WorldWideScience

Sample records for ewod digitial microfluidics

  1. ALL-ELECTRONIC DROPLET GENERATION ON-CHIP WITH REAL-TIME FEEDBACK CONTROL FOR EWOD DIGITIAL MICROFLUIDICS

    Science.gov (United States)

    Gong, Jian; Kim, Chang-Jin “CJ”

    2009-01-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabricaion and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1:x (x < 1) mixing, in comparison to the previously considered n:m mixing (i.e., n and m unit droplets). PMID:18497909

  2. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics.

    Science.gov (United States)

    Gong, Jian; Kim, Chang-Jin C J

    2008-06-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets).

  3. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip.

    Science.gov (United States)

    Karuwan, Chanpen; Sukthang, Kreeta; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Patthanasettakul, Viyapol; Wechsatol, Wishsanuruk; Tuantranont, Adisorn

    2011-06-15

    In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Wirelessly powered electrowetting-on-dielectric (EWOD) by planar receiver coils

    Science.gov (United States)

    Byun, Sang Hyun; Yuan, Junqi; Yoon, Myung Gon; Cho, Sung Kwon

    2015-03-01

    Electrowetting-on-dielectric (EWOD) is one of the most versatile methods used to control the wettability of liquids using electrical input. In most applications, EWOD is applied using physical wiring, which may restrict its application to implantable EWOD devices. In order to resolve this issue, we have studied and developed a wirelessly powered EWOD by using planar coils at the receiver that are fabricated out of a printed circuit board (PCB) by means of standard micro photolithography. Unlike conventional, bulky, spool coil type, the planar coil type lends itself to compact design and easy integration with EWOD chips. The present wireless powering principle is based on magnetic induction, which is very efficient when the transmitter and receiver coils are close to each other. The voltage obtained at the receiver is much higher than typically required EWOD voltages (>50 V) using a high transmission frequency (~MHz). The span of the EWOD contact angle is over 40°. In addition, amplitude modulation (AM) is implemented in the present wireless powering setup, followed by demodulation, in order to oscillate droplets at low frequency. This technique ensures smooth and reliable droplet movements. The wirelessly powered EWOD is used to transport a droplet and is mounted in a mini-boat which it powers and propels.

  5. Electromechanical model to predict the movability of liquids in an electrowetting-on-dielectric microfluidic device

    Science.gov (United States)

    Torabinia, Matin; Farzbod, Ali; Moon, Hyejin

    2018-04-01

    In electrowetting-on-dielectric (EWOD) microfluidics, a motion of a fluid is created by a voltage applied to the fluid/surface interface. Water and aqueous solutions are the most frequently used fluids in EWOD devices. In order for EWOD microfluidics to be a versatile platform for various applications, however, movability of different types of fluids other than aqueous solutions should be understood. An electromechanical model using a simple RC circuit has been used to predict the mechanical force exerted on a liquid droplet upon voltage application. In this present study, two important features missed in previous works are addressed. Energy dissipation by contact line friction is considered in the new model as the form of resistor. The phase angle is taken into account in the analysis of the AC circuit. The new electromechanical model and computation results are validated with experimental measurements of forces on two different liquids. The model is then used to explain influences of contact angle hysteresis, surface tension, conductivity, and dielectric constant of fluids to the mechanical force on a liquid droplet.

  6. Isolated atrophy of the abductor digiti quinti in patients with rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Fernandes de Mello, Ricardo; Garcia Rondina, Ronaldo; Valim, Valeria; Santos Belisario, Stephano; Batista, Elton Francisco [Universidade Federal do Espirito Santo, Department of Internal Medicine, Vitoria, ES (Brazil); Burgomeister Lourenco, Rafael [HUCAM/UFES, Division of Medical Imaging, Vitoria, ES (Brazil); Duque, Ruben Horst [HUCAM/UFES, Division of Rheumatology, Vitoria, ES (Brazil)

    2017-12-15

    We aim to discuss the association of isolated atrophy of the abductor digiti quinti muscle in patients with rheumatoid arthritis as well as review the anatomy and imaging findings of this condition on MRI. A consecutive series of 55 patients diagnosed with rheumatoid arthritis according to the 2010 ACR/EULAR classification criteria were recruited. MRI of the clinically dominant feet was performed using a 1.5-T scanner. The study population was predominantly female (94.5%), and the age range was 31-79 years (mean 57.5 ± 11). A total of 55 ankles were examined by MRI, and 20 patients (36.3%), all females, showed abductor digiti quinti denervation signs. Seven patients demonstrated severe fatty atrophy of the abductor digiti quinti, corresponding to Goutallier grade 4, 2 patients showed moderate fatty atrophy (Goutallier grade 3), and the remaining 11 patients showed less than 50% fatty atrophy, corresponding to a Goutallier grade 2. Substantial agreement was found for both intra- and interobserver agreement regarding the Goutallier grading system. Prevalence of signs of abductor digiti quinti denervation on MRI was high in the studied population, suggesting that rheumatoid arthritis may be associated with inferior calcaneal nerve compression. (orig.)

  7. Isolated atrophy of the abductor digiti quinti in patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Andrade Fernandes de Mello, Ricardo; Garcia Rondina, Ronaldo; Valim, Valeria; Santos Belisario, Stephano; Batista, Elton Francisco; Burgomeister Lourenco, Rafael; Duque, Ruben Horst

    2017-01-01

    We aim to discuss the association of isolated atrophy of the abductor digiti quinti muscle in patients with rheumatoid arthritis as well as review the anatomy and imaging findings of this condition on MRI. A consecutive series of 55 patients diagnosed with rheumatoid arthritis according to the 2010 ACR/EULAR classification criteria were recruited. MRI of the clinically dominant feet was performed using a 1.5-T scanner. The study population was predominantly female (94.5%), and the age range was 31-79 years (mean 57.5 ± 11). A total of 55 ankles were examined by MRI, and 20 patients (36.3%), all females, showed abductor digiti quinti denervation signs. Seven patients demonstrated severe fatty atrophy of the abductor digiti quinti, corresponding to Goutallier grade 4, 2 patients showed moderate fatty atrophy (Goutallier grade 3), and the remaining 11 patients showed less than 50% fatty atrophy, corresponding to a Goutallier grade 2. Substantial agreement was found for both intra- and interobserver agreement regarding the Goutallier grading system. Prevalence of signs of abductor digiti quinti denervation on MRI was high in the studied population, suggesting that rheumatoid arthritis may be associated with inferior calcaneal nerve compression. (orig.)

  8. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    Directory of Open Access Journals (Sweden)

    Carlos E. Clement

    2017-01-01

    Full Text Available We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D electrowetting-on-dielectric (EWOD devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2 than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has

  9. Optimization of Liquid DiElectroPhoresis (LDEP Digital Microfluidic Transduction for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2011-06-01

    Full Text Available Digital microfluidic has recently been under intensive study, as an effective method to carry out liquid manipulation in Lab-On-a-Chip (LOC systems. Among droplet actuation forces, ElectroWetting on Dielectric (EWOD and Liquid DiElectroPhoresis (LDEP are powerful tools, used in many LOC platforms. Such digital microfluidic transductions do not require integration of complex mechanical components such as pumps and valves to perform the fluidic operations. However, although LDEP has been proved to be efficient to carry and manipulate biological components in insulating liquids, this microfluidic transduction requires several hundreds of volts at relatively high frequencies (kHz to MHz. With the purpose to develop integrated microsystems µ-TAS (Micro Total Analysis System or Point of Care systems, the goal here is to reduce such high actuation voltage, the power consumption, though using standard dielectric materials. This paper gives key rules to determine the best tradeoff between liquid manipulation efficiency, low-power consumption and robustness of microsystems using LDEP actuation. This study leans on an electromechanical model to describe liquid manipulation that is applied to an experimental setup, and provides precise quantification of both actuation voltage Vth and frequency fc thresholds between EWOD and LDEP regimes. In particular, several parameters will be investigated to quantify Vth and fc, such as the influence of the chip materials, the electrodes size and the device configurations. Compared to current studies in the field, significant reduction of both Vth and fc is achieved by optimization of the aforementioned parameters.

  10. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.

    Science.gov (United States)

    Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi

    2014-09-01

    The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.

  11. The variations of peroneus digiti quinti muscle and its contribution to the extension of the fifth toe. A cadaveric study

    Directory of Open Access Journals (Sweden)

    Berin T. Demir

    2015-11-01

    Full Text Available Objectives: To investigate the origin, prevalence, and possible effects of peroneus digiti quinti muscle (PDQ on the fifth toe, to find out the variations of PDQ by determining the relationship between peroneus brevis muscle (PB and PDQ, and to reveal its importance for the applications in foot and ankle surgery. Methods: This study was conducted at the Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey between September 2013 and June 2014. The study was a prospective dissection of cadaveric lower limbs. Twenty-five amputated lower limbs were stored in the freezer at -15°C. The legs were dissected; prevalence and variations of peroneus digiti quinti were investigated. Results: Peroneus digiti quinti muscle was found in 8 (32% of 25 dissected lower limbs. However, 2 different tendon extensions were found at 3 (37.5% of 8, and 5 (62.5% of them were determined to have a single tendon. Conclusion: The incidence, dimensions, length, and insertions of peroneus digiti quinti are important in the evaluation and treatment of functional loss of the fifth toe, lateral foot deformities, and tendon problems behind the lateral malleolus of the ankle.

  12. Macro to microfluidics system for biological environmental monitoring.

    Science.gov (United States)

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. A hybrid approach to device integration on a genetic analysis platform

    International Nuclear Information System (INIS)

    Brennan, Des; Justice, John; Aherne, Margaret; Galvin, Paul; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Macek, Milan

    2012-01-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization. (paper)

  14. ABERRANT ABDUCTOR DIGITI MINIMI MUSCLE FOUND DURING OPEN SURGICAL DECOMPRESSION OF THE CARPAL TUNNEL: CASE REPORT. Músculo abductor digiti minimi aberrante hallado durante una cirugía abierta descompresiva del tunel carpiano: reporte de caso

    Directory of Open Access Journals (Sweden)

    Svetoslav A Slavchev

    2016-03-01

    Full Text Available En este artículo reportamos un caso interesante de músculo hipotenar aberrante encontrado durante una descompresión del túnel carpiano. La variante muscular surgía de la fascia antebraquial voloradial, y pasaba sobre la arteria y el nervio ulnar en el canal de Guyón, y se insertaba en la cara ulnar hipotenar. La tensión en el vientre muscular produjo ligera abducción de la quinta articulación metacarpofa-lángica, lo que confirmó que el músculo era abductor digiti minimi aberrante. Observamos asimismo las diferentes variaciones de este músculo y ponemos énfasis en su potencial implicancia clínica. Herein, we present an interesting case of an aberrant hypothenar muscle found during carpal tunnel decompression. The variant muscle arised from the voloradial antebrachial fascia and coursed over the ulnar artery and nerve in the Guyon canal, and inserted into the ulnar aspect of the hypothenar. Tension on the muscle belly provided slight abduction of the fifth metacarpophalangeal joint, which confirmed it to be an aberrant abductor digiti minimi muscle. We also discuss different variations of this muscle and emphasize its potential clinical implications.

  15. EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.

    Science.gov (United States)

    Jönsson-Niedziółka, M; Lapierre, F; Coffinier, Y; Parry, S J; Zoueshtiagh, F; Foat, T; Thomy, V; Boukherroub, R

    2011-02-07

    Environmental air monitoring is of great interest due to the large number of people concerned and exposed to different possible risks. From the most common particles in our environment (e.g. by-products of combustion or pollens) to more specific and dangerous agents (e.g. pathogenic micro-organisms), there are a large range of particles that need to be controlled. In this article we propose an original study on the collection of electrostatically deposited particles using electrowetting droplet displacement. A variety of particles were studied, from synthetic particles (e.g. Polystyrene Latex (PSL) microsphere) to different classes of biological particle (proteins, bacterial spores and a viral simulant). Furthermore, we have compared ElectroWetting-On-Dielectric (EWOD) collecting efficiency using either a hydrophobic or a superhydrophobic counter electrode. We observe different cleaning efficiencies, depending on the hydrophobicity of the substrate (varying from 45% to 99%). Superhydrophobic surfaces show the best cleaning efficiency with water droplets for all investigated particles (MS2 bacteriophage, BG (Bacillus atrophaeus) spores, OA (ovalbumin) proteins, and PSL).

  16. Thin-film-transistor array: an exploratory attempt for high throughput cell manipulation using electrowetting principle

    Science.gov (United States)

    Shaik, F. Azam; Cathcart, G.; Ihida, S.; Lereau-Bernier, M.; Leclerc, E.; Sakai, Y.; Toshiyoshi, H.; Tixier-Mita, A.

    2017-05-01

    In lab-on-a-chip (LoC) devices, microfluidic displacement of liquids is a key component. electrowetting on dielectric (EWOD) is a technique to move fluids, with the advantage of not requiring channels, pumps or valves. Fluids are discretized into droplets on microelectrodes and moved by applying an electric field via the electrodes to manipulate the contact angle. Micro-objects, such as biological cells, can be transported inside of these droplets. However, the design of conventional microelectrodes, made by standard micro-fabrication techniques, fixes the path of the droplets, and limits the reconfigurability of paths and thus limits the parallel processing of droplets. In that respect, thin film transistor (TFT) technology presents a great opportunity as it allows infinitely reconfigurable paths, with high parallelizability. We propose here to investigate the possibility of using TFT array devices for high throughput cell manipulation using EWOD. A COMSOL based 2D simulation coupled with a MATLAB algorithm was used to simulate the contact angle modulation, displacement and mixing of droplets. These simulations were confirmed by experimental results. The EWOD technique was applied to a droplet of culture medium containing HepG2 carcinoma cells and demonstrated no negative effects on the viability of the cells. This confirms the possibility of applying EWOD techniques to cellular applications, such as parallel cell analysis.

  17. Thin-film-transistor array: an exploratory attempt for high throughput cell manipulation using electrowetting principle

    International Nuclear Information System (INIS)

    Shaik, F Azam; Cathcart, G; Toshiyoshi, H; Tixier-Mita, A; Ihida, S; Sakai, Y; Lereau-Bernier, M; Leclerc, E

    2017-01-01

    In lab-on-a-chip (LoC) devices, microfluidic displacement of liquids is a key component. electrowetting on dielectric (EWOD) is a technique to move fluids, with the advantage of not requiring channels, pumps or valves. Fluids are discretized into droplets on microelectrodes and moved by applying an electric field via the electrodes to manipulate the contact angle. Micro-objects, such as biological cells, can be transported inside of these droplets. However, the design of conventional microelectrodes, made by standard micro-fabrication techniques, fixes the path of the droplets, and limits the reconfigurability of paths and thus limits the parallel processing of droplets. In that respect, thin film transistor (TFT) technology presents a great opportunity as it allows infinitely reconfigurable paths, with high parallelizability. We propose here to investigate the possibility of using TFT array devices for high throughput cell manipulation using EWOD. A COMSOL based 2D simulation coupled with a MATLAB algorithm was used to simulate the contact angle modulation, displacement and mixing of droplets. These simulations were confirmed by experimental results. The EWOD technique was applied to a droplet of culture medium containing HepG2 carcinoma cells and demonstrated no negative effects on the viability of the cells. This confirms the possibility of applying EWOD techniques to cellular applications, such as parallel cell analysis. (paper)

  18. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    Science.gov (United States)

    Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen

    2011-05-01

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate

  19. The prevalence of the extensor digiti minimi tendon of the hand and its variants in humans: a systematic review and meta-analysis.

    Science.gov (United States)

    Yammine, Kaissar

    2015-01-01

    The extensor digiti minimi (EDM) is frequently used in the case of an abduction deformity of the little finger. It is also considered as a main resource for tendon transfer. However, it shows many variations in the human hand, which include splitting into two or more slips and sending a slip to the fourth finger, named the extensor digiti minimi et quarti (EDMQ). The aim of this systematic review is to perform an evidence synthesis on the prevalence of the EDM and its variants. Twenty-six cadaveric studies met the inclusion criteria with a total of 2247 hands. Meta-analysis results yielded an overall pooled prevalence estimate (PPE) of the EDM of 99.7% and PPEs of 11.5, 77.6, 7 and 0.6% for the single-, double-, triple- and quadruple-slip EDM, respectively. For the single-slip EDM, the frequencies were such that Indians > Middle Eastern > Europeans > Japanese > North Americans. For the double-slip EDM, the frequencies were such that Japanese > North Americans = Europeans > Middle Eastern > Indians. No significance was found with regard to hand side. The true EDMQ prevalence was found to be at 7.3%, whereas its crude prevalence was 8%. This artilce offers reference values on the prevalence of the EDM and its variants, which are thought to be highly relevant to both anatomists and clinicians.

  20. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  1. Towards droplet size-aware biochemical application compilation for AM-EWOD biochips

    DEFF Research Database (Denmark)

    Pop, Paul; Alistar, Mirela

    2015-01-01

    a droplet size-aware compilation by proposing a routing algorithm that considers the droplet size. Our routing algorithm is developed for a novel digital microfluidic biochip architecture based on Active Matrix Electrowetting on Dielectric, which uses a thin film transistor array for the electrodes. We also...

  2. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  3. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  4. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  5. MICROFLUIDIC COMPONENT CAPABLE OF SELF-SEALING

    DEFF Research Database (Denmark)

    2009-01-01

    A microfluidic component (100) for building a microfluidic system is provided. The microfluidic component (100) can be mounted on a microf luidic breadboard (202) in a manner that allows it to be connected to other microfluidic components (204, 206) without the requirement of additional devices....... The microfluidic component (100) comprises at least one flexible tube piece (102) for transporting a fluid. The microfluidic component (100) also comprises means for applying and maintaining pressure (104) between the flexible tube piece (102) and a tube piece (208, 210) housed in another microfluidic component...

  6. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    Science.gov (United States)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  7. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  8. Microfluidics on liquid handling stations (μF-on-LHS): a new industry-compatible microfluidic platform

    Science.gov (United States)

    Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.

    2014-03-01

    Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.

  9. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  10. Microfluidic desalination : capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  11. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    Microfluidic applications hold promise for many different end‐users both within and outside, and across many different research communities. Despite the benefits of microfluidic approaches, adoption and implementation thereof is often hindered by practical issues. Microfluidic components which......‐integrated interconnection and miniaturized peristaltic pump solutions were then combined into modular microfluidic systems. One system provides high interconnection numbers/density and allows many possible configurations. Additionally, and apart from many other accounts of modular microfluidic solutions, methods...... for control and actuation of microfluidic networks built from the modular components is described. Prototypes of the microfluidic system have begun to be distributed to external collaborators and researcher parties. These end‐users will assist in the validation of the approach and ultimately fulfil the key...

  12. Ice matrix in reconfigurable microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, A M [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A [Cranfield Health, Cranfield University, Vincent Building B52, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Meglinski, I [Department of Physics, University of Otago, PO Box 56, Dunedin, 9054 (New Zealand)

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  13. Ice matrix in reconfigurable microfluidic systems

    International Nuclear Information System (INIS)

    Bossi, A M; Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A; Meglinski, I

    2013-01-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  14. Ice matrix in reconfigurable microfluidic systems

    Science.gov (United States)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  15. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    Science.gov (United States)

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  16. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available for microfluidics K. LAND, S. HUGO, M MBANJWA, L FOURIE CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidics refers to the manipulation of very small volumes of fluid.... Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  17. Commercialization of microfluidic devices.

    Science.gov (United States)

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2017-06-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided to allow, for example, research groups to have access to microfluidic fabrication. Unlike most fabrication methods, a method is provided to fabricate a microfluidic device in one step. In an embodiment, a resolution of 50 micrometers was achieved by using maskless high-resolution digital light projection (MDLP). Bonding and channel fabrication of complex or simple structures can be rapidly incorporated to fabricate the microfluidic devices.

  19. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  20. Self-contained microfluidic systems: a review.

    Science.gov (United States)

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.

  1. Microfluidic technology for molecular diagnostics.

    Science.gov (United States)

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  2. Applications of Microfluidics in Quantitative Biology.

    Science.gov (United States)

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Microfluidic device, and related methods

    Science.gov (United States)

    Wong, Eric W. (Inventor)

    2010-01-01

    A method of making a microfluidic device is provided. The method features patterning a permeable wall on a substrate, and surrounding the permeable wall with a solid, non-permeable boundary structure to establish a microfluidic channel having a cross-sectional dimension less than 5,000 microns and a cross-sectional area at least partially filled with the permeable wall so that fluid flowing through the microfluidic channel at least partially passes through the permeable wall.

  4. Rapid microfluidic thermal cycler for nucleic acid amplification

    Science.gov (United States)

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  5. Microfluidic Apps for off-the-shelf instruments.

    Science.gov (United States)

    Mark, Daniel; von Stetten, Felix; Zengerle, Roland

    2012-07-21

    Within the last decade a huge increase in research activity in microfluidics could be observed. However, despite several commercial success stories, microfluidic chips are still not sold in high numbers in mass markets so far. Here we promote a new concept that could be an alternative approach to commercialization: designing microfluidic chips for existing off-the-shelf instruments. Such "Microfluidic Apps" could significantly lower market entry barriers and provide many advantages: developers of microfluidic chips make use of existing equipment or platforms and do not have to develop instruments from scratch; end-users can profit from microfluidics without the need to invest in new equipment; instrument manufacturers benefit from an expanded customer base due to the new applications that can be implemented in their instruments. Microfluidic Apps could be considered as low-cost disposables which can easily be distributed globally via web-shops. Therefore they could be a door-opener for high-volume mass markets.

  6. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  7. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  8. Preparation of nanoparticles by continuous-flow microfluidics

    International Nuclear Information System (INIS)

    Jahn, Andreas; Reiner, Joseph E.; Vreeland, Wyatt N.; DeVoe, Don L.; Locascio, Laurie E.; Gaitan, Michael

    2008-01-01

    We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

  9. Micro-optics for microfluidic analytical applications.

    Science.gov (United States)

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  10. Microfluidic high gradient magnetic cell separation

    Science.gov (United States)

    Inglis, David W.; Riehn, Robert; Sturm, James C.; Austin, Robert H.

    2006-04-01

    Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly enhance in principle the fractionating power of magnetic fields. We discuss our efforts and those of others to build practical microfluidic devices for the magnetic separation of blood cells. We also discuss our attempts to integrate magnetic separation with other microfluidic features for developing handheld medical diagnostic tools.

  11. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  12. Practical Packaging Technology for Microfluidic Systems

    International Nuclear Information System (INIS)

    Lee, Hwan Yong; Han, Song I; Han, Ki Ho

    2010-01-01

    This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI): the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI

  13. Research Progress of Microfluidic Chips Preparation and its Optical Element

    Directory of Open Access Journals (Sweden)

    Feng WANG

    2014-03-01

    Full Text Available Microfluidic technology is the emerging technologies in researching fluid channel and related applications in the micro and nano-scale space. Microfluidic chip is a new miniaturized rapid analysis platform by microfluidic technology, it has many characteristics such as liquid flow control, minimal reagent consumption, rapid analysis, which is widely used in physics, chemistry, biology, and engineering science and other fields, it has strong interdisciplinary. This paper mainly discusses research progress of materials used for microfluidic chips and the devices based on microfluidic technology, including microfluidic chip, microfluidic optical devices, microfluidic laser preparation, microfluidic chip applications, focusing on the quasi-molecular laser processing technology and femtosecond laser processing technology in the microfluidic devices preparation, and make development prospects for it.

  14. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were fabricated using a free-surface thermo-compression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microlenses providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microlens in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities. © 2013 IEEE.

  15. Development of an Integrated Polymer Microfluidic Stack

    International Nuclear Information System (INIS)

    Datta, Proyag; Hammacher, Jens; Pease, Mark; Gurung, Sitanshu; Goettert, Jost

    2006-01-01

    Microfluidic is a field of considerable interest. While significant research has been carried out to develop microfluidic components, very little has been done to integrate the components into a complete working system. We present a flexible modular system platform that addresses the requirements of a complete microfluidic system. A microfluidic stack system is demonstrated with the layers of the stack being modular for specific functions. The stack and accompanying infrastructure provides an attractive platform for users to transition their design concepts into a working microfluidic system quickly with very little effort. The concept is demonstrated by using the system to carry out a chemilumiscence experiment. Details regarding the fabrication, assembly and experimental methods are presented

  16. Operation placement for application-specific digital microfluidic biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2013-01-01

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate onchip all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow......, but as discrete droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, split, are performed on this array by routing the corresponding droplets on a series of electrodes. Researchers have proposed several approaches for the synthesis of digital microfluidic biochips. All previous...

  17. Open-source, community-driven microfluidics with Metafluidics.

    Science.gov (United States)

    Kong, David S; Thorsen, Todd A; Babb, Jonathan; Wick, Scott T; Gam, Jeremy J; Weiss, Ron; Carr, Peter A

    2017-06-07

    Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.

  18. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Andersen, Karsten Brandt; Dimaki, Maria

    2015-01-01

    The presented microfluidic interconnection system provides an alternative for the individual interfacing of simple microfluidic devices fabricated in polymers such as polymethylmethacrylate, polycarbonate and cyclic olefin polymer. A modification of the device inlet enables the direct attachment...... pressures above 250 psi and therefore supports applications with high flow rates or highly viscous fluids. The ease of incorporation, configuration, fabrication and use make this interconnection system ideal for the rapid prototyping of simple microfluidic devices or other integrated systems that require...... microfluidic interfaces. It provides a valuable addition to the toolbox of individual and small arrays of connectors suitable for micromachined or template-based injection molded devices since it does not require protruding, threaded or glued modifications on the inlet and avoids bulky and expensive fittings....

  19. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.

    Science.gov (United States)

    Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E

    2013-06-21

    We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.

  20. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.

    Science.gov (United States)

    Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-03-21

    Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.

  1. Materials for Microfluidic Immunoassays: A Review.

    Science.gov (United States)

    Mou, Lei; Jiang, Xingyu

    2017-08-01

    Conventional immunoassays suffer from at least one of these following limitations: long processing time, high costs, poor user-friendliness, technical complexity, poor sensitivity and specificity. Microfluidics, a technology characterized by the engineered manipulation of fluids in channels with characteristic lengthscale of tens of micrometers, has shown considerable promise for improving immunoassays that could overcome these limitations in medical diagnostics and biology research. The combination of microfluidics and immunoassay can detect biomarkers with faster assay time, reduced volumes of reagents, lower power requirements, and higher levels of integration and automation compared to traditional approaches. This review focuses on the materials-related aspects of the recent advances in microfluidics-based immunoassays for point-of-care (POC) diagnostics of biomarkers. We compare the materials for microfluidic chips fabrication in five aspects: fabrication, integration, function, modification and cost, and describe their advantages and drawbacks. In addition, we review materials for modifying antibodies to improve the performance of the reaction of immunoassay. We also review the state of the art in microfluidic immunoassays POC platforms, from the laboratory to routine clinical practice, and also commercial products in the market. Finally, we discuss the current challenges and future developments in microfluidic immunoassays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Rapid mask prototyping for microfluidics.

    Science.gov (United States)

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  4. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications

    Science.gov (United States)

    Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R.

    This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.

  5. Desktop aligner for fabrication of multilayer microfluidic devices.

    Science.gov (United States)

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  6. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were

  7. Microfabrication and Applications of Opto-Microfluidic Sensors

    Science.gov (United States)

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  8. Microfluidic cell culture systems for drug research.

    Science.gov (United States)

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  9. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...... channel chip parts resulted from a separate injection molding process. The microfluidic chip part and the nanostructured chip part were successfully bonded to form a sealed microfluidic system using air plasma assisted thermal bonding....

  10. Microfluidic standardization: Past, present and future

    NARCIS (Netherlands)

    Heeren, H. van; Atkins, T.; Blom, M.; Bullema, J.E.; Tantra, R.; Verhoeven, D.; Verplanck, N.

    2016-01-01

    This paper addresses the issue of standardization in microfluidics. It contains the main points of an industry wide agreement about microfluidic port pitches and port nomenclature. It also addresses device classification and future steps.

  11. Droplet based microfluidics

    International Nuclear Information System (INIS)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  12. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  13. Microfluidic process monitor for industrial solvent extraction system

    Science.gov (United States)

    Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood

    2016-01-12

    The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.

  14. Valve Concepts for Microfluidic Cell Handling

    Directory of Open Access Journals (Sweden)

    M. Grabowski

    2010-01-01

    Full Text Available In this paper we present various pneumatically actuated microfluidic valves to enable user-defined fluid management within a microfluidic chip. To identify a feasible valve design, certain valve concepts are simulated in ANSYS to investigate the pressure dependent opening and closing characteristics of each design. The results are verified in a series of tests. Both the microfluidic layer and the pneumatic layer are realized by means of soft-lithographic techniques. In this way, a network of channels is fabricated in photoresist as a molding master. By casting these masters with PDMS (polydimethylsiloxane we get polymeric replicas containing the channel network. After a plasma-enhanced bonding process, the two layers are irreversibly bonded to each other. The bonding is tight for pressures up to 2 bar. The valves are integrated into a microfluidic cell handling system that is designed to manipulate cells in the presence of a liquid reagent (e.g. PEG – polyethylene glycol, for cell fusion. For this purpose a user-defined fluid management system is developed. The first test series with human cell lines show that the microfluidic chip is suitable for accumulating cells within a reaction chamber, where they can be flushed by a liquid medium.

  15. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  16. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Gong, Xiuqing; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2010-01-01

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  17. Microfluidic Flame Barrier

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  18. Routing-based synthesis of digital microfluidic biochips

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2012-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the necessary functions for biochemical analysis. The “digital” biochips are manipulating liquids as discrete droplets on a two-dimensional array of electrodes. Basic microfluidic...... electrodes are considered occupied during the operation execution, although the droplet uses only one electrode at a time. Moreover, the operations can actually be performed by routing the droplets on any sequence of electrodes on the microfluidic array. Hence, in this paper, we eliminate the concept...... on the surface of the microfluidic array. We have extended the GRASP-based algorithm to consider contamination avoidance during routing-based synthesis. Several real-life examples and synthetic benchmarks are used to evaluate the proposed approaches....

  19. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, H.

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two

  20. Microfluidic technology for PET radiochemistry

    International Nuclear Information System (INIS)

    Gillies, J.M.; Prenant, C.; Chimon, G.N.; Smethurst, G.J.; Dekker, B.A.; Zweit, J.

    2006-01-01

    This paper describes the first application of a microfabricated reaction system to positron emission tomography (PET) radiochemistry. We have applied microfluidic technology to synthesise PET radiopharmaceuticals using 18 F and 124 I as labels for fluorodeoxyglucose (FDG) and Annexin-V, respectively. These reactions involved established methods of nucleophilic substitution on a mannose triflate precursor and direct iodination of the protein using iodogen as an oxidant. This has demonstrated a proof of principle of using microfluidic technology to radiochemical reactions involving low and high molecular weight compounds. Using microfluidic reactions, [ 18 F]FDG was synthesised with a 50% incorporation of the available F-18 radioactivity in a very short time of 4 s. The radiolabelling efficiency of 124 I Annexin-V was 40% after 1 min reaction time. Chromatographic analysis showed that such reaction yields are comparable to conventional methods, but in a much shorter time. The yields can be further improved with more optimisation of the microfluidic device itself and its fluid mixing profiles. This demonstrates the potential for this technology to have an impact on rapid and simpler radiopharmaceutical synthesis using short and medium half-life radionuclides

  1. Preface book Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    This book presents an overview of the major microfluidics techniques and platforms used for medicine and medical applications, providing the reader with an overview of the recent developments in this field. It is divided in three parts: (1) tissue and organs on-chip, (2) microfluidics for medicine

  2. High content screening in microfluidic devices

    Science.gov (United States)

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  3. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying; Gong, Xiuqing; Wen, Weijia

    2009-01-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer

  4. Reconfigurable microfluidic platform in ice

    OpenAIRE

    Varejka, M.

    2008-01-01

    Microfluidic devices are popular tools in the biotechnology industry where they provide smaller reagent requirements, high speed of analysis and the possibility for automation. The aim of the project is to make a flexible biocompatible microfluidic platform adapted to different specific applications, mainly analytical and separations which parameters and configuration can be changed multiple times by changing corresponding computer programme. The current project has been sup...

  5. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  6. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  7. Capture of DNA in microfluidic channel using magnetic beads: increasing capture efficiency with integrated microfluidic mixer

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Dufva, Hans Martin; Hansen, Mikkel Fougt

    2007-01-01

    We have studied the hybridization of target DNA in solution with probe DNA on magnetic beads immobilized on the channel sidewalls in a magnetic bead separator. The hybridization is carried out under a liquid flow and is diffusion limited. Two systems are compared: one with a straight microfluidic...... place on the surface in a microfluidic system....

  8. Construction of programmable interconnected 3D microfluidic networks

    International Nuclear Information System (INIS)

    Hunziker, Patrick R; Wolf, Marc P; Wang, Xueya; Zhang, Bei; Marsch, Stephan; Salieb-Beugelaar, Georgette B

    2015-01-01

    Microfluidic systems represent a key-enabling platform for novel diagnostic tools for use at the point-of-care in clinical contexts as well as for evolving single cell diagnostics. The design of 3D microfluidic systems is an active field of development, but construction of true interconnected 3D microfluidic networks is still a challenge, in particular when the goal is rapid prototyping, accurate design and flexibility. We report a novel approach for the construction of programmable 3D microfluidic systems consisting of modular 3D template casting of interconnected threads to allow user-programmable flow paths and examine its structural characteristics and its modular function. To overcome problems with thread template casting reported in the literature, low-surface-energy polymer threads were used, that allow solvent-free production. Connected circular channels with excellent roundness and low diameter variability were created. Variable channel termination allowed programming a flow path on-the-fly, thus rendering the resulting 3D microfluidic systems highly customizable even after production. Thus, construction of programmable/reprogrammable fully 3D microfluidic systems by template casting of a network of interconnecting threads is feasible, leads to high-quality and highly reproducible, complex 3D geometries. (paper)

  9. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    Science.gov (United States)

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New microfluidic platform for life sciences in South Africa

    CSIR Research Space (South Africa)

    Hugo, S

    2012-10-01

    Full Text Available is also offered as numerous devices can be implemented on one disc. A variety of components from sample preparation through to detection can be implemented simply and effectively into an integrated microfluidic solution for life sciences. The lab... in the field of centrifugal microfluidics. New microfluidic platform for life sciences in South Africa S. HUGO, K. LAND CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidic...

  11. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    Science.gov (United States)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  12. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  13. Routing-based Synthesis of Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the basic functsions for biochemical analysis. The "digital" microfluidic biochips are manipulating liquids not as a continuous flow, but as discrete droplets on a two-dimensional array...... of electrodes. Basic microfluidic operations, such as mixing and dilution, are performed on the array, by routing the corresponding droplets on a series of electrodes. So far, researchers have assumed that these operations are executed on rectangular virtual devices, formed by grouping several adjacent...

  14. Soft tubular microfluidics for 2D and 3D applications

    Science.gov (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  15. "Connecting worlds - a view on microfluidics for a wider application".

    Science.gov (United States)

    Fernandes, Ana C; Gernaey, Krist V; Krühne, Ulrich

    From its birth, microfluidics has been referenced as a revolutionary technology and the solution to long standing technological and sociological issues, such as detection of dilute compounds and personalized healthcare. Microfluidics has for example been envisioned as: (1) being capable of miniaturizing industrial production plants, thereby increasing their automation and operational safety at low cost; (2) being able to identify rare diseases by running bioanalytics directly on the patient's skin; (3) allowing health diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However, the current state of microfluidics, although technologically advanced, has so far failed to reach the originally promised widespread use. In this paper, some of the aspects are identified and discussed that have prevented microfluidics from reaching its full potential, especially in the chemical engineering and biotechnology fields, focusing mainly on the specialization on a single target of most microfluidic devices and offering a perspective on the alternate, multi-use, "plug and play" approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility with different substrates, reactions and operation conditions, and other microfluidic systems is indeed of surmount importance and current academic and industrial approaches to modular microfluidics are presented. Furthermore, two views on the commercialization of plug-and-play microfluidics systems, leading towards improved acceptance and more widespread use, are introduced. A brief review of the main materials and fabrication strategies used in these fields, is also presented. Finally, a step-wise guide towards the development of microfluidic systems is introduced with special focus on the integration of sensors in microfluidics. The proposed guidelines are then applied for the development of two different example platforms, and to three examples taken from literature. With this work, we

  16. Reagent-loaded plastic microfluidic chips for detecting homocysteine

    International Nuclear Information System (INIS)

    Suk, Ji Won; Jang, Jae-Young; Cho, Jun-Hyeong

    2008-01-01

    This report describes the preliminary study on plastic microfluidic chips with pre-loaded reagents for detecting homocysteine (Hcy). All reagents needed in an Hcy immunoassay were included in a microfluidic chip to remove tedious assay steps. A simple and cost-effective bonding method was developed to realize reagent-loaded microfluidic chips. This technique uses an intermediate layer between two plastic substrates by selectively patterning polydimethylsiloxane (PDMS) on the embossed surface of microchannels and fixing the substrates under pressure. Using this bonding method, the competitive immunoassay for SAH, a converted form of Hcy, was performed without any damage to reagents in chips, and the results showed that the fluorescent signal from antibody antigen binding decreased as the SAH concentration increased. Based on the SAH immunoassay, whole immunoassay steps for Hcy detection were carried out in plastic microfluidic chips with all necessary reagents. These experiments demonstrated the feasibility of the Hcy immunoassay in microfluidic devices

  17. Microfluidics as a functional tool for cell mechanics.

    Science.gov (United States)

    Vanapalli, Siva A; Duits, Michel H G; Mugele, Frieder

    2009-01-05

    Living cells are a fascinating demonstration of nature's most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax-thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical

  18. A Microfluidic Cell Concentrator

    Science.gov (United States)

    Warrick, Jay; Casavant, Ben; Frisk, Megan; Beebe, David

    2010-01-01

    Cell concentration via centrifugation is a ubiquitous step in many cell culture procedures. At the macroscale, centrifugation suffers from a number of limitations particularly when dealing with small numbers of cells (e.g., less than 50,000). On the other hand, typical microscale methods for cell concentration can affect cell physiology and bias readouts of cell behavior and function. In this paper, we present a microfluidic concentrator device that utilizes the effects of gravity to allow cells to gently settle out of a suspension into a collection region without the use of specific adhesion ligands. Dimensional analysis was performed to compare different device designs and was verified with flow modeling to optimize operational parameters. We are able to concentrate low-density cell suspensions in a microfluidic chamber, achieving a cell loss of only 1.1 ± 0.6% (SD, n=7) with no observed loss during a subsequent cell staining protocol which incorporates ~36 complete device volume replacements. This method provides a much needed interface between rare cell samples and microfluidic culture assays. PMID:20843010

  19. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  20. Fluorescence detection system for microfluidic droplets

    Science.gov (United States)

    Chen, Binyu; Han, Xiaoming; Su, Zhen; Liu, Quanjun

    2018-05-01

    In microfluidic detection technology, because of the universality of optical methods in laboratory, optical detection is an attractive solution for microfluidic chip laboratory equipment. In addition, the equipment with high stability and low cost can be realized by integrating appropriate optical detection technology on the chip. This paper reports a detection system for microfluidic droplets. Photomultiplier tubes (PMT) is used as a detection device to improve the sensitivity of detection. This system improves the signal to noise ratio by software filtering and spatial filter. The fluorescence intensity is proportional to the concentration of the fluorescence and intensity of the laser. The fluorescence micro droplets of different concentrations can be distinguished by this system.

  1. Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips

    International Nuclear Information System (INIS)

    Walczak, Rafał; Adamski, Krzysztof

    2015-01-01

    This article reports, for the first time, the results of detailed research on the application of inkjet 3D printing for the fabrication of microfluidic structures. CAD designed test structures were printed with four different printers. Dimensional fidelity, shape conformity, and surface roughness were studied for each printout. It was found that the minimum dimension (width or depth) for a properly printed microfluidic channel was approximately 200 μm. Although the nominal resolution of the printers was one order of magnitude better, smaller structures were significantly deformed or not printed at all. It was also found that a crucial step in one-step fabrication of embedded microchannels is the removal of the support material. We also discuss the source of print error and present a way to evaluate other printers. The printouts obtained from the four different printers were compared, and the optimal printing technique and printer were used to fabricate a microfluidic structure for the spectrophotometric characterisation of beverages. UV/VIS absorbance characteristics were collected using this microfluidic structure, demonstrating that the fabricated spectrophotometric chip operated properly. Thus, a proof-of-concept for using inkjet 3D printing for the fabrication of microfluidic structures was obtained. (paper)

  2. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  3. Microfluidics without channels: highly-flexible synthesis on a digital-microfluidic chip for production of diverse PET tracers

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, Robert Michael [Univ. of California, Los Angeles, CA (United States)

    2010-09-01

    Positron emission tomography (PET) imaging is used for fundamental studies of living biological organisms and microbial ecosystems in applications ranging from biofuel production to environmental remediation to the study, diagnosis, and treatment monitoring of human disease. Routine access to PET imaging, to monitor biochemical reactions in living organisms in real time, could accelerate a broad range of research programs of interest to DOE. Using PET requires access to short-lived radioactive-labeled compounds that specifically probe the desired living processes. The overall aims of this project were to develop a miniature liquid-handling technology platform (called “microfluidics”) that increases the availability of diverse PET probes by reducing the cost and complexity of their production. Based on preliminary experiments showing that microfluidic chips can synthesis such compounds, we aimed to advance this technology to improve its robustness, increase its flexibility for a broad range of probes, and increase its user-friendliness. Through the research activities of this project, numerous advances were made; Tools were developed to enable the visualization of radioactive materials within microfluidic chips; Fundamental advances were made in the microfluidic chip architecture and fabrication process to increase its robustness and reliability; The microfluidic chip technology was shown to produce useful quantities of an example PET probes, and methods to further increase the output were successfully pursued; A “universal” chip was developed that could produce multiple types of PET probes, enabling the possibility of “on demand” synthesis of different probes; and Operation of the chip was automated to ensure minimal radiation exposure to the operator Based on the demonstrations of promising technical feasibility and performance, the microfluidic chip technology is currently being commercialized. It is anticipated that costs of microfluidic chips can be

  4. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  5. Theoretical microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow...

  6. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic operations

    CSIR Research Space (South Africa)

    Hugo, S

    2013-10-01

    Full Text Available can be achieved. This work provides a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of microfluidic applications and potential products rapidly and at a low cost. ... stream_source_info Hugo_2015_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 1281 Content-Encoding UTF-8 stream_name Hugo_2015_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 Rapid Product Development...

  7. Design of pressure-driven microfluidic networks using electric circuit analogy.

    Science.gov (United States)

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  8. Synthesis of Application-Specific Fault-Tolerant Digital Microfluidic Biochip Architectures

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2016-01-01

    Digital microfluidic biochips (DMBs) are microfluidic devices that manipulate droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, and split, are performed on the electrode array to perform a biochemical application. All previous work assumes that the DMB...

  9. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  10. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.

    Science.gov (United States)

    Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter

    2016-01-21

    We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

  11. Diffusion phenomena of cells and biomolecules in microfluidic devices.

    Science.gov (United States)

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-09-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.

  12. Patterning of PMMA microfluidic parts using screen printing process

    Science.gov (United States)

    Ahari Kaleibar, Aminreza; Rahbar, Mona; Haiducu, Marius; Parameswaran, Ash M.

    2010-02-01

    An inexpensive and rapid micro-fabrication process for producing PMMA microfluidic components has been presented. Our proposed technique takes advantages of commercially available economical technologies such as the silk screen printing and UV patterning of PMMA substrates to produce the microfluidic components. As a demonstration of our proposed technique, we had utilized a homemade deep-UV source, λ=254nm, a silk screen mask made using a local screen-printing shop and Isopropyl alcohol - water mixture (IPA-water) as developer to quickly define the microfluidic patterns. The prototyped devices were successfully bonded, sealed, and the device functionality tested and demonstrated. The screen printing based technique can produce microfluidic channels as small as 50 micrometers quite easily, making this technique the most cost-effective, fairly high precision and at the same time an ultra economical plastic microfluidic components fabrication process reported to date.

  13. Development & Characterization of Multifunctional Microfluidic Materials

    Science.gov (United States)

    Ucar, Ahmet Burak

    The field of microfluidics has been mostly investigated for miniaturized lab on a chip devices for analytical and clinical applications. However, there is an emerging class of "smart" microfluidic materials, combining microfluidics with soft polymers to yield new functionalities. The best inspiration for such materials found in nature is skin, whose functions are maintained and controlled by a vascular "microfluidic" network. We report here the development and characterization of a few new classes of microfluidic materials. First, we introduced microfluidic materials that can change their stiffness on demand. These materials were based on an engineered microchannel network embedded into a matrix of polydimethylsiloxane (PDMS), whose channels were filled with a liquid photoresist (SU- 8). The elastomer filled with the photoresist was initially soft. The materials were shaped into a desired geometry and then exposed to UV-light. Once photocured, the material preserved the defined shape and it could be bent, twisted or stretched with a very high recoverable strain. As soon as the external force was removed the material returned back to its predefined shape. Thus, the polymerized SU-8 acted as the 'endoskeleton' of the microfluidic network, which drastically increased the composite's elastic and bending moduli. Second, we demonstrated a class of simple and versatile soft microfluidic materials that can be turned optically transparent or colored on demand. These materials were made in the form of flexible sheets containing a microchannel network embedded in PDMS, similar to the photocurable materials. However, this time the channels were filled with a glycerolwater mixture, whose refractive index was matched with that of the PDMS matrix. By pumping such dye solutions into the channel network and consecutively replacing the medium, we showed that we can control the material's color and light transmittance in the visible and near-infrared regions, which can be used for

  14. Applications of Beta Particle Detection for Synthesis and Usage of Radiotracers Developed for Positron Emission Tomography

    Science.gov (United States)

    Dooraghi, Alex Abreu

    Positron Emission Tomography (PET) is a noninvasive molecular imaging tool that requires the use of a radioactive compound or radiotracer which targets a molecular pathway of interest. We have developed and employed three beta particle radiation detection systems to advance PET. Specifically, the goals of these systems are to: 1. Automate dispensing of solutions containing a positron emitting isotope. 2. Monitor radioactivity on-chip during synthesis of a positron emitting radiotracer. 3. Assay cellular uptake on-chip of a positron emitting radiotracer. Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing an optimum environment for radiation workers, but also to ensure a quantitatively accurate workflow. For the first project, we describe the development and performance of a system for automated radioactivity distribution of beta particle emitting radioisotopes such as fluorine-18 (F-18). Key to the system is a radiation detector in-line with a peristaltic pump. The system demonstrates volume accuracy within 5 % for volumes of 20 muL or greater. When considering volumes of 20 muL or greater, delivered radioactivity is in agreement with the requested radioactivity as measured with the dose calibrator. The integration of the detector and pump leads to a flexible system that can accurately dispense solutions containing F-18 in radioactivity concentrations directly produced from a cyclotron (~ 0.1-1 mCi/muL), to low activity concentrations intended for preclinical mouse scans (~ 1-10 muCi/muL), and anywhere in between. Electrowetting on dielectric (EWOD) is an attractive microfluidic platform for batch synthesis of PET radiotracers. Visualization of radioisotopes on-chip is critical for synthesis optimization and technological development. For the second project, we describe the development and performance of a Cerenkov/real-time imaging system for PET radiotracer synthesis on EWOD. We also investigate

  15. A "place n play" modular pump for portable microfluidic applications.

    Science.gov (United States)

    Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong

    2012-03-01

    This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.

  16. Isolation of cancer cells by "in situ" microfluidic biofunctionalization protocols

    DEFF Research Database (Denmark)

    De Vitis, Stefania; Matarise, Giuseppina; Pardeo, Francesca

    2014-01-01

    The aim of this work is the development of a microfluidic immunosensor for the immobilization of cancer cells and their separation from healthy cells by using "in situ" microfluidic biofunctionalization protocols. These protocols allow to link antibodies on microfluidic device surfaces and can be...

  17. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    Science.gov (United States)

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. A Microfluidic Approach for Studying Piezo Channels.

    Science.gov (United States)

    Maneshi, M M; Gottlieb, P A; Hua, S Z

    2017-01-01

    Microfluidics is an interdisciplinary field intersecting many areas in engineering. Utilizing a combination of physics, chemistry, biology, and biotechnology, along with practical applications for designing devices that use low volumes of fluids to achieve high-throughput screening, is a major goal in microfluidics. Microfluidic approaches allow the study of cells growth and differentiation using a variety of conditions including control of fluid flow that generates shear stress. Recently, Piezo1 channels were shown to respond to fluid shear stress and are crucial for vascular development. This channel is ideal for studying fluid shear stress applied to cells using microfluidic devices. We have developed an approach that allows us to analyze the role of Piezo channels on any given cell and serves as a high-throughput screen for drug discovery. We show that this approach can provide detailed information about the inhibitors of Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    Science.gov (United States)

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  20. Review of Recent Metamaterial Microfluidic Sensors.

    Science.gov (United States)

    Salim, Ahmed; Lim, Sungjoon

    2018-01-15

    Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  1. Microfluidic Biochip Design

    Science.gov (United States)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  2. Advanced combinational microfluidic multiplexer for fuel cell reactors

    International Nuclear Information System (INIS)

    Lee, D W; Kim, Y; Cho, Y-H; Doh, I

    2013-01-01

    An advanced combinational microfluidic multiplexer capable to address multiple fluidic channels for fuel cell reactors is proposed. Using only 4 control lines and two different levels of control pressures, the proposed multiplexer addresses up to 19 fluidic channels, at least two times larger than the previous microfluidic multiplexers. The present multiplexer providing high control efficiency and simple structure for channel addressing would be used in the application areas of the integrated microfluidic systems such as fuel cell reactors and dynamic pressure generators

  3. Digital microfluidic processing of mammalian embryos for vitrification.

    Directory of Open Access Journals (Sweden)

    Derek G Pyne

    Full Text Available Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  4. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  5. A truly Lego®-like modular microfluidics platform

    Science.gov (United States)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-03-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.

  6. A truly Lego®-like modular microfluidics platform

    International Nuclear Information System (INIS)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-01-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos ® and why Legos ® inspire many existing modular microfluidics platforms. In this paper, a truly Lego ® -like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego ® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego ® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail. (paper)

  7. Materials for microfluidic chip fabrication.

    Science.gov (United States)

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  8. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  9. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...

  10. Downstream bioprocess characterisation within microfluidic devices

    DEFF Research Database (Denmark)

    Marques, Marco; Krühne, Ulrich; Szita, Nicolas

    2016-01-01

    developed which has, to some extent, hindered their implementation as early process development tools. Microfluidic devices are particularly attractive for using fewer resources, for having the possibility of parallelisation and for requiring fewer mechanical manipulations. The expectation...... is that these devices will facilitate the rapid definition of critical process parameters, and thus ultimately reduce production costs. We have developed several microfluidic mDUOs and combined them with advanced and novel analytical approaches, resulting in devices that can potentially be employed for both analytical...... for the liquid–liquid extraction of pharmaceuticals, for the purification and concentration of drug delivery vehicles, and for the flocculation of yeast cells in microfluidic devices. For the latter, we will present for the first time the capability to study flocculation-growth independent from the floc breakage...

  11. A centrifugal microfluidic platform for point-of-care diagnostic applications

    Directory of Open Access Journals (Sweden)

    Suzanne Hugo

    2014-02-01

    Full Text Available Microfluidic systems enable precise control over tiny volumes of fluid in a compact and low-cost form, thus providing the ideal platform on which to develop point-of-care diagnostic solutions. Centrifugal microfluidic systems, also referred to as lab-on-a-disc or lab-on-a-CD systems, provide a particularly attractive solution for the implementation of microfluidic point-of-care diagnostic solutions as a result of their simple and compact instrumentation, as well as their functional diversity. Here we detail the implementation of a centrifugal microfluidic platform the first of its kind in South Africa as a foundation for the development of point-of-care diagnostic applications for which both the need and impact is great. The centrifugal microfluidic platform consists of three main components: a microfluidic disc device similar in size and shape to a CD, a system for controlling fluid flow on the device, and a system for recording the results obtained. These components have been successfully implemented and tested. Preliminary test results show that microfluidic functions such as pumping and valving of fluids can be successfully achieved, as well as the generation of monodisperse microfluidic droplets, providing a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of applications, including point-of-care diagnostics. The lab-on-a-disc platform has the potential to provide new diagnostic solutions at the point-of-need in health- and industry-related areas. This paves the way for providing resource limited areas with services such as improved, decentralised health-care access or water-quality monitoring, and reduced diagnosis times at a low cost.

  12. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  13. A microfluidic renal proximal tubule with active reabsorptive function.

    Directory of Open Access Journals (Sweden)

    Else M Vedula

    Full Text Available In the kidney, the renal proximal tubule (PT reabsorbs solutes into the peritubular capillaries through active transport. Here, we replicate this reabsorptive function in vitro by engineering a microfluidic PT. The microfluidic PT architecture comprises a porous membrane with user-defined submicron surface topography separating two microchannels representing a PT filtrate lumen and a peritubular capillary lumen. Human PT epithelial cells and microvascular endothelial cells in respective microchannels created a PT-like reabsorptive barrier. Co-culturing epithelial and endothelial cells in the microfluidic architecture enhanced viability, metabolic activity, and compactness of the epithelial layer. The resulting tissue expressed tight junctions, kidney-specific morphology, and polarized expression of kidney markers. The microfluidic PT actively performed sodium-coupled glucose transport, which could be modulated by administration of a sodium-transport inhibiting drug. The microfluidic PT reproduces human physiology at the cellular and tissue levels, and measurable tissue function which can quantify kidney pharmaceutical efficacy and toxicity.

  14. Redundancy Optimization for Error Recovery in Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2015-01-01

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets. Research......Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets....... Researchers have proposed approaches for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. During the execution...... propose an online recovery strategy, which decides during the execution of the biochemical application the introduction of the redundancy required for fault-tolerance. We consider both time redundancy, i.e., re-executing erroneous operations, and space redundancy, i.e., creating redundant droplets...

  15. Microfluidic Devices for Forensic DNA Analysis: A Review.

    Science.gov (United States)

    Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han

    2016-08-05

    Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10-20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.

  16. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms.

    Science.gov (United States)

    Sanjay, Sharma T; Fu, Guanglei; Dou, Maowei; Xu, Feng; Liu, Rutao; Qi, Hao; Li, XiuJun

    2015-11-07

    Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for biomarker detection of diseases. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidic devices for disease biomarker detection and future prospects.

  17. CMOS Enabled Microfluidic Systems for Healthcare Based Applications

    KAUST Repository

    Khan, Sherjeel M.; Gumus, Abdurrahman; Nassar, Joanna M.; Hussain, Muhammad Mustafa

    2018-01-01

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.

  18. CMOS Enabled Microfluidic Systems for Healthcare Based Applications

    KAUST Repository

    Khan, Sherjeel M.

    2018-02-27

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.

  19. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for sim...... in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions. (C) 2014 International Union of Crystallography......Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented...

  20. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    Science.gov (United States)

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  1. The Microfluidic Jukebox

    Science.gov (United States)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  2. Review of Recent Metamaterial Microfluidic Sensors

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2018-01-01

    Full Text Available Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter–nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  3. Temperature Sensing in Modular Microfluidic Architectures

    Directory of Open Access Journals (Sweden)

    Krisna C. Bhargava

    2016-01-01

    Full Text Available A discrete microfluidic element with integrated thermal sensor was fabricated and demonstrated as an effective probe for process monitoring and prototyping. Elements were constructed using stereolithography and market-available glass-bodied thermistors within the modular, standardized framework of previous discrete microfluidic elements demonstrated in the literature. Flow rate-dependent response due to sensor self-heating and microchannel heating and cooling was characterized and shown to be linear in typical laboratory conditions. An acid-base neutralization reaction was performed in a continuous flow setting to demonstrate applicability in process management: the ratio of solution flow rates was varied to locate the equivalence point in a titration, closely matching expected results. This element potentially enables complex, three-dimensional microfluidic architectures with real-time temperature feedback and flow rate sensing, without application specificity or restriction to planar channel routing formats.

  4. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  5. Optimized fabrication protocols of microfluidic devices for X-ray analysis

    KAUST Repository

    Catalano, Rossella

    2014-07-01

    Microfluidics combined with X-ray scattering techniques allows probing conformational changes or assembly processes of biological materials. Our aim was to develop a highly X-ray transparent microfluidic cell for detecting small variations of X-ray scattering involved in such processes. We describe the fabrication of a polyimide microfluidic device based on a simple, reliable and inexpensive lamination process. The implemented microstructured features result in windows with optimized X-ray transmission. The microfluidic device was characterized by X-ray microbeam scattering at the ID13 beamline of the European Synchrotron Radiation Facility. © 2014 Elsevier B.V. All rights reserved.

  6. Microfluidic Devices for Blood Fractionation

    Directory of Open Access Journals (Sweden)

    Chwee Teck Lim

    2011-07-01

    Full Text Available Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity, purity (selectivity, and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC devices and provide future perspectives.

  7. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    Science.gov (United States)

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas; Xiao, Kang; Wu, Jinbo; Yi, Xin; Gong, Xiuqing; Foulds, Ian G.; Wen, Weijia

    2012-01-01

    Microfluidic chips have a variety of applications in the biological sciences and medicine. In contrast with traditional experimental approaches, microfluidics entails lower sample and reagent consumption, allows faster reactions and enables

  9. Optial sensing systems for microfluidic devices: a review

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Huskens, Jurriaan; Verboom, Willem

    2007-01-01

    This review deals with the application of optical sensing systems for microfluidic devices. In the “off-chip approach” macro-scale optical infrastructure is coupled, while the “on-chip approach” comprises the integration of micro-optical functions into microfluidic devices. The current progress of

  10. Electric field-decoupled electroosmotic pump for microfluidic devices.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  11. Microfluidic production of polymeric functional microparticles

    Science.gov (United States)

    Jiang, Kunqiang

    This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye

  12. A PEG-DA microfluidic device for chemotaxis studies

    International Nuclear Information System (INIS)

    Traore, Mahama Aziz; Behkam, Bahareh

    2013-01-01

    The study of cells in a well-defined and chemically programmable microenvironment is essential for a complete and fundamental understanding of the cell behaviors with respect to specific chemical compounds. Flow-free microfluidic devices that generate quasi-steady chemical gradients (spatially varying but temporally constant) have been demonstrated as effective chemotaxis assay platforms due to dissociating the effect of chemical cues from mechanical shear forces caused by fluid flow. In this work, we demonstrate the fabrication and characterization of a flow-free microfluidic platform made of polyethylene glycol diacrylate (PEG-DA) hydrogel. We have demonstrated that the mass transport properties of these devices can be customized by fabricating them from PEG-DA gels of four distinct molecular weights. In contrast to microfluidic devices developed using soft lithography; this class of devices can be realized using a more cost-effective approach of direct photopolymerization with fewer microfabrication steps. This microfluidic platform was tested by conducting a quantitative study of the chemotactic behavior of Escherichia coli (E. coli) RP437, a model microorganism, in presence of the chemo-effector, casamino-acids. Using the microfabrication and characterization methodology presented in this work, microfluidic platforms with well-defined and customizable diffusive properties can be developed to accommodate the study of a wide range of cell types. (paper)

  13. Molecular Imaging Probe Development using Microfluidics

    Science.gov (United States)

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  14. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  15. Modular microfluidic system for biological sample preparation

    Science.gov (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  16. Route to one-step microstructure mold fabrication for PDMS microfluidic chip

    Science.gov (United States)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Su, Yue; Fang, Weihao; Pei, Weihua; Chen, Hongda

    2018-04-01

    The microstructure mold fabrication for PDMS microfluidic chip remains complex and time-consuming process requiring special equipment and protocols: photolithography and etching. Thus, a rapid and cost-effective method is highly needed. Comparing with the traditional microfluidic chip fabricating process based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 1-2 h. Different size of microstructure from 100 to 1000 μm was fabricated, and used to culture four kinds of breast cancer cell lines. Cell viability and morphology was assessed when they were cultured in the micro straight channels, micro square holes and the bonding PDMS-glass microfluidic chip. The experimental results indicate that the microfluidic chip is good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and in the field of biological microfabrications and microfluidic chips.

  17. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  18. Collective oscillations and coupled modes in confined microfluidic droplet arrays

    Science.gov (United States)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.

  19. CMOS Enabled Microfluidic Systems for Healthcare Based Applications.

    Science.gov (United States)

    Khan, Sherjeel M; Gumus, Abdurrahman; Nassar, Joanna M; Hussain, Muhammad M

    2018-04-01

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Compilation and Synthesis for Fault-Tolerant Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, by integrating all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips (DMBs) manipulate discrete amounts of fluids of nanoliter volume, named droplets, on an array...... of the operations in the application. During the execution of a bioassay, operations could experience transient faults, thus impacting negatively the correctness of the application. We have proposed both offline (design time) and online (runtime) recovery strategies. The online recovery strategy decides...

  1. Plastic-Based Structurally Programmable Microfluidic Biochips for Clinical Diagnostics

    National Research Council Canada - National Science Library

    Ahn, Chong H; Nevin, Joseph H; Beaucage, Gregory

    2005-01-01

    ... and reliable measurements of metabolic parameters from a human body with minimum invasion. The fully integrated disposable biochip is capable of precise volume control with smart microfluidic manipulation without costly on-chip microfluidic components...

  2. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  3. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  4. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  5. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  6. Optical two-beam traps in microfluidic systems

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine

    2016-01-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast...... written waveguides and in an injection molded polymer chip with grooves for optical fibers. (C) 2016 The Japan Society of Applied Physics....

  7. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    Science.gov (United States)

    Lin, Adam Y. (Inventor); Wong, Tak S. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  8. Leveraging liquid dielectrophoresis for microfluidic applications

    International Nuclear Information System (INIS)

    Chugh, Dipankar; Kaler, Karan V I S

    2008-01-01

    Miniaturized fluidic systems have been developed in recent years and offer new and novel means of leveraging the domain of microfluidics for the development of micro-total analysis systems (μTAS). Initially, such systems employed closed microchannels in order to facilitate chip-based biochemical assays, requiring very small quantities of sample and/or reagents and furthermore providing rapid and low-cost analysis on a compact footprint. More recently, advancements in the domain of surface microfluidics have suggested that similar low volume sample handling and manipulation capabilities for bioassays can be attained by leveraging the phenomena of liquid dielectrophoresis and droplet dielectrophoresis (DEP), without the need for separate pumps or valves. Some of the key aspects of this surface microfluidic technology and its capabilities are discussed and highlighted in this paper. We, furthermore, examine the integration and utility of liquid DEP and droplet DEP in providing rapid and automated sample handling and manipulation capabilities on a compact chip-based platform

  9. Designing Polymeric Microfluidic Platforms for Biomedical Applications

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi

    Micro- and Nanotechnology have the potential to offer a smart solution for diagnostics and academia research with rapid, low cost, robust analysis systems to facilitate biological analyses. New, high throughput microfluidic platforms have the potential to surpass in performance the conventional...... analyses systems in use today. The overall goal of this PhD project is to address two different areas using microfluidics : i) Chromosome analysis by metaphase FISH such a platform, if successful, can immediately substitute the routine, labor-intensive, glass slide-based FISH analyses in Clinical...... Cytogenetics laboratories. During the course of this project, initially the suitability of the polymeric chip substrate was tested and a microfluidic device was developed for performing interphase FISH analysis. With this device, the key factors involved in chromosome spreading crucial to FISH analysis were...

  10. Towards rapid prototyped convective microfluidic DNA amplification platform

    Science.gov (United States)

    Ajit, Smrithi; Praveen, Hemanth Mithun; Puneeth, S. B.; Dave, Abhishek; Sesham, Bharat; Mohan, K. N.; Goel, Sanket

    2017-02-01

    Today, Polymerase Chain Reaction (PCR) based DNA amplification plays an indispensable role in the field of biomedical research. Its inherent ability to exponentially amplify sample DNA has proven useful for the identification of virulent pathogens like those causing Multiple Drug-Resistant Tuberculosis (MDR-TB). The intervention of Microfluidics technology has revolutionized the concept of PCR from being a laborious and time consuming process into one that is faster, easily portable and capable of being multifunctional. The Microfluidics based PCR outweighs its traditional counterpart in terms of flexibility of varying reaction rate, operation simplicity, need of a fraction of volume and capability of being integrated with other functional elements. The scope of the present work involves the development of a real-time continuous flow microfluidic device, fabricated by 3D printing-governed rapid prototyping method, eventually leading to an automated and robust platform to process multiple DNA samples for detection of MDRTB-associated mutations. The thermal gradient characteristic to the PCR process is produced using peltier units appropriate to the microfluidic environment fully monitored and controlled by a low cost controller driven by a Data Acquisition System. The process efficiency achieved in the microfluidic environment in terms of output per cycle is expected to be on par with the traditional PCR and capable of earning the additional advantages of being faster and minimizing the handling.

  11. Microfluidic method for measuring viscosity using images from smartphone

    Science.gov (United States)

    Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop

    2018-05-01

    The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.

  12. Engineering and evaluating drug delivery particles in microfluidic devices.

    Science.gov (United States)

    Björnmalm, Mattias; Yan, Yan; Caruso, Frank

    2014-09-28

    The development of new and improved particle-based drug delivery is underpinned by an enhanced ability to engineer particles with high fidelity and integrity, as well as increased knowledge of their biological performance. Microfluidics can facilitate these processes through the engineering of spatiotemporally highly controlled environments using designed microstructures in combination with physical phenomena present at the microscale. In this review, we discuss microfluidics in the context of addressing key challenges in particle-based drug delivery. We provide an overview of how microfluidic devices can: (i) be employed to engineer particles, by providing highly controlled interfaces, and (ii) be used to establish dynamic in vitro models that mimic in vivo environments for studying the biological behavior of engineered particles. Finally, we discuss how the flexible and modular nature of microfluidic devices provides opportunities to create increasingly realistic models of the in vivo milieu (including multi-cell, multi-tissue and even multi-organ devices), and how ongoing developments toward commercialization of microfluidic tools are opening up new opportunities for the engineering and evaluation of drug delivery particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping

    Directory of Open Access Journals (Sweden)

    B. Deng

    2014-01-01

    Full Text Available Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.

  14. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.

    Directory of Open Access Journals (Sweden)

    Alex J L Morgan

    Full Text Available The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components.

  15. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.

    Science.gov (United States)

    Morgan, Alex J L; Hidalgo San Jose, Lorena; Jamieson, William D; Wymant, Jennifer M; Song, Bing; Stephens, