WorldWideScience

Sample records for ex-vessel debris coolability

  1. Analyses on ex-vessel debris formation and coolability in SARNET frame

    International Nuclear Information System (INIS)

    Pohlner, G.; Buck, M.; Meignen, R.; Kudinov, P.; Ma, W.; Polidoro, F.; Takasuo, E.

    2014-01-01

    Highlights: • Melt outflow varies from dripping melt outflow to molten corium jets of variable size. • Experiments show clear trend of producing particles in size range 2-4 mm. • Code calculations show complete solidification of particles, yielding formation of fragmented debris beds. • Limits of debris bed cooling and coolability margins are analysed. - Abstract: The major aim of work in the SARNET2 European project on ex-vessel debris formation and coolability was to get an overall perspective on coolability of melt released from a failed reactor pressure vessel and falling into a water-filled cavity. Especially, accident management concepts for BWRs, dealing with deep water pools below the reactor vessel, are addressed, but also shallower pools in existing PWRs, with questions about partial cooling and time delay of molten corium concrete interaction. The subject can be divided into three main topics: (i) Debris bed formation by breakup of melt, (ii) Coolability of debris and (iii) Coupled treatment of the processes. Accompanied by joint collaborations of the partners, the performed work comprises theoretical, experimental and modelling activities. Theoretical work was done by KTH on the melt outflow conditions from a RPV and on the quantification of the probability of yielding a non-coolable ex-vessel bed by use of probabilistic assessment. IKE introduced a theoretical concept to improve debris bed coolability. A large amount of experimental work was done by partners (KTH, VTT, IKE) on the coolability of debris beds using different bed geometries, particles, heating methods and water feeds, yielding a valuable base for code validation. Modelling work was mainly done by IKE, IRSN, RSE and VTT concerning jet breakup and/or debris bed formation and cooling in 2D and 3D geometries. A benchmark for the DEFOR-A experiment of KTH was performed. Important progress was reached for several tasks and aspects and important insights are given, enabling to focus the

  2. Ex-vessel debris coolability test during severe accident (COTELS project)

    International Nuclear Information System (INIS)

    Ogasawara, H.

    1998-01-01

    The objectives of the COTELS project are for severe accident management, to investigate phenomena of ex-vessel fuel-coolant interactions after reactor pressure vessel (RPV) failure and to investigate molten core-concrete interaction when coolant is injected onto molten debris. The project has being cooperated with the National Nuclear Center in the Republic of Kazakstan from 1994 to 1997 under the sponsorship of the Ministry of International Trade and Industry of Japan. Total programs are composed with the following tests. (1) Test 01 was meant to observe flow mode of falling debris. (2) Test A was meant to investigate phenomena of fuel-coolant interactions when molten debris falls into a coolant pool. (3) Test B/C investigated fuel coolant interactions and molten core-concrete interaction when coolant is injected onto debris. Detail data evaluation is underway. The following results were thus for obtained: (1) It was confirmed in Test 01 series that about 60 kg of UO 2 mixture was completely melted and fallen as a continuous jet. (2) No energetic fuel-coolant interaction was observed both in Test A and B series. (3) Debris in which decay heat was simulated was cooled by water injection in Test C series

  3. PIV Visualization of Bubble Induced Flow Circulation in 2-D Rectangular Pool for Ex-Vessel Debris Bed Coolability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Teayang; Kim, Eunho; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    The previous research works demonstrated the debris bed formation on the flooded cavity floor in experiments. Even in the cases the core melt is once solidified, the debris bed can be re-melted due to the decay heat. If the debris bed is not cooled enough by the coolant, the re-melted debris bed will react with the concrete base mat. This situation is called the molten core-concrete interaction (MCCI) which threatens the integrity of the containment by generated gases which pressurize the containment. Therefore securing the long term coolability of the debris bed in the cavity is crucial. According to the previous research works, the natural convection driven by the rising bubbles affects the coolability and the formation of the debris bed. Therefore, clarification of the natural convection characteristics in and around the debris bed is important for evaluation of the coolability of the debris bed. In this study, two-phase flow around the debris bed in a 2D slice geometry is visualized by PIV method to obtain the velocity map of the flow. The DAVINCI-PIV was developed to investigate the flow around the debris bed. In order to simulate the boiling phenomena induced by the decay heat of the debris bed, the air was injected separately by the air chamber system which consists of the 14 air-flowmeters. The circulation flow developed by the rising bubbles was visualized by PIV method.

  4. Ex-vessel corium coolability sensitivity study with the CORQUENCH code

    International Nuclear Information System (INIS)

    Robb, Kevin; Corradini, Michael

    2009-01-01

    An unresolved safety issue for light water reactor beyond design basis accidents is the coolability and stabilization of ex-vessel core melt debris by top flooding. Several experimental programs, including the OECD MACE, MCCI-1, and the current MCCI-2 program, have investigated core-concrete interactions and debris cooling of ex-vessel core melts. As part of the OECD programs, the CORQUENCH computer model was developed based on phenomena identified from the experiments. Predictions by CORQUENCH have previously been compared against experiments and have also been extrapolated to reactor scale. The current study applied statistical techniques to investigate the importance of initial system parameters and cooling phenomena in CORQUENCH 3.01 on the accident progression of ex-vessel core melts. The purpose of this sensitivity study is to identify parameters that are of major importance, any code peculiarities over the range of inputs, and where modeling improvements may produce the most gain in prediction accuracy. The sensitivity studies were carried out over a range of input conditions, in 1-D and 2-D geometries, and for two concrete compositions. In terms of initial system parameters, the melt height had the most importance on concrete ablation and melt coolability. With respect to cooling phenomena, the amount of melt entrainment through the crust had the most importance on concrete ablation and melt coolability. (author)

  5. Status Report on Ex-Vessel Coolability and Water Management

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Robb, K. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-15

    Specific to BWR plants, current accident management guidance calls for flooding the drywell to a level of approximately 1.2 m (4 feet) above the drywell floor once vessel breach has been determined. While this action can help to submerge ex-vessel core debris, it can also result in flooding the wetwell and thereby rendering the wetwell vent path unavailable. An alternate strategy is being developed in the industry guidance for responding to the severe accident capable vent Order, EA-13-109. The alternate strategy being proposed would throttle the flooding rate to achieve a stable wetwell water level while preserving the wetwell vent path. The overall objective of this work is to upgrade existing analytical tools (i.e. MELTSPREAD and CORQUENCH - which have been used as part of the DOE-sponsored Fukushima accident analyses) in order to provide flexible, analytically capable, and validated models to support the development of water throttling strategies for BWRs that are aimed at keeping ex-vessel core debris covered with water while preserving the wetwell vent path.

  6. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Dinh, T.N. [Royal Institute of Technology (Sweden)

    2007-04-15

    The report summarizes activities conducted at the Division of Nuclear Power Safety, Royal Institute of Technology-Sweden (KTH-NPS) within the ExCoolSe project during the year 2005, which is a transition year for the KTH-NPS program. The ExCoolSe project supported by NKS contributes to the severe accident research at KTH-NPS concurrently supported by APRI, HSK and EU SARNET. The main objective in ExCoolSe project is to scrutinize research on risk-significant safety issues related to severe accident management (SAM) strategy adopted for Nordic BWR plants, namely the Ex-vessel Coolability and Energetic Steam explosion. The work aims to pave way toward building a tangible research framework to tackle these long-standing safety issues. Chapter 1 describes the project objectives and work description. Chapter 2 provides a critical assessment of research results obtained from several past programs at KTH. This includes review of key data, insights and implications from POMECO (Porous Media Coolability) program, COMECO (Corium Melt Coolability) program, SIMECO (Study of In-Vessel Melt Coolability) program, and MISTEE (Micro-Interactions in Steam Explosion Experiments) program. Chapter 3 discusses the rationale of the new research program focusing on the SAM issue resolution. The program emphasizes identification and qualification of physics-based limiting mechanisms for both in-vessel phenomena (melt progression and debris coolability in the lower head, vessel failure), and ex-vessel phenomena. Chapter 4 introduces research results from the newly established DEFOR (Debris Formation) program and the ongoing MISTEE program. The focus of DEFOR is fulfill an apparent gap in the contemporary knowledge of severe accidents, namely mechanisms which govern the debris bed formation and bed characteristics. The later control the debris bed coolability. In the MISTEE program, methods for image synchronization and data processing were developed and tested, which enable processing of

  7. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors

    International Nuclear Information System (INIS)

    Park, H.S.; Dinh, T.N.

    2007-04-01

    The report summarizes activities conducted at the Division of Nuclear Power Safety, Royal Institute of Technology-Sweden (KTH-NPS) within the ExCoolSe project during the year 2005, which is a transition year for the KTH-NPS program. The ExCoolSe project supported by NKS contributes to the severe accident research at KTH-NPS concurrently supported by APRI, HSK and EU SARNET. The main objective in ExCoolSe project is to scrutinize research on risk-significant safety issues related to severe accident management (SAM) strategy adopted for Nordic BWR plants, namely the Ex-vessel Coolability and Energetic Steam explosion. The work aims to pave way toward building a tangible research framework to tackle these long-standing safety issues. Chapter 1 describes the project objectives and work description. Chapter 2 provides a critical assessment of research results obtained from several past programs at KTH. This includes review of key data, insights and implications from POMECO (Porous Media Coolability) program, COMECO (Corium Melt Coolability) program, SIMECO (Study of In-Vessel Melt Coolability) program, and MISTEE (Micro-Interactions in Steam Explosion Experiments) program. Chapter 3 discusses the rationale of the new research program focusing on the SAM issue resolution. The program emphasizes identification and qualification of physics-based limiting mechanisms for both in-vessel phenomena (melt progression and debris coolability in the lower head, vessel failure), and ex-vessel phenomena. Chapter 4 introduces research results from the newly established DEFOR (Debris Formation) program and the ongoing MISTEE program. The focus of DEFOR is fulfill an apparent gap in the contemporary knowledge of severe accidents, namely mechanisms which govern the debris bed formation and bed characteristics. The later control the debris bed coolability. In the MISTEE program, methods for image synchronization and data processing were developed and tested, which enable processing of

  8. Multiphase flow in ex-vessel coolability: development of an innovative concept

    International Nuclear Information System (INIS)

    Corradini, Michael L.

    2006-01-01

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific Advanced Light Water Reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The paper provides the background of past experiments as well as key fundamentals that are needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability

  9. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  10. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  11. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors - EXCOOLSE project report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Nayak, A.K.; Hansson, R.C.; Sehgal, B.R. [Royal Inst. of Technology, Div. of Nuclear Power Safety (Sweden)

    2005-10-01

    Beyond-the-design-basis accidents, i.e. severe accidents, involve melting of the nuclear reactor core and release of radioactivity. Intensive research has been performed for years to evaluate the consequence of the postulated severe accidents. Severe accidents posed, to the reactor researchers, a most interesting and most difficult set of phenomena to understand, and to predict the consequences, for the various scenarios that could be contemplated. The complexity of the interactions, occurring at such high temperatures ({approx} 2500 deg. C), between different materials, which are changing phases and undergoing chemical reactions, is simply indescribable with the accuracy that one may desire. Thus, it is a wise approach to pursue research on SA phenomena until the remaining uncertainty in the predicted consequence, or the residual risk, can be tolerated. In the PRE-DELI-MELT project at NKS, several critical issues on the core melt loadings in the BWR and PWR reactor containments were identified. Many of Nordic nuclear power plants, particularly in boiling water reactors, adopted the Severe Accident Management Strategy (SAMS) which employed the deep subcooled water pool in lower dry-well. The success of this SAMS largely depends on the issues of steam explosions and formation of debris bed and its coolability. From the suggestions of the PRE-DELI-MELT project, a series of research plan was proposed to investigate the remaining issues specifically on the ex-vessel coolability of corium during severe accidents; (a) ex-vessel coolability of the melt or particulate debris, and (b) energetics and debris characteristics of fuel-coolant interactions endangering the integrity of the reactor containments. (au)

  12. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors - EXCOOLSE project report 2004

    International Nuclear Information System (INIS)

    Park, H.S.; Nayak, A.K.; Hansson, R.C.; Sehgal, B.R.

    2005-10-01

    Beyond-the-design-basis accidents, i.e. severe accidents, involve melting of the nuclear reactor core and release of radioactivity. Intensive research has been performed for years to evaluate the consequence of the postulated severe accidents. Severe accidents posed, to the reactor researchers, a most interesting and most difficult set of phenomena to understand, and to predict the consequences, for the various scenarios that could be contemplated. The complexity of the interactions, occurring at such high temperatures (∼ 2500 deg. C), between different materials, which are changing phases and undergoing chemical reactions, is simply indescribable with the accuracy that one may desire. Thus, it is a wise approach to pursue research on SA phenomena until the remaining uncertainty in the predicted consequence, or the residual risk, can be tolerated. In the PRE-DELI-MELT project at NKS, several critical issues on the core melt loadings in the BWR and PWR reactor containments were identified. Many of Nordic nuclear power plants, particularly in boiling water reactors, adopted the Severe Accident Management Strategy (SAMS) which employed the deep subcooled water pool in lower dry-well. The success of this SAMS largely depends on the issues of steam explosions and formation of debris bed and its coolability. From the suggestions of the PRE-DELI-MELT project, a series of research plan was proposed to investigate the remaining issues specifically on the ex-vessel coolability of corium during severe accidents; (a) ex-vessel coolability of the melt or particulate debris, and (b) energetics and debris characteristics of fuel-coolant interactions endangering the integrity of the reactor containments. (au)

  13. Development and application of surrogate model for assessment of ex-vessel debris bed dryout probability - 15157

    International Nuclear Information System (INIS)

    Yakush, S.E.; Lubchenko, N.T.; Kudinov, P.

    2015-01-01

    In this work we consider a water-cooled power reactor severe accident scenario with pressure vessel failure and subsequent release of molten corium. A surrogate model for prediction of dryout heat flux for ex-vessels debris beds of different shapes is developed. Functional form of dryout heat flux dependence on problem parameters is developed by the analysis of coolability problem in non-dimensional variables. It is shown that for a flat debris bed the dryout heat flux can be represented in terms of three 1-dimensional functions for which approximating formulas are found. For two-dimensional debris beds (cylindrical, conical, Gaussian heap, mound-shaped), an additional function taking into account the bed shape geometry is obtained from numerical simulations using DECOSIM code as a full model. With the surrogate model in hand, risk analysis of debris bed coolability is carried out by Monte Carlo sampling of the input parameters within selected ranges, with assumed distribution functions

  14. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun [POSTECH, Daejeon (Korea, Republic of)

    2015-10-15

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  15. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun

    2015-01-01

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  16. State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability

    International Nuclear Information System (INIS)

    Bonnet, Jean-Michel; Cranga, Michel; Vola, Didier; Marchetto, Cathy; Kissane, Martin; ); Robledo, Fernando; Farmer, Mitchel T.; Spengler, Claus; Basu, Sudhamay; Atkhen, Kresna; Fargette, Andre; Fisher, Manfred; Foit, Jerzi; Hotta, Akitoshi; Morita, Akinobu; Journeau, Christophe; Moiseenko, Evgeny; Polidoro, Franco; Zhou, Quan

    2017-01-01

    Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures

  17. Analysis of ex-vessel melt jet breakup and coolability. Part 1: Sensitivity on model parameters and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Hwang, Byoungcheol; Jung, Woo Hyun

    2016-06-15

    Highlights: • Application of JASMINE code to melt jet breakup and coolability in APR1400 condition. • Coolability indexes for quasi steady state breakup and cooling process. • Typical case in complete breakup/solidification, film boiling quench not reached. • Significant impact of water depth and melt jet size; weak impact of model parameters. - Abstract: The breakup of a melt jet falling in a water pool and the coolability of the melt particles produced by such jet breakup are important phenomena in terms of the mitigation of severe accident consequences in light water reactors, because the molten and relocated core material is the primary heat source that governs the accident progression. We applied a modified version of the fuel–coolant interaction simulation code, JASMINE, developed at Japan Atomic Energy Agency (JAEA) to a plant scale simulation of melt jet breakup and cooling assuming an ex-vessel condition in the APR1400, a Korean advanced pressurized water reactor. Also, we examined the sensitivity on seven model parameters and five initial/boundary condition variables. The results showed that the melt cooling performance of a 6 m deep water pool in the reactor cavity is enough for removing the initial melt enthalpy for solidification, for a melt jet of 0.2 m initial diameter. The impacts of the model parameters were relatively weak and that of some of the initial/boundary condition variables, namely the water depth and melt jet diameter, were very strong. The present model indicated that a significant fraction of the melt jet is not broken up and forms a continuous melt pool on the containment floor in cases with a large melt jet diameter, 0.5 m, or a shallow water pool depth, ≤3 m.

  18. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    International Nuclear Information System (INIS)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun; Moriyama, Kiyofumi; Park, Jin Ho

    2016-01-01

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  19. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Moriyama, Kiyofumi; Park, Jin Ho

    2016-03-15

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  20. Application of CAMP code to analysis of debris coolability experiments in ALPHA program

    International Nuclear Information System (INIS)

    Maruyama, Yu; Moriyama, Kiyofumi; Park, Hyun-Sun; Yang, Yanhua; Sugimoto, Jun

    1999-01-01

    An analytical code for thermo-fluid dynamics of a molten debris, CAMP, was applied to the analysis of the ex-vessel and in-vessel debris coolability experiments performed in ALPHA program. The analysis on the ex-vessel debris coolability experiments, where water was added onto a layer of thermite melt, indicated that the upper surface of the melt was remained molten during a period when melt eruptions followed by a mild steam explosion were observed. This might imply that a coarse mixing between the melt and the overlying water could have been formed if a sufficient force was generated at the interface between the two fluids. In the analysis of the in-vessel debris coolability experiments, where an aluminum oxide (Al 2 O 3 ) melt was poured into a water-filled lower head experimental vessel, a temperature increase at the outer surface of the vessel was qualitatively reproduced when a gap was assumed to be at the interface between the solidified Al 2 O 3 and the vessel wall. (author)

  1. Status of the corquench model for calculation of ex-vessel corium coolability by an overlying water layer

    International Nuclear Information System (INIS)

    Farmer, M.T.; Spencer, B.W.

    2000-01-01

    The results of melt attack and coolability experiment (MACE) tests have identified several heat transfer mechanisms which could potentially lead to long term corium coolability. Based on physical observations from these tests, an integrated model of corium quenching (CORQUENCH) behavior is being developed. Aside from modeling of the primary physical processes observed in the tests, considerable effort has also been devoted to modeling of test occurrences which deviate from the behavior expected at reactor scale. In this manner, extrapolation of the models validated against the test data to the reactor case can be done with increased confidence. The integrated model currently addresses early bulk cooling and incipient crust formation heat transfer phases, as well as a follow-on water ingression phase which leads to development of a sustained quench front progressing downwards through the debris. In terms of experiment distortions, the model is also able to mechanistically calculate crust anchoring to the test section sidewalls, as well as the subsequent melt/crust separation phase which arises due to concrete densification upon melting. In this paper, the status of the model development and validation activities are described. In addition, representative calculations for PWR plant conditions are provided in order to illustrate the potential benefits of overlying water on mitigation of the accident sequence. (orig.)

  2. OECD/CSNI Workshop on In-Vessel Core Debris Retention and Coolability - Summary and Conclusions

    International Nuclear Information System (INIS)

    Behbahani, Ali-Reza; Drozd, Andrzej; Kim, Sang-Baik; Micaelli, Jean-Claude; Okkonen, Timo; Sugimoto, Jun; Trambauer, Klaus; Tuomisto, Harri

    1999-01-01

    In the spring of 1994 an OECD Workshop on Large Pool Heat transfer was held in Grenoble. The scope of this workshop was the investigation of (1) molten pool heat transfer, (2) heat transfer to the surrounding water, and (3) the feasibility of in-vessel core debris cooling through external cooling of the vessel. Since this time, experimental test series have been completed (e.g., COPO, ULPU, CORVIS) and new experimental programs (e.g., BALI, SONATA, RASPLAV, debris and gap heat transfer) have been established to consolidate and expand the data base for further model development and to improve the understanding of in-vessel debris retention and coolability in a nuclear power plant. Discussions within the CSNI's PWG-2 and the Task Group on Degraded Core Cooling (TG-DCC) have led to the conclusion that the time was ripe for organizing a new international Workshop with the objectives: - to review the results of experimental research that has been conducted in this area; - to exchange information on the results of member countries experiments and model development on in-vessel core debris retention and coolability; - to discuss areas where additional experimental research is needed in order to provide an adequate data base for analytical model development for core debris retention and coolability. The scope of this workshop was limited to the phenomena connected to in-vessel core debris retention and coolability and did not include steam explosion and fission product issues. The workshop was structured into the following sessions: Key note papers; Experiments and model development; Debris bed heat transfer; Corium properties, molten pool convection and crust formation; Gap formation and gap cooling; Creep behaviour of reactor pressure vessel lower head; Ex-vessel boiling and critical heat flux phenomena; Scaling to reactor severe accident conditions and reactor applications. Compared to the previous workshop held in Grenoble in 1994, large progress has been made in the

  3. Proceedings of the Workshop on in-vessel core debris retention and coolability

    International Nuclear Information System (INIS)

    1999-01-01

    on in-vessel debris coolability through inherent cooling mechanisms, FOREVER experiments on thermal and mechanical behaviour of a reactor pressure vessel during a severe accident, Experimental studies of heat transfer in the slotted channels at the CTF facility, Experimental study on CHF in a hemispherical narrow gap, Experiments on heat removal in a gap between debris crust and RPV wall), sub-session 4 (Creep behaviour of reactor pressure vessel lower head: Experimental investigation of creep behaviour of RPV lower head, Lower head thermo-mechanical behaviour, Pressure vessel creep rupture analysis, Parametric studies on creep behavior of a reactor pressure vessel lower head, Study of RPV materials with respect to mechanical behaviour in case of complete core fusion), sub-session 5 (Ex-vessel boiling and critical heat flux phenomena: Natural convection boiling on the outer surface of a hemispherical vessel surrounded by a thermal insulation structure, Reactor vessel external cooling for corium retention SULTAN experimental program and modelling with CATHARE code), and session 3 (Scaling to reactor severe accident conditions and reactor applications: Potential for in-vessel retention through ex-vessel flooding, In-vessel core melt retention by RPV external cooling for high power PWR MAAP4 analysis on a LBLOCA scenario without SI, Coupled thermal-hydraulic analyses of the molten pool and pressure vessel during a severe accident, Studies on core melt behaviour in a BWR pressure vessel lower head, Analysis of reactor lower head penetration tube failure, Thermal hydraulic and mechanical aspects of in-vessel retention of core debris)

  4. Investigation of debris bed formation, spreading and coolability

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  5. Investigation of debris bed formation, spreading and coolability

    International Nuclear Information System (INIS)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A.

    2013-08-01

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  6. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farmer, Mitchell [Argonne National Lab. (ANL), Argonne, IL (United States); Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.

  7. Two-Phase Flow Effect on the Ex-Vessel Corium Debris Bed Formation in Severe Accident

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Kim, Moo Hwan; Park, Hyun Sun; Ma, Weimin; Bechta, Sevostian V.

    2014-01-01

    In Korean IVR-ERVC(In-Vessel Retention of molten corium through External Reactor Vessel Cooling) strategy, if the situation degenerates into insufficient external vessel cooling, the molten core mixture can directly erupt into the flooded cavity pool from the weakest point of the vessel. Then, FCI (molten Fuel Coolant Interaction) will fragment the corium jet into small particulates settling down to make porous debris bed on the cavity basemat. To secure the containment integrity against the MCCI (Molten Core - Concrete Interaction), cooling of the heat generating porous corium debris bed is essential and it depends on the characteristics of the bed itself. For the characteristics of corium debris bed, many previous experimental studies with simulant melts reported the heap-like shape mostly. There were also following experiments to develop the correlation for the heap-like shaped debris bed. However, recent studies started to consider the effect of the decay heat and reported some noticeable results with the two-phase flow effect on the debris bed formation. The Kyushu University and JAEA group reported the experimental studies on the 'self-leveling' effect which is the flattening effect of the particulate bed by the inside gas generation. The DECOSIM simulation study of RIT (Royal Institute of Technology, Sweden) with Russian researchers showed the 'large cavity pool convection' effect, which is driven by the up-rising gas bubble flow from the pre-settled debris bed, on the particle settling trajectories and ultimately final bed shape. The objective of this study is verification of the two-phase flow effect on the ex-vessel corium debris bed formation in the severe accident. From the analysis on the test movie and resultant particle beds, the two-phase flow effect on the debris bed formation, which has been reported in the previous studies, was verified and the additional findings were also suggested. For the first, in quiescent pool the

  8. Experimental results on the coolability of a debris bed with multidimensional cooling effects

    International Nuclear Information System (INIS)

    Rashid, M.; Kulenovic, R.; Laurien, E.; Nayak, A.K.

    2011-01-01

    Research highlights: ► Performing of dryout experiments with a polydispersed bed for top- and bottom-flooding. ► Study of influence of different down comer configurations on the coolability of debris bed. ► Measurement of temperature profiles, pressure drops and determination of dryout heat flux. ► Observation of noticeable increase in coolability of debris bed with the use of down comer is observed. - Abstract: Within the reactor safety research, the removal of decay heat from a debris bed (formed from corium and residual water) is of great importance. In order to investigate experimentally the long term coolability of debris beds, the scaled test facility “DEBRIS” (Fig. 1) has been built at IKE. A large number of experiments had been carried out to investigate the coolability limits for different bed configurations (). Analyses based on one-dimensional configurations underestimate the coolability in realistic multidimensional configurations, where lateral water access and water inflow via bottom regions are favoured. Following the experiments with top- and bottom-flooding flow conditions this paper presents experimental results of boiling and dryout tests at different system pressures based on top- and bottom-flooding via a down comer configuration. A down comer with an internal diameter of 10 mm has been installed at the centre of the debris bed. The debris bed is built up in a cylindrical crucible with an inner diameter of 125 mm. The bed of height 640 mm is composed of polydispersed particles with particle diameters 2, 3 and 6 mm. Since the long term coolability of such particle bed is limited by the availability of coolant inside the bed and not by heat transfer limitations from the particles to the coolant, the bottom inflow of water improves the coolability of the debris bed and an increase of the dryout heat flux can be observed. With increasing system pressure, the coolability limits are enhanced (increased dryout heat flux).

  9. Ex-vessel molten core debris interactions at CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M J; Oyinloye, J O; Chambers, I [Electrowatt Consulting Engineers and Scientists, Warrington, Cheshire (United Kingdom); Scott, C K [Atlantic Nuclear Services, Fredericton, NB (Canada); Omar, A M [Atomic Energy Control Board, Ottawa, ON (Canada)

    1991-12-31

    Currently, the Atomic Energy Control Board (AECB) of Canada is sponsoring a project with a long term objective of obtaining an evaluation, independent of the industry, of the consequences to the public and the environment of postulated severe accidents at a Canadian nuclear power plant. Phase 1 of this project is a scoping study conducted to establish the relative consequences of a number of postulated event sequences. The studies in this paper model a multi-unit CANDU reactor at which pre-defined initiating events and their consequences could lead to severe core damage and relocation of the core debris onto the floor of the concrete reactor vault. Depending on the accident sequence assumptions made, an overlying pool of water may or may not be present. The US-NRC computer code CORCON Mod 2.0 was used to calculate the behaviour of the core material interacting with the concrete. The code calculates the decomposition of concrete by the molten core, and also the gases produced, which are released into the containment. The challenges to containment integrity are described, from the viewpoint of foundation decomposition and failure due to overpressure. The containment thermal-hydraulic behaviour is examined using an in-house computer code (CREM) written for this purpose. It is found that the containment envelope, in the absence of mitigating operator actions or design safety features, even for a case involving early core disassembly with the vacuum building unavailable, is unlikely to be failed within the 48 hours time frame examined. The paper identifies several areas for improvement in the models for future studies of core-concrete interactions for CANDU reactor plants. (author). 8 refs., 1 tab., 5 figs.

  10. Ex-vessel molten core debris interactions at CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Lewis, M.J.; Oyinloye, J.O.; Chambers, I.; Scott, C.K.; Omar, A.M.

    1990-01-01

    Currently, the Atomic Energy Control Board (AECB) of Canada is sponsoring a project with a long term objective of obtaining an evaluation, independent of the industry, of the consequences to the public and the environment of postulated severe accidents at a Canadian nuclear power plant. Phase 1 of this project is a scoping study conducted to establish the relative consequences of a number of postulated event sequences. The studies in this paper model a multi-unit CANDU reactor at which pre-defined initiating events and their consequences could lead to severe core damage and relocation of the core debris onto the floor of the concrete reactor vault. Depending on the accident sequence assumptions made, an overlying pool of water may or may not be present. The US-NRC computer code CORCON Mod 2.0 was used to calculate the behaviour of the core material interacting with the concrete. The code calculates the decomposition of concrete by the molten core, and also the gases produced, which are released into the containment. The challenges to containment integrity are described, from the viewpoint of foundation decomposition and failure due to overpressure. The containment thermal-hydraulic behaviour is examined using an in-house computer code (CREM) written for this purpose. It is found that the containment envelope, in the absence of mitigating operator actions or design safety features, even for a case involving early core disassembly with the vacuum building unavailable, is unlikely to be failed within the 48 hours time frame examined. The paper identifies several areas for improvement in the models for future studies of core-concrete interactions for CANDU reactor plants. (author). 8 refs., 1 tab., 5 figs

  11. The effect of self-leveling on debris bed coolability under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Basso, S.; Konovalenko, A. [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, D5, Stockholm 106 91 (Sweden); Yakush, S.E. [Institute for Problems in Mechanics of the Russian Academy of Sciences, Ave. Vernadskogo 101 Bldg 1, Moscow 119526 (Russian Federation); Kudinov, P. [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, D5, Stockholm 106 91 (Sweden)

    2016-08-15

    Highlights: • A model for coolability of a self-leveling, variable-shape debris bed is proposed. • Sensitivity analysis is performed to screen out the less influential input parameters. • A small fraction of scenarios has initially a non-coolable debris bed configuration. • The fraction of non-coolable scenarios decreases with time due to self-leveling. - Abstract: Nordic-type boiling water reactors employ melt fragmentation, quenching, and long term cooling of the debris bed in a deep pool of water under the reactor vessel as a severe accident (SA) mitigation strategy. The height and shape of the bed are among the most important factors that determine if decay heat can be removed from the porous debris bed by natural circulation of water. The debris bed geometry depends on its formation process (melt release, fragmentation, sedimentation and settlement on the containment basemat), but it also changes with time afterwards, due to particle redistribution promoted by coolant flow (self-leveling). The ultimate goal of this work is to develop an approach to the assessment of the probability that debris in such a variable-shape bed can reach re-melting (which means failure of SA mitigation strategy), i.e. the time necessary for the slumping debris bed to reach a coolable configuration is larger than the time necessary for the debris to reach the re-melting temperature. For this purpose, previously developed models for particulate debris spreading by self-leveling and debris bed dryout are combined to assess the time necessary to reach a coolable state and evaluate its uncertainty. Sensitivity analysis was performed to screen out less important input parameters, after which Monte Carlo simulation was carried out in order to collect statistical characteristics of the coolability time. The obtained results suggest that, given the parameters ranges typical of Nordic BWRs, only a small fraction of debris beds configurations exhibits the occurrence of dryout. Of the

  12. The results of the CCI-3 reactor material experiment investigating 2-D core-concrete interaction and debris coolability with a siliceous concrete crucible

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2006-01-01

    The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program is conducting reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants and provide the technical basis for better containment designs for future plants. Despite years of international research, there are remaining uncertainties in the models that evaluate the lateral vs. axial power split during core-concrete interaction because of a lack of truly two-dimensional experiment data. As a result, there are differences in the 2-D cavity erosion predicted by codes such as MELCOR, WECHSL, and COSACO. In the continuing effort to bridge this data gap, the third in a series of large scale Core-Concrete Interaction experiments (CCI-3) has been conducted as part of the MCCI program. This test involved the interaction of a 375 kg core-oxide melt within a two-dimensional siliceous concrete crucible. The initial phase of the test was conducted under dry conditions. After a predetermined ablation depth was reached, the cavity was flooded to obtain data on the coolability of a core melt after core-concrete interaction has progressed for some time. This paper provides a summary description of the test facility and an overview of test results

  13. Coolability of oxidized particulate debris bed accumulated in horizontal narrow gaps

    International Nuclear Information System (INIS)

    Arai, Y.; Sugiyama, K.; Narabayashi, T.

    2007-01-01

    When LOCA occurs in a nuclear reactor system, the coolability of the core would be kept as reported at a series of presentations in ICONE14. Therefore the probability of the core meltdown is negligible small. However, from the view point of defense in depth, it is necessary to be sure that the coolability of the bottom of reactor pressure vessel (RPV) is maintained even if a part of the core should melt and a substantial amount of debris should be deposited on the lower plenum. We carried out an experimental study in order to observe the coolability of particulate core-metal debris bed with 12 mm thickness accompanied with rapid heat generation because of oxidization, which was reported at ICONE14. The coolability was assured by a small amount of coolant supply because of high capillary force of oxidized fine particulate debris produced. In the present study, we examined the coolability of particulate debris bed deposited in narrower gap of 1 mm or 5 mm that coolant supply is hard. The particulate debris beds were piled up on the stainless steel sheet with 0.1 mm thickness, which was used to measure the bottom temperatures of particulate debris bed by using a thermo-video camera. We set up a heat supply section with heat input of 2.1 kW, which simulates the hard debris bed deposited on the particulate debris bed as reported for the TMI-2 accident. We measured the temperatures of the bottom surface of the heat supply section and the heat fluxes released into debris bed as well as the temperatures at the bottom of debris bed on the stainless steel sheet. It is found that when only the upper surface of particulate debris bed is in the film boiling, capillary force causes coolant supply to the particulate debris bed. Therefore, in the condition of thicker gap with small particulate debris, coolability of debris bed is improved. We find out that smaller particulate debris is moved by vapor movement. As a result, the area that high capillary force is caused because of

  14. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core Concrete Interaction

    International Nuclear Information System (INIS)

    Robb, Kevin R; Farmer, Mitchell; Francis, Matthew W

    2015-01-01

    Lower head failure and corium concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH.

  15. Experimental investigation of multidimensional cooling effects on the coolability of a debris bed

    International Nuclear Information System (INIS)

    Rashidi, M.; Kulenovici, R.; Laurieni, E.

    2011-01-01

    During a severe accident in a light water reactor, the core can melt and be relocated to the lower plenum of the reactor pressure vessel. There it can form a particulate debris bed due to the possible presence of water. Within the reactor safety research, the removal of decay heat from a debris bed (formed from corium and residual water) is of great importance. In order to investigate experimentally the long-term coolability of debris beds, the down-scaled non nuclear test facility DEBRIS has been established at IKE. The major objectives of the experimental investigations at this test facility are the determination of local pressure drops for steady state boiling to check friction laws, the determination of dryout heat fluxes under various conditions for validation of numerical models, and the analysis of quenching processes of dry hot debris beds. A large number of 1D-experiments were carried out to investigate the coolability limits for different bed configurations at various thermohydraulic conditions, and to validate numerical models which can be used in reactor safety studies. Analyses based on one-dimensional configurations underestimate the coolability in realistic multidimensional configurations, where lateral water access and water inflow via bottom regions are favored. This paper presents 2D experimental results, based on various kinds of water inflow conditions into the bed, boiling and dryout tests with different bed configurations and different system pressures. Preliminary results show that the system pressure has no significant effect on the fundamental shape of the pressure gradient inside the bed, whereas with increasing system pressure the coolability limits are increased

  16. The Results of the CCI-3 Reactor Material Experiment Investigating 2-D Core-Concrete Interaction and Debris Coolability with a Siliceous Concrete Crucible

    International Nuclear Information System (INIS)

    Farmer, M.T.; Lomperski, S.; Basu, S.

    2006-01-01

    The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program conducted reactor materials experiments and associated analysis to achieve the following two objectives: 1) resolve the ex-vessel debris coolability issue, and 2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs of future plants. With respect to the second objective, there are remaining uncertainties in the models that evaluate the lateral vs. axial power split during core-concrete interaction because of a lack of truly two-dimensional experiment data. As a result, there are differences in the 2-D cavity erosion profiles predicted by codes such as WECHSL, COSACO, TOLBIAC, MEDICIS, and MELCOR. In the continuing effort to bridge this data gap, the third in a series of large scale Core-Concrete Interaction experiments (CCI-3) has been conducted as part of the MCCI program. This test investigated the long-term interaction of a 375 kg core-oxide melt within a two-dimensional siliceous concrete crucible. The initial phase of the test was conducted under dry conditions. After a predetermined time interval, the cavity was flooded with water to obtain data on the coolability of a core melt after core-concrete interaction has progressed for some time. This paper provides a description of the facility and an overview of results from this test. (authors)

  17. Modeling for evaluation of debris coolability in lower plenum of reactor pressure vessel

    International Nuclear Information System (INIS)

    Maruyama, Yu; Moriyama, Kiyofumi; Nakamura, Hideo; Hirano, Masashi

    2003-01-01

    Effectiveness of debris cooling by water that fills a gap between the debris and the lower head wall was estimated through steady calculations in reactor scale. In those calculations, the maximum coolable debris depth was assessed as a function of gap width with combination of correlations for critical heat flux and turbulent natural convection of a volumetrically heated pool. The results indicated that the gap with a width of 1 to 2 mm was capable of cooling the debris under the conditions of the TMI-2 accident, and that a significantly larger gap width was needed to retain a larger amount of debris within the lower plenum. Transient models on gap growth and water penetration into the gap were developed and incorporated into CAMP code along with turbulent natural convection model developed by Yin, Nagano and Tsuji, categorized in low Reynolds number type two-equation model. The validation of the turbulent model was made with the UCLA experiment on natural convection of a volumetrically heated pool. It was confirmed that CAMP code predicted well the distribution of local heat transfer coefficients along the vessel inner surface. The gap cooling model was validated by analyzing the in-vessel debris coolability experiments at JAERI, where molten Al 2 O 3 was poured into a water-filled hemispherical vessel. The temperature history measured on the vessel outer surface was satisfactorily reproduced by CAMP code. (author)

  18. Investigation of the coolability of a continuous mass of relocated debris to a water-filled lower plenum. Technical report

    International Nuclear Information System (INIS)

    Rempe, J.L.; Wolf, J.R.; Chavez, S.A.; Condie, K.G.; Hagrman, D.L.; Carmack, W.J.

    1994-09-01

    This report documents work performed to support the development of an analytical and experimental program to investigate the coolability of a continuous mass of debris that relocates to a water-filled lower plenum. The objective of this program is to provide an adequate data base for developing and validating a model to predict the coolability of a continuous mass of debris relocating to a water-filled lower plenum. The model must address higher pressure scenarios, such as the TMI-2 accident, and lower pressure scenarios, which recent calculations indicate are more likely for most operating LWR plants. The model must also address a range of possible debris compositions

  19. Experimental investigation of coolability behaviour of irregularly shaped particulate debris bed

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Rashid, M.; Kulenovic, R.; Nayak, A.K.

    2010-01-01

    In case of a severe nuclear reactor accident, the core can melt and form a particulate debris bed in the lower plenum of the reactor pressure vessel (RPV). Due to the decay heat, the particle bed, if not cooled properly, can cause failure of the RPV. In order to avoid further propagation of the accident, complete coolability of the debris bed is necessary. For that, understanding of various phenomena taking place during the quenching is important. In the frame of the reactor safety research, fundamental experiments on the coolability of debris beds are carried out at IKE with the test facility 'DEBRIS'. In the present paper, the boiling and dry-out experimental results on a particle bed with irregularly shaped particles mixed with stainless steel balls have been reported. The pressure drops and dry-out heat fluxes of the irregular-particle bed are very similar to those for the single-sized 3 mm spheres bed, despite the fact that the irregular-particle bed is composed of particles with equivalent diameters ranging from 2 to 10 mm. Under top-flooding conditions, the pressure gradients are all smaller than the hydrostatic pressure gradient of water, indicating an important role of the counter-current interfacial drag force. For bottom-flooding with a liquid inflow velocity higher than about 2.7 mm/s, the pressure gradient generally increases consistently with the vapour velocity and the fluid-particle drag becomes important. The system pressures (1 and 3 bar) have negligible effects on qualitative behaviour of the pressure gradients. The coolability of debris beds is mainly limited by the counter-current flooding limit (CCFL) even under bottom-flooding conditions with low flow rates. The system pressure and the flow rate are found to have a distinct effect on the dry-out heat flux. Different classical models have been used to predict the pressure drop characteristics and the dry-out heat flux (DHF). Comparisons are made among the models and experimental results for

  20. The MELTSPREAD Code for Modeling of Ex-Vessel Core Debris Spreading Behavior, Code Manual – Version3-beta

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    MELTSPREAD3 is a transient one-dimensional computer code that has been developed to predict the gravity-driven flow and freezing behavior of molten reactor core materials (corium) in containment geometries. Predictions can be made for corium flowing across surfaces under either dry or wet cavity conditions. The spreading surfaces that can be selected are steel, concrete, a user-specified material (e.g., a ceramic), or an arbitrary combination thereof. The corium can have a wide range of compositions of reactor core materials that includes distinct oxide phases (predominantly Zr, and steel oxides) plus metallic phases (predominantly Zr and steel). The code requires input that describes the containment geometry, melt “pour” conditions, and cavity atmospheric conditions (i.e., pressure, temperature, and cavity flooding information). For cases in which the cavity contains a preexisting water layer at the time of RPV failure, melt jet breakup and particle bed formation can be calculated mechanistically given the time-dependent melt pour conditions (input data) as well as the heatup and boiloff of water in the melt impingement zone (calculated). For core debris impacting either the containment floor or previously spread material, the code calculates the transient hydrodynamics and heat transfer which determine the spreading and freezing behavior of the melt. The code predicts conditions at the end of the spreading stage, including melt relocation distance, depth and material composition profiles, substrate ablation profile, and wall heatup. Code output can be used as input to other models such as CORQUENCH that evaluate long term core-concrete interaction behavior following the transient spreading stage. MELTSPREAD3 was originally developed to investigate BWR Mark I liner vulnerability, but has been substantially upgraded and applied to other reactor designs (e.g., the EPR), and more recently to the plant accidents at Fukushima Daiichi. The most recent round of

  1. Coolability of a 3D homogeneous debris bed, experimental and numerical investigations

    International Nuclear Information System (INIS)

    Atkhen, K.; Berthoud, G.

    2001-01-01

    Within the framework of nuclear safety analysis, we present here experimental and numerical results in the field of debris bed coolability. Experimental data are provided by the SILFIDE 3D experimental facility in which the debris bed is heated by induction, at Electricite de France (EDF). Numerical computations are obtained with MC3D-REPO which is a 3-phase and 3D code developed by the Commissariat a l'Energie Atomique (CEA). The uniform debris bed consists of 2 and 3,17 mm diameter steel beads contained in a 50 cm x 60 cm x 10 cm vessel. Water is used as a coolant and can be introduced either by the top or the bottom of the bed at a determined temperature. Due to heterogeneous power distribution within the bed, two definitions for the critical heat flux are proposed: the classical mean value and the local flux (much higher). Even in the first case, the measured dryout heat flux is higher than the Lipinsky 1-D flux. Temperature curve analyses show that the dryout phenomenon is very local, therefore one should be careful about the right flux definition to use. As the injected power is being increased stepwise, steady temperature stages above saturation temperature before dryout can be observed. A discussion is proposed. For some very high values of the induction power, some spheres melted together, leading to a bigger non-porous region. Even if the local temperature went over 1300 C, the bed was still coolable and the critical heat flux value was not impacted. Some parametric studies led to the following conclusions: bottom coolant injection leads to a twice time higher critical flux than by top injection, the influence of the height of the water pool above debris bed is negligible, a sub-cooled liquid injection has no influence on the coolability. Fluidization of surface particles is also discussed. The MC3D-REPO model assumes a thermal equilibrium between the three phases, which gives results in agreement with experiments until dryout occurs. (author)

  2. Experimental study on coolability of particulate core-metal debris bed with oxidization, (2). Fragmentation and enhanced heat transfer in zircaloy debris bed

    International Nuclear Information System (INIS)

    Su, Guanghui; Sugiyama, Ken-ichiro; Aoki, Hiroomi; Kimura, Iichi

    2006-01-01

    The oxidization and coolability characteristics of the particulate Zircaloy debris bed, which is deposited under the hard debris and through which first vapor penetrates and then water penetrates, are studied in the present paper. In the vapor penetration experiments, it is found that Zircaloy debris particles are effectively broken into small pieces after making thick oxidized layer with deep clacks by rapid oxidization under the condition that vapor with 20 cm/s penetrates for 30 to 70 min at an initial debris bed temperature of 1,030degC. It is also confirmed in the water penetration experiments that the oxidized particle debris bed has potentially of high coolability when water penetrates through the fully oxidized particle bed because of a high capillary force originating from those particles with deep cracks on their surfaces. Based on the present study, a new scenario for the appearance and disappearance of the hot spot in the TMI-2 accident is possible. The particulate core-metal core-metal debris bed is first heated up by rapid oxidization with heat generation when vapor can penetrate through the debris bed with porosities. This corresponds to the appearance of the hot spot. The resultant oxidized particulate debris bed causes a high coolability due to its high capillary force when the water can touch the debris bed at wet condition. This corresponds to the disappearance of the hot spot. (author)

  3. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    International Nuclear Information System (INIS)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha

    2001-03-01

    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary

  4. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha

    2001-03-01

    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary.

  5. Improvement and evaluation of debris coolability analysis module in severe accident analysis code SAMPSON using LIVE experiment

    International Nuclear Information System (INIS)

    Wei, Hongyang; Erkan, Nejdet; Okamoto, Koji; Gaus-Liu, Xiaoyang; Miassoedov, Alexei

    2017-01-01

    Highlights: • Debris coolability analysis module in SAMPSON is validated. • Model for heat transfer between melt pool and pressure vessel wall is modified. • Modified debris coolability analysis module is found to give reasonable results. - Abstract: The purpose of this work is to validate the debris coolability analysis (DCA) module in the severe accident analysis code SAMPSON by simulating the first steady stage of the LIVE-L4 test. The DCA module is used for debris cooling in the lower plenum and for predicting the safety margin of present reactor vessels during a severe accident. In the DCA module, the spreading and cooling of molten debris, gap cooling, heating of a three-dimensional reactor vessel, and natural convection heat transfer are all considered. The LIVE experiment is designed to investigate the formation and stability of melt pools in a reactor pressure vessel (RPV). By comparing the simulation results and experimental data in terms of the average melt pool temperature and the heat flux along the vessel wall, a bug is found in the code and the model for the heat transfer between the melt pool and RPV wall is modified. Based on the Asfia–Dhir and Jahn–Reineke correlations, the modified version of the DCA module is found to give reasonable results for the average melt pool temperature, crust thickness in the steady state, and crust growth rate.

  6. Quantification of the ex-vessel severe accident risks for the Swedish boiling water reactors. A scoping study performed for the APRI project

    International Nuclear Information System (INIS)

    Okkonen, T.; Dinh, T.N.; Bui, V.A.; Sehgal, B.R.

    1995-07-01

    Results of a scoping study to quantify the ex-vessel severe accident risks for the Swedish BWRs are reported. The study considers that a pool of water is established in the containment prior to vessel failure, as prescribed by the accident management scheme for the newer Swedish BWRs. The integrated methodology developed and employed combines probabilistic and deterministic treatment of the various melt-structure-water interaction processes occurring in sequence. The potential steam explosion, and the melt attack on the containment basemat, are treated with enveloping analyses. Uncertain parameters in the models and the initial conditions are treated with Monte Carlo simulations. Independent models are developed for melt coolability and possible attack on the concrete basemat. It is found that, with current models, the melt discharge scenarios, in which a large amount of accumulated melt may be released from the vessel, could subject the containment to large steam explosion loads. However, the uncertainties are so large that no definite conclusion can be drawn. The assessment of ex-vessel core debris coolability is disturbed by similar phenomenological uncertainties. Presently, coolability of the core debris can not be demonstrated. 133 refs

  7. Quantification of the ex-vessel severe accident risks for the Swedish boiling water reactors. A scoping study performed for the APRI project

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T; Dinh, T N; Bui, V A; Sehgal, B R [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Systems Technology

    1995-07-01

    Results of a scoping study to quantify the ex-vessel severe accident risks for the Swedish BWRs are reported. The study considers that a pool of water is established in the containment prior to vessel failure, as prescribed by the accident management scheme for the newer Swedish BWRs. The integrated methodology developed and employed combines probabilistic and deterministic treatment of the various melt-structure-water interaction processes occurring in sequence. The potential steam explosion, and the melt attack on the containment basemat, are treated with enveloping analyses. Uncertain parameters in the models and the initial conditions are treated with Monte Carlo simulations. Independent models are developed for melt coolability and possible attack on the concrete basemat. It is found that, with current models, the melt discharge scenarios, in which a large amount of accumulated melt may be released from the vessel, could subject the containment to large steam explosion loads. However, the uncertainties are so large that no definite conclusion can be drawn. The assessment of ex-vessel core debris coolability is disturbed by similar phenomenological uncertainties. Presently, coolability of the core debris can not be demonstrated. 133 refs.

  8. Melt quenching and coolability by water injection from below: Co-injection of water and non-condensable gas

    International Nuclear Information System (INIS)

    Cho, Dae H.; Page, Richard J.; Abdulla, Sherif H.; Anderson, Mark H.; Klockow, Helge B.; Corradini, Michael L.

    2006-01-01

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of our work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University via test and analyses. In this paper, experiments on melt quenching by the injection of water from below are addressed. The test section represented one-dimensional flow-channel simulation of the bottom injection of water into a core melt in the reactor cavity. The melt simulant was molten lead or a lead alloy (Pb-Bi). For the experimental conditions employed (i.e., melt depth and water flow rates), it was found that: (1) the volumetric heat removal rate increased with increasing water mass flow rate and (2) the non-condensable gas mixed with the injected water had no impairing effect on the overall heat removal rate. Implications of these current experimental findings for ALWR ex-vessel coolability are discussed

  9. Ex-vessel core catcher design requirements and preliminary concepts evaluation

    International Nuclear Information System (INIS)

    Friedland, A.J.; Tilbrook, R.W.

    1974-01-01

    As part of the overall study of the consequences of a hypothetical failure to scram following loss of pumping power, design requirements and preliminary concepts evaluation of an ex-vessel core catcher (EVCC) were performed. EVCC is the term applied to a class of devices whose primary objective is to provide a stable subcritical and coolable configuration within containment following a postulated accident in which it is assumed that core debris has penetrated the Reactor Vessel and Guard Vessel. Under these assumed conditions a set of functional requirements were developed for an EVCC and several concepts were evaluated. The studies were specifically directed toward the FFTF design considering the restraints imposed by the physical design and construction of the FFTF plant

  10. Debris bed coolability using a 3-D two phase model in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bechaud, C.; Duval, F.; Fichot, F. [CEA Cadarache, Inst. de Protection et de Surete Nucleaire13 - Saint-Paul-lez-Durance (France); Quintard, M. [Institut de Mecanique des Fluides de Toulouse, 31 (France); Parent, M. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France)

    2001-07-01

    During a severe nuclear accident, a part of the molten corium resulting from the core degradation may relocate in the lower plenum of the reactor vessel. In order to predict the safety margin of the reactor under such conditions, the coolability of this porous heat-generating medium is evaluated in this study and compared with other investigations. In this work, conservation equations derived for debris beds are implemented in the three dimensional thermal-hydraulic module of the CATHARE code. The coolant flow is a two phase flow with phase change. The momentum balance equation for each fluid phase is an extension of Darcy's law. This extension takes into account the capillary effects between the two phases, the relative permeabilities and passabilities of each phase, the interfacial drag force between liquid and gas, and the porous bed configuration (porosity, particle diameter,... ). The model developed is three-dimensional which is important to better predict the flow in configuration such as counter-current flow or to emphasize preferential ways induced by porous geometry. The energy balance equations of the three phases (liquid, gas and solid phase) are obtained by a volume averaging process of the local conservation equations. In this method, the local thermal non-equilibrium between the three phases is considered and the heat exchanges, the phase change rate as well as the thermal dispersion coefficients are calculated as a function of the local geometry of the porous medium. Such a method allows the numerical estimation of these thermal properties which are very difficult to determine experimentally. This feature is a great advantage of this approach. After a brief description of the thermal-hydraulic model, one-dimensional predictions of critical dryout fluxes are presented and compared with results from the literature. Reasonable agreement is obtained. Then a two-dimensional calculation is presented and shows the influence of the porous medium

  11. United States Nuclear Regulatory Commission research program on core debris/concrete interactions and ex-vessel fission-product release

    International Nuclear Information System (INIS)

    Burson, S.B.

    1987-01-01

    The study of core debris/concrete interaction phenomena has been a significant element of the NRC's Severe Accident Research Program for a number of years. The CORCON and VANESA codes used to predict the consequences of high-temperature debris attack on concrete and fission-product aerosol release are state-of-the-art computational tools. The major thrust of current NRC sponsored research focuses on the refinement, verification, and validation of these codes. An overview of the analytical and experimental aspects of the NRC research program is presented

  12. COOLOCE debris bed experiments and simulations investigating the coolability of cylindrical beds with different materials and flow modes

    Energy Technology Data Exchange (ETDEWEB)

    Takasuo, E.; Kinnunen, T.; Holmstroem, S.; Lehtikuusi, T. [VTT Technical Research Centre of Finland (Finland)

    2013-07-15

    The COOLOCE experiments aim at investigating the coolability of debris beds of different geometries, flow modes and materials. A debris bed may be formed of solidified corium as a result of a severe accident in a nuclear power reactor. The COOLOCE-8 test series consisted of experiments with a top-flooded test bed with irregular gravel as the simulant material. The objective was to produce comparison data useful in estimating the effects of different particle materials and the possible effect of the test arrangement on the results. It was found that the dryout heat flux (DHF) measured for the gravel was lower compared to previous experiments with spherical beads, and somewhat lower compared to the early STYX experiments. The difference between the beads and gravel is at least partially explained by the smaller average size of the gravel particles. The COOLOCE-9 test series included scoping experiments examining the effect of subcooling of the water pool in which the debris bed is immersed. The experiments with initially subcooled pool suggest that the subcooling may increase DHF and increase coolability. The aim of the COOLOCE-10 experiments was to investigate the effect of lateral flooding on the DHF a cylindrical test bed. The top of the test cylinder and its sidewall were open to water infiltration. It was found that the DHF is increased compared to a top-flooded cylinder by more than 50%. This suggests that coolability is notably improved. 2D simulations of the top-flooded test beds have been run with the MEWA code. Prior to the simulations, the effective particle diameter for the spherical beads and the irregular gravel was estimated by single-phase pressure loss measurements performed at KTH in Sweden. Parameter variations were done for particle size and porosity used as input in the models. It was found that with the measured effective particle diameter and porosity, the simulation models predict DHF with a relatively good accuracy in the case of spherical

  13. Code development for debris bed coolability problem. Final report for the period 1997-05-01 - 1999-08-14

    International Nuclear Information System (INIS)

    Loboiko, A.I.

    2000-03-01

    The study was devoted to the problem of debris bed coolability arising from severe accident at nuclear power reactor. After reactor core melting occurs and subsequent debris bed is formed in the lower plenum of reactor pressure vessel (RPV) it is important to confine this debris bed inside RPV boundary. One of the possible accident scenarios assumes the interaction between coolant and molten core materials resulting from rapid melt quenching, freezing and fragmentation. Particulated fuel and steel may subsequently settle on available surfaces within the reactor vessel, forming debris porous beds which produce radioactive decay heating. In case of severe core degradation, such heat transfer mechanisms as radiation, conduction and natural single-phase convection may appear to be insufficient and coolant boiling may happen on the surface or inside the bed. Depending on rate of heat generation there may be sufficient debris cool down or its 'dryout' which pose a danger for RPV integrity. The study considers development of 2D numerical code capable to predict coolant saturation as a function of different parameters. Analysis of previous activities on one-dimensional and multi-dimensional models was done. On the basis of the analysis it was concluded that the correct prediction of the debris saturation on dryant power requires two-dimensional numerical simulation considering the processes like two-phase convection, capillary effects, different models of permeability, different models of heat transfer between solid debris and coolant, non-homogeneity of parameters porous medium, heat and mass transfer between debris bed and a highly porous gap along the inner RPV surface. Particular attention was given to consideration of boundary conditions for debris bed. Introduction of the analytical model for dependence of gap properties on heat flux from debris bed allowed to create an algorithm for use in numerical calculations and finally to develop a code which allowed for stable

  14. Numerical models for the analysis of thermal behavior and coolability of a particulate debris bed in reactor lower head

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Sang Baik; Kim, Byung Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This report provides three distinctive, but closely related numerical models developed for the analysis of thermal behavior and coolability of a particulate debris bed that is may be formed inside the reactor lower head during severe accident late phases. The first numerical module presented in the report, MELTPRO-DRY, is used to analyze numerically heat-up and melting process of the dry particle bed, downward- and sideward-relocation of the liquid melt under gravity force and capillary force acting among porous particles, and solidification of the liquid melt relocated into colder region. The second module, MELTPROG-WET, is used to simulate numerically the cooling process of the particulate debris bed under the existence of water, which is subjected to two types of numerical models. The first type of WET module utilizes distinctive models that parametrically simulate the water cooling process, that is, quenching region, dryout region, and transition region. The choice of each parametric model depends on temperature gradient between the cooling water and the debris particles. The second type of WET module utilizes two-phase flow model that mechanically simulates the cooling process of the debris bed. For a consistent simulation from the water cooling to the dryout debris bed, on the other hand, the aforementioned two modules, MELTPROG-DRY and MELTPROG-WET, were integrated into a single computer program DBCOOL. Each of computational models was verified through limited applications to a heat-generating particulate bed contained in the rectangular cavity. 22 refs., 5 figs., 2 tabs. (Author)

  15. An assessment of ex-vessel fuel-coolant interaction energetics for advanced light water reactors

    International Nuclear Information System (INIS)

    Murphy, J.G.; Corradini, M.L.

    1997-01-01

    The occurrence of an energetic fuel/coolant interaction (FCI) below the reactor pressure vessel in the cavity of advanced light water reactors (ALWRs) are analyzed to determine the possible hazard to structural walls as a result of dynamic liquid phase pressures. Such analyses are important to demonstrate that these cavity walls will maintain their integrity so that ex-vessel core debris coolability is possible. Past studies that have examined this or related issues are reviewed, and a methodology is proposed to analyze the occurrence of this physical event using the IFCI and TEXAS models for the FCI as well as dynamic shock wave propagation estimates using hand calculations as well as the CTH hydro model. Scenarios for the ALWRs are reviewed, and one severe accident scenario is used as an example to demonstrate the methodology. Such methodologies are recommended for consideration in future safety studies. These methodologies should be verified with direct comparison to energetic FCI data such as that being produced in KROTOS at the Joint Research Centre, Ispra

  16. Experimental study on in-vessel debris coolability during severe accident

    International Nuclear Information System (INIS)

    Kim, S. B.; Park, R. J.; Kim, H. D.

    2002-05-01

    A research program, called SONATA-IV(Simulation of Naturally Arrested Thermal Attack In-Vessel), has been performed to verify the gap cooling mechanism of corium in the lower plenum, and to develop management and mitigation strategies under severe accident conditions. For the proof-of-principles experiment, the LAVA(Lower-plenum Arrested Vessel Attack) experiments have been performed to gather proof of gap formation and to evaluate the gap effect on in-vessel cooling, using Al 2 O 3 /Fe (or Al 2 O 3 only) thermite melt as corium simulant. And also the CHFG(Critical Heat Flux in Gap) experiments have been performed to measure the critical power and to investigate the inherent cooling mechanism in the hemispherical narrow gap. In addition to the experiments, LILAC code was developed to analyze and predict the thermo-hydraulic phenomena of the corium relocated in the reactor lower plenum. It could be found from the LAVA and CHFG experimental results that continuous gap ranged from 1 to 5 mm was formed and that maximum heat removal capacity through a gap is a key factor in determining the potentials of the integrity of the vessel. After all the possibility of IVR(In-Vessel corium Retention) through gap cooling highly depends on the melt relocated into the lower plenum and the gap size. So, feasibility experiments have been performed for the assessment of improved IVR concepts using an internal engineered gap device and a dual strategy of In/Ex-vessel cooling using the LAVA facility. It is preliminarily concluded that these cooling measures lead to an enhanced cooling of the corium in the lower plenum of the reactor vessel. The additional studies will be performed to verify the quantitative heat removal capacity for these cooling measures in the 2nd phase of mid- and long term project period

  17. Refined model for the coolability of core debris with flow entry from the bottom

    International Nuclear Information System (INIS)

    Schulenberg, T.; Mueller, U.

    1986-01-01

    Within the context of a hypothetical severe accident in light water reactors also heat generating debris beds of a coarse particle size are discussed. A refined model for two-phase flow in particle beds is presented. Compared to previous models this model takes into account the effect of interfacial drag forces between liquid and vapor. These effects are important in coarse debris beds. The model is based on the momentum equations for separated flow, which are closed by empirical relations for the wall shear stress and the interfacial drag. When the refined model is applied to LWR severe accident scenarios an increased dryout heat flux is predicted for debris beds with flow entry from the bottom driven by a moderate downcomer head

  18. PWG4 perspective on ex-vessel hydrogen sources

    International Nuclear Information System (INIS)

    2000-07-01

    The purpose of this perspective document is to identify the potential ex-vessel hydrogen sources and to address the question whether, considered the uncertainties associated to these sources, further investigations are required. The statement is established with reference to the needs for safety evaluation of nuclear reactors under severe accident conditions. It is recognised that the views could be different if one looks at these issues from another standpoint. Since the TMI-2 accident in 1979, there had been a large interest in the nuclear reactor safety community for studying the behaviour of hydrogen in case of a severe accident. As a result, different 'state of the art' reports were produced. Examples of these documents are NUREG/CR-1561 and EUR 14307. In particular, they identified potential hydrogen sources during accidents, including ex-vessel sources. Various ex-vessel hydrogen sources, covering a variety of physical and chemical processes, were identified. Although their precise quantification and relative importance is to be established on a case by case basis with respect to the specific reactor design of interest, general trends can be formulated. The sources to be considered are the followings: - radiolysis of water; - corrosion reactions, - reaction of urania with steam and water; - core-concrete interaction; - debris-atmosphere interaction. These sources are discussed successively. The PWG4 (CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases) perspective on Ex-vessel Hydrogen Sources can be summarised in the following statements: 1. The issue of hydrogen sources must be considered as a whole and cannot be separated into in-vessel and ex-vessel issues. For significant sources that may not be accommodated by mitigation means associated to DBA, the uncertainty is largely dominated by the unknown extent of Zr oxidation during the in-vessel phase. 2. PWG4 notes that hydrogen production during corium quenching by water is

  19. Characteristics of debris in the lower head of a BWR in different severe accident scenarios

    International Nuclear Information System (INIS)

    Phung, Viet-Anh; Galushin, Sergey; Raub, Sebastian; Goronovski, Andrei; Villanueva, Walter; Kööp, Kaspar; Grishchenko, Dmitry; Kudinov, Pavel

    2016-01-01

    Highlights: • Station blackout scenario with delayed recovery of safety systems in a Nordic BWR is considered. • Genetic algorithm and random sampling methods are used to explore accident scenario domain. • Main groups of scenarios are identified. • Ranges and distributions of characteristics of debris bed in the lower head are determined. - Abstract: Nordic boiling water reactors (BWRs) adopt ex-vessel debris cooling to terminate severe accident progression. Core melt released from the vessel into a deep pool of water is expected to fragment and form a coolable debris bed. Characteristics of corium melt ejection from the vessel determine conditions for molten fuel–coolant interactions (FCI) and debris bed formation. Non-coolable debris bed or steam explosion can threaten containment integrity. Vessel failure and melt ejection mode are determined by the in-vessel accident progression. Characteristics (such as mass, composition, thermal properties, timing of relocation, and decay heat) of the debris bed formed in the process of core relocation into the vessel lower plenum define conditions for the debris reheating, remelting, melt-vessel structure interactions, vessel failure and melt release. Thus core degradation and relocation are important sources of uncertainty for the success of the ex-vessel accident mitigation strategy. The goal of this work is improve understanding how accident scenario parameters, such as timing of failure and recovery of different safety systems can affect characteristics of the debris in the lower plenum. Station blackout scenario with delayed power recovery in a Nordic BWR is considered using MELCOR code. The recovery timing and capacity of safety systems were varied using genetic algorithm (GA) and random sampling methods to identify two main groups of scenarios: with relatively small ( 100 tons) amount of relocated debris. The domains are separated by the transition regions, in which relatively small variations of the input

  20. Characteristics of debris in the lower head of a BWR in different severe accident scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Viet-Anh, E-mail: vaphung@kth.se; Galushin, Sergey, E-mail: galushin@kth.se; Raub, Sebastian, E-mail: raub@kth.se; Goronovski, Andrei, E-mail: andreig@kth.se; Villanueva, Walter, E-mail: walterv@kth.se; Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2016-08-15

    Highlights: • Station blackout scenario with delayed recovery of safety systems in a Nordic BWR is considered. • Genetic algorithm and random sampling methods are used to explore accident scenario domain. • Main groups of scenarios are identified. • Ranges and distributions of characteristics of debris bed in the lower head are determined. - Abstract: Nordic boiling water reactors (BWRs) adopt ex-vessel debris cooling to terminate severe accident progression. Core melt released from the vessel into a deep pool of water is expected to fragment and form a coolable debris bed. Characteristics of corium melt ejection from the vessel determine conditions for molten fuel–coolant interactions (FCI) and debris bed formation. Non-coolable debris bed or steam explosion can threaten containment integrity. Vessel failure and melt ejection mode are determined by the in-vessel accident progression. Characteristics (such as mass, composition, thermal properties, timing of relocation, and decay heat) of the debris bed formed in the process of core relocation into the vessel lower plenum define conditions for the debris reheating, remelting, melt-vessel structure interactions, vessel failure and melt release. Thus core degradation and relocation are important sources of uncertainty for the success of the ex-vessel accident mitigation strategy. The goal of this work is improve understanding how accident scenario parameters, such as timing of failure and recovery of different safety systems can affect characteristics of the debris in the lower plenum. Station blackout scenario with delayed power recovery in a Nordic BWR is considered using MELCOR code. The recovery timing and capacity of safety systems were varied using genetic algorithm (GA) and random sampling methods to identify two main groups of scenarios: with relatively small (<20 tons) and large (>100 tons) amount of relocated debris. The domains are separated by the transition regions, in which relatively small

  1. Physics of coolability of top flooded molten corium

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Singh, R.K.; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2011-01-01

    During a postulated severe accident in a nuclear reactor in case of ex-vessel scenario the molten corium can be relocated in the containment cavity forming a melt pool. In order to arrest further progression of severe accident, complete quenching of the molten corium pool is necessary. Most common way to deal with ex-vessel scenario is to flood the melt pool with large quantity of water. However, the mechanism of coolability is much more complex involving multi-component, multiphase heat, mass and momentum transfer. In this paper, a mechanistic model has been presented for the corium coolability under top flooding conditions. The model has been validated with the experimental data of COMECO test facility available in literature. Simulations have been carried out using the model to explore the physics behind the corium coolability with MCCI under top flooding condition. Variations in the thermo-physical properties as a result of MCCI have been considered and its effect on coolability has been studied. (author)

  2. Prediction of mass fraction of agglomerated debris in a LWR severe accident

    International Nuclear Information System (INIS)

    Kudinov, P.; Davydov, M.

    2011-01-01

    Ex-vessel termination of accident progression in Swedish type Boiling Water Reactors (BWRs) is contingent upon efficacy of melt fragmentation and solidification in a deep pool of water below reactor vessel. When liquid melt reaches the bottom of the pool it can create agglomerated debris and “cake” regions that increase hydraulic resistance of the bed and affect coolability of the bed. This paper discusses development and application of a conservative-mechanistic approach to quantify mass fractions of agglomerated debris. Experimental data from the DEFOR-A (Debris Bed Formation and Agglomeration) tests with high superheat of binary oxidic simulant material melt is used for validation of the methods. Application of the approach to plant accident analysis suggests that melt superheat has less significant influence on agglomeration of the debris than jet penetration depth. The paper also discusses the impact of the uncertainty in the jet disintegration and penetration behavior on the agglomeration mode map. (author)

  3. Experimental study of in-and-ex-vessel melt cooling during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Baik; Yoo, K J; Park, C K; Seok, S D; Park, R J; Yi, S J; Kang, K H; Ham, Y S; Cho, Y R; Kim, J H; Jeong, J H; Shin, K Y; Cho, J S; Kim, D H

    1997-07-01

    After code damage during a severe accident in a nuclear reactor, the degraded core has to be cooled down and the decay heat should be removed in order to cease the accident progression and maintain a stable state. The cooling of core melt is divided into in-vessel and ex-vessel cooling depending on the location of molten core which is dependent on the timing of vessel failure. Since the cooling mechanism varies with the conditions of molten core and surroundings and related phenomena, it contains many phenomenological uncertainties so far. In this study, an experimental study for verification of in-vessel corium cooling and several separate effect experiments for ex-vessel cooling are carried out to verify in- and ex-vessel cooling phenomena and finally to develop the accident management strategy and improve engineered reactor design for the severe accidents. SONATA-IV (Simulation of Naturally Arrested Thermal Attack in Vessel) program is set up for in-vessel cooling and a progression of the verification experiment has been done, and an integral verification experiment of the containment integrity for ex-vessel cooling is planned to be carried out based on the separate effect experiments performed in the first phase. First phase study of SONATA-IV is proof of principle experiment and it is composed of LALA (Lower-plenum Arrested Vessel Attack) experiment to find the gap between melt and the lower plenum during melt relocation and to certify melt quenching and CHFG (Critical Heat Flux in Gap) experiment to certify heat transfer mechanism in an artificial gap. As separate effect experiments for ex-vessel cooling, high pressure melt ejection experiment related to the initial condition for debris layer formation in the reactor cavity, crust formation and heat transfer experiment in the molten pool and molten core concrete interaction experiment are performed. (author). 150 refs., 24 tabs., 127 figs.

  4. Cooling of an internal-heated debris bed with fine particles

    International Nuclear Information System (INIS)

    Yang, Z.L.; Sehgal, B.R.

    2001-01-01

    In this paper, an analytical model on dryout heat flux of ex-vessel debris beds with fines particles under top flooding conditions has been developed. The parametric study is performed on the effect of the stratification of the debris beds on the dryout heat flux. The calculated results show that the stratification configuration of the debris beds with smaller particles and lower porosity layer resting on the top of another layer of the beds has profound effect on the dryout heat flux for the debris beds both with and without a downcomer. The enhancement of the dryout heat flux by the downcomer is significant. The efficiency of the single downcomer on the enhancement of the dryout heat flux is also analyzed. This, in general, agrees well with experimental data. The model is also employed to perform the assessment on the coolability of the ex-vessel debris bed under representative accidental conditions. One conservative case is chosen, and it is found that the downcomer could be efficient measure to cool the debris bed and hence terminate the severe accident. (authors)

  5. ITER diagnostics ex-vessel engineering services

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, A.P., E-mail: arun.prakash@iter.org; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.; and others

    2013-10-15

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  6. ITER diagnostics ex-vessel engineering services

    International Nuclear Information System (INIS)

    Arumugam, A.P.; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.

    2013-01-01

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  7. Prediction of corium debris characteristics in lower plenum of a nordic BWR in different accident scenarios using MELCOR code - 15367

    International Nuclear Information System (INIS)

    Phung, V.A.; Galushin, S.; Raub, S.; Goronovski, A.; Villanueva, W.; Koeoep, K; Grishchenko, D.; Kudinov, P.

    2015-01-01

    Severe accident management strategy in Nordic boiling water reactors (BWRs) relies on ex-vessel core debris coolability. The mode of corium melt release from the vessel determines conditions for ex-vessel accident progression and threats to containment integrity, e.g., formation of a non-coolable debris bed and possibility of energetic steam explosion. In-vessel core degradation and relocation is an important stage which determines characteristics of corium debris in the vessel lower plenum, such as mass, composition, thermal properties, timing of relocation, and decay heat. These properties affect debris reheating and remelting, melt interactions with the vessel structures, and possibly vessel failure and melt ejection mode. Core degradation and relocation is contingent upon the accident scenario parameters such as recovery time and capacity of safety systems. The goal of this work is to obtain a better understanding of the impact of the accident scenarios and timing of the events on core relocation phenomena and resulting properties of the debris bed in the vessel lower plenum of Nordic BWRs. In this study, severe accidents in a Nordic BWR reference plant are initiated by a station black out event, which is the main contributor to core damage frequency of the reactor. The work focuses on identifying ranges of debris bed characteristics in the lower plenum as functions of the accident scenario with different recovery timing and capacity of safety systems. The severe accident analysis code MELCOR coupled with GA-IDPSA is used in this work. GA-IDPSA is a Genetic Algorithm-based Integrated Deterministic Probabilistic Safety Analysis tool, which has been developed to search uncertain input parameter space. The search is guided by different target functions. Scenario grouping and clustering approach is applied in order to estimate the ranges of debris characteristics and identify scenario regions of core relocation that can lead to significantly different debris bed

  8. The VULCANO ex-vessel programme

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Cranga, M.; Sudreau, F.; Ramacciotti, M. [CEA Cadarache, St. Paul lez Durance (France). Direction des Reacteurs Nucleaires

    2000-05-01

    Among the currently studied core-catcher projects, several concepts suppose corium spreading before cooling. In particular, the EPR (European pressurized reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the spreading. In France, for some years now, the nuclear reactor division of the atomic energy commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. Within this framework, the real material experimental programme, VULCANO, conducted in collaboration with European partners, is currently devoted to the study of corium spreading. Since 1997, several tests have been performed on dry corium spreading with various melt compositions. After a brief description of the general objectives and the facility, this paper will present the most important spreading results. (orig.)

  9. The VULCANO ex-vessel programme

    International Nuclear Information System (INIS)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Cranga, M.; Sudreau, F.; Ramacciotti, M.

    2000-01-01

    Among the currently studied core-catcher projects, several concepts suppose corium spreading before cooling. In particular, the EPR (European pressurized reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the spreading. In France, for some years now, the nuclear reactor division of the atomic energy commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. Within this framework, the real material experimental programme, VULCANO, conducted in collaboration with European partners, is currently devoted to the study of corium spreading. Since 1997, several tests have been performed on dry corium spreading with various melt compositions. After a brief description of the general objectives and the facility, this paper will present the most important spreading results. (orig.)

  10. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    International Nuclear Information System (INIS)

    Jasiulevicius, Audrius

    2003-01-01

    This thesis presents the work involving two broad aspects within the field of nuclear reactor analysis and safety. These are: - development of a fully independent reactor dynamics and safety analysis methodology of the RBMK-1500 core transient accidents and - experiments on the enhancement of coolability of a particulate bed or a melt pool due to heat removal through the control rod guide tubes. The first part of the thesis focuses on the development of the RBMK-1500 analysis methodology based on the CORETRAN code package. The second part investigates the issue of coolability during severe accidents in LWR type reactors: the coolability of debris bed and melt pool for in-vessel and ex-vessel conditions. The first chapter briefly presents the status of developments in both the RBMK-1500 core analysis and the corium coolability areas. The second chapter describes the generation of the RBMK-1500 neutron cross section data library with the HELIOS code. The cross section library was developed for the whole range of the reactor conditions. The results of the benchmarking with the WIMS-D4 code and validation against the RBMK Critical Facility experiments is also presented here. The HELIOS generated neutron cross section data library provides a close agreement with the WIMS-D4 code results. The validation against the data from the Critical Experiments shows that the HELIOS generated neutron cross section library provides excellent predictions for the criticality, axial and radial power distribution, control rod reactivity worths and coolant reactivity effects, etc. The reactivity effects of voiding for the system, fuel assembly and additional absorber channel are underpredicted in the calculations using the HELIOS code generated neutron cross sections. The underprediction, however, is much less than that obtained when the WIMS-D4 code generated cross sections are employed. The third chapter describes the work, performed towards the accurate prediction, assessment and

  11. MELCOR ex-vessel LOCA simulations for ITER+

    International Nuclear Information System (INIS)

    Gaeta, M.J.; Merrill, B.J.; Bartels, H.W.

    1995-01-01

    Ex-vessel Loss-of-Coolant-Accident (LOCA) simulations for the International Thermonuclear Experimental Reactor (ITER) were performed using the MELCOR code. The main goals of this work were to estimate the ultimate pressurization of the heat transport system (HTS) vault in order to gauge the potential for stack releases and to estimate the total amount of hydrogen generated during a design basis ex-vessel LOCA. Simulation results indicated that the amount of hydrogen produced in each transient was below the flammability limit for the plasma chamber. In addition, only moderate pressurization of the HTS vault indicated a very small potential for releases through the stack

  12. New sacrificial material for ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Komlev, Andrei A., E-mail: komlev@kth.se [Kungliga Tekniska Högskolan (KTH), AlbaNova University Centre, Nuclear Power Safety Division, Roslagstullsbacken 21, SE-106 91, Stockholm (Sweden); Almjashev, Vyacheslav I., E-mail: vac@mail.ru [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Bechta, Sevostian V., E-mail: bechta@safety.sci.kth.se [Kungliga Tekniska Högskolan (KTH), AlbaNova University Centre, Roslagstullsbacken 21, SE-106 91, Stockholm (Sweden); Khabensky, Vladimir B., E-mail: vladimirkhabensky@gmail.com [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Granovsky, Vladimir S., E-mail: gran@niti.ru [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Gusarov, Victor V., E-mail: victor.v.gusarov@gmail.com [Ioffe Institute, 26 Polytekhnicheskaya Str., St. Petersburg, 194021 (Russian Federation)

    2015-12-15

    A new functional (sacrificial) material has been developed in the Fe{sub 2}O{sub 3}–SrO–Al{sub 2}O{sub 3}–CaO system based on strontium hexaferrite ceramic in concrete matrix. The method of producing SM has been advanced technologically; this technological effectiveness allows the SM to be used in ex-vessel core catchers with corium spreading as well as in crucible-type core catchers. Critical properties regarding the efficiency of SM in ex-vessel core catchers, such as porosity, pycnometric density, apparent density, solidus and liquidus temperatures, and water content have been measured. Suitable fractions of SrFe{sub 12}O{sub 19} and high alumina cement (HAC) were found in the SM based on thermodynamic analysis of the SM/corium interaction. The use of sacrificial steel as an additional heat adsorption component in the core catcher allowed us to increase the mass fraction range of SrFe{sub 12}O{sub 19} in the SM from 0.3−0.5 to 0.3–0.85. The activation temperature of the SM/corium interaction has been shown to correspond to the liquidus temperature of the local composition at the SM/corium interface. The calculated value of this temperature was 1716 °C. Analysis of phase transformations in the SrO–Fe{sub 2}O{sub 3} system revealed advantages of the SrFe{sub 12}O{sub 19}–based sacrificial material compared with the Fe{sub 2}O{sub 3}-contained material owing to the time proximity of SrFe{sub 12}O{sub 19} decomposition and corium interaction activation. - Highlights: • A sacrificial material (SM) was developed for ex-vessel core catcher. • Suitable proportions in the SrFe{sub 12}O{sub 19}–Al{sub 2}O{sub 3}·CaO–Fe system were determined. • Hydrogen release limitation was shown for ex-vessel corium retention with the SM. • Calculated temperature of the active initiation of corium/SM interaction is 1716 °C. • Functional properties of the SM were measured.

  13. Modes of heat removal from a heat-generating debris bed

    International Nuclear Information System (INIS)

    Squarer, D.; Hochreiter, L.E.; Piecznski, A.T.

    1984-01-01

    In the worst hypothetical accident in a light water reactor, when all protection systems fail, the core could be converted into a deep particulate bed either in-vessel or ex-vessel. The containment of such an accident depends on the coolability of a heat-generating debris bed. Some recent experimental and analytical studies that are concerned with heat removal from such a particulate bed are reviewed. Studies have indicated that bed dryout flux and, therefore, the heat removal rate from the particulate bed increases with the particle diameter (i.e., the permeability) for pool boiling conditions and can exceed the critical heat flux of a flat plate. Bed dryout in a large particle bed (i.e., a few millimetres) was found to be closely related to the ''flooding'' limit of the bed. Dryout under forced flow conditions was found to be affected by both forced and natural convection for mass flow rate smaller than m /SUB cr/ , whereas above this mass flow rate, bed dryout is proportional to the mass flow rate. Recent analyses were found to be in agreement with experimental data; however, additional research is needed to assess factors not accounted for in previous studies (e.g., effect of pressure, multidimensionality, stratification, etc.). Based on the expected pressure and particle sizes in a postulated severe accident sequence, a debris bed should be coolable, given a sufficient water supply

  14. Concrete benchmark experiment: ex-vessel LWR surveillance dosimetry

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.; D'Hondt, P.; Oeyen, J.; Risch, P.; Bioux, P.

    1993-09-01

    The analysis of DOEL-1 in-vessel and ex-vessel neutron dosimetry, using the DOT 3.5 Sn code coupled with the VITAMIN-C cross-section library, showed the same C/E values for different detectors at the surveillance capsule and the ex-vessel cavity positions. These results seem to be in contradiction with those obtained in several Benchmark experiments (PCA, PSF, VENUS...) when using the same computational tools. Indeed a strong decreasing radial trend of the C/E was observed, partly explained by the overestimation of the iron inelastic scattering. The flat trend seen in DOEL-1 could be explained by compensating errors in the calculation such as the backscattering due to the concrete walls outside the cavity. The 'Concrete Benchmark' experiment has been designed to judge the ability of this calculation methods to treat the backscattering. This paper describes the 'Concrete Benchmark' experiment, the measured and computed neutron dosimetry results and their comparison. This preliminary analysis seems to indicate an overestimation of the backscattering effect in the calculations. (authors). 5 figs., 1 tab., 7 refs

  15. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Jasiulevicius, Audrius

    2003-07-01

    This thesis presents the work involving two broad aspects within the field of nuclear reactor analysis and safety. These are: - development of a fully independent reactor dynamics and safety analysis methodology of the RBMK-1500 core transient accidents and - experiments on the enhancement of coolability of a particulate bed or a melt pool due to heat removal through the control rod guide tubes. The first part of the thesis focuses on the development of the RBMK-1500 analysis methodology based on the CORETRAN code package. The second part investigates the issue of coolability during severe accidents in LWR type reactors: the coolability of debris bed and melt pool for in-vessel and ex-vessel conditions. The first chapter briefly presents the status of developments in both the RBMK-1500 core analysis and the corium coolability areas. The second chapter describes the generation of the RBMK-1500 neutron cross section data library with the HELIOS code. The cross section library was developed for the whole range of the reactor conditions. The results of the benchmarking with the WIMS-D4 code and validation against the RBMK Critical Facility experiments is also presented here. The HELIOS generated neutron cross section data library provides a close agreement with the WIMS-D4 code results. The validation against the data from the Critical Experiments shows that the HELIOS generated neutron cross section library provides excellent predictions for the criticality, axial and radial power distribution, control rod reactivity worths and coolant reactivity effects, etc. The reactivity effects of voiding for the system, fuel assembly and additional absorber channel are underpredicted in the calculations using the HELIOS code generated neutron cross sections. The underprediction, however, is much less than that obtained when the WIMS-D4 code generated cross sections are employed. The third chapter describes the work, performed towards the accurate prediction, assessment and

  16. Remote maintenance of Compact Ignition Tokamak ex-vessel systems

    International Nuclear Information System (INIS)

    DePew, R.E.; Macdonald, D.

    1989-01-01

    The use of deuterium-tritium (D-T) fuel in the Compact Ignition Tokamak (CIT) will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion device's auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. Throughout the CIT remote maintenance (RM) studies conducted to date, computer modeling has been used extensively to investigate manipulator access in these complex, tightly packed, and cluttered surroundings. A recent refinement of computer modeling involves the use of an intelligent engineering work station for realtime interactive display of task simulations. This paper discusses the use of three-dimensional (3-D) kinematic computer models of the CIT machines that are proving to be powerful tools in our efforts to evaluate RM requirements. This presentation includes a video-taped simulation of remote replacement of a plasma viewing assembly. The simulation illustrates some of the constraints associated with typical RM activities and the ways in which computer modeling enhances the design process. 1 ref., 3 figs

  17. Results and analysis of reactor-material experiments on ex-vessel corium quench and dispersal

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.M.; Sienicki, J.J.; Squarer, D.

    1984-01-01

    Results of reactor-material experiments and related analysis are described in which molten corium is injected into a mock-up of the reactor cavity region of a PWR. The experiments address ex-vessel interactions such as steam generation (for those cases in which water is present), water and corium dispersal from the cavity, hydrogen generation, direct atmosphere heating by dispersed corium, and debris characterization. Test results indicate efficiencies of steam generation by corium quench ranging up to 65%. Corium sweepout of up to 62% of the injected material was found for those conditions in which steam generation flowrate was augmented by vessel blowdown. The dispersed corium caused very little direct heating of the atmosphere for the configuration employing a trap at the exit of the cavity-to-containment pathway. Corium sweepout phenomena were modeled for high-pressure blowdown conditions, and the results applied to the full-size reactor system predict essentially complete sweepout of corium from the reactor cavity

  18. Design and development of the CRBRP ex-vessel transfer machine

    International Nuclear Information System (INIS)

    Jones, C.E. Jr.

    1977-01-01

    The Reactor Refueling System (RRS) for the Clinch River Breeder Reactor Project (CRBRP) uses the Ex-Vessel Transfer Machine (EVTM) for transferring core assemblies outside the reactor vessel. The design of the Ex-Vessel Transfer Machine (EVTM) and its gantry-trolly for the CRBRP is discussed. The development tests required for the design are presented, in conjunction with the impact of the test results on the design. The impact of the increased seismic requirements on the design are also presented

  19. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al{sub 2}O{sub 3} particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m{sup 2}, polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements

  20. Coolability of volumetrically heated particle beds

    International Nuclear Information System (INIS)

    Rashid, Muhammad

    2017-01-01

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al 2 O 3 particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m 2 , polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements in

  1. Draft paper: On the analysis of diffusive mass transfer in ex-vessel corium pools

    International Nuclear Information System (INIS)

    Frolov, Kyrill N.

    2003-01-01

    In case of a severe accident at a nuclear power plant (NPP) involving the reactor pressure vessel (RPV) melt-through, confident solidification of ex-vessel corium is the imperative condition of its safe retention within the plant containment. The rate-determining process for solidification of ex-vessel coriums in the long-term is the chemical diffusion in the liquid phase at the solid-liquid interface. The process of chemical diffusion in the diffusive boundary layer can evolve taking on different rates, depending on the boundary conditions and the melt composition. Nonetheless, the chemical diffusion rates would entwine the self-diffusivities of corium constituents, which in turn would depend on the melt chemical composition. This work looks at some aspects of analytical and experimental determination of self-diffusivities of corium constituents. Following the corium-concrete interaction, an ex-vessel corium melt would contain several chemical components, including a fraction of silica. Accordingly, ex-vessel corium is considered in this paper as a silicate melts. In the realm of the geological and glass sciences, where silicate melts are most often discussed, the diffusive transport and viscous flow are conceived interrelated from a phenomenological point of view. Though the viscous and diffusive mass transfer mechanisms are not identical for different species even in the same melt, a combination of semi-empirical models can still provide an estimation of the diffusion thresholds in ex-vessel corium melts. Thus, the first part of this paper presents an analysis of the applicability of such empirical models for simple silicate melts based on the published data. This is followed by an estimation of diffusivities in melt compositions typical of ex-vessel coriums. Alternatively, although the general trend towards a coupled description of the viscous flow and diffusion for ex-vessel corium melts seems promising, it is limited to published data on self-diffusivities of

  2. Analysis of ex-vessel steam explosion with MC3D

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2007-01-01

    An ex-vessel steam explosion may occur when, during a severe reactor accident, the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles that may endanger surrounding structures. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. In the paper, different scenarios of ex-vessel steam explosions in a typical pressurized water reactor cavity are analyzed with the code MC3D, which was developed for the simulation of fuel-coolant interactions. A comprehensive parametric study was performed varying the location of the melt release (central, left and right side melt pour), the cavity water subcooling, the primary system overpressure at vessel failure and the triggering time for explosion calculations. The main purpose of the study was to determine the most challenging ex-vessel steam explosion cases in a typical pressurized water reactor and to estimate the expected pressure loadings on the cavity walls. The performed analysis shows that for some ex-vessel steam explosion scenarios significantly higher pressure loads are predicted than obtained in the OECD programme SERENA Phase 1. (author)

  3. Experimental investigation of the coolability of blocked hexagonal bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hózer, Zoltán, E-mail: zoltan.hozer@energia.mta.hu; Nagy, Imre; Kunstár, Mihály; Szabó, Péter; Vér, Nóra; Farkas, Róbert; Trosztel, István; Vimi, András

    2017-06-15

    Highlights: • Experiments were performed with electrically heated hexagonal fuel bundles. • Coolability of ballooned VVER-440 type bundle was confirmed up to high blockage rate. • Pellet relocation effect causes delay in the cool-down of the bundle. • The bypass line does not prevent the reflood of ballooned fuel rods. - Abstract: The CODEX-COOL experimental series was carried out in order to evaluate the effect of ballooning and pellet relocation in hexagonal bundles on the coolability of fuel rods after a LOCA event. The effects of blockage geometry, coolant flowrate, initial temperature and axial profile were investigated. The experimental results confirmed that a VVER bundle up to 80% blockage rate remains coolable after a LOCA event under design basis conditions. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front.

  4. An experimental study on coolability of a particulate bed with radial stratification or triangular shape

    International Nuclear Information System (INIS)

    Thakre, Sachin; Li, Liangxing; Ma, Weimin

    2014-01-01

    Highlights: • Dryout heat flux of a particulate bed with radial stratification is obtained. • It was found to be dominated by hydrodynamics in the bigger size of particle layer. • Coolability of a particulate bed with triangular shape is investigated. • The coolability is improved in the triangular bed due to lateral ingression of coolant. • Coolability of both beds is enhanced by a downcomer. - Abstract: This paper deals with the results of an experimental study on the coolability of particulate beds with radial stratification and triangular shape, respectively. The study is intended to get an idea on how the coolability is affected by the different features of a debris bed formed in a severe accident of light water reactors. The experiments were performed on the POMECO-HT facility which was constructed to investigate two-phase flow and heat transfer in particulate beds under either top-flooding or bottom-fed condition. A downcomer is designed to enable investigation of the effectiveness of natural circulation driven coolability. Two homogenous beds were also employed in the present study to compare their dryout power densities with those of the radially stratified bed and the triangular bed. The results show that the dryout heat fluxes of the homogeneous beds at top-flooding condition can be predicted by the Reed model. For the radially stratified bed, the dryout heat flux is dominated by two-phase flow in the columns packed with larger particles, and the dryout occurred initially near the boundary between the middle column and a side column. Given the same volume of particles under top-flooding condition, the dryout power density of the triangular bed is about 69% higher than that of the homogenous bed. The coolability of all the beds is enhanced by bottom-fed coolant driven by either forced injection or downcomer-induced natural circulation

  5. An experimental study on coolability of a particulate bed with radial stratification or triangular shape

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, Sachin; Li, Liangxing; Ma, Weimin, E-mail: ma@safety.sci.kth.se

    2014-09-15

    Highlights: • Dryout heat flux of a particulate bed with radial stratification is obtained. • It was found to be dominated by hydrodynamics in the bigger size of particle layer. • Coolability of a particulate bed with triangular shape is investigated. • The coolability is improved in the triangular bed due to lateral ingression of coolant. • Coolability of both beds is enhanced by a downcomer. - Abstract: This paper deals with the results of an experimental study on the coolability of particulate beds with radial stratification and triangular shape, respectively. The study is intended to get an idea on how the coolability is affected by the different features of a debris bed formed in a severe accident of light water reactors. The experiments were performed on the POMECO-HT facility which was constructed to investigate two-phase flow and heat transfer in particulate beds under either top-flooding or bottom-fed condition. A downcomer is designed to enable investigation of the effectiveness of natural circulation driven coolability. Two homogenous beds were also employed in the present study to compare their dryout power densities with those of the radially stratified bed and the triangular bed. The results show that the dryout heat fluxes of the homogeneous beds at top-flooding condition can be predicted by the Reed model. For the radially stratified bed, the dryout heat flux is dominated by two-phase flow in the columns packed with larger particles, and the dryout occurred initially near the boundary between the middle column and a side column. Given the same volume of particles under top-flooding condition, the dryout power density of the triangular bed is about 69% higher than that of the homogenous bed. The coolability of all the beds is enhanced by bottom-fed coolant driven by either forced injection or downcomer-induced natural circulation.

  6. An experimental study on feasibility of ex-vessel cooling through the external guide vessel

    International Nuclear Information System (INIS)

    Kang, Kyoung-Ho; Kim, Jong-Hwan; Park, Rae-Jun; Kim, Sang-Baik

    2000-01-01

    This paper presents the results of a series of experiments for assessing the efficacy of ex-vessel cooling through the external guide vessel during a severe accident. Four tests were performed in the LAVA test facility at KAERI, varying the boundary conditions at the outer surface of the vessel. The first test was a dry condition test conducted without cooling the outside of the vessel. On the other hand, in the second test, the cooling of the vessel surface was produced by gravity-driven forced injection of water along the annular gap of 25 mm between the vessel and the external guide vessel. Water flow rate was about 0.85 kg/s and total mass of available water was 300 kg. For the evaluation of the water flow rate effect, the third test was performed with a pool type cooling in the annulus without any circulation of water. These two external cooling tests were performed under elevated pressure of about 1.6 MPa. Finally, the fourth test was conducted under atmospheric pressure to evaluate the effect of system pressure on boiling heat transfer characteristics. In the dry test and the pool type ex-vessel cooling test performed under atmospheric pressure, the vessel was failed by a melt penetration at about 40 degree upper position from the vessel bottom, which is coincident with the boundary of the Al 2 O 3 /Fe melt separated layers. On the other hand, in both of the ex-vessel cooling tests conducted under elevated pressure of about 1.6 MPa, the vessel didn't fail. Compared with the pool boiling test, the vessel experienced effective cooling due to the inlet flow in the forced flow test. Synthesized the results of the tests, it was shown that the heat removal with ex-vessel cooling through the guide vessel is feasible, but the additional evaluations should be performed to guarantee enough thermal margin. (author)

  7. Parametric model to estimate containment loads following an ex-vessel steam spike

    International Nuclear Information System (INIS)

    Lopez, R.; Hernandez, J.; Huerta, A.

    1998-01-01

    This paper describes the use of a relatively simple parametric model to estimate containment loads following an ex-vessel steam spike. The study was motivated because several PSAs have identified containment loads accompanying reactor vessel failures as a major contributor to early containment failure. The paper includes a detailed description of the simple but physically sound parametric model which was adopted to estimate containment loads following a steam spike into the reactor cavity. (author)

  8. Ex-vessel Fish Price Database: Disaggregating Prices for Low-Priced Species from Reduction Fisheries

    Directory of Open Access Journals (Sweden)

    Travis C. Tai

    2017-11-01

    Full Text Available Ex-vessel fish prices are essential for comprehensive fisheries management and socioeconomic analyses for fisheries science. In this paper, we reconstructed a global ex-vessel price database with the following areas of improvement: (1 compiling reported prices explicitly listed as “for reduction to fishmeal and fish oil” to estimate prices separately for catches destined for fishmeal and fish oil production, and other non-direct human consumption purposes; (2 including 95% confidence limit estimates for each price estimation; and (3 increasing the number of input data and the number of price estimates to match the reconstructed Sea Around Us catch database. Our primary focus was to address this first area of improvement as ex-vessel prices for catches destined for non-direct human consumption purposes were substantially overestimated, notably in countries with large reduction fisheries. For example in Peru, 2010 landed values were estimated as 3.8 billion real 2010 USD when using separate prices for reduction fisheries, compared with 5.8 billion using previous methods with only one price for all end-products. This update of the price database has significant global and country-specific impacts on fisheries price and landed value trends over time.

  9. Optimized design of an ex-vessel cooling thermosyphon for decay heat removal in SFR

    International Nuclear Information System (INIS)

    Choi, Jae Young; Jeong, Yong Hoon; Song, Sub Lee; Chang, Soon Heung

    2017-01-01

    Passive decay heat removal and sodium fire are two major key issues of nuclear safety in sodium-cooled fast reactor (SFR). Several decay heat removal systems (DHR) were suggested for SFR around the world so far. Those DHRS mainly classified into two concepts: Direct reactor cooling system and ex-vessel cooling system. Direct reactor cooling method represented by PDHRS from PGSFR has disadvantages on its additional in-vessel structure and potential sodium fire risk due to the sodium-filled heat exchanger exposed to air. Contrastively, ex-vessel cooling method represented by RVACS from PRISM has low decay heat removal performance, which cannot be applicable to large scale reactors, generally over 1000 MWth. No passive DHRSs which can solve both side of disadvantages has been suggested yet. The goal of this study was to propose ex-vessel cooling system using two-phase closed thermosyphon to compensate the disadvantages of the past DHRSs. Reference reactor was Innovative SFR (iSFR), a pool-type SFR designed by KAIST and featured by extended core lifetime and increased thermal efficiency. Proposed ex-vessel cooling system consisted of 4 trains of thermosyphons and designed to remove 1% of thermal power with 10% of margin. The scopes of this study were design of proposed passive DHRS, validation of system analysis and optimization of system design. Mercury was selected as working fluid to design ex-vessel thermosyphon in consideration of system geometry, operating temperature and required heat flux. SUS 316 with chrome coated liner was selected as case material to resist against high corrosivity of mercury. Thermosyphon evaporator was covered on the surface of reactor vessel as the geometry of hollow shell filled with mercury. Condenser was consisted of finned tube bundles and was located in isolated water pool, the ultimate heat sink. Operation limits and thermal resistance was estimated to guarantee whether the design was adequate. System analysis was conducted by in

  10. Design, fabrication and operating experience of Monju ex-vessel fuel storage tank

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Yamagishi, Yoshiaki; Kuroha, Mitsuo; Inoue, Tatsuya

    1995-01-01

    In FBRs there are two methods of storing and cooling the spent fuel - the in-vessel storage and the ex-vessel storage. Because of the sodium leaks through the tank at the beginning of pre-operation, the utilization of the ex-vessel fuel storage tank (EVST) of some FBR plant has been changed from the ex-vessel fuel storage to the interim fuel transfer tank. This led to reactor designers focusing on the material, structure and fabrication of the carbon steel sodium storage tanks worldwide. The Monju EVST was at the final stage of the design, when the leaks occurred. The lesson learned from that experience and the domestic fabrication technology are reflected to the design and fabrication of the Monju EVST. This paper describes the design, fabrication and R and D results for the tank, and operating experience in functional test. The items to be examined are as follows: (1) Overall structure of the tank and design philosophy on the function, (2) Structure of the cover shielding plug and its design philosophy, (3) Structures of the rotating rack and its bearings, and their design philosophy, (4) Cooling method and its design philosophy, (5) Structure and fabrication of the cooling coil support inside EVST with comparison of leaked case, (6) R and D effort for items above. The fabrication of the Monju EVST started in August 1986 and it was shipped to the site in March 1990. Installation was completed in November 1990, and sodium fill after pre-heating started in 1991. The operation has been continued since September 1992. In 1996 when the first spent fuel is stored, its total functions will be examined. (author)

  11. Preliminary Analysis of Ex-Vessel Steam Explosion using TEXAS-V code for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Chu; Lee, Jung Jae; Cho, Yong Jin; Hwang, Taesuk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The purpose of this study is to explore input development and the audit calculation using TEXAS-V code for ex-vessel steam explosion for a flooded reactor cavity of APR1400. TEXAS computational models are one of the simplified tools for simulations of fuel-coolant interaction during mixing, triggering and explosion phase. The models of TEXAS code were validated by performing the fundamental experimental investigation in the KROTOS facility at JRC, Ispra. The experiments such as KROTOS and FARO experiment are aimed at providing benchmark data to examine the effect of fuel-coolant initial conditions and mixing on explosion energetics with alumina and prototypical core material. TEXAS-V code used in this study was to analyze and predict the ex-vessel steam explosion for a reactor scale. The input deck to simulate the flooded reactor cavity of APR1400 is developed and base case calculation is performed. This study will provide a base for further study. The code will be of use for the evaluation and sensitivity study of ex-vessel steam explosion for ERVC strategy in the future studies. Analysis result of this study is similar to the result of other study. Through this study, it is found that TEXAS-V could be the used as a tool for predicting the steam explosion load on a reactor scale, as fast running computer code. In addition, TEXAS-V code could be to evaluate the impact of various uncertainties, which are not clearly understood yet, to provide a conservative envelope for the steam explosion.

  12. Preliminary Analysis of Ex-Vessel Steam Explosion using TEXAS-V code for APR1400

    International Nuclear Information System (INIS)

    Song, Sung Chu; Lee, Jung Jae; Cho, Yong Jin; Hwang, Taesuk

    2013-01-01

    The purpose of this study is to explore input development and the audit calculation using TEXAS-V code for ex-vessel steam explosion for a flooded reactor cavity of APR1400. TEXAS computational models are one of the simplified tools for simulations of fuel-coolant interaction during mixing, triggering and explosion phase. The models of TEXAS code were validated by performing the fundamental experimental investigation in the KROTOS facility at JRC, Ispra. The experiments such as KROTOS and FARO experiment are aimed at providing benchmark data to examine the effect of fuel-coolant initial conditions and mixing on explosion energetics with alumina and prototypical core material. TEXAS-V code used in this study was to analyze and predict the ex-vessel steam explosion for a reactor scale. The input deck to simulate the flooded reactor cavity of APR1400 is developed and base case calculation is performed. This study will provide a base for further study. The code will be of use for the evaluation and sensitivity study of ex-vessel steam explosion for ERVC strategy in the future studies. Analysis result of this study is similar to the result of other study. Through this study, it is found that TEXAS-V could be the used as a tool for predicting the steam explosion load on a reactor scale, as fast running computer code. In addition, TEXAS-V code could be to evaluate the impact of various uncertainties, which are not clearly understood yet, to provide a conservative envelope for the steam explosion

  13. In-vessel coolability and steam explosion in Nordic BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.; Li, L.; Hansson, R.; Villanueva, W.; Kudinov, P.; Manickam, L.; Tran, C.-T. (Royal Institute of Technology (KTH) (Sweden))

    2011-05-15

    The objective of this research is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in the Nordic BWR plants which employ cavity flooding as severe accident management (SAM) strategy. To quantify the coolability of debris bed packed with irregular particles, the friction laws of fluid flow in particulate beds packed with non-spherical particles were investigated on the POMECO-FL test facility, and the experimental data suggest that the Ergun equation is applicable if the effective particle diameter of the particles is represented by the equivalent diameter of the particles, which is the product of Sauter mean diameter and shape factor of the particles. One-way coupling analysis between PECM model for melt pool heat transfer and ANSYS thermo-structural mechanics was performed to analyze the vessel creep, and the results revealed two different modes of vessel failure: a 'ballooning' of the vessel bottom and a 'localized creep' concentrated within the vicinity of the top surface of the melt pool. Single-droplet steam explosion experiments were carried out by using oxidic mixture of WO{sub 3}-CaO, and the results show an apparent difference in steam explosion energetics between the eutectic and non-eutectic melts at low melt superheat (100 deg. C). (Author)

  14. In-vessel coolability and steam explosion in Nordic BWRs

    International Nuclear Information System (INIS)

    Ma, W.; Li, L.; Hansson, R.; Villanueva, W.; Kudinov, P.; Manickam, L.; Tran, C.-T.

    2011-05-01

    The objective of this research is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in the Nordic BWR plants which employ cavity flooding as severe accident management (SAM) strategy. To quantify the coolability of debris bed packed with irregular particles, the friction laws of fluid flow in particulate beds packed with non-spherical particles were investigated on the POMECO-FL test facility, and the experimental data suggest that the Ergun equation is applicable if the effective particle diameter of the particles is represented by the equivalent diameter of the particles, which is the product of Sauter mean diameter and shape factor of the particles. One-way coupling analysis between PECM model for melt pool heat transfer and ANSYS thermo-structural mechanics was performed to analyze the vessel creep, and the results revealed two different modes of vessel failure: a 'ballooning' of the vessel bottom and a 'localized creep' concentrated within the vicinity of the top surface of the melt pool. Single-droplet steam explosion experiments were carried out by using oxidic mixture of WO 3 -CaO, and the results show an apparent difference in steam explosion energetics between the eutectic and non-eutectic melts at low melt superheat (100 deg. C). (Author)

  15. Importance of the in and ex-vessel corium coolability in case of severe accident for the French PWRs. Some views from L2 PSA and perspectives

    International Nuclear Information System (INIS)

    Raimond, E.; Caroli, C.; Meignen, R.; Rahni, N.; Laurent, B.

    2011-01-01

    In the case of a severe accident on a NPP leading to core degradation after a default in the core cooling as during the accident of Three Mile Island (TMI2), the most efficient way to stop the accident progression would be the in-vessel water injection if a specific mean is available. The TMI2 accident has shown that the accident can be stopped and that the corium, even if highly degraded, can be cooled, but no one can generalize the TMI2 accident termination to all situations. The present paper aims at presenting the situation for the French operated PWRs and is mainly based on the IRSN experience in level 2 probabilistic safety assessment (L2 PSA) development for this type of reactor. It tries to highlight the benefit that could be obtained from a better understanding of the corium cooling phenomenology, including both possible positive and negative effects. Three main negative effects of in-vessel flooding have to be taken into account in a L2 PSA for a PWR: an increase of the hydrogen production rate, a risk of in-vessel pressure increase and the development of conditions for steam explosion. L2 PSAs in France have now reached a certain maturity allowing raising some more precise issues, but for the issues presented in this paper, some progress from the research-development and the simulation tools (mainly the ASTEC integral code) are still necessary to support decision-making

  16. A simple evaluation of containment integrity against ex-vessel steam explosion

    International Nuclear Information System (INIS)

    Nishiura, Hiroshi

    2000-01-01

    The guideline for consideration to severe accidents on containment design for next-generation LWR was published in 1999. In order to verify the validity of future containment designs, we have developed a method of assessing for the containment integrity against ex-vessel steam explosion. First, we conducted a simple evaluation on an Advanced PWR. The strength of the reactor cavity wall was assumed to be equivalent to the total strain energy which would accumulate by the time one reinforcing bar element would first reach the failure strain in FEM analyses. As a result, the strength was evaluated to be about 72 MJ. The explosion energy was assumed to be a function of the mass of the dropping melted core and the conversion ratio. Assuming the conversion ratio of 1%, it was estimated that the explosion energy would amount to about 1 MJ if the melt mass corresponds to the break of one instrumentation guide tube penetration, and about 40 MJ if the mass corresponds to the simultaneous break of all penetrations. Therefore, it is expected that the explosion energy would be less than the wall strength; thus, the containment integrity would be maintained even if an ex-vessel steam explosion were to occur. (author)

  17. Analyses for passive safety of fusion reactor during ex-vessel loss of coolant accident

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Maki, Koichi; Uda, Tatuhiko; Seki, Yasushi; Aoki, Isao; Kunugi, Tomoaki.

    1995-01-01

    Passive safety of nuclear fusion reactors during ex-vessel Loss-of-Coolant Accidents (LOCAs) in the divertor cooling system has been investigated using a hybrid code, which can treat the interaction of the plasma and plasma facing components (PFCs). The code has been modified to include the impurity emission from PFCs with a diffusion model at the edge plasma. We assumed an ex-vessel LOCA of the divertor cooling system during the ignited operation in International Thermonuclear Experimental Reactor (ITER), in which a carbon-copper brazed divertor plate was employed in the Conceptual Design Activity (CDA). When a double-ended break occurs at the cold leg of the divertor cooling system, the impurity density in the main plasma becomes about twice within 2s after the LOCA due to radiation enhanced sublimation of graphite PFCs. The copper cooling tube of the divertor begins to melt at about 3s after the LOCA, even though the plasma is passively shut down at about 4s due to the impurity accumulation. It is necessary to apply other PFC materials, which can shorten the time period for passive shutdown, or an active shutdown system to keep the reactor structures intact for such rapid transient accident. (author)

  18. Ex-vessel remote maintenance design for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Macdonald, D.

    1987-01-01

    The use of deuterium-tritium (D-T) fuel for operation of the Compact Ignition Tokamak (CIT) imposes a requirement for remote handling technology for ex-vessel maintenance operations on auxiliary machine components. These operations consist of repairing and replacing components such as diagnostic, radio-frequency (rf) heating, and fueling systems using remotely operated maintenance equipment in the test cell. In addition, ex-vessel maintenance design also includes developing hot cell facilities for equipment decontamination, repair, and solid radioactive waste handling. The test cell maintenance philosophy is markedly influenced by the neutron/gamma shield surrounding the machine that allows personal access into the test cell one day after shutdown. Hence, maintenance operations can be performed hands-on in the test cell with the shield intact and must be remotely performed when the shield is disassembled for machine access. The constricted access to the auxiliary components of the machine affect the design requirements for the maintenance equipment and impose major spatial constraints. Several major areas of the maintenance system design are being addressed in fiscal year 1987. These include conceptual design of the manipulator system, preliminary remote equipment research and development, and definition of the hot cell, decontamination, and equipment repair facility requirements. The manipulator work includes investigating transporters and viewing/lighting subsystems. 2 figs

  19. Experimental Validation of Ex-Vessel Neutron Spectrum by Means of Dosimeter Materials Activation Method

    Directory of Open Access Journals (Sweden)

    S.A. Santa

    2017-06-01

    Full Text Available Neutron spectrum information in reactor core and around of ex-vessel reactor needs to be known with a certain degree of accuracy to support the development of fuels, materials, and other components. The most common method to determine neutron spectra is by utilizing the radioactivation of dosimeter materials. This report presents the evaluation of neutron flux incident on M3dosimeter sets which were irradiated outside the reactor vessel,as well as the validation of  neutron spectrum calculation. Al capsules containing both dosimeter set covered withCd and dosimeter set without Cd cover have been irradiated during the 35th operational cycle in the M3 ex-vessel irradiation hole position207 cmfrom core centerline at the space between the reactor vessel and the safety vessel. The capsules were positioned at Z=0.0 cm of core midplane. Each dosimeter set consists of Co-Al, Sc, Fe, Np, Nb, Ni, B, and Ta. The gamma-ray spectra of irradiated dosimeter materials were measured by 63 cc HPGe solid-state detector and photo-peak spectra were analyzed using BOB75 code. The reaction rates of each dosimeter materials and its uncertainty were analyzed based on 59Co (n,g 60Co, 237Np (n,f 95Zr-103Ru,  45Sc (n,g 46Sc, 58Fe (n,g 59Fe, 181Ta (n,g 182Ta, and 58Ni (n,p58Co reactions. The measured Cd ratios indicate that neutron spectrum at the irradiated dosimeter sets was dominated by low energy neutron. The experimental result shows that the calculated neutron spectra by DORT code at the ex-vessel positions need correction, especially in the fast neutron energy region, so as to obtain reasonable unfolding result consistent with the reaction rate measurement without any exception. Using biased DORT initial spectrum, the neutron spectrum and its integral quantity were unfolded by NEUPAC code. The result shows that total neutron flux, flux above 1.0 MeV, flux above 0.1 MeV, and the displacement rate of the dosimeter set not covered with Cd were 1.75× 1012 n cm2 s-1, 1

  20. Coolability of the melt in the reactor tank. A compilation and evaluation of the state of the art and suggestions for experiments in the area; Smaeltans kylbarhet i reaktortanken. En sammanstaellning och vaerdering av kunskapslaeget och foerslag till experiment inom omraadet

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ferenc [ES-konsult Energi och Saekerhet AB, Stockholm (Sweden)

    2002-04-01

    This study is limited to experiments about phenomena and mechanisms that affect the coolability of core debris in the reactor tank that may delay the tank rupture. The goal of the study is to get an overview of the phenomena that are important for the in-vessel coolability, and to evaluate the need for new experiments. Both theoretical and experimental projects are suggested.

  1. PWR neutron ex-vessel detection calculations using three-dimensional codes

    International Nuclear Information System (INIS)

    Dekens, O.; Lefebvre, J.C.; Rohart, M.; Chiron, M.

    1997-01-01

    During the accident of TM12, the signal delivered by source detectors was exceptionally high. This phenomenon was found out to be due to the water inventory in the primary system. Thus, in their research activity, Electricite de France (EdF) and Commissariat a l'Energie Atomique (CEA) have jointly launched a programme, whose aim was to determine to what extent the response of ex-vessel neutron detectors are representative of reactor water level (or sources positions) in a French 900 MWe PWR. In this framework, both partners developed the methods needed for each step of the calculation chain. Finally, a simulation of a LOCA indicates that the loss of coolant can be detected by existing monitoring system, and could be more efficiently found by changing the position of the source range detectors. (authors)

  2. Ex-vessel break in ITER divertor cooling loop analysis with the ECART code

    CERN Document Server

    Cambi, G; Parozzi, F; Porfiri, MT

    2003-01-01

    A hypothetical double-ended pipe rupture in the ex-vessel section of the International Thermonuclear Experimental Reactor (ITER) divertor primary heat transfer system during pulse operation has been assessed using the nuclear source term ECART code. That code was originally designed and validated for traditional nuclear power plant safety analyses, and has been internationally recognized as a relevant nuclear source term codes for nuclear fission plants. It permits the simulation of chemical reactions and transport of radioactive gases and aerosols under two-phase flow transients in generic flow systems, using a built-in thermal-hydraulic model. A comparison with the results given in ITER Generic Site Safety Report, obtained using a thermal-hydraulic system code (ATHENA), a containment code (INTRA) and an aerosol transportation code (NAUA), in a sequential way, is also presented and discussed.

  3. Proposal of Ex-Vessel dosimetry for pressure vessel Atucha II

    International Nuclear Information System (INIS)

    Chiaraviglio, N.; Bazzana, S.

    2013-01-01

    Nuclear reactor dosimetry has the purpose of guarantee that changes in material mechanical properties of critical materials do not compromise the reactor safety. In PWR in which the top of the reactor vessel is open once a year, is possible to use Charpy specimens to measure the change in mechanical properties. Atucha II nuclear power plant is a reactor with on-line refueling so there is no access to the inside of the pressure vessel. Because of this, ex-vessel dosimetry must be performed and mechanical properties changes must be inferred from radiation damage estimations. This damage can be calculated using displacement per atom cross sections and a transport code such as MCNP. To increase results reliability it is proposed to make a neutron spectrum unfolding using activation dosimeters irradiated during one operation cycle of the power plant. In this work we present a dosimetry proposal for such end, made in base of unfolding procedures and experimental background. (author) [es

  4. Ex-vessel water-level and fission-product monitoring for LWR

    International Nuclear Information System (INIS)

    DeVolpi, A.; Markoff, D.

    1988-01-01

    Given that the need for direct measurement of reactor coolant inventory under operational or abnormal conditions remains unsatisfied, a high-energy gamma-ray detection system is described for ex-vessel monitoring. The system has been modeled to predict response in a PWR, and the model has been validated with a LOFT LOCA sequence. The apparatus, situated outside the pressure vessel, would give relative water level and density over the entire vessel height and distinguish differing levels in the downcomer and core. It would also have significant sensitivity after power shutdown because of high-energy gamma rays from photoneutron capture, the photoneutrons being the result of fission-product decay in the core. Fission-products released to the coolant and accumulated in the top of a PWR vessel would also be theoretically detectable

  5. Characterization of photo-multiplier tube as ex-vessel radiation detector in tokamak

    Science.gov (United States)

    Jo, Jungmin; Cheon, MunSeong; Kim, Junghee; An, YoungHwa; Park, Seungil; Chung, Kyoung-Jae; Hwang, Y. S.

    2017-09-01

    Feasibility of using conventional photo-multiplier tubes (PMTs) without a scintillator as an ex-vessel radiation detector in a tokamak environment is studied. Basic irradiation tests using standard gamma ray sources and a d-d neutron generator showed that the PMT is responding both to gamma photons and neutrons, possibly due to the direct generation of secondary electrons inside the PMT by the impingement of high energy photons. Because of the selective sensitivity of the PMT to hard x-ray and neutrons in ohmic and neutral beam injected plasmas, respectively, it is shown that the PMT with certain configuration can be utilized either to monitor the fluctuation in the fusion neutron generation rate or to study the behavior of runaway electrons in tokamaks.

  6. Significance of fluid-structure interaction phenomena for containment response to ex-vessel steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Almstroem, H.; Sundel, T. [National Defence Research Establishment, Stockholm (Sweden); Frid, W.; Engelbrektson, A.

    1998-01-01

    When studying the structural response of a containment building to ex-vessel steam explosion loads, a two-step procedure is often used. In the first step of this procedure the structures are treated as rigid and the pressure-time history generated by the explosion at the rigid wall is calculated. In the second step the calculated pressure is applied to the structures. The obvious weakness of the two-step procedure is that it does not correspond to the real dynamic behaviour of the fluid-structure system. The purpose of this paper is to identify and evaluate the relevant fluid-structure interaction phenomena. This is achieved through direct treatment of the explosion process and the structural response. The predictions of a direct and two-step treatment are compared for a BWR Mark II containment design, consisting of two concentric walls interacting with water masses in the central and annular pools. It is shown that the two-step approach leads to unrealistic energy transfer in the containment system studied, and to significant overestimation of the deflection of the containment wall. As regards the pedestal wall, the direct method analysis shows that the flexibility of this wall affects the pressure-time history considerably. Three load types have been identified for this wall namely shock load, water blow as a result of water cavitation, and hydrodynamic load. Reloading impulse due to cavitation phenomena plays an important role as it amounts to about 40% of the total impulse load. Investigation of the generality of the cavitation phenomena in the context of ex-vessel steam explosion loads was outside the scope of this work. (author)

  7. Significance of fluid-structure interaction phenomena for containment response to ex-vessel steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Almstroem, H.; Sundel, T. (Nat. Defence Res. Establ., Tumba (Sweden)); Frid, W. (Swedish Nuclear Power Inspectorate, SE-10658, Stockholm (Sweden)); Engelbrektson, A. (VBB/SWECO, Box 34044, SE-10026, Stockholm (Sweden))

    1999-05-01

    When studying the structural response of a containment building to ex-vessel steam explosion loads, a two-step procedure is often used. In the first step of this procedure the structures are treated as rigid and the pressure-time history generated by the explosion, at the rigid wall, is calculated. In the second step the calculated pressure is applied to the structures. The obvious weakness of the two-step procedure is that it does not correspond to the real dynamic behaviour of the fluid-structure system. The purpose of this paper is to identify and evaluate the relevant fluid-structure interaction phenomena. This is achieved through direct treatment of the explosion process and the structural response. The predictions of a direct and two-step treatment are compared for a BWR Mark II containment design, consisting of two concentric walls interacting with water masses in the central and annular pools. It is shown that the two-step approach leads to unrealistic energy transfer in the containment system studied and to significant overestimation of the deflection of the containment wall. As regards the pedestal wall, the direct method analysis shows that the flexibility of this wall affects the pressure-time history considerably. Three load types have been identified for this wall namely shock load, water blow as a result of water cavitation, and hydrodynamic load. Reloading impulse due to cavitation phenomena plays an important role as it amounts to [approx]40% of the total impulse load. Investigation of the generality of the cavitation phenomena in the context of ex-vessel steam explosion loads was outside the scope of this work. (orig.) 5 refs.

  8. Significance of fluid-structure interaction phenomena for containment response to ex-vessel steam explosions

    International Nuclear Information System (INIS)

    Almstroem, H.; Sundel, T.; Frid, W.; Engelbrektson, A.

    1999-01-01

    When studying the structural response of a containment building to ex-vessel steam explosion loads, a two-step procedure is often used. In the first step of this procedure the structures are treated as rigid and the pressure-time history generated by the explosion, at the rigid wall, is calculated. In the second step the calculated pressure is applied to the structures. The obvious weakness of the two-step procedure is that it does not correspond to the real dynamic behaviour of the fluid-structure system. The purpose of this paper is to identify and evaluate the relevant fluid-structure interaction phenomena. This is achieved through direct treatment of the explosion process and the structural response. The predictions of a direct and two-step treatment are compared for a BWR Mark II containment design, consisting of two concentric walls interacting with water masses in the central and annular pools. It is shown that the two-step approach leads to unrealistic energy transfer in the containment system studied and to significant overestimation of the deflection of the containment wall. As regards the pedestal wall, the direct method analysis shows that the flexibility of this wall affects the pressure-time history considerably. Three load types have been identified for this wall namely shock load, water blow as a result of water cavitation, and hydrodynamic load. Reloading impulse due to cavitation phenomena plays an important role as it amounts to ∼40% of the total impulse load. Investigation of the generality of the cavitation phenomena in the context of ex-vessel steam explosion loads was outside the scope of this work. (orig.)

  9. LACOMERA - large scale experiments on core degradation, melt retention and coolability at the Forschungszentrum Karslruhe

    International Nuclear Information System (INIS)

    Miassoedov, A.; Alsmeyer, H.; Meyer, L.

    2003-01-01

    The LACOMERA project at the Forschungszentrum Karlsruhe is a 3 year shared-cost action within the Fifth Framework Programme which started in September 2002. The overall objectives of the LACOMERA project are to provide research institutions from the EU member countries and associated states access to large scale experimental facilities at the Forschungszentrum Karlsruhe which shall be used to increase the knowledge of the quenching of a degraded core and regaining melt coolability in the reactor pressure vessel, of possible melt dispersion to the cavity, of molten core concrete interaction and of ex-vessel melt coolability. One major aspect is to understand how these events affect the safety of European reactors so as to lead to soundly-based accident management procedures. The project will bring together interested partners of different European member states in the area of severe accident analysis and control, with the goal to increase the public confidence in the use of nuclear energy. Moreover, partners from the newly associated states should be included as far as possible, and therefore the needs of Eastern, as well as Western, reactors will be considered in LACOMERA project. The project offers a unique opportunity to get involved in the networks and activities supporting VVER safety, and for Eastern experts to get an access to large scale experimental facilities in a Western research organisation to improve understanding of material properties and core behaviour under severe accident conditions. As a result of the first call for proposals a project on air ingress test in the QUENCH facility has been selected. A second call for proposals is opened with a deadline of 31 December 2003. (author)

  10. In-vessel coolability and steam explosion in Nordic BWRs

    International Nuclear Information System (INIS)

    Ma, W.; Hansson, R.; Li, L.; Kudinov, P.; Cadinu, F.; Tran, C-.T.

    2010-05-01

    The INCOSE project is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in Nordic BWR plants with the cavity flooding as a severe accident management (SAM) measure. During 2009 substantial advances and new insights into physical mechanisms were gained for studies of: (i) in-vessel corium coolability - development of the methodologies to assess the efficiency of the control rod guide tube (CRGT) cooling as a potential SAM measure; (ii) debris bed coolability - characterization of the effective particle diameter of multi-size particles and qualification of friction law for two-phase flow in the beds packed with multi-size particles; and (iii) steam explosion - investigation of the effect of binary oxides mixtures properties on steam explosion. An approach for coupling of ECM/PECM models with RELAP5 was developed to enhance predictive fidelity for melt pool heat transfer. MELCOR was employed to examine the CRGT cooling efficiency by considering an entire accident scenario, and the simulation results show that the nominal flowrate (∼10kg/s) of CRGT cooling is sufficient to maintain the integrity of the vessel in a BWR of 3900 MWth, if the water injection is activated no later than 1 hour after scram. The POMECO-FL experimental data suggest that for a particulate bed packed with multi-size particles, the effective particle diameter can be represented by the area mean diameter of the particles, while at high velocity (Re>7) the effective particle diameter is closer to the length mean diameter. The pressure drop of two-phase flow through the particulate bed can be predicted by Reed's model. The steam explosion experiments performed at high melt superheat (>200oC) using oxidic mixture of WO3-CaO didn't detect an apparent difference in steam explosion energetics and preconditioning between the eutectic and noneutectic melts. This points out that the next step of MISTEE experiment will be conducted at lower superheat. (author)

  11. Ex-Vessel Steam Explosion Analysis of Central Melt Pour Scenario

    International Nuclear Information System (INIS)

    Ursic, M.; Leskovar, M.

    2008-01-01

    An ex-vessel steam explosion may develop during a severe reactor accident when the reactor vessel fails and the molten core interacts with the coolant in the reactor cavity. At this process part of the corium energy is intensively transferred to water in a very short time scale. The water vaporizes at high pressure and expands, doing work on its surrounding. Although the steam explosion has probably a low probability of occurrence, it is an important nuclear safety issue in case of a severe reactor accident. Namely, the formed very high pressure region induces dynamic loadings on the surrounding structures that may potentially lead to an early release of the radioactive material into the environment. Although the steam explosion events have being studied for several years, the level of the process and consequences understanding is still not adequate. To increase the level of confidence the OECD programme SERENA (Steam Explosion REsolution for Nuclear Applications) was established in 2002. The objectives of the program were to evaluate capabilities of the current generation of the FCI (Fuel-Coolant Interaction) computer codes in predicting the steam explosion induced loads, identifying key FCI phenomena and associated uncertainties impacting the predictability of the steam explosion energetics in the reactor situations and proposing confirmatory research to reduce the uncertainties to acceptable levels for the steam explosion risk assessment. To get a better insight into the most challenging ex-vessel steam explosions, analyses for different locations of the melt release, the cavity water sub-cooling, the primary system pressure overpressure and the triggering time were preformed for a typical pressurized water reactor cavity. The results of some scenarios revealed that significantly higher pressure loads are predicted than obtained in the OECD programme SERENA Phase 1. Among the performed analyses for the central melt pour scenarios, the maximum pressure loads were

  12. Investigation on energetics of ex-vessel vapor explosion based on spontaneous nucleation fragmentation

    International Nuclear Information System (INIS)

    Liu, Jie; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A computer code PROVER-I is developed for propagation phase of vapor explosion. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The energetics of ex-vessel vapor explosion is investigated based on different fragmentation models. A higher pressure peak and a larger mechanical energy conversion ratio are obtained by spontaneous nucleation fragmentation. A smaller energy conversion ratio results from normal boiling fragmentation. When the delay time in thermal fragmentation model is near 0.0 ms, the pressure propagation behavior tends to be analogous with that in hydrodynamic fragmentation. If the delay time is longer, pressure attenuation occurs at the shock front. The high energy conversion ratio (>4%) is obtained in a small vapor volume fraction together with spontaneous nucleation fragmentation. These results are consistent with fuel-coolant interaction experiments with alumina melt. However, in larger vapor volume fraction conditions (α υ >0.3), the vapor explosion is weak. For corium melt, a coarse mixture with void fraction of more than 30% can be generated in the pre-mixing process because of its physical properties. In the mixture with such a high void fraction the energetic vapor explosion hardly takes place. (author)

  13. First evaluations of ex-vessel fuel-coolant interaction with MC3D

    International Nuclear Information System (INIS)

    Meignen, R.; Dupas, J.; Chaumont, B.

    2003-01-01

    In the frame of severe accident nuclear safety studies, we evaluate for French PWR's the potential of Steam Explosion in the reactor pit, consecutively to a vessel failure and to the mixing of the corium with the water that might be present. The evaluations are made with MC3D. This thermalhydraulic multiphasic code has firstly been qualified and its main parameters chosen so that a sufficient validation is obtained with regards to reactor situations. The safety study for ex-vessel situations is a step-by-step procedure that leads to a progressive process of hypotheses relaxations. We find that it is important to adequately model the corium ejection from the RPV. The rapid transition of the flow at the breach towards 2-phase dispersed flow leads to an important mixing of corium and water. The vessel pressurization is a very important parameter and strong pressure cases lead to a fine fragmentation and thus a high voiding. The small pressure cases are more dangerous for two reasons: the corium is dispersed in larger drops, and some important interactions (in the premixing sense) are reported

  14. Atucha I nuclear power plant azimuthal ex-vessel flux profile evaluation

    International Nuclear Information System (INIS)

    Ferraro, Diego

    2008-01-01

    Irradiation damage in RPV (Reactor Pressure Vessel) in nuclear power plants is a key parameter to be analyzed in order to assess the plant integrity up to end of life and planning for a possible plant life extension. In this work a neutronic model in MCNP that represents a sector of 30 degrees of the Atucha I power plant nucleus has been consolidated with the results of an ex-vessel dosimetry made in the outer surface of the RPV s power plant in order to analyse the irradiation damage through the dpa rate. A strong dependents of the maximum point of damage with the loading of a peripheral channel was found, so a mitigation strategy was proposed, which is basically to empty this channel and its analogs in the rest of the nucleus. Analysing this second case a notable decrease of the damage is found in the zone considerated on the model (shown through the drop of de dpa rate in the zone). [es

  15. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  16. Feasibility studies on plasma vertical position control by ex-vessel coils in ITER-like tokamak fusion reactors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sugihara, Masayoshi; Shimomura, Yasuo

    1993-01-01

    Feasibility of the plasma vertical position control by control coils installed outside the vacuum vessel (ex-vessel) in a tokamak fusion reactor is examined for an ITER-like device. When a pair of ex-vessel control coils is made of normal conductor material and located near the outmost superconducting (SC) poloidal field (PF) coils, the applied voltage of several hundred volts on the control coils is the maximum allowable value which is limited by the maximum allowable induced voltage and eddy current heating on the SC PF coils, under the conditions that the SC PF coils are connected in series and a partitioning connection is employed for each of these PF coils. A proportional and derivative (PD) controller with and without voltage limitation has been employed to examine the feasibility. Indices of settling time and overshoot are introduced to measure the controllability of the control system. Based on these control schemes and indices, higher elongation (κ=2) and moderate elongation (κ=1.6) plasmas are examined for normal and deteriorated (low beta value and peaked current profile) plasma conditions within the restriction of applied voltage and current of control coils. The effect of the time constant of the passive stabilizer is also examined. The major results are: (1) A plasma with an elongation of 2.0 inevitably requires a passive stabilizer close to the plasma surface, (2) in case of a higher elongation than κ=2, even the ex-vessel control coil system is marginally controllable under normal plasma conditions, while it is difficult to control the deteriorated plasma conditions, (3) the time constant of the passive stabilizer is not an essential parameter for the controllability, (4) when the elongation is reduced down to 1.6, the ex-vessel control coil system can control the plasma even under deteriorated plasma conditions. (orig.)

  17. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.

    2013-08-01

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  18. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  19. Molten core debris-sodium interactions: M-Series experiments

    International Nuclear Information System (INIS)

    Sowa, E.S.; Gabor, J.D.; Pavlik, J.R.; Cassulo, J.C.; Cook, C.J.; Baker, L. Jr.

    1979-01-01

    Five new kilogram-scale experiments have been carried out. Four of the experiments simulated the situation where molten core debris flows from a breached reactor vessel into a dry reactor cavity and is followed by a flow of sodium (Ex-vessel case) and one experiment simulated the flow of core debris into an existing pool of sodium (In-vessel case). The core debris was closely simulated by a thermite reaction which produced a molten mixture of UO 2 , ZrO 2 , and stainless steel. There was efficient fragmentation of the debris in all experiments with no explosive interactions observed

  20. Revisiting the analysis of passive plasma shutdown during an ex-vessel loss of coolant accident in ITER blanket

    International Nuclear Information System (INIS)

    Rivas, J.C.; Dies, J.; Fajarnés, X.

    2015-01-01

    Highlights: • We have repeated the safety analysis for the hypothesis of passive plasma shutdown for beryllium evaporation during an ex-vessel LOCA of ITER first wall, with AINA code. • We have performed a sensitivity analysis over some key parameters that represents uncertainties in physics and engineering, to identify cliff edge effects. • The obtained results for the 500 MW inductive scenario, with an ex-vessel LOCA affecting a third of first wall surface are similar to those of previous studies and point to the possibility of a passive plasma shutdown during this safety case, before a serious damage is inflicted to the ITER wall. • The sensitivity analysis revealed a new scenario potentially damaging for the first wall if we increase fusion power and time delay for impurity transport, and decrease fraction of affected first wall area and initial beryllium fraction in plasma. • After studying the 700 MW inductive scenario, with an ex-vessel LOCA affecting 10% of first wall surface, with 0.5% of Be in plasma and a time delay twice the energy confinement time, it was found that affected area of first wall would melt before a passive plasma shutdown occurs. - Abstract: In this contribution, the analysis of passive safety during an ex-vessel loss of coolant accident (LOCA) in the first wall/shield blanket of ITER has been studied with AINA safety code. In the past, this case has been studied using robust safety arguments, based on simple 0D models for plasma balance equations and 1D models for wall heat transfer. The conclusion was that, after first wall heating up due to the loss of all coolant, the beryllium evaporation in the wall surface would induce a growing impurity flux into core plasma that finally would end in a passive shut down of the discharge. The analysis of plasma-wall transients in this work is based in results from AINA code simulations. AINA (Analyses of IN vessel Accidents) code is a safety code developed at Fusion Energy Engineering

  1. Effect of the in- and ex-vessel dual cooling on the retention of an internally heated melt pool in a hemispherical vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, K.I.; Kim, B.S.; Kim, D.H. [Korea Atomic Energy Research Inst., Thermal Hydraulic Safety Research, Taejon (Korea, Republic of)

    2001-07-01

    A concept of in-vessel melt retention (IVMR) by in-vessel reflooding and/or reactor cavity flooding has been considered as one of severe accident management strategies and intensive researches to be performed worldwide. This paper provides some results of analytical investigations on the effect of both in- / ex-vessel cooling on the retention of an internally heated molten pool confined in a hemispherical vessel and the related thermal behavior of the vessel wall. For the present analysis, a scale-down reactor vessel for the KSNP reactor design of 1000 MWe (a large dry PWR) is utilized for a reactor vessel. Aluminum oxide melt simulant is also utilized for a real corium pool. An internal power density in the molten pool is determined by a simple scaling analysis that equates the heat flux on the the scale-down vessel wall to that estimated from KSNP. Well-known temperature-dependent boiling heat transfer curves are applied to the in- and ex-vessel cooling boundaries and radiative heat transfer has been only considered in the case of dry in-vessel. MELTPOOL, which is a computational fluid dynamics (CFD) code developed at KAERI, is applied to obtain the time-varying heat flux distribution from a molten pool and the vessel wall temperature distributions with angular positions along the vessel wall. In order to gain further insights on the effectiveness of in- and ex-vessel dual cooling on the in-vessel corium retention, four different boundary conditions has been considered: no water inside the vessel without ex-vessel cooling, water inside the vessel without ex-vessel cooling, no water inside the vessel with ex-vessel cooling, and water inside the vessel with ex-vessel cooling. (authors)

  2. Effect of the in- and ex-vessel dual cooling on the retention of an internally heated melt pool in a hemispherical vessel

    International Nuclear Information System (INIS)

    Ahn, K.I.; Kim, B.S.; Kim, D.H.

    2001-01-01

    A concept of in-vessel melt retention (IVMR) by in-vessel reflooding and/or reactor cavity flooding has been considered as one of severe accident management strategies and intensive researches to be performed worldwide. This paper provides some results of analytical investigations on the effect of both in- / ex-vessel cooling on the retention of an internally heated molten pool confined in a hemispherical vessel and the related thermal behavior of the vessel wall. For the present analysis, a scale-down reactor vessel for the KSNP reactor design of 1000 MWe (a large dry PWR) is utilized for a reactor vessel. Aluminum oxide melt simulant is also utilized for a real corium pool. An internal power density in the molten pool is determined by a simple scaling analysis that equates the heat flux on the the scale-down vessel wall to that estimated from KSNP. Well-known temperature-dependent boiling heat transfer curves are applied to the in- and ex-vessel cooling boundaries and radiative heat transfer has been only considered in the case of dry in-vessel. MELTPOOL, which is a computational fluid dynamics (CFD) code developed at KAERI, is applied to obtain the time-varying heat flux distribution from a molten pool and the vessel wall temperature distributions with angular positions along the vessel wall. In order to gain further insights on the effectiveness of in- and ex-vessel dual cooling on the in-vessel corium retention, four different boundary conditions has been considered: no water inside the vessel without ex-vessel cooling, water inside the vessel without ex-vessel cooling, no water inside the vessel with ex-vessel cooling, and water inside the vessel with ex-vessel cooling. (authors)

  3. A study on ex-vessel steam explosion for a flooded reactor cavity of reactor scale - 15216

    International Nuclear Information System (INIS)

    Song, S.; Yoon, E.; Kim, Y.; Cho, Y.

    2015-01-01

    A steam explosion can occur when a molten corium is mixed with a coolant, more volatile liquid. In severe accidents, corium can come into contact with coolant either when it flows to the bottom of the reactor vessel and encounters the reactor coolant, or when it breaches the reactor vessel and flows into the reactor containment. A steam explosion could then threaten the containment structures, such as the reactor vessel or the concrete walls/penetrations of the containment building. This study is to understand the shortcomings of the existing analysis code (TEXAS-V) and to estimate the steam explosion loads on reactor scale and assess the effect of variables, then we compared results and physical phenomena. Sensitivity study of major parameters for initial condition is performed. Variables related to melt corium such as corium temperature, falling velocity and diameter of melt are more important to the ex-vessel steam explosion load and the steam explosion loads are proportional to these variables related to melt corium. Coolant temperature on reactor cavity has a specific area to increase the steam explosion loads. These results will be used to evaluate the steam explosion loads using ROAAM (Risk Oriented Accident Analysis Methodology) and to develop the evaluation methodology of ex-vessel steam explosion. (authors)

  4. A feasibility experiment for assessing the efficacy of ex-vessel cooling through the external gap structure

    International Nuclear Information System (INIS)

    Kang, K. H.; Kim, J. H.; Park, L. J.; Kim, S. B.; Hwang, I. S.

    1999-01-01

    This paper presents the results of a feasibility experiment for assessing the efficacy of ex-vessel cooling through the external gap structure during a severe accident. In this study, a 1/8 linear scale mockup of a lower plenum was used with Al2O3/Fe thermite melt as a corium simulant. The results show that in dry case test conducted without cooling the outside of the vessel, after about thirty second from the thermite ignition the vessel was heated to cause a complete melt penetration at about 30 degree upper position from the bottom. Whereas in wet case test conducted cooling the outside of the vessel with 0.85 kg/s of water flow rate using 2.5 cm of uniform gap structure, the vessel effectively cooled down with 23.7 K/s of cooling rate by nucleate boiling at the surface of the vessel. The results of two-dimensional analyses using FLUENT code show a similar trend of vessel thermal behavior presented in the tests. Synthesized the results of the tests and analyses work, a natural convection of the melt pool could cause the formation of hot spot at the upper portion of the vessel, but the vessel could effectively cool down by heat removal with ex-vessel cooling

  5. Comprehensive safety analysis code system for nuclear fusion reactors III: Ex-vessel LOCA analyses considering passive safety

    International Nuclear Information System (INIS)

    Honda, T.; Okazaki, T.; Maki, K.; Uda, T.; Seki, Y.; Aoki, I.; Kunugi, T.

    1996-01-01

    Ex-vessel loss-of-coolant accidents (LOCAs) in a fusion reactor have been analyzed to investigate the possibility of passive plasma shutdown. For this purpose, a hybrid code of the plasma dynamics and thermal characteristics of the reactor structures, which has been modified to include the impurity emission from plasma-facing components (PFCs), has been developed. Ex-vessel LOCAs of the cooling system during the ignition operation in the International Thermonuclear Experimental Reactor (ITER), in which graphite PFCs were employed in conceptual design activity, were assumed. When double-ended break occurs at the cold leg of the divertor cooling system, the copper cooling tube begins to melt within 3 s after the LOCA, even though the plasma is passively shut down at nearly 4 s. An active plasma shutdown system will be needed for such rapid transient accidents. On the other hand, when a small (1%) break LOCA occurs there, the plasma is passively shut down at nearly 36 s, which happens before the copper cooling tube begins to melt. When the double-ended break LOCA occurs at the cold leg of the first-wall cooling system, there is enough time (nearly 100 s) to shut down the plasma with a controllable method before the reactor structures are damaged. 21 refs., 8 figs

  6. Analysis of three ex-vessel loss-of-coolant accidents in the first wall cooling system of NET/ITER

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1993-01-01

    An ex-vessel LOCA may be caused by a rupture of a cooling pipe located outside the vacuum vessel. No plasma shutdown and no other counteractions have been assumed in order to study the worst case conditions of the accidents. The next three ex-vessel LOCAs in the primary cooling system of the first wall have been analysed: 1. a large break ex-vessel LOCA caused by a rupture of the cold leg (inner diameter 0.314 m) of the main circuit; 2. an intermediate break ex-vessel LOCA caused by a rupture of a sector inlet feeder (inner diameter 0.158 m); 3. an intermediate break ex-vessel LOCA caused by a rupture of the surge line (inner diameter 0.180 m) of the pressurizer. The analyses have been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the first two scenarios, melting in the first wall starts about 90 s after break initiation. In the third scenario, melting in the first wall start about 323 s after break initiation. Special emphasis has been paid to the characteristics of the break flows, the transient thermal-hydraulic behaviour of the cooling system, and the temperature development in the first wall. (orig.)

  7. Thermal-hydraulic and characteristic models for packed debris beds

    International Nuclear Information System (INIS)

    Mueller, G.E.; Sozer, A.

    1986-12-01

    APRIL is a mechanistic core-wide meltdown and debris relocation computer code for Boiling Water Reactor (BWR) severe accident analyses. The capabilities of the code continue to be increased by the improvement of existing models. This report contains information on theory and models for degraded core packed debris beds. The models, when incorporated into APRIL, will provide new and improved capabilities in predicting BWR debris bed coolability characteristics. These models will allow for a more mechanistic treatment in calculating temperatures in the fluid and solid phases in the debris bed, in determining debris bed dryout, debris bed quenching from either top-flooding or bottom-flooding, single and two-phase pressure drops across the debris bed, debris bed porosity, and in finding the minimum fluidization mass velocity. The inclusion of these models in a debris bed computer module will permit a more accurate prediction of the coolability characteristics of the debris bed and therefore reduce some of the uncertainties in assessing the severe accident characteristics for BWR application. Some of the debris bed theoretical models have been used to develop a FORTRAN 77 subroutine module called DEBRIS. DEBRIS is a driver program that calls other subroutines to analyze the thermal characteristics of a packed debris bed. Fortran 77 listings of each subroutine are provided in the appendix

  8. Final report for the 1st ex-vessel neutron dosimetry installations and evaluations for Kori unit 2 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 2 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 20 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 20.

  9. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Li, Nam Jin; Hong, Joon Wha

    2007-01-15

    This report describes a neutron fluence assessment performed for the Yonggwang Unit 1 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 16 of reactor operation, 2nd Ex-Vessel Neutron Dosimetry Program was instituted at Yonggwang Unit 1 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 16.

  10. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Kori Unit 2 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 21 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 21.

  11. Final report for the 1st ex-vessel neutron dosimetry installation and evaluations for Kori unit 4 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 4 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 16 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 4 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 16.

  12. Final report for the 2nd Ex-Vessel Neutron Dosimetry Installations and Evaluations for Yonggwang Unit 2 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Yonggwang Unit 2 pressure vessel beltline region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the beltline region of the pressure vessel. During Cycle 16 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Yonggwang Unit 2 to provide continuous monitoring of the beltline region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 16.

  13. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  14. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  15. Level 2 probabilistic event analyses and quantification

    International Nuclear Information System (INIS)

    Boneham, P.

    2003-01-01

    In this paper an example of quantification of a severe accident phenomenological event is given. The performed analysis for assessment of the probability that the debris released from the reactor vessel was in a coolable configuration in the lower drywell is presented. It is also analysed the assessment of the type of core/concrete attack that would occur. The coolability of the debris ex-vessel evaluation by an event in the Simplified Boiling Water Reactor (SBWR) Containment Event Tree (CET) and a detailed Decomposition Event Tree (DET) developed to aid in the quantification of this CET event are considered. The headings in the DET selected to represent plant physical states (e.g., reactor vessel pressure at the time of vessel failure) and the uncertainties associated with the occurrence of critical physical phenomena (e.g., debris configuration in the lower drywell) considered important to assessing whether the debris was coolable or not coolable ex-vessel are also discussed

  16. In- and ex-vessel flooding as part of the severe accident strategy in the KERENA reactor

    International Nuclear Information System (INIS)

    Levi, P.; Fischer, M.

    2011-01-01

    Currently, AREVA NP is finalizing the basic design of the KERENA reactor, an advanced boiling water reactor with a net electric output of about 1250 MWe. The safety concept in the KERENA reactor is founded on reliable active and passive systems for water supply and heat removal. The passive systems are based on simple physics and do not require operator action. Therefore, a severe accident (SA) with core damage, caused by the subsequent and multiple failures of the safety systems, has an extremely low probability. Despite this, the KERENA design is intended to involve measures that can limit and stop the progression of the severe accident which further reduces the frequency and extent of radioactive releases into the environment. These additional measures include in-vessel and ex-vessel flooding. Flooding is intended to remove the heat from the core or from the reactor pressure vessel (RPV) and transfer it into the containment. There the heat is removed by the active RHR (residual heat removal) system or by the passive CCCs (containment cooling condensers). Both flooding measures are passive and actuated independent of each other by different signals. The study shows that the in-vessel flooding is capable of arresting the core melt progression before a large molten pool can develop. In the unlikely event that the passive in-vessel flooding cannot be actuated or fails, the core will melt and relocate into the lower head of the RPV. In this case, as a further line of defense, decay heat removal can be achieved through the RPV wall into the water in the cavity. In order to assess whether the ex-vessel cooling can ensure RPV wall integrity a dedicated thermodynamics code has been developed which considers heat transfer from the molten corium pool into the RPV wall and the resulting wall ablation. As an input for the code the stratification behavior of the oxidic and metallic phase of the molten pool is examined. In the case of a light metallic phase on top, high heat

  17. Development of a surrogate model for analysis of ex-vessel steam explosion in Nordic type BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Basso, Simone, E-mail: simoneb@kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2016-12-15

    Highlights: • Severe accident. • Steam explosion. • Surrogate model. • Sensitivity study. • Artificial neural networks. - Abstract: Severe accident mitigation strategy adopted in Nordic type Boiling Water Reactors (BWRs) employs ex-vessel core melt cooling in a deep pool of water below reactor vessel. Energetic fuel–coolant interaction (steam explosion) can occur during molten core release into water. Dynamic loads can threaten containment integrity increasing the risk of fission products release to the environment. Comprehensive uncertainty analysis is necessary in order to assess the risks. Computational costs of the existing fuel–coolant interaction (FCI) codes is often prohibitive for addressing the uncertainties, including the effect of stochastic triggering time. This paper discusses development of a computationally efficient surrogate model (SM) for prediction of statistical characteristics of steam explosion impulses in Nordic BWRs. The TEXAS-V code was used as the Full Model (FM) for the calculation of explosion impulses. The surrogate model was developed using artificial neural networks (ANNs) and the database of FM solutions. Statistical analysis was employed in order to treat chaotic response of steam explosion impulse to variations in the triggering time. Details of the FM and SM implementation and their verification are discussed in the paper.

  18. Report of Task Group on Ex-Vessel Thermal-Hydraulics Corium/concrete interactions and combustible gas distribution in large dry containments

    International Nuclear Information System (INIS)

    1987-11-01

    The Task Group on Ex-Vessel Thermal-Hydraulics was established by the PWG 2 to address the physical processes that occur in the ex-vessel phase of severe accidents, to study their impact on containment loading and failure, and to assess the available calculation methods. This effort is part of an overall CSNI effort to come to an international understanding of the issues involved. The Task Group decided to focus its initial efforts on the Large Dry Containment used extensively to contain the consequences of postulated (design basis) accidents in Light Water Reactors (LWR). Although such containments have not been designed with explicit consideration of severe accidents, recent assessments indicate a substantial inherent capability for these accidents. The Task Group has examined the loads likely to challenge the integrity of the containment, and considered the calculation of the containment's response. This report is the outcome of this effort

  19. Development of severe accident evaluation technology (level 2 PSA) for sodium-cooled fast reactors. (5) Identification of dominant factors in ex-vessel accident sequences

    International Nuclear Information System (INIS)

    Ohno, Shuji; Seino, Hiroshi; Miyahara, Shinya

    2009-01-01

    The evaluation of accident progression outside of a reactor vessel (ex-vessel) and subsequent transfer behavior of radioactive materials is of great importance from the viewpoint of Level 2 PSA. Hence typical ex-vessel accident sequences in the JAEA Sodium-cooled Fast Reactor are qualitatively discussed in this paper and dominant behaviors or factors in the sequences are investigated through parametric calculations using the CONTAIN/LMR code. Scenarios to be focused on are, 1) sodium vapor leakage from the reactor vessel and 2) sodium-concrete reaction, which are both to be considered in the accident category of LOHRS (loss of heat removal system) and might be followed by an early containment failure due to the thermal effect of sodium combustion and hydrogen burning respectively. The calculated results clarify that the sodium vapor leak rate and the scale of sodium-concrete reaction are the important factors to dominate the ex-vessel accident progression. In addition to the understandings of the dominant factors, the analyzed results also provide the specific information such as pressure loading value to the containment and the timing of pressurization, which is indispensable as technical base in Level 2 PSA for developing event trees and for quantifying the accident consequences. (author)

  20. Coolability of severely degraded CANDU cores

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Mijhawan, S.

    1995-07-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually re solidify. Thus, the calandria vessel would act inherently as a core-catcher as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author). 48 refs., 3 tabs., 18 figs

  1. Coolability of severely degraded CANDU cores. Revised

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Nijhawan, S.

    1996-01-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually resolidify. Thus, the calandria vessel would act inherently as a 'core-catcher' as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author)

  2. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench (removal of stored energy from initial temperature to saturation temperature) of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  3. Dryout heat flux and flooding phenomena in debris beds consisting of homogeneous diameter particles

    International Nuclear Information System (INIS)

    Maruyama, Yu; Abe, Yutaka; Yamano, Norihiro; Soda, Kunihisa

    1988-08-01

    Since the TMI-2 accident, which occurred in 1979, necessity of understanding phenomena associated with a severe accident have been recognized and researches have been conducted in many countries. During a severe accident of a light water reactor, a debris bed consisting of the degraded core materials would be formed. Because the debris bed continues to release decay heat, the debris bed would remelt when the coolable geometry is not maintained. Thus the degraded core coolability experiments to investigate the influence of the debris particle diameter and coolant flow conditions on the coolability of the debris bed and the flooding experiments to investigate the dependence of flooding phenomena on the configuration of the debris bed have been conducted in JAERI. From the degraded core coolability experiments, the following conclusions were derived; the coolability of debris beds would be improved by coolant supply into the beds, Lipinski's 1-dimensional model shows good agreement with the measured dryout heat flux for the beds under stagnant and forced flow conditions from the bottom of the beds, and the analytical model used for the case that coolant is fed by natural circulation through the downcomer reproduces the experimental results. And the following conclusions were given from the flooding experiments ; no dependence between bed height and the flooding constant exists for the beds lower than the critical bed height, flooding phenomena of the stratified beds would be dominated by the layer consisting of smaller particles, and the predicted dryout heat flux by the analytical model based on the flooding theory gives underestimation under stagnant condition. (author)

  4. A review of dryout heat fluxes and coolability of particle beds. APRI 4, Stage 2 Report

    International Nuclear Information System (INIS)

    Lindholm, Ilona

    2002-04-01

    were studied. Significant amount of data with prototypic material tests exists. All of the tests show significant fragmentation in case of deep subcooled pool. An additional observation is that no energetic melt coolant interaction (steam explosion) has been reported for prototypic materials. A set of most relevant data for reactor applications have been chosen. Based on this, a general particle size distribution has been constructed. The average particle size obtained by this way was about 3.5 mm. Information from fragmentation and dryout tests and the Lipinski 0-D correlation have been utilised to assess the debris bed coolability for the Olkiluoto severe accident scenario. The calculation shows that for well-mixed beds with 3.5 mm particles the dryout heat flux would be close to 1 MW/m 2 , well above the estimated heat flux due to decay heat. Stratification of finer particles on top of the bed due to e.g. a steam explosion would reduce the dryout heat flux to 50-200 kW/m 2 . This would be below heat fluxes produced by decay heat in Nordic BWRs. The key uncertainty considering particle bed coolability is due to the particle size distribution and stratification. If the possibility of a thick fine particle layer on top of the bed can be ruled out, the particulate debris bed in Nordic BWRs will be coolable. A rough estimate of melt pool coolability in Nordic BWRs has also been conducted. The MACE and COTELS experimental data have been summarised. Based on the data, the melt pools in the pedestal are slowly coolable. The concrete erosion does not threaten the containment failure margins, except maybe at Forsmark 1 and 2 units. Release of non-condensable gases during MCCI may cause an earlier start of filtered venting in Olkiluoto, Forsmark and Oskarshamn 3 plants

  5. Post-accident core coolability of light water reactors

    International Nuclear Information System (INIS)

    Michio, I.; Teruo, I.; Tomio, Y.; Tsutao, H.

    1983-01-01

    A study on post-accident core coolability of LWR is discussed based on the practical fuel failure behavior experienced in NSRR, PBF, PNS and others. The fuel failure behavior at LOCA, RIA and PCM conditions are reviewed, and seven types of fuel failure modes are extracted as the basic failure mechanism at accident conditions. These are: cladding melt or brittle failure, molten UO 2 failure, high temperature cladding burst, low temperature cladding burst, failure due to swelling of molten UO 2 , failure due to cracks of embrittled cladding for irradiated fuel rods, and TMI-2 core failure. The post-accident core coolability at each failure mode is discussed. The fuel failures caused actual flow blockage problems. A characteristic which is common among these types is that the fuel rods are in the conditions violating the present safety criteria for accidents, and UO 2 pellets are in melting or near melting hot conditions when the fuel rods failed

  6. The coolability limits of a reactor pressure vessel lower head

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Syri, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    Configuration II of the ULPU experimental facility is described, and from a comprehensive set of experiments are provided. The facility affords full-scale simulations of the boiling crisis phenomenon on the hemispherical lower head of a reactor pressure vessel submerged in water, and heated internally. Whereas Configuration I experiments (published previously) established the lower limits of coolability under low submergence, pool-boiling conditions, with Configuration II we investigate coolability under conditions more appropriate to practical interest in severe accident management; that is, heat flux shapes (as functions of angular position) representative of a core melt contained by the lower head, full submergence of the reactor pressure vessel, and natural circulation. Critical heat fluxes as a function of the angular position on the lower head are reported and related the observed two-phase flow regimes.

  7. Experimental analysis of ex-vessel core catcher cooling system performance for EU-APR1400 during severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Song, K. W.; Park, H. S.; Revankar, S. T. [POSTECH, Pohang (Korea, Republic of); Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the coolant channel which has a unique design and large scale flow paths, natural circulation is passively activated by buoyancy driven force. Since two-phase flow behavior in a large scale channel is different from that in a small scale channel, the two-phase flow affecting the cooling capability is difficult to be predicted in the large channel. Therefore, cooling experiment in the core catcher coolant path is necessary. Cooling Experiment - Passive Ex-vessel corium retaining and Cooling System(CE-PECS) is constructed in full scale(in height and width) slice of half prototype. It actually simulates steam-water flow in the coolant channel for different decay heat condition of the corium. In this study, thermal power considering of total amount of decay heat 190 kW which corresponds to 40MW of thermal power in the prototype is loaded on the top wall of the CE-PECS coolant channel. Natural circulation flow rate and pressure drops at the two-phase region are measured in various power level. Temperatures of heater block and working fluid in various position along the flow path enable to calculate heat fluxes and heat transfer coefficients distribution. These results are used for evaluating heat removal capability of core catcher facility. Two-phase natural circulation experiment is carried out in CE-PECS facility. Based on the prototypic condition, 190 kW of total power is supplied to the top of the coolant path. Uniform distribution of heat load on the downward facing heater bock produces -300 kW/m2 at 100 % power ratio. Although the experiment should consider the heat loss and heat flux uniformity, several noticeable conclusions have been made as followings; 1. Mass flow rate and two-phase pressure drop are measured in various power conditions. 2. Slightly inclined top wall at the downstream of the channel shows better heat exchange performance than horizontal top wall because enhanced convection due to the increase of void fraction improves local cooling. This

  8. Empirical closures for particulate debris bed spreading induced by gas–liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Basso, S., E-mail: simoneb@kth.se; Konovalenko, A.; Kudinov, P.

    2016-02-15

    Highlights: • Experimental study of the debris bed self-leveling phenomenon. • A scaling approach and a non-dimensional model to describe particle flow rate are proposed. • The model is validated against experiments with particles of different properties and at different gas injection conditions. - Abstract: Efficient removal of decay heat from the nuclear reactor core debris is paramount for termination of severe accident progression. One of the strategies is based on melt fragmentation, quenching and cooling in a deep pool of water under the reactor vessel. Geometrical configuration of the debris bed is among the important factors which determine possibility of removing the decay heat from the debris bed by natural circulation of the coolant. For instance, a tall mound-shape debris bed can be non-coolable, while the same debris can be coolable if spread uniformly. Decay heat generates a significant amount of thermal energy which goes to production of steam inside the debris bed. Two-phase flow escaping through the top layer of the bed becomes a source of mechanical energy which can move the particulate debris along the slope of the bed. The motion of the debris will lead to flattening of the bed. Such process is often called “self-leveling” phenomenon. Spreading of the debris bed by the self-leveling process can take significant time, depending on the initial debris bed configuration and other parameters. There is a competition between the time scales for reaching (i) a coolable configuration of the bed, and (ii) onset of dryout and re-melting of the debris. In the previous work we have demonstrated that the rate of particulate debris spreading is determined by local gas velocity and local slope angle of the bed. In this work we develop a scaling approach and a closure for prediction of debris spreading rate based on generalization of available experimental data. We demonstrate that introduced scaling criteria are universal for particles of different

  9. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    Abe, Yutaka; Adachi, Hiromichi

    2004-01-01

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  10. Concrete benchmark experiment: ex-vessel LWR surveillance dosimetry; Experience ``Benchmark beton`` pour la dosimetrie hors cuve dans les reacteurs a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, H.; D`Hondt, P.; Oeyen, J.; Risch, P.; Bioux, P.

    1993-09-01

    The analysis of DOEL-1 in-vessel and ex-vessel neutron dosimetry, using the DOT 3.5 Sn code coupled with the VITAMIN-C cross-section library, showed the same C/E values for different detectors at the surveillance capsule and the ex-vessel cavity positions. These results seem to be in contradiction with those obtained in several Benchmark experiments (PCA, PSF, VENUS...) when using the same computational tools. Indeed a strong decreasing radial trend of the C/E was observed, partly explained by the overestimation of the iron inelastic scattering. The flat trend seen in DOEL-1 could be explained by compensating errors in the calculation such as the backscattering due to the concrete walls outside the cavity. The `Concrete Benchmark` experiment has been designed to judge the ability of this calculation methods to treat the backscattering. This paper describes the `Concrete Benchmark` experiment, the measured and computed neutron dosimetry results and their comparison. This preliminary analysis seems to indicate an overestimation of the backscattering effect in the calculations. (authors). 5 figs., 1 tab., 7 refs.

  11. Melt coolability modeling and comparison to MACE test results

    International Nuclear Information System (INIS)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1992-01-01

    An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments

  12. Melt cooling by bottom flooding: The experiment CometPC-H3. Ex-vessel core melt stabilization research

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Merkel, G.; Schmidt-Stiefel, S.; Tromm, W.; Wenz, T.

    2003-03-01

    and bottom crusts had formed, and included the bulk of the melt, which at this stage was still in the liquid state. Further cool down of the melt continued slowly over the next 40 min. (orig.) concrete underneath are completely intact as always cooled by the presence of the flooding water. In summary, the experiment has demonstrated that the CometPC cooling concept is able to stop and to cool the melt, although the expected porosity formation of the majority of the melt did not prevail in the present experiment. Under this aspect, the porous, water filled concrete layer has proven its reliability to stop the melt. On the other side, volcanic melt eruptions which occurred during a limited period of the test, did not improve the coolability significantly, as no major new porosity was created. (orig.)

  13. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  14. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon, E-mail: rjpark@kaeri.re.kr; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-03-15

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m{sup 2} s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  15. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-01-01

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m"2 s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  16. Ex-vessel melt-coolant interactions in deep water pool: Studies and accident management for Swedish BWRs

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Chu, C.C.; Spencer, B.W.; Frid, W.; Loewenhielm, G.

    1993-01-01

    In Swedish BWRs having an annular suppression pool, the lower drywell beneath the reactor vessel is flooded with water to mitigate against the effects of melt release into the drywell during a severe accident. The THIRMAL code has been used to analyze the effectiveness of the water pool to protect lower drywell penetrations by fragmenting and quenching the melt as it relocates downward through the water. Experiments have also been performed to investigate the benefits of adding surfactants to the water to reduce the likelihood of fine-scale debris formation from steam explosions. This paper presents an overview of the accident management approach and surfactant investigations together with results from the THIRMAL analyses

  17. Ex-vessel melt-coolant interactions in deep water pool: studies and accident management for Swedish BWRs

    International Nuclear Information System (INIS)

    Chu, C.C.; Sienicki, J.J.; Spencer, B.W.; Frid, W.; Loewenhielm, G.

    1995-01-01

    In Swedish BWRs having an annular suppression pool, the lower drywell beneath the reactor vessel is flooded with water to mitigate against the effects of melt release into the drywell during a severe accident. The THIRMAL-1 code has been used to analyze the effectiveness of the water pool to protect lower drywell penetrations by fragmenting and quenching the melt as it relocates downward through the water. Experiments have also been performed to investigate the benefits of adding surfactants to the water to reduce the likelihood of fine-scale debris formation from steam explosions. This paper presents an overview of the accident management approach and surfactant investigations together with results from the THIRMAL-1 analyses. A description of the modeling incorporated in THIRMAL-1 is also provided. (orig.)

  18. Study on coolability of melt pool with different strategies

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.

    2014-01-01

    Highlights: • Experiments have been performed to test quenching of molten pool with different schemes. • Top flooding, bottom flooding and indirect cooling schemes were used. • A single simulant material with same mass and initial temperature was used. • Bottom flooding technique is found to be the most effective technique. • A comparison of all the three techniques has been presented. - Abstract: After the Fukushima accident, there have been a lot of concerns regarding long term core melt stabilization following a severe accident in nuclear reactors. Several strategies have been contemplated for quenching and stabilization of core melt like top flooding, bottom flooding, indirect cooling, etc. However, the effectiveness of these schemes is yet to be determined properly, for which, lot of experiments are needed. Several experiments have been performed for coolability of molten pool under top flooding condition. A few experiments have been performed for study of coolability of melt pool under bottom flooding as well as for indirect cooling. Besides, these tests are very scattered because they involve different simulant materials, initial temperatures and masses of melt, which makes it very difficult to judge the effectiveness of a particular technique and advantage over the other. In the present paper we have carried out different experiments wherein a single simulant material with same mass was cooled with different techniques starting from the same initial temperature. The result showed that, while top flooding and indirect cooling took several hours to cool, bottom flooding took a few minutes to cool the melt which makes it the most effective technique

  19. Simulant - water experiments to characterize the debris bed formed in severe core melt accidents

    International Nuclear Information System (INIS)

    Mathai, Amala M.; Anandan, J.; Sharma, Anil Kumar; Murthy, S.S.; Malarvizhi, B.; Lydia, G.; Das, Sanjay Kumar; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Molten Fuel Coolant Interaction (WO) and debris bed configuration on the core catcher plate assumes importance in assessing the Post Accident Heat Removal (PARR) of a heat generating debris bed. The key factors affecting the coolability of the debris bed are the bed porosity, morphology of the fragmented particles, degree of spreading/heaping of the debris on the core catcher and the fraction of lump formed. Experiments are conducted to understand the fragmentation kinetics and subsequent debris bed formation of molten woods metal in water at interface temperatures near the spontaneous nucleation temperature of water. Morphology of the debris particles is investigated to understand the fragmentation mechanisms involved. The spreading behavior of the debris on the catcher plate and the particle size distribution are presented for 5 kg and 10 kg melt inventories. Porosity of the undisturbed bed on the catcher plate is evaluated using a LASER sensor technique. (author)

  20. Investigation of the structure of debris beds formed from fuel rods fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Duc-Hanh; Fichot, Florian; Topin, Vincent, E-mail: vincent.topin@irsn.fr

    2017-03-15

    This paper is a study of debris beds that can form in the core of a nuclear power plant under severe accident conditions. Such beds are formed of fragments of pellets and cladding remnants, as observed in the TMI-2 core. Many important issues are related with the morphology of those debris beds: are they coolable in case of water injection and how does molten corium progress through them if they are not coolable? The answers to those questions depend on the structure of the debris bed: porosity, number and arrangement of particles. In order to obtain relevant information, a numerical simulation of the formation of the debris bed is proposed. It relies on a granular approach of the type called “Contact Dynamics” to simulate the collapse of debris and their accumulation. Two different schemes of fuel pellet fragmentation are considered and simulations for different degrees of fragmentation of the pellets are performed. The results show that the number of axial cracks on fuel pellets strongly influences the final porosity of the debris bed. Porosities vary between 31% (less coolable cases) and 45% (similar to TMI-2 observations), with a most probable configuration around 41%. The specific surface of the bed is also evaluated. In the last part, a simple model is used to estimate the impact of the variation in geometry of the numeric debris beds on their flow properties. We show that the permeability and passability can vary respectively with a range of 30% and 15% depending on the number of fragment per pellet. The other benefits of the approach are finally discussed. Among them, the possibility to print 3D samples from the calculated images of debris beds appears as a promising perspective to perform experiments with realistic debris beds.

  1. Effects of thermohydraulics on clad ballooning, flow blockage and coolability in a LOCA

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Neitzel, H.J.; Wiehr, K.

    1983-01-01

    Thermohydraulic boundary conditions have a dominating effect on clad ballooning, flow blockage and coolability: Increasing heat transfer to the fluid decreases the total circumferential strain; Countercurrent flow in a combined injection leads to a relatively small flow blockage; Burst claddings exhibit premature quenching. Differences in the test results obtained in several countries are mainly due to different thermohydraulic test conditions; all test data are consistent with the understanding elaborated within the REBEKA program. Core coolability in a LOCA can be maintained. (author)

  2. Experimental investigations on the coolability of prototypical particle beds with respect to reactor safety; Experimentelle Untersuchungen der Kuehlbarkeit prototypischer Schuettungskonfigurationen unter dem Aspekt der Reaktorsicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Simon

    2017-02-22

    In case of a severe accident in a light water reactor, continuous unavailability of cooling water to the reactor core may result in overheating of the fuel elements and finally the loss of core integrity. Under such conditions, a structure of heat-releasing particles of different size and shape may be formed by fragmentation of molten core material in several stages of the accident. The long-term coolability of such beds is of prime im-portance to avoid any damage to the reactor pressure vessel or even a release of fission products to the environment. In the frame of this work, specific experiments were con-ducted under prototypical conditions employing the existing DEBRIS test facility in order to gain further knowledge about the thermohydraulic behavior of such beds. In steady state boiling experiments, the pressure gradients in particle beds were meas-ured both for one- and multi-dimensional cooling water flow conditions and compared with one another in order to assess the flow behavior inside the bed. For these different flow conditions as well as for stratified bed configurations, the maximum removable heat flux densities were determined in the dryout experiments. E. g., it was found that an axial stratification of the permeability can significantly reduce the bed's coolability. For the first time, the quenching behavior of dry, superheated beds was investigated at elevated system pressure up to 0.5 MPa. In these experiments, the effect of system pressure on the coolability was quantified by means of the quenching time (time period to cool down the bed to saturation temperature). The investigated particle beds mainly consisted of non-spherical particles with well-defined geometry (cylinders and screws). It was shown that the effect of the particles geometry on the flow in a particle bed can be best estimated by using an equivalent particle diameter calculated for monodisperse particle beds from the product of the Sauter diameter and a shape factor and for

  3. Analysis for the coolability of the reactor cavity in a Korean 1000 MWe PWR using MELCOR 1.8.3 computer code

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Ju Yeul; Chung, Chang Hyun; Park, Soo Yong

    1996-01-01

    The analysis for the coolability of the reactor cavity in typical Korean 1000 MWe Nuclear Unit under severe accidents is performed using MELCOR 1.8.3 code. The key parameters molten core-concrete interaction (MCCI) such as melt temperature, concrete ablation history and gas generation are investigated. Total twenty cases are selected according to ejected debris fraction and coolant mass. The ablation rate of concrete decreases as mass of the melt decreases and coolant mass increases. Heat loss from molten pool to coolant is comparable to total decay heat, so concrete ablation is delayed until water is absent and crust begins to remove. Also, overpressurization due to non-condensible gases generated during corium and concrete interacts can cause to additional risk of containment failure. It is concluded that flooded reactor cavity condition is very important to minimize the cavity ablation and pressure load by non-condensible gases on containment

  4. Analysis of dryout behaviour in laterally non-homogeneous debris beds using the MEWA-2D code

    International Nuclear Information System (INIS)

    Rahman, Saidur; Buerger, Manfred; Buck, Michael; Pohlner, Georg; Kulenovic, Rudi; Nayak, Arun Kumar; Sehgal, Bal Raj

    2009-01-01

    The present study analyses the impact of lateral non-homogeneities on the coolability of heated, initially water filled debris beds. Debris beds which may be formed in a postulated severe accident in light water reactors can not be expected to have a homogeneous structure. Lateral non-homogeneities are given e.g. already by a variation in height as in a heap of debris. Internally, less porous or more porous region may occur, the latter even as downcomer-like structures are considered to favour supply of water to the bed and thus coolability. In previous work it has been shown that such non-homogeneities are often strongly enhancing coolability, as compared to earlier investigations on laterally homogeneous beds. The present contribution aims at extending the view by analysing further cases of non-homogeneities with the MEWA-2D code. Especially, effects of capillary forces are considered in contrast to earlier analysis. Part of the paper deals with specific experiments performed in the POMECO facility at KTH in which a laterally stratified debris bed has been considered, whereby especially a strong jump of porosity, from 0.26 to 0.38, has been established. Astonishingly, under top as well as bottom flooding, dryout in these experiments occurred first in the lateral layer with higher porosity. Understanding is now provided by the effect of capillary forces: water is drawn from this layer to the less porous one. This effect improves the cooling in the less porous layer while it reduces coolability of the more porous layer. No real loop behaviour of inflow via the higher porosities with subsequent upflow in the less porous layer establishes here, in contrast to expectations. Other cases (different lateral heating in an otherwise homogeneous bed, closed downcomer in a homogeneous bed and heap-like debris) show, on the other hand, strongly improved coolability by such loops establishing due to the lateral differences in void and the corresponding pressure differences

  5. Study on ex-vessel cooling of RPV (behavior of coalesced bubbles and trigger condition of critical heat flux on inclined plate)

    International Nuclear Information System (INIS)

    Ohtake, H.; Koizumi, Y.; Takano, K.I.

    2001-01-01

    The Ex-vessel cooling of Reactor-Pressure-Vessel in Light-Water-Reactor at the severe accident have been proposed for future nuclear reactors. The estimation of Critical-Heat-Flux on a downward-facing curvilinear surface, like a hemisphere, is important to the assessment of the cooling. In this study, the CHFs on inclined surfaces were examined experimentally focusing on orientation of the heating surface. In order to discuss detailed mechanism of the CHF, the behaviors of coalesced bubbles near the heating surface were investigated through visual observations. The critical heat flux obtained in the present experiments increased with the inclined angle over the present experimental range. The dependence of the inclined angle on the critical heat flux was q CHF,R-113 [q] = f (q 0.33 ) for the present experimental results. The effect of the surface orientation on the critical heat flux was roughly explained by using the simple analytical model based on the macro-layer model and Kelvin-Helmholtz instability. From visual observations for behavior of bubbles near the heating surface, whereas the coalesced bubble covered over the heating surface for the inclined angle of 0 degree, the coalesced bubble moved upward to avoid packing the bubble on the surface above 5 degree. As the inclined angle increased, the velocity of the coalesced bubble was high, the period covered the heater and the bubble length were small. The results suggested that the CHF was closely related to forming the coalesced bubble and the behavior of the bubble. (author)

  6. On the air coolability of TRIGA reactors following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.; Kim, Sung-Ho; Zaki, Galal M.; Foushee, Fabian; Philbin, Jeffrey S.; Schulze, James

    1986-01-01

    This paper describes the experiments on the air-coolability of a heated rod in a vertical open annulus at near atmospheric pressure. This data can be applied to the coolability of reactor fuel rods that are totally uncovered in a Loss-of-Coolant Accident (LOCA). As a prelude to measuring air coolability of specific core geometries (bundles), heat transfer data was collected for natural convection of atmospheric air in open vertical annuli with an isoflux inner wall and an insulated outer wall (diameter ratios, annulus ratio, of 1.155, 1.33, 1.63, and 12). Although the inner heated tube had the same overall dimensions as the fuel rod in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories (3.81 cm o.d. and 55.5 cm long), the heated length was only 36.0 cm rather than the entire 50.5 cm for the ACRR's rods. The test assembly was operated at heat fluxes up to 1.38 W/cm 2 with a corresponding surface temperature of 852 K. The annulus data was extrapolated to an equilibrium surface temperature of 1200 K (as a coolability limit of TRIGA reactors) to provide a qualitative estimate of the coolability of multirod bundles by free convection of atmospheric air. The results suggest that for a typical pitch-to-diameter ratio of 1.12 in the ACRR the decay heat removal level is about 1.0 kW/m. This corresponds to an initial decay power following sustained operations at about 12.5 kW/m in the ACRR. However, because of the uncertainties in duplicating the actual thermal-hydraulic conditions in a multirod bundle using a single rod annulus, the actual coolability of open pool reactors could be different from those suggested in this paper. (author)

  7. Fundamental study on dynamic behaviors of fuel debris bed. Research report in 2007 (Joint research)

    International Nuclear Information System (INIS)

    Morita, Koji; Fukuda, Kenji; Matsumoto, Tatsuya; Tobita, Yoshiharu; Suzuki, Tohru; Yamano, Hidemasa

    2009-05-01

    It is important to make a reasonable evaluation of coolability of debris bed with decay heat source in assessing post accident heat removal of a liquid metal cooled fast reactor. In general, the coolability of fuel debris depends on coolant convection, boiling and debris bed movement. In the present study, to understand fundamental characteristics of debris movement, self-leveling behavior caused by the coolant boiling was investigated experimentally using simulant materials. The present experiments employed depressurization boiling of water to simulate void distribution in a debris bed, which consists of solid particles of alumina. A rough estimation model of self-leveling occurrence was proposed and compared with the experimental results. Its extrapolation to reactor accident conditions was also discussed. In addition, solid-liquid flow experiments, which are relevant to debris bed movement behaviors, were analyzed to verify the validity of multiphase flow models employed in a safety analysis code. In the present verification study, basic validity of the code was demonstrated by analyzing experiments of water-column sloshing with solid particles. (author)

  8. Woody debris

    Science.gov (United States)

    Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen

    2000-01-01

    Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...

  9. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    Energy Technology Data Exchange (ETDEWEB)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  10. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    International Nuclear Information System (INIS)

    Anderson, M.; Corradini, M.; Bank, K.Y.; Bonazza, R.; Cho, D.

    2005-01-01

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications

  11. On the influence of water subcooling and melt jet parameters on debris formation

    Energy Technology Data Exchange (ETDEWEB)

    Manickam, Louis, E-mail: louis@safety.sci.kth.se; Kudinov, Pavel; Ma, Weimin; Bechta, Sevostian; Grishchenko, Dmitry

    2016-12-01

    Highlights: • Melt and water configuration effects on debris formation is studied experimentally. • Melt superheat and water subcooling are most influential compared to jet size. • Melt-water configuration and material properties influence particle fracture rate. • Results are compared with large scale experiments to study effect of spatial scales. - Abstract: Breakup of melt jet and formation of a porous debris bed at the base-mat of a flooded reactor cavity is expected during the late stages of a severe accident in light water reactors. Debris bed coolability is determined by the bed properties including particle size, morphology, bed height and shape as well as decay heat. Therefore understanding of the debris formation phenomena is important for assessment of debris bed coolability. A series of experiments was conducted in MISTEE-Jet facility by discharging binary-oxide mixtures of WO{sub 3}–Bi{sub 2}O{sub 3} and WO{sub 3}–ZrO{sub 2} into water in order to investigate properties of resulting debris. The effect of water subcooling, nozzle diameter and melt superheat was addressed in the tests. Experimental results reveal significant influence of water subcooling and melt superheat on debris size and morphology. Significant differences in size and morphology of the debris at different melt release conditions is attributed to the competition between hydrodynamic fragmentation of liquid melt and thermal fracture of the solidifying melt droplets. The particle fracture rate increases with increased subcooling. Further the results are compared with the data from larger scale experiments to discern the effects of spatial scales. The present work provides data that can be useful for validation of the codes used for the prediction of debris formation phenomena.

  12. Experimental investigation of particulate debris spreading in a pool

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, A., E-mail: kono@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Basso, S., E-mail: simoneb@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Kudinov, P., E-mail: pkudinov@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Yakush, S.E., E-mail: yakush@ipmnet.ru [Institute for Problems in Mechanics of the Russian Academy of Sciences, Ave. Vernadskogo 101 Bldg 1, Moscow 119526 (Russian Federation)

    2016-02-15

    Termination of severe accident progression by core debris cooling in a deep pool of water under reactor vessel is considered in several designs of light water reactors. However, success of this accident mitigation strategy is contingent upon the effectiveness of heat removal by natural circulation from the debris bed. It is assumed that a porous bed will be formed in the pool in the process of core melt fragmentation and quenching. Debris bed coolability depends on its properties and system conditions. The properties of the bed, including its geometry are the outcomes of the debris bed formation process. Spreading of the debris particles in the pool by two-phase turbulent flows induced by the heat generated in the bed can affect the shape of the bed and thus influence its coolability. The goal of this work is to provide experimental data on spreading of solid particles in the pool by large-scale two-phase flow. The aim is to provide data necessary for understanding of separate effects and for development and validation of models and codes. Validated codes can be then used for prediction of debris bed formation under prototypic severe accident conditions. In PDS-P (Particulate Debris Spreading in the Pool) experiments, air injection at the bottom of the test section is employed as a means to create large-scale flow in the pool in isothermal conditions. The test section is a rectangular tank with a 2D slice geometry, it has fixed width (72 mm), adjustable length (up to 1.5 m) and allows water filling to the depth of up to 1 m. Variable pool length and depth allows studying two-phase circulating flows of different characteristic sizes and patterns. The average void fraction in the pool is determined by video recording and subsequent image processing. Particles are supplied from the top of the facility above the water surface. Results of several series of PDS-P experiments are reported in this paper. The influence of the gas flow rate, pool dimensions, particle density

  13. Numerical simulation for debris bed behavior in sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Tagami, Hirotaka; Tobita, Yoshiharu

    2014-01-01

    For safety analysis of SFR, it is necessary to evaluate behavior along with coolability of debris bed in lower plenum which is formed in severe accident. In order to analyze debris behavior, model for dense sediment particles behavior was proposed and installed in SFR safety analysis code SIMMER. SIMMER code could adequately reproduce experimental results simulating the self-leveling phenomena with appropriate model parameters for bed stiffness. In reactor condition, the self-leveling experiment for prototypical debris bed has not been performed. Additionally, the prototypical debris bed consists of non-spherical particles and it is difficult to quantify model parameters. This situation brings sensitivity analysis to investigate effect of model parameters on the self-leveling phenomena of prototypical debris bed in present paper. As initial condition for sensitivity analysis, simple mound-like debris bed in sodium-filled lower plenum in reactor vessel is considered. The bed consists of the mixture of fuel debris of 3,300 kg and steel debris of 1,570 kg. Decay heat is given to this fuel debris. The model parameter is chosen as sensitivity parameter. Sensitivity analysis shows that the model parameters can effect on intensity of self-leveling phenomena and eventual flatness of bed. In all analyses, however, coolant and sodium vapor break the debris bed at mainly center part of bed and the debris is relocated to outside of bed. Through this process, the initial debris bed is almost planarized before re-melting of debris. This result shows that the model parameters affect the self-leveling phenomena, but its effect in the safety analysis of SFRs is limited. (author)

  14. Evaluation of materials for retention of sodium and core debris in reactor systems. Annual progress report, September 1977-December 1978

    International Nuclear Information System (INIS)

    Swanson, D.G.; Zehms, E.H.; McClelland, J.D.; Meyer, R.A.; van Paassen, H.L.L.

    1978-12-01

    This report considers some of the consequences of a hypothetical core disruptive accident in a nuclear reactor. The interactions expected between molten core debris, liquid sodium, and materials that might be employed in an ex-vessel sacrificial-bed or in the reactor building are discussed. Experimental work performed for NRC by Sandia Laboratories and Hanford Engineering Development Laboratory on the interactions between liquid sodium and basalt concrete is reviewed. Studies of molten steel interactions with concrete at Sandia Laboratories and molten UO 2 interactions with concrete at The Aerospace Corporation are also discussed. The potential of MgO for use in core containment is discussed and refractory materials other than MgO are reviewed. Finally, results from earlier experiments with molten core debris and various materials performed at The Aerospace Corporation are presented

  15. Second OECD (NEA) CSNI specialist meeting on molten core debris-concrete interactions

    International Nuclear Information System (INIS)

    Alsmeyer, H.

    1992-11-01

    The 37 contributions concentrated on two main topics. The first topic is the 'classical' core debris-concrete interaction, both experimental and theoretical. Integral effects and separate effects were addressed in thermal hydraulics and heat transfer, material interaction, and aerosol release during concrete erosion, with some applications to prototypical nuclear power plants. The second topic is the possibility of controlling and ending the erosion of the concrete by spreading of the core melt, and/or achieving coolability by the addition of water. (orig./HP) [de

  16. Coolability in the frame of core melt accidents in light water reactors. Model development and validation for ATHLET-CD and ASTEC. Final report; Kuehlbarkeit im Rahmen von Kernschmelzunfaellen bei Leichtwasserreaktoren. Modellentwicklung und Validierung fuer ATHLET-CD und ASTEC. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Michael; Pohlner, Georg; Rahman, Saidur; Berkhan, Ana

    2015-07-15

    The code system ATHLET/ATHLET-CD is being developed in the frame of the reactor safety research of the German Federal Ministry for Economic Affairs and Energy (BMWi) within the topic analysis of transients and accident sequences. It serves for simulation of transients and accidents to be used in safety analyses for light water reactors. In the present project the development and validation of models for ATHLET-CD for description of the processes during severe accidents are continued. These works should enable broad safety analyses by a mechanistic description of the processes even during late phases of a degrading core and by this a profound estimation on coolability and accident management options during every phase. With the actual status of modelling in ATHLET-CD analyses on coolability are made to give a solid base for estimates about stabilization by cooling or accident progression, dependent on the scenario. The modeling in the MEWA module, describing the processes in a severely degraded core in ATHLET-CD, is extended on the processes in the lower plenum. For this, the model on melt pool behavior is extended and linked to the RPV wall. The coupling between MEWA and the thermal-hydraulics of ATHLET-CD is improved. The validation of the models is continued by calculations on new experiments and comparing analyses done in the frame of the European Network SARNET-2. For the European integral code ASTEC contributions from the modeling for ATHLET-CD will be done, especially by providing a model for the melt behavior in the lower plenum of a LWR. This report illustrates the work carried out in the frame of this project, and shows results of calculations and the status of validation by recalculations on experiments for debris bed coolability, melt pool behavior as well as jet fragmentation and debris bed formation.

  17. Experimental study on in-vessel debris coolability; experiments on heat transfer in downward-facing hemicircular gap

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Kim, Yong Hoon; Kim, Seong Joong; Lee, Seung Dong [Seoul National University, Seoul (Korea)

    2002-03-01

    Experiments were performed to measure the CHF and the critical power and to investigate the heat transfer mechanism in the narrow gap with 2D slice test sections. Test parameters in this study included the gap size of 1, 2, 5, and 10mm and the system pressure from 0.1 to 1.0 MPa. The CHF was measured for the distilled water. Results of this study may be summarized as follows. 1) In the narrow gap size of 1 and 2mm, the CHF occurs at the bottom and propagates upwards as the inclination angle relative to gravitational force increases. 2) Dryout is the limiting heat transfer mechanism in the 2D sliced experiments, and the CHF reaches 80-90% of the 3D CHFG value. 3) In the narrow gap size of 1 and 2mm the CHF values lie on the order of 104 kW/m2, while in the gap sizes of 5 and 10mm the CHF values have an order of 105 kW/m2. 4) The flow visualization study revealed that the shape of bubble is elliptic and the hydrodynamic bubble diameter exceeds the size of 20mm. 5) In analyzing the CHF with the inclination angle of the heated surface in the narrow gap size of 1 and 2mm, there exists a transition angle in the vicinity of 20-30 .deg.. From the region of the inclination angle of 0 .deg. C to 20 .deg. C or 30 .deg. C, the dryout mechanism may be directly applicable. On the contrary the transition angle is not conspicuously seen in the gap sizes of 5 and 10mm in which dominant mechanism is closer to pool boiling. 27 refs., 29 figs., 8 tabs. (Author)

  18. SULTAN test facility for large-scale vessel coolability in natural convection at low pressure

    International Nuclear Information System (INIS)

    Rouge, S.

    1997-01-01

    The SULTAN facility (France/CEA/CENG) was designed to study large-scale structure coolability by water in boiling natural convection. The objectives are to measure the main characteristics of two-dimensional, two-phase flow, in order to evaluate the recirculation mass flow in large systems, and the limits of the critical heat flux (CHF) for a wide range of thermo-hydraulic (pressure, 0.1-0.5 MPa; inlet temperature, 50-150 C; mass flow velocity, 5-4400 kg s -1 m -2 ; flux, 100-1000 kW m -2 ) and geometric (gap, 3-15 cm; inclination, 0-90 ) parameters. This paper makes available the experimental data obtained during the first two campaigns (90 , 3 cm; 10 , 15 cm): pressure drop differential pressure (DP) = f(G), CHF limits, local profiles of temperature and void fraction in the gap, visualizations. Other campaigns should confirm these first results, indicating a favourable possibility of the coolability of large surfaces under natural convection. (orig.)

  19. Effect of a blockage length on the coolability during reflood in a 2 × 2 rod bundle with a 90% partially blocked region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kihwan, E-mail: kihwankim@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989-111, Yuseong-Gu, Daejeon 34057 (Korea, Republic of); Kim, Byung-Jae, E-mail: byoungjae@kaeri.re.kr [School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseoung-Gu, Daejeon 34134 (Korea, Republic of); Choi, Hae-Seob, E-mail: hschoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989-111, Yuseong-Gu, Daejeon 34057 (Korea, Republic of); Moon, Sang-Ki, E-mail: skmoon@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989-111, Yuseong-Gu, Daejeon 34057 (Korea, Republic of); Song, Chul-Hwa, E-mail: chsong@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989-111, Yuseong-Gu, Daejeon 34057 (Korea, Republic of)

    2017-02-15

    Highlights: • This test was conducted to understand the effect of blockage length on the coolability. • Reflood tests were conducted with blockage simulators for various reflood rates. • The coolability in the downstream of the blockage region is significantly enhanced. - Abstract: If fuel rods are ballooned or rearranged during the reflood phase of a large break loss-of-coolant accident (LBLOCA) in a pressurized-water reactor (PWR), the transient heat transfer behavior is entirely different with those of the intact fuel rods owing to the deformed blockage region. The coolability in the blocked region depends on a complex two-phase heat transfer with various thermal hydraulic conditions. In addition, the blockage characteristics, such as the blockage ratio, length, shape, and configurations, are also significant factors affecting the coolability. In the present study, reflood experiments were carried out to understand the effect of the blockage length upon the coolability by varying the reflooding rates. The experiments were performed in electrically heated 2 × 2 rod bundles with blockage simulators having the same blockage ratio but different blockage lengths. The characteristics of quenching and heat transfer were evaluated to investigate the influence of the blockage region on the coolability. The droplet behaviors were also observed by measuring the droplets velocity and size near the blockage region. The coolability in the downstream region of the blockage was significantly enhanced, owing to the reduced flow area of the sub-channel, intensification of turbulence, and the entrained droplets in the blockage region.

  20. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of a 1400MW PWR for designing a scale-down test facility

    International Nuclear Information System (INIS)

    Rhee, Bo. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-01-01

    A scaling study on the steady state natural circulation flow along the flow path of the ex-vessel core catcher cooling system of 1400MWe PWR is described. The scaling criteria for reproducing the same thermalhydraulic characteristics of the natural circulation flow as the prototype core catcher cooling system in the scale-down test facility is derived and the resulting natural circulation flow characteristics of the prototype and scale-down facility analyzed and compared. The purpose of this study is to apply the similarity law to the prototype EU-APR1400 core catcher cooling system and the model test facility of this prototype system and derive a relationship between the heating channel characteristics and the down-comer piping characteristics so as to determine the down-comer pipe size and the orifice size of the model test facility. As the geometry and the heating wall heat flux of the heating channel of the model test facility will be the same as those of the prototype core catcher cooling system except the width of the heating channel is reduced, the axial distribution of the coolant quality (or void fraction) is expected to resemble each other between the prototype and model facility. Thus using this fact, the down-comer piping design characteristics of the model facility can be determined from the relationship derived from the similarity law

  1. Ex-vessel boiling experiments: laboratory- and reactor-scale testing of the flooded cavity concept for in-vessel core retention. Pt. II. Reactor-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    International Nuclear Information System (INIS)

    Chu, T.Y.; Bentz, J.H.; Slezak, S.E.; Pasedag, W.F.

    1997-01-01

    For pt.I see ibid., p.77-88 (1997). This paper summarizes the results of a reactor-scale ex-vessel boiling experiment for assessing the flooded cavity design of the heavy water new production reactor. The simulated reactor vessel has a cylindrical diameter of 3.7 m and a torispherical bottom head. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling mainly results from the gravity head, which in turn results from flooding the side of the reactor vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid-solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion. The results show that, under prototypic heat load and heat flux distributions, the flooded cavity will be effective for in-vessel core retention in the heavy water new production reactor. The results also demonstrate that the heat dissipation requirement for in-vessel core retention, for the central region of the lower head of an AP-600 advanced light water reactor, can be met with the flooded cavity design. (orig.)

  2. Proceedings of the Second OECD (NEA) CSNI Specialist Meeting on Molten Core Debris-Concrete Interactions

    International Nuclear Information System (INIS)

    1992-01-01

    The Second CSNI Specialist Meeting on Molten Core Debris-Concrete Interactions was held at Kernforschungszentrum Karlsruhe, Germany on April 1-3, 1992. The status and progress in this field of severe reactor accidents were discussed from researchers around the world including participants from Russia and the Czech and Slovak Federal Republic. The contributions concentrated on two main topics. The first topic is the 'classical' core debris-concrete interaction, both experimental and theoretical. Integral effects and separate effects were addressed in thermal hydraulics and heat transfer, material interaction, and aerosol release during concrete erosion, with some applications to prototypical nuclear power plants. The second topic gaining more and more interest is the possibility of controlling and ending the erosion of the concrete by spreading of the core melt, and/or achieving coolability by the addition of water. In the final session it was concluded that considerable progress has been made in understanding and modelling the important phenomena. For the first topic a broad and generally sufficient experimental data base is existing, allowing further improvement qualification of the theoretical models which at present give reasonable agreement with the most important experimental data. A validation matrix is recommended for final validation of the codes. With respect to fission product release during MCCI measurements show that the releases are significantly less than previously estimated. The relatively new topic of melt coolability deserves further investigations which are already underway at different places or international coordinated efforts

  3. Proceedings of the Second OECD (NEA) CSNI Specialist Meeting on Molten Core Debris-Concrete Interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The Second CSNI Specialist Meeting on Molten Core Debris-Concrete Interactions was held at Kernforschungszentrum Karlsruhe, Germany on April 1-3, 1992. The status and progress in this field of severe reactor accidents were discussed from researchers around the world including participants from Russia and the Czech and Slovak Federal Republic. The contributions concentrated on two main topics. The first topic is the 'classical' core debris-concrete interaction, both experimental and theoretical. Integral effects and separate effects were addressed in thermal hydraulics and heat transfer, material interaction, and aerosol release during concrete erosion, with some applications to prototypical nuclear power plants. The second topic gaining more and more interest is the possibility of controlling and ending the erosion of the concrete by spreading of the core melt, and/or achieving coolability by the addition of water. In the final session it was concluded that considerable progress has been made in understanding and modelling the important phenomena. For the first topic a broad and generally sufficient experimental data base is existing, allowing further improvement qualification of the theoretical models which at present give reasonable agreement with the most important experimental data. A validation matrix is recommended for final validation of the codes. With respect to fission product release during MCCI measurements show that the releases are significantly less than previously estimated. The relatively new topic of melt coolability deserves further investigations which are already underway at different places or international coordinated efforts.

  4. Coolability of degraded core under reflooding conditions in Nordic boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I; Pekkarinen, E [VTT Energy, Espoo (Finland); Nilsson, L [Studsvik EcoSafe AB, Nykoeping (Sweden); Sjoevall, H [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1995-09-01

    Present work is part of the first phase of subproject RAK-2.1 of the new Nordic Co-operative Reactor Safety Program, NKS. The first phase comprises reflooding calculations for the boiling water reactors (BWRs) TVO I/II in Finland and Forsmark 3 in Sweden, as a continuation of earlier severe accident analyses which were made in the SIK-2 project. The objective of the core reflooding studies is to evaluate when and how the core is still coolable with water and what are the probable consequences of water cooling. In the following phase of the RAK-2.1 project, recriticality studies will be performed. Conditions for recriticality might occur if control rods have melted away with the fuel rods intact in a shape that critical conditions can be created in reflooding with insufficiently borated water. Core coolability was investigated for two reference plants, TVO I/II and Forsmark 3. The selected accident cases were anticipated station blackout with or without successful depressurization of reactor coolant system (RCS). The effects of the recovery of emergency core cooling (ECC) were studied by varying the starting time of core reflooding. The start of ECC systems were assigned to reaching a maximum cladding temperature: 1400 K, 1600 K, 1800 K and 2000 K in the core. Cases with coolant injection through the downcomer were studied for TVO I/II and both downcomer injection and core top spray were investigated for Forsmark 3. Calculations with three different computer codes: MAAP 4, MELCOR 1.8.3 and SCDA/RELAP5/MOD 3.1 for the basis for the presented reflooding studies. Presently, and experimental programme on core reflooding phenomena has been started in Kernforschungszentrum Karlsruhe in QUENCH test facility. (EG) 17 refs.

  5. Orbital debris: a technical assessment

    National Research Council Canada - National Science Library

    Committee on Space Debris, National Research Council

    ..., and other debris created as a byproduct of space operations. Orbital Debris examines the methods we can use to characterize orbital debris, estimates the magnitude of the debris population, and assesses the hazard that this population poses to spacecraft...

  6. Ex-vessel nuclear fuel transfer system

    International Nuclear Information System (INIS)

    1977-01-01

    A system is described for transferring reactor fuel assemblies between a fuel storage area and a fuel transfer area while the fuel assemblies remain completely submerged in a continuous body of coolant. The invention relates particularly to sodium cooled fast breeder reactors. (UK)

  7. Ex-vessel nuclear fuel transfer system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a fuel transfer area and a fuel storage area while the fuel assemblies remain completely submerged in a continuous body of coolant is described. A fuel transfer area filled with reactor coolant communicating with the reactor vessel below the reactor coolant level provides a transfer area for fuel assemblies in transit to and from the reactor vessel. A positioning mechanism comprising at least one rotatable plug disposed on a fuel transfer tank located outside the reactor vessel cooperates with either the fuel transfer area or the fuel storage area to position a fuel assembly in transit. When in position, a transporting mechanism cooperating with the positioning mechanism lifts or lowers a chosen fuel assembly. The transporting mechanism together with the positioning mechanism are capable of transferring a fuel assembly between the fuel transfer area and the fuel storage area

  8. Reactor Core Coolability Analysis during Hypothesized Severe Accidents of OPR1000

    International Nuclear Information System (INIS)

    Lee, Yongjae; Seo, Seungwon; Kim, Sung Joong; Ha, Kwang Soon; Kim, Hwan-Yeol

    2014-01-01

    Assessment of the safety features over the hypothesized severe accidents may be performed experimentally or numerically. Due to the considerable time and expenditures, experimental assessment is implemented only to the limited cases. Therefore numerical assessment has played a major role in revisiting severe accident analysis of the existing or newly designed power plants. Computer codes for the numerical analysis of severe accidents are categorized as the fast running integral code and detailed code. Fast running integral codes are characterized by a well-balanced combination of detailed and simplified models for the simulation of the relevant phenomena within an NPP in the case of a severe accident. MAAP, MELCOR and ASTEC belong to the examples of fast running integral codes. Detailed code is to model as far as possible all relevant phenomena in detail by mechanistic models. The examples of detailed code is SCDAP/RELAP5. Using the MELCOR, Carbajo. investigated sensitivity studies of Station Black Out (SBO) using the MELCOR for Peach Bottom BWR. Park et al. conduct regulatory research of the PWR severe accident. Ahn et al. research sensitivity analysis of the severe accident for APR1400 with MELCOR 1.8.4. Lee et al. investigated RCS depressurization strategy and developed a core coolability map for independent scenarios of Small Break Loss-of-Coolant Accident (SBLOCA), SBO, and Total Loss of Feed Water (TLOFW). In this study, three initiating cases were selected, which are SBLOCA without SI, SBO, and TLOFW. The initiating cases exhibit the highest probability of transitioning into core damage according to PSA 1 of OPR 1000. The objective of this study is to investigate the reactor core coolability during hypothesized severe accidents of OPR1000. As a representative indicator, we have employed Jakob number and developed JaCET and JaMCT using the MELCOR simulation. Although the RCS pressures for the respective accident scenarios were different, the JaMCT and Ja

  9. An experimental study on coolability through the external reactor vessel cooling according to RPV insulation design

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung Ho; Koo, Kil Mo; Park, Rae Joon; Cho, Young Ro; Kim, Sang Baik

    2004-01-01

    LAVA-ERVC experiments have been performed to investigate the effect of insulation design features on the water accessibility and coolability in case of the external reactor vessel cooling. Alumina iron thermite melt was used as corium stimulant. And the hemispherical test vessel is linearly scaled-down of RPV lower plenum. 4 tests have been performed varying the melt composition and the configuration of the insulation system. Due to the limited steam venting capacity through the insulation, steam binding occurred inside the annulus in the LAVA- ERVC-1, 2 tests which were performed for simulating the KSNP insulation design. This steam binding brought about incident heat up of the vessel outer surface at the upper part in the LAVA-ERVC-1, 2 tests. On the contrary, in the LAVA-ERVC-3, 4 tests which were performed for simulating the APR1400 insulation design, the temperatures of the vessel outer surface maintained near saturation temperature. Sufficient water ingression and steam venting through the insulation lead to effective cooldown of the vessel characterized by nucleate boiling in the LAVA-ERVC-3, 4 tests. From the LAVA-ERVC experimental results, it could be preliminarily concluded that if pertinent modification of the insulation design focused on the improvement of water ingression and steam venting should be preceded the possibility of in-vessel corium retention through the external vessel cooling could be considerably increased.

  10. In-Vessel Coolability. Workshop Proceedings, in collaboration with EC-SARNET

    International Nuclear Information System (INIS)

    2011-01-01

    Severe Accident Management Guidelines increase focus on containment integrity after some progression in the course of a severe accident. This change in priorities is made according to criteria that vary depending on reactor type and specific procedures. Once a water source has been recovered, different accident management strategies can be used: send water into the core and/or cool the reactor pressure vessel (RPV) externally. It should be noticed that, depending on the amount of water available, these strategies might conflict with other uses of water such as for instance activating spray systems in the containment or may have deleterious effects as for instance an increase in the production of hydrogen. Generally, for in-vessel reflooding, the models used for evaluation of accident management measures suffer from a lack of validation. Given this background, the objectives of the workshop were: -) to exchange information on different Severe Accident Management strategies used or contemplated for the in-vessel coolability issue; -) to review recent, ongoing and planned experimental programmes on reflooding; -) to review models used for reflooding in severe accident calculation tools, either simplified or sophisticated; -) to exchange information on the treatment of reflooding in different safety studies such as Probabilistic Safety Assessment; and -) to provide recommendations for future work, as necessary

  11. Experimental studies on the coolability of packed beds. Flooding of hot dry packed beds

    International Nuclear Information System (INIS)

    Leininger, S.; Kulenovic, R.; Laurien, E.

    2013-01-01

    In case of a severe accident in a nuclear power plant meltdown of the reactor core can occur and form a packed bed in the lower plenum of the reactor pressure vessel (RPV) after solidification due to contact with water. The removal of after-heat and the long-term coolability is of essential interest. The efficient injection of cooling water into the packed bed has to be assured without endangering the structural integrity of the reactor pressure vessel. The experiments performed aimed to study the dry-out and the quenching (flooding) of hot dry packed beds. Two different inflow variants, bottom- and top-flooding including the variation of the starting temperature of the packed bed and the injection rate were studied. In case of bottom flooding the quenching time increases with increasing packed bed temperature and decreasing injection rate. In case of top flooding the flow pattern is more complex, in a first phase the water flows preferentially toward the RPV wall, the flow paths conduct the water downwards. The flow resistance of the packed bed increases with increasing bed temperatures. The quenching temperatures increase significantly above average.

  12. Debris thickness patterns on debris-covered glaciers

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  13. Evaluation of molten lead mixing in sodium coolant by diffusion for application to PAHR

    International Nuclear Information System (INIS)

    Chawla, T.C.; Pedersen, D.R.; Leaf, G.; Minkowycz, W.J.

    1983-01-01

    In post-accident heat removal (PAHR) applications the use of a lead slab is being considered for protecting a porous bed of steel shots in ex-vessel cavity from direct impingement of molten steel or fuel upon vessel failure following a hypothetical core dissembly accident in an LMFBR. The porous bed is provided to increase coolability of the fuel debris by the sodium coolant. The objectives of the present study are (1) to determine melting rates of lead slabs of various thicknesses in contact with sodium coolant and (2) to evaluate the extent of penetration and mixing rates of molten lead into sodium coolant by molecular diffusion alone

  14. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  15. Current position on severe accident phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Robert E [Fauske and Associates, Inc., Burr Ridge, IL (United States)

    2004-07-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors.

  16. Current position on severe accident phenomena

    International Nuclear Information System (INIS)

    Henry, Robert E.

    2004-01-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors

  17. Quench of molten aluminum oxide associated with in-vessel debris retention by RPV internal water

    International Nuclear Information System (INIS)

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi; Park, Hyun Sun; Kudo, Tamotsu; Yang, Yanhua; Sugimoto, Jun

    1999-01-01

    In-vessel debris coolability experiments were performed in ALPHA program at JAERI. Molten aluminum oxide (Al 2 O 3 ) was poured into a pool of water in a lower head experimental vessel. Post-test observation and measurement using an ultrasonic technique indicated the formation of the interfacial gap between the solidified Al 2 O 3 and the vessel wall. Thermal responses of the vessel wall implied that the interfacial gap acted initially as a thermal resistance and water subsequently penetrated into the interfacial gap. The maximum heat flux at the inner surface of the vessel facing to the solidified Al 2 O 3 was roughly evaluated to be ranged from 320 kW/m 2 to 600 kW/m 2 . A post-test analysis was conducted with CAMP code. The influence of the interfacial gap on thermal behavior of Al 2 O 3 and the vessel wall was examined. (authors)

  18. In-vessel core debris retention through external flooding of the reactor pressure vessel. State-of-the-art report

    Energy Technology Data Exchange (ETDEWEB)

    Heel, A.M.J.M. van

    1995-07-01

    An overview of the state-of-the-art knowledge on the ex-vessel flooding accident management strategy for severe accidents in a NPP has been given. The feasibility has been discussed, as well as the in- and ex-vessel phenomena, which influence the structural integrity of the vessel. Finally, some computer codes with the ability to model the phenomena involved in ex-vessel flooding have been discussed. (orig./HP).

  19. In-vessel core debris retention through external flooding of the reactor pressure vessel. State-of-the-art report

    International Nuclear Information System (INIS)

    Heel, A.M.J.M. van.

    1995-07-01

    An overview of the state-of-the-art knowledge on the ex-vessel flooding accident management strategy for severe accidents in a NPP has been given. The feasibility has been discussed, as well as the in- and ex-vessel phenomena, which influence the structural integrity of the vessel. Finally, some computer codes with the ability to model the phenomena involved in ex-vessel flooding have been discussed. (orig./HP)

  20. LEGACY - EOP Marine Debris

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contains towed diver surveys of and weights of marine debris removed from the near shore environments of the NWHI.

  1. Space Debris & its Mitigation

    Science.gov (United States)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  2. Disaster Debris Recovery Database - Landfills

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  3. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  4. Experimental study on in-vessel debris coolability during severe accident - Experimental and analytical model study on gap cooling in gap

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Yang, Soo Hyung; Kim, Soo Hyoung; Lee, Yong Ho; Chung, Yong Hun [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-04-01

    To understand the flooding and mechanism in gap geometry, research was conducted. Final objectives of research are as follows: 1) Literature survey of the flooding and heat transfer mechanism in gap geometry 2) Performing CHF experiments using bottom closed rectangular channels test section 3) Development of flooding correlation using flooding data 4) Derive instability wave length in narrow gap. The major results of research are as follows: 1) Gap size and span of channel are important parameter for flooding. 2) Kutateladze number used for analysing flooding data, is appropriate to the analysis of the flooding using non-circular narrow gap channel. 3) Flooding correlation was developed using collected flooding data and it predicts flooding data lower than 10%. 4) CHF correlation derived from developed flooding collreation overpredict CHF. 5) Instability wave length is increased as gap size is decreased. 26 refs., 46 figs., 2 tabs. (Author)

  5. Space Debris Mitigation Guidelines

    Science.gov (United States)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  6. Experimental study and modelling of pressure losses during reflooding of a debris beds

    International Nuclear Information System (INIS)

    Clavier, Remi

    2015-01-01

    This work deals with single and two-phase flow pressure losses in porous media. The aim is to improve understanding and modeling of momentum transfer inside particle beds, in relation with nuclear safety issues concerning the reflooding of debris beds during severe nuclear accidents. Indeed, the degradation of the core during such accidents can lead to the collapse of the fuel assemblies, and to the formation of a debris bed, which can be described as a hot porous medium. This thesis is included in a nuclear safety research project on coolability of debris beds during reflooding sequences. An experimental study of single and two-phase cold-flow pressure losses in particle beds is proposed. The geometrical characteristics of the debris and the hydrodynamic conditions are representative of the real case, in terms of granulometry, particle shapes, and flow velocities. The new data constitute an important contribution. In particular, they contain pressure losses and void fraction measurements in two-phase air-water flows with non-zero liquid Reynolds numbers, which did not exist before. Predictive models for pressure losses in single and two-phase flow through particle beds have been established from experimental data. Their structures are based on macroscopic equations obtained from the volume averaging of local conservation equations. Single-phase flow pressure losses can be described by a Darcy-Forchheimer law with a quadratic correction, in terms of filtration velocity, with a better-than-10 % precision. Numerical study of single-phase flows through porous media shows that this correlation is valid for disordered smooth particle beds. Two-phase flow pressure losses are described using a generalized Darcy-Forchheimer structure, involving inertial and cross flow terms. A new model is proposed and compared to the experimental data and to the usual models used in severe accident simulation codes. (author)

  7. An experimental simulation study of debris quenching in a radially stratified porous bed

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Nayak, A.K.; Stepanyan, A.

    2004-01-01

    During a severe accident condition in a nuclear power plant, the core melt can fail the reactor vessel and relocate into the containment basement. In some accident management schemes, the vessel cavity is flooded with water. For these a particulate debris bed is likely to form on the cavity floor due to melt break-up in water. . In this situation, the coolability of debris bed on the containment floor is a crucial issue. This is because the debris bed still generates the decay heat and if it is uncoolable, it can eventually remelt and react with concrete basement generating a lot of noncondensable gases and pressurising the containment. Hence, it is important to cool the debris bed as an accident management programme. The main parameters affecting the coolability of the debris bed are its porosity which is a function of the size and shape of the particles which constitute the debris bed, the operating condition such as water flooding from the top or bottom of debris bed, water temperature and non-condensable gas generated during bed-concrete interactions. It is found from previous studies that the debris bed has a non-uniform particle distribution or a porosity stratification. This can happen both in radial and axial plane. For example, the bed can have a lower porosity at the centre and higher porosity at the periphery. It is of interest to investigate the quenching phenomena in such configurations so as to find an effective means of quenching the heat generating bed. While most of the previous investigations mainly concentrate on quenching of a homogenous or axially stratified particulate bed with volumetric heat generation, there are almost no studies on the above phenomena in a radially stratified porous bed. So the objective of this paper is to investigate the quenching phenomena in a radially stratified bed. To simulate the phenomena, we conducted experiments in an experimental facility named as POMECO (POrous MEdia COolability). The facility has a square

  8. Assessment of capability of models for prediction of pressure drop and dryout heat flux in a heat generating particulate debris bed

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.; Rashid, M.; Kulenovic, R.

    2009-01-01

    During a severe accident in a light water reactor, the core can melt and be relocated to the lower plenum of the reactor pressure vessel. There it can form a particulate debris bed due to the possible presence of water. This bed, if not quenched in time, can lead to the failure of the pressure vessel because of the insufficient heat removal of decay heat in the debris bed. Therefore, addressing the issue of coolability behaviour of heat generating particulate debris bed is of prime importance in the framework of severe accident management strategies, particularly in case of above mentioned late phase scenario of an accident. In order to investigate the coolability behaviour of particulate debris bed, experiments were carried out at IKE test facility 'DEBRIS' on particle beds of irregularly shaped particles mixed with spheres under top- and bottom-flooding condition. The pressure drop and dryout heat flux (DHF) were measured for top- and bottom-flooding conditions. For top-flooding conditions, it was found that the pressure gradients are all smaller than the hydrostatic pressure gradient of water, indicating an important role of the counter-current interfacial shear stress of the two-phase flow. For bottom-flooding with a relatively high liquid inflow velocity, the pressure gradient increases consistently with the vapour velocity and the fluid-particle drags become important. Also, with additional forced liquid inflow from the bottom, the DHF increases dramatically. In all the cases, it was found that the DHF is significantly larger with bottom-flooding condition compared to top-flooding condition. Different models such as Lipinski, Reed, Tung and Dhir, Hu and Theophanous, and Schulenberg and Mueller have been used to predict the pressure drop characteristics and the DHF of heat generating particulate debris beds. Comparison is made among above mentioned models and experimental results for DHF and pressure drop characteristics. Considering the overall trend in

  9. Integral experiments on in-vessel coolability and vessel creep: results and analysis of the FOREVER-C1 test

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Nourgaliev, R.R.; Dinh, T.N.; Karbojian, A. [Division of Nuclear Power Safety, Royal Institute of Technology, Drottning Kristinas Vaeg., Stockholm (Sweden)

    1999-07-01

    This paper describes the FOREVER (Failure Of REactor VEssel Retention) experimental program, which is currently underway at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS). The objectives of the FOREVER experiments are to obtain data and develop validated models (i) on the melt coolability process inside the vessel, in the presence of water (in particular, on the efficacy of the postulated gap cooling to preclude vessel failure); and (ii) on the lower head failure due to the creep process in the absence of water inside and/or outside the lower head. The paper presents the experimental results and analysis of the first FOREVER-C1 test. During this experiment, the 1/10th scale pressure vessel, heated to about 900degC and pressurized to 26 bars, was subjected to creep deformation in a non-stop 24-hours test. The vessel wall displacement data clearly shows different stages of the vessel deformation due to thermal expansion, elastic, plastic and creep processes. The maximum displacement was observed at the lowermost region of the vessel lower plenum. Information on the FOREVER-C1 measured thermal characteristics and analysis of the observed thermal and structural behavior is presented. The coupled nature of thermal and mechanical processes, as well as the effect of other system conditions (such as depressurization) on the melt pool and vessel temperature responses are analyzed. (author)

  10. Persistent marine debris

    International Nuclear Information System (INIS)

    Levy, E.M.

    1992-01-01

    In this paper the distribution of persistent marine debris, adrift on world oceans and stranded on beaches globally, is reviewed and related to the known inputs and transport by the major surface currents. Since naturally occurring processes eventually degrade petroleum in the environment, international measures to reduce the inputs have been largely successful in alleviating oil pollution on a global, if not on a local, scale. Many plastics, however, are so resistant to natural degradation that merely controlling inputs will be insufficient, and more drastic and costly measures will be needed to cope with the emerging global problem posed by these materials

  11. Wholesale debris removal from LEO

    Science.gov (United States)

    Levin, Eugene; Pearson, Jerome; Carroll, Joseph

    2012-04-01

    Recent advances in electrodynamic propulsion make it possible to seriously consider wholesale removal of large debris from LEO for the first time since the beginning of the space era. Cumulative ranking of large groups of the LEO debris population and general limitations of passive drag devices and rocket-based removal systems are analyzed. A candidate electrodynamic debris removal system is discussed that can affordably remove all debris objects over 2 kg from LEO in 7 years. That means removing more than 99% of the collision-generated debris potential in LEO. Removal is performed by a dozen 100-kg propellantless vehicles that react against the Earth's magnetic field. The debris objects are dragged down and released into short-lived orbits below ISS. As an alternative to deorbit, some of them can be collected for storage and possible in-orbit recycling. The estimated cost per kilogram of debris removed is a small fraction of typical launch costs per kilogram. These rates are low enough to open commercial opportunities and create a governing framework for wholesale removal of large debris objects from LEO.

  12. Space debris: modeling and detectability

    Science.gov (United States)

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.

    2017-01-01

    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  13. Problems of Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available During the exploration of outer space (as of 1/1 2011 6853 was launched spacecraft (SC are successful 6264, representing 95% of the total number of starts. The most intensively exploited space Russia (USSR (3701 starts, 94% successful, USA (2774 starts, 90% successful, China (234 starts, 96% successful and India (89 starts, 90% successful. A small part of running the spacecraft returned to Earth (manned spacecraft and transport, and the rest remained in orbit. Some of them are descended from orbit and burned up in the atmosphere, the rest remained in the OCP and turned into space debris (SD.The composition of the Cabinet is diverse: finish the job spacecraft; boosters and the last stage of launch vehicles left in orbit after SC injection; technological waste arising during the opening drop-down structures and fragments of the destroyed spacecraft. The resulting explosion orbital SD forms ellipsoidal region which orbits blasted object. Then, as a result of precession, is the distribution of objects in orbit explosion exploding spacecraft.The whole Cabinet is divided into two factions: the observed (larger than 100 mm and not observed (less than 100 mm. Observed debris katalogalizirovan and 0.2% of the total number of SD, there was no SD is the bulk - 99.8%.SC meeting working with a fragment observed SD predictable and due to changes in altitude spacecraft avoids a possible meeting. Contact spacecraft with large fragment lead to disaster (which took place at a meeting of the Russian communications satellite "Cosmos-2251" and the American machine "Iridium". Meeting with small SD is not predictable, especially if it was formed by an explosion or collision fragments together. Orbit that KM is not predictable, and the speed can be up to 10 km / s. Meeting with small particle SD no less dangerous for the spacecraft. The impact speed of spacecraft with space debris particles can reach up to 10 ... 15 km / s at such speeds the breakdown probability thin

  14. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  15. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  16. Analysis of core degradation and relocation phenomena and scenarios in a Nordic-type BWR

    Energy Technology Data Exchange (ETDEWEB)

    Galushin, Sergey, E-mail: galushin@kth.se; Kudinov, Pavel, E-mail: pkudinov@kth.se

    2016-12-15

    Highlights: • A data base of the debris properties in lower plenum generated using MELCOR code. • The timing of safety systems has significant effect on the relocated debris properties. • Loose coupling between core relocation and vessel failure analyses was established. - Abstract: Severe Accident Management (SAM) in Nordic Boiling Water Reactors (BWR) employs ex-vessel cooling of core melt debris. The melt is released from the failed vessel and poured into a deep pool of water located under the reactor. The melt is expected to fragment, quench, and form a debris bed, coolable by a natural circulation and evaporation of water. Success of the strategy is contingent upon melt release conditions from the vessel and melt-coolant interaction that determine (i) properties of the debris bed and its coolability (ii) potential for energetic melt-coolant interactions (steam explosions). Risk Oriented Accident Analysis Methodology (ROAAM+) framework is currently under development for quantification of the risks associated with formation of non-coolable debris bed and occurrence of steam explosions, both presenting a credible threats to containment integrity. The ROAAM+ framework consist of loosely coupled models that describe each stage of the accident progression. Core relocation analysis framework provides initial conditions for melt vessel interaction, vessel failure and melt release frameworks. The properties of relocated debris and melt release conditions, including in-vessel and ex-vessel pressure, lower drywell pool depth and temperature, are sensitive to the accident scenarios and timing of safety systems recovery and operator actions. This paper illustrates a methodological approach and relevant data for establishing a connection between core relocation and vessel failure analysis in ROAAM+ approach. MELCOR code is used for analysis of core degradation and relocation phenomena. Properties of relocated debris are obtained as functions of the accident scenario

  17. TMI-2 core debris analysis

    International Nuclear Information System (INIS)

    Cook, B.A.; Carlson, E.R.

    1985-01-01

    One of the ongoing examination tasks for the damaged TMI-2 reactor is analysis of samples of debris obtained from the debris bed presently at the top of the core. This paper summarizes the results reported in the TMI-2 Core Debris Grab Sample Examination and Analysis Report, which will be available early in 1986. The sampling and analysis procedures are presented, and information is provided on the key results as they relate to the present core condition, peak temperatures during the transient, temperature history, chemical interactions, and core relocation. The results are then summarized

  18. Space Debris Mitigation CONOPS Development

    Science.gov (United States)

    2013-06-01

    literature search and review a lone article was found with any discussion of it. As with any net, the concept is to catch space debris objects in the net...travel along the track of the orbit and collect debris along its path. The lone article found contends that the idea “does not work”. Bonnal and...100,000 pieces of debris orbiting the planet , [as] NASA estimated -- 2,600 of them more than [four] inches across. [NASA] called the breakup of the

  19. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  20. DebriSat Laboratory Analyses

    Science.gov (United States)

    2015-01-05

    droplets. Fluorine from Teflon wire insulation was also common in the SEM stub and witness plates deposits. Nano droplets of metallic materials...and Debris-LV debris. Aluminum was from the Al honeycomb, nadir and zenith panels, structural core and COPV liner. Aluminum oxide particles were...three pieces: Outer Nylon shell (sabot) with 2 part hollow aluminum insert. • ~600 grams, 8.6 cm diameter X 10.3 cm long – size of a soup can

  1. Backwater development by woody debris

    Science.gov (United States)

    Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton

    2017-04-01

    Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.

  2. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  3. Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SAG/LEPC, Cadarache bât. 700, 13115 St Paul-lez-Durance (France); Quintard, M. [Université de Toulouse – INPT – UPS – Institut de Mécanique des Fluides de Toulouse (IMFT), Allée Camille Soula, F-31400 Toulouse (France); CNRS – IMFT, F-31400 Toulouse (France)

    2015-10-15

    Highlights: • Single-phase pressure drops versus flow rates in particle beds are measured. • Conditions are representative of the reflooding of a nuclear fuel debris bed. • Darcy, weak inertial, strong inertial and weak turbulent regimes are observed. • A Darcy–Forchheimer law is found to be a good approximation in this domain. • A predictive correlation is derived from new experimental data. - Abstract: During a severe nuclear power plant accident, the degradation of the reactor core can lead to the formation of debris beds. The main accident management procedure consists in injecting water inside the reactor vessel. Nevertheless, large uncertainties remain regarding the coolability of such debris beds. Motivated by the reduction of these uncertainties, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds. In this paper, these results are presented and analyzed in order to identify a simple single-phase flow pressure loss correlation for debris-bed-like particle beds in reflooding conditions, which cover Darcean to Weakly Turbulent flow regimes. The first part of this work is dedicated to study macro-scale pressure losses generated by debris-bed-like particle beds, i.e., high sphericity (>80%) particle beds with relatively small size dispersion (from 1 mm to 10 mm). A Darcy–Forchheimer law, involving the sum of a linear term and a quadratic deviation, with respect to filtration velocity, has been found to be relevant to describe this behavior in Darcy, Strong Inertial and Weak Turbulent regimes. It has also been observed that, in a restricted domain (Re = 15 to Re = 30) between Darcy and Weak Inertial regimes, deviation is better described by a cubic term, which corresponds to the so-called Weak Inertial regime. The second part of this work aims at identifying expressions for coefficients of linear and quadratic terms in Darcy–Forchheimer law, in order to obtain a

  4. An Ontological Architecture for Orbital Debris Data

    OpenAIRE

    Rovetto, Robert J.

    2017-01-01

    The orbital debris problem presents an opportunity for inter-agency and international cooperation toward the mutually beneficial goals of debris prevention, mitigation, remediation, and improved space situational awareness (SSA). Achieving these goals requires sharing orbital debris and other SSA data. Toward this, I present an ontological architecture for the orbital debris domain, taking steps in the creation of an orbital debris ontology (ODO). The purpose of this ontological system is to ...

  5. The physics of debris flows

    Science.gov (United States)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  6. The physics of debris flows

    Science.gov (United States)

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  7. Ex-vessel remote maintenance for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Macdonald, D.

    1987-01-01

    The use of deuterium-tritium (D-T) fuel for operation of the Compact Ignition Tokamak (CIT) requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist in removing and repairing such components as diagnostic modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the plasma chamber includes a bridge-mounted manipulator system for test cell operations, decontamination (decon) equipment, hot cell equipment, and solid-radiation-waste-handling equipment. Wherever possible, the project will use commercially available equipment. Several areas of the maintenance system design were addressed in fiscal year (FY) 1987, including conceptual designs of manipulator systems, the start of a remote equipment research and development (RandD) program, and definition of the hot cell, decon, and equipment repair facility requirements. R and D work included preliminary demonstrations of remote handling operations on full-size, partial mock-ups of the CIT machine at the Oak Ridge National Laboratory (ORNL) Remote Operations and Maintenance Development (ROMD) Facility. 1 ref., 6 figs

  8. High temperature zirconia binders for ex-vessel catcher brickwork

    International Nuclear Information System (INIS)

    Mineev, V.N.; Borovkova, L.B.; Akopov, F.A.; Akopyan, A.A.; Barykin, B.M.; Borodina, T.I.; Val'yano, G.E.; Bel'maz, N.S.; Bel'maz, K.N.

    2000-01-01

    The studies on selection of compositions of binding materials (mortars) on the zirconium dioxide basis with two types of binders - the barium monoaluminate and zirconium dioxide binding suspension - are accomplished. The bases of technology for their fabrication and application are developed; the density, porosity, shrinkage and behavior in contact with the steel melts and iron oxide are specified. The mortars developed are recommended for application in the external trap fireproof protection on the basis of the zirconium dioxide refractory materials [ru

  9. Design of ex-vessel neutron monitor for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Yamauchi, Michinori; Kasai, Satoshi; Ebisawa, Katsuyuki; Walker, Chris

    2002-07-01

    A neutron flux monitor has been designed by using 235 U fission chambers to be installed outside the vacuum vessel of ITER. We investigated moderator materials to get flat energy response the responses of 235 U fission chambers. Here we employed graphite and beryllium with a ratio of Be/C=0.25 as moderator, which materials are stable in ITER relevant temperature in a horizontal port. Based on the neutronics calculations, a fission chamber with 200 mg of 235 U is adopted for the neutron flux monitor. Three detectors are mounted in a stainless steel housing with moderation material. Two fission chamber assemblies will be installed in a horizontal port; one is for D-D and calibration operation, and another is for D-T operation. The assembly for the D-D operation and the calibration are installed just outside the port plug in the horizontal port. The assembly for the D-T operation is installed just behind the additional shield in the port. Combining of those assemblies with both pulse counting mode and Campbelling mode in the electronics, a dynamic range of 10 7 can be obtained with 1 ms temporal resolution. Effects of gamma-rays and magnetic fields on the fission chamber are negligible in this arrangement. The neutron flux monitor can meet the required 10% accuracy for a fusion power monitor. (author)

  10. The new Ex-Vessel Magnetic Diagnostics System for JET

    International Nuclear Information System (INIS)

    Coccorese, V.; Artaserse, G.; Quercia, A.; Chitarin, G.; Peruzzo, S.; Edlington, T.; Gerasimov, S.; Sowden, C.

    2006-01-01

    A new system of magnetic probes was installed during the 2005 shutdown and was commissioned during the 2005/06 restart phase of JET. The system has been developed in the framework of the JET enhancement project on Magnetic Diagnostics, which aims to improve the equilibrium reconstruction and the real time control in JET, by means of 98 new field measurements as well as of new software tools. The subsystem presented in the paper includes probes located outside the vessel and it is made of 8 pickup coils, 8 Hall probes and 6 flux loops. The objective of this subsystem is twofold: i) provide experimental data for a better modelling of the iron in the axisymmetric codes for plasma equilibrium reconstruction; ii) test the reliability of direct field measurements. The new sensors are located very near to the iron structure, so to provide useful information for the online tuning of the code parameters representing the iron characteristics. Direct field measurements from Hall probes are used to correct the drift of the integrators of the pickup coils signals. This feature will be crucial for future ITER-like devices, where long lasting flat top phases are expected, in a high neutron yield and a high temperature environment. After a general overview of the system, the paper describes the major manufacturing and installation issues, including the construction of the supports and probes as well as the acceptance tests before and after installation. The functional commissioning of the system, which was successfully concluded during the restart phase, is also illustrated. It includes the integration of the new signals in the JET CODAS system and the analysis of several discharges with and without plasma. The critical aspects of the assessment of the reliability of the signals are shown and commented on. (author)

  11. Space debris mitigation - engineering strategies

    Science.gov (United States)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  12. Disaster Debris Recovery Database - Landfills

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  13. Disaster Debris Recovery Database - Recovery

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  14. Debris Flows and Related Phenomena

    Science.gov (United States)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  15. Analysis of coolability of the control rods of a Savannah River Site production reactor with loss of normal forced convection cooling

    International Nuclear Information System (INIS)

    Easterling, T.C.; Hightower, N.T.; Smith, D.C.; Amos, C.N.

    1992-01-01

    An analytical study of the coolability of the control rods in the Savannah River Site (SRS) K-Production Reactor under conditions of loss of normal forced convection cooling has been performed. The study was performed as part of the overall safety analysis of the reactor supporting its restart. The analysis addresses the buoyancy-driven flow over the control rods that occurs when forced cooling is lost, and the limit of critical heat flux that sets the acceptance criteria for the study. The objective of the study is to demonstrate that the control rods will remain cooled at powers representative of those anticipated for restart of the reactor. The study accomplishes this objective with a very tractable simplified analysis for the modest restart power. In addition, a best-estimate calculation is performed, and the results are compared to results from sub-scale scoping experiments. 5 refs

  16. Marine Debris Research, Prevention, and Reduction Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  17. The ecological impacts of marine debris

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Browne, Mark Anthony; Underwood, A.J.; Franeker, Van Jan A.; Thompson, Richard C.; Amaral-Zettler, Linda A.

    2016-01-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological

  18. Space Debris Elimination (SpaDE)

    Data.gov (United States)

    National Aeronautics and Space Administration — The amount of debris in low Earth orbit (LEO) has increased rapidly over the last twenty years. This prevalence of debris increases the likelihood of cascading...

  19. DebriSat Project Update and Planning

    Science.gov (United States)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  20. DebriSat Hypervelocity Impact Test

    Science.gov (United States)

    2015-08-01

    public release; distribution unlimited.  Targets: Scaled Multishock Shield, DebrisLV, and DebriSat  500-600 g hollow aluminum and nylon projectile... insulation . DebriSat’s internal components were structurally similar to real flight hardware but were nonfunctional. AEDC-TR-15-S-2 6...structures with an AL 5052 honeycomb core and M55J carbon fiber face sheets. The basic system characteristics of the DebriSat are given in Table 1

  1. Photometric Studies of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  2. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  3. Experimental simulation of fragmentation and stratification of core debris on the core catcher of a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Dipin S.; Vignesh, R. [Indian Institute of Technology, Chennai, Tamil Nadu (India); Sudha, A. Jasmin, E-mail: jasmin@igcar.gov.in [Safety Engineering Division, Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Pushpavanam, S.; Sundararajan, T. [Indian Institute of Technology, Chennai, Tamil Nadu (India); Nashine, B.K.; Selvaraj, P. [Safety Engineering Division, Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2016-05-15

    Highlights: • Fragmentation of two simultaneous metals jets in a bulk coolant analysed. • Particle size from experiments compared with theoretical analysis. • Jet breakup modes explained using dimensionless numbers. • Settling aspects of aluminium and lead debris on collector plate studied. • Results analysed in light of core debris settling on core catcher in a FBR. - Abstract: The complex and coupled phenomena of two simultaneous molten metal jets fragmenting inside a quiescent liquid pool and settling on a collector plate are experimentally analysed in the context of safety analysis of a fast breeder reactor (FBR) in the post accident heat removal phase. Following a hypothetical core melt down accident in a FBR, a major portion of molten nuclear fuel and clad/structural material which are collectively termed as ‘corium’ undergoes fragmentation in the bulk coolant sodium in the lower plenum of the reactor main vessel and settles on the core catcher plate. The coolability of this decay heat generating debris bed is dependent on the particle size distribution and its layering i.e., stratification. Experiments have been conducted with two immiscible molten metals of different densities poured inside a coolant medium to understand their fragmentation behaviour and to assess the possibility of formation of a stratified debris bed. Molten aluminium and lead have been used as simulants in place of molten stainless steel and nuclear fuel to facilitate easy handling. This paper summarizes the major findings from these experiments. The fragmentation of the two molten metals are explained in the light of relevant dimensionless numbers such as Reynolds number and Weber Number. The mass median diameter of the fragmented debris is predicted from nonlinear stability analysis of slender jets for lead jet and using Rayleigh's classical theory of jet breakup for aluminium jet. The agreement of the predicted values with the experimental results is good. These

  4. Colisional Cloud Debris and Propelled Evasive Maneuvers

    Science.gov (United States)

    Ferreira, L. S.; Jesus, A. D. C.; Carvalho, T. C. F.; Sousa, R. R.

    2017-10-01

    Space debris clouds exist at various altitudes in the environment outside the Earth. Fragmentation of debris and/or collision between the debris of a cloud increases the amount of debris, producing smaller debris. This event also increases significantly the chances of collision with operational vehicles in orbit. In this work we study clouds of debris that are close to a spacecraft in relation to its distance from the center of the Earth. The results show several layers of colliding debris depending on their size over time of evasive maneuvers of the vehicle. In addition, we have tested such maneuvers for propulsion systems with a linear and exponential mass variation model. The results show that the linear propulsion system is more efficient.

  5. The fast debris evolution model

    Science.gov (United States)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  6. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  7. Warm Debris Disks from WISE

    Science.gov (United States)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  8. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  9. Space Debris and Observational Astronomy

    Science.gov (United States)

    Seitzer, Patrick

    2018-01-01

    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  10. Small satellites and space debris issues

    Science.gov (United States)

    Yakovlev, M.; Kulik, S.; Agapov, V.

    2001-10-01

    The objective of this report is the analysis of the tendencies in designing of small satellites (SS) and the effect of small satellites on space debris population. It is shown that SS to include nano- and pico-satellites should be considered as a particularly dangerous source of space debris when elaborating international standards and legal documents concerning the space debris problem, in particular "International Space Debris Mitigation Standard". These issues are in accordance with the IADC goals in its main activity areas and should be carefully considered within the IADC framework.

  11. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    Science.gov (United States)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  12. Autogenic dynamics of debris-flow fans

    Science.gov (United States)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  13. Sampling supraglacial debris thickness using terrestrial photogrammetry

    Science.gov (United States)

    Nicholson, Lindsey; Mertes, Jordan

    2017-04-01

    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  14. The Fabulous Four Debris Disks

    Science.gov (United States)

    Werner, Michael; Stapelfeldt, Karl

    2004-09-01

    This program is a comprehensive study of the four bright debris disks that were spatially resolved by IRAS: Beta Pictoris, Epsilon Eridani, Fomalhaut, and Vega. All SIRTF instruments and observing modes will be used. The program has three major objectives: (1) Study of the disk spatial structure from MIPS and IRAC imaging; (2) Study of the dust grain composition using the IRS and MIPS SED mode; and (3) companion searches using IRAC. The data from this program should lead to a detailed understanding of these four systems, and will provide a foundation for understanding all of the debris disks to be studied with SIRTF. Images and spectra will be compared with models for disk structure and dust properties. Dynamical features indicative of substellar companions' effects on the disks will be searched for. This program will require supporting observations of PSF stars, some of which have been included explicitly. In the majority of cases, the spectral observations require a preferred orientation to align the slits along the disk position angles. Detector saturation issues are still being worked for this program, and will lead to AOR modifications in subsequent submissions. The results from this program will be analyzed collaboratively by the IRAC, IRS, and MIPS teams and by general GTOs Jura and Werner.

  15. Debris flows: behavior and hazard assessment

    Science.gov (United States)

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  16. Space Debris Removal: A Game Theoretic Analysis

    Directory of Open Access Journals (Sweden)

    Richard Klima

    2016-08-01

    Full Text Available We analyse active space debris removal efforts from a strategic, game-theoretical perspective. Space debris is non-manoeuvrable, human-made objects orbiting Earth, which pose a significant threat to operational spacecraft. Active debris removal missions have been considered and investigated by different space agencies with the goal to protect valuable assets present in strategic orbital environments. An active debris removal mission is costly, but has a positive effect for all satellites in the same orbital band. This leads to a dilemma: each agency is faced with the choice between the individually costly action of debris removal, which has a positive impact on all players; or wait and hope that others jump in and do the ‘dirty’ work. The risk of the latter action is that, if everyone waits, the joint outcome will be catastrophic, leading to what in game theory is referred to as the ‘tragedy of the commons’. We introduce and thoroughly analyse this dilemma using empirical game theory and a space debris simulator. We consider two- and three-player settings, investigate the strategic properties and equilibria of the game and find that the cost/benefit ratio of debris removal strongly affects the game dynamics.

  17. Orbital Debris and NASA's Measurement Program

    Science.gov (United States)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  18. POST Earthquake Debris Management — AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  19. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  20. Design of full scale debris washing system

    International Nuclear Information System (INIS)

    Taylor, M.L.; Dosani, M.A.; Wentz, J.A.; Patkar, A.N.; Barkley, N.P.

    1992-01-01

    Since 1987, IT Environmental Programs Inc. (ITEP, a subsidiary of International Technology Corporation) in conjunction with EPA/RREL in Cincinnati, Ohio, have been developing and conducting bench scale and pilot scale testing of a transportable debris washing system which can be used on-site for the decontamination of debris. During the initial phase of the debris decontamination project, a series of bench scale tests were performed in the laboratory to assess the ability of the system to remove contaminants from debris and to facilitate selection of the most efficient surfactant solution. Five nonionic, non-toxic, low foaming, surfactant solution (BG-5, MC-2000, LF-330, BB-100, and L-433) were selected for an experimental evaluation to determine their capacity to solubilize and remove contaminants from the surfaces of corroded steel places. The pieces of corroded steel were coated with a heavy grease mixture prepared in the laboratory and these pieces of debris were placed in a bench scale spray tank on a metal tray and subjected in a high-pressure spray for each surfactant solution for 15 minutes. At the end of the spray cycle, The tray was transferred to a second bench scale system, a high-turbulence wash tank, where the debris was washed for 30 minutes with the same surfactant solution as the used in the spray tank. After the was cycle was completed, the tray was removed from the wash tank and the debris was allowed to air-dry. Before and after treatment, surface-wipe samples were obtained from each of the six pieces of debris and were analyzed for oil and graese. Based on the results, BG-5 was selected as the solution best suited for cleaning grease-laden, metallic debris. 2 refs

  1. OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of a third long-term 2-D Core-Concrete Interaction (CCI) experiment designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-3 experiment, which was conducted on September 22, 2005. Test specifications for CCI-3 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 375

  2. OECD MMCI 2-D Core Concrete Interaction (CCI) tests : CCCI-1 test data report-thermalhydraulic results. Rev 0 January 31, 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten coreconcrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-1 experiment, which was conducted on December 19, 2003. Test specifications for CCI-1 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg

  3. OECD MCCI 2-D Core Concrete Interaction (CCI) tests : CCI-2 test data report-thermalhydraulic results, Rev. 0 October 15, 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-2 experiment, which was conducted on August 24, 2004. Test specifications for CCI-2 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg

  4. Apparatus for controlling nuclear core debris

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    Disclosed is an apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling

  5. Apparatus for controlling nuclear core debris

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  6. Development of debris resistant bottom end piece

    International Nuclear Information System (INIS)

    Lee, Jae Kyung; Sohn, Dong Seong; Yim, Jeong Sik; Hwang, Dae Hyun; Song, Kee Nam; Oh, Dong Seok; Rhu, Ho Sik; Lee, Chang Woo; Kim, Seong Soo; Oh, Jong Myung

    1993-12-01

    Debris-related fuel failures have been identified as one of the major causes of fuel failures. In order to reduce the possibility of debris-related fuel failures, it is necessary to develop Debris-Resistant Bottom End Piece. For this development, mechanical strength test and pressure drop test were performed, and the test results were analyzed. And the laser cutting, laser welding and electron beam welding technology, which were the core manufacturing technology of DRBEP, were developed. Final design were performed, and the final drawing and specifications were prepared. The prototype of DRBEP was manufactured according to the developed munufacturing procedure. (Author)

  7. Laser ignition of traumatically embedded firework debris.

    Science.gov (United States)

    Taylor, C R

    1998-01-01

    The Q-switched ruby laser (QSRL) has a good track record for traumatic tattoo removal. An unusual case of QSRL-treatment of a traumatic tattoo composed of firework debris is presented. A young man's traumatic tattoo, composed of firework debris, underwent QSRL ablation at 4-7 J/cm2 (pulse width 5 mm; duration 20 ns). Each test pulse produced visible sparks and focal projectile ejection of skin with pox-like scar formation. Caution is advised when using the QSRL for the treatment of traumatic tattoos composed of potentially combustible debris.

  8. Algorithms for the Computation of Debris Risk

    Science.gov (United States)

    Matney, Mark J.

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.

  9. Algorithms for the Computation of Debris Risks

    Science.gov (United States)

    Matney, Mark

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.

  10. Development of debris-resistant bottom end piece

    International Nuclear Information System (INIS)

    Sohn, Dong Seong; Lee, Jae Kyung; Hwang, Dae Hyun; Yim, Jung Sik; Song, Kee Nam; Oh, Dong Seok; Im, Hyun Tae

    1993-01-01

    Debris-related fuel failures has been identified to be one of the major causes of fuel failures recently occured in nuclear power plants. In order to reduce the possibility of debris-related fuel failures, it is necessary to prevent the debris from reaching to fuel rods. In this regard, it is important to develop Debris-Resistant Bottom End Piece. (Author)

  11. Debris Examination Using Ballistic and Radar Integrated Software

    Science.gov (United States)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  12. Structural debris experiments at operation MILL RACE

    International Nuclear Information System (INIS)

    Rempel, J.R.; Beck, J.E.; McKee, R.G.

    1983-01-01

    Structural debris patterns as determined by the mechanisms of building collapse under airblast loading have been studied experimentally at MILL RACE, White Sands, NM. Three near full-size buildings were instrumented to observe deflections, accelerations and air pressures and exposed to two different regimes of incident blast pressure produced by HE simulating 1 kt, viz., 10 and 3 psi; after the shot enough wall debris was located and identified to provide estimates of debris movement. Two of the test buildings were unreinforced, load-bearing masonry, one located at each of the two incident overpressures. The third building was made of reinforced concrete panels and was exposed to approximately 25 psi. Preliminary estimates of the effect of arching on debris energy and distribution are presented

  13. New solutions for the space debris problem

    CERN Document Server

    Pelton, Joseph N

    2015-01-01

    Addressing a pressing issue in space policy, Pelton explores the new forms of technology that are being developed to actively remove the defunct space objects from orbit and analyzes their implications in the existing regime of international space law and public international law. This authoritative review covers the due diligence guidelines that nations are using to minimize the generation of new debris, mandates to de-orbit satellites at end of life, and innovative endeavours to remove non-functional satellites, upper stage rockets and other large debris from orbit under new institutional, financial and regulatory guidelines.  Commercial space services currently exceed 100 billion USD business per annum, but the alarming proliferation in the population of orbital debris in low, medium and geosynchronous satellite orbits poses a serious threat to all kinds of space assets and applications. There is a graver concern that the existing space debris will begin to collide in a cascading manner, generating furth...

  14. TMI defueling project fuel debris removal system

    International Nuclear Information System (INIS)

    Burdge, B.

    1992-01-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min

  15. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  16. Marine debris: global and regional impacts

    OpenAIRE

    Torres N,Daniel; Berguño B,Jorge

    2011-01-01

    A synthesis on the Marine Debris problem is given upon de basis of the general knowledge on the matter as well as that obtained at Cape Shirreff, Livingston Island, South Shetland, Antarctica. It is suggested to improve the database on marine debris through permanent scientific research as well as with monitoring activities. It is necessary to coordinate key groups to apply strategies to identify types, sources, amount, interactions and socio-economic aspects of this global and regional probl...

  17. Postdetonation nuclear debris for attribution.

    Science.gov (United States)

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material.

  18. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  19. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    Science.gov (United States)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  20. Recent progress in the LACOMERA Project (Large-Scale Experiments on Core Degradation, Melt Retention and Coolability) at the Forschungszentrum Karslruhe

    International Nuclear Information System (INIS)

    Miassoedov, A.; Alsmeyer, H.; Eppinger, B.; Meyer, L.; Steinbrueck, M.

    2004-01-01

    The LACOMERA Project at the Forschungszentrum Karlsruhe (FZK) is a 3 year action within the 5 th Framework Programme of the EU. The overall objective of the project is to offer research institutions from the EU member countries and associated states access to four large-scale experimental facilities QUENCH, LIVE, DISCO-H, and COMET which can be used to investigate core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity, and finally corium concrete interaction and corium coolability in the reactor cavity. As a result of two calls for proposals, seven organisations from four countries are expected to profit from the LACOMERA Project participating in preparation, conduct and analysis of the following experiments: QUENCH-L1: Air ingression impact on core degradation. The test has provided unique data for the investigation of air ingress phenomenology in conditions as representative as possible of the reactor case regarding the source term. QUENCH-L2: Boil-off of a flooded bundle. The test will be of a generic interest for all reactor types, providing a link between the severe accident and design basis areas, and would deliver oxidation and thermal hydraulic data at high temperatures. LIVE-L1: Simulation of melt relocation into the Reactor Pressure Vessel (RPV) lower head for VVER conditions. The experiment will provide important information on the melt pool behaviour during the stages of air circulation at the outer RPV surface with a subsequent flooding of the lower head. LIVE-L2: Transient corium spreading and its impact on the heat fluxes to the RPV wall and on the final shape of the melt in the RPV lower head. The test will address the questions of melt stabilisation and the effects of crust formation near the RPV wall for a nonsymmetrical melt pool shape. COMET-L1: Long-term 2D concrete ablation in siliceous concrete cavity at intermediate decay heat power level with

  1. Improved Design of PECS to reduce Flow Instability for EU-APR1400

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Lee, Keunsung

    2014-01-01

    For EU-APR1400, PECS (Passive Ex-vessel corium retaining and Cooling System), so-called core catcher, was adopted to keep the integrity of basemat in containment by preventing MCCI (Molten Core Concrete Interaction) through retaining core debris and cooling corium outside the reactor vessel. In this paper, the improved design of PECS is presented to increase coolability by reducing flow instability in the region of cooling channel. In this paper, flow instability analysis was carried out using CFD code to find out the most improved design of PECS, which is to increase coolability by reducing bubble entrainment in the region of cooling channel. The reduction of bubble entrainment in the downcomer facilitates higher mass flow rates in the downcomer. Among presented four designed for the downcomer of PECS, the superstep design shows the highest mass flow rate and the lowest gas holdup in the downcomer as well as in the cooling channel. Compared with the existing design, the elimination of the horizontal part and the addition of an extra space above the vertical entrance to the downcomer seem to help the separation of the vapor

  2. Debris filtering effectiveness and pressure drop tests of debris resistance-bottom end piece

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Song, Chul Hwa; Chung, Heung June; Won, Soon Yeun; Cho, Young Ro; Kim, Bok Deuk

    1992-03-01

    In this final report, described are the test conditions and test procedures for the debris filtering effectiveness and pressure drop tests for developing the Debris Resistance-Bottom End Piece (DR-BEP). And the test results are tabulated for later evaluation. (Author)

  3. Loopy, Floppy and Fragmented: Debris Characteristics Matter

    Science.gov (United States)

    Parrish, J.; Burgess, H. K.

    2016-02-01

    Marine debris is a world-wide problem threatening the health and safety of marine organisms, ecosystems, and humans. Recent and ongoing research shows that risk of harm is not associated with identity, but rather with a set of specific character states, where the character state space intersection is defined by the organism of interest. For example, intersections of material, color, rigidity and size predict the likelihood of an object being ingested: plastic, clear-white, floppy objects risks to sea turtles whereas yellow-red, rigid objects risks to albatrosses. A character state space approach allows prioritization of prevention and removal of marine debris informed by risk assessments for species of interest by comparing species ranges with spatio-temporal hotspots of all debris with characteristics known to be associated with increased risk of harm, regardless of identity. With this in mind, the Coastal Observation and Seabird Survey Team (COASST) developed and tested a 20 character data collection approach to quantifying the diversity and abundance of marine debris found on beaches. Development resulted in meta-analysis of the literature and expert opinion eliciting harmful character state space. Testing included data collection on inter-rater reliability and accuracy, where the latter included 75 participants quantifying marine debris characteristics on monthly surveys of 30 beaches along the Washington and Oregon coastlines over the past year. Pilot work indicates that characters must be simply and operationally defined, states must be listed, and examples must be provided for color states. Complex characters (e.g., windage, shape) are not replicable across multiple data collectors. Although data collection takes longer than other marine debris surveys for a given amount of debris and area surveyed, volunteer rapidity and accuracy improved within 3-5 surveys. Initial feedback indicated that volunteers were willing to continue collecting data as long as they

  4. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-01-01

    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications

  5. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-01-01

    August 18, 1992 the EPA published the final revised treatment standards for hazardous debris, including mixed debris. Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were evaluated against the debris rule to determine an overall treatment strategy for the INEL. Seven types of debris were identified: Combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications

  6. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L. [Sehgal Konsult, Stockholm (Sweden)

    2002-04-01

    , to develop and/or improve fine fragmentation models, and to assess these models for use in reactor applications. The effects of a steam explosion of large or small yield on the debris coolability have been assessed, a low-porosity deep debris bed, which may be hard to cool, may be generated. An engineering assessment of the steam explosion energetics has been performed. The assessment covers a broader scope of scenarios of ex-vessel FCIs, i.e. including metallic-melt release scenarios. Results of the assessment indicate that the dynamic-loadings resulting from ex-vessel steam explosions in the ABB BWR plants may be smaller than the values predicted in a previous assessment.

  7. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L.

    2002-04-01

    , to develop and/or improve fine fragmentation models, and to assess these models for use in reactor applications. The effects of a steam explosion of large or small yield on the debris coolability have been assessed, a low-porosity deep debris bed, which may be hard to cool, may be generated. An engineering assessment of the steam explosion energetics has been performed. The assessment covers a broader scope of scenarios of ex-vessel FCIs, i.e. including metallic-melt release scenarios. Results of the assessment indicate that the dynamic-loadings resulting from ex-vessel steam explosions in the ABB BWR plants may be smaller than the values predicted in a previous assessment

  8. Material effect in the fuel-coolant interaction: structural characterization of the steam explosion debris and solidification mechanism

    International Nuclear Information System (INIS)

    Tyrpekl, V.

    2012-01-01

    This work has been performed under joint supervision between Charles University in Prague (Czech Republic) and Strasbourg University (France). It also profited from the background and cooperation of Institute of Inorganic Chemistry Academy of Science of the Czech Republic and French Commission for Atomic and Alternative energies (CEA Cadarache). Results of the work contribute to the OECD/NEA project Serena 2 (Program on Steam Explosion Resolution for Nuclear Applications). Presented thesis can be classed in the scientific field of nuclear safety and material science. It is aimed on the so-called 'molten nuclear Fuel - Coolant Interaction' (FCI) that belongs among the recent issues of the nuclear reactor severe accident R and D. During the nuclear reactor melt down accident the melted reactor load can interact with the coolant (light water). This interaction can be located inside the vessel or outside in the case of vessel break-up. These two scenarios are commonly called in- and ex-vessel FCI and they differ in the conditions such as initial pressure of the system, water sub-cooling etc. The Molten fuel - coolant interaction can progress into thermal detonation called 'steam explosion' that can challenge the reactor or containment integrity. Recent experiments have shown that the melt composition has a major effect on the occurrence and yield of such explosion. In particular, different behaviors have been observed between simulant material (alumina), which has important explosion efficiency, and some prototypic corium compositions (80 w. % UO 2 , 20% w. % ZrO 2 . This 'material effect' has launched a new interest in the post-test analyses of FCI debris in order to estimate the processes occurring during these extremely rapid phenomena. The thesis is organized in nine chapters. The chapter 1 gives the general introduction and context of the nuclear reactor accident. Major nuclear accidents (Three Miles Island 1979, Chernobyl 1986 and Fukushima 2011) are briefly

  9. Debris disc constraints on planetesimal formation

    Science.gov (United States)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  10. Cetaceans and Marine Debris: The Great Unknown

    Directory of Open Access Journals (Sweden)

    Mark Peter Simmonds

    2012-01-01

    Full Text Available Plastics and other marine debris have been found in the gastrointestinal tracts of cetaceans, including instances where large quantities of material have been found that are likely to cause impairment to digestive processes and other examples, where other morbidity and even death have resulted. In some instances, debris may have been ingested as a result of the stranding process and, in others, it may have been ingested when feeding. Those species that are suction or “ram” feeders may be most at risk. There is also evidence of entanglement of cetaceans in marine debris. However, it is usually difficult to distinguish entanglement in active fishing gear from that in lost or discarded gear. The overall significance of the threat from ingested plastics and other debris remains unclear for any population or species of cetaceans, although there are concerns for some taxa, including at the population level, and marine debris in the oceans continues to grow. Further research including the compilation of unpublished material and the investigation of important habitat areas is strongly recommended.

  11. Apparatus for controlling molten core debris

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1972-01-01

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures

  12. Electrometallurgical treatment of TMI-2 fuel debris

    International Nuclear Information System (INIS)

    Karell, E.J.; Gourishankar, K.V.; Johnson, G.K.

    1997-01-01

    Argonne National Laboratory (ANL) has developed an electrometallurgical treatment process suitable for conditioning DOE oxide spent fuel for long-term storage or disposal. The process consists of an initial oxide reduction step that converts the actinide oxides to a metallic form, followed by an electrochemical separation of uranium from the other fuel constituents. The final product of the process is a uniform set of stable waste forms suitable for long-term storage or disposal. The suitability of the process for treating core debris from the Three Mile Island-2 (TMI-2) reactor is being evaluated. This paper reviews the results of preliminary experimental work performed using simulated TMI-2 fuel debris

  13. Linking effects of anthropogenic debris to ecological impacts

    NARCIS (Netherlands)

    Browne, M.A.; Underwood, A.J.; Chapman, M.G.; Williams, R.; Thompson, R.C.; Franeker, van J.A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that

  14. Severe accidents and nuclear containment integrity (SANCY). SANCY summary report

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I. [VTT Processes, Espoo (Finland)

    2004-07-01

    SANCY project investigates physical phenomena related to severe nuclear accidents with importance to Finnish nuclear power plants. Currently the major topics are the ex-vessel coolability issues, long-term severe accident management and containment leak tightness and adoption and development of new calculation tools considering also the needs of the future Olkiluoto 3 plant. SANCY employs both experimental and analytical methods. (orig.)

  15. Monitoring the abundance of plastic debris in the marine environment

    OpenAIRE

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infreque...

  16. Property measurements and inner state estimation of simulated fuel debris

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, S.; Kato, M.; Morimoto, K.; Washiya, T. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2014-07-01

    Fuel debris properties and inner state such as temperature profile were evaluated by using analysis of simulated fuel debris manufactured from UO{sub 2} and oxidized zircaloy. The center of the fuel debris was expected to be molten state soon after the melt down accident of LWRs because power density was very high. On the other hand, the surface of the fuel debris was cooled in the water. This large temperature gradient may cause inner stress and consequent cracks were expected. (author)

  17. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  18. Debris prevention system, radiation system, and lithograpic apparatus

    NARCIS (Netherlands)

    2009-01-01

    A debris prevention system is constructed and arranged to prevent debris that emanates from a radiation source from propagating with radiation from the radiation source into or within a lithographic apparatus. The debris prevention system includes an aperture that defines a maximum emission angle of

  19. Monitoring the abundance of plastic debris in the marine environment

    NARCIS (Netherlands)

    Ryan, P.G.; Moore, C.J. C.J.; Franeker, van J.A.; Moloney, C.L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and

  20. Conditioning of metallic Magnox fuel element debris

    International Nuclear Information System (INIS)

    Kaye, C.J.

    1983-01-01

    The conditioning of metallic Magnox debris poses particular problems arising from its chemical reactivity and from the presence in discrete amounts of highly radioactive components. The treatment of this waste is currently being studied by the Central Electricity Generating Board. Following retrieval from store it is envisaged that the debris will be dried and comminuted to facilitate the removal for further storage of the highly active components from the bulk debris. A satisfactory means of sorting the debris appears to be by magnetic induction. The relatively low activity but potentially reactive Magnox will then be directly encapsulated prior to disposal off-site. Currently the only disposal route open for this waste is to the deep ocean. Matrices for encapsulating Magnox have been developed and others are under investigation. The desirable features of such matrices include low chemical reactivity and impermeability to water. The methods used to characterize the resultant waste forms and the results obtained are presented. Thermosetting polymers produce suitable waste forms for sea disposal, exhibiting high mechanical strength and resistance to leaching, and possessing very low chemical reactivity with respect to the Magnox waste. Low viscosity matrices are advantageous from the point of view of the process plant engineering as they enable the comminuted waste to be directly encapsulated. (author)

  1. Europium-155 in Debris from Nuclear Weapons

    DEFF Research Database (Denmark)

    Aarkrog, Asker; Lippert, Jørgen Emil

    1967-01-01

    The lithium-drifted germanium detector enables determination of europium-155 on a routine basis in environmental samples contaminated with debris from nuclear weapons. From measurements of europium-155, cesium-144, and strontium-90 in air filters collected between 1961 and 1966, the yield...

  2. Numerical modeling of the debris flows runout

    Directory of Open Access Journals (Sweden)

    Federico Francesco

    2017-01-01

    Full Text Available Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a ‘shear layer’, typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  3. Plastic Debris Is a Human Health Issue

    NARCIS (Netherlands)

    Vethaak, A.D.; Leslie, H.A.

    2016-01-01

    The global threat of highly persistent plastic waste accumulating and fragmenting in the world’s oceans, inland waters and terrestrial environments is becoming increasingly evident.1−3 Humans are being exposed to both plastic particles and chemical additives being released from the plastic debris of

  4. Optical Photometric Observations of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  5. Photometric Studies of GEO Orbital Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  6. Laser space debris removal: now, not later

    Science.gov (United States)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  7. NASA's New Orbital Debris Engineering Model, ORDEM2010

    Science.gov (United States)

    Krisko, Paula H.

    2010-01-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.

  8. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  9. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  10. [Research progress in post-fire debris flow].

    Science.gov (United States)

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  11. Impact Forces from Tsunami-Driven Debris

    Science.gov (United States)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  12. Warm Debris Disk Candidates from WISE

    Science.gov (United States)

    Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David

    2011-01-01

    The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.

  13. Rocky Planetary Debris Around Young WDs

    Science.gov (United States)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  14. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  15. Plastic debris in the open ocean

    OpenAIRE

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. Howeve...

  16. Optimized debris stoppers for Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Gondarenko, N A; Pereira, N R [Berkeley Research Associates, Springfield, VA (United States)

    1997-12-31

    A pulse power generator discharging through an array of wires or a gas cylinder creates a pulse of useful soft x-rays, which is usually followed by deleterious byproducts such as plasma, hot gases and droplets of metal from evaporated electrodes. Separating the extraneous material from the x-rays is done with a debris shield. Optimization of such shields is discussed. (author). 3 figs., 3 refs.

  17. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    International Nuclear Information System (INIS)

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old (∼>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  18. Orbital Debris: Past, Present, and Future

    Science.gov (United States)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  19. The California Debris Commission: A History

    Science.gov (United States)

    1981-01-01

    the pipe a more freely in the horizontal plane, while vertical elastic packing in the joint instead of two stable instrument to handle. movement was...report of January duplicate and triplicate taxation , and (4) it 1880 painted a dark and sobering picture Following two months of intense and had not the...isolated cases it is possible to impound debris without injury; also, that loca- tions exist in the canons of the different mining streams in the Sierra

  20. Forewarning of Debris flows using Intelligent Geophones

    Science.gov (United States)

    PK, I.; Ramesh, M. V.

    2017-12-01

    Landslides are one of the major catastrophic disasters that cause significant damage to human life and civil structures. Heavy rainfall on landslide prone areas can lead to most dangerous debris flow, where the materials such as mud, sand, soil, rock, water and air will move with greater velocity down the mountain. This sudden slope instability can lead to loss of human life and infrastructure. According to our knowledge, till now no one could identify the minutest factors that lead to initiation of the landslide. In this work, we aim to study the landslide phenomena deeply, using the landslide laboratory set up in our university. This unique mechanical simulator for landslide initiation is equipped with the capability to generate rainfall, seepage, etc., in the laboratory setup. Using this setup, we aim to study several landslide initiation scenarios generated by varying different parameters. The complete setup will be equipped with heterogeneous sensors such as rain gauge, moisture sensor, pore pressure sensor, strain gauges, tiltmeter, inclinometer, extensometer, and geophones. Our work will focus on the signals received from the intelligent geophone system for identifying the underground vibrations during a debris flow. Using the large amount of signals derived from the laboratory set up, we have performed detailed signal processing and data analysis to determine the fore warning signals captured by these heterogeneous sensors. Detailed study of these heterogeneous signals has provided the insights to forewarning the community based on the signals generated during the laboratory tests. In this work we will describe the details of the design, development, methodology, results, inferences and the suggestion for the next step to detect and forewarn the students. The response of intelligent geophone sensors at the time of failure, failure style and subsequent debris flow for heterogeneous soil layers were studied, thus helping in the development of fore warning

  1. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    Science.gov (United States)

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  2. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    Science.gov (United States)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  3. Mitigation of Debris Flow Damage--­ A Case Study of Debris Flow Damage

    Science.gov (United States)

    Lin, J. C.; Jen, C. H.

    Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.

  4. Plastic debris in the open ocean

    KAUST Repository

    Cozar, Andres

    2014-06-30

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  5. CIRCUMSTELLAR DEBRIS DISKS: DIAGNOSING THE UNSEEN PERTURBER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvold, Erika R. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Rd., Washington, DC 20015 (United States); Naoz, Smadar; Vican, Laura [Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Farr, Will M. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom)

    2016-07-20

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  6. Plastic debris in the open ocean.

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  7. Bremsstrahlung converter debris shields: test and analysis

    International Nuclear Information System (INIS)

    Reedy, E.D. Jr.; Perry, F.C.

    1983-10-01

    Electron beam accelerators are commonly used to create bremsstrahlung x-rays for effects testing. Typically, the incident electron beam strikes a sandwich of three materials: (1) a conversion foil, (2) an electron scavenger, and (3) a debris shield. Several laboratories, including Sandia National Laboratories, are developing bremsstrahlung x-ray sources with much larger test areas (approx. 200 to 500 cm 2 ) than ever used before. Accordingly, the debris shield will be much larger than before and subject to loads which could cause shield failure. To prepare for this eventuality, a series of tests were run on the Naval Surface Weapons Center's Casino electron beam accelerator (approx. 1 MeV electrons, 100 ns FWHM pulse, 45 kJ beam energy). The primary goal of these tests was to measure the stress pulse which loads a debris shield. These measurements were made with carbon gages mounted on the back of the converter sandwich. At an electron beam fluence of about 1 kJ/cm 2 , the measured peak compressive stress was typically in the 1 to 2 kbar range. Measured peak compressive stress scaled in a roughly linear manner with fluence level as the fluence level was increased to 10 kJ/cm 2 . The duration of the compressive pulse was on the order of microseconds. In addition to the stress wave measurements, a limited number of tests were made to investigate the type of damage generated in several potential shield materials

  8. Plastic debris in the open ocean

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  9. Treatment technology analysis for mixed waste containers and debris

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste

  10. Debris flows associated with the 2015 Gorkha Earthquake in Nepal

    Science.gov (United States)

    Dahlquist, M. P.; West, A. J.; Martinez, J.

    2017-12-01

    Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.

  11. The effect of debris-flow composition on runout distance

    Science.gov (United States)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  12. Summary of Disposable Debris Shields (DDS) Analysis for Development of Solid Debris Collection at NIF

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Moody, K.J.; Grant, P.M.; Lewis, L.A.; Hutcheon, I.D.; Lindvall, R.; Gostic, J.M.

    2011-01-01

    Collection of solid debris from the National Ignition Facility (NIF) is being developed both as a diagnostic tool and as a means for measuring nuclear reaction cross sections relevant to the Stockpile Stewardship Program and nuclear astrophysics. The concept is straightforward; following a NIF shot, the debris that is produced as a result of the capsule and hohlraum explosion would be collected and subsequently extracted from the chamber. The number of nuclear activations that occurred in the capsule would then be measured through a combination of radiation detection and radiochemical processing followed by mass spectrometry. Development of the catcher is challenging due to the complex environment of the NIF target chamber. The collector surface is first exposed to a large photon flux, followed by the debris wind that is produced. The material used in the catcher must be mechanically strong in order to withstand the large amount of energy it is exposed to, as well as be chemically compatible with the form and composition of the debris. In addition, the location of the catcher is equally important. If it is positioned too close to the center of the target chamber, it will be significantly ablated, which could interfere with the ability of the debris to reach the surface and stick. If it is too far away, the fraction of the debris cloud collected will be too small to result in a statistically significant measurement. Material, geometric configuration, and location must all be tested in order to design the optimal debris collection system for NIF. One of the first ideas regarding solid debris collection at NIF was to use the disposable debris shields (DDS), which are fielded over the final optics assemblies (FOA) 7 m away from the center of the target chamber. The DDS are meant to be replaced after a certain number of shots, and if the shields could be subsequently analyzed after removal, it would serve as a mechanism for fielding a relatively large collection area

  13. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  14. New advances for modelling the debris avalanches

    Science.gov (United States)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  15. A probabilistic approach for debris impact risk with numerical simulations of debris behaviors

    International Nuclear Information System (INIS)

    Kihara, Naoto; Matsuyama, Masafumi; Fujii, Naoki

    2013-01-01

    We propose a probabilistic approach for evaluating the impact risk of tsunami debris through Monte Carlo simulations with a combined system comprising a depth-averaged two-dimensional shallow water model and a discrete element model customized to simulate the motions of floating objects such as vessels. In the proposed method, first, probabilistic tsunami hazard analysis is carried out, and the exceedance probability of tsunami height and numerous tsunami time series for various hazard levels on the offshore side of a target site are estimated. Second, a characteristic tsunami time series for each hazard level is created by cluster analysis. Third, using the Monte Carlo simulation model the debris impact probability with the buildings of interest and the exceedance probability of debris impact speed are evaluated. (author)

  16. Modeling collisions in circumstellar debris disks

    Science.gov (United States)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  17. OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002

    International Nuclear Information System (INIS)

    Farmer, M.T.; Kilsdonk, D.J.; Lomperski, S.; Aeschliman, R.W.; Basu, S.

    2011-01-01

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series has been initiated to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. A test plan for Melt Eruption Separate Effects Tests (MESET) has also been developed to provide information on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions. In terms of the second program objective, the project Management Board (MB) has approved startup activities required to carry out

  18. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  19. Anthropogenic effect on avalanche and debris flow activity

    OpenAIRE

    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann

    2013-01-01

    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  20. Understanding sources, sinks, and transport of marine debris

    Science.gov (United States)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  1. Classification of debris flow phenomena in the Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; E. Mortensen, Lis; Jensen, Niels H.

    2012-01-01

    Landslides and debris flow phenomena in particular constitute a threat to human activities in the Faroe Islands. As a contribution to ongoing landslide risk management research, this paper proposes a classification scheme for debris flow phenomena in the Faroe Islands. The scheme, produced through...... a multidisciplinary study involving geomorphological fieldwork and qualitative collection of indigenous landslide knowledge, presents physical characteristics to classify debris flow phenomena into groups named with Faroese terms. The following landslide definitions are proposed. Brekku-skriðulop (English translation...... with international landslide classification systems, significantly increases the knowledge of debris flow phenomena and promotes a consistent terminology of these within the Faroe Islands....

  2. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    Science.gov (United States)

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Population of Optically Faint GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  4. Circumstellar Gas in Young Planetary Debris Disks

    Science.gov (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.

  5. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Morewitz, H.A.; Johnson, R.P.; Nelson, C.T.; Vaughan, E.U.; Guderjahn, C.A.; Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1978-01-01

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m 3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approximately 1,000 g/m 3 ), high turbulence, and high temperature (approximately 2000 0 C); and aerosol transport through various leak paths. These studies have shown that tittle, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building. (author)

  6. Photometric Studies of Orbital Debris at GEO

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  7. Engagement of Metal Debris into Gear Mesh

    Science.gov (United States)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  8. Investigation of Orbital Debris: Mitigation, Removal, and Modeling the Debris Population

    Science.gov (United States)

    Slotten, Joel

    The population of objects in orbit around Earth has grown since the late 1950s. Today there are over 21,000 objects over 10 cm in length in orbit, and an estimated 500,000 more between 1 and 10 cm. Only a small fraction of these objects are operational satellites. The rest are debris: old derelict spacecraft or rocket bodies, fragments created as the result of explosions or collisions, discarded objects, slag from solid rockets, or even flaked off paint. Traveling at up to 7 km/s, a collision with even a 1 cm piece of debris could severely damage or destroy a satellite. This dissertation examines three aspects of orbital debris. First, the concept of a self-consuming satellite is explored. This nanosatellite would use its own external structure as propellant to execute a deorbit maneuver at the end of its operational life, thus allowing it to meet current debris mitigation standards. Results from lab experiments examining potential materials for this concept have shown favorable results. Second, Particle in Cell techniques are modified and used to model the plasma plume from a micro-cathode arc thruster. This model is then applied to the concept of an ion beam shepherd satellite. This satellite would use its plasma plume to deorbit another derelict satellite. Results from these simulations indicate the micro-cathode arc thruster could potentially deorbit a derelict CubeSat in a matter of a few weeks. Finally, the orbital debris population at geosynchronous orbit is examined, focusing on variations in the density of the population as a function of longitude. New insights are revealed demonstrating that the variation in population density is slightly less than previously reported.

  9. Zodiac II: Debris Disk Science from a Balloon

    Science.gov (United States)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  10. Early deterioration of coarse woody debris.

    Energy Technology Data Exchange (ETDEWEB)

    Tainter, Frank, H.; McMinn, James, W.

    1999-02-16

    Tainter, F.H., and J.W. McMinn. 1999. Early deterioration of coarse woody debris. In: Proc. Tenth Bien. South. Silv. Res. Conf. Shreveport, LA, February 16-18, 1999. Pp. 232-237 Abstract - Coarse woody debris (CWD) is an important structural component of southern forest ecosystems. CWD loading may be affected by different decomposition rates on sites of varying quality. Bolts of red oak and loblolly pine were placed on plots at each of three (hydric, mesic. and xerlc) sites at the Savannah River Site and sampled over a I6-week period. Major changes were in moisture content and nonstructural carbohydrate content (total carbohydrates, reducing sugars, and starch) of sapwood. Early changes in nonstructural carbohydrate levels following placement of the bolts were likely due to reallocation of these materials by sapwood parenchyma cells. These carbohydrates later formed pools increasingly metabolized by bacteria and invading fungi. Most prevalent fungi in sapwood were Ceratocysfis spp. in pine and Hypoxy/on spp. in oak. Although pine sapwood became blue stained and oak sapwood exhibited yellow soft decay with black zone lines, estimators of decay (specific gravity, sodium hydroxide solubility, and holocellulose content) were unchanged during the 16-week study period. A small effect of site was detected for starch content of sapwood of both species. Fungal biomass in sapwood of both species, as measured by ergosterol content, was detectable at week zero, increased somewhat by week three and increased significantly by week 16.

  11. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-08-20

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  12. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  13. A Primer on Unifying Debris Disk Morphologies

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  14. Space Debris Alert System for Aviation

    Science.gov (United States)

    Sgobba, Tommaso

    2013-09-01

    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  15. Linking effects of anthropogenic debris to ecological impacts.

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A

    2015-05-22

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Linking effects of anthropogenic debris to ecological impacts

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  17. Net deployment and contact dynamics of capturing space debris objects

    NARCIS (Netherlands)

    Shan, M.

    2018-01-01

    Space debris poses a big threat to operational satellites which form a crucial infrastructure for society. According to the main source of information on space debris, the U.S. Space SurveillanceNetwork (SSN), more than 17 500 objects larger than 10 cmhave been catalogued as of February 2017. Among

  18. Optimizing of the recycling of contaminated concrete debris. Final report

    International Nuclear Information System (INIS)

    Kloeckner, J.; Rasch, H.; Schloesser, K.H.; Schon, T.

    1999-01-01

    1. Latest research: So far concrete debris from nuclear facilities has been free released or was treated as radioactive waste. 2. Objective: The objective of this study is to develop solutions and methods for recycling concrete debris. The amount of materials used in nuclear facilities should be limited and the contamination of new materials should be avoided. 3. Methods: The status of recycling was presented using examples of operating or completed decommissioning as well as available studies and literature. The quality requirements for the production of new concrete products using recycled materials has been discussed. The expected amounts of concrete debris for the next 12 years was estimated. For the proposed recycling examples, radiological and economic aspects have been considered. 4. Results: The production of qualified concrete products from concrete debris is possible by using modified receptions. Technical regulations to this are missing. There is no need for the utilization of large amounts of concrete debris for shielding walls. For the production of new shielding-containers for radioactive waste, concrete debris can be applied. Regarding the distance to a central recycling facility the use of mobile equipment can be economical. By using the concrete for filling the cavity or space in a final storage, it is possible to dispose the whole radioactive debris. 5. Application possibilities: The use of concrete debris as an inner concrete shielding in waste-containers today is already possible. For the manufacture of qualified concrete products by using recycling products, further developments and regulations are necessary. (orig.) [de

  19. Laser Remediation of Threats Posed by Small Orbital Debris

    Science.gov (United States)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  20. Active Debris Removal and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  1. ABB. CASE's GUARDIANTM Debris Resistant Fuel Assembly Design

    International Nuclear Information System (INIS)

    Dixon, D. J.; Wohlsen, W. D.

    1992-01-01

    ABB CE's experience, that 72% of all recent fuel-rod failures are caused by debris fretting, is typical. In response to this problem, ABB Combustion Engineering began supplying in the late 1980s fuel assemblies with a variety of debris resistant features, including both long-end caps and small flow holes. Now ABB CAE has developed an advanced debris resistant design concept, GUARDIAN TM , which has the advantage of capturing and retaining more debris than other designs, while displacing less plenum or active fuel volume than the long end-cap design. GUARDIAN TM design features have now been implemented into four different assembly designs. ABB CASE's GUARDIAN TM fuel assembly is an advanced debris-resistant design which has both superior filtering performance and uniquely, excellent debris retention, Retention effectively removes the debris from circulation in the coolant so that it is not able to threaten the fuel again. GUARDIAN TM features have been incorporated into four ABB. CAE fuel assembly designs. These assemblies are all fully compatible with the NSLS, and full-batch operation with GUARDIAN TM began in 1992. The number of plants of both CAE and non-CAE design which accept GUARDIAN TM for debris protection is expected to grow significantly during the next few years

  2. OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    reactor material database for dry cavity conditions is solely one-dimensional. Although the MACE Scoping Test was carried out with a two-dimensional concrete cavity, the interaction was flooded soon after ablation was initiated to investigate debris coolability. Moreover, due to the scoping nature of this test, the apparatus was minimally instrumented and therefore the results are of limited value from the code validation viewpoint. Aside from the MACE program, the COTELS test series also investigated 2-D CCI under flooded cavity conditions. However, the input power density for these tests was quite high relative to the prototypic case. Finally, the BETA test series provided valuable data on 2-D core concrete interaction under dry cavity conditions, but these tests focused on investigating the interaction of the metallic (steel) phase with concrete. Due to these limitations, there is significant uncertainty in the partition of energy dissipated for the ablation of concrete in the lateral and axial directions under dry cavity conditions for the case of a core oxide melt. Accurate knowledge of this 'power split' is important in the evaluation of the consequences of an ex-vessel severe accident; e.g., lateral erosion can undermine containment structures, while axial erosion can penetrate the basemat, leading to ground contamination and/or possible containment bypass. As a result of this uncertainty, there are still substantial differences among computer codes in the prediction of 2-D cavity erosion behavior under both wet and dry cavity conditions. In light of the above issues, the OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program was initiated at Argonne National Laboratory. The project conducted reactor materials experiments and associated analysis to achieve the following technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focused on providing both confirmatory evidence and test data for the

  3. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS

    International Nuclear Information System (INIS)

    MAJI, A. K.; MARSHALL, B.

    2000-01-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation FR-om nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  4. Benthic plastic debris in marine and fresh water environments.

    Science.gov (United States)

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.

  5. Alternative fuels in fire debris analysis: biodiesel basics.

    Science.gov (United States)

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  6. The impact of debris on the Florida manatee

    Science.gov (United States)

    Beck, C.A.; Barros, N.B.

    1991-01-01

    The endangered Florida manatee ingests debris while feeding. From 1978 through 1986, 439 salvaged manatees were examined. Debris was in the gastrointestinal tract of 63 (14.4%) and four died as a direct result of debris ingestion. Monofilament fishing line was the most common debris found (N=49). Plastic bags, string, twine, rope, fish hooks, wire, paper, cellophane, synthetic sponges, rubber bands, and stockings also were recovered. Entanglement in lines and nets killed 11 manatees from 1974 through 1985. Numerous free-ranging manatees have missing or scarred flippers from entanglements, or debris still encircling one or both flippers. We recommend local cleanups, education of the public, and fishing restrictions in high use areas to significantly reduce harm to manatees.

  7. Evaluation of Oconee steam-generator debris. Final report

    International Nuclear Information System (INIS)

    Rigdon, M.A.; Rubright, M.M.; Sarver, L.W.

    1981-10-01

    Pieces of debris were observed near damaged tubes at the 14th support plate elevation in the Oconee 1-B steam generator. A project was initiated to evaluate the physical and chemical nature of the debris, to identify its source, and to determine its role in tube damage at this elevation. Various laboratory techniques were used to characterize several debris and mill scale samples. Data from these samples were then compared with each other and with literature data. It was concluded that seven of eight debris samples were probably formed in the steam generator. Six of these samples were probably formed by high temperature aqueous corrosion early in the life of the steam generator. The seventh sample was probably formed by the deposition and spalling of magnetite on the Inconel steam generator tubes. None of the debris samples resembled any of the mill scale samples

  8. Analysis of a space debris laser removal system

    Science.gov (United States)

    Gjesvold, Evan; Straub, Jeremy

    2017-05-01

    As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.

  9. Thermal Load Analysis of Multilayered Corium in the Lower Head of Reactor Pressure Vessel during Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Seok Won; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of); Hwang, Tae Suk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    In-Vessel Retention (IVR) is one of the severe accident management strategies to terminate or mitigate the severe accident which is also called 'core-melt accident'. The reactor vessel would be cooled by flooding the cavity with water. The molten core mixture is divided into two or three layers due to the density difference. Light metal layer which contains Fe and Zr is on the oxide layer which is consist of UO{sub 2} and ZrO{sub 2}. Heavy metal layer which contains U, Fe and Zr is located under the oxide layer. In oxide layer, the crust which is solidified material is formed along the boundary. The assessment of IVR for nuclear power plant has been conducted with lumped parameter method by Theofanous, Rempe and Esmaili. In this paper, the numerical analysis was performed and verified with the Esmaili's work to analyze thermal load of multilayered corium in pressurized reactor vessel and also to examine the condition of in-vessel corium characteristic before the vessel failure that lead to ex-vessel severe accident progression for example, ex-vessel debris bed cooling. The in-vessel coolability analysis for several scenarios is conducted for the plant which has higher power than AP1000. Two sensitivity analyses are conducted, the first is emissivity of light metal layer and the second is the heat transfer coefficient correlations of oxide layer. The effect of three layered system also investigated. In this paper, the numerical analysis was performed and verified with Esmaili's model to analyze thermal load of multilayered corium in pressurized reactor vessel. For two layered system, thermal load was analyzed according to the severe accident scenarios, emissivity of the light metal layer and heat transfer correlations of the.

  10. Charged Coupled Device Debris Telescope Observations of the Geosynchronous Orbital Debris Environment - Observing Year: 1998

    Science.gov (United States)

    Jarvis, K. S.; Thumm, T. L.; Matney, M. J.; Jorgensen, K.; Stansbery, E. G.; Africano, J. L.; Sydney, P. F.; Mulrooney, M. K.

    2002-01-01

    NASA has been using the charged coupled device (CCD) debris telescope (CDT)--a transportable 32-cm Schmidt telescope located near Cloudcroft, New Mexico-to help characterize the debris environment in geosynchronous Earth orbit (GEO). The CDT is equipped with a SITe 512 x 512 CCD camera whose 24 m2 (12.5 arc sec) pixels produce a 1.7 x 1.7-deg field of view. The CDT system can therefore detect l7th-magnitude objects in a 20-sec integration corresponding to an approx. 0.6-m diameter, 0.20 albedo object at 36,000 km. The telescope pointing and CCD operation are computer controlled to collect data automatically for an entire night. The CDT has collected more than 1500 hrs of data since November 1997. This report describes the collection and analysis of 58 nights (approx. 420 hrs) of data acquired in 1998.

  11. Protection Spacelab from Meteoroid and Orbital Debris

    Science.gov (United States)

    Zheng, Shigui; Yan, Jun; Han, Zengyao

    2013-08-01

    As the first long-term on-orbit spacelab of China, TianGong-1 will stay aloft for 2 years. Its failure risk subjected to Meteoroid and Orbital Debris(M/OD) is hundreds of times higher than the risk of Shenzhou-5, Shenzhou-6 or Shenzhou-7, so the special M/OD protection designs have been applied. In order to reduce the penetration risk of radiator tube, the design of radiator has been modified by placing the tube at the side of radiator plate, and the new design does not affect the thermal control system without adding the mass. Secondly, Whipple structure is adopted in the two sides and front of spacecraft against M/OD impact.

  12. FARO tests corium-melt cooling in water pool: Roles of melt superheat and sintering in sediment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gisuk [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States); Kaviany, Massoud [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Moriyama, Kiyofumi [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hwang, Byoungcheol; Lee, Mooneon; Kim, Eunho; Park, Jin Ho [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Nasersharifi, Yahya [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States)

    2016-08-15

    Highlights: • The numerical approach for FARO experimental data is suggested. • The cooling mechanism of ex-vessel corium is suggested. • The predicted minimum pool depth for no cake formation is suggested. - Abstract: The FARO tests have aimed at understanding an important severe accident mitigation action in a light water reactor when the accident progresses from the reactor pressure vessel boundary. These tests have aimed to measure the coolability of a molten core material (corium) gravity dispersed as jet into a water pool, quantifying the loose particle diameter distribution and fraction converted to cake under range of initial melt superheat and pool temperature and depth. Under complete hydrodynamic breakup of corium and consequent sedimentation in the pool, the initially superheated corium can result in debris bed consisting of discrete solid particles (loose debris) and/or a solid cake at the bottom of the pool. The success of the debris bed coolability requires cooling of the cake, and this is controlled by the large internal resistance. We postulate that the corium cake forms when there is a remelting part in the sediment. We show that even though a solid shell forms around the melt particles transiting in the water pool due to film-boiling heat transfer, the superheated melt allows remelting of the large particles in the sediment (depending on the water temperature and the transit time) using the COOLAP (Coolability Analysis with Parametric fuel-cooant interaction models) code. With this remelting and its liquid-phase sintering of the non-remelted particles, we predict the fraction of the melt particles converting to a cake through liquid sintering. Our predictions are in good agreement with the existing results of the FARO experiments. We address only those experiments with pool depths sufficient/exceeding the length required for complete breakup of the molten jet. Our analysis of the fate of molten corium aimed at devising the effective

  13. A real two-phase submarine debris flow and tsunami

    International Nuclear Information System (INIS)

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-01-01

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  14. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  15. Safe disposal and recycling of water disaster debris in pakistan

    International Nuclear Information System (INIS)

    Latif, A.

    2014-01-01

    Depending upon the nature, the disaster may produce large masses of debris. Waste masses from single disaster integrate to larger magnitude annually. This will ultimately causes the extra work load on personnel and reflects the poor existing debris management facilities. Besides, it will take longer time to rehabilitate the debris exaggerated regions. The study focuses on 2 main cases of disaster i.e. earthquake of 2005 and flood of 2010 in Pakistan. Complete analysis involve two stages: the first stage involve development of disaster and disaster debris effects guidance whereas the second stage involves the development of set of criteria to make efficient environment and positive impacts of successful debris managing scheme. Such principles were employed to evaluate efficiency of debris managing scheme for detailed analysis. The discussion of the detailed analysis depicts methodology which assists the disaster managers, planners and researcher to simply multitude of work. Moreover, the disaster and disaster debris influence direction, the effect evaluation criterion and managing criteria have been established having the effect they can be virtually put into service for prospect debris managing scheme, planning and retort. With respect to character and strictness, calamity may make high magnitude of waste. By keeping in view the precedent calamities in the United States (US), concluded that in few situations produced waste masses approximately five to fifteen times more than yearly waste production rate from a single occasion. Same results were revealed by subsequent tsunami of Indian Ocean. Such kind of large masses may effects the existing solid debris management system and human resources. Major disaster yields large masses of debris in few hours or sometimes even in minutes. The volume of disaster debris depends upon the magnitude of trees ball up, indemnity to houses, business, services etc. The disaster remaining may be equally large in metropolitan and non

  16. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  17. Results and analysis of reactor-material experiments on ex-vessel corium quench and dispersal

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.M.; Sienicki, J.J.; Squarer, D.

    1984-01-01

    The results of reactor material experiments and related analysis are described in which molten corium is injected into a mock-up of the reactor cavity region of a PWR. The experiments address exvessel interactions such as steam generation (for those cases in which water is present), water and corium dispersal from the cavity, hydrogen generation, direct atmosphere heating by dispersed corium, and debrids characterization. Test results indicate efficiencies of steam generation by corium quench ranging up to 65%. Corium sweepout of up to 62% of the injected material was found for those conditions in which steam generation flowrate was augmented by vessel blowdown. The dispersed corium caused very little direct heating of the atmosphere for the configuration employing a trap at the exit of the cavity-to-containment pathway. Corium sweepout phenomena were modeled for high-pressure blowdown conditions, and the results applied to the full-size reactor system predict essentially complete sweepout of corium from the reactor cavity. (orig.)

  18. Modeling of melt retention in EU-APR1400 ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V. S.; Sulatsky, A. A.; Khabensky, V. B.; Sulatskaya, M. B. [Alexandrov Research Inst. of Technology NITI, Sosnovy Bor (Russian Federation); Gusarov, V. V.; Almyashev, V. I.; Komlev, A. A. [Saint Petersburg State Technological Univ. SPbSTU, St.Petersburg (Russian Federation); Bechta, S. [KTH, Stockholm (Sweden); Kim, Y. S. [KHNP, 1312 Gil 70, Yuseongdaero, Yuseong-gu, Daejeon (Korea, Republic of); Park, R. J.; Kim, H. Y.; Song, J. H. [KAERI, 989 Gil 111, Daedeokdaero, Yuseong-gu, Daejeon (Korea, Republic of)

    2012-07-01

    A core catcher is adopted in the EU-APR1400 reactor design for management and mitigation of severe accidents with reactor core melting. The core catcher concept incorporates a number of engineering solutions used in the catcher designs of European EPR and Russian WER-1000 reactors, such as thin-layer corium spreading for better cooling, retention of the melt in a water-cooled steel vessel, and use of sacrificial material (SM) to control the melt properties. SM is one of the key elements of the catcher design and its performance is critical for melt retention efficiency. This SM consists of oxide components, but the core catcher also includes sacrificial steel which reacts with the metal melt of the molten corium to reduce its temperature. The paper describes the required properties of SM. The melt retention capability of the core catcher can be confirmed by modeling the heat fluxes to the catcher vessel to show that it will not fail. The fulfillment of this requirement is demonstrated on the example of LBLOCA severe accident. Thermal and physicochemical interactions between the oxide and metal melts, interactions of the melts with SM, sacrificial steel and vessel, core catcher external cooling by water and release of non-condensable gases are modeled. (authors)

  19. Ex-vessel remote maintenance design for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Macdonald, D.

    1987-01-01

    The use of deuterium-tritium (D-T) fuel for operation of the Compact Ignition Tokamak (CIT) imposes a requirement for remote handling technology to carry out maintenance operations on auxiliary machine components. These operations consist of removing and repairing components such as diagnostics and radio frequency (rf) heating modules using remotely operated maintenance equipment. The major equipment that is being developed to accomplish maintenance external to the plasma chamber includes the bridge-mounted manipulator system for test cell operations, decontamination (decon) equipment, hot cell equipment, and solid rad-waste handling equipment. Wherever possible, the project will use commercially available equipment. Several areas of the maintenance system design have been addressed in fiscal year (FY) 1987. These included conceptual designs of manipulator systems, the start of a remote equipment research and development (R and D) program, and definition of the hot cell, decon, and equipment repair facility requirements. The manipulator work included investigating transporters and viewing/lighting subsystems. In each case, existing commercial units are being assessed initially, along with viable alternative approaches. R and D work also included demonstrations of remote handling operations on full-size, partial mock-ups of the CIT machine at the Oak Ridge National Laboratory (ORNL) Remote Operations and Maintenance Development Facility

  20. OECD/NEA SERENA Project for a Resolution of Ex-vessel Steam Explosion Risks

    International Nuclear Information System (INIS)

    Hong, S. W.; Kim, J. H.; Min, B. T.; Park, I. K.; Ha, K. S.; Hong, S. H.; Song, J. H.; Lee, J. Y.; Kim, H. D.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) has conducted the TROI (Test for Real cOrium Interaction with water) program for a study on a fuel coolant interaction (FCI) since 2001. More than 50 experiments using several prototypic materials have been carried out so far. SERENA phase 2 project which has been conducting since 1st Oct. 2007 is aimed a the resolution of the uncertainties on the void fraction and the melt composition effect by performing a limited number of well-designed tests with advanced instrumentations to clarify the nature of a prototypic material with mild steam explosion characteristics and to provide innovative experimental data for a computer code validation

  1. Ex-vessel remote maintenance development plans for the Burning Plasma Experiment

    International Nuclear Information System (INIS)

    Burgess, T.W.; Davis, F.C.

    1991-01-01

    Remote maintenance (RM) is fundamental to the basic design requirements of the Burning Plasma Experiment (BPX), and an extensive RM development and demonstration program is planned to meet these requirements. The program first draws from the experience base that exists in the fission community and Europe's Joint European Torus (JET) Project. Successful solutions are applied where possible and, in many cases, improved in order to achieve the performance demanded by a multiyear program that must be capable of efficiently executing RM procedures. Early, concurrent efforts in the design and fabrication of prototype remote handling (RH) equipment, remote tooling, and maintainable machine components will precede an extensive use of mock-up equipment in order to test, develop, and demonstrate the technology. 7 refs,. 5 figs

  2. Development on the ex-vessel transfer machine for Monju, (1)

    International Nuclear Information System (INIS)

    Inoue, Takashi; Kinuta, Kenji; Tomita, Takaaki

    1980-01-01

    As for the fast breeder reactors being developed as the national project, the construction of the prototype reactor ''Monju'' is started in 1980 based on the results of development of the experimental reactor ''Joyo''. In the fuel-handling facility, the development of which is promoted by Fuji Electric Co., Ltd., the development of the fuel transfer machines which take out and charge the fuel for the reactors and carry out the transport between fuel storage facilities is important subject. In this paper, the outline of the development of a fuel transfer machine is described, centering around the handling of fuel in sodium and the removal of the heat of spent fuel. ''Monju'' with 300 MW electric output is being developed for the purposes of putting fast breeder reactors in practical use, increasing plant power output, improving the rate of operation, and securing the safety. Plutonium is used as the fuel, and liquid metallic sodium is used as the coolant in fast breeder reactors, accordingly the fuel must be handled safely in gas-tight, shielded vessels while it is cooled, and securely in sodium and sodium cover gas by remote operation. Gripper, gripper-driving mechanism, coffin, movable block, door valves, cooling system and carriage compose the fuel transfer machine, and these are described. The main results of development and the tests for the development, such as the trial manufacture of gripper and decay heat removal test, are reported. (Kako, I.)

  3. Evaluation of upward heat flux in ex-vessel molten core heat transfer using MELCOR

    International Nuclear Information System (INIS)

    Park, S.Y.; Park, J.H.; Kim, S.D.; Kim, D.H.; Kim, H.D.

    2000-01-01

    The purpose of this study is to share experiences of MELCOR application to resolve the molten corium-concrete interaction (MCCI) issue in the Korea Next Generation Reactor (KNGR). In the evaluation of concrete erosion, the heat transfer modeling from the molten corium internal to the corium pool surface is very important and uncertain. MELCOR employs Kutateladze or Greene's bubble-enhanced heat transfer model for the internal heat transfer. The phenomenological uncertainty is so large that the model provides several model parameters in addition to the phenomenological model for user flexibility. However, the model parameters do not work on Kutateladze correlation at the top of the molten layer. From our experience, a code modification is suggested to match the upward heat flux with the experimental results. In this analysis, minor modification was carried out to calculate heat flux from the top molten layer to corium surface, and efforts were made to find out the best value of the model parameter based on upward heat flux of MACE test M1B. Discussion also includes its application to KNGR. (author)

  4. Ex-vessel corium spreading: results from the VULCANO spreading tests

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe E-mail: christophe.journeau@cea.fr; Boccaccio, Eric E-mail: eric.boccaccio@cea.fr; Brayer, Claude; Cognet, Gerard E-mail: gerard.cognet@cea.fr; Haquet, Jean-Francois E-mail: haquet@eloise.cad.cea.fr; Jegou, Claude E-mail: claude.jegou@cea.fr; Piluso, Pascal E-mail: pascal.piluso@cea.fr; Monerris, Jose E-mail: jose.monerris@cea.fr

    2003-07-01

    In the hypothetical case of a nuclear reactor severe accident, the reactor core could melt and form a mixture, called corium, of highly refractory oxides (UO{sub 2}, ZrO{sub 2}) and metallic or oxidized steel, that could eventually flow out of the vessel and mix with the basemat decomposition products (generally oxides such as SiO{sub 2}, Al{sub 2}O{sub 3}, CaO, Fe{sub 2}O{sub 3}, ...). For some years, the French Atomic Energy Commission (CEA) has launched an R and D program which aimed at providing the tools for improving the mastering of severe accidents. Within this program, the VULCANO experimental facility is operated to perform experiments with prototypic corium (corium of realistic chemical composition including depleted UO{sub 2}). This is coupled with the use of specific high-temperature instrumentation requiring in situ cross calibration. This paper is devoted to the 'spreading experiments' performed in the VULCANO facility, in which the effects of flow and solidification are studied. Due to the complex behavior of corium in the solidification range, an interdisciplinary approach has been used combining thermodynamics of multicomponent mixtures, rheological models of silicic semisolid materials, heat transfer at high temperatures, free-surface flow of a fluid with temperature-dependant properties. Twelve high-temperature spreading tests have been performed and analyzed. The main experimental results are the good spreadability of corium-concrete mixtures having large solidification ranges even with viscous silicic melts, the change of microstructure due to cooling rates, the occurrence of a large thermal contact resistance at the corium-substrate interface, the presence of a steep viscosity gradient at the surface, the transient concrete ablation. Furthermore, the experiments showed the presence of the gaseous inclusions in the melt even without concrete substrate. This gas release is linked to the local oxygen content in the melt which is function of the nature of the atmosphere, of the phases (FeO{sub x}, UO{sub y}, ...) and of the substrate. These tests with prototypic material have improved our knowledge on corium and contributed to validate spreading models and codes which are used for the assessment of corium mastering concepts.

  5. Experimental observations of granular debris flows

    Science.gov (United States)

    Ghilardi, P.

    2003-04-01

    Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.

  6. OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003

    International Nuclear Information System (INIS)

    Farmer, M.T.; Lomperski, S.; Kilsdonk, D.J.; Aeschlimann, R.W.; Basu, S.

    2011-01-01

    satisfy these PRG recommendations. Specifically, the revised plan focuses on providing data on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions, including a floating crust boundary condition. The overall objective of MET is to determine to what extent core debris is rendered coolable by eruptive-type processes that breach the crust that rests upon the melt. The specific objectives of this test are as follows: (1) Evaluate the augmentation in surface heat flux during periods of melt eruption; (2) Evaluate the melt entrainment coefficient from the heat flux and gas flow rate data for input into models that calculate ex-vessel debris coolability; (3) Characterize the morphology and coolability of debris resulting from eruptive processes that transport melt into overlying water; and (4) Discriminate between periods when eruptions take the form of particle ejections into overlying water, leading to a porous particle bed, and single-phase extrusions, which lead to volcano-type structures.

  7. Investigation of the Potential for In-Vessel Melt Retention in the Lower Head of a BWR by Cooling through the Control Rod Guide Tubes. APRl 4, Stage 2 Report

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Jasiulevicius, A.; Konovalikhin, M.

    2004-01-01

    recommended that further investigations, both experimental and model development, be conducted to (a) check reproducibility of data (b) employ different flow rates (c) employ different simulant materials and (d) develop a comprehensive model, in order to certify that the coolability that can be achieved with establishing a water flow in the CRGTs will be able to retain the melt in the lower head of a BWR. We believe it will be an extremely important accident management strategy for a Swedish BWR since it will obviate the consideration of the prime licensing issue of ex-vessel steam explosion induced containment failure associated with the present scheme of establishing a water pool in the lower drywell of all the Swedish BWRs

  8. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    Science.gov (United States)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  9. The effects of large beach debris on nesting sea turtles

    Science.gov (United States)

    Fujisaki, Ikuko; Lamont, Margaret M.

    2016-01-01

    A field experiment was conducted to understand the effects of large beach debris on sea turtle nesting behavior as well as the effectiveness of large debris removal for habitat restoration. Large natural and anthropogenic debris were removed from one of three sections of a sea turtle nesting beach and distributions of nests and false crawls (non-nesting crawls) in pre- (2011–2012) and post- (2013–2014) removal years in the three sections were compared. The number of nests increased 200% and the number of false crawls increased 55% in the experimental section, whereas a corresponding increase in number of nests and false crawls was not observed in the other two sections where debris removal was not conducted. The proportion of nest and false crawl abundance in all three beach sections was significantly different between pre- and post-removal years. The nesting success, the percent of successful nests in total nesting attempts (number of nests + false crawls), also increased from 24% to 38%; however the magnitude of the increase was comparably small because both the number of nests and false crawls increased, and thus the proportion of the nesting success in the experimental beach in pre- and post-removal years was not significantly different. The substantial increase in sea turtle nesting activities after the removal of large debris indicates that large debris may have an adverse impact on sea turtle nesting behavior. Removal of large debris could be an effective restoration strategy to improve sea turtle nesting.

  10. The world state of orbital debris measurements and modeling

    Science.gov (United States)

    Johnson, Nicholas L.

    2004-02-01

    For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.

  11. On the debris-level origins of adhesive wear.

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François

    2017-07-25

    Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.

  12. Preliminary results from initial in-pile debris bed experiments

    International Nuclear Information System (INIS)

    Rivard, J.B.

    1977-01-01

    An accident in a liquid metal fast breeder reactor (LMFBR) in which molten core material is suddenly quenched with subcooled liquid sodium could result in extensive fragmentation and dispersal of fuel as subcritical beds of frozen particulate debris within the reactor vessel. Since this debris will continue to generate power due to decay of retained fission products, containment of the debris is threatened if the generated heat is not removed. Therefore, the initial safety question is the capacity which debris beds may have for transfer of the decay heat to overlying liquid sodium by natural processes--i.e., without the aid of forced circulation of the coolant. Up to the present time, all experiments on debris bed behavior either have used substitute materials (e.g., sand and water) or have employed actual materials, but atypical heating methods. Increased confidence in the applicability of debris bed simulations is afforded if the heat is generated within the fuel component of the appropriate fast reactor materials. The initial series of in-pile tests reported on herein constitutes the first experiments in which the internal heating mode has been produced in particulate oxide fuel immersed in liquid sodium. Fission heating of the fully-enriched UO 2 in the experiment while it is contained within Sandia Laboratories Annular Core Pulse Reactor (ACPR), operating in its steady-state mode, approximates the decay heating of debris. Preliminary results are discussed

  13. An Approach to Predict Debris Flow Average Velocity

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2017-03-01

    Full Text Available Debris flow is one of the major threats for the sustainability of environmental and social development. The velocity directly determines the impact on the vulnerability. This study focuses on an approach using radial basis function (RBF neural network and gravitational search algorithm (GSA for predicting debris flow velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. These data were used for building the GSA-based RBF approach (GSA-RBF. Eighty percent (40 groups of the measured data were selected randomly as the training database. The other 20% (10 groups of data were used as testing data. Finally, the approach was applied to predict six debris flow gullies velocities in the Wudongde Dam site area, where environmental conditions were similar to the Jiangjia gully. The modified Dongchuan empirical equation and the pulled particle analysis of debris flow (PPA approach were used for comparison and validation. The results showed that: (i the GSA-RBF predicted debris flow velocity values are very close to the measured values, which performs better than those using RBF neural network alone; (ii the GSA-RBF results and the MDEE results are similar in the Jiangjia gully debris flow velocities prediction, and GSA-RBF performs better; (iii in the study area, the GSA-RBF results are validated reliable; and (iv we could consider more variables in predicting the debris flow velocity by using GSA-RBF on the basis of measured data in other areas, which is more applicable. Because the GSA-RBF approach was more accurate, both the numerical simulation and the empirical equation can be taken into consideration for constructing debris flow mitigation works. They could be complementary and verified for each other.

  14. Monitoring the abundance of plastic debris in the marine environment.

    Science.gov (United States)

    Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L

    2009-07-27

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.

  15. Development of a debris flow model in a geotechnical centrifuge

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2013-04-01

    Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.

  16. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  17. ASTM standards for fire debris analysis: a review.

    Science.gov (United States)

    Stauffer, Eric; Lentini, John J

    2003-03-12

    The American Society for Testing and Materials (ASTM) recently updated its standards E 1387 and E 1618 for the analysis of fire debris. The changes in the classification of ignitable liquids are presented in this review. Furthermore, a new standard on extraction of fire debris with solid phase microextraction (SPME) was released. Advantages and drawbacks of this technique are presented and discussed. Also, the standard on cleanup by acid stripping has not been reapproved. Fire debris analysts that use the standards should be aware of these changes.

  18. Corporate social responsibility in marine plastic debris governance.

    Science.gov (United States)

    Landon-Lane, Micah

    2018-02-01

    This paper explores the governance characteristics of marine plastic debris, some of the factors underpinning its severity, and examines the possibility of harnessing corporate social responsibility (CSR) to manage plastic use within the contextual attitudes of a contemporary global society. It argues that international and domestic law alone are insufficient to resolve the "wicked problem" of marine plastic debris, and investigates the potential of the private sector, through the philosophy of CSR, to assist in reducing the amount and impacts of marine plastic debris. To illustrate how CSR could minimise marine plastic pollution, an industry-targeted code of conduct was developed. Applying CSR would be most effective if implemented in conjunction with facilitating governance frameworks, such as supportive governmental regulation and non-governmental partnerships. This study maintains that management policies must be inclusive of all stakeholders if they are to match the scale and severity of the marine plastic debris issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  20. Supraglacial Ponds Regulate Runoff From Himalayan Debris-Covered Glaciers

    Science.gov (United States)

    Irvine-Fynn, Tristram D. L.; Porter, Philip R.; Rowan, Ann V.; Quincey, Duncan J.; Gibson, Morgan J.; Bridge, Jonathan W.; Watson, C. Scott; Hubbard, Alun; Glasser, Neil F.

    2017-12-01

    Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one-fifth of the Earth's population. Between 13% and 36% of the region's glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a 7 month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 h. Given projections of increased debris cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the region's freshwater resource availability and cascading environmental effects downstream.

  1. Recent advances in modeling landslides and debris flows

    CERN Document Server

    2015-01-01

    Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows, www.mumolade.com), REVENUES (Numerical Analysis of Slopes with V...

  2. Rainfall characteristics and thresholds for periglacial debris flows in ...

    Indian Academy of Sciences (India)

    Mingfeng Deng

    2018-02-14

    Feb 14, 2018 ... Rainfall characteristics; runoff generated; threshold; debris flows; southeast Tibetan. Plateau. 1. ... glacier ablation water (Lu and Li 1989; Liu et al. 2013). ...... F J and Lund L J, US Department of Agriculture (River- side, CA ...

  3. Spiders (Araneae of stony debris in North Bohemia

    Directory of Open Access Journals (Sweden)

    Růžička, Vlastimil

    1996-12-01

    Full Text Available The arachnofauna was studied at five stony debris sites in northern Bohemia. In Central Europe, the northern and montane species inhabiting cold places live not only on mountain tops and peat bogs but also on the lower edges of boulder debris, where air streaming through the system of inner compartments gives rise to an exceedingly cold microclimate. At such cold sites, spiders can live either on bare stones (Bathyphantes simillimus, Wubanoides uralensis, or in the rich layers of moss and lichen (Diplocentria bidentata. Kratochviliella bicapitata exhibits a diplostenoecious occurence in stony debris and on the tree bark. Latithorax faustus and Theonoe minutissima display diplostenoecious occurence in stony debris and on peat bogs. The occurence of the species Scotina celans in the Czech Republic was documented for the first time.

  4. Technology Combination Analysis Tool (TCAT) for Active Debris Removal

    Science.gov (United States)

    Chamot, B.; Richard, M.; Salmon, T.; Pisseloup, A.; Cougnet, C.; Axthelm, R.; Saunder, C.; Dupont, C.; Lequette, L.

    2013-08-01

    This paper present the work of the Swiss Space Center EPFL within the CNES-funded OTV-2 study. In order to find the most performant Active Debris Removal (ADR) mission architectures and technologies, a tool was developed in order to design and compare ADR spacecraft, and to plan ADR campaigns to remove large debris. Two types of architectures are considered to be efficient: the Chaser (single-debris spacecraft), the Mothership/ Kits (multiple-debris spacecraft). Both are able to perform controlled re-entry. The tool includes modules to optimise the launch dates and the order of capture, to design missions and spacecraft, and to select launch vehicles. The propulsion, power and structure subsystems are sized by the tool thanks to high-level parametric models whilst the other ones are defined by their mass and power consumption. Final results are still under investigation by the consortium but two concrete examples of the tool's outputs are presented in the paper.

  5. Evaluation of the amount of apically extruded debris during ...

    African Journals Online (AJOL)

    2015-04-06

    Apr 6, 2015 ... Objective: To evaluate the amount of apically extruded debris during retreatment (with or without solvent) of root canals filled by two ... These filling materials can be used with several obturation .... The tip of the master cone.

  6. Radiator debris removing apparatus and work machine using same

    Science.gov (United States)

    Martin, Kevin L [Washburn, IL; Elliott, Dwight E [Chillicothe, IL

    2008-09-02

    A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.

  7. Aerogels Materials as Space Debris Collectors

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2013-01-01

    Full Text Available Material degradation due to the specific space environment becomes a key parameter for space missions. The use of large surface of brittle materials on satellites can produce, if impacted by hypervelocity particles, ejected volumes of mater 100 times higher than the impacting one. The presented work is devoted to the use of silica aerogels as passive detectors. Aerogels have been exposed to the low earth orbit of the ISS for 18 months. The study describes the aerogels process and the choice of synthesis parameters in such a way to get expected features in terms of porosity, mechanical properties, internal stresses, and transparency. Low-density aerogels (0.09 g·cm−3 have been prepared. The control of transparency necessary to see and identify particles and fragments collected is obtained using a base catalysis during gel synthesis. After return to earth, the aerogels samples have been observed using optical microscopy to detect and quantify craters on the exposed surface. First results obtained on a small part of the aerogels indicate a large number of debris collected in the materials.

  8. Melt propagation in dry core debris beds

    International Nuclear Information System (INIS)

    Dosanjh, S.S.

    1989-01-01

    During severe light water reactor accidents like Three Mile Island Unit 2, the fuel rods can fragment and thus convert the reactor core into a large particle bed. The postdryout meltdown of such debris beds is examined. A two-dimensional model that considers the presence of oxidic (UO 2 and ZrO 2 ) as well as metallic (e.g., zirconium) constituents is developed. Key results are that a dense metallic crust is created near the bottom of the bed as molten materials flow downward and freeze; liquid accumulates above the blockage and, if zirconium is present, the pool grows rapidly as molten zirconium dissolved both UO 2 and ZrO 2 particles; if the melt wets the solid, a fraction of the melt flows radially outward under the action of capillary forces and freezes near the radial boundary; in a nonwetting system, all of the melt flows into the bottom of the bed; and when zirconium and iron are in intimate contact and the zirconium metal atomic fraction is > 0.33, these metals can liquefy and flow out of the bed very early in the meltdown sequence

  9. Mapping coastal marine debris using aerial imagery and spatial analysis.

    Science.gov (United States)

    Moy, Kirsten; Neilson, Brian; Chung, Anne; Meadows, Amber; Castrence, Miguel; Ambagis, Stephen; Davidson, Kristine

    2017-12-19

    This study is the first to systematically quantify, categorize, and map marine macro-debris across the main Hawaiian Islands (MHI), including remote areas (e.g., Niihau, Kahoolawe, and northern Molokai). Aerial surveys were conducted over each island to collect high resolution photos, which were processed into orthorectified imagery and visually analyzed in GIS. The technique provided precise measurements of the quantity, location, type, and size of macro-debris (>0.05m 2 ), identifying 20,658 total debris items. Northeastern (windward) shorelines had the highest density of debris. Plastics, including nets, lines, buoys, floats, and foam, comprised 83% of the total count. In addition, the study located six vessels from the 2011 Tōhoku tsunami. These results created a baseline of the location, distribution, and composition of marine macro-debris across the MHI. Resource managers and communities may target high priority areas, particularly along remote coastlines where macro-debris counts were largely undocumented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    Science.gov (United States)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  11. Economic analysis requirements in support of orbital debris regulatory policy

    Science.gov (United States)

    Greenberg, Joel S.

    1996-10-01

    As the number of Earth orbiting objects increases so does the potential for generating orbital debris with the consequent increase in the likelihood of impacting and damaging operating satellites. Various debris remediation approaches are being considered that encompass both in-orbit and return-to-Earth schema and have varying degrees of operations, cost, international competitiveness, and safety implications. Because of the diversity of issues, concerns and long-term impacts, there is a clear need for the setting of government policies that will lead to an orderly abatement of the potential orbital debris hazards. These policies may require the establishment of a supportive regulatory regime. The Department of Transportation is likely to have regulatory responsibilities relating to orbital debris stemming from its charge to protect the public health and safety, safety of property, and national security interests and foreign policy interests of the United States. This paper describes DOT's potential regulatory role relating to orbital debris remediation, the myriad of issues concerning the need for establishing government policies relating to orbital debris remediation and their regulatory implications, the proposed technological solutions and their economic and safety implications. Particular emphasis is placed upon addressing cost-effectiveness and economic analyses as they relate to economic impact analysis in support of regulatory impact analysis.

  12. Plastic debris retention and exportation by a mangrove forest patch

    International Nuclear Information System (INIS)

    Ivar do Sul, Juliana A.; Costa, Monica F.; Silva-Cavalcanti, Jacqueline S.; Araújo, Maria Christina B.

    2014-01-01

    Highlights: • Estuaries and mangrove forests are rarely studied for marine plastic debris loads. • Types of plastic items and mangrove forest habitats determine the potential of debris retention. • Mangrove habitats are temporary sinks of plastic debris from river and marine origins. • Plastics rapidly accumulate in mangrove forest, but are exported slowly. • Fauna and fishers using mangrove forest habitats are at risk of interaction with plastic debris. -- Abstract: An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years)

  13. Experimental study of self-leveling behavior in debris bed

    International Nuclear Information System (INIS)

    Zhang, Bin; Harada, Tetsushi; Hirahara, Daisuke; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu

    2008-01-01

    After a core disruptive accident in a sodium-cooled fast reactor, core debris may settle on locations such as within the core-support structure or in the lower inlet plenum of the reactor vessel as debris beds, as a consequence of rapid quenching and fragmentation of core materials in subcooled sodium. The particle beds that are initially of varying depth have been observed to undergo a process of self-leveling when sodium boiling occurs within the beds. The boiling is believed to provide the driven force with debris needed to overcome resisting forces. Self-leveling ability has much effect on heat-removal capability of debris beds. In the present study, characteristics of self-leveling behaviors were investigated experimentally with simulant materials. Although the decay heat from fuel debris drives the coolant boiling in reactor accident conditions, the present experiments employed depressurization boiling of water to simulate axially increasing void distribution in a debris bed, which consists of solid particles of alumina or lead with different density. The particle size (from 0.5 mm to 6 mm in diameter) and shape (spherical or non-spherical particles) were also taken as experimental parameters. A rough criteria for self-leveling occurrence is proposed and compared with the experimental results. Characteristics of the self-leveling behaviors observed are analyzed and extrapolate to reactor accident conditions. (author)

  14. Particulate metallic debris in cemented total hip arthroplasty.

    Science.gov (United States)

    Salvati, E A; Betts, F; Doty, S B

    1993-08-01

    Several studies conducted by the authors in the last six years demonstrate that the generation of metallic debris is more severe with titanium alloy than with cobalt-chrome alloy femoral components in cemented total hip arthroplasty (THA). The debris is generated from the articulating surface, particularly if entrapped acrylic debris produces three-body wear, and from the stem surface when the component loosens and abrades against fragmented cement. In selected cases in which the titanium metallic debris is copious, premature failure and severe progressive bone loss occurs. Electron microscopy demonstrates that the particles of metallic debris can be extremely small (a few hundredths of 1 micron). They are phagocytized by the macrophages and transported to the phagolysosomes. In this highly corrosive environment, the very high surface area of the particles may release toxic concentrations of the constituents of the alloy intracellularly, probably leading to progressive cell degeneration and death, with subsequent release of intracellular enzymes and ingested metallic debris. This cycle most likely repeats itself, leading to tissue necrosis. The results presented do not support the use of titanium alloy femoral components for cemented THA, particularly for the articulating surface.

  15. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  16. Severe accident research and management in Nordic Countries - A status report

    International Nuclear Information System (INIS)

    Frid, W.

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  17. Plastic debris in the coastal environment: The invincible threat? Abundance of buried plastic debris on Malaysian beaches.

    Science.gov (United States)

    Fauziah, S H; Liyana, I A; Agamuthu, P

    2015-09-01

    Studies on marine debris have gained worldwide attention since many types of debris have found their way into the food chain of higher organisms. Thus, it is crucial that more focus is given to this area in order to curb contaminations in sea food. This study was conducted to quantify plastic debris buried in sand at selected beaches in Malaysia. Marine debris was identified according to size range and distribution, and this information was related to preventive actions to improve marine waste issues. For the purpose of this study, comparison of plastic waste abundance between a recreational beach and fish-landing beaches was also carried out, since the different beach types represent different activities that produce debris. Six beaches along the Malaysian coastline were selected for this study. The plastic types in this study were related to the functions of the beach. While recreational beaches have abundant quantities of plastic film, foamed plastic including polystyrene, and plastic fragment, fish-landing beaches accumulated line and foamed plastic. A total of 2542 pieces (265.30 g m(-2)) of small plastic debris were collected from all six beaches, with the highest number from Kuala Terengganu, at 879 items m(-2) on Seberang Takir Beach, followed by Batu Burok Beach with 780 items m(-2). Findings from studies of Malaysian beaches have provided a clearer understanding of the distribution of plastic debris. This demonstrates that commitments and actions, such as practices of the 'reduce, reuse, recycle' (3R) approach, supporting public awareness programmes and beach clean-up activities, are essential in order to reduce and prevent plastic debris pollution. © The Author(s) 2015.

  18. Performance testing of the new AMPAC fire debris bag against three other commercial fire debris bags.

    Science.gov (United States)

    Grutters, Michiel M P; Dogger, Judith; Hendrikse, Jeanet N

    2012-09-01

    Fire debris evidence is collected and stored in a wide range of containers, including various polymer bags. Four different polymer bags have been investigated, including the NYLON, DUO, ALU, and AMPAC bags. The latter is the successor of the Kapak Fire DebrisPAK™. Microscopy and infrared spectroscopy were used to elucidate the composition of the bags. Gas chromatography/mass spectrometry was used to investigate performance parameters such as background volatiles, leak rate, cross-contamination, recovery, and sorption. The NYLON bag was susceptible for leakage and cross-contamination and showed decreased recoveries. The DUO and ALU bags showed some background volatiles, sorption, and poor recoveries. The AMPAC bag performed excellent: low background, no leakage or cross-contamination, good recoveries, and only traces of sorption. Heat sealing proved to be the best method of closure. Preliminary studies on AMPAC bags showed that polyethylene clamps are easy to use on-site and preserve ignitable liquids adequately for a limited period of time. © 2012 American Academy of Forensic Sciences.

  19. First laser measurements to space debris in Poland

    Science.gov (United States)

    Lejba, Paweł; Suchodolski, Tomasz; Michałek, Piotr; Bartoszak, Jacek; Schillak, Stanisław; Zapaśnik, Stanisław

    2018-05-01

    The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014-2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10 Hz repetition rate, a pulse width of 3-5 ns and a pulse energy of 450 mJ for green (532 nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS). Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 - January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10 s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.

  20. Recent severe accident research synthesis of the major outcomes from the SARNET network

    Energy Technology Data Exchange (ETDEWEB)

    Van Dorsselaere, J.-P., E-mail: jean-pierre.van-dorsselaere@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Auvinen, A. [VTT Technical Research Centre, Espoo (Finland); Beraha, D. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), Köln (Germany); Chatelard, P. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Herranz, L.E. [Centro de Investigaciones Energéticas MedioAmbientales y Tecnológicas (CIEMAT), Madrid (Spain); Journeau, C. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Paris (France); Klein-Hessling, W. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), Köln (Germany); Kljenak, I. [Jozef Stefan Institute (JSI), Ljubljana (Slovenia); Miassoedov, A. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Paci, S. [University of Pisa, Pisa (Italy); Zeyen, R. [European Commission Joint Research Centre, Institute for Energy (JRC/IET), Petten (Netherlands)

    2015-09-15

    Highlights: • SARNET network of excellence integration mid-2013 in the NUGENIA Association. • Progress of knowledge on corium behaviour, hydrogen explosion and source term. • Further development of ASTEC integral code to capitalize knowledge. • Ranking of next R&D high priority issues accounting for international research. • Dissemination of knowledge through education courses and ERMSAR conferences. - Abstract: The SARNET network (Severe Accident Research NETwork of excellence), co-funded by the European Commission from 2004 to 2013, has allowed to significantly improve the knowledge on severe accidents and to disseminate it through courses and ERMSAR conferences. The major investigated topics, involving more than 250 researchers from 22 countries, were in- and ex-vessel corium/debris coolability, molten-core–concrete-interaction, steam explosion, hydrogen combustion and mitigation in containment, impact of oxidising conditions on source term, and iodine chemistry. The ranking of the high priority issues was updated to account for the results of recent international research and for the impact of Fukushima nuclear accidents in Japan. In addition, the ASTEC integral code was further developed to capitalize the new knowledge. The network has reached self-sustainability by integration in mid-2013 into the NUGENIA Association. The main activities and outcomes of the network are presented.

  1. Recent severe accident research synthesis of the major outcomes from the SARNET network

    International Nuclear Information System (INIS)

    Van Dorsselaere, J.-P.; Auvinen, A.; Beraha, D.; Chatelard, P.; Herranz, L.E.; Journeau, C.; Klein-Hessling, W.; Kljenak, I.; Miassoedov, A.; Paci, S.; Zeyen, R.

    2015-01-01

    Highlights: • SARNET network of excellence integration mid-2013 in the NUGENIA Association. • Progress of knowledge on corium behaviour, hydrogen explosion and source term. • Further development of ASTEC integral code to capitalize knowledge. • Ranking of next R&D high priority issues accounting for international research. • Dissemination of knowledge through education courses and ERMSAR conferences. - Abstract: The SARNET network (Severe Accident Research NETwork of excellence), co-funded by the European Commission from 2004 to 2013, has allowed to significantly improve the knowledge on severe accidents and to disseminate it through courses and ERMSAR conferences. The major investigated topics, involving more than 250 researchers from 22 countries, were in- and ex-vessel corium/debris coolability, molten-core–concrete-interaction, steam explosion, hydrogen combustion and mitigation in containment, impact of oxidising conditions on source term, and iodine chemistry. The ranking of the high priority issues was updated to account for the results of recent international research and for the impact of Fukushima nuclear accidents in Japan. In addition, the ASTEC integral code was further developed to capitalize the new knowledge. The network has reached self-sustainability by integration in mid-2013 into the NUGENIA Association. The main activities and outcomes of the network are presented

  2. Volume calculations of coarse woody debris; evaluation of coarse woody debris volume calculations and consequences for coarse woody debris volume estimates in forest reserves

    NARCIS (Netherlands)

    Wijdeven, S.M.J.; Vaessen, O.H.B.; Hees, van A.F.M.; Olsthoorn, A.F.M.

    2005-01-01

    Dead wood is recognized as one of the key indicators for sustainable forest management and biodiversity. Accurate assessments of dead wood volume are thus necessary. In this study New volume models were designed based on actual volume measurements of coarse woody debris. The New generic model

  3. Magnitude-frequency characteristics and preparatory factors for spatial debris-slide distribution in the northern Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; Jensen, Niels H.; Veihe, Anita

    2013-01-01

    The Faroe Islands in the North Atlantic Ocean are highly susceptible to debris-avalanches and debris-flows originating from debris-slide activity in shallow colluvial soils. To provide data for hazard and risk assessment of debris-avalanches and debris-flows, this study aims at quantifying the ma...

  4. Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012

    Science.gov (United States)

    Gibson, Morgan J.; Glasser, Neil F.; Quincey, Duncan J.; Mayer, Christoph; Rowan, Ann V.; Irvine-Fynn, Tristram D. L.

    2017-10-01

    Distribution of supraglacial debris in a glacier system varies spatially and temporally due to differing rates of debris input, transport and deposition. Supraglacial debris distribution governs the thickness of a supraglacial debris layer, an important control on the amount of ablation that occurs under such a debris layer. Characterising supraglacial debris layer thickness on a glacier is therefore key to calculating ablation across a glacier surface. The spatial pattern of debris thickness on Baltoro Glacier has previously been calculated for one discrete point in time (2004) using satellite thermal data and an empirically based relationship between supraglacial debris layer thickness and debris surface temperature identified in the field. Here, the same empirically based relationship was applied to two further datasets (2001, 2012) to calculate debris layer thickness across Baltoro Glacier for three discrete points over an 11-year period (2001, 2004, 2012). Surface velocity and sediment flux were also calculated, as well as debris thickness change between periods. Using these outputs, alongside geomorphological maps of Baltoro Glacier produced for 2001, 2004 and 2012, spatiotemporal changes in debris distribution for a sub-decadal timescale were investigated. Sediment flux remained constant throughout the 11-year period. The greatest changes in debris thickness occurred along medial moraines, the locations of mass movement deposition and areas of interaction between tributary glaciers and the main glacier tongue. The study confirms the occurrence of spatiotemporal changes in supraglacial debris layer thickness on sub-decadal timescales, independent of variation in surface velocity. Instead, variation in rates of debris distribution are primarily attributed to frequency and magnitude of mass movement events over decadal timescales, with climate, regional uplift and erosion rates expected to control debris inputs over centurial to millennial timescales. Inclusion

  5. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    Science.gov (United States)

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  6. Estimating Foreign-Object-Debris Density from Photogrammetry Data

    Science.gov (United States)

    Long, Jason; Metzger, Philip; Lane, John

    2013-01-01

    Within the first few seconds after launch of STS-124, debris traveling vertically near the vehicle was captured on two 16-mm film cameras surrounding the launch pad. One particular piece of debris caught the attention of engineers investigating the release of the flame trench fire bricks. The question to be answered was if the debris was a fire brick, and if it represented the first bricks that were ejected from the flame trench wall, or was the object one of the pieces of debris normally ejected from the vehicle during launch. If it was typical launch debris, such as SRB throat plug foam, why was it traveling vertically and parallel to the vehicle during launch, instead of following its normal trajectory, flying horizontally toward the north perimeter fence? By utilizing the Runge-Kutta integration method for velocity and the Verlet integration method for position, a method that suppresses trajectory computational instabilities due to noisy position data was obtained. This combination of integration methods provides a means to extract the best estimate of drag force and drag coefficient under the non-ideal conditions of limited position data. This integration strategy leads immediately to the best possible estimate of object density, within the constraints of unknown particle shape. These types of calculations do not exist in readily available off-the-shelf simulation software, especially where photogrammetry data is needed as an input.

  7. Sensitivity Analysis of Launch Vehicle Debris Risk Model

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott L.

    2010-01-01

    As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.

  8. MIPS Observations of the Fabulous Four Debris Disks

    Science.gov (United States)

    Su, K. Y. L.; Stansberry, J. A.; Rieke, G. H.; Trilling, D. E.; Stapelfeldt, K. R.; Werner, M. W.; Beichman, C.; Chen, C.; Marengo, M.; Megeath, T.; Backman, D.; van Cleve, J.

    2004-12-01

    The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability with imaging bands at 24, 70, and 160 um. We will present the MIPS images of the Fabulous Four Debris Disks: Beta Pictoris (A5 V), Epsilon Eridani (K2 V), Fomalhaut (A3 V) and Vega (A0 V). These systems discovered by IRAS possess large far-infrared excess emission above photosphere, indicating the existence of a circumstellar dusty disk. Given the main-sequence ages of these stars ( ˜12 Myr for Beta Pictoris, ˜730 Myr for Epsilon Eridani, ˜200 Myr for Fomalhaut, and ˜350 Myr for Vega), the dust in the systems could not be primordial as it would have been removed by radiation pressure and Poynting-Robertson drag on relatively short time scales ( ˜1E4 yr). The second-generation dust in such debris disks is thought to arise primarily from collisions between planetesimals (asteroids) and from cometary activity; however, details about the debris formation and evolution are not well understood. With the sensitivity and angular resolution of the Spitizer Space Telescope, the structures of these nearby debris disks were mapped in great detail to study the disks' spatial structures at mid- to far-infrared wavelengths. These high spatial resolution images provide unprecedented new constraints on the the dust properties in the systems and limits on the origin of dusty debris. Support for this work was provided by NASA through Contract Number 960785 issued by JPL/Caltech.

  9. Apically-extruded debris using the ProTaper system.

    Science.gov (United States)

    Azar, Nasim Gheshlaghi; Ebrahimi, Gholamreza

    2005-04-01

    The purpose of this in vitro study was to determine the quantity of debris and irrigant extruded apically using the ProTaper system compared to ProFiles and K-Flexofiles. Thirty-six mesio-buccal root canals of human mandibular molars were selected and divided into three groups of twelve canals. Two groups were instrumented with ProFiles and ProTapers according to the manufacturer's instructions. The other group was instrumented with K-Flexofiles using the step-back technique. A standard amount of irrigant was used for each canal. Apically-extruded debris and irrigant was collected in pre-weighed vials. The mean weight of extruded debris and irrigant for each group was statistically analysed using Student's t-test and one-way ANOVA. All instrumentation techniques produced extruded debris and irrigant. Although the mean amount of extrusion with the step-back technique was higher than the two rotary systems, there was no significant difference between the three groups (p > 0.05). NiTi rotary systems were associated with less apical extrusion, but were not significantly better than hand file instrumentation. All techniques extruded debris.

  10. Participatory Sensing Marine Debris: Current Trends and Future Opportunities

    Science.gov (United States)

    Jambeck, J.; Johnsen, K.

    2016-02-01

    The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.

  11. VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS

    International Nuclear Information System (INIS)

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Rujopakarn, Wiphu; Ivanov, Valentin D.; Vanzi, Leonardo

    2012-01-01

    Debris disks with extremely large infrared excesses (fractional luminosities >10 –2 ) are rare. Those with ages between 30 and 130 Myr are of interest because their evolution has progressed well beyond that of protoplanetary disks (which dissipate with a timescale of order 3 Myr), yet they represent a period when dynamical models suggest that terrestrial planet building may still be progressing through large, violent collisions that could yield large amounts of debris and large infrared excesses. For example, our Moon was formed through a violent collision of two large protoplanets during this age range. We report two disks around the solar-like stars ID8 and HD 23514 in this age range where the 24 μm infrared excesses vary on timescales of a few years, even though the stars are not variable in the optical. Variations this rapid are difficult to understand if the debris is produced by collisional cascades, as it is for most debris disks. It is possible that the debris in these two systems arises in part from condensates from silicate-rich vapor produced in a series of violent collisions among relatively large bodies. If their evolution is rapid, the rate of detection of extreme excesses would indicate that major collisions may be relatively common in this age range.

  12. Apparent rotation properties of space debris extracted from photometric measurements

    Science.gov (United States)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas

    2018-02-01

    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  13. Debris flows susceptibility mapping under tropical rain conditions in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Nsengiyumva, Jean-Baptiste; BUgnon, Pierre-Charles; Jaboyedoff, Michel; Derron, Marc-Henri

    2017-04-01

    Rwanda is a densely populated country. It means that all the space is exploited, including sometimes areas with very steep slopes. This has as for consequences that during the rainy season slopes with human activities are affected by gravitational processes, mostly debris and mud flows and shallow landslides. The events of early May 2016 (May 8 and 9), with more than 50 deaths, are an illustration of these frequents landslides and inundations. The goal of this work is to produce a susceptibility map for debris/mud flows at regional/national scale. Main available pieces of data are a national digital terrain model at 10m resolution, bedrock and soil maps, and information collected during field visits on some specific localities. The first step is the characterization of the slope angle distribution for the different types of bedrock or soils (decomposition in Gaussian populations). Then, the combination of this information with other geomorphic and hydrologic parameters is used to define potential source areas of debris flows. Finally, propagation maps of debris flows are produced using FLOW-R (Horton et al. 2013). Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869-885, doi:10.5194/nhess-13-869-2013, 2013. The paper is in open access.

  14. Grain size segregation in debris discs

    Science.gov (United States)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  15. Numerical modelling of floating debris in the world's oceans.

    Science.gov (United States)

    Lebreton, L C-M; Greer, S D; Borrero, J C

    2012-03-01

    A global ocean circulation model is coupled to a Lagrangian particle tracking model to simulate 30 years of input, transport and accumulation of floating debris in the world ocean. Using both terrestrial and maritime inputs, the modelling results clearly show the formation of five accumulation zones in the subtropical latitudes of the major ocean basins. The relative size and concentration of each clearly illustrate the dominance of the accumulation zones in the northern hemisphere, while smaller seas surrounded by densely populated areas are also shown to have a high concentration of floating debris. We also determine the relative contribution of different source regions to the total amount of material in a particular accumulation zone. This study provides a framework for describing the transport, distribution and accumulation of floating marine debris and can be continuously updated and adapted to assess scenarios reflecting changes in the production and disposal of plastic worldwide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Hui-Pang LIEN

    2003-01-01

    A new method to a slit dam for controlling the stony debris flow has been derived based on the mass conservation law of the stony debris flow passing through a slit dam and the laboratory experiment results.This new method is then combined with three primary efficiency expressions: the dimensionless sediment outflow ratio,the sediment concentration ratio,and the sediment storage rate to develop a simple module,with which the height and the spacing of the posts,as well as the total spacing of slit dam are determined.Furthermore,these expressions can also be applied to check those slit dams that have already been constructed with their effectiveness against various magnitudes of the debris flow. The comparison between these expressions and laboratory data is in reasonable agreement.

  17. Changes of Space Debris Orbits After LDR Operation

    Science.gov (United States)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  18. Protecting Spacecraft Fragments from Exposure to Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable debris. In case of possible collision with the observed debris an avoidance manoeuvre is provided. The situation with unobservable debris is worse, its dimensions ranging from 100 mm to several microns. This debris is formed as a result of explosions of dead space objects and at collisions of destroyed spacecraft fragments against each other. This debris moves along arbitrary trajectories at different speeds.At collision of a spacecraft with fragments of small-size space debris, various consequences are possible: the device can immediately fail, suffer damages, which will have effect later and damages, which break no bones to the aircraft. Anyway, the spacecraft collision with small-size debris particles is undesirable. The protective shields are used to protect the aircraft from damage. Development of shield construction is complicated because the high cost of launch makes it impossible to conduct field tests of shields in space. All the work is carried out in the laboratory, with particles having co-impact speeds up to 10 km/s (possible speeds are up to 20 km/s and spherically shaped particles of 0.8 ... 3 mm in diameter.Various materials are used to manufacture shields. These are aluminum sheet, sandwich panels, metal mesh, metal foam, and woven materials (ballistic fabric. The paper considers single-layer (from sheet metal sandwich materials and multilayer shield designs. As experimental studies show, a single-layer shield protects colliding at speeds

  19. Mechanics of debris flows and rock avalanches: Chapter 43

    Science.gov (United States)

    Iverson, Richard M.; Fernando, Harindra Joseph

    2012-01-01

    Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.

  20. Floating tumor debris. A cause of intermittent biliary obstruction.

    Science.gov (United States)

    Roslyn, J J; Kuchenbecker, S; Longmire, W P; Tompkins, R K

    1984-11-01

    Tumor debris, free-floating in the major biliary ductal system, is a cause of intermittent biliary obstruction that has previously not been recognized. Six patients had hepatic neoplasms with episodic jaundice and/or cholangitis due to floating tumor debris. Diagnosis included metastatic adenocarcinoma of the colon (n = 3), cholangiocarcinoma (n = 1), hepatocellular carcinoma (n = 1), and cavernous hemangioma (n = 1). All patients underwent biliary exploration, with hepatic resection and transhepatic intubation in two and T-tube placement in four. One patient died in the early postoperative period, and the major complication rate in the five survivors was 0%. Four of the five survivors had no further episodes suggestive of major bile duct obstruction. Our experience emphasizes the importance of distinguishing extrahepatic obstruction secondary to tumor debris from the more common causes of jaundice in patients with tumors and suggests that safe and effective palliation can be achieved in these patients.

  1. Dynamics of Unusual Debris Flows on Martian Sand Dunes

    Science.gov (United States)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary

    2004-01-01

    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  2. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    Science.gov (United States)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  3. Debris Avalanches and Debris Flows Transformed from Collapses in the Trans-Mexican Volcanic Belt, México.

    Science.gov (United States)

    Capra, L.; Macias, J.; Scott, K.; Abrams, M.; Garduño, V.

    2001-12-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene time. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlated with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and north-east, probably reflecting the tectonic regime of active E-W and NNW faults. The different mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the case of the smaller failures. High mobility is related to factors such as water and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). Both debris-avalanches and debris-flows are volcanic hazards that occur from both active volcanoes, as well as those that are inactive or dormant volcanoes, and may by triggered by earthquakes, precipitation, or simple gravity. There will be no precursory warning in such non-volcanic cases.

  4. Types and Origins of Debris Found on Maui Shorelines: Implications for Mitigation Policies and Strategies

    Science.gov (United States)

    Blickley, L.; Currie, J. J.; Kaufman, G. D.

    2016-02-01

    Marine debris is an identified concern for coastal areas and is known to accumulate in large quantities in the North Pacific Ocean. The proximity of the Main Hawaiian Islands to these "garbage patches" represents an ongoing concern with little understanding of debris origins or efficacy of current mitigation policies. Debris accumulation surveys were conducted monthly between October 2013 and August 2014 and daily during January 2015 at 3 beaches on Maui's coastline. Debris accumulation rates, loads, and sources varied between sites and were influenced by both environmental and anthropogenic factors. Debris accumulation was strongly influenced by the temporal scale of sampling, with daily surveys showing a significant increase in accumulation rate. Plastics were the most common debris item at each site ranging from local, land-based debris including cigarette butts, straws, and food wrappers, to foreign, ocean-based debris such as oyster spacer tubes and hagfish traps. The results of this study indicate that the passage of a tobacco free beaches bill on Maui has not significantly reduced the amount of tobacco related debris. Alternatively, a ban on plastic grocery bags has eliminated this type of debris from Maui's shorelines, with no bags found at any of the sampling sites. The wide spread origins of collected debris further suggests that mitigation strategies to reduce debris will need to take place across hundreds of local municipalities. The efficacy of marine debris policies furthermore depends on enforcement and implementation strategy, as current results suggest policy enforcement at the producer level affords more effective results than that at the consumer level. Local debris mitigation actions have nevertheless been shown to affect debris loads, and municipalities are therefore encouraged to adopt a holistic combination of policy, community-based debris removal programs, increased public awareness, and ongoing monitoring to address marine debris.

  5. Energy balance, carbon emissions, and costs of sortyard debris disposal

    International Nuclear Information System (INIS)

    MacDonald, A.J.

    2001-01-01

    The Forest Engineering Research Institute of Canada (FERIC), with funding from Natural Resources Canada, conducted this study to determine the main environmental and energy use issues regarding the landfilling, burning or processing of dryland sortyard debris accumulated in the wood products industry. The wood residues that are generated when logs are processed, sorted and remanufactured, have traditionally been burned or landfilled. This is no longer appropriate. Converting the large woody debris into usable products such as hog fuel or compost requires grinding, smashing or chipping into small pieces to facilitate transportation. In order to make smart decisions about alternative methods of handling sortyard debris, information is needed about the comparative amount of fuel used and carbon dioxide produced. This study compared the treatment alternatives with respect to fuel consumption, net energy balance, carbon dioxide emissions and environmental impact. Recommendations were then presented for the treatment of debris from the point of view of net energy balance and environmental impact. Life cycle techniques were used to determine the environmental impact of alternatives for managing sortyard debris. It was determined that wood wastes are valuable as hog fuel for power generation. Burning hog fuel to recover its energy offsets the need to supply energy from other sources such as natural gas. This reduces the total carbon emissions by the amount of debris that would have been burned as waste. Annual carbon emissions can be reduced by nearly half by switching from a maximize burn strategy to a maximize hog strategy that combines composting of fine materials. 2 refs., 1 tab., 1 fig

  6. The Relationship Between Debris and Grain Growth in Polycrystalline Ice

    Science.gov (United States)

    Rivera, A.; McCarthy, C.

    2017-12-01

    An understanding of the mechanisms of ice flow, as well as the factors that affect it, must be improved in order to make more accurate predictions of glacial melting rates, and hence, sea level rise. Both field and laboratory studies have made an association between smaller grain sizes of ice and more rapid deformation. Therefore, it is essential to understand the different factors that affect grain size. Observations from ice cores have shown a correlation between debris content in layers of ice with smaller grain sizes, whereas layers with very little debris have larger grain sizes. Static grain growth rates for both pure ice and ice containing bubbles are well constrained, but the effect of small rock/dust particles has received less attention. We tested the relationship between debris and grain growth in polycrystalline ice with controlled annealing at -5°C and microstructural characterization. Three samples, two containing fine rock powder and one without, were fabricated, annealed, and imaged over time. The samples containing powder had different initial grain sizes due to solidification temperature during fabrication. Microstructural analysis was done on all samples after initial fabrication and at various times during the anneal using a light microscope housed in a cold room. Microstructural images were analyzed by the linear-intercept method. When comparing average grain size over time between pure ice and ice with debris, it was found that the rate of growth for the pure ice was larger than the rate of growth for the ice with debris at both initial grain sizes. These results confirm the observations seen in nature, and suggest that small grain size is indeed influenced by debris content. By understanding this, scientists could gain a more in-depth understanding of internal ice deformation and the mechanisms of ice flow. This, in turn, helps improve the accuracy of glacial melting predictions, and sea level rise in the future.

  7. Young Debris Disks With Newly Discovered Emission Features

    Science.gov (United States)

    Ballering, N.

    2014-04-01

    We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90

  8. Drift simulation of MH370 debris using superensemble techniques

    Science.gov (United States)

    Jansen, Eric; Coppini, Giovanni; Pinardi, Nadia

    2016-07-01

    On 7 March 2014 (UTC), Malaysia Airlines flight 370 vanished without a trace. The aircraft is believed to have crashed in the southern Indian Ocean, but despite extensive search operations the location of the wreckage is still unknown. The first tangible evidence of the accident was discovered almost 17 months after the disappearance. On 29 July 2015, a small piece of the right wing of the aircraft was found washed up on the island of Réunion, approximately 4000 km from the assumed crash site. Since then a number of other parts have been found in Mozambique, South Africa and on Rodrigues Island. This paper presents a numerical simulation using high-resolution oceanographic and meteorological data to predict the movement of floating debris from the accident. Multiple model realisations are used with different starting locations and wind drag parameters. The model realisations are combined into a superensemble, adjusting the model weights to best represent the discovered debris. The superensemble is then used to predict the distribution of marine debris at various moments in time. This approach can be easily generalised to other drift simulations where observations are available to constrain unknown input parameters. The distribution at the time of the accident shows that the discovered debris most likely originated from the wide search area between 28 and 35° S. This partially overlaps with the current underwater search area, but extends further towards the north. Results at later times show that the most probable locations to discover washed-up debris are along the African east coast, especially in the area around Madagascar. The debris remaining at sea in 2016 is spread out over a wide area and its distribution changes only slowly.

  9. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  10. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  11. As main meal for sperm whales: plastics debris.

    Science.gov (United States)

    de Stephanis, Renaud; Giménez, Joan; Carpinelli, Eva; Gutierrez-Exposito, Carlos; Cañadas, Ana

    2013-04-15

    Marine debris has been found in marine animals since the early 20th century, but little is known about the impacts of the ingestion of debris in large marine mammals. In this study we describe a case of mortality of a sperm whale related to the ingestion of large amounts of marine debris in the Mediterranean Sea (4th published case worldwide to our knowledge), and discuss it within the context of the spatial distribution of the species and the presence of anthropogenic activities in the area that could be the source of the plastic debris found inside the sperm whale. The spatial distribution modelled for the species in the region shows that these animals can be seen in two distinct areas: near the waters of Almería, Granada and Murcia and in waters near the Strait of Gibraltar. The results shows how these animals feed in waters near an area completely flooded by the greenhouse industry, making them vulnerable to its waste products if adequate treatment of this industry's debris is not in place. Most types of these plastic materials have been found in the individual examined and cause of death was presumed to be gastric rupture following impaction with debris, which added to a previous problem of starvation. The problem of plastics arising from greenhouse agriculture should have a relevant section in the conservation plans and should be a recommendation from ACCOBAMS due to these plastics' and sperm whales' high mobility in the Mediterranean Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach

    Science.gov (United States)

    Hürlimann, Marcel; Copons, Ramon; Altimir, Joan

    2006-08-01

    In many mountainous areas, the rapid development of urbanisation and the limited space in the valley floors have created a need to construct buildings in zones potentially exposed to debris flow hazard. In these zones, a detailed and coherent hazard assessment is necessary to provide an adequate urban planning. This article presents a multidisciplinary procedure to evaluate the debris flow hazard at a local scale. Our four-step approach was successfully applied to five torrent catchments in the Principality of Andorra, located in the Pyrenees. The first step consisted of a comprehensive geomorphologic and geologic analysis providing an inventory map of the past debris flows, a magnitude-frequency relationship, and a geomorphologic-geologic map. These data were necessary to determine the potential initiation zones and volumes of future debris flows for each catchment. A susceptibility map and different scenarios were the principal outcome of the first step, as well as essential input data for the second step, the runout analysis. A one-dimensional numerical code was applied to analyse the scenarios previously defined. First, the critical channel sections in the fan area were evaluated, then the maximum runout of the debris flows on the fan was studied, and finally simplified intensity maps for each defined scenario were established. The third step of our hazard assessment was the hazard zonation and the compilation of all the results from the two previous steps in a final hazard map. The base of this hazard map was the hazard matrix, which combined the intensity of the debris flow with its probability of occurrence and determined a certain hazard degree. The fourth step referred to the hazard mitigation and included some recommendations for hazard reduction. In Andorra, this four-step approach is actually being applied to assess the debris flow hazard. The final hazard maps, at 1 : 2000 scale, provide an obligatory tool for local land use planning. Experience

  13. A methodology for selective removal of orbital debris

    Science.gov (United States)

    Ash, R. L.; Odonoghue, P. J.; Chambers, E. J.; Raney, J. P.

    1992-01-01

    Earth-orbiting objects, large enough to be tracked, were surveyed for possible systematic debris removal. Based upon the statistical collision studies of others, it was determined that objects in orbits approximately 1000 km above the Earth's surface are at greatest collisional risk. Russian C-1B boosters were identified as the most important target of opportunity for debris removal. Currently, more than 100 in tact boosters are orbiting the Earth with apogees between 950 km and 1050 km. Using data provided by Energia USA, specific information on the C-1B booster, in terms of rendezvous and capture strategies, was discussed.

  14. Mount Baker lahars and debris flows, ancient, modern, and future

    Science.gov (United States)

    Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott

    2014-01-01

    The Middle Fork Nooksack River drains the southwestern slopes of the active Mount Baker stratovolcano in northwest Washington State. The river enters Bellingham Bay at a growing delta 98 km to the west. Various types of debris flows have descended the river, generated by volcano collapse or eruption (lahars), glacial outburst floods, and moraine landslides. Initial deposition of sediment during debris flows occurs on the order of minutes to a few hours. Long-lasting, down-valley transport of sediment, all the way to the delta, occurs over a period of decades, and affects fish habitat, flood risk, gravel mining, and drinking water.

  15. Engineering and Technology Challenges for Active Debris Removal

    Science.gov (United States)

    Liou, Jer-Chyi

    2011-01-01

    After more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of

  16. Lower end fitting debris collector and end cap spacer grid

    International Nuclear Information System (INIS)

    Bryan, W.J.

    1990-01-01

    This patent describes a nuclear reactor having fuel assemblies including an upper end fitting and spaced nuclear fuel rod spacer grids for supporting and spacing a plurality of elongated nuclear fuel rods. Each includes a hollow active portion of nuclear fuel filled cladding intermediate the rod ends and tapering end cap of solid material with a circumferential groove on the rod end which first encounters reactor coolant flow, a lower end filtering debris collector and end cap spacer grid for capturing and retaining deleterious debris carried by reactor coolant before it enters the active region of a fuel assembly and creates fuel rod cladding damage

  17. Emerging insights into the dynamics of submarine debris flows

    Directory of Open Access Journals (Sweden)

    A. Elverhøi

    2005-01-01

    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  18. Draft Updates to the Planning for Natural Disaster Debris Guidance and to Related Documents

    Science.gov (United States)

    EPA is requesting comment on the draft update of the Planning for Natural Disaster Debris Guidance, along with two other documents. This Guidance is an update of the Planning for Natural Disaster Debris guidance that EPA published in March 2008.

  19. An in vitro comparison of apically extruded debris using three rotary nickel-titanium instruments

    Directory of Open Access Journals (Sweden)

    Tamer Tasdemir

    2010-09-01

    Conclusion: According to this study, all instrumentation techniques apically extruded debris through the apical foramen. However, the BioRaCe instruments induced less extruded debris than the ProTaper Universal and Mtwo rotary systems.

  20. Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787).

    Science.gov (United States)

    Costa, Leonardo Lopes; Rangel, Danilo Freitas; Zalmon, Ilana Rosental

    2018-03-01

    Sandy beaches are sites of marine debris stranding, but the interaction of beach biota with waste is poorly studied. The objective of this study was to investigate whether the ghost crab Ocypode quadrata selects marine debris by types using a non-destructive method on sandy beaches of Southeastern Brazil. We found marine debris in 7% of 1696 surveyed burrows, and the ghost crabs selectivity was mainly by soft plastic (30%), straw (11%), rope (6%) and foam (4%). Burrows with marine debris showed higher occupation rate (~68%) compared to burrows without debris (~28%), indicating that these materials may increase the capacity of ghost crabs to memorize their burrows placement (homing). The percentage of marine debris was not always related to their amount in the drift line, but ghost crabs used more debris near urbanized areas. Future studies should test whether ghost crabs are using marine debris for feeding, homing or other mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    Institute of Scientific and Technical Information of China (English)

    CHENG; Genwei

    2003-01-01

    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random