3) (exactly separable gamma-rigid solution in three dimensions with gamma =0). The analytical solutions obtained using Davidson potentials in the E(5), X(5), Z(5), and Z(4) frameworks are also mentioned.
Exact solutions, energy, and charge of stable Q-balls
Bazeia, D.; Marques, M.A. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)
2016-05-15
In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable. (orig.)
Exact solutions in three-dimensional gravity
Garcia-Diaz, Alberto A
2017-01-01
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...
Searching Exact Solutions for Compact Stars in Braneworld: a conjecture
Ovalle, J
2007-01-01
In the context of the braneworld, a spherically symmetric, static and nonhomogeneous stellar distribution with local and non-local bulk terms is studied. Using a toy solution, it is shown how the general relativistic limit could be lost while a solution is being generated on the brane. The source of this problem is clearly identified and solved by a general solution where a constraint can be identified. This constraint is physically interpreted as a necessary condition to regain general relativity, and a particular solution for it is used to find an exact analytical internal solution to no-uniform stellar distributions on the brane. It is shown that such an exact solution is possible due to the fact that bulk corrections to pressure, density and a metric component are a null source of anisotropic effects on the brane. A conjecture is proposed about the possibility of finding physically relevant exact solutions to non-uniform stellar distributions on the brane.
New exact wave solutions for Hirota equation
M Eslami; M A Mirzazadeh; A Neirameh
2015-01-01
In this paper, we construct the topological or dark solitons of Hirota equation by using the first integral method. This approach provides first integrals in polynomial form with a high accuracy for two-dimensional plane autonomous systems. Exact soliton solution is constructed through the established first integrals. This method is a powerful tool for searching exact travelling solutions of nonlinear partial differential equations (NPDEs) in mathematical physics.
Abdelhalim Ebaid
2013-01-01
Full Text Available In the cancer treatment, magnetic nanoparticles are injected into the blood vessel nearest to the cancer’s tissues. The dynamic of these nanoparticles occurs under the action of the peristaltic waves generated on the flexible walls of the blood vessel. Studying such nanofluid flow under this action is therefore useful in treating tissues of the cancer. In this paper, the mathematical model describing the slip peristaltic flow of nanofluid was analytically investigated. Exact expressions were deduced for the temperature distribution and nano-particle concentration. In addition, the effects of the slip, thermophoresis, and Brownian motion parameters on the temperature and nano-particle concentration profiles were discussed and further compared with other approximate results in the literatures. In particular, these results have been obtained at the same values of the physical examined parameters that was considered in Akbar et al., “Peristaltic flow of a nanofluid with slip effects,” 2012. The results reveal that remarkable differences are detected between the exact current results and those approximately obtained in the literatures for behaviour of the temperature profile and nano-particles concentration. Accordingly, the current analysis and results are considered as optimal and therefore may be taken as a base for any future comparisons.
On exact solutions of the Bogoyavlenskii equation
Yan-Ze Peng; Ming Shen
2006-09-01
Exact solutions for the Bogoyavlenskii equation are studied by the travelling wave method and the singular manifold method. It is found that the linear superposition of the shock wave solution and the complex solitary wave solution for the physical field is still a solution of the equation of interest, except for a phase-shift. The dromion-like structures with elastic and nonelastic interactions are found.
Exact interior solutions in 2 + 1-dimensional spacetime
Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Biswas, Ritabrata [Indian Institute of Engineering Sceince and Technology Shibpur, Howrah, West Bengal (India); Usmani, A.A. [Aligarh Muslim University, Department of Physics, Aligarh, Uttar Pradesh (India)
2014-04-15
We provide a new class of exact solutions for the interior in 2 + 1-dimensional spacetime. The solutions obtained for the perfect fluid model both with and without cosmological constant (Λ) are found to be regular and singularity free. It assumes very simple analytical forms that help us to study the various physical properties of the configuration. Solutions without Λ are found to be physically acceptable. (orig.)
Exact Solutions in Nonlocal Linear Models
Vernov, S. Yu.
2008-01-01
A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.
Classes of exact Einstein Maxwell solutions
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
Das, Tapas
2015-01-01
The second order $N$-dimensional Schr\\"odinger equation with pseudoharmonic potential is reduced to a first order differential equation by using the Laplace transform approach and exact bound state solutions are obtained using convolution theorem. Our results generalize all other previous works that done for various potential combinations in the case of lower dimensions.The Ladder operators are also constructed for the pseudoharmonic potential in $N$-dimensions.Lie algebra associated with these operators are studied and found that they satisfy the commutation relations for the SU(1,1) group. Matrix elements of different operators such as $z$, $z\\frac{d}{dz}$ are derived and finally the Casimir operator is discussed briefly.
Instantaneous Bethe-Salpeter Equation and Its Exact Solution
CHANG Chao-Hsi; CHEN Jiao-Kai; LI Xue-Qian; WANG Guo-Li
2005-01-01
We present an approach to solve Bethe-Salpeter (BS) equations exactly without any approximation if the kernel of the BS equations exactly is instantaneous, and take positronium as an example to illustrate the general features of the exact solutions. The key step for the approach is from the BS equations to derive a set of coupled and welldetermined integration equations in linear eigenvalue for the components of the BS wave functions equivalently, which may be solvable numerically under a controlled accuracy, even though there is no analytic solution. For positronium,the exact solutions precisely present corrections to those of the corresponding Schrodinger equation in order v1 (v is the relative velocity) for eigenfunctions, in order v2 for eigenvalues, and the mixing between S and D components in JPC = 1- states etc., quantitatively. Moreover, we also point out that there is a questionable step in some existent derivations for the instantaneous BS equations if one is pursuing the exact solutions. Finally, we emphasize that one should take the O(v) corrections emerging in the exact solutions into account accordingly if one is interested in the relativistic corrections for relevant problems to the bound states.
Asllanaj, Fatmir; Contassot-Vivier, Sylvain; Liemert, André; Kienle, Alwin
2014-01-01
We examine the accuracy of a modified finite volume method compared to analytical and Monte Carlo solutions for solving the radiative transfer equation. The model is used for predicting light propagation within a two-dimensional absorbing and highly forward-scattering medium such as biological tissue subjected to a collimated light beam. Numerical simulations for the spatially resolved reflectance and transmittance are presented considering refractive index mismatch with Fresnel reflection at the interface, homogeneous and two-layered media. Time-dependent as well as steady-state cases are considered. In the steady state, it is found that the modified finite volume method is in good agreement with the other two methods. The relative differences between the solutions are found to decrease with spatial mesh refinement applied for the modified finite volume method obtaining method is used for the time semi-discretization of the radiative transfer equation. An agreement among the modified finite volume method, Runge-Kutta method, and Monte Carlo solutions are shown, but with relative differences higher than in the steady state.
Exact solutions to a nonlinear dispersive model with variable coefficients
Yin Jun [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China); Lai Shaoyong [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China)], E-mail: laishaoy@swufe.edu.cn; Qing Yin [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China)
2009-05-15
A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.
EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION
无
2011-01-01
In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.
Exact Vacuum Solutions to the Einstein Equation
无
2007-01-01
In this paper, the author presents a framework for getting a series of exact vacuum solutions to the Einstein equation. This procedure of resolution is based on a canonical form of the metric. According to this procedure, the Einstein equation can be reduced to some 2-dimensional Laplace-like equations or rotation and divergence equations,which are much convenient for the resolution.
EXACT SOLUTIONS OF A DIPOLAR FLUID FLOW
T. HAYAT
2003-01-01
Exact solutions for three canonical flow problems of a dipolar fluid are obtained: (i)The flow of a dipolar fluid due to a suddenly accelerated plate, (ii) The flow generated by periodic oscillation of a plate, (iii) The flow due to plate oscillation in the presence of a transverse magnetic field. The solutions of some interesting flows caused by an arbitrary velocity of the plate and of certain special oscillations are also obtained.
Exact cosmological solutions from Hojman conservation quantities
Capozziello, Salvatore, E-mail: capozzie@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II”, Napoli (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Roshan, Mahmood, E-mail: rowshan@alumni.ut.ac.ir [Department of Physics, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)
2013-10-07
We present a new approach to find exact solutions for cosmological models. By requiring the existence of a symmetry transformation vector for the equations of motion of the given cosmological model (without using either Lagrangian or Hamiltonian), one can find corresponding Hojman conserved quantities. With the help of these conserved quantities, the analysis of the cosmological model can be simplified. In the case of quintessence scalar–tensor models, we show that the Hojman conserved quantities exist for a wide range of V(ϕ)-potentials and allow to find exact solutions for the cosmic scale factor and the scalar field. Finally, we investigate the general cosmological behavior of solutions by adopting a phase-space view.
Exact cosmological solutions from Hojman conservation quantities
Capozziello, Salvatore
2013-01-01
We present a new approach to find exact solutions for cosmological models. By requiring the existence of a symmetry transformation vector for the equations of motion of the given cosmological model (without using either Lagrangian or Hamiltonian), one can find corresponding Hojman conserved quantities. With the help of these conserved quantities, the analysis of the cosmological model can be simplified. In the case of quintessence scalar-tensor models, we show that the Hojman conserved quantities exist for a wide range of V(\\phi)-potentials and allow to find exact solutions for the cosmic scale factor and the scalar field. Finally, we investigate the general cosmological behavior of solutions by adopting a phase-space view.
Exact solution of phantom dark energy model
Wang Wen-Fu; Shui Zheng-Wei; Tang Bin
2010-01-01
We investigate the phantom dark energy model derived from the scalar field with a negative kinetic term. By assuming a particular relation between the time derivative of the phantom field and the Hubble function, an exact solution of the model is constructed. Absence of the 'big rip' singularity is shown explicitly. We then derive special features of phantom dark energy model and show that its predictions are consistent with all astrophysical observations.
Exact solutions for Weyl fermions with gravity
Cianci, Roberto; Fabbri, Luca; Vignolo, Stefano [Universita di Genova, DIME Sez. Metodi e Modelli Matematici, Genoa (Italy)
2015-10-15
We consider the single-handed spinor field in interaction with its own gravitational field described by the set of field equations given by the Weyl field equations written in terms of derivatives that are covariant with respect to the gravitational connection plus Einstein field equations soured with the energy tensor of the spinor: for the Weyl spinor and the ensuing spacetime of Weyl-Lewis-Papapetrou structure, we find all exact solutions. The obtained solution for the metric tensor is that of a PP-wave spacetime, while the spinor field is a flag-dipole. (orig.)
Nonuniform Braneworld Stars: AN Exact Solution
Ovalle, J.
In this paper the first exact interior solution to Einstein's field equations for a static and nonuniform braneworld star with local and nonlocal bulk terms is presented. It is shown that the bulk Weyl scalar U(r) is always negative inside the stellar distribution, and in consequence it reduces both the effective density and the effective pressure. It is found that the anisotropy generated by bulk gravity effect has an acceptable physical behavior inside the distribution. Using a Reissner-Nördstrom-like exterior solution, the effects of bulk gravity on pressure and density are found through matching conditions.
Davies, C.L.; Maslen, E.N.
1983-12-21
A procedure for solving the few-particle Schroedinger equation exactly is applied to a model system consisting of two identical particles and a massive third particle. The type of interaction potential is not specified except that it should not diverge more rapidly than r/sup -2/ at the particle positions. Allowable interactions include the Coulomb and the harmonic oscillator potentials. The principles are illustrated by reference to the spatially symmetric states of the system.
Searching Exact Solutions for Compact Stars in Braneworld:. a Conjecture
Ovalle, J.
In the context of the braneworld, a method to find consistent solutions to Einstein's field equations in the interior of a spherically symmetric, static and non-uniform stellar distribution with Weyl stresses is developed. This method, based on the fact that any braneworld stellar solution must have the general relativity solution as a limit, produces a constraint which reduces the degrees of freedom on the brane. Hence the nonlocality and non-closure of the braneworld equations can be overcome. The constraint found is physically interpreted as a necessary condition to regain general relativity, and a particular solution for it is used to find an exact and physically acceptable analytical internal solution to no-uniform stellar distributions on the brane. It is shown that such an exact solution is possible due to the fact that bulk corrections to pressure, density and a metric component are a null source of anisotropic effects on the brane. A conjecture is proposed regarding the possibility of finding physically relevant exact solutions to non-uniform stellar distributions on the brane.
Exact solutions for the spin tune for model storage rings
Mane, S R
2002-01-01
We present exact analytical expressions for the spin tune for arbitrary values of the orbital action for several storage ring models. The models we treat contain Siberian Snakes, the use of which is essential to preserve the polarization of beams in high-energy proton storage rings. Our solutions contain some novel features. We also prove a previously conjectured claim about the behavior of spin tuneshifts in rings with multiple Snakes. The conjecture is based on numerical simulations, but our proof is analytical, and also nonperturbative.
1980-01-01
un linitecl...-., .• • _. , k 17. DISTRIBUTION STATEMENT (of the abstract ertered in Block 20, it different fron Report.) i .- ’- IS. SUPPLEMENTARY...tr e:eriraertal datu!m. or, cornuter cad a setial frte . . ’ JCt.~, .. u ..... , edfor data. er-try .~ ~in -.ne origina.l proposal. T-is- une::.-ec...snecirnen, k ! Ln Iare t ,e "MIOdl_ parameters’ :oredic-.ed by t.he Burns-haleps "exact arnalyis sc ,neme"l (detanIled irn the Burns and Kaleps ൛KD
Submerged Landau jet: exact solutions, their meaning and application
Broman, Goran I [Blekinge Institute of Technology, Karlskrona (Sweden); Rudenko, Oleg V [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)
2010-01-31
Exact hydrodynamic solutions generalizing the Landau submerged jet solution are reviewed. It is shown how exact inviscid solutions can be obtained and how boundary layer viscosity can be included by introducing parabolic coordinates. The use of exact solutions in applied hydrodynamics and acoustics is discussed. A historical perspective on the discovery of a class of exact solutions and on the analysis of their physical meaning is presented. (methodological notes)
Conformal Invariance and the exact solution of BFKL equations
Navelet, H
1997-01-01
The conformal invariance properties of the QCD Pomeron in the transverse plane allow us to give an explicit analytical expression for the solution of the BFKL equations both in the transverse coordinate and momentum spaces. This result is obtained from the solution of the conformal eigenvectors in the mixed representation in terms of two conformal blocks, each block being the product of an holomorphic times an antiholomorphic function. This property is used to give an exact expression for the QCD dipole multiplicities and dipole-dipole cross-sections in the whole parameter space, proving the equivalence between the BFKL and dipole representations of the QCD Pomeron.
Scalar triplet on a domain wall: an exact solution
Gani, Vakhid A; Radomskiy, Roman V
2016-01-01
We study a model with a real scalar Higgs field and a scalar triplet field that allows existence of a topological defect -- a domain wall. The wall breaks the global $O(3)$ symmetry of the model, which gives rise to non-Abelian orientational degrees of freedom. We found an exact analytic solution that describes a domain wall with a localized configuration of the triplet field on it. This solution enables one to calculate contributions to the action from the orientational and translational degrees of freedom of the triplet field. We also study the linear stability of the domain wall with the triplet field switched off.
On exact solutions of modified KdV-ZK equation
Syed Tauseef Mohyud-Din
2016-12-01
Full Text Available In this work, we established some exact particular solutions with parameters for Modified KdV-ZK Equation. The improved tanϕ(ξ2-expansion method is introduced to construct exact particular solutions of nonlinear evolution equations. The exact particular solutions contain four types: hyperbolic function solution, trigonometric function solution, exponential solution, and rational solution. The method appears to be effective mathematical tool for solving nonlinear evolution equations (NLEEs in applied mathematics and engineering.
Krapez, J.-C.
2016-09-01
The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).
Exact Solution and Exotic Fluid in Cosmology
Phillial Oh
2012-09-01
Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.
Exact Spherically Symmetric Solutions in Massive Gravity
Berezhiani, Z; Nesti, F; Pilo, L
2008-01-01
A phase of massive gravity free from pathologies can be obtained by coupling the metric to an additional spin-two field. We study the gravitational field produced by a static spherically symmetric body, by finding the exact solution that generalizes the Schwarzschild metric to the case of massive gravity. Besides the usual 1/r term, the main effects of the new spin-two field are a shift of the total mass of the body and the presence of a new power-like term, with sizes determined by the mass and the shape (the radius) of the source. These modifications, being source dependent, give rise to a dynamical violation of the Strong Equivalence Principle. Depending on the details of the coupling of the new field, the power-like term may dominate at large distances or even in the ultraviolet. The effect persists also when the dynamics of the extra field is decoupled.
Some exact BPS solutions for exotic vortices and monopoles
Ramadhan, Handhika S.
2016-07-01
We present several analytical solutions of BPS vortices and monopoles in the generalized Abelian Maxwell-Higgs and Yang-Mills-Higgs theories, respectively. These models have recently been extensively studied and several exact solutions have already been obtained in [1,2]. In each theory, the dynamics is controlled by the additional two positive scalar-field-dependent functions, f (| ϕ |) and w (| ϕ |). For the case of vortices, we work in the ordinary symmetry-breaking Higgs potential, while for the case of monopoles we have the ordinary condition of the Prasad-Sommerfield limit. Our results generalize the exact solutions found previously. We also present solutions for BPS vortices with higher winding number. These solutions suffer from the condition that w (| ϕ |) has negative value at some finite range of r, but we argue that since it satisfies the weaker positive-value conditions then the corresponding energy density is still positive-definite and, thus, they are acceptable BPS solutions.
Bäcklund Transformation and New Exact Solutions of the Sharma-Tasso-Olver Equation
Lin Jianming
2011-01-01
Full Text Available The Sharma-Tasso-Olver (STO equation is investigated. The Painlevé analysis is efficiently used for analytic study of this equation. The Bäcklund transformations and some new exact solutions are formally derived.
Scattering of two photons from two distant qubits: exact solution
Laakso, Matti; Pletyukhov, Mikhail [Institute for Theory of Statistical Physics, RWTH Aachen, 52056 Aachen (Germany)
2015-07-01
We consider the inelastic scattering of two photons from two qubits separated by an arbitrary distance and coupled to a one-dimensional transmission line. We present an exact, analytical solution to the problem, and use it to explore a particular configuration of qubits which is transparent to single-photon scattering, thus highlighting non-Markovian effects of inelastic two-photon scattering: Strong two-photon interference and momentum dependent photon (anti)bunching. This latter effect can be seen as an inelastic generalization of the Hong-Ou-Mandel effect.
Some exact BPS solutions for exotic vortices and monopoles
Ramadhan, Handhika S
2015-01-01
We present several analytical solutions of BPS vortices and monopoles in the generalized Abelian Maxwell-Higgs and Yang-Mills-Higgs theories, respectively. These models have recently been extensively studied and several exact solutions have already been obtained in~\\cite{Casana:2014qfa, Casana:2013lna}. In each theory, the dynamics is controlled by the additional two positive scalar-field-dependent functions, $f(|\\phi|)$ and $w(|\\phi|)$. For the case of vortices, we work in the ordinary symmetry-breaking Higgs potential, while for the case of monopoles we have the ordinary condition of the Prasad-Sommerfield limit. Our results generalize that of exact solutions found previously. We also present solutions for BPS vortices with higher winding number. These solutions suffer from the condition that $w(|\\phi|)$ has negative value at some finite range of $r$, but we argue that since it satisfies the weaker positive-value conditions then the corresponding energy density is still positive-definite and, thus, they are...
Strong nonlinear oscillators analytical solutions
Cveticanin, Livija
2017-01-01
This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.
Exact Solutions for a Higher-Order Nonlinear Schr(o)dinger Equation in Atmospheric Dynamics
无
2006-01-01
By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schrodinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.
Analytic solutions of a class of nonlinearly dynamic systems
Wang, M-C [System Engineering Institute of Tianjin University, Tianjin, 300072 (China); Zhao, X-S; Liu, X [Tianjin University of Technology and Education, Tianjin, 300222 (China)], E-mail: mchwang123@163.com.cn, E-mail: xszhao@mail.nwpu.edu.cn, E-mail: liuxinhubei@163.com.cn
2008-02-15
In this paper, the homotopy perturbation method (HPM) is applied to solve a coupled system of two nonlinear differential with first-order similar model of Lotka-Volterra and a Bratus equation with a source term. The analytic approximate solutions are derived. Furthermore, the analytic approximate solutions obtained by the HPM with the exact solutions reveals that the present method works efficiently.
Optimum intermediate fibers for reducing interconnection loss: exact solution.
Yablon, Andrew D; Sumetsky, M
2007-03-15
We derive an exact analytical solution for a transmission line of N single-mode intermediate optical fibers that minimize the interconnection loss between any two dissimilar fiber modes that are well described by that paraxial scalar wave equation. Our solution shows that N optimum intermediate fibers reduce the original interconnection loss by a factor of least 1/(N+1) and that the total interconnection loss is only a function of N and the original direct interconnection loss. Our solution is not restricted to axisymmetric fibers or mode fields and therefore could be useful for reducing the interconnection loss between microstructured optical fibers, between certain slab waveguides, or between fibers and optical sources or detectors.
New Approach to Find Exact Solutions to Classical Boussinesq System
ZHI Hong-Yan; ZHAO Xue-Qin; ZHANG Hong-Qing
2005-01-01
In this paper, based on a new system of three Riccati equations, we give a new method to construct more new exact solutions of nonlinear differential equations in mathematical physics. The classical Boussinesq system is chosen to illustrate our method. As a consequence, more families of new exact solutions are obtained, which include solitary wave solutions and periodic solutions.
Exact Analytical Solutions for Elastodynamic Impact
2015-11-30
the impact problem described in the intro - duction. We utilize the impact boundary condition on the front face of the target (Section 3) and an...uðSðtÞ;~tÞ: ðA:1Þ The opposite sign convention, that is, (A.1)1 with the two limits interchanged , is also used in some of the literature. The
Analytic solutions of an unclassified artifact /
Trent, Bruce C.
2012-03-01
This report provides the technical detail for analytic solutions for the inner and outer profiles of the unclassified CMM Test Artifact (LANL Part Number 157Y-700373, 5/03/2001) in terms of radius and polar angle. Furthermore, analytic solutions are derived for the legacy Sheffield measurement hardware, also in terms of radius and polar angle, using part coordinates, i.e., relative to the analytic profile solutions obtained. The purpose of this work is to determine the exact solution for the “cosine correction” term inherent to measurement with the Sheffield hardware. The cosine correction is required in order to interpret the actual measurements taken by the hardware in terms of an actual part definition, or “knot-point spline definition,” that typically accompanies a component drawing. Specifically, there are two portions of the problem: first an analytic solution must be obtained for any point on the part, e.g., given the radii and the straight lines that define the part, it is required to find an exact solution for the inner and outer profile for any arbitrary polar angle. Next, the problem of the inspection of this part must be solved, i.e., given an arbitrary sphere (representing the inspection hardware) that comes in contact with the part (inner and outer profiles) at any arbitrary polar angle, it is required to determine the exact location of that intersection. This is trivial for the case of concentric circles. In the present case, however, the spherical portion of the profiles is offset from the defined center of the part, making the analysis nontrivial. Here, a simultaneous solution of the part profiles and the sphere was obtained.
Analytical solution methods for geodesic motion
Hackmann, Eva
2015-01-01
The observation of the motion of particles and light near a gravitating object is until now the only way to explore and to measure the gravitational field. In the case of exact black hole solutions of the Einstein equations the gravitational field is characterized by a small number of parameters which can be read off from the observables related to the orbits of test particles and light rays. Here we review the state of the art of analytical solutions of geodesic equations in various space--times. In particular we consider the four dimensional black hole space--times of Pleba\\'nski--Demia\\'nski type as far as the geodesic equation separates, as well as solutions in higher dimensions, and also solutions with cosmic strings. The mathematical tools used are elliptic and hyperelliptic functions. We present a list of analytic solutions which can be found in the literature.
Dual solution of Casson fluid over a porous medium: Exact solutions with extra boundary condition
Khan, Najeeb Alam; Khan, Sidra
2016-12-01
In this article we calculate the exact solution of the steady flow of non-Newtonian Casson fluid, over a stretching/shrinking sheet. The governing partial differential equations (PDEs) are transformed into ordinary differential equation (ODE) by using similarity transformation and then solved analytically by utilizing the exact solution. The closed form unique solution is obtained in the case of stretching sheet whereas for shrinking sheet unique and dual solutions are obtained. Influences of Casson fluid and suction/injection parameter on dimensionless velocity function are discussed and plotted graphically; also the effects of skin friction coefficient are presented in graphical form. Comparisons of current solutions with previous study are also made for the verification of the present study.
Time-dependent exact solutions of the nonlinear Kompaneets equation
Ibragimov, N H, E-mail: nib@bth.s [Department of Mathematics and Science, Blekinge Institute of Technology, 371 79 Karlskrona (Sweden)
2010-12-17
Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions. (fast track communication)
Scalar triplet on a domain wall: an exact solution
Gani, Vakhid A.; Lizunova, Mariya A.; Radomskiy, Roman V.
2016-04-01
We study a model with a real scalar Higgs field and a scalar triplet field that allows existence of a topological defect — a domain wall. The wall breaks the global O(3) symmetry of the model, which gives rise to non-Abelian orientational degrees of freedom. We found an exact analytic solution that describes a domain wall with a localized configuration of the triplet field on it. This solution enables one to calculate contributions to the action from the orientational and translational degrees of freedom of the triplet field. We also study the linear stability of the domain wall with the triplet field switched off. We obtain that degrees of freedom localized on the wall can appear or do not appear depending on the parameters of the model.
An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...
Application of differential constraint method to exact solution of second-grade fluid
Dao-xiang ZHANG; Su-xiao FENG; Zhi-ming LU; Yu-lu LIU
2009-01-01
A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Couette flows subjected to suction or blowing forces, and planar elongational flows are derived. In addition, two new classes of exact solutions for a second-grade fluid flow are found. The obtained exact solutions show that the non-Newtonian second-grade flow behavior depends not only on the material viscosity but also on the material elasticity. Finally, some boundary value problems are discussed.
Exact Periodic Solitary Solutions to the Shallow Water Wave Equation
LI Dong-Long; ZHAO Jun-Xiao
2009-01-01
Exact solutions to the shallow wave equation are studied based on the idea of the extended homoclinic test and bilinear method. Some explicit solutions, such as the one soliton solution, the doubly-periodic wave solution and the periodic solitary wave solutions, are obtained. In addition, the properties of the solutions are investigated.
Exact solutions to the generalized Lienard equation and its applications
Yang Xian-Lin; Tang Jia-Shi
2008-12-01
Some new exact solutions of the generalized Lienard equation are obtained, and the solutions of the equation are applied to solve nonlinear wave equations with nonlinear terms of any order directly. The generalized one-dimensional Klein–Gordon equation, the generalized Ablowitz (A) equation and the generalized Gerdjikov–Ivanov (GI) equation are investigated and abundant new exact travelling wave solutions are obtained that include solitary wave solutions and triangular periodic wave solutions.
Exact solutions to model surface and volume charge distributions
Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, P.; Jash, A.; Bhattacharya, D. S.
2016-10-01
Many important problems in several branches of science and technology deal with charges distributed along a line, over a surface and within a volume. Recently, we have made use of new exact analytic solutions of surface charge distributions to develop the nearly exact Boundary Element Method (neBEM) toolkit. This 3D solver has been successful in removing some of the major drawbacks of the otherwise elegant Green's function approach and has been found to be very accurate throughout the computational domain, including near- and far-field regions. Use of truly distributed singularities (in contrast to nodally concentrated ones) on rectangular and right-triangular elements used for discretizing any three-dimensional geometry has essentially removed many of the numerical and physical singularities associated with the conventional BEM. In this work, we will present this toolkit and the development of several numerical models of space charge based on exact closed-form expressions. In one of the models, Particles on Surface (ParSur), the space charge inside a small elemental volume of any arbitrary shape is represented as being smeared on several surfaces representing the volume. From the studies, it can be concluded that the ParSur model is successful in getting the estimates close to those obtained using the first-principles, especially close to and within the cell. In the paper, we will show initial applications of ParSur and other models in problems related to high energy physics.
Exact solution of the robust knapsack problem☆
Monaci, Michele; Pferschy, Ulrich; Serafini, Paolo
2013-01-01
We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight differs from the expected one. For this problem, we provide a dynamic programming algorithm and present techniques aimed at reducing its space and time complexities. Finally, we computationally compare the performances of the proposed algorithm with those of different exact algorithms presented so far in the literature for robust optimization problems. PMID:24187428
Analytical solutions of moisture flow equations and their numerical evaluation
Gibbs, A.G.
1981-04-01
The role of analytical solutions of idealized moisture flow problems is discussed. Some different formulations of the moisture flow problem are reviewed. A number of different analytical solutions are summarized, including the case of idealized coupled moisture and heat flow. The evaluation of special functions which commonly arise in analytical solutions is discussed, including some pitfalls in the evaluation of expressions involving combinations of special functions. Finally, perturbation theory methods are summarized which can be used to obtain good approximate analytical solutions to problems which are too complicated to solve exactly, but which are close to an analytically solvable problem.
Exact periodic wave solutions for some nonlinear partial differential equations
El-Wakil, S.A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Elgarayhi, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: elgarayhi@yahoo.com; Elhanbaly, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)
2006-08-15
The periodic wave solutions for some nonlinear partial differential equations, including generalized Klein-Gordon equation, Kadomtsev-Petviashvili (KP) equation and Boussinesq equations, are obtained by using the solutions of Jacobi elliptic equation. Under limit conditions, exact solitary wave solutions, shock wave solutions and triangular periodic wave solutions have been recovered.
Exact solutions for a class of quasi-exactly solvable models: A unified treatment
Hatami, N.; Setare, M. R.
2017-07-01
The exact solution of the Schrödinger equation for the four quasi-exactly solvable potentials is presented using the functional Bethe ansatz method. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential parameters are given for each of the four models in terms of the roots of a set of algebraic Bethe ansatz equations.
Exact solutions of (3 + 1)-dimensional stochastic Burgers equation
Wang Tieying [Department of Applied Mathematics and Physics, Dalian Nationalities for University, Dalian 116600 (China)]. E-mail: wangty@dlnu.edu.cn; Ren Yonghong [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China); Zhao Yali [Department of Mathematics, Chaoyang Teachers College, Chaoyang 122000 (China)
2006-08-15
A generalized tan h function method is used for constructing exact travelling wave solutions of nonlinear stochastic partial differential equations. The main idea of this method is to take full advantage of the Riccati equation, which has more exact solutions. More Wick-type stochastic multiple soliton-like solutions and triangular periodic solutions are obtained for the (3 + 1)-dimensional Wick-type stochastic Burgers equation via Hermite transformation.
Strongly nonlinear oscillators analytical solutions
Cveticanin, Livija
2014-01-01
This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...
Exact solutions for the cubic-quintic nonlinear Schroedinger equation
Zhu Jiamin [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China)]. E-mail: zjm64@163.com; Ma Zhengyi [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China); Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China)
2007-08-15
In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[
HUANGDing-Jiang; ZHANGHong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation
HUANG Ding-Jiang; ZHANG Hong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Exact Solutions of the Generalized Benjamin-Bona-Mahony Equation
Xun Liu
2010-01-01
Full Text Available We apply the theory of Weierstrass elliptic function to study exact solutions of the generalized Benjamin-Bona-Mahony equation. By using the theory of Weierstrass elliptic integration, we get some traveling wave solutions, which are expressed by the hyperbolic functions and trigonometric functions. This method is effective to find exact solutions of many other similar equations which have arbitrary-order nonlinearity.
Exact solutions for steady flows of second-grade fluids
ZHANG Dao-xiang; FENG Su-xiao; LU Zhi-ming; LIU Yu-lu
2009-01-01
This paper aims to investigate exact solutions for a second-grade fluid flow with the inverse method.By assuming the relation between the vorticity field and the streamfunction,the exact solutions of the motion of plane second-grade fluids are investigated and obtained.The solutions obtained include simple Couette flows,slit jet flows and uniform flows over a series of distributed obstacles.
Exact bright and dark spatial soliton solutions in saturable nonlinear media
Calvo, Gabriel F. [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Belmonte-Beitia, Juan [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Juan.Belmonte@uclm.es; Perez-Garcia, Victor M. [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)
2009-08-30
We present exact analytical bright and dark (black and grey) solitary wave solutions of a nonlinear Schroedinger-type equation describing the propagation of spatial beams in media exhibiting a saturable nonlinearity (such as centrosymmetric photorefractive materials). A qualitative study of the stationary equation is carried out together with a discussion of the stability of the solutions.
A procedure to construct exact solutions of nonlinear evolution equations
Adem Cengiz Çevikel; Ahmet Bekir; Mutlu Akar; Sait San
2012-09-01
In this paper, we implemented the functional variable method for the exact solutions of the Zakharov-Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin-Bona-Mohany (mBBM) and the modified kdV-Kadomtsev-Petviashvili (kdV-KP) equation. By using this scheme, we found some exact solutions of the above-mentioned equation. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider-applicability for handling nonlinear wave equations.
EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION
无
2009-01-01
Abundant new travelling wave solutions to the BBM (Benjamin-Bona-Mahoni) equation are obtained by the generalized Jacobian elliptic function method. This method can be applied to other nonlinear evolution equations.
Exact Solutions to Short Pulse Equation
FU Zun-Tao; ZHENG Ming-Hua; LIU Shi-Kuo
2009-01-01
In this paper, dependent and independent variable transformations are introduced to solve the short pulse equation. It is shown that different kinds of solutions can be obtained to the short pulse equation.
Three dimensional dilatonic gravity's rainbow: exact solutions
Hendi, Seyed Hossein; Panahiyan, Shahram
2016-01-01
Deep relations of dark energy scenario and string theory results with dilaton gravity, on one hand, and the connection between quantum gravity with gravity's rainbow, on the other hand, motivate us to consider three dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.
Xiao-jing LIU; Ji-zeng WANG; Xiao-min WANG; You-he ZHOU
2014-01-01
General exact solutions in terms of wavelet expansion are obtained for multi-term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ-ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.
Analytic anisotropic solution for holography
Ren, Jie
2016-01-01
An exact solution to Einstein's equations for holographic models is presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined in detail. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimension reduction.
High-order exact solutions for pseudo-plane ideal flows
Sun, Che
2016-08-01
A steady pseudo-plane ideal flow (PIF) model is derived from the 3D Euler equations under Boussinesq approximation. The model is solved analytically to yield high-degree polynomial exact solutions. Unlike quadratic flows, the cubic and quartic solutions display reduced geometry in the form of straightline jet, circular vortex, and multipolar strain field. The high-order circular-vortex solutions are vertically aligned and even the non-aligned multipolar strain-field solutions display vertical concentricity. Such geometry reduction is explained by an analytical theorem stating that only straightline jet and circular vortex have functional solutions to the PIF model.
On exact solutions in multidimensional gravity with antisymmetric forms
Ivashchuk, V D
2001-01-01
This short review deals with a multidimensional gravitational model containing dilatonic scalar fields and antisymmetric forms. The manifold is chosen in the product form. The sigma-model approach and exact solutions are reviewed.
The exact solutions for a nonisospectral nonlinear Schroedinger equation
Ning Tongke [Finance College, Shanghai Normal University, Shanghai 200234 (China)], E-mail: tkning@shnu.edu.cn; Zhang Weiguo; Jia Gao [Science College, University of Shanghai for Science and Technology, Shanghai 200093 (China)
2009-10-30
In this paper, lax pair for the nonisospectral nonlinear Schroedinger hierarchy is given, the time dependence of nonisospectral scattering data is derived and exact solutions for the nonisospectral nonlinear Schroedinger hierarchy are obtained through the inverse scattering transform.
The exact solutions of nonlinear problems by Homotopy Analysis Method (HAM
Hafiz Abdul Wahab
2016-06-01
Full Text Available The present paper presents the comparison of analytical techniques. We establish the existence of the phenomena of the noise terms in the perturbation series solution and find the exact solution of the nonlinear problems. If the noise terms exist, the Homotopy Analysis method gives the same series solution as in Adomian Decomposition Method as well as homotopy Perturbation Method (Wahab et al, 2015 and we get the exact solution using the initial guess in Homotopy Analysis Method using the results obtained by Adomian Decomposition Method.
New Exact Solutions to Long-Short Wave Interaction Equations
TIAN Ying-Hui; CHEN Han-Lin; LIU Xi-Qiang
2006-01-01
New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.
Some exact solutions in K-essence theory isotropic cosmology
Pimentel, Luis O
2016-01-01
We use a simple form of the K-essence theory and apply it to the classic isotropic cosmological model and seek exact solutions. The particular form of the kinetic term that we choose is $K \\left(\\phi, X \\right)= K_0(\\phi)X^m +K_1$. The resulting field equations in the homogeneous and isotropic cosmology (FRW)is considered. Several exact solutions are obtained.
Nørrelykke, Simon F; Flyvbjerg, Henrik
2011-01-01
The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...
Generating exact solutions to Einstein's equation using linearized approximations
Harte, Abraham I.; Vines, Justin
2016-10-01
We show that certain solutions to the linearized Einstein equation can—by the application of a particular type of linearized gauge transformation—be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein's equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.
Generating exact solutions to Einstein's equation using linearized approximations
Harte, Abraham I
2016-01-01
We show that certain solutions to the linearized Einstein equation can---by the application of a particular type of linearized gauge transformation---be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein's equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.
New Exact Solutions for Isothermal Magnetostatic Atmosphere Equations
Mohamed Tawfik ATTIA
2014-12-01
Full Text Available Here, an extended, (G'/G-expansion method with a computerized symbolic computation is used for constructing the exact travelling wave solutions for isothermal magnetostatic atmospheres equations. These equations depend on arbitrary functions that must be specified with choices of the different choice of the different arbitrary functions. The proposed method has been successfully used to obtain some exact travelling wave solutions for the Liouville and sinh-Poisson equations. The obtained travelling wave solutions are expressed by hyperbolic, triangular and exponential function. The solutions obtained via the propose method have many potential applications in physics.
Anisotropic exact solutions in scalar-tensor-vector gravity
Sharif, M.; Yousaf, Aasma
2016-09-01
The aim of this paper is to explore exact solutions in the scalar-tensor-vector theory of gravity with two scalar fields and one vector field. We consider a locally rotationally symmetric Bianchi type-I universe filled with perfect fluid. The first exact solution is found through certain assumptions while the second solution is obtained through Noether symmetry approach. We discuss the behavior of the resulting solutions numerically and also explore the corresponding energy conditions. It is found that the strong energy condition is violated in both cases indicating the accelerated expansion of the universe.
The exact solution of the Schrödinger equation with a polynomially spatially varying mass
Bednarik, Michal; Cervenka, Milan
2017-07-01
The Schrödinger equation with a position-dependent mass (SEPDM) is employed in many areas of quantum physics. Exact solutions for the SEPDM lie at the center of interest of the professional public because it helps us to understand the behavior of quantum particles in the cases in which their mass varies spatially. For this purpose, we used the mass function represented by a quartic polynomial and a quadratic potential function, which extends the current class of exact solutions of the SEPDM. The exact analytical solution of the problem is expressed as a linear combination of local Heun functions. Heun's equation contains many parameters, resulting in its general nature. We studied how limit changes in some of these parameters will affect the solution of the SEPDM. The obtained solutions are particularly suitable for the transfer matrix method and solutions of scattering problems; this is demonstrated by the calculation of bound states.
Exact solitary wave solutions of nonlinear wave equations
无
2001-01-01
The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.
Exact solution of unsteady flow generated by sinusoidal pressure gradient in a capillary tube
M. Abdulhameed
2015-12-01
Full Text Available In this paper, the mathematical modeling of unsteady second grade fluid in a capillary tube with sinusoidal pressure gradient is developed with non-homogenous boundary conditions. Exact analytical solutions for the velocity profiles have been obtained in explicit forms. These solutions are written as the sum of the steady and transient solutions for small and large times. For growing times, the starting solution reduces to the well-known periodic solution that coincides with the corresponding solution of a Newtonian fluid. Graphs representing the solutions are discussed.
New Exact Travelling Wave Solutions to Kundu Equation
HUANG Ding-Jiang; LI De-Sheng; ZHANG Hong-Qing
2005-01-01
Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.
New exact solutions to some difference differential equations
Wang Zhen; Zhang Hong-Qing
2006-01-01
In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of sinh and cosh, periodic solutions presented by trigonometric functions of sin and cos, and rational solutions. This method can be used to solve some other nonlinear difference-differential equations.
A new family of exact and rotating solutions of fireball hydrodynamics
Csörgő, T
2013-01-01
A new class of analytic, exact, rotating, self-similar and surprisingly simple solutions of non-relativistic hydrodynamics are presented for a three-dimensionally expanding, spheroidally symmetric fireball. These results generalize earlier, non-rotating solutions for ellipsoidally symmetric fireballs with directional, three-dimensional Hubble flows. The solutions are presented for a general class of equations of state that includes the lattice QCD equations of state and may feature inhomogeneous temperature and corresponding density profiles.
Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics
Khaled A. Gepreel
2013-01-01
Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.
Exact travelling wave solutions for some important nonlinear physical models
Jonu Lee; Rathinasamy Sakthivel
2013-05-01
The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.
Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer
Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.
1998-01-01
We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....
REDUCTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATION AND EXACT SOLUTIONS
YeCaier; PanZuliang
2003-01-01
Nonlinear partial differetial equation(NLPDE)is converted into ordinary differential equation(ODE)via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS
Sirendaoreji
2004-01-01
Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.
General Exact Solutions of the Harry—Dym Equation
Reza, Mokhtari
2011-02-01
The aim of this paper is to generate exact travelling wave solutions of the Harry—Dym equation through the methods of Adomian decomposition, He's variational iteration, direct integration, and power series. We show that the two later methods are more successful than the two former to obtain more solutions of the equation.
AdS Waves as Exact Solutions to Quadratic Gravity
Gullu, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram
2011-01-01
We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane fronted wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field equations but also the linearized ones which include the linearized equations of the recently found critical gravity.
Exact angular momentum projection based on cranked HFB solution
Enami, Kenichi; Tanabe, Kosai; Yosinaga, Naotaka [Saitama Univ., Urawa (Japan). Dept. of Physics
1998-03-01
Exact angular momentum projection of cranked HFB solutions is carried out. It is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus. The result also indicates that the energy correction from projection is important for further investigation of nuclear structure. (author)
Exact solutions for classical Yang-Mills fields
Frasca, Marco
2014-01-01
Some years ago we displayed a set of classical solutions for the classical Yang-Mills field theory having the property to satisfy a dispersion relation typical of a massive theory. But such solutions seemed to be exact only in the Landau gauge making all the argument an asymptotic one for the most general case of a generic gauge. These solutions can be used to describe the vacuum of the quantum Yang-Mills theory and so, to prove that they are always exact can grant a general framework to build a quantum field theory. Here we show that these solutions are always exact changing just the normalization factor. The components of the field become separated on a generic gauge being all equal just in the Landau gauge.
Exact solution of the classical mechanical quadratic Zeeman effect
Sambhu N Datta; Anshu Pandey
2007-06-01
We address the curious problem of quadratic Zeeman effect at the classical mechanical level. The problem has been very well understood for decades, but an analytical solution of the equations of motion is still to be found. This state of affairs persists because the simultaneous presence of the Coulombic and quadratic terms lowers the dynamical symmetry. Energy and orbital angular momentum are still constants of motion. We find the exact solutions by introducing the concept of an image ellipse. The quadratic effect leads to a dilation of space–time, and a one-to-one correspondence is observed for pairs of physical quantities like energy and angular momentum, and the maximum and minimum distances from the Coulomb center for the Zeeman orbit and the corresponding pairs for the image ellipse. Thus, instead of finding additional conserved quantities, we find constants of motion for an additional dynamics, namely, the image problem. The trajectory is open, in agreement with Bertrand's theorem, but necessarily bound. A stable unbound trajectory does not exist for real values of energy and angular momentum. The radial distance, the angle covered in the plane of the orbit, and the time are uniquely determined by introducing further the concept of an image circle. While the radial distance is defined in a closed form as a transcendental function of the image-circular angle, the corresponding orbit angle and time variables are found in the form of two convergent series expansions. The latter two variables are especially contracted, thereby leading to a precession of the open cycles around the Coulomb center. It is expected that the space–time dilation effect observed here would somehow influence the solution of the quantum mechanical problem at the non-relativistic level.
The First-Integral Method and Abundant Explicit Exact Solutions to the Zakharov Equations
Yadong Shang
2012-01-01
Full Text Available This paper is concerned with the system of Zakharov equations which involves the interactions between Langmuir and ion-acoustic waves in plasma. Abundant explicit and exact solutions of the system of Zakharov equations are derived uniformly by using the first integral method. These exact solutions are include that of the solitary wave solutions of bell-type for n and E, the solitary wave solutions of kink-type for E and bell-type for n, the singular traveling wave solutions, periodic wave solutions of triangle functions, Jacobi elliptic function doubly periodic solutions, and Weierstrass elliptic function doubly periodic wave solutions. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial differential equations.
Exact solutions of N-dimensional harmonic oscillator via Laplace transformation
Chen Gang
2005-01-01
The N-dimensional Schrodinger equation for the harmonic oscillator is reduced to a first-order differential equation in terms of the Laplace transformation and the exact bound state solutions are derived. It is shown that this method of solving Schrodinger equation may serve as a substitute for the standard functional, analytical approach also in lower dimensions.
Johannessen, Kim
2014-01-01
The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...
Exact solutions to three-dimensional time-dependent Schrödinger equation
Fakir Chand; S C Mishra
2007-06-01
With a view to obtain exact analytic solutions to the time-dependent Schrödinger equation for a few potentials of physical interest in three dimensions, transformation-group method is used. Interestingly, the integrals of motion in the new coordinates turn out to be the desired invariants of the systems.
Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte
2015-07-01
This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)
Exactly complete solutions of the Coulomb potential plus a new ring-shaped potential
Chen Changyuan [Department of Physics, Yancheng Teachers College, Yancheng 224002 (China)]. E-mail: yctcccy@tom.com; Dong Shihai [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico, DF (Mexico)]. E-mail: dongsh2@yahoo.com
2005-02-21
A new exactly solvable ring-shaped potential is proposed. The energy eigenvalues and eigenfunctions of the bound states for the Schroedinger equation with this potential are presented analytically. The exact solutions of the continuous states of this quantum system are also obtained. The calculation formula of phase shifts is derived. Analytical properties of the scattering amplitude are discussed. We find that the energy of the particle and the radial wave functions of continuous states reduce to the energy eigenvalues and the radial wave functions of the bound states at the poles of the scattering amplitude.
Exact Solitary Wave Solution in the ZK-BBM Equation
Juan Zhao
2014-01-01
Full Text Available The traveling wave solution for the ZK-BBM equation is considered, which is governed by a nonlinear ODE system. The bifurcation structure of fixed points and bifurcation phase portraits with respect to the wave speed c are analyzed by using the dynamical system theory. Furthermore, the exact solutions of the homoclinic orbits for the nonlinear ODE system are obtained which corresponds to the solitary wave solution curve of the ZK-BBM equation.
Relativit\\'e g\\'en\\'erale: solutions exactes stationnaires
Clément, Gérard
2011-01-01
After a brief summary of the foundations of general relativity, we will concentrate on the stationary exact solutions of the Einstein and Einstein-Maxwell equations. A number of these solutions can be interpreted as black holes, corresponding to a special spacetime geometry. Then, we will show that the reformulation of the stationary Einstein-Maxwell equations as a gravitating sigma model provides us with a powerful tool to generate new solutions.
ANALYTIC SOLUTION AND NUMERICAL SOLUTION TO ENDOLYMPH EQUATION USING FRACTIONAL DERIVATIVE
无
2008-01-01
In this paper,we study the solution to the endolymph equation using the fractional derivative of arbitrary orderλ(0<λ<1).The exact analytic solution is given by using Laplace transform in terms of Mittag-Leffler functions.We then evaluate the approximate numerical solution using MATLAB.
The hyperbolic Allen-Cahn equation: exact solutions
Nizovtseva, I. G.; Galenko, P. K.; Alexandrov, D. V.
2016-10-01
Using the first integral method, a general set of analytical solutions is obtained for the hyperbolic Allen-Cahn equation. The solutions are presented by (i) the class of continual solutions described by \\tanh -profiles for traveling waves of the order parameter, and (ii) the class of singular solutions which exhibit unbounded discontinuity in the profile of the order parameter at the origin of the coordinate system. It is shown that the solutions include the previous analytical results for the parabolic Allen-Cahn equation as a limited class of \\tanh -functions, in which the inertial effects are omitted.
Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis
Przemysław Korohoda
2013-01-01
Full Text Available Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues λ, assuming they are all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 105 times larger than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the smallest eigenvalue indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.
A family of exact solutions for unpolarized Gowdy models
Obregón, O; Obregon, Octavio; Ryan, Michael P.
1998-01-01
Unpolarized Gowdy models are inhomogeneous cosmological models that depend on time and one spatial variable and have complicated nonlinear equations of motion. There are two topologies associated with these models, a three-torus and a one-sphere cross a two-sphere. The three-torus models have been used for numerical studies because it seems difficult to find analytic solutions to their nonlinear Einstein equations. The one-sphere cross tow-sphere models have even more complicated equations, but at least one family of analytic solutions can be given as a reinterpretation of known solutions. Various properties of this family of solutions are studied.
An exact solution of Haugan's binary pulsar equation of motion
Weinstein, M.; Mor, A.
1988-05-01
In his work on the post-Newtonian arrival-time analysis for a pulsary binary system, Haugan (1985) derived and integrated the two-body equation of the motion of the pulsar. The purpose of the present study is to show that there is an exact solution to this nonlinear equation, without any need of far-reaching assumptions and neglected nonlinear terms.
Analyzing Multi-Field Tunneling With Exact Bounce Solutions
Aravind, Aditya; Lorshbough, Dustin; Paban, Sonia
2014-01-01
We study multi-field tunneling using exact solutions for additive potentials. We introduce a binomial potential with non-integer powers that could be considered a generalization of the $4D$ Fubini instanton potential. Using scaling arguments, we show that for multi-field potentials taller and wider barriers may still lead to a smaller bounce action.
Feynman graph solution to Wilson's exact renormalization group
Sonoda, H
2003-01-01
We introduce a new prescription for renormalizing Feynman diagrams. The prescription is similar to BPHZ, but it is mass independent, and works in the massless limit as the MS scheme with dimensional regularization. The prescription gives a diagrammatic solution to Wilson's exact renormalization group differential equation.
Exact Solutions of the Photon Equation in some Rotating Universes
Aydogdu, O; Korunur, M; Salti, M
2005-01-01
In this paper exact solutions of the photon equation are presented and the second order differential equation form of the Maxwell equations in some rotating universes is found to show the equivalence with the Photon equation which is obtained the same form for the same universes.
Exact periodic solution in coupled nonlinear Schrodinger equations
Li Qi-Liang; Chen Jun-Lang; Sun Li-Li; Yu Shu-Yi; Qian Sheng
2007-01-01
The coupled nonlinear Schrodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.
Exact solutions for some nonlinear partial differential equations
Peng, Yan-Ze
2003-08-11
Exact solutions to some nonlinear partial differential equations, including (2+1)-dimensional breaking soliton equation, sine-Gordon equation and double sine-Gordon equation, are studied by means of the mapping method proposed by the author recently. Many new results are presented. A simple review of the method is finally given.
Gravitational waves as exact solutions of Einstein field equations
Vilasi, G [Dipartimento di Fisica, Universita di Salerno Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Gruppo Collegato di Salerno Via S. Allende, I-84081 Baronissi (Salerno) (Italy)
2007-11-15
Exact solutions of Einstein field equations invariant for a non-Abelian 2-dimensional Lie algebra of Killing fields are described. A sub-class of these gravitational fields have a wave-like character; it is shown that they have spin-1.
Exact solution to surface displacement associated with sources ...
user
International Journal of Engineering, Science and Technology ... Usually an exact solution to the surface displacement in an elastic half space is available for ..... to (ζ1 , ζ 2 ,ζ3 ) by means of the transformation (2.1), i.e, the station (x, y,-h) on.
Instability and exact multiplicity of solutions of semilinear equations
Philip Korman
2000-10-01
Full Text Available For a class of two-point boundary-value problems we use bifurcation theory to show that a solution is unstable under a simple, geometric in nature, assumption on the non-linear term. As an application we obtain some new exact multiplicity results.
Exact solutions for classical Yang-Mills fields
2014-01-01
We provide a set of exact solutions of the classical Yang-Mills equations. They have the property to satisfy a massive dispersion relation and hold in all gauges. These solutions can be used to describe the vacuum of the quantum Yang-Mills theory and so, they provide a general framework to build a quantum field theory. The components of the field become separated on a generic gauge but are all equal just in the Lorenz (Landau) gauge.
Nonlocal Symmetries and Exact Solutions for PIB Equation
Xin, Xiang-Peng; Miao, Qian; Chen, Yong
2012-09-01
In this paper, the symmetry group of the (2+1)-dimensional Painlevé integrable Burgers (PIB) equations is studied by means of the classical symmetry method. Ignoring the discussion of the infinite-dimensional subalgebra, we construct an optimal system of one-dimensional group invariant solutions. Furthermore, by using the conservation laws of the reduced equations, we obtain nonlocal symmetries and exact solutions of the PIB equations.
Nonlocal Symmetries and Exact Solutions for PIB Equation
辛祥鹏; 苗倩; 陈勇
2012-01-01
In this paper, the symmetry group of the is studied by means of the classical symmetry method （2＋l）-dimensionM Painlevd integrable Burgers （PIB） equations Ignoring the discussion of the infinite-dimensional subalgebra, we construct an optimal system of one-dimensional group invariant solutions. Furthermore, by using the conservation laws of the reduced equations, we obtain nonlocal symmetries and exact solutions of the PIB equations.
The exact solution of an octagonal rectangle triangle random tiling
De Gier, J; Gier, Jan de; Nienhuis, Bernard
1996-01-01
We present a detailed calculation of the recently published exact solution of a random tiling model possessing an eight-fold symmetric phase. The solution is obtained using Bethe Ansatz and provides closed expressions for the entropy and phason elastic constants. Qualitatively, this model has the same features as the square-triangle random tiling model. We use the method of P. Kalugin, who solved the Bethe Ansatz equations for the square-triangle tiling, which were found by M. Widom.
Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions
Wang, K.; Hu, Y.
2004-12-01
The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.
Agent-based model for the h-index - Exact solution
Żogała-Siudem, Barbara; Cena, Anna; Gagolewski, Marek
2015-01-01
The Hirsch's $h$-index is perhaps the most popular citation-based measure of the scientific excellence. In 2013 G. Ionescu and B. Chopard proposed an agent-based model for this index to describe a publications and citations generation process in an abstract scientific community. With such an approach one can simulate a single scientist's activity, and by extension investigate the whole community of researchers. Even though this approach predicts quite well the $h$-index from bibliometric data, only a solution based on simulations was given. In this paper, we complete their results with exact, analytic formulas. What is more, due to our exact solution we are able to simplify the Ionescu-Chopard model which allows us to obtain a compact formula for $h$-index. Moreover, a simulation study designed to compare both, approximated and exact, solutions is included. The last part of this paper presents evaluation of the obtained results on a real-word data set.
New exact solutions of hydrodynamics for rehadronizing fireballs with lattice QCD equation of state
Csörgő, T
2016-01-01
We describe fireballs that rehadronize from a perfectly fluid quark matter to a chemically frozen, multi-component hadron gas. In the hydrodynamics of these fireballs, we utilize the lattice QCD equation of state, however, we also apply non-relativistic kinematics for simplicity and clarity. Two new classes of exact, analytic solutions of fireball hydrodynamics are presented: the first class describes triaxially expanding, non-rotating ellipsoidal fireballs, while the second class of exact solutions corresponds to spheroidally symmetric, rotating fireballs. In both classes of solutions, we find evidence for a secondary explosion, that happens just after hadrochemical freeze-out. A realistic, linear mass scaling of the slope parameters of the single particle spectra of various hadronic species is obtained analytically, as well as an also realistic, linear mass scaling of the inverse of the squared HBT radius parameters of the Bose-Einstein correlation functions.
On Analytical Solutions to Beam-Hardening
Rigaud, G.
2017-01-01
When polychromatic X-rays propagate through a material, for instance in computerized tomography (CT), low energy photons are more attenuated resulting in a "harder" beam. The beam-hardening phenomenon breaks the monochromatic radiation model based on the Radon transform giving rise to artifacts in CT reconstructions to the detriment of visual inspection and automated segmentation algorithms. We propose first a simplified analytic representation for the beam-hardening. Besides providing a general understanding of the phenomenon, this model proposes to invert the beam-hardening effect for homogeneous objects leading to classical monochromatic data. For heterogeneous objects, no analytical reconstruction of the density can be derived without more prior information. However, the beam-hardening is shown to be a smooth operation on the data and thus to preserve the encoding of the singularities of the attenuation map within the data. A microlocal analysis encourages the use of contour extraction methods to solve partially the beam-hardening effect even for heterogeneous objects. The application of both methods, exact analytical solution for homogeneous objects and feature extraction for heterogeneous ones, on real data demonstrates their relevancy and efficiency.
Analytical solution for the convectively-mixed atmospheric boundary layer
Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.
2013-01-01
Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation
Exact Solutions for Models of Cultural Transmission and Network Rewiring
Evans, T S
2006-01-01
We look at the evolution through rewiring of the degree distribution of a network so the number edges is constant. This is exactly equivalent to the evolution of probability distributions in models of cultural transmission with drift and innovation, or models of homogeneity in genes in the presence of mutation. We show that the mean field equations in the literature are incomplete and provide the full equations. We then give an exact solution for both their long time solution and for their approach to equilibrium. Numerical results show these are excellent approximations and confirm the characteristic simple inverse power law distributions with a large scale cutoff under certain conditions. The alternative is that we reach a completely homogeneous solution. We consider how such processes may arise in practice, using a recent Minority Game study as an example.
Exact solutions and zero modes in scalar field theory
Frasca, Marco
2013-01-01
We provide a set of exact solutions in field theory of scalar fields with $Z_2$ symmetry that involve Jacobi elliptic functions. These solutions have the interesting property to provide massive waves even if one starts from a massless equation. We analyze them classically providing also exact solutions to the corresponding equations for the Green functions needed to completely solve them in a strong coupling limit. This is accomplished using a functional expansion into powers of the current. It is shown that the spontaneous breaking of the $Z_2$ symmetry is due to the existence of a zero mode that persists also in the case of the Higgs mechanism. In this latter case, the zero mode seems to play a role similar to the Goldstone boson in the breaking of a continuous symmetry and so, it should be important at lower momenta as a long range excitation.
Saha Ray, S.; Sahoo, S.
2017-01-01
In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely time fractional modified Kawahara equations by using the ( G^'/G)-expansion method via fractional complex transform. As a result, new types of exact analytical solutions are obtained.
A static axisymmetric exact solution of f(R)-gravity
Gutierrez-Pineres, Antonio C., E-mail: acgutierrez@correo.nucleares.unam.mx [Facultad de Ciencias Basicas, Universidad Tecnologica de Bolivar, CO 131001 Cartagena de Indias (Colombia); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Lopez-Monsalvo, Cesar S., E-mail: cesar.slm@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico)
2013-01-29
We present an exact, axially symmetric, static, vacuum solution for f(R)-gravity in Weyl's canonical coordinates. We obtain a general explicit expression for the dependence of df(R)/dR upon the r and z coordinates and then the corresponding explicit form of f(R), which must be consistent with the field equations. We analyze in detail the modified Schwarzschild solution in prolate spheroidal coordinates. Finally, we study the curvature invariants and show that, in the case of f(R){ne}R, this solution corresponds to a naked singularity.
Exact travelling wave solutions of nonlinear partial differential equations
Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt)]. E-mail: asoliman_99@yahoo.com; Abdou, M.A. [Theoretical Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-04-15
An extended Fan-sub equation method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. The key idea of this method is to take full advantage of the general elliptic equation, involving five parameters, which has more new solutions and whose degeneracies can lead to special sub equation involving three parameters. As an illustration of the extended Fan method, more new solutions are obtained for three models namely, generalized KdV, Drinfeld-Sokolov system and RLW equation.
Exact traveling soliton solutions for the scalar Qiao equation
Abdoulkary, Saïdou; Aboubakar, Mahamoudou; Aboukar; Mohamadou, Alidou; Beda, Tibi
2015-01-01
We investigate exact traveling wave solutions of the scalar Qiao equation proposed by Li and Qiao (2010 J. Math. Phys. 51 042703) using the generalized auxiliary equation method. This equation is known to have bi-Hamiltonian structure and Lax pair, which imply integrability of the equation for a fixed value of k. Symmetries of the scalar Qiao equation and its solutions are also considered. The obtained solutions include kink and antikink solitons, bright and dark solitons, singular solutions and exponential solutions. This method could be used in further works to establish more entirely new solutions for other kinds of nonlinear evolution equations arising in physics. This work could be also relevant for numerical studies of the scalar Qiao equation.
ANALYTIC SOLUTIONS OF MATRIX RICCATI EQUATIONS WITH ANALYTIC COEFFICIENTS
Curtain, Ruth; Rodman, Leiba
2010-01-01
For matrix Riccati equations of platoon-type systems and of systems arising from PDEs, assuming the coefficients are analytic or rational functions in a suitable domain, analyticity of the stabilizing solution is proved under various hypotheses. General results on analytic behavior of stabilizing so
Exact, Schwarzschild-like solution for Yang-Mills theory
Singleton, D.
1995-04-01
Exploiting the connection between general relativity and Yang-Mills theory an exact, Schwarzchild-like solution is given for an SU(N) gauge field coupled to a scalar field in the Bogomolny, Prasad, Sommerfield limit. The SU(2) solution is found using the second order Euler-Lagrange formalism, while the SU(N) generalization is given using the first order Bogomolny formalism. In analogy with the Schwarzschild solution of general relativity, these Yang-Mills solutions possess an event horizon with respect to the SU(N) charge. It is conjectured that this may be the confinement mechanism for QCD, since just as a Schwarzschild black hole will permanently confine anything which carries the charge of general relativity (mass-energy), so this Yang-Mills solution will confine any particle which carries the SU(N) charge.
A new method of generating exact inflationary solutions
Schunck, F E; Franz E Schunck; Eckehard W Mielke
1994-01-01
The mechanism of the initial inflation of the universe is based on gravitationally coupled scalar fields \\phi. Various scenarios are distinguished by the choice of an {\\it effective self--interaction potential} U(\\phi) which simulates a {\\it temporarily} non--vanishing {\\em cosmological term}. Using the Hubble expansion parameter H as a new ``time" coordinate, we can formally derive the {\\it general} Robertson--Walker metric for a {\\em spatially flat} cosmos. Our new method provides a classification of allowed inflationary potentials and is broad enough to embody all known {\\it exact} solutions involving one scalar field as special cases. Moreover, we present new inflationary and deflationary exact solutions and can easily predict the influence of the form of U(\\phi) on density perturbations.
New exact travelling wave solutions of bidirectional wave equations
Jonu Lee; Rathinasamy Sakthivel
2011-06-01
The surface water waves in a water tunnel can be described by systems of the form [Bona and Chen, Physica D116, 191 (1998)] \\begin{equation*} \\begin{cases} v_t + u_x + (uv)_x + au_{x x x} − bv_{x x t} = 0,\\\\ u_t + v_x + u u_x + cv_{x x x} − d u_{x x t} = 0, \\end{cases} \\tag{1} \\end{equation*} where , , and d are real constants. In general, the exact travelling wave solutions will be helpful in the theoretical and numerical study of the nonlinear evolution systems. In this paper, we obtain exact travelling wave solutions of system (1) using the modiﬁed tanh–coth function method with computerized symbolic computation.
On the Exact Solution of Wave Equations on Cantor Sets
Dumitru Baleanu
2015-09-01
Full Text Available The transfer of heat due to the emission of electromagnetic waves is called thermal radiations. In local fractional calculus, there are numerous contributions of scientists, like Mandelbrot, who described fractal geometry and its wide range of applications in many scientific fields. Christianto and Rahul gave the derivation of Proca equations on Cantor sets. Hao et al. investigated the Helmholtz and diffusion equations in Cantorian and Cantor-Type Cylindrical Coordinates. Carpinteri and Sapora studied diffusion problems in fractal media in Cantor sets. Zhang et al. studied local fractional wave equations under fixed entropy. In this paper, we are concerned with the exact solutions of wave equations by the help of local fractional Laplace variation iteration method (LFLVIM. We develop an iterative scheme for the exact solutions of local fractional wave equations (LFWEs. The efficiency of the scheme is examined by two illustrative examples.
Exact solutions for nonlinear partial fractional differential equations
Khaled A.Gepreel; Saleh Omran
2012-01-01
In this article,we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations.We use the improved (G’/G)-expansion function method to calculate the exact solutions to the time-and space-fractional derivative foam drainage equation and the time-and space-fractional derivative nonlinear KdV equation.This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.
New Exact Solutions for New Model Nonlinear Partial Differential Equation
A. Maher
2013-01-01
Full Text Available In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.
Symmetries and Exact Solutions of the Breaking Soliton Equation
陈美; 刘希强
2011-01-01
With the aid of the classical Lie group method and nonclassical Lie group method, we derive the classical Lie point symmetry and the nonclassical Lie point symmetry of （2＋1）-dimensional breaking soliton （BS） equation. Using the symmetries, we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation. Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.
The exact fundamental solution for the Benes tracking problem
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
Exact solutions in multidimensional gravity with antisymmetric forms
Ivashchuk, V D
2001-01-01
This topical review deals with a multidimensional gravitational model containing dilatonic scalar fields and antisymmetric forms. The manifold is chosen in the form M = M_0 x M_1 x ...x M_n, where M_i are Einstein spaces (i >0). The sigma-model approach and exact solutions in the model are reviewed and the solutions with p-branes (e.g. Majumdar-Papapetrou-type, cosmological, spherically symmetric, black-brane and Freund-Rubin-type ones) are considered.
Exact Solution in the New Inflation Scenario with Induced Gravity
WANG Wen-Fu
2001-01-01
Taking the Hubble parameter directly as a function of the scalar field instead of as a function of time,H = H( ), we present a new exact solution in the new inflation model with induced gravity. This includes solution which is inflation for end, and develops smoothly towards radiation-like evolution for ≥ end. The inflation is driven by the evolution of the field with inflation potential, V( ) = λ 2 v2)2.density, ns, is computed and ns lies well inside the limits set by the cosmic background explorer (COBE) satellite.the dex of the scalar effective cosmological constant Aeff tends to zero when inflation ends.``
On the Exact Solution of a Generalized Polya Process
Hidetoshi Konno
2010-01-01
Full Text Available There are two types of master equations in describing nonequilibrium phenomena with memory effect: (i the memory function type and (ii the nonstationary type. A generalized Polya process is studied within the framework of a non-stationary type master equation approach. For a transition-rate with an arbitrary time-dependent relaxation function, the exact solution of a generalized Polya process is obtained. The characteristic features of temporal variation of the solution are displayed for some typical time-dependent relaxation functions reflecting memory in the systems.
Exact Solution in Chaotic Inflation Model with Negative Potential
王文福
2003-01-01
New exact solution to the Einstein equations that describe the evolution of cosmological chaotic inflation model is derived. The inflation is driven by the evolution of scalar field with negative potential V( )=-Vo +1/2m2ψ2.This includes the solution which is exponential inflation for ψo ＞ψ＞ψf , and then develops smoothly towards the radiation-like evolution for ψ＜ψf. The spectral indices of the scalar density ns and the gravitational wave fluctuations ng are computed. The value of ns lies well inside the limits set by the cosmic background explorer satellite.
Non-uniform Braneworld Stars: an Exact Solution
Ovalle, J
2008-01-01
The first exact interior solution to Einstein's field equations for a static and non-uniform braneworld star with local and non-local bulk terms is presented. It is shown that the bulk Weyl scalar ${\\cal U}(r)$ is always negative inside the stellar distribution, in consequence it reduces both the effective density and the effective pressure. It is found that the anisotropy generated by bulk gravity effect has an acceptable physical behaviour inside the distribution. Using a Reissner-N\\"{o}rdstrom-like exterior solution, the effects of bulk gravity on pressure and density are found through matching conditions.
Critical exact solutions for self-gravitating Dirac fields
Cianci, Roberto; Vignolo, Stefano
2016-01-01
We consider the Einstein-Dirac field equations describing a self-gravitating massive neutrino, looking for axially-symmetric exact solutions; in the search of general solutions, we find some that are specific and which have critical features, such as the fact that the space-time curvature turns out to be flat and the spinor field gives rise to a vanishing bi-linear scalar $\\overline{\\psi}\\psi=0$ with non-vanishing bi-linear pseudo-scalar $i\\overline{\\psi}\\gamma^5\\psi\
Conformal invariance and new exact solutions of the elastostatics equations
Chirkunov, Yu. A.
2017-03-01
We fulfilled a group foliation of the system of n-dimensional (n ≥ 2) Lame equations of the classical static theory of elasticity with respect to the infinite subgroup contained in normal subgroup of main group of this system. It permitted us to move from the Lame equations to the equivalent unification of two first-order systems: automorphic and resolving. We obtained a general solution of the automorphic system. This solution is an n-dimensional analogue of the Kolosov-Muskhelishvili formula. We found the main Lie group of transformations of the resolving system of this group foliation. It turned out that in the two-dimensional and three-dimensional cases, which have a physical meaning, this system is conformally invariant, while the Lame equations admit only a group of similarities of the Euclidean space. This is a big success, since in the method of group foliation, resolving equations usually inherit Lie symmetries subgroup of the full symmetry group that was not used for the foliation. In the three-dimensional case for the solutions of the resolving system, we found the general form of the transformations similar to the Kelvin transformation. These transformations are the consequence of the conformal invariance of the resolving system. In the three-dimensional case with a help of the complex dependent and independent variables, the resolving system is written as a simple complex system. This allowed us to find non-trivial exact solutions of the Lame equations, which direct for the Lame equations practically impossible to obtain. For this complex system, all the essentially distinct invariant solutions of the maximal rank we have found in explicit form, or we reduced the finding of those solutions to the solving of the classical one-dimensional equations of the mathematical physics: the heat equation, the telegraph equation, the Tricomi equation, the generalized Darboux equation, and other equations. For the resolving system, we obtained double wave of a
Exact solution of rate equations for a two-spin-qubit system
Le Thi Ha Linh; Nguyen Bich Ha [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: linhlth@ims.vast.ac.vn
2009-09-01
The quantum dynamics of a system of two interacting spin-qubits is studied for elaborating the physical mechanism of the quantum information transfer between them. A simple model with their Heisenberg XY exchange interaction is investigated. The rate equations are established. The analytical expressions of their solution are exactly derived. They explicitly demonstrate, how the quantum information encoded into a spin-qubit at the initial time t = 0 is transferred to other one at any time t > 0.
Stokes Waves Revisited: Exact Solutions in the Asymptotic Limit
Davies, Megan
2016-01-01
Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic secular variation in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long standing theoretical insufficiency by invoking a compact exact $n$-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third ordered perturbative solution, that leads to a seamless extension to higher order (e.g. fifth order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desir...
EXACT SOLUTIONS FOR MAGNETOHYDRODYNAMIC FLOW IN A ROTATING FLUID
S.Asghar; Masood Khan; A.M.Siddiqui; T.Hayat
2002-01-01
An analytical solution is obtained for the flow due to solid-body rotations of an oscillating porous disk and of a fluid at infinity. Neglecting the induced magnetic field, the effects of the transversely applied magnetic field on the flow are studied. Further, the flow confined between two disks is also discussed. It is found that an infinite number of solutions exist for the flow confined between two disks.
丁皓江; 徐荣桥; 国凤林
1999-01-01
Based on three-dimensional elastic equations for piezoelectric materials, the state equations for piezoelectric circular plate under axisymmetric deformation are derived. Applying Hankel transform to them and letting the free boundary terms resulting from Hankel transform be zero, a set of ordinary differential equations with constant coefficients and associated boundary conditions are obtained. Furthermore, two exact solutions corresponding to generalized rigid slipping and generalized elastic simple support are deduced. Then, the governing equations obtained reduce to equations for axisymmetric problem of transversely isotropic circular plate. Under the two types of boundary conditions of elastic simple support and rigid slipping, exact solutions are derived. Finally, numerical results are presented and applicability of the classical plate theory is discussed.
Roman Cherniha
2016-06-01
Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.
Norrelykke, Simon F
2011-01-01
The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time-lapse recordings. Three applications are discussed: (i) Effects of finite sampling-rate and -time, described exactly here, are similar for other stochastic dynamical systems-e.g. motile micro-organisms and their time-lapse recorded trajectories. (ii) The same statistics is satisfied by any experimental system to the extent it is interpreted as a damped harmonic oscillator at finite temperature-such as an AFM cantilever. (iii) Three other models of fundamental interest are limiting cases of the damped harmonic oscillator at finite temperature; it consequently bridges their differences and describes effects of finite sampling rate and sampling time for these models as well. Finally, we give a brief discussion of nondimensio...
Exact Spherical Wave Solutions to Maxwell's Equations with Applications
Silvestri, Guy G.
Electromagnetic radiation from bounded sources represent an important class of physical problems that can be solved for exactly. However, available texts on this subject almost always resort to approximate solution techniques that not only obscure the essential features of the problem but also restrict application to limited ranges of observation. This dissertation presents exact solutions for this important class of problems and demonstrates how these solutions can be applied to situations of genuine physical interest, in particular, the design of device structures with prespecified emission characteristics. The strategy employed is to solve Maxwell's equations in the spherical coordinate system. In this system, fundamental parameters such as electric and magnetic multipole moments fall out quite naturally. Expressions for radiated power, force, and torque assume especially illuminating and simple forms when expressed in terms of these multipole moments. All solutions are derived ab initio using first-principles arguments exclusively. Two operator-equations that receive particularly detailed treatment are the vector Helmholtz equation for the time-independent potential vec a and the "covariant divergence" equation for the energy-momentum-stress tensor T^{mu nu}. An application of classical formulas, as modified by the requirements of statistical mechanics, to the case of heated blackbodies leads to inquiries into the foundations of quantum mechanics and their relation to classical field theory. An application of formulas to various emission structures (spherically-shaped antennas, surface diffraction gratings, collimated beams) provides a basis upon which to characterize these structures in an exact sense, and, ultimately, to elicit clues as to their optimum design.
Analytical Solutions for Beams Passing Apertures with Sharp Boundaries
Luz, Eitam; Malomed, Boris A
2016-01-01
An approximation is elaborated for the paraxial propagation of diffracted beams, with both one- and two-dimensional cross sections, which are released from apertures with sharp boundaries. The approximation applies to any beam under the condition that the thickness of its edges is much smaller than any other length scale in the beam's initial profile. The approximation can be easily generalized for any beam whose initial profile has several sharp features. Therefore, this method can be used as a tool to investigate the diffraction of beams on complex obstacles. The analytical results are compared to numerical solutions and experimental findings, which demonstrates high accuracy of the approximation. For an initially uniform field confined by sharp boundaries, this solution becomes exact for any propagation distance and any sharpness of the edges. Thus, it can be used as an efficient tool to represent the beams, produced by series of slits with a complex structure, by a simple but exact analytical solution.
Nonlinear inertial oscillations of a multilayer eddy: An analytical solution
Dotsenko, S. F.; Rubino, A.
2008-06-01
Nonlinear axisymmetric oscillations of a warm baroclinic eddy are considered within the framework of an reduced-gravity model of the dynamics of a multilayer ocean. A class of exact analytical solutions describing pure inertial oscillations of an eddy formation is found. The thicknesses of layers in the eddy vary according to a quadratic law, and the horizontal projections of the velocity in the layers depend linearly on the radial coordinate. Owing to a complicated structure of the eddy, weak limitations on the vertical distribution of density, and an explicit form of the solution, the latter can be treated as a generalization of the exact analytical solutions of this form that were previously obtained for homogeneous and baroclinic eddies in the ocean.
Shariyat, M., E-mail: m_shariyat@yahoo.co [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis Street, Molla-Sadra Avenue, Vanak Square, P.O. Box: 19395-1999, Tehran 19991 43344 (Iran, Islamic Republic of); Nikkhah, M.; Kazemi, R. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis Street, Molla-Sadra Avenue, Vanak Square, P.O. Box: 19395-1999, Tehran 19991 43344 (Iran, Islamic Republic of)
2011-02-15
In the present paper, analytical and numerical elastodynamic solutions are developed for long thick-walled functionally graded cylinders subjected to arbitrary dynamic and shock pressures. Both transient dynamic response and elastic wave propagation characteristics are studied in these non-homogeneous structures. Variations of the material properties across the thickness are described according to both polynomial and power law functions. A numerically consistent transfinite element formulation is presented for both functions whereas the exact solution is presented for the power law function. The FGM cylinder is not divided into isotropic sub-cylinders. An approach associated with dividing the dynamic radial displacement expression into quasi-static and dynamic parts and expansion of the transient wave functions in terms of a series of the eigenfunctions is employed to propose the exact solution. Results are obtained for various exponents of the functions of the material properties distributions, various radius ratios, and various dynamic and shock loads.
Exact solutions to the geodesic equations of linear dilaton black holes
Hamo, A H H
2015-01-01
In this paper, we analyze the geodesics of the 4-dimensional ($4D$) linear dilaton black hole (LDBH) spacetime, which is an exact solution to the Einstein-Maxwell-Dilaton (EMD) theory. LDBHs have non-asymptotically flat (NAF) geometry, and their Hawking radiation is an isothermal process. The geodesics motions of the test particles are studied via the standard Lagrangian method. After obtaining the Euler-Lagrange (EL) equations, we show that exact analytical solutions to the radial and angular geodesic equations can be obtained. In particular, it is shown that one of the possible solutions for the radial trajectories can be given in terms of the WeierstrassP-function ($\\wp$-function), which is an elliptic-type special function.
Hayek, Mohamed
2016-04-01
This work develops a simple exact and explicit solution of the one-dimensional transient and nonlinear Richards' equation for soils in a special case of exponential water retention curve and power law hydraulic conductivity. The exact solution is obtained as traveling wave based on the approach proposed by Philip (1957, 1967) and adopted by Zlotnik et al. (2007). The obtained solution is novel, and it expresses explicitly the water content as function of the depth and time. It can be useful to model infiltration into semi-infinite soils with time-dependent boundary conditions and infiltration with constant boundary condition but space-dependent initial condition. A complete analytical inverse procedure based on the proposed analytical solution is presented which allows the estimation of hydraulic parameters. The proposed exact solution is also important for the verification of numerical schemes as well as for checking the implementation of time-dependent boundary conditions.
Chandaneswar Midya
2012-01-01
An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall
Exact Solution in Chaotic Inflation Model with Potential Minima
WANG Wen-Fu
2001-01-01
Taking the cosmological expansion rate directly as a function of field , H = H( ), we present a new exact solution to Einstein's equations that describe the evolution of cosmological chaotic inflation model. The inflation is driven by the evolution of scalar field with inflation potential V( ) = λ 2 v2)2.8 ( 2- 2)2.The spectral indices of the scalar density ns and gravitational wave fluctuations ng are computed. The value of ns lies well inside the limits set by the cosmic background explorer satellite.
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
Exact Inflationary Solution in String-Motivated Scalar Field Cosmology
王文福
2001-01-01
We present a new exact solution to Einstein's equations that describes the evolution of inflationary universe models. The inflation is driven by the evolution of a scalar field with an approximate two-loop four-dimensional string potential. In this scenario, the inflation began immediately after the epoch governed by quantum gravity and therefore there is no initial singularity. The successful inflation scenario is expected to appear only at two loop order. For a1/｜a2｜ ≥ 90, the spectral index ns of the scalar density fluctuations lies well inside the limits set by the cosmic background explorer satellite and the gravitational wave spectral index is ng≈1.
Exact Solution of a Drop-Push Model for Percolation
Majumdar, Satya N.; Dean, David S.
2002-08-01
Motivated by a computer science algorithm known as ``linear probing with hashing,'' we study a new type of percolation model whose basic features include a sequential ``dropping'' of particles on a substrate followed by their transport via a ``pushing'' mechanism. Our exact solution in one dimension shows that, unlike the ordinary random percolation model, the drop-push model has nontrivial spatial correlations generated by the dynamics itself. The critical exponents in the drop-push model are also different from those of the ordinary percolation. The relevance of our results to computer science is pointed out.
Exact solutions and ladder operators for a new anharmonic oscillator
Dong Shihai [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico DF (Mexico)]. E-mail: dongsh2@yahoo.com; Sun Guohua [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, UNAM, A.P. 20-726, Del. Alvaro Obregon, 01000 Mexico DF (Mexico); Lozada-Cassou, M. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico DF (Mexico)
2005-06-06
In this Letter, we propose a new anharmonic oscillator and present the exact solutions of the Schrodinger equation with this oscillator. The ladder operators are established directly from the normalized radial wave functions and used to evaluate the closed expressions of matrix elements for some related functions. Some comments are made on the general calculation formula and recurrence relation for off-diagonal matrix elements. Finally, we show that this anharmonic oscillator possesses a hidden symmetry between E(r) and E(ir) by substituting r->ir.
Exact solutions and conserved quantities in f( R, T) Gravity
Sharif, M.; Nawazish, Iqra
2017-06-01
This paper explores Noether and Noether gauge symmetries of anisotropic universe model in f( R, T) gravity. We consider two particular models of this gravity and evaluate their symmetry generators as well as associated conserved quantities. We also find exact solution by using cyclic variable and investigate its behavior via cosmological parameters. The behavior of cosmological parameters turns out to be consistent with recent observations which indicates accelerated expansion of the universe. Next we study Noether gauge symmetry and corresponding conserved quantities for both isotropic and anisotropic universe models. We conclude that symmetry generators and the associated conserved quantities appear in all cases.
Piezoelectric vibration damping using resonant shunt circuits: an exact solution
Soltani, P.; Kerschen, G.; Tondreau, G.; Deraemaeker, A.
2014-12-01
The objective of this paper is to propose an exact closed-form solution to the {{H}∞ } optimization of piezoelectric materials shunted with inductive-resistive passive electrical circuits. Realizing that Den Hartog's method which imposes fixed points of equal height in the receptance transfer function is approximate, the parameters of the piezoelectric tuned vibration absorber are calculated through the direct minimization of the maxima of the receptance. The method is applied to a one-degree-of-freedom primary oscillator considering various values of the electromechanical coupling coefficients.
Exact solutions of certain nonlinear chemotaxis diffusion reaction equations
MISHRA AJAY; KAUSHAL R S; PRASAD AWADHESH
2016-05-01
Using the auxiliary equation method, we obtain exact solutions of certain nonlinear chemotaxis diffusion reaction equations in the presence of a stimulant. In particular, we account for the nonlinearities arising not only from the density-dependent source terms contributed by the particles and the stimulant but also from the coupling term of the stimulant. In addition to this, the diffusion of the stimulant and the effect of long-range interactions are also accounted for in theconstructed coupled differential equations. The results obtained here could be useful in the studies of several biological systems and processes, e.g., in bacterial infection, chemotherapy, etc.
Exact solution of an evolutionary model without aging
Onody, Roberto N.; de Medeiros, Nazareno G. F.
1999-09-01
We introduce an age-structured asexual population model containing all the relevant features of evolutionary aging theories. Beneficial as well as deleterious mutations, heredity, and arbitrary fecundity are present and managed by natural selection. An exact solution without aging is found. We show that fertility is associated with generalized forms of the Fibonacci sequence, while mutations and natural selection are merged into an integral equation which is solved by Fourier series. Average survival probabilities and Malthusian growth exponents are calculated and indicate that the system may exhibit mutational meltdown. The relevance of the model in the context of fissile reproduction groups like many protozoa and coelenterates is discussed.
Critical exact solutions for self-gravitating Dirac fields
Cianci, Roberto; Fabbri, Luca; Vignolo, Stefano [Universita di Genova, DIME Sez. Metodi e Modelli Matematici, Genova (Italy)
2016-11-15
We consider the Einstein-Dirac field equations describing a self-gravitating massive neutrino, looking for axially symmetric exact solutions; in the search of general solutions, we find some that are specific and which have critical features, such as the fact that the space-time curvature turns out to be flat and the spinor field gives rise to a vanishing bi-linear scalar ψψ =0 with non-vanishing bi-linear pseudo-scalar iψγ{sup 5}ψ ≠ 0: because in quantum-field theory general computational methods are built on plane-wave solutions, for which the bi-linear pseudo-scalar vanishes while the bi-linear scalar does not vanish, then the solutions we found cannot be treated with the usual machinery of quantum-field theory. This means that for the Einstein-Dirac system there exist admissible solutions which nevertheless cannot be quantized with the common prescriptions; we regard this situation as yet another issue of tension between Einstein gravity and quantum principles. Possible ways to quench this tension can be seen either in enlarging the validity of quantum-field theory or by restricting the space of the solutions of the Einstein-Dirac system of field equations. (orig.)
Exact Cosmological Solutions in Modified Brans--Dicke Theory
Rasouli, S M M
2016-01-01
In this paper, we obtain exact cosmological vacuum solutions for an extended FLRW homogenous and isotropic Brans-Dicke (BD) universe in five dimensions for all values of the curvature index. Then, by employing the equations associated to a modified Brans-Dicke theory (MBDT) [1], we construct the physics on a four-dimensional hypersurface. We show that the induced matter obeys the equation of state of a fluid of a barotropic type. We discuss the properties of such an induced matter for some values of the equation of state parameter and analyze in detail their corresponding solutions. To illustrate the cosmological behaviors of the solutions, we contrast our solutions with those present the standard Brans-Dicke theory. We retrieve that, in MBDT scenario, it is impossible to find a physically acceptable solution associated to the negative curvature for both the dust-dominated and radiation-dominated universes. However, for a spatially flat and closed universes, we argue that our obtained solutions are more gener...
Exact values of Kolmogorov widths of classes of analytic functions
Serdyuk, A. S.; Bodenchuk, V. V.
2014-01-01
We prove that kernels of analytic functions of kind $H_{h,\\beta}(t)=\\sum\\limits_{k=1}^{\\infty}\\frac{1}{\\cosh kh}\\cos\\Big(kt-\\frac{\\beta\\pi}{2}\\Big)$, $h>0$, ${\\beta\\in\\mathbb{R}}$, satisfies Kushpel's condition $C_{y,2n}$ beginning with some number $n_h$ which is explicitly expressed by parameter $h$ of smoothness of the kernel. As a consequence, for all $n\\geqslant n_h$ we obtain lower bounds for Kolmogorov widths $d_{2n}$ of functional classes that are representable as convolutions of kerne...
Mottez, F
2003-01-01
The tangential layers are characterized by a bulk plasma velocity and a magnetic field that are perpendicular to the gradient direction. They have been extensively described in the frame of the Magneto-Hydro-Dynamic (MHD) theory. But the MHD theory does not look inside the transition region if the transition has a size of a few ion gyroradii. A series of kinetic tangential equilibria, valid for a collisionless plasma is presented. These equilibria are exact analytical solutions of the Maxwell-Vlasov equations. The particle distribution functions are sums of an infinite number of elementary functions parametrized by a vector potential. Examples of equilibria relevant to space plasmas are shown. A model for the deep and sharp density depletions observed in the auroral zone of the Earth is proposed. Tangential equilibria are also relevant for the study of planetary environments and of remote astrophysical plasmas.
Exact two-body solutions and quantum defect theory of two-dimensional dipolar quantum gas
Jie, Jianwen; Qi, Ran
2016-10-01
In this paper, we provide the two-body exact solutions of the two-dimensional (2D) Schrödinger equation with isotropic +/- 1/{r}3 interactions. An analytic quantum defect theory is constructed based on these solutions and it is applied to investigate the scattering properties as well as two-body bound states of an ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves, which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.
Exact Solutions for an MHD Generalized Burgers fluid: Stokes' Second Problem
Khan, Masood; Anjum, Asia
2013-01-01
This paper offers the exact analytical solutions for the magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers fluid corresponding to the second problem of Stokes in the presence of the transverse magnetic field. Modified Darcy's law has been taken into account. The expression for the velocity field and associated tangential stress, presented as a sum of the steady-state and transient solutions, are obtained by means of the integral transforms. Moreover, several figures are plotted to investigate the effects of various emerging parameters on the velocity field. The obtained results show that the magnitude of the velocity and boundary layer thickness significantly reduce in the presence of magnetic field.
Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models
Cordova, Clay; Popolitov, Alexandr; Shakirov, Shamil
2016-01-01
We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarthmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.
Exact solutions and physical analogies for unidirectional flows
Bazant, Martin Z
2016-01-01
Unidirectional flow, exemplified by Hagen-Poiseuille flow in a circular pipe, is the simplest phenomenon of fluid mechanics. Its mathematical description, the Dirichlet problem for Poisson's equation in two dimensions with constant forcing, arises in many physical contexts, such as the torsion of elastic beams, first solved by de Saint-Venant and extended to arbitrary domains by Muskhelishvilli. In this article, we unify and extend the literature by identifying fifteen physical analogies for unidirectional flow and describing their common mathematical structure. We show how to construct approximate geometries that admit exact solutions, by adding harmonic functions to quadratic forms or truncating eigenfunction expansions, and we discuss the difficulty of the evaluating the general contour-integral solution for a given geometry. We prove that the remarkable geometrical interpretation of Poiseuille flow in an equilateral pipe, as the product of the distances from an interior point to the sides, is only shared ...
Exact solutions and physical analogies for unidirectional flows
Bazant, Martin Z.
2016-06-01
Unidirectional flow is the simplest phenomenon of fluid mechanics. Its mathematical description, the Dirichlet problem for Poisson's equation in two dimensions with constant forcing, arises in many physical contexts, such as the torsion of elastic beams, first solved by de Saint-Venant for complex shapes. Here the literature is unified and extended by identifying 17 physical analogies for unidirectional flow and describing their common mathematical structure. Besides classical analogies in fluid and solid mechanics, applications are discussed in stochastic processes (first passage in two dimensions), pattern formation (river growth by erosion), and electrokinetics (ion transport in nanochannels), which also involve Poisson's equation with nonconstant forcing. Methods are given to construct approximate geometries that admit exact solutions, by adding harmonic functions to quadratic forms or by truncating eigenfunction expansions. Exact solutions for given geometries are also derived by conformal mapping. We prove that the remarkable geometrical interpretation of Poiseuille flow in an equilateral triangular pipe (the product of the distances from an interior point to the sides) is only shared by parallel plates and unbounded equilateral wedges (with the third side hidden behind the apex). We also prove Onsager reciprocity for linear electrokinetic phenomena in straight pores of arbitrary shape and surface charge, based on the mathematics of unidirectional flow.
M. Turkyilmazoglu
2012-01-01
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow due to a porous disk rotating with a constant angular speed.The three-dimensional hydromagnetic equations of motion are treated analytically to obtained exact solutions with the inclusion of suction and injection.The well-known thinning/thickening flow field effect of the suction/injection is better understood from the constructed closed form velocity equations.Making use of this solution,analytical formulas for the angular velocity components as well as for the permeable wall shear stresses are derived.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation.The temperature field is shown to accord with the dissipation and the Joule heating.As a result,exact formulas are obtained for the temperature field which take different forms corresponding to the condition of suction or injection imposed on the wall.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Analytic solutions for unconfined groundwater flow over a stepped base
Fitts, Charles R.; Strack, Otto D. L.
1996-03-01
Two new exact solutions are presented for uniform unconfined groundwater flow over a stepped base; one for a step down in the direction of flow, the other for a step up in the direction of flow. These are two-dimensional solutions of Laplace's equation in the vertical plane, and are derived using the hodograph method and conformal mappings on Riemann surfaces. The exact solutions are compared with approximate one-dimensional solutions which neglect the resistance to vertical flow. For small horizontal hydraulic gradients typical of regional groundwater flow, little error is introduced by neglecting the vertical resistance to flow. This conclusion may be extended to two-dimensional analytical models in the horizontal plane, which neglect the vertical resistance to flow and treat the aquifer base as a series of flat steps.
Analytical solution for inviscid flow inside an evaporating sessile drop
Masoud, Hassan; Felske, James D.
2008-01-01
Inviscid flow within an evaporating sessile drop is analyzed. The field equation, E^2(Psi)=0, is solved for the stream function. The exact analytical solution is obtained for arbitrary contact angle and distribution of evaporative flux along the free boundary. Specific results and computations are presented for evaporation corresponding to both uniform flux and purely diffusive gas phase transport into an infinite ambient. Wetting and non-wetting contact angles are considered with flow patter...
Exact solutions of the one-dimensional generalized modified complex Ginzburg-Landau equation
Yomba, E
2003-01-01
The one-dimensional (1D) generalized modified complex Ginzburg-Landau (MCGL) equation for the traveling wave systems is analytically studied. Exact solutions of this equation are obtained using a method which combines the Painleve test for integrability in the formalism of Weiss-Tabor-Carnevale and Hirota technique of bilinearization. We show that pulses, fronts, periodic unbounded waves, sources, sinks and solution as collision between two fronts are the important coherent structures that organize much of the dynamical properties of these traveling wave systems. The degeneracies of the 1D generalized MCGL equation are examined as well as several of their solutions. These degeneracies include two important equations: the 1D generalized modified Schroedinger equation and the 1D generalized real modified Ginzburg-Landau equation. We obtain that the one parameter family of traveling localized source solutions called 'Nozaki-Bekki holes' become a subfamily of the dark soliton solutions in the 1D generalized modif...
Exact solution to the Coulomb wave using the linearized phase-amplitude method
Shuji Kiyokawa
2015-08-01
Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.
Lode, Axel U.J.
2013-06-03
This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.
Christodoulou, Dimitris M
2007-01-01
We have derived exact solutions of the isothermal Lane--Emden equation with and without rotation in a cylindrical geometry. The corresponding hydrostatic equilibria are most relevant to the dynamics of the protosolar nebula before and during the stages of planet and satellite formation. The nonrotating solution for the mass density is analytic, nonsingular, monotonically decreasing with radius, and it satisfies easily the usual physical boundary conditions at the center. When differential rotation is added to the Lane--Emden equation, an entire class of exact solutions for the mass density appears. We have determined all of these solutions analytically as well. Within this class, solutions that are power laws or combinations of power laws are not capable of satisfying the associated boundary--value problem, but they are nonetheless of profound importance because they constitute "baselines" to which the actual solutions approach when the central boundary conditions are imposed. Numerical integrations that enfo...
Properties of exact solution of second-order differential equation with pantograph delay
李冬松; 白红; 刘明珠
2002-01-01
This paper is concerned with properties of exact solution of pantograph delay equation y′′(t)＝ay′(t)+by(t)+cy(qt), 0＜q＜1. Firstly, the existence and uniqueness of the exact solution of equations are proved, and then the condition is investigated which guarantee the exact solution is asymptotic stable.
Mehdi Delkhosh; Mohammad Delkhosh
2012-01-01
Many applications of various self-adjoint differential equations, whose solutions are complex, are produced (Arfken, 1985; Gandarias, 2011; and Delkhosh, 2011). In this work we propose a method for the solving some self-adjoint equations with variable change in problem, and then we obtain a analytical solutions. Because this solution, an exact analytical solution can be provided to us, we benefited from the solution of numerical Self-adjoint equations (Mohynl-Din, 2009; Allame and Azal, 2011;...
Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations
Kudryashov, N. A.
2015-01-01
The method of the logistic function is presented for finding exact solutions of nonlinear differential equations. The application of the method is illustrated by using the nonlinear ordinary differential equation of the fourth order. Analytical solutions obtained by this method are presented. These solutions are expressed via exponential functions.logistic function, nonlinear wave, nonlinear ordinary differential equation, Painlev´e test, exact solution
An exact solution of the slow-light problem
Rybin, A V; Bishop, A R
2004-01-01
We investigate propagation of a slow-light soliton in atomic vapors and Bose-Einstein condensates described by the nonlinear Lambda-model. We show that the group velocity of the soliton monotonically decreases with the intensity of the controlling laser field, which decays exponentially after the laser is switched off. The shock wave of the vanishing controlling field overtakes the slow soliton and stops it, while the optical information is recorded in the medium in the form of spatially localized polarization. We find an explicit exact solution describing the whole process within the slowly varying amplitude and phase approximation. Our results point to the possibility of addressing spatially localized memory formations and moving these memory bits along the medium in a controllable fashion.
Some Exact Solutions of Magnetized viscous model in String Cosmology
Singh, C P
2012-01-01
In this paper we study anisotropic Bianchi-V universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state for a cloud of strings and a relationship between bulk viscous coefficient and expansion scalar. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of the evolution of the universe. This paper investigates the different string models like geometrical(Nambu string), Takabayashi (p-string) and Reddy string models by taking certain physical conditions. The introduction of magnetic field or bulk viscosity or both results in rapid change in scale factors as well as in the classical potential. The presence of viscosity prevents the universe to be empty in its future evolution. The physical and geometrical aspects of each string model are discussed in detail.
Exact solutions for hydrodynamic interactions of two squirming spheres
Papavassiliou, Dario
2016-01-01
We provide exact solutions of the Stokes equations for a squirming sphere close to a no-slip surface, both planar and spherical, and for the interactions between two squirmers, in three dimensions. These allow the hydrodynamic interactions of swimming microscopic organisms with confining boundaries, or each other, to be determined for arbitrary separation and, in particular, in the close proximity regime where approximate methods based on point singularity descriptions cease to be valid. We give a detailed description of the circular motion of an arbitrary squirmer moving parallel to a no-slip spherical boundary or flat free surface at close separation, finding that the circling generically has opposite sense at free surfaces and at solid boundaries. While the asymptotic interaction is symmetric under head-tail reversal of the swimmer, in the near field microscopic structure can result in significant asymmetry. We also find the translational velocity towards the surface for a simple model with only the lowest...
Helical tractor beam: analytical solution of Rayleigh particle dynamics.
Carretero, Luis; Acebal, Pablo; Garcia, Celia; Blaya, Salvador
2015-08-10
We analyze particle dynamics in an optical force field generated by helical tractor beams obtained by the interference of a cylindrical beam with a topological charge and a co-propagating temporally de-phased plane wave. We show that, for standard experimental conditions, it is possible to obtain analytical solutions for the trajectories of particles in such force field by using of some approximations. These solutions show that, in contrast to other tractor beams described before, the intensity becomes a key parameter for the control of particle trajectories. Therefore, by tuning the intensity value the particle can describe helical trajectories upstream and downstream, a circular trajectory in a fixed plane, or a linear displacement in the propagation direction. The approximated analytical solutions show good agreement to the corresponding numerical solutions of the exact dynamical differential equations.
Exact Solutions of a Generalized Weighted Scale Free Network
Li Tan
2013-01-01
Full Text Available We investigate a class of generalized weighted scale-free networks, where the new vertex connects to m pairs of vertices selected preferentially. The key contribution of this paper is that, from the standpoint of random processes, we provide rigorous analytic solutions for the steady state distributions, including the vertex degree distribution, the vertex strength distribution and the edge weight distribution. Numerical simulations indicate that this network model yields three power law distributions for the vertex degrees, vertex strengths and edge weights, respectively.
许涛
2004-01-01
M r.Sm ith liked to be exact. O ne day when he was w alking in thestreet a m an cam e over and asked him E xcuse m e but w here's the , : “ ,nearest bookshop ?” The nearest bookshop Y ou have to cross a bridge and then turn “ ?to the right. ” A nd is the bridge long “ ?” Thirty m eters. “ ” The m an thanked him and went towards the bridge. Suddenly heheard som eone running after him . Stop M r.Sm ith w as shouting. I'm sorry. I just rem em bered ...
New Exact Solutions for an Oldroyd-B Fluid in a Porous Medium
I. Khan
2011-01-01
Full Text Available New exact solutions for unsteady magnetohydrodynamic (MHD flows of an Oldroyd-B fluid have been derived. The Oldroyd-B fluid saturates the porous space. Two different flow cases have been considered. The analytical expressions for velocity and shear stress fields have been obtained by using Laplace transform technique. The corresponding solutions for hydrodynamic Oldroyd-B fluid in a nonporous space appeared as the limiting cases of the obtained solutions. Similar solutions for MHD Newtonian fluid passing through a porous space are also recovered. Graphs are sketched for the pertinent parameters. It is found that the MHD and porosity parameters have strong influence on velocity and shear stress fields.
EXACT SOLUTIONS FOR NONLINEAR TRANSIENT FLOW MODEL INCLUDING A QUADRATIC GRADIENT TERM
曹绪龙; 同登科; 王瑞和
2004-01-01
The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform. Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.
ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION
WANG Yue-peng; SHI Wei-hui
2008-01-01
The stability of nonlinear barotropic vorticity equation was proved. The necessary and sufficient conditions for the initial value problem to be well-posed were presented. Under the conditions of well-posedness, the corresponding analytical solution was also gained.
Logical gaps in the approximate solutions of the social learning game and an exact solution.
Dai, Wenjie; Wang, Xin; Di, Zengru; Wu, Jinshan
2014-01-01
After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.
Logical gaps in the approximate solutions of the social learning game and an exact solution.
Wenjie Dai
Full Text Available After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.
An exact solution of unsteady Couette flow of generalized second grade fluid
无
2002-01-01
The fractional calculus approach is introduced into the rheological constitutive model of a generalized second grade fluid. A constitutive model with fractional derivative is developed for the generalized second grade fluid. Unsteady Couette flow of the generalized second grade fluid is studied by using the method of the discrete inverse Laplace transform and generalized Mittag-Leffler function. And then an exact solution is obtained for this problem with arbitrary fractional derivative. This provides a new analytical tool for the study of viscoelastic fluid mechanics.
Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations
Sirendaoreji [College of Mathematical Science, Inner Mongolia Normal University, Huhhot 010022, Inner Mongolia (China)]. E-mail: siren@imnu.edu.cn
2007-04-09
A variable separated equation and its solutions are used to construct the exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations. The solutions previously obtained by the tanh and sech method are recovered. New and more exact travelling wave solutions including solitons, kink and anti-kink, bell and anti-bell solitary wave solutions, periodic solutions, singular solutions and exponential solutions are found.
Analytic solutions of nonlinear Cournot duopoly game
Akio Matsumoto
2005-01-01
Full Text Available We construct a Cournot duopoly model with production externality in which reaction functions are unimodal. We consider the case of a Cournot model which has a stable equilibrium point. Then we show the existence of analytic solutions of the model. Moreover, we seek general solutions of the model in the form of nonlinear second-order difference equation.
Analytical Solution for Isentropic Flows in Solids
Heuzé, Olivier
2009-12-01
In the XIXth century, Riemann gave the equations system and the exact solution for the isentropic flows in the case of the ideal gas. But to our knowledge, nothing has been done to apply it to condensed media. Many materials of practical interest, for instance metals, obey to the linear law D = c+s u, where D is the shock velocity, u the particle velocity, and c and s properties of the material. We notice that s is strongly linked to the fundamental derivative. This means that the assumption of constant fundamental derivative is useful in this case, as it was with the isentropic gamma in the Riemann solution. Then we can apply the exact Riemann solution for these materials. Although the use of the hypergeometric function is complicated in this case, we obtain a very good approximation with the development in power series.
Non-relativistic radiation mediated shock breakouts: I. Exact bolometric planar breakout solutions
Sapir, Nir; Waxman, Eli
2011-01-01
The problem of a non-steady planar radiation mediated shock (RMS) breaking out from a surface with a power-law density profile, \\rho\\propto x^n, is numerically solved in the approximation of diffusion with constant opacity. For an appropriate choice of time, length and energy scales, determined by the breakout opacity, velocity and density, the solution is universal, i.e. depends only on the density power law index n. The resulting luminosity depends weakly on the value of n. An approximate analytic solution, based on the self-similar hydrodynamic solutions and on the steady RMS solutions, is constructed and shown to agree with the numerical solutions as long as the shock is far from the surface, \\tau>> c/v_{sh}. Approximate analytic expressions, calibrated based on the exact solutions, are provided, that describe the escaping luminosity as a function of time. These results can be used to calculate the bolometric properties of the bursts of radiation produced during supernova (SN) shock breakouts. For complet...
Radiative Transfer in spheres I. Analytical Solutions
Aboughantous, C
2001-01-01
A nonsingular analytical solution for the transfer equation in a pure absorber is obtained in central symmetry and in a monochromatic radiation field. The native regular singularity of the equation is removed by applying a linear transformation to the frame of reference. Two different ap-proaches are used to carry out the solution. In the first approach the angular derivative is interpreted in an original way that made it possible to discard this derivative from the equation for all black body media without upsetting the conservation of energy. In this approach the analytic solution is expressible in terms of exponential integrals without approximations but for practical considerations the solution is presented in the form of Gauss-Legendre quadrature for quantitative evaluation of the solutions. In the second approach the angular derivative is approximated by a new set of discrete ordinates that guarantees the closer of the set of equations and the conservation of energy. The solutions from the two approache...
New Exact Solutions for (1 + 1)-Dimensional Dispersion-Less System
WANG Xian-Jun; Naranmandula; FU Jing-Li; HU Jian-Guo; BAO Gang; Tubuxin
2008-01-01
Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1 + l)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately.
A Simple Analytic Solution for Tachyon Condensation
Erler, Theodore
2009-01-01
In this paper we present a new and simple analytic solution for tachyon condensation in open bosonic string field theory. Unlike the B_0 gauge solution, which requires a carefully regulated discrete sum of wedge states subtracted against a mysterious "phantom" counter term, this new solution involves a continuous integral of wedge states, and no regularization or phantom term is necessary. Moreover, we can evaluate the action and prove Sen's conjecture in a mere few lines of calculation.
Approach to exact solutions of cosmological perturbations: Tachyon field inflation
Herrera, Ramón; Pérez, Roberto G.
2016-03-01
An inflationary universe scenario in the context of a tachyon field is studied. This study is carried out using an ansatz for the effective potential of cosmological perturbations U (η ). We describe in great detail the analytical solutions of the scalar and tensor perturbations for two different Ansätze for the effective potential of cosmological perturbations: Easther's model and an effective potential similar to power-law inflation. Also, we find from the background equations that the effective tachyonic potentials V (φ ) in both models satisfy the properties of a tachyonic potential. We consider the recent data from the Planck to constrain the parameters in our effective potential generating the cosmological perturbations.
Exact Solutions of the Gardner Equation and their Applications to the Different Physical Plasmas
Daghan, D.; Donmez, O.
2016-06-01
Traveling wave solution of the Gardner equation is studied analytically by using the two dependent ( G '/ G,1/ G)-expansion and (1/ G ')-expansion methods and direct integration. The exact solutions of the Gardner equations are obtained. Our analytic solutions are applied to the unmagnetized four-component and dusty plasma systems consisting of hot protons and electrons to investigate dynamical features of the solitons and shock waves produced in these systems. A wide variety of parameters of the plasma is used, and the basic features of the Gardner solitons that are beyond the existing study in literature are found. It is observed that the analytic solutions from ( G '/ G,1/ G)-expansion and (1/ G ')-expansion methods only produce shock waves but the solitary waves are found from the analytic solutions derived from the direct integration. It is also noted that the superhot electrons and relative mass density of the electrons significantly effect the soliton's amplitude, width, and position. We have also numerically proved that the combination of every value of nomalized density μ 1 or temperature ratio σ 1 with the other sets of plasma parameters creates a region where the solutions have similar physical properties. The time-dependent behavior of the soliton is also studied, and a periodic motion of soliton along the phase variable η is found during the evolution. The investigations and the limits presented in this study may be helpful for studying and understanding the nonlinear properties of the solitary and shock waves seen in various physical and astrophysical plasma systems.
Symmetric Teleparallel Gravity: Some Exact Solutions and Spinor Couplings
Adak, Muzaffer; Sert, Özcan; Kalay, Mestan; Sari, Murat
2013-12-01
In this paper, we elaborate on the symmetric teleparallel gravity (STPG) written in a non-Riemannian space-time with nonzero nonmetricity, but zero torsion and zero curvature. First, we give a prescription for obtaining the nonmetricity from the metric in a peculiar gauge. Then, we state that under a novel prescription of parallel transportation of a tangent vector in this non-Riemannian geometry, the autoparallel curves coincide with those of the Riemannian space-times. Subsequently, we represent the symmetric teleparallel theory of gravity by the most general quadratic and parity conserving Lagrangian with lagrange multipliers for vanishing torsion and curvature. We show that our Lagrangian is equivalent to the Einstein-Hilbert Lagrangian for certain values of coupling coefficients. Thus, we arrive at calculating the field equations via independent variations. Then, we obtain in turn conformal, spherically symmetric static, cosmological and pp-wave solutions exactly. Finally, we discuss a minimal coupling of a spin-1/2 field to STPG.
Some exact solutions of magnetized viscous model in string cosmology
C P Singh
2014-07-01
In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of evolution of the Universe. This paper presents different string models like geometrical (Nambu string), Takabayasi (p-string) and Reddy string models by taking certain physical conditions. We discuss the nature of classical potential for viscous fluid with and without magnetic field. The presence of bulk viscosity stops the Universe from becoming empty in its future evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. The other physical and geometrical aspects of each string model are discussed in detail.
Exact Integral Solutions for Two-Phase Flow
McWhorter, David B.; Sunada, Daniel K.
1990-03-01
Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one-dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary-hydraulic properties. One-dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore-size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary-hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.
Exact Traveling Wave Solutions for Wick-Type Stochastic Schamel KdV Equation
Hossam A. Ghany
2014-01-01
Full Text Available F-expansion method is proposed to seek exact solutions of nonlinear partial differential equations. By means of Hermite transform, inverse Hermite transform, and white noise analysis, the variable coefficients and Wick-type stochastic Schamel KdV equations are completely described. Abundant exact traveling wave solutions for variable coefficients Schamel KdV equations are given. These solutions include exact stochastic Jacobi elliptic functions, trigonometric functions, and hyperbolic functions solutions.
Pantellini, Filippo; Griton, Léa
2016-10-01
The spatial structure of a steady state plasma flow is shaped by the standing modes with local phase velocity exactly opposite to the flow velocity. The general procedure of finding the wave vectors of all possible standing MHD modes in any given point of a stationary flow requires numerically solving an algebraic equation. We present the graphical procedure (already mentioned by some authors in the 1960's) along with the exact solution for the Alfvén mode and approximate analytic solutions for both fast and slow modes. The technique can be used to identify MHD modes in space and laboratory plasmas as well as in numerical simulations.
Hwang, M.; Podloucky, R.; Gonis, A.; Freeman, A. J.
1986-01-01
Results of exact and analytic calculations of the electronic densities of states (DOS's) associated with semi-infinite substitutionally disordered chains are presented using the exact position-space renormalization-group (PSRG) method, the augmented-space (AS) formalism, and the embedded-cluster method (ECM). In addition to total DOS's, the PSRG method allows the calculation of exact partial DOS's associated with local atomic configurations in a disordered material. Comparisons with the exact results indicate that as in the case of infinite materials the ECM provides a reliable method for the calculation of single-particle properties, such as the DOS, of semi-infinite systems. Furthermore, the ECM is found to be much more accurate than the AS formalism, especially in the case of concentrated substitutionally disordered alloys.
Exact solutions of some nonlinear partial differential equations using functional variable method
A Nazarzadeh; M Eslami; M Mirzazadeh
2013-08-01
The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation and the higher-order nonlinear Schrödinger equation. By using this useful method, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. It is shown that the proposed method is effective and general.
Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong
2011-12-01
We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work, we prove that the daily moving area of an individual is an ellipse, and finally obtain an exact solution of the gyration radius. The analytical solution captures the empirical observation well.
Exact solution of planar and nonplanar weak shock wave problem in gasdynamics
Singh, L.P. [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India); Ram, S.D., E-mail: sram.rs.apm@itbhu.ac.in [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India); Singh, D.B. [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India)
2011-11-15
Highlights: > An exact solution is derived for a problem of weak shock wave in adiabatic gas dynamics. > The density ahead of the shock is taken as a power of the position from the origin of the shock wave. > For a planar and non-planar motion, the total energy carried by the wave varies with respect to time. > The solution obtained for the planer, and cylindrically symmetric flow is new one. > The results obtained are also presented graphically for different Mach numbers. - Abstract: In the present paper, an analytical approach is used to determine a new exact solution of the problem of one dimensional unsteady adiabatic flow of planer and non-planer weak shock waves in an inviscid ideal fluid. Here it is assumed that the density ahead of the shock front varies according to the power law of the distance from the source of disturbance. The solution of the problem is presented in the form of a power in the distance and the time.
Hamiltonian formulation and exact solutions of the Bianchi type I space-time in conformal gravity
Demaret, J; Scheen, C
1999-01-01
We develop a Hamiltonian formulation of the Bianchi type I space-time in conformal gravity, i.e. the theory described by a Lagrangian that is defined by the contracted quadratic product of the Weyl tensor, in a four-dimensional space-time. We derive the explicit forms of the super-Hamiltonian and of the constraint expressing the conformal invariance of the theory and we write down the system of canonical equations. To seek out exact solutions of this system we add extra constraints on the canonical variables and we go through a global involution algorithm which eventually leads to the closure of the constraint algebra. The Painleve approach provides us with a proof of non-integrability, as a consequence of the presence of movable logarithms in the general solution of the problem. We extract all possible particular solutions that may be written in closed analytical form. This enables us to demonstrate that the global involution algorithm has brought forth the complete list of exact solutions that may be writte...
Analytical solutions for the fractional Fisher's equation
H. Kheiri
2015-06-01
Full Text Available In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified Homotopy perturbation method, it is possible to get an exact solution.
Analytic solution for a quartic electron mirror
Straton, Jack C., E-mail: straton@pdx.edu
2015-01-15
A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.
E.Maghsoodi; H.Hassanabadi; S.Zarrinkamar
2013-01-01
Exact analytical solutions of the Dirac equation are reported for the P(o)schl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.
Cooling and Warming Laws: An Exact Analytical Solution
Besson, Ugo
2010-01-01
This paper deals with temperature variations over time of objects placed in a constant-temperature environment in the presence of thermal radiation. After a historical introduction, the paper discusses cooling and warming laws, by taking into account first solely object-environment energy exchange by thermal radiation, and then adding…
无
2008-01-01
Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.
New explicit and exact solutions of the Benney-Kawahara-Lin equation
Xie Yuan-Xi
2009-01-01
In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney-Kawahara-Lin equation and derive its many explicit and exact solutions which are all new solutions.
An Exact Solution to the Two-Particle Boltzmann Equation System for Maxwell Gases
布仁满都拉; 赵迎春
2012-01-01
An exact solution to the two-particle Boltzmann equation system for Maxwell gases is obtained with use of Bobylev approach.The relationship between the exact solution and the self-similar solution of the boltzmann equation is also given.
Numerical and Exact Solution of Buckling Load For Beam on Elastic Foundation
Roland JANČO
2013-06-01
Full Text Available In this paper we will be presented the exact solution of buckling load for supported beam on elastic foundation. Exact solution will be compared with numerical solution by FEM in our code in Matlab. Implementation of buckling to FEM will be presented here.
Cheng, Lan; Gauss, Jürgen
2011-08-28
We report the implementation of analytic energy gradients for the evaluation of first-order electrical properties and nuclear forces within the framework of the spin-free (SF) exact two-component (X2c) theory. In the scheme presented here, referred to in the following as SFX2c-1e, the decoupling of electronic and positronic solutions is performed for the one-electron Dirac Hamiltonian in its matrix representation using a single unitary transformation. The resulting two-component one-electron matrix Hamiltonian is combined with untransformed two-electron interactions for subsequent self-consistent-field and electron-correlated calculations. The "picture-change" effect in the calculation of properties is taken into account by considering the full derivative of the two-component Hamiltonian matrix with respect to the external perturbation. The applicability of the analytic-gradient scheme presented here is demonstrated in benchmark calculations. SFX2c-1e results for the dipole moments and electric-field gradients of the hydrogen halides are compared with those obtained from nonrelativistic, SF high-order Douglas-Kroll-Hess, and SF Dirac-Coulomb calculations. It is shown that the use of untransformed two-electron interactions introduces rather small errors for these properties. As a first application of the analytic geometrical gradient, we report the equilibrium geometry of methylcopper (CuCH(3)) determined at various levels of theory.
Analytical solution for the Feynman ratchet.
Pesz, Karol; Gabryś, Barbara J; Bartkiewicz, Stanisław J
2002-12-01
A search for an analytical, closed form solution of the Fokker-Planck equation with periodic, asymmetric potentials (ratchets) is presented. It is found that logarithmic-type potential functions (related to "entropic" ratchets) allow for an approximate solution within a certain range of parameters. An expression for the net current is calculated and it is shown that the efficiency of the rocked entropic ratchet is always low.
Paulo Rangel Rios
2009-06-01
Full Text Available Microstructural evolution in three dimensions of nucleation and growth transformations is simulated by means of cellular automata (CA. In the simulation, nuclei are located in space according to a heterogeneous Poisson point processes. The simulation is compared with exact analytical solution recently obtained by Rios and Villa supposing that the intensity is a harmonic function of the spatial coordinate. The simulated data gives very good agreement with the analytical solution provided that the correct shape factor for the growing CA grains is used. This good agreement is auspicious because the analytical expressions were derived and thus are exact only if the shape of the growing regions is spherical.
Maximum likelihood molecular clock comb: analytic solutions.
Chor, Benny; Khetan, Amit; Snir, Sagi
2006-04-01
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).
A Series of Exact Solutions of (2+1)-Dimensional CDGKS Equation
YANG Zong-Hang
2006-01-01
An algebraic method with symbolic computation is devised to uniformly construct a series of exact solutions of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawda equation. The solutions obtained in this paper include solitary wave solutions, rational solutions, triangular periodic solutions, Jacobi and Weierstrass doubly periodic solutions. Among them, the Jacobi periodic solutions exactly degenerate to the solutions at a certain limit condition. Compared with most existing tanh method, the method used here can give new and more general solutions. More importantly, this method provides a guideline to classify the various types of the solution according to some parameters.
Analytical solution of one dimensional temporally dependent ...
user
The models involve the one-site, two-site, and two-region ... (2005) presented an analytical solution to advection-dispersion equation ... transfer of heat in fluids, flow through porous media, and the spread of contaminants in fluids and in ...
Analytic vortex solutions on compact hyperbolic surfaces
Maldonado, R
2015-01-01
We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.
Analytic vortex solutions on compact hyperbolic surfaces
Maldonado, Rafael; Manton, Nicholas S.
2015-06-01
We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.
Coughlin, Eric R
2016-01-01
We present the exact solutions for the collapse of a spherically-symmetric, cold (i.e., pressureless) cloud under its own self-gravity, valid for arbitrary initial density profiles and not restricted to the realm of self-similarity. These solutions exhibit a number of remarkable features, including the self-consistent formation of and subsequent accretion onto a central point mass. A number of specific examples are provided, and we show that Penston's solution of pressureless, self-similar collapse is recovered for polytropic density profiles; importantly, however, we demonstrate that the time over which this solution holds is fleetingly narrow, implying that much of the collapse proceeds non-self-similarly. We show that our solutions can naturally incorporate turbulent pressure support, and we investigate the evolution of overdensities -- potentially generated by such turbulence -- as the collapse proceeds. Finally, we analyze the evolution of the angular velocity and magnetic fields in the limit that their ...
Exact solutions of the time-fractional Fisher equation by using modified trial equation method
Tandogan, Yusuf Ali; Bildik, Necdet
2016-06-01
In this study, modified trial equation method has been proposed to obtain precise solutions of nonlinear fractional differential equation. Using the modified test equation method, we obtained some new exact solutions of the time fractional nonlinear Fisher equation. The obtained results are classified as a soliton solution, singular solutions, rational function solutions and periodic solutions.
Statistical Mechanics of Two Hard Spheres in a Spherical Pore, Exact Analytic Results in D Dimension
Urrutia, Ignacio; Szybisz, Leszek
2009-01-01
This work is devoted to the exact statistical mechanics treatment of simple inhomogeneous few-body systems. The system of two Hard Spheres (HS) confined in a hard spherical pore is systematically analyzed in terms of its dimensionality >. The canonical partition function, and the one- and two-body distribution functions are analytically evaluated and a scheme of iterative construction of the system properties is presented. We analyse in detail both the effect of high confinement, when particl...
Derivation of Exact Eigenvalues and Eigenfunctions Based on the Analytical Transfer Matrix Method
HE Ying; CAO Zhuang-Qi; SHEN Qi-Shun
2004-01-01
@@ We extend the analytical transfer matrix method (ATMM) to calculate both the energy eigenvalues and wavefunctions for the Morse potential and the regulated Coulomb potential. Derivations of the exact eigenenergies and eigenfunctions are presented in detail by the ATMM. We compare our results with that obtained by relaxational approach and the eigenvalue moment method, and it is shown that the ATMM can produce accurate eigenvalues.The eigenfunctions by the ATMM are also proven to be correct and meaningful.
Analytic Solutions of Special Functional Equations
Octav Olteanu
2013-07-01
Full Text Available We recall some of our earlier results on the construction of a mapping defined implicitly, without using the implicit function theorem. All these considerations work in the real case, for functions and operators. Then we consider the complex case, proving the analyticity of the function defined implicitly, under certain hypothesis. Some consequences are given. An approximating formula for the analytic form of the solution is also given. Finally, one illustrates the preceding results by an application to a concrete functional and operatorial equation. Some related examples are given.
Exact solution of the relativistic quantum Toda chain
Zhang, Xin; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2016-01-01
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.
Denicol, Gabriel S; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-01-01
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three dimensional de Sitter space with a line. The resulting solution respects SO(3)_q x SO(1,1) x Z_2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations with the same symmetry that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations.
An Exact Formal Solution to Reaction-Diffusion Equations from Biomathematics
无
2002-01-01
We study the exact formal solution to the simplified Keller-Segel system modelling chemotaxis. The method we use is series expanding. The main result is to attain the formal solution to the simplified Keller-Segel system.
Unified derivation of exact solutions to the relativistic Coulomb problem: Lie algebraic approach
Panahi, H.; Baradaran, M.; Savadi, A.
2015-10-01
Exact algebraic solutions of the D-dimensional Dirac and Klein-Gordon equations for the Coulomb potential are obtained in a unified treatment. It is shown that two cases are reducible to the same basic equation, which can be solved exactly. Using the Lie algebraic approach, the general exact solutions of the problem are obtained within the framework of representation theory of the sl(2) Lie algebra.
New Exact Solutions of the Integrable Broer-Kaup Equations in (2+1)-Dimensional Spaces
LI De-Sheng; ZHANG Hong-Qing
2004-01-01
In this paper,by improving some procedure of extended tanh-function method,some new exact solutions to the integrable Broer-Kaup equations in(2 + 1)-dimensional spaces are obtained,which include soliton-like solutions,solitary wave solutions,trigonometric function solutions,and rational solutions.
New explicit exact solutions to a nonlinear dispersive-dissipative equation
Naranmandula; Wang Ke-Xie
2004-01-01
Using the first-integral method, we obtain a series of new explicit exact solutions such as exponential function solutions, triangular function solutions, singular solitary wave solution and kink solitary wave solution of a nonlinear dispersive-dissipative equation, which describes weak nonlinear ion-acoustic waves in plasma consisting of cold ions and warm electrons.
Exact discrete soliton solutions of quintic discrete nonlinear Schr(o)dinger equation
Li Hua-Mei; Wu Feng-Min
2005-01-01
By using the extended hyperbolic function approach, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution,alternating phase bright soliton solution and alternating phase dark soliton solution, if a special constraint is imposed on the coefficients of the equation.
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schr(o)dinger Equation
YANG Qin; DAI Chao-Qing; ZHANG Jie-Fang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schrodinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differentialdifferent models.
On Exact Solutions to Partial Differential Equations by the Modified Homotopy Perturbation Method
Gang YANG; Ru-yun CHEN; Luo-gen YAO
2012-01-01
Based on the modified homotopy perturbation method (MHPM),exact solutions of certain partial differential equations are constructed by separation of variables and choosing the finite terms of a series in p as exact solutions.Under suitable initial conditions,the PDE is transformed into an ODE.Some illustrative examples reveal the efficiency of the proposed method.
Exact periodic wave and soliton solutions in two-component Bose-Einstein condensates
Li Hua-Mei
2007-01-01
We present several families of exact solutions to a system of coupled nonlinear Schr(o)dinger equations. The model describes a binary mixture of two Bose-Einstein condensates in a magnetic trap potential. Using a mapping deformation method, we find exact periodic wave and soliton solutions, including bright and dark soliton pairs.
Analytical solutions for the Rabi model
Yu, Lixian; Liang, Qifeng; Chen, Gang; Jia, Suotang
2012-01-01
The Rabi model that describes the fundamental interaction between a two-level system with a quantized harmonic oscillator is one of the simplest and most ubiquitous models in modern physics. However, this model has not been solved exactly because it is hard to find a second conserved quantity besides the energy. Here we present a unitary transformation to map this unsolvable Rabi model into a solvable Jaynes-Cummings-like model by choosing a proper variation parameter. As a result, the analytical energy spectrums and wavefunctions including both the ground and the excited states can be obtained easily. Moreover, these explicit results agree well with the direct numerical simulations in a wide range of the experimental parameters. In addition, based on our obtained energy spectrums, the recent experimental observation of Bloch-Siegert in the circuit quantum electrodynamics with the ultrastrong coupling can be explained perfectly. Our results have the potential application in the solid-state quantum information...
Partner L. Ndlovu
2013-01-01
Full Text Available Explicit analytical expressions for the temperature profile, fin efficiency, and heat flux in a longitudinal fin are derived. Here, thermal conductivity and heat transfer coefficient depend on the temperature. The differential transform method (DTM is employed to construct the analytical (series solutions. Thermal conductivity is considered to be given by the power law in one case and by the linear function of temperature in the other, whereas heat transfer coefficient is only given by the power law. The analytical solutions constructed by the DTM agree very well with the exact solutions even when both the thermal conductivity and the heat transfer coefficient are given by the power law. The analytical solutions are obtained for the problems which cannot be solved exactly. The effects of some physical parameters such as the thermogeometric fin parameter and thermal conductivity gradient on temperature distribution are illustrated and explained.
Exact Numerical Solutions of Bose-Hubbard Model
ZHANG Dan; PAN Feng
2004-01-01
Hamiltonian of a one-dimensional Bose-Hubbard model is re-formulated by using differential realization of the boson algebra. Energy matrices can then be generated systematically by using a Mathematica package. The output can be taken as the input of other diagonalization codes. As examples, exact energy eigenvalues and the corresponding wavefunctions for some cases are obtained with a Fortran diagonalization code. Phase transition of the model is analyzed.
Exact solution of an su(n) spin torus
Hao, Kun; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2016-01-01
The trigonometric su(n) spin chain with anti-periodic boundary condition (su(n) spin torus) is demonstrated to be Yang-Baxter integrable. Based on some intrinsic properties of the R-matrix, certain operator product identities of the transfer matrix are derived. These identities and the asymptotic behavior of the transfer matrix together allow us to obtain the exact eigenvalues in terms of an inhomogeneous T-Q relation via the off-diagonal Bethe Ansatz.
Exact solution of an su(n) spin torus
Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2016-07-01
The trigonometric su(n) spin chain with anti-periodic boundary condition (su(n) spin torus) is demonstrated to be Yang-Baxter integrable. Based on some intrinsic properties of the R-matrix, certain operator product identities of the transfer matrix are derived. These identities and the asymptotic behavior of the transfer matrix together allow us to obtain the exact eigenvalues in terms of an inhomogeneous T - Q relation via the off-diagonal Bethe Ansatz.
Exact solutions for some nonlinear systems of partial differential equations
Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)], E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)], E-mail: aramady@yahoo.com
2009-04-30
A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear systems of partial differential equations (PDEs) is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDEs) are obtained. Graphs of the solutions are displayed.
Exact Solutions of Klein-Gordon Equation with Scalar and Vector Rosen-Morse-Type Poten-tials
A. Soylu; O. Bayrak; I. Boztosun
2008-01-01
@@ We obtain an exact analytical solution of the Klein-Gordon equation for the equal vector and scalar Rosen-Morse and Eckart potentials as well as the parity-time (PT) symmetric version of the these potentials by using the asymptotic iteration method. Although these PT symmetric potentials are non-Hermitian, the corresponding eigenvalues are real as a result of the PT symmetry.
A Computational Method to Calculate the Exact Solution for Acoustic Scattering by Liquid Spheroids
González, Juan D; Blanc, Silvia
2016-01-01
The problem of scattering of harmonic plane acoustic waves by liquid spheroids (prolate and oblate) is addressed from an analytical approach. Mathematically, it consists in solving the Helmholtz equation in an unbounded domain with Sommerfeld radiation condition at infinity. The domain where propagation takes place is characterised by density and sound speed values $\\rho_0$ and $c_0$, respectively, while $\\rho_1$ and $c_1$ are the corresponding density and sound speed values of an inmersed object that is responsible of the scattered field. Since Helmholtz equation is separable in prolate (oblate) spheroidal coordinates, its exact solution for the scattered field can be expressed as an expansion on prolate (oblate) spheroidal functions multiplied by coefficients whose values depend upon the boundary conditions verified at the medium-inmersed fluid obstacle interface. The general case ($c_0 \
Statistical Physics Methods Provide the Exact Solution to a Long-Standing Problem of Genetics.
Samal, Areejit; Martin, Olivier C
2015-06-12
Analytic and computational methods developed within statistical physics have found applications in numerous disciplines. In this Letter, we use such methods to solve a long-standing problem in statistical genetics. The problem, posed by Haldane and Waddington [Genetics 16, 357 (1931)], concerns so-called recombinant inbred lines (RILs) produced by repeated inbreeding. Haldane and Waddington derived the probabilities of RILs when considering two and three genes but the case of four or more genes has remained elusive. Our solution uses two probabilistic frameworks relatively unknown outside of physics: Glauber's formula and self-consistent equations of the Schwinger-Dyson type. Surprisingly, this combination of statistical formalisms unveils the exact probabilities of RILs for any number of genes. Extensions of the framework may have applications in population genetics and beyond.
The anti-ferromagnetic Ising model on the simplest pure Husimi lattice: An exact solution
Jurčišinová, E., E-mail: jurcisine@saske.sk [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice (Slovakia); Jurčišin, M., E-mail: jurcisin@saske.sk [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice (Slovakia); Bobák, A., E-mail: andrej.bobak@upjs.sk [Department of Theoretical Physics and Astrophysics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 040 01 Košice (Slovakia)
2013-11-22
The anti-ferromagnetic spin-1/2 Ising model on the pure Husimi lattice with three sites in the elementary polygon (p=3) and the coordination number z=4 is investigated. It represents the simplest approximation of the anti-ferromagnetic Ising model on the two-dimensional kagome lattice which takes into account effects of frustration. The exact analytical solution of the model is found and discussed. It is proven that the model does not exhibit the first order as well as the second order phase transitions. A detailed analysis of the magnetization properties is performed and the existence of the magnetization plateaus for low temperatures is shown. All possible ground states of the model are found and discussed.
Asterios Pantokratoras
2008-01-01
Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.
Observational Constraints on New Exact Inflationary Scalar-field Solutions
Barrow, John D
2016-01-01
An algorithm is used to generate new solutions of the scalar field equations in homogeneous and isotropic universes. Solutions can be found for pure scalar fields with various potentials in the absence and presence of spatial curvature and other perfect fluids. A series of generalisations of the Chaplygin gas and bulk viscous cosmological solutions for inflationary universes are found. We also show how the Hubble slow-roll parameters can be calculated using the solution algorithm and we compare these inflationary solutions with the observational data provided by the Planck 2015 collaboration in order to constraint and rule out some of these models.
Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations
U. Filobello-Nino
2015-01-01
Full Text Available This paper proposes power series method (PSM in order to find solutions for singular partial differential-algebraic equations (SPDAEs. We will solve three examples to show that PSM method can be used to search for analytical solutions of SPDAEs. What is more, we will see that, in some cases, Padé posttreatment, besides enlarging the domain of convergence, may be employed in order to get the exact solution from the truncated series solutions of PSM.
Exact solution of corner-modified banded block-Toeplitz eigensystems
Cobanera, Emilio; Alase, Abhijeet; Ortiz, Gerardo; Viola, Lorenza
2017-05-01
Motivated by the challenge of seeking a rigorous foundation for the bulk-boundary correspondence for free fermions, we introduce an algorithm for determining exactly the spectrum and a generalized-eigenvector basis of a class of banded block quasi-Toeplitz matrices that we call corner-modified. Corner modifications of otherwise arbitrary banded block-Toeplitz matrices capture the effect of boundary conditions and the associated breakdown of translational invariance. Our algorithm leverages the interplay between a non-standard, projector-based method of kernel determination (physically, a bulk-boundary separation) and families of linear representations of the algebra of matrix Laurent polynomials. Thanks to the fact that these representations act on infinite-dimensional carrier spaces in which translation symmetry is restored, it becomes possible to determine the eigensystem of an auxiliary projected block-Laurent matrix. This results in an analytic eigenvector Ansatz, independent of the system size, which we prove is guaranteed to contain the full solution of the original finite-dimensional problem. The actual solution is then obtained by imposing compatibility with a boundary matrix, whose shape is also independent of system size. As an application, we show analytically that eigenvectors of short-ranged fermionic tight-binding models may display power-law corrections to exponential behavior, and demonstrate the phenomenon for the paradigmatic Majorana chain of Kitaev.
Zlatanov, Kaloyan N.; Vitanov, Nikolay V.
2017-07-01
The common objective of the application of adiabatic techniques in the field of quantum control is to transfer a quantum system from one discrete energy state to another. These techniques feature both high efficiency and insensitivity to variations in the experimental parameters, e.g., variations in the driving field amplitude, duration, frequency, and shape, as well as fluctuations in the environment. Here we explore the potential of adiabatic techniques for creating arbitrary predefined coherent superpositions of two quantum states. We show that an equally weighted coherent superposition can be created by temporal variation of the ratio between the Rabi frequency Ω (t ) and the detuning Δ (t ) from 0 to ∞ (case 1) or vice versa (case 2), as it is readily deduced from the explicit adiabatic solution for the Bloch vector. We infer important differences between cases 1 and 2 in the composition of the created coherent superposition: The latter depends on the dynamical phase of the process in case 2, while it does not depend on this phase in case 1. Furthermore, an arbitrary coherent superposition of unequal weights can be created by using asymptotic ratios of Ω (t )/Δ (t ) different from 0 and ∞ . We supplement the general adiabatic solution with analytic solutions for three exactly soluble models: two trigonometric models and the hyperbolic Demkov-Kunike model. They allow us not only to demonstrate the general predictions in specific cases but also to derive the nonadiabatic corrections to the adiabatic solutions.
New Exact Explicit Nonlinear Wave Solutions for the Broer-Kaup Equation
Zhenshu Wen
2014-01-01
Full Text Available We study the nonlinear wave solutions for the Broer-Kaup equation. Many exact explicit expressions of the nonlinear wave solutions for the equation are obtained by exploiting the bifurcation method and qualitative theory of dynamical systems. These solutions contain solitary wave solutions, singular solutions, periodic singular solutions, and kink-shaped solutions, most of which are new. Some previous results are extended.
Kunst, Flore K.; Trescher, Maximilian; Bergholtz, Emil J.
2017-08-01
The hallmark of topological phases is their robust boundary signature whose intriguing properties—such as the one-way transport on the chiral edge of a Chern insulator and the sudden disappearance of surface states forming open Fermi arcs on the surfaces of Weyl semimetals—are impossible to realize on the surface alone. Yet, despite the glaring simplicity of noninteracting topological bulk Hamiltonians and their concomitant energy spectrum, the detailed study of the corresponding surface states has essentially been restricted to numerical simulation. In this work, however, we show that exact analytical solutions of both topological and trivial surface states can be obtained for generic tight-binding models on a large class of geometrically frustrated lattices in any dimension without the need for fine-tuning of hopping amplitudes. Our solutions derive from local constraints tantamount to destructive interference between neighboring layer lattices perpendicular to the surface and provide microscopic insights into the structure of the surface states that enable analytical calculation of many desired properties including correlation functions, surface dispersion, Berry curvature, and the system size dependent gap closing, which necessarily occurs when the spatial localization switches surface. This further provides a deepened understanding of the bulk-boundary correspondence. We illustrate our general findings on a large number of examples in two and three spatial dimensions. Notably, we derive exact chiral Chern insulator edge states on the spin-orbit-coupled kagome lattice, and Fermi arcs relevant for recently synthesized slabs of pyrochlore-based Eu2Ir2O7 and Nd2Ir2O7 , which realize an all-in-all-out spin configuration, as well as for spin-ice-like two-in-two-out and one-in-three-out configurations, which are both relevant for Pr2Ir2O7 . Remarkably, each of the pyrochlore examples exhibit clearly resolved Fermi arcs although only the one
Searching Exact Solutions for Compact Stars in Braneworld: a conjecture
2007-01-01
In the context of the braneworld, a method to find consistent solutions to Einstein's field equations in the interior of a spherically symmetric, static and non uniform stellar distribution with Weyl stresses is developed. This method, based in the fact that any braneworld stellar solution must have the general relativity solution as a limit, produces a constraint which reduces the degrees of freedom on the brane. Hence the non locality and non closure of the braneworld equations can be overc...
Exact anisotropic viscous fluid solutions of Einstein's equations
Goenner, H. F. M.; Kowalewski, F.
1989-05-01
A method for obtaining anisotropic, rotationless viscous fluid matter solutions of Bianchi type I and Segré type [1, 111] with the barotropic equation of state is presented. Solutions for which the anisotropy decreases exponentially or with a power law as well as solutions with average Hubble parameterH ˜t -1 are discussed. Also, a class of solutions with constant anisotropy and Bianchi type VIh is found. The dominant energy condition holds and the transport coefficients show the right sign.
Exact solution of quantum gravity in 1 + 1 dimensions
Rajeev, S. G.
1982-06-01
Quantum gravity in 1 + 1 dimensions, with zero cosmological constant is formulated, including contributions from all possible topologies. The spectrum and the S-matrix are calculated exactly. Pure gravity is found to exist in a disordered phase, dominated by topologically non-trivial configurations. In the presence of fermionic matter fields, space-time can undergo a phase transition to an ordered phase. It is a pleasure to thank Professor A.P. Balachandran, Professor R. Shankar and Professor A. Ashtekar, and C.G. Trahern, V.P. Nair and V. Rodgers.
Exact solutions for the 2d one component plasma
Andersen, Timothy D
2011-01-01
The 2d one component gas of pointlike charges in a uniform neutralizing background interacting with a logarithmic potential is a common model for plasmas. In its classical equilibrium statistics at fixed temperature (canonical ensemble) it is formally related to certain types of random matrices with Gaussian distribution and complex eigenvalues. In this paper, I present an exact integration of this ensemble for $N$ such particles (or alternatively $N\\times N$ matrices) for all complex temperatures, a significant open problem in statistical physics for several decades.
Mehdi Delkhosh
2012-01-01
Full Text Available Many applications of various self-adjoint differential equations, whose solutions are complex, are produced (Arfken, 1985; Gandarias, 2011; and Delkhosh, 2011. In this work we propose a method for the solving some self-adjoint equations with variable change in problem, and then we obtain a analytical solutions. Because this solution, an exact analytical solution can be provided to us, we benefited from the solution of numerical Self-adjoint equations (Mohynl-Din, 2009; Allame and Azal, 2011; Borhanifar et al. 2011; Sweilam and Nagy, 2011; Gülsu et al. 2011; Mohyud-Din et al. 2010; and Li et al. 1996.
Zayed EL Sayed M.E.
2016-01-01
Full Text Available In this article, we apply the generalized Kudryashov method for finding exact solutions of three nonlinear partial differential equations (PDEs, namely: the Biswas-Milovic equation with dual-power law nonlinearity; the Zakharov--Kuznetsov equation (ZK(m,n,k; and the K(m,n equation with the generalized evolution term. As a result, many analytical exact solutions are obtained including symmetrical Fibonacci function solutions, and hyperbolic function solutions. Physical explanations for certain solutions of the three nonlinear PDEs are obtained.
Exact Solutions of the Photon Equation in Anisotropic Spacetimes
Havare, A; Aydogdu, O; Salti, M; Yetkin, T; Havare, Ali; Korunur, Murat; Aydogdu, Oktay; Salti, Mustafa; Yetkin, Taylan
2005-01-01
In this paper we study solution of the photon equation (the Massless Duffin-Kemmer-Petiau equation (mDKP)) in anisotropic expanding the Bianchi-I type spacetime using the Fourier analyze method. The harmonic oscillator behavior of the solutions is found. It is shown that Maxwell equations are equivalent to the photon equation.
New Exact Solutions to NLS Equation and Coupled NLS Equations
FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo
2004-01-01
A transformation is introduced on the basis of the projective Riccati equations, and it is applied as an intermediate in expansion method to solve nonlinear Schrodinger (NLS) equation and coupled NLS equations. Many kinds of envelope travelling wave solutions including envelope solitary wave solution are obtained, in which some are found for the first time.
The exact solutions to (2+1)-dimensional nonlinear Schrǒdinger equation
ZHANG Jin-liang; WANG Ming-liang; FANG Zong-de
2004-01-01
By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrǒdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.
A method for constructing exact solutions and application to Benjamin Ono equation
Wang Zhen; Li De-Sheng; Lu Hui-Fang; Zhang Hong-Qing
2005-01-01
By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.
New Families of Exact Solutions for (2+1)-Dimensional Broer-Kaup System
ZHAO Hong; BAI Cheng-Lin; HAN Ji-Guang
2005-01-01
Using a further modified extended tanh-function method, rich new families of the exact solutions for the (2+ 1)-dimensional Broer-Kaup (BK) system, comprising the non-traveling wave and coefficient functions' soliton-like solutions, singular soliton-like solutions, periodic form solutions, are obtained.
Exact Shock Solution of a Coupled System of Delay Differential Equations: A Car-Following Model
Tutiya, Yohei; Kanai, Masahiro
2007-08-01
In this letter, we present exact shock solutions of a coupled system of delay differential equations, which was introduced as a traffic-flow model called car-following model. We use the Hirota method, originally developed in order to solve soliton equations. The relevant delay differential equations have been known to allow exact solutions expressed by elliptic functions with periodic boundary conditions. In the present work, however, shock solutions are obtained with open boundaries, representing the stationary propagation of a traffic jam.
AUTO-DARBOUX TRANSFORMATION AND EXACT SOLUTIONS OF THE BRUSSELATOR REACTION DIFFUSION MODEL
闫振亚; 张鸿庆
2001-01-01
Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known.Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine- cosine method, more exact solutions are found which contain soliton solutions.
Testing the Cactus code on exact solutions of Einstein field equations
Vulcanov, D.; M. Alcubierre
2002-01-01
The article presents a series of numerical simulations of exact solutions of the Einstein equations performed using the Cactus code, a complete 3-dimensional machinery for numerical relativity. We describe an application (''''thorn'') for the Cactus code that can be used for evolving a variety of exact solutions, with and without matter, including solutions used in modern cosmology for modeling the early stages of the universe. Our main purpose has been to test the Cactus code on these well-k...
Taha Aziz
2013-01-01
Full Text Available The simplest equation method is employed to construct some new exact closed-form solutions of the general Prandtl's boundary layer equation for two-dimensional flow with vanishing or uniform mainstream velocity. We obtain solutions for the case when the simplest equation is the Bernoulli equation or the Riccati equation. Prandtl's boundary layer equation arises in the study of various physical models of fluid dynamics. Thus finding the exact solutions of this equation is of great importance and interest.
Borazjani, S.; Bedrikovetsky, P.; Farajzadeh, R.
2014-01-01
Analytical solutions for one-dimensional two-phase multicomponent flows in porous media describe processes of enhanced oil recovery, environmental flows of waste disposal, and contaminant propagation in subterranean reservoirs and water management in aquifers. We derive the exact solution for 3x3 hy
G. E. Aguilar-Pineda
2014-01-01
Full Text Available Temperature and chemically induced denaturation comprise two of the most characteristic mechanisms to achieve the passage from the native state N to any of the unstructured states Dj in the denatured ensemble in proteins and peptides. In this work we present a full analytical solution for the configurational partition function qs of a homopolymer chain poly-X in the extended Zwanzig model (EZM for a quasisigmoidal denaturation profile. This solution is built up from an EZM exact solution in the case where the fraction α of native contacts follows exact linear dependence on denaturant’s concentration ζ; thus an analytical solution for L in the case of an exact linear denaturation profile is also provided. A recently established connection between the number ν of potential nonnative conformations per residue and temperature-independent helical propensity ω complements the model in order to identify specific proteinogenic poly-X chains, where X represents any of the twenty naturally occurring aminoacid residues. From qs, equilibrium thermodynamic potentials like entropy and average internal energy 〈E〉 and thermodynamic susceptibilities like specific heat C are calculated for poly-valine (poly-V and poly-alanine (poly-A chains. The influence of the rate at which native contacts denature as function of ζ on thermodynamic stability is also discussed.
Wang, Hailing [Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Chung, Kwok-wai, E-mail: makchung@cityu.edu.hk [Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)
2012-02-27
The analytical solutions of nonlinear oscillators obtained from most perturbation or approximate methods usually have poor accuracy near homoclinic/heteroclinic (HH) orbits. In this Letter, we propose a nonlinear time transformation method to overcome such difficulty. In particular, we apply such method with Padé approximation to find analytical solutions of a generalized Duffing-harmonic oscillator having a rational form for the potential energy. For some parametric ranges, HH orbits exist in such an oscillator. For analytical approximation of periodic solution obtained from the present method, it is shown that the relative error of period with respect to the exact period tends to zero when the amplitude of periodic solution tends to either zero or infinity. The relative error is still very small even near to HH orbits. Furthermore, analytical approximate of HH orbits can also be obtained. From the illustrative examples, the phase portraits are in excellent agreement with the exact HH orbits. The results from the present method are compared with the exact solutions and that from the cubication method. -- Highlights: ► A nonlinear transformation is proposed for a generalized Duffing-harmonic oscillator. ► The relative error of period with respect to the exact one is always very small. ► Approximate solution of homoclinic/heteroclinic orbits can be obtained. ► Phase portraits are in excellent agreement even at homoclinic/heteroclinic orbits.
Exact solutions for logistic reaction-diffusion equations in biology
Broadbridge, P.; Bradshaw-Hajek, B. H.
2016-08-01
Reaction-diffusion equations with a nonlinear source have been widely used to model various systems, with particular application to biology. Here, we provide a solution technique for these types of equations in N-dimensions. The nonclassical symmetry method leads to a single relationship between the nonlinear diffusion coefficient and the nonlinear reaction term; the subsequent solutions for the Kirchhoff variable are exponential in time (either growth or decay) and satisfy the linear Helmholtz equation in space. Example solutions are given in two dimensions for particular parameter sets for both quadratic and cubic reaction terms.
Exact time-localized solutions in Vacuum String Field Theory
Bonora, L; Santos, R J S; Tolla, D D
2004-01-01
We address the problem of finding star algebra projectors that exhibit localized time profiles. We use the double Wick rotation method, starting from an Euclidean (unconventional) lump solution, which is characterized by the Neumann matrix being the conventional one for the continuous spectrum, while the inverse of the conventional one for the discrete spectrum. This is still a solution of the projector equation and we show that, after inverse Wick-rotation, its time profile has the desired localized time dependence. We study it in detail in the low energy regime (field theory limit) and in the extreme high energy regime (tensionless limit) and show its similarities with the rolling tachyon solution.
Exact solution of some linear matrix equations using algebraic methods
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
5D Lovelock gravity: new exact solutions with torsion
Cvetković, B
2016-01-01
We investigate Lovelock gravity in five dimensions in first order formalism. We construct a new class of solutions: BTZ black ring with(out) torsion. We show that our solution with torsion exists in the different sector of the Lovelock gravity compared to Lovelock Chern-Simons and the sector investigated by Canfora et al. We compute conserved charges of the solutions by using Nester's formula, and confirm the results by canonical method. We show that the theory linearized around the background with torsion possesses additional degrees of freedom compared to general relativity.
Exact solutions to quadratic gravity generated by a conformal method
Pravda, Vojtech; Podolsky, Jiri; Svarc, Robert
2016-01-01
We study the role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one non-linear partial differential equation for the conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. We show that all spacetimes conformal to Kundt are either Kundt or Robinson--Trautmann, and we provide explicit Kundt and Robinson--Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.
Exact half-BPS type IIB interface solutions I: local solution and supersymmetric Janus
D' Hoker, Eric; Estes, John; Gutperle, Michael [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)
2007-06-15
The complete Type IIB supergravity solutions with 16 supersymmetries are obtained on the manifold AdS{sub 4} x S{sup 2} x S{sup 2} x {sigma} with SO(2, 3) x SO(3) x SO(3) symmetry in terms of two holomorphic functions on a Riemann surface {sigma}, which generally has a boundary. This is achieved by reducing the BPS equations using the above symmetry requirements, proving that all solutions of the BPS equations solve the full Type IIB supergravity field equations, mapping the BPS equations onto a new integrable system akin to the Liouville and Sine-Gordon theories, and mapping this integrable system to a linear equation which can be solved exactly. Amongst the infinite class of solutions, a non-singular Janus solution is identified which provides the AdS/CFT dual of the maximally supersymmetric Yang-Mills interface theory discovered recently. The construction of general classes of globally non-singular solutions, including fully back-reacted AdS{sub 5} x S{sup 5} and supersymmetric Janus doped with D5 and/or NS5 branes, is deferred to a companion paper.
New exact perfect fluid solutions of Einstein's equations. II
Uggla, Claes; Rosquist, Kjell
1990-12-01
A family of new spatially homogeneous Bianchi type VIh perfect fluid solutions of the Einstein equations is presented. The fluid flow is orthogonal to the spatially homogeneous hypersurfaces, and the pressure is proportional to the energy density.
Exact Solutions of Bogoyavlenskii Coupled KdV Equations
HUHeng-Chun; LOUSen-Yue
2004-01-01
The special soliton solutions of Bogoyavlenskii coupled KdV equations are obtained by means of the standard Weiss-Tabor -Carnvale Painleve' truncation expansion and the nonstandard truncation of a modified Conte's invariant Painlevé expansion.
Some new exact solutions to the Burgers-Fisher equation and generalized Burgers-Fisher equation
Jiang Lu; Guo Yu-Cui; Xu Shu-Jiang
2007-01-01
Some new exact solutions of the Burgers-Fisher equation and generalized Burgers-Fisher equation have been obtained by using the first integral method. These solutions include exponential function solutions, singular solitary wave solutions and some more complex solutions whose figures are given in the article. The result shows that the first integral method is one of the most effective approaches to obtain the solutions of the nonlinear partial differential equations.
Exact Solutions to Extended Nonlinear Schr(o)dinger Equation in Monomode Optical Fiber
BAI Cheng-Lin; ZHAO Hong; Wang Wei-Tao
2006-01-01
By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schr(o)dinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.
Murad, Mohammad Hassan; Pant, Neeraj
2014-03-01
In this paper we have studied a particular class of exact solutions of Einstein's gravitational field equations for spherically symmetric and static perfect fluid distribution in isotropic coordinates. The Schwarzschild compactness parameter, GM/ c 2 R, can attain the maximum value 0.1956 up to which the solution satisfies the elementary tests of physical relevance. The solution also found to have monotonic decreasing adiabatic sound speed from the centre to the boundary of the fluid sphere. A wide range of fluid spheres of different mass and radius for a given compactness is possible. The maximum mass of the fluid distribution is calculated by using stellar surface density as parameter. The values of different physical variables obtained for some potential strange star candidates like Her X-1, 4U 1538-52, LMC X-4, SAX J1808.4-3658 given by our analytical model demonstrate the astrophysical significance of our class of relativistic stellar models in the study of internal structure of compact star such as self-bound strange quark star.
Mushy-zone model with an exact solution
Solomon, A. D.; Wilson, D. G.; Alexiades, V.
1982-04-01
In this paper we propose a very simple model of a mushy zone which admits of an explicit solution. To our knowledge, it is the only instance where an actual observation of the mushy zone width and structure is used as a partial basis for the model definition. The model rests upon two unknown parameters. The first determines the relation between the equilibrium temperature gradient and the mushy zone width. The second depends upon the dendritic structure in the mushy zone, and is related to the solid fraction. Both can be estimated from experiments. We will limit ourselves to defining the model, presenting its closed form solution, and giving tables from which the solution can be found explicitly. It is shown that in most cases the predicted mushy zone is of very negligible importance.
On the buckling behavior of piezoelectric nanobeams: An exact solution
Jandaghian, Ali Akbar; Rahmaini, Omid [University of Zanjan, Zanjan (Iran, Islamic Republic of)
2015-08-15
In this paper, thermoelectric-mechanical buckling behavior of the piezoelectric nanobeams is investigated based on the nonlocal theory and Euler-Bernoulli beam theory. The electric potential is assumed linear through the thickness of the nanobeam and the governing equations are derived by Hamilton's principle. The governing equations are solved analytically for different boundary conditions. The effects of the nonlocal parameter, temperature change, and external electric voltage on the critical buckling load of the piezoelectric nanobeams are discussed in detail. This study should be useful for the design of piezoelectric nanodevices.
Charged-Surface Instability Development in Liquid Helium; Exact Solutions
Zubarev, N M
2000-01-01
The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.
Three-dimensional dilatonic gravity's rainbow: Exact solutions
Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram
2016-10-01
Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.
Three-dimensional dilatonic gravity's rainbow: Exact solutions
Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram
2016-10-01
Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.
Families of exact solutions of a 2D gravity model minimally coupled to electrodynamics
Moayedi, S K
2001-01-01
Three families of exact solutions for 2-dimensional gravity minimally coupled to electrodynamics are obtained in the context of ${\\cal R}=T$ theory. It is shown, by supersymmetric formalism of quantum mechanics, that the quantum dynamics of a neutral bosonic particle on static backgrounds with both varying curvature and electric field is exactly solvable.
Exact solutions of the high dimensional hard-core Fermi-Hubbard model
潘峰; 戴连荣
2001-01-01
A simple algebraic approach to exact solutions of the hard-core Fermi-Hubbard model is proposed. Excitation energies and the corresponding wavefunctions of the hard-core Fermi-Hubbard model with nearest neighbor hopping cases in high dimension are obtained by using this method, which manifests that the model is exactly solvable in any dimension.
Some Exact Solutions of the Semilocal Popov Equations with Many Flavors
Kim, Chanju
2015-01-01
In 2+1 dimensional nonrelativistic Chern-Simons gauge theories on $S^2$ which has a global $SU(M)$ symmetry, the semilocal Popov vortex equations are obtained as Bogomolny equations by minimizing the energy in the presence of a uniform external magnetic field. We study the equations with many flavors and find several families of exact solutions. The equations are transformed to the semilocal Liouville equations for which some exact solutions are known. In this paper, we find new exact solutions of the semilocal Liouville equations. Using these solutions, we construct solutions to the semilocal Popov equations. The solutions are expressed in terms of one or more arbitrary rational functions on $S^2$. Some simple solutions reduce to $CP^{M-1}$ lump configurations.
Ilmārs Grants
2016-06-01
Full Text Available Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.
Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter
2016-06-01
Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.
Xie, Ming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2000-05-18
Exact solution and variational approximation of eigenmodes in high gain FELs are presented. These eigenmodes specify transverse profiles and exponential growth rates of the laser field before saturation. They are self-consistent solutions of coupled Maxwell–Vlasov equations describing FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, as well as diffraction and optical guiding of the laser field. A new formalism of scaling is introduced and based on which solutions in various limiting cases are discussed. Additionally, a fitting formula is obtained from interpolating the variational solution for quick calculation of exponential growth rate of the fundamental mode.
EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS
ZhuYanjuan; ZhangChunhua
2005-01-01
The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.
Exact String-Like Solutions in Conformal Gravity
Verbin, Y
2010-01-01
The Cylindrically-symmetric static vacuum equations of Conformal Gravity are solved for the case of additional boost symmetry along the axis. We present the complete family of solutions which describe the exterior gravitational field of line sources in Conformal Gravity. We also analyze the null geodesics in these spaces.
Exact Jacobian Elliptic Function Solutions to sinh-Gordon Equation
FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da
2006-01-01
In this paper, two transformations are introduced to solve sinh-Gordon equation by using the knowledge of elliptic equation and Jacobian elliptic functions.It is shown that different transformations are required in order to obtain more kinds of solutions to the sinh-Gordon equation.
FENG Qing-Hua
2013-01-01
In this paper,an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative.By a fractional complex transformation,a given fractional differential-difference equation can be turned into another differential-difference equation of integer order.The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system.As a result,some new exact solutions including hyperbolic function solutions,trigonometric function solutions and rational solutions are established.
Feng, Qing-Hua
2013-05-01
In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann—Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established.
Analytical Solution for the SU(2)Hedgehog Skyrmion and Static Properties of Nucleons
JIA Duo-Jie; WANG Xiao-Wei; LIU Feng
2010-01-01
@@ An analytical solution for symmetric Skyrmion is proposed for the SU(2)Skyrme model,which takes the form of the hybrid form of a kink-like solution,given by the instanton method.The static properties of nucleons is then computed within the framework of collective quantization of the Skyrme model,in a good agreement with that given by the exact numeric solution.The comparisons with the previous results as well as the experimental values are also presented.
A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation
Karaoglu, Bekir
2007-01-01
A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)
Adomian Decomposition Method and Exact Solutions of the Perturbed KdV Equation
WU Bin; LOU Sen-Yue
2002-01-01
The Adomian decomposition method is used to solve the Cauchy problem of the perturbed KdV equation.Three types of exact solitary wave solutions are reobtained via the A domian's approach by selecting the initial conditionsappropriately.
New Exact Solutions for a Class of Nonlinear Coupled Differential Equations
ZHAO Hong; GUO Jun; BAI Cheng-Lin; HAN Ji-Guang
2005-01-01
More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance method.
Painlevé analysis and exact solutions of a modified Boussinesq equation
Liu, Q P
1995-01-01
We consider a modified Boussinesq type equation. The Painlev\\'{e} test of the WTC method is performed for this equation and it shows that the equation has weak Painlev\\'{e} property. Some exact solutions are constructed.
Adomian Decomposition Method and Exact Solutions of the Perturbed KdV Equation
WuBin; LOUSen－Yue
2002-01-01
The Adomian decomposition method is used to solve the Cauchy problem of the perturbed KdV equation.Three types of exact solitary wave solutions are reobtained via the Adomian's approach by selcting the initial conditions appropriately.
Exact multiplicity of solutions to perturbed logistic type equations on a symmetric domain
LIU Ping; SHI JunPing; WANG YuWen
2008-01-01
We apply the imperfect bifurcation theory in Banach spaces to study the exact multiplicity of solutions to a perturbed logistic type equations on a symmetric spatial domain.We obtain the precise bifurcation diagrams.
Exact multiplicity of solutions to perturbed logistic type equations on a symmetric domain
2008-01-01
We apply the imperfect bifurcation theory in Banach spaces to study the exact multiplicity of solutions to a perturbed logistic type equations on a symmetric spatial domain. We obtain the precise bifurcation diagrams.
Exact solutions of a class of fractional Hamiltonian equations involving Caputo derivatives
Baleanu, Dumitru [Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara 06530 (Turkey); Trujillo, Juan J [Departamento de Analisis Matematico, University of La Laguna, 38271 La Laguna, Tenerife (Spain)], E-mail: dumitru@cankaya.edu.tr, E-mail: JTrujill@ullmat.es, E-mail: baleanu@venus.nipne.ro
2009-11-15
The fractional Hamiltonian equations corresponding to the Lagrangians of constrained systems within Caputo derivatives are investigated. The fractional phase space is obtained and the exact solutions of some constrained systems are obtained.
Exact Traveling Wave Solutions for a Kind of Generalized Ginzburg-Landau Equation
LIU Cheng-Shi
2005-01-01
Using a complete discrimination system for polynomials, new exact traveling wave solutions for generalized Ginzburg-Landau equation are obtained. The method has general meaning for many similar problems.
Exact solution of the Klein Gordon equation in the presence of a minimal length
Jana, T K
2009-01-01
We obtain exact solutions of the (1+1) dimensional Klein Gordon equation with linear vector and scalar potentials in the presence of a minimal length. Algebraic approach to the problem has also been studied.
Exact Solutions for the Intrinsic Geometry of Black Hole Coalescence
Lehner, L; Gómez, R; Szilágyi, B; Winicour, J; Lehner, Luis; Bishop, Nigel T.; Gómez, Roberto; Winicour, Jeffrey
1999-01-01
We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the pair-of-pants shaped horizon found in the numerical simulation of the head-on-collision of black holes. For the oblate case, it reproduces the initially toroidal event horizon found in the numerical simulation of collapse of a rotating cluster. The analytic nature of the approach makes further conclusions possible, such as an important bearing on the hoop conjecture. From a time reversed point of view, the approach yields a description of the past event horizon of a fissioning white hole, which can be used as null data for the characteristic evolution of the exterior space-time.
Exact Solutions for a Coupled Korteweg-de Vries System
Zuo, Da-Wei; Jia, Hui-Xian
2016-11-01
Korteweg-de Vries (KdV)-type equation can be used to characterise the dynamic behaviours of the shallow water waves and interfacial waves in the two-layer fluid with gradually varying depth. In this article, by virtue of the bilinear forms, rational solutions and three kind shapes (soliton-like, kink and bell, anti-bell, and bell shapes) for the Nth-order soliton-like solutions of a coupled KdV system are derived. Propagation and interaction of the solitons are analyzed: (1) Potential u shows three kind of shapes (soliton-like, kink, and anti-bell shapes); Potential v exhibits two type of shapes (soliton-like and bell shapes); (2) Interaction of the potentials u and v both display the fusion phenomena.
Exact Scalar-Tensor Cosmological Solutions via Noether Symmetry
Belinchón, J A; Mak, M K
2016-01-01
In this paper, we investigate the Noether symmetries of a generalized scalar-tensor, Brans-Dicke type cosmological model, in which we consider explicit scalar field dependent couplings to the Ricci scalar, and to the scalar field kinetic energy, respectively. We also include the scalar field self-interaction potential into the gravitational action. From the condition of the vanishing of the Lie derivative of the gravitational cosmological Lagrangian with respect to a given vector field we obtain three cosmological solutions describing the time evolution of a spatially flat Friedman-Robertson-Walker Universe filled with a scalar field. The cosmological properties of the solutions are investigated in detail, and it is shown that they can describe a large variety of cosmological evolutions, including models that experience a smooth transition from a decelerating to an accelerating phase.
Exact Anisotropic Solutions of the Generalized TOV Equation
Riazi, Nematollah; Sajadi, S Naseh; Assyaee, S Shahrokh
2015-01-01
We explore gravitating relativistic spheres composed of an anisotropic, barotropic uid. We assume a bi-polytropic equation of state which has a linear and a power-law terms. The generalized Tolman-Oppenheimer-Volkoff (TOV) equation which describes the hydrostatic equilibrium is obtained. The full system of equations are solved for solutions which are regular at the origin and asymptotically flat. Conditions for the appearance of horizon and a basic treatment of stability are also discussed.
NEW EXACT SOLUTIONS TO KdV EQUATIONS WITH VARIABLE COEFFICIENTS OR FORCING
付遵涛; 刘式达; 刘式适; 赵强
2004-01-01
Jacobi elliptic function expansion method is extended to construct the exact solutions to another kind of KdV equations, which have variable coefficients or forcing terms. And new periodic solutions obtained by this method can be reduced to the solitontyped solutions under the limited condition.
ABUNDANT EXACT SOLUTION STRUCTURES OF THE NIZHNIK-NOVIKOV-VESELOV EQUATION
张解放
2001-01-01
Using the extended homogeneous balance method, we have obtained abundant exact solution structures of a (2+ 1)-dimensional integrable model, the Nizhnik-Novikov-Veselov equation. By means of leading order terms analysis,the nonlinear transformations of the Nizhnik-Novikov-Veselov equation are given first, and then some special types of single solitary wave solution and multisoliton-like solutions are constructed.
Khare, Avinash; Samuelsen, Mogens R; Saxena, Avadh; 10.1088/1751-8113/43/37/375209
2010-01-01
We show that the two-dimensional, nonlinear Schr\\"odinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the effective Peierls-Nabarro barrier for the pulse-like soliton solution is zero.
PAINLEV PROPERTY OF BURGERS-KDV EQUATION AND ITS EXACT SOLUTIONS
无
2010-01-01
In this paper, we introduce the Painlev property of the Burgers-KdV equation. Two types of exact solutions to the equation are obtained by the standard truncated expansion metIn this paper, we introduce the Painlev property of the Burgers-KdV equation. Two types of exact solutions to the equation are obtained by the standard truncated expansion method and the extended standard truncated expansion method, respectively.hod and the extended standard truncated expansion method, respectively.
Exact Travelling Solutions of Discrete sine-Gordon Equation via Extended Tanh-Function Approach
DAI Chao-Qing; ZHANG Jie-Fang
2006-01-01
In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.
A new exact solution of the relativistic Boltzmann equation and its hydrodynamic limit
Denicol, Gabriel S; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-01-01
We present an exact solution of the relativistic Boltzmann equation for a system undergoing boost-invariant longitudinal and azimuthally symmetric transverse flow ("Gubser flow"). The resulting exact non-equilibrium dynamics is compared to 1st- and 2nd-order relativistic hydrodynamic approximations for various shear viscosity to entropy density ratios. This novel solution can be used to test the validity and accuracy of different hydrodynamic approximations in conditions similar to those generated in relativistic heavy-ion collisions.
Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities
Beléndez,Augusto; Beléndez Vázquez, Tarsicio; Martínez Guardiola, Francisco Javier; Pascual Villalobos, Carolina; Álvarez López, Mariela Lázara; Arribas Garde, Enrique
2016-01-01
The nonlinear differential equation governing the periodic motion of the one-dimensional, undamped, unforced cubic–quintic Duffing oscillator is solved exactly, providing exact expressions for the period and the solution. The period is given in terms of the complete elliptic integral of the first kind and the solution involves Jacobi elliptic functions. Some particular cases obtained varying the parameters that characterize this oscillator are presented and discussed. The behaviour of the per...
Exact Solution of Unsteady Flow of Viscoelastic Fluid in a Pipe with Fractional Maxwell Model
无
2007-01-01
The unsteady flow of viscoelastic fluid in a cylindrical pipe was investigated using the fractional Maxwell model. Two special cases of unsteady pipe flow were expressed. The first is start-up flow, and the second is oscillating flow. The exact solution of start-up flow under a constant pressure gradient was obtained by using the theories of Laplace transform and Fourier-Bessel series for fractional derivatives. The exact solution of oscillating flow was obtained by utilizing the separation of variables.
ZHANGJin-Liang; WANGMing-Liang
2004-01-01
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.
Constructing exact solutions to discrete systems with the trial function method
Taogetusang Sirendaoerji
2008-01-01
Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the help of symbolic computation system, the new exact solitary wave solutions to discrete nonlinear mKdV lattice equation, discrete nonlinear (2+1) dimensional Toda lattice equation, Ablowitz-Ladik-lattice system are constructed.The method is of significance to seek exact solitary wave solutions to other nonlinear discrete systems.
Exact Solutions of Discrete Complex Cubic Ginzburg-Landau Equation and Their Linear Stability
张金良; 刘治国
2011-01-01
The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In this paper, the exact solutions of the discrete complex cubic Ginzburg-Landau equation are derived using homogeneous balance principle and the GI/G-expansion method, and the linear stability of exact solutions is discussed.
ZHANG Jin-Liang; WANG Ming-Liang
2004-01-01
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.
Conditional symmetries and exact solutions of the diffusive Lotka-Volterra system
Cherniha, Roman
2010-01-01
Q-conditional symmetries of the classical Lotka-Volterra system in the case of one space variable are completely described and a set of such symmetries in explicit form is constructed. The relevant non-Lie ans\\"atze to reduce the classical Lotka-Volterra systems with correctly-specified coefficients to ODE systems and examples of new exact solutions are found. A possible biological interpretation of some exact solutions is presented.
Exact solutions of a Flat Full Causal Bulk viscous FRW cosmological model through factorization
Cornejo-Pérez, O
2012-01-01
We study the classical flat full causal bulk viscous FRW cosmological model through the factorization method. The method allows to find some new exact parametric solutions for different values of the viscous parameter $s$. Special attention is given to the well known case $s=1/2$, for which the cosmological model admits scaling symmetries. Also, some exact parametric solutions for $s=1/2$ are obtained through the Lie group method.
G. Darmani; S. Setayeshi; H. Ramezanpour
2012-01-01
In this paper an efficient computational method based on extending the sensitivity approach （SA） is proposed to find an analytic exact solution of nonlinear differential difference equations. In this manner we avoid solving the nonlinear problem directly. By extension of sensitivity approach for differential difference equations （DDEs）, the nonlinear original problem is transformed into infinite linear differential difference equations, which should be solved in a recursive manner. Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained. Numerical examples are employed to show the effectiveness of the proposed approach.
New methods to provide exact solutions for some unidirectional motions of rate type fluids
Fetecau Corina
2016-01-01
Full Text Available Based on three immediate consequences of the governing equations corresponding to some unidirectional motions of rate type fluids, new motion problems are tackled for exact solutions. For generality purposes, exact solutions are developed for shear stress boundary value problems of generalized Burgers fluids. Such solutions, for which the shear stress instead of its differential expressions is given on the boundary, are lack in the literature for such fluids. Consequently, the first exact solutions for motions of rate type fluids induced by an infinite plate or a circular cylinder that applies a constant shear f or an oscillating shear f sin(ωt to the fluid are here presented. In addition, all steady-state solutions can easily be reduced to known solutions for second grade and Newtonian fluids.
李志斌; 陈天华
2002-01-01
An algorithm for constructing exact solitary wave solutions and singular solutions for a class of nonlinear dissipative-dispersive system is presented. With the aid of symbolic manipulation system Maple, some explicit solutions are obtained for the system in physically interesting but non-integrable cases.
Analytical solution for inviscid flow inside an evaporating sessile drop.
Masoud, Hassan; Felske, James D
2009-01-01
Inviscid flow within an evaporating sessile drop is analyzed. The field equation E;{2}psi=0 is solved for the stream function. The exact analytical solution is obtained for arbitrary contact angle and distribution of evaporative flux along the free boundary. Specific results and computations are presented for evaporation corresponding to both uniform flux and purely diffusive gas phase transport into an infinite ambient. Wetting and nonwetting contact angles are considered, with flow patterns in each case being illustrated. The limiting behaviors of small contact angle and droplets of hemispherical shape are treated. All of the above categories are considered for the cases of droplets whose contact lines are either pinned or free to move during evaporation.
Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution
Ghadiri, Majid; Jafari, Ali
2016-12-01
Present disquisition proposes an analytical solution method for exploring the vibration characteristics of a cantilever functionally graded nanobeam with a concentrated mass exposed to thermal loading for the first time. Thermo-mechanical properties of FGM nanobeam are supposed to change through the thickness direction of beam based on the rule of power-law (P-FGM). The small-scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Linear temperature rise (LTR) through thickness direction is studied. Existence of centralized mass in the free end of nanobeam influences the mechanical and physical properties. Timoshenko beam theory is employed to derive the nonlocal governing equations and boundary conditions of FGM beam attached with a tip mass under temperature field via Hamilton's principle. An exact solution procedure is exploited to achieve the non-dimensional frequency of FG nanobeam exposed to temperature field with a tip mass. A parametric study is led to assess the efficacy of temperature changes, tip mass, small scale, beam thickness, power-law exponent, slenderness and thermal loading on the natural frequencies of FG cantilever nanobeam with a point mass at the free end. It is concluded that these parameters play remarkable roles on the dynamic behavior of FG nanobeam subjected to LTR with a tip mass. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future thermo-mechanical analyses of FG nanobeam with tip mass.
Fouxon, Itzhak; Assaf, Michael; Livne, Eli
2007-01-01
We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact non-stationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time $t_c$ is approached, the maximum density exhibits a power law $\\sim (t_c-t)^{-2}$. The velocity gradient blows up as $\\sim - (t_c-t)^{-1}$ while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the ...
Exact solution of gyration radius of individual's trajectory for a simplified human mobility model
Yan, Xiao-Yong; Zhou, Tao; Wang, Bing-Hong
2010-01-01
Gyration radius of individual's trajectory plays a key role in quantifying human mobility patterns. Of particular interests, empirical analyses suggest that the growth of gyration radius is slow versus time except the very early stage and may eventually arrive to a steady value. However, up to now, the underlying mechanism leading to such a possibly steady value has not been well understood. In this Letter, we propose a simplified human mobility model to simulate individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that individual has constant travel speed and inferior limit of time at home and work, we prove that the daily moving area of an individual is an ellipse, and finally get an exact solution of the gyration radius. The analytical solution well captures the empirical observation reported in [M. C. Gonz`alez et al., Nature, 453 (2008) 779]. We also find that, in spite of the heterogeneous displacement ...
An Exact Method to Determine the Conductivity of Aqueous Solutions in Acid-Base Titrations
Norma Rodríguez-Laguna
2015-01-01
Full Text Available Several works in the literature show that it is possible to establish the analytic equations to estimate the volume V of a strong base or a strong acid (Vb and Va, resp. being added to a solution of a substance or a mix of substances during an acid-base titration, as well as the equations to estimate the first derivative of the titration plot dpH/dV, and algebraic expressions to determine the buffer β capacity with dilution βdil. This treatment allows establishing the conditions of thermodynamic equilibria for all species within a system containing a mix of species from one or from various polyacid systems. The present work shows that it is possible to determine exactly the electric conductivity of aqueous solutions for these Brønsted acid-base titrations, because the functional relation between this property and the composition of the system in equilibrium is well known; this is achieved using the equivalent conductivity λi values of each of the ions present in a given system. The model employed for the present work confirms the experimental outcomes with the H2SO4, B(OH3, CH3COOH, and H3PO4 aqueous solutions’ titration.
Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm
2010-01-01
We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e......We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show...
Exact mean-field theory of ionic solutions: non-Debye screening
Varela, Luis M.; García, Manuel; Mosquera, Víctor
2003-07-01
The main aim of this report is to analyze the equilibrium properties of primitive model (PM) ionic solutions in the formally exact mean-field formalism. Previously, we review the main theoretical and numerical results reported throughout the last century for homogeneous (electrolytes) and inhomogeneous (electric double layer, edl) ionic systems, starting with the classical mean-field theory of electrolytes due to Debye and Hückel (DH). In this formalism, the effective potential is derived from the Poisson-Boltzmann (PB) equation and its asymptotic behavior analyzed in the classical Debye theory of screening. The thermodynamic properties of electrolyte solutions are briefly reviewed in the DH formalism. The main analytical and numerical extensions of DH formalism are revised, ranging from the earliest extensions that overcome the linearization of the PB equation to the more sophisticated integral equation techniques introduced after the late 1960s. Some Monte Carlo and molecular dynamic simulations are also reviewed. The potential distributions in an inhomogeneous ionic system are studied in the classical PB framework, presenting the classical Gouy-Chapman (GC) theory of the electric double layer (edl) in a brief manner. The mean-field theory is adequately contextualized using field theoretic (FT) results and it is proven that the classical PB theory is recovered at the Gaussian or one-loop level of the exact FT, and a systematic way to obtain the corrections to the DH theory is derived. Particularly, it is proven following Kholodenko and Beyerlein that corrections to DH theory effectively lead to a renormalization of charges and Debye screening length. The main analytical and numerical results for this non-Debye screening length are reviewed, ranging from asymptotic expansions, self-consistent theory, nonlinear DH results and hypernetted chain (HNC) calculations. Finally, we study the exact mean-field theory of ionic solutions, the so-called dressed-ion theory
Exact mean-field theory of ionic solutions: non-Debye screening
Varela, L.M.; Garcia, Manuel; Mosquera, Victor
2003-07-01
The main aim of this report is to analyze the equilibrium properties of primitive model (PM) ionic solutions in the formally exact mean-field formalism. Previously, we review the main theoretical and numerical results reported throughout the last century for homogeneous (electrolytes) and inhomogeneous (electric double layer, edl) ionic systems, starting with the classical mean-field theory of electrolytes due to Debye and Hueckel (DH). In this formalism, the effective potential is derived from the Poisson-Boltzmann (PB) equation and its asymptotic behavior analyzed in the classical Debye theory of screening. The thermodynamic properties of electrolyte solutions are briefly reviewed in the DH formalism. The main analytical and numerical extensions of DH formalism are revised, ranging from the earliest extensions that overcome the linearization of the PB equation to the more sophisticated integral equation techniques introduced after the late 1960s. Some Monte Carlo and molecular dynamic simulations are also reviewed. The potential distributions in an inhomogeneous ionic system are studied in the classical PB framework, presenting the classical Gouy-Chapman (GC) theory of the electric double layer (edl) in a brief manner. The mean-field theory is adequately contextualized using field theoretic (FT) results and it is proven that the classical PB theory is recovered at the Gaussian or one-loop level of the exact FT, and a systematic way to obtain the corrections to the DH theory is derived. Particularly, it is proven following Kholodenko and Beyerlein that corrections to DH theory effectively lead to a renormalization of charges and Debye screening length. The main analytical and numerical results for this non-Debye screening length are reviewed, ranging from asymptotic expansions, self-consistent theory, nonlinear DH results and hypernetted chain (HNC) calculations. Finally, we study the exact mean-field theory of ionic solutions, the so-called dressed-ion theory
Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham
Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.
2011-01-01
In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...
A new exact anisotropic solution of embedding class one
Maurya, S.K.; Smitha, T.T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad (India); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)
2016-07-15
We have presented a new anisotropic solution of Einstein's field equations for compact-star models. Einstein's field equations are solved by using the class-one condition (S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)). We constructed the expression for the anisotropy factor (Δ) by using the pressure anisotropy condition and thereafter we obtained the physical parameters like energy density, radial and transverse pressure. These models parameters are well-behaved inside the star and satisfy all the required physical conditions. Also we observed the very interesting result that all physical parameters depend upon the anisotropy factor (Δ). The mass and radius of the present compact-star models are quite compatible with the observational astrophysical compact stellar objects like Her X-1, RXJ 1856-37, SAX J1808.4-3658(SS1), SAX J1808.4-3658(SS2). (orig.)
Analytic solutions of tunneling time through smooth barriers
Xiao, Zhi; Huang, Hai
2016-03-01
In the discussion of temporary behaviors of quantum tunneling, people usually like to focus their attention on rectangular barrier with steep edges, or to deal with smooth barrier with semi-classical or even numerical calculations. Very few discussions on analytic solutions of tunneling through smooth barrier appear in the literature. In this paper, we provide two such examples, a semi-infinite long barrier V ( x ) = /A 2 [ 1 + tanh ( x / a ) ] and a finite barrier V(x) = A sech2(x/a). To each barrier, we calculate the associated phase time and dwell time after obtaining the analytic solution. The results show that, different from rectangular barrier, phase time or dwell time does increase with the length parameter a controlling the effective extension of the barrier. More interestingly, for the finite barrier, phase time or dwell time exhibits a peak in k-space. A detailed analysis shows that this interesting behavior can be attributed to the strange tunneling probability Ts(k), i.e., Ts(k) displays a unit step function-like profile Θ(k - k0), especially when a is large, say, a ≫ 1/κ, 1/k. And k 0 ≡ √{ m A } / ħ is exactly where the peak appears in phase or dwell time k-spectrum. Thus only those particles with k in a very narrow interval around k0 are capable to dwell in the central region of the barrier sufficiently long.
Two exact solutions of the DPL non-Fourier heat conduction equation with special conditions
Youtong Zhang; Changsong Zheng; Yongfeng Liu; Liang Shao; Chenhua Gou
2009-01-01
This paper presents two exact explicit solutions for the three dimensional dual-phase lag (DLP) heat conduction equation, during the derivation of which the method of trial and error and the authors' previous experiences are utilized. To the authors' knowledge, most solutions of 2D or 3D DPL models available in the literature are obtained by numerical methods, and there are few exact solutions up to now. The exact solutions in this paper can be used as benchmarks to validate numerical solutions and to develop numerical schemes, grid generation methods and so forth.In addition, they are of theoretical significance since they correspond to physically possible situations. The main goal of this paper is to obtain some possible exact explicit solutions of the dual-phase lag heat conduction equation as the benchmark solutions for computational heat transfer, rather than specific solutions for some given initial and boundary conditions. Therefore, the initial and boundary conditions are indeterminate before derivation and can be deduced from the solutions afterwards. Actually, all solutions given in this paper can be easily proven by substituting them into the governing equation.
Painlevé Integrability and New Exact Solutions of the (4 + 1-Dimensional Fokas Equation
Sheng Zhang
2015-01-01
Full Text Available The Painlevé integrability of the (4+1-dimensional Fokas equation is verified by the WTC method of Painlevé analysis combined with a new and more general transformation. By virtue of the truncated Painlevé expansion, two new exact solutions with arbitrary differentiable functions are obtained. Thanks to the arbitrariness of the included functions, the obtained exact solutions not only possess rich spatial structures but also help to bring about two-wave solutions and three-wave solutions. It is shown that the transformation adopted in this work plays a key role in testing the Painlevé integrability and constructing the exact solutions of the Fokas equation.
Manufactured analytical solutions for isothermal full-Stokes ice sheet models
A. Sargent
2010-04-01
Full Text Available We present the detailed construction of an exact solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed.
The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
An Algebraic Method for Constructing Exact Solutions to Difference-Differential Equations
无
2006-01-01
In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).
闫小勇; 韩筱璞; 周涛; 汪秉宏
2011-01-01
We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities:commuting to workplace,going to do leisure activities and returning home.With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work,we prove that the daily moving area of an individual is an ellipse,and finally obtain an exact solution of the gyration radius.The analytical solution captures the empirical observation well.%We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work, we prove that the daily moving area of an individual is an ellipse, and finally obtain an exact solution of the gyration radius. The analytical solution captures the empirical observation well.
Hassan A. Zedan
2013-01-01
Full Text Available We introduce two powerful methods to solve the Davey-Stewartson equations: one is the homotopy perturbation method (HPM and the other is the homotopy analysis method (HAM. HAM is a strong and easy to use analytic tool for nonlinear problems. Comparison of the HPM results with the HAM results, and compute the absolute errors between the exact solutions of the DS equations with the HPM solutions and HAM solutions are obtained.
Exact analytical representations for broadband transmission properties of quarter-wave multilayers.
Grigoriev, Victor; Biancalana, Fabio
2011-10-01
The formalism of the scattering matrix is applied to describe the transmission properties of multilayered structures with deep variations of the refractive index and arbitrary arrangements of the layers. We show that there is an exact analytical formula for the transmission spectrum, which is valid for the full spectral range and which contains only a limited number of parameters for structures satisfying the quarter-wave condition. These parameters are related to the poles of the scattering matrix, and we present an efficient algorithm to find them, which is based on considering the ray propagation inside the structure and subsequent application of the harmonic inversion technique. These results are significant for analyzing the reshaping of ultrashort pulses in multilayered structures.
HUANG DeJin; DING Haodiang; CHEN WeiQiu
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams sub-ject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress prob-lems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equa-tions satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
无
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
ANALYTIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL EQUATIONS
LiuXinhe
2003-01-01
Let r be a given positive number.Denote by D=D the closed disc in the complex plane C whose center is the origin and radius is r.For any subset K of C and any integer m ≥1,write A(Dm,K)={f|f:Dm→Kis a continuous map,and f|(Dm)*is analytic).For H∈A(Dm,C)(m≥2),f∈A(D,D)and z∈D,write ψH(f)(z)=H(z,f(z)……fm=1(x)).Suppose F,G∈A(D2n+1,C),and Hk,Kk∈A(Dk,C),k=2,……,n.In this paper,the system of functional equations {F(z,f(z),f2(ψHz(f)(z))…,fn(ψk2(g)(x))… gn(ψKn(g)(z)))=0 G(z,f(z),f2(ψH2(f)(z))…fn(ψHn(f)(z)),g(z),g2(ψk2(g)(x))…,gn(ψkn(g)(z)))=0(z∈D)is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A（D，D）are given.
Analytic structure of solutions to multiconfiguration equations
Fournais, Soeren [Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Building 1530, DK-8000 Arhus C (Denmark); Hoffmann-Ostenhof, Maria [Fakultaet fuer Mathematik, Universitaet Wien, Nordbergstrasse 15, A-1090 Vienna (Austria); Hoffmann-Ostenhof, Thomas [Institut fuer Theoretische Chemie, Waehringerstrasse 17, Universitaet Wien, A-1090 Vienna (Austria); Soerensen, Thomas Oestergaard [Department of Mathematics, Imperial College London, Huxley Building, 180 Queen' s Gate, London SW7 2AZ (United Kingdom)], E-mail: fournais@imf.au.dk, E-mail: Maria.Hoffmann-Ostenhof@univie.ac.at, E-mail: thoffman@esi.ac.at, E-mail: t.sorensen@imperial.ac.uk
2009-08-07
We study the regularity at the positions of the (fixed) nuclei of solutions to (non-relativistic) multiconfiguration equations (including Hartree-Fock) of Coulomb systems. We prove the following: let {l_brace}{psi}{sub 1}, ..., {psi}{sub M}{r_brace} be any solution to the rank-M multiconfiguration equations for a molecule with L fixed nuclei at R{sub 1},...,R{sub L} element of R{sup 3}. Then, for any j in {l_brace}1, ..., M{r_brace}, k in {l_brace}1, ..., L{r_brace}, there exists a neighborhood U{sub j,k} subset or equal R{sup 3} of R{sub k}, and functions {psi}{sup (1)}{sub j,k}, {psi}{sup (2)}{sub j,k}, real analytic in U{sub j,k}, such that {phi}{sub j}(x)={phi}{sub j,k}{sup (1)}(x)+|x-R{sub k}|{phi}{sub j,k}{sup (2)}(x), x element of U{sub j,k}. A similar result holds for the corresponding electron density. The proof uses the Kustaanheimo-Stiefel transformation, as applied in [9] to the study of the eigenfunctions of the Schroedinger operator of atoms and molecules near two-particle coalescence points.
Electromechanics: An analytic solution for graded biological cell.
Chan, Kin Lok; Yu, K. W.
2007-03-01
Electromechanics of graded material has been established recently to study the effective response of inhomogeneous graded spherical particles under an external ac electric field.[1, 2]Such particles having a complex dielectric profile varies along the radius of the particles. The gradation in the colloidal particles is modeled by assuming both the dielectric and conductivity vary along the radius. More precisely, both the dielectric and conductivity function are assumed to be a isotopic linear function dependence on the radius variable r, namely, ɛ(r)=ɛ(0)+A1r, σ(r)=σ(0)+A2r.In this talk, we will present the exact analytical solutions of the dipole moment of such particle in terms of the hypergeometric functions, and the effective electric response in dilute limit. Moreover, we applied the dielectric dispersion spectral representation (DDSR) to study the Debye Behavior of the cell. Our exact results may be applied to graded biological cell suspensions, as their interior must be inhomogeneous in nature. [1] En-Bo Wei, L. Dong, K. W. Yu, Journal of Applied Physics 99, 054101(2006) [2] L. Dong, Mikko Karttunen, K. W. Yu, Phys. Rev. E, Vol. 72, art. no. 016613 (2005)
Schunert, Sebastian; Azmy, Yousry Y., E-mail: snschune@ncsu.edu, E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC (United States)
2011-07-01
The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally ne mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite rst eliminates the aforementioned limitation of ne mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme. (author)
Sebastian Schunert; Yousry Y. Azmy
2011-05-01
The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally fine mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite first eliminates the aforementioned limitation of fine mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme.
Exact solutions of optical pulse propagation in nonlinear meta-materials
Nanda, Lipsa
2017-01-01
An analytical and simulation based method has been used to exactly solve the nonlinear wave propagation in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability. The method has been further extended to investigate the intensity distribution in a nonlinear meta-material with negative refractive index where both ɛ and μ are dispersive and negative in nature.
Yusuf Pandir
2013-01-01
Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.
Coupled Nonlinear Schr(o)dinger Equation: Symmetries and Exact Solutions
LIU Ping; LOU Sen-Yue
2009-01-01
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schr(o)dinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.
Lienard Equation and Exact Solutions for Some Soliton-Producing Nonlinear Equations
ZHANG Wei-Guo; CHANG Qian-Shun; ZHANG Qi-Ren
2004-01-01
In this paper, we first consider exact solutions for Lienard equation with nonlinear terms of any order. Then,explicit exact bell and kink profile solitary-wave solutions for many nonlinear evolution equations are obtained by means of results of the Lienard equation and proper deductions, which transform original partial differential equations into the Lienard one. These nonlinear equations include compound KdV, compound KdV-Burgers, generalized Boussinesq,generalized KP and Ginzburg-Landau equation. Some new solitary-wave solutions are found.
Exact solution of a delay difference equation modeling traffic flow and their ultra-discrete limit
Matsuya, Keisuke; Kanai, Masahiro
2015-01-01
We consider a car-following model described by a delay difference equation and give its exact solutions that present propagation of a traffic jam. This model is a discrete-time version of the delayed optimal-velocity model; in the continuum limit, we recover the delay differential equation for this model and the exact solutions as well. We then work in the ultra-discrete limit, obtaining a delay cellular-automaton model, which successfully inherits the solutions. Also the dispersion relation ...
EXACT SOLUTION OF AN EXTERNAL CIRCULAR CRACK IN A PIEZOELECTRIC SOLID SUBJECTED TO SHEAR LOADING
无
2001-01-01
A three-dimensional, exact analysis is presented in this paperfor the problem of an external circular crack in a transversely isotropic piezoelectric medium subjected to arbitrary antisymmetric shear loading. A recently proposed general solution of three-dimensional piezoelectricity is employed. It is shown that four quasi harmonic functions involved in the general solution can be represented by just one complex potential. Previous results in potential theory are then used to obtain the exact solution of the problem. For point shear loading, Green's functions for the elastoelectric field are derived in terms of elementary functions.
Exact solutions of the Wheeler-DeWitt equation and the Yamabe construction
Ita, Eyo
2014-01-01
Exact solutions of the Wheeler-DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schr\\"odinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.
Exact solutions of the Wheeler–DeWitt equation and the Yamabe construction
Ita III, Eyo Eyo, E-mail: ita@usna.edu [Physics Department, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)
2015-08-15
Exact solutions of the Wheeler–DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrödinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.
Pavlov, Yu V
2013-01-01
The problem is solved of describing scale factors of a homogeneous isotropic spaces-time such that the exact solution for the scalar field with a nonconformal coupling to curvature can be obtained from solutions for the conformally coupled field by redefining the mass and momentum. Explicit expressions for dependence of time from the large-scale factor are presented in the form of Abelian integrals in these cases. The exact solution for a scalar field with Gauss-Bonnet type coupling with curvature is received and it is shown that the corresponding nonconformal additions can dominate at the particles creation by gravitational field.
Testing The Cactus code on exact solutions of the Einstein field equations
Vulcanov, D N; Vulcanov, Dumitru N.; Alcubierre, Miguel
2001-01-01
We discuss a series of numerical simulations of exact solutions of the Einstein equations performed using the Cactus code, a complete 3-dimensional machinery for numerical relativity. We describe an application (``thorn'') for the Cactus code that can be used for evolving a variety of exact solutions, with and without matter, including solutions used in modern cosmology for modelling the early stages of the universe. Our main purpose has been to test the Cactus code on these well-known examples, focusing mainly on the stability and convergence of the code.
Kisel, V V; Red'kov, V M
2010-01-01
With the use of the general covariant matrix 10-dimensional Petiau -- Duffin -- Kemmer formalism in cylindrical coordinates and tetrad there are constructed exact solutions of the quantum-mechanical equation for a particle with spin 1 in presence of an external homogeneous magnetic field. There are separated three linearly independent types of solutions; in each case the formula for energy levels has been found.
Nonlinear differential equations with exact solutions expressed via the Weierstrass function
Kudryashov, NA
2004-01-01
A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear di
An hp-adaptive strategy for the solution of the exact kernel curved wire Pocklington equation
Lahaye, D.; Hemker, P.W.
2007-01-01
In this paper we introduce an adaptive method for the numerical solution of the Pocklington integro-differential equation with exact kernel for the current induced in a smoothly curved thin wire antenna. The hp-adaptive technique is based on the representation of the discrete solution, which is expa
New exact solutions of the generalized Zakharov–Kuznetsov modified equal-width equation
Yusuf Pandir
2014-06-01
In this paper, new exact solutions, including soliton, rational and elliptic integral function solutions, for the generalized Zakharov–Kuznetsov modified equal-width equation are obtained using a new approach called the extended trial equation method. In this discussion, a new version of the trial equation method for the generalized nonlinear partial differential equations is offered.
Exact solutions of the Fokker-Planck equation for the Malthus-Verhulst model
Brey, J. J.; Aizpuru, C.; Morillo, M.
1987-04-01
A class of particular solutions of the Fokker-Planck equation associated with the Malthus-Verhulst model is obtained. These time-dependent solutions are exact and allow us to study the evolution of both the distribution function and the moments. A careful analysis is carried out for the two simplest cases, showing the different possible types of relaxation.
Exact Solutions of the SU(2) Yang-Mills-Higgs Theory
Teh, R
2001-01-01
Some exact static solutions of the SU(2) Yang-Mills-Higgs theory are presented. These solutions do not satisfy the first order Bogomol'nyi equations, and do not possess finite energy. They are axially symmetric and could possibly represent monopoles and an antimonopole sitting on the z-axis.
Wenjun Liu; Kewang Chen
2013-09-01
In this paper, we implemented the functional variable method and the modified Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled KdV system. This method is extremely simple but effective for handling nonlinear time-fractional differential equations.
An Exact Solution and the Pancharatnam Phase for the Generalized Two-Mode Optical System
侯邦品; 王顺金; 余万伦
2002-01-01
Using the algebraic dynamical method, we obtain the exact solution for the generalized two-mode optical system. From the solution, the Pancharatnam phase and the mean values of the number operators of the system are calculated. It is emphasized that the system can be used as a quantum memory.
Zhou Xiao-Hua
2009-01-01
We show some characteristics of three exact solutions to Einstein's gravity equation minimally coupled to a Quintessence field.Besides eternal inflation,several other interesting inflationary processes,such as transitory inflation,are obtained in these solutions.Singularity is avoided in some special cases.
EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION
LiuXiqiang; JiangSong
2001-01-01
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable-coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable-coefficient KdV equation is given.
Exact Solutions for a Nonisospectral and Variable-Coefficient KdV Equation
DENG Shu-Fang
2005-01-01
The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilinear transformation from its Lax pairs and find solutions with the help of the obtained bilinear transformation.
Yusuf Pandir
2012-01-01
Full Text Available We obtain the classification of exact solutions, including soliton, rational, and elliptic solutions, to the one-dimensional general improved Camassa Holm KP equation and KdV equation by the complete discrimination system for polynomial method. In discussion, we propose a more general trial equation method for nonlinear partial differential equations with generalized evolution.
Quantum transport in 1d systems via a master equation approach: numerics and an exact solution
Znidaric, Marko
2010-01-01
We discuss recent findings about properties of quantum nonequilibrium steady states. In particular we focus on transport properties. It is shown that the time dependent density matrix renormalization method can be used successfully to find a stationary solution of Lindblad master equation. Furthermore, for a specific model an exact solution is presented.
The fractional coupled KdV equations: Exact solutions and white noise functional approach
Hossam A.Ghany; A.S.Okb El Bab; A.M.Zabel; Abd-Allah Hyder
2013-01-01
Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated.By using the modified fractional sub-equation method,Hermite transform,and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained,including the generalized exponential,hyperbolic,and trigonometric types.
Exact Solutions of Two-dimensional and Tri-dimensional Consolidation Equations
Di Francesco, Romolo
2011-01-01
The exact solution of Terzaghi's consolidation equation has further highlighted the limits of this theory in the one-dimensional field as, like Taylor's approximate solution, it overestimates the decay times of the phenomenon; on the other hand, one only needs to think about the accumulation pattern of sedimentary-basin soils to understand how their internal structure fits in more with the model of transversely isotropic medium, so as to result in the development of two- and three-dimensional consolidation models. This is the reason why, using Terzaghi's theory and his exact solution as starting point, two-dimensional and three-dimensional consolidation equations have been proposed, in an attempt to find their corresponding exact solutions which constitute more reliable forecasting models. Lastly, results show how this phenomenon is predominantly influenced by the dimensions of the horizontal plane affected by soil consolidation and permeabilities that behave according to three coordinate axes.
Approximated analytical solution to an Ebola optimal control problem
Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.
2016-11-01
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.
Manufactured analytical solutions for isothermal full-Stokes ice sheet models
A. Sargent
2010-08-01
Full Text Available We present the detailed construction of a manufactured analytical solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed.
The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length
Saakian, David B.
2017-08-01
We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.
Unified treatment of a class of spherically symmetric potentials: quasi-exact solution
Panahi, Hossein
2016-01-01
In this paper, we investigate the Schr\\"odinger equation for a class of spherically symmetric potentials in a simple and unified manner using the Lie algebraic approach within the framework of quasi-exact solvability. We illustrate that all models give rise to the same basic differential equation, which is expressible as an element of the universal enveloping algebra of sl(2). Then, we obtain the general exact solutions of the problem by employing the representation theory of sl(2) Lie algebra.
An approximate and an analytical solution to the carousel-pendulum problem
Vial, Alexandre [Pole Physique, Mecanique, Materiaux et Nanotechnologies, Universite de technologie de Troyes, 12, rue Marie Curie BP-2060, F-10010 Troyes Cedex (France)], E-mail: alexandre.vial@utt.fr
2009-09-15
We show that an improved solution to the carousel-pendulum problem can be easily obtained through a first-order Taylor expansion, and its accuracy is determined after the obtention of an unusable analytical exact solution, advantageously replaced by a numerical one. It is shown that the accuracy is unexpectedly high, even when the ratio length of the pendulum to carousel radius approaches unity. (letters and comments)
JINLIANG ZHANG; WUQIANG HU; YU MA
2016-12-01
In this paper, the famous Klein–Gordon–Zakharov (KGZ) equations are first generalized, and the new special types of KGZ equations with the positive fractional power terms (gKGZE) are presented. In order to derive exact solutions of the new special gKGZE, subsidiary higher-order ordinary differential equations (sub-ODEs) with the positive fractional power terms are introduced, and with the aid of the sub-ODE, exact solutions of four special types of the gKGZE are derived, which are the bell-type solitary wave solution, the algebraicsolitary wave solution, the kink-type solitary wave solution and the sinusoidal travelling wave solution, provided that the coefficients of gKGZE satisfy certain constraint conditions.
Jalalzadeh, S; Sepangi, H R
2003-01-01
We study the classical and quantum cosmology of a $(4+d)$-dimensional spacetime minimally coupled to a scalar field and present exact solutions for the resulting field equations for the case where the universe is spatially flat. These solutions exhibit signature transition from a Euclidean to a Lorentzian domain and lead to stabilization of the internal space, in contrast to the solutions which do not undergo signature transition. The corresponding quantum cosmology is described by the Wheeler-DeWitt equation which has exact solutions in the mini-superspace, resulting in wavefunctions peaking around the classical paths. Such solutions admit parametrizations corresponding to metric solutions of the field equations that admit signature transition.
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
Exact Schwarzschild-like solution for SU(N) gauge theory
Singleton, D.
1996-09-01
In this paper we extend our previously discovered exact solution for an SU(2) Yang-Mills-Higgs theory, to the general group SU(N+1). Using the first-order formalism of Bogomolny, an exact, spherically symmetric solution for the gauge and scalar fields is found. This solution is similar to the Schwarzschild solution of general relativity, in that the gauge and scalar fields become infinite on a spherical shell of radius r 0= K. However in the Schwarzschild case the singularity at the event horizon is a coordinate singularity while for the present solution the singularity is a true singularity. It is speculated that this solution may give a confinement mechanism for non-Abelian gauge theories, since any particle which carries the SU(N+1) charge would become permanently trapped inside the region r< r 0.
Statistical mechanics of two hard spheres in a spherical pore, exact analytic results in D dimension
Urrutia, Ignacio; Szybisz, Leszek
2010-03-01
This work is devoted to the exact statistical mechanics treatment of simple inhomogeneous few-body systems. The system of two hard spheres (HSs) confined in a hard spherical pore is systematically analyzed in terms of its dimensionality D. The canonical partition function and the one- and two-body distribution functions are analytically evaluated and a scheme of iterative construction of the D +1 system properties is presented. We analyze in detail both the effect of high confinement, when particles become caged, and the low density limit. Other confinement situations are also studied analytically and several relations between the two HSs in a spherical pore, two sticked HSs in a spherical pore, and two HSs on a spherical surface partition functions are traced. These relations make meaningful the limiting caging and low density behavior. Turning to the system of two HSs in a spherical pore, we also analytically evaluate the pressure tensor. The thermodynamic properties of the system are discussed. To accomplish this statement we purposely focus in the overall characteristics of the inhomogeneous fluid system, instead of concentrate in the peculiarities of a few-body system. Hence, we analyze the equation of state, the pressure at the wall, and the fluid-substrate surface tension. The consequences of new results about the spherically confined system of two HSs in D dimension on the confined many HS system are investigated. New constant coefficients involved in the low density limit properties of the open and closed systems of many HS in a spherical pore are obtained for arbitrary D. The complementary system of many HS which surrounds a HS (a cavity inside of a bulk HS system) is also discussed.
Analytical and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model
Mazaré, Pierre Emmanuel
2011-12-01
In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave fundamental diagrams. With these assumptions, we show that the solution to the LWR PDE at any location and time can be computed exactly and semi-analytically for a very low computational cost using the cumulative number of vehicles formulation of the problem. We implement the proposed computational method on a representative traffic flow scenario to illustrate the exactness of the analytical solution. We also show that the proposed scheme can handle more complex scenarios including traffic lights or moving bottlenecks. The computational cost of the method is very favorable, and is compared with existing algorithms. A toolbox implementation available for public download is briefly described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver. © 2011 Elsevier Ltd.
New exact solutions of sixth-order thin-film equation
Wafaa M. Taha
2014-01-01
Full Text Available TheG′G-expansion method is used for the first time to find traveling-wave solutions for the sixth-order thin-film equation, where related balance numbers are not the usual positive integers. New types of exact traveling-wave solutions, such as – solitary wave solutions, are obtained the sixth-order thin-film equation, when parameters are taken at special values.
NEW EXPLICIT AND EXACT TRAVELLING WAVE SOLUTIONS FOR A COMPOUND KdV-BURGERS EQUATION
XIA TIE-CHENG; ZHANG HONG-QING; YAN ZHEN-YA
2001-01-01
In this paper, new explicit and exact travelling wave solutions for a compound KdV-Burgers equation are obtained by using the hyperbola function method and the Wu elimination method, which include new solitary wave solutions and periodic solutions. Particularly important cases of the equation, such as the compound KdV, mKdV-Burgers and mKdV equations can be solved by this method. The method can also solve other nonlinear partial differential equations.
New exact solutions of the non-homogeneous Burgers equation in (1+1) dimensions
Schulze-Halberg, Axel [Department of Science, University of Colima, Bernal Diaz del Castillo 340, Colima Villas San Sebastian, C P 28045, Colima (Mexico)
2007-04-15
We construct an invertible transformation between the non-homogeneous Burgers equation (NBE) and the stationary Schroedinger equation in (1+1) dimensions. By means of this transformation, each solution of the stationary Schroedinger equation generates a fully time-dependent solution of the NBE. As applications we derive exact solutions of the NBE for general power-law nonhomogeneities, generalizing former results on the linear case.
Exact solutions of the (3+1)-dimensional space-time fractional Jimbo-Miwa equation
Aksoy, Esin; Guner, Ozkan; Bekir, Ahmet; Cevikel, Adem C.
2016-06-01
Exact solutions of the (3+1)-dimensional space-time fractional Jimbo-Miwa equation are studied by the generalized Kudryashov method, the exp-function method and the (G'/G)-expansion method. The solutions obtained include the form of hyperbolic functions, trigonometric and rational functions. These methods are effective, simple, and many types of solutions can be obtained at the same time.
Exact periodic wave solutions to the generalized Nizhnik-Novikov-Veselov equation
Yan-Ze Peng
2005-02-01
The extended mapping method with symbolic computation is developed to obtain exact periodic wave solutions to the generalized Nizhnik{Novikov{Veselov equation. Limit cases are studied and new solitary wave solutions and triangular periodic wave solutions are obtained. The method is applicable to a large variety of non-linear partial differential equations, as long as odd- and even-order derivative terms do not coexist in the equation under consideration.
M Mirzazadeh; M Eslami
2013-12-01
Studying compactons, solitons, solitary patterns and periodic solutions is important in nonlinear phenomena. In this paper we study nonlinear variants of the Kadomtsev–Petviashvili (KP) and the Korteweg–de Vries (KdV) equations with positive and negative exponents. The functional variable method is used to establish compactons, solitons, solitary patterns and periodic solutions for these variants. This method is a powerful tool for searching exact travelling solutions in closed form.
A Family of Interesting Exact Solutions of the Sine-Gordon Equation
HUANG De-Bin; LIU Zeng-Rong; WANG Li-Lian
2000-01-01
By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing the wave function, a family of interesting exact solutions of the sine-Gordon equation are constructed. These solutions seem to be some soliton, kink, and anti-kink ones respectively for the different choice of the spectrum, whereas due to the interaction between two traveling-waves they have some properties different from usual soliton, kink, and anti-kink solutions.
New exact solutions to the generalized KdV equation with generalized evolution
Yongan Xie; Shengqiang Tang; Dahe Feng
2012-04-01
In this paper, by using a transformation and an application of Fan subequation, we study a class of generalized Korteweg–de Vries (KdV) equation with generalized evolution. As a result, more types of exact solutions to the generalized KdV equation with generalized evolution are obtained, which include more general single-hump solitons, multihump solitons, kink solutions and Jacobian elliptic function solutions with double periods.
On the analytical solution of Fornberg–Whitham equation with the new fractional derivative
Olaniyi Samuel Iyiola; Gbenga Olayinka Ojo
2015-10-01
Motivated by the simplicity, natural and efficient nature of the new fractional derivative introduced by R Khalil et al in J. Comput. Appl. Math. 264, 65 (2014), analytical solution of space-time fractional Fornberg–Whitham equation is obtained in series form using the relatively new method called q-homotopy analysis method (q-HAM). The new fractional derivative makes it possible to introduce fractional order in space to the Fornberg–Whitham equation and be able to obtain its solution. This work displays the elegant nature of the application of q-HAM to solve strongly nonlinear fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for nonlinear differential equations. Comparisons are made on the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.
无
2009-01-01
A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises, whose exact stationary solutions are independent of energy. Firstly, the equivalent Fokker-Planck-Kolmogorov (FPK) equations are derived by using exterior differentiation. The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix. Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix. The obtained exact stationary solutions, which are generally independent of energy, are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom (MDOF) so far, and some classes of the known ones dependent on energy belong to the special cases of them.
Exact Solutions of Degree Distributions for Random Birth-and-Death Networks
Zhang, Xiaojun; Rayman-Bacchus, Lez
2015-01-01
In this paper, a general random birth-and-death network model (RBDN) is considered, in which at each time step, a new node is added into the network with probability p or an existing node is deleted from the network with probability q=1-p. For different p (1>p>1/2, 0
exact solutions. First, a homogeneous Markov chain with two variables based on stochastic process rules (SPR) is employed and its state transformation equations are provided for solving the degree distributions of RBDN. Then for different p, the different degree distribution equations are determined, and the exact solutions of the degree distributions are obtained by the probability generating function approach. Computation simulations are used to verify these exact solutions.
HUANG ZhiLong; JIN XiaoLing
2009-01-01
A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises,whose exact stationary solutions are independent of energy.Firstly,the equivalent Fokker-Planck-Kolmogorov(FPK)equations are derived by using exterior differentiation.The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix.Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix.The obtained exact stationary solutions,which are generally independent of energy,are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom(MDOF)so far,and some classes of the known ones dependent on energy belong to the special cases of them.
Exact solutions to the Mo-Papas and Landau-Lifshitz equations.
Rivera, R; Villarroel, D
2002-10-01
Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.
Migration of radionuclides through sorbing media analytical solutions--II
Pigford, T.H.; Chambre, P.L.; Albert, M.
1980-10-01
This report presents analytical solutions, and the results of such solutions, for the migration of radionuclides in geologic media. Volume 1 contains analytical solutions for one-dimensional equilibrium transport in infinite media and multilayered media. One-dimensional non-equilibrium transport solutions are also included. Volume 2 contains analytical solutions for transport in a one-dimensional field flow with transverse dispersion as well as transport in multi-dimensional flow. A finite element solution of the transport of radionuclides through porous media is discussed. (DMC)
Exact solutions for scalar field cosmology in f(R) gravity
Maharaj, S D; Chervon, S V; Nikolaev, A V
2016-01-01
We look for exact solutions in scalar field cosmology. To achieve this we use $f(R)$ modified gravity with a scalar field and do not specify the the form of the $f(R)$ function. In particular, we study Friedmann universe assuming that acceleration of the scalar curvature is negligible. We first present solutions for special cases and then the general solution. Using initial conditions which represent the universe at the present epoch, we evaluated the constants of integration. This allows for the comparison of the scale factor in the new solutions with that of the $\\Lambda CDM$ solution, thereby affecting the age of the universe in $f(R)$ gravity.
Özkan Güner
2014-01-01
Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.
Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem
Bihlo, Alexander
2010-01-01
The quasi-geostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximum Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Where possible, reference to the physical meaning of the exact solutions is given.
New Exact Solutions of Boussinesq Equation%Boussinesq 方程新的精确解
杨琼芬; 杜先云; 杨立娟
2011-01-01
以齐次平衡原则和试探函数法为基础,给出函数变换与双线性算子相结合的方法,构造了Boussinesq方程新的精确解.%Based on the homogeneous balance principle and the trial function method, a method for combining function transformation with bilinear operator is proposed. . And the method is applied to construct new exact solutions of Boussinesq equation. This method can be used to find new exact solutions to other nonlinear evolution equations.
Regarding on the exact solutions for the nonlinear fractional differential equations
Kaplan Melike
2016-01-01
Full Text Available In this work, we have considered the modified simple equation (MSE method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW and the modified equal width (mEW equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.
Construction and exact solution of a nonlinear quantum field model in quasi-higher dimension
Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in
2015-10-15
Nonperturbative exact solutions are allowed for quantum integrable models in one space-dimension. Going beyond this class we propose an alternative Lax matrix approach, exploiting the hidden multi-space–time concept in integrable systems and construct a novel nonlinear Schrödinger quantum field model in quasi-two dimensions. An intriguing field commutator is discovered, confirming the integrability of the model and yielding its exact Bethe ansatz solution with rich scattering and bound-state properties. The universality of the scheme is expected to cover diverse models, opening up a new direction in the field.
The exact solution for the Dirac equation with the Cornell potential
Trevisan, L A; Andrade, F M
2013-01-01
An analytical solution of the Dirac equation with a Cornell potential, with identical scalar and vectorial parts, is presented. The solution is obtained by using the linear potential solution, related to Airy functions, multiplied by another function to be determined. The energy levels are obtained and we notice that they obey a band structure.
Analytical solution of basic equations set of atmospheric motion
SHI Wei-hui; SHEN Chun; WANG Yue-peng
2007-01-01
On condition that the basic equations set of atmospheric motion possesses the best stability in the smooth function classes, the structure of solution space for local analytical solution is discussed, by which the third-class initial value problem with typicaiity and application is analyzed. The calculational method and concrete expressions of analytical solution about the well-posed initial value problem of the third kind are given in the analytic function classes. Near an appointed point, the relevant theoretical and computational problems about analytical solution of initial value problem are solved completely in the meaning of local solution. Moreover, for other type of problems for determining solution, the computational method and process of their stable analytical solution can be obtained in a similar way given in this paper.
Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; Wang, Yanli; Singler, Timothy
2017-03-01
Due to the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl-Hecky membrane indented by a frictionless spherical indenter. In this study, experiments of spherical indentation has been performed, and the exact analytical solution presented in this paper is compared against experimental data from existing literature as well as our own experimental results.
Analytical Solution for Stellar Density in Globular Clusters
M. A. Sharaf; A. M. Sendi
2011-09-01
In this paper, four parameters analytical solution will be established for the stellar density function in globular clusters. The solution could be used for any arbitrary order of outward decrease of the cluster’s density.
Exact solutions to the continuous-quality equation for soil organic matter turnover.
Bosatta, Ernesto; Agren, Göran I
2003-09-07
All living systems depend on transformations of elements between different states. In particular, the transformation of dead organic matter in the soil (SOM) by decomposers (microbes) releases elements incorporated in SOM and makes the elements available anew to plants. A major problem in analysing and describing this process is that SOM, as the result of the decomposer activity, is a mixture of a very large number of molecules with widely differing chemical and physical properties. The continuous-quality equation (CQE) is a general equation describing this complexity by assigning a continuous-quality variable to each carbon atom in SOM. The use of CQE has been impeded by its complicated mathematics. Here, we show by deriving exact solutions that, at least for some specific cases, there exist solutions to CQE. These exact solutions show that previous approximations have overestimated the rate by which litter decomposes and as a consequence underestimated steady state SOM amounts. The exact and approximate solutions also differ with respect to the parameter space in which they yield finite steady-state SOM amounts. The latter point is important because temperature is one of the parameters and climatic change may move the solution from a region of the parameter space with infinite steady-state SOM to a region of finite steady-state SOM, with potentially large changes in soil carbon stores. We also show that the solution satisfies the Chapman-Kolmogorov theorem. The importance of this is that it provides efficient algorithms for numerical solutions.
丁皓江; 徐荣桥; 国凤林
1999-01-01
Emphasis is placed on purely elastic circular plates. Let the piezoelectric coefficients be equal to zero. Then two sets of uncoupled mechanical and electric equations are obtained and they can be solved independently. Two three-dimensional exact solutions of laminated transversely isotropic circular plate are derived under two boundary conditions, i.e. rigid slipping support and elastic simple support. For isotropic circular plates, the problem of multiple root is treated. At last, some numerical results of piezoelectric and purely elastic circular plates are presented and the applicability of classical plate theory is discussed.
Analytical solution of linear ordinary differential equations by differential transfer matrix method
Sina Khorasani
2003-08-01
Full Text Available We report a new analytical method for finding the exact solution of homogeneous linear ordinary differential equations with arbitrary order and variable coefficients. The method is based on the definition of jump transfer matrices and their extension into limiting differential form. The approach reduces the $n$th-order differential equation to a system of $n$ linear differential equations with unity order. The full analytical solution is then found by the perturbation technique. The important feature of the presented method is that it deals with the evolution of independent solutions, rather than its derivatives. We prove the validity of method by direct substitution of the solution in the original differential equation. We discuss the general properties of differential transfer matrices and present several analytical examples, showing the applicability of the method.
Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)
2014-06-15
An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.
Fouxon, Itzhak; Meerson, Baruch; Assaf, Michael; Livne, Eli
2007-09-01
We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact nonstationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time tc is approached, the maximum density exhibits a power law ˜(tc-t)-2. The velocity gradient blows up as ˜-(tc-t)-1 while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the singularity. The gas temperature vanishes at the singularity, and the singularity follows the isobaric scenario: the gas pressure remains finite and approximately uniform in space and constant in time close to the singularity. An additional exact solution shows that the density blowup, of the same type, may coexist with an "ordinary" shock, at which the hydrodynamic fields are discontinuous but finite. We confirm stability of the exact solutions with respect to small one-dimensional perturbations by solving the ideal hydrodynamic equations numerically. Furthermore, numerical solutions show that the local features of the density blowup hold universally, independently of details of the initial and boundary conditions.
New Exact Solutions of Ion-Acoustic Wave Equations by (G′/G-Expansion Method
Wafaa M. Taha
2013-01-01
Full Text Available The (G′/G-expansion method is used to study ion-acoustic waves equations in plasma physic for the first time. Many new exact traveling wave solutions of the Schamel equation, Schamel-KdV (S-KdV, and the two-dimensional modified KP (Kadomtsev-Petviashvili equation with square root nonlinearity are constructed. The traveling wave solutions obtained via this method are expressed by hyperbolic functions, the trigonometric functions, and the rational functions. In addition to solitary waves solutions, a variety of special solutions like kink shaped, antikink shaped, and bell type solitary solutions are obtained when the choice of parameters is taken at special values. Two- and three-dimensional plots are drawn to illustrate the nature of solutions. Moreover, the solution obtained via this method is in good agreement with previously obtained solutions of other researchers.
Crowdy, Darren
2015-06-01
A one parameter family of analytical solutions for the equilibrium shapes of two-dimensional charged conducting droplets on a substrate with 90° contact angle is presented. The solutions exhibit the tendency to dewet at the droplet centre as the electrostatic stress increases. Such electrostatic deformations are believed to underlie the recently observed stick-slip dynamics of nanodroplets on substrates. Our theoretical results complement a number of other recent analytical and numerical studies of this phenomenon.
XIATie-cheng; ZHANGHong-qing; LIPei-chun
2003-01-01
In this paper,many new explicit and exact travelling wave solutions for Burgers-Kolmogorov-Prtrovskii-Piscounov(Burgers-KPP) equations are obtained by using hyperbola function method and Wu-elimination method,which include new singular solitary wave solutions and periodic solutions,Particular important cases of the equation.such as the generalized Burgers-Fisher equation.Burgers-Chaffee-infante equation and KPP equation,the corresponding solutions can be obtained also,The method can also solve other nonliear partial differential equations.
Explicit and exact travelling wave solutions for the generalized derivative Schroedinger equation
Huang Dingjiang [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)]. E-mail: hdj8116@163.com; Li Desheng [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China); Department of Mathematics, Shenyang Normal University, Shenyang 110034 (China); Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)
2007-02-15
In this paper, a new auxiliary equation expansion method and its algorithm is proposed by studying a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. Being concise and straightforward, the method is applied to the generalized derivative Schroedinger equation. As a result, some new exact travelling wave solutions are obtained which include bright and dark solitary wave solutions, triangular periodic wave solutions and singular solutions. This algorithm can also be applied to other nonlinear wave equations in mathematical physics.
The Improved Riccati Equation Method and Exact Solutions to mZK Equation
Xiaofeng Li
2012-01-01
Full Text Available We utilize the improved Riccati equation method to construct more general exact solutions to nonlinear equations. And we obtain the travelling wave solutions involving parameters, which are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions. When the parameters are taken as special values, the method provides not only solitary wave solutions but also periodic waves solutions. The method appears to be easier and more convenient by means of a symbolic computation system. Of course, it is also effective to solve other nonlinear evolution equations in mathematical physics.
Exact solutions for a periodic assembly of bubbles in a Hele-Shaw channel
Vasconcelos, Giovani L
2014-01-01
Exact solutions are reported for a periodic assembly of bubbles steadily co-travelling in a Hele-Shaw channel. The solutions are obtained as conformal mappings from a multiply connected circular domain in an auxiliary complex plane to the flow region in a period cell. The conformal mappings are constructed using the generalized Schwarz-Christoffel formula for multiply connected polygonal domains in terms of products of Schottky-Klein prime functions. It is shown that previous solutions for multiple steady bubbles in a Hele-Shaw cell are all particular cases of the solutions described herein. Examples of specific bubble configurations are discussed.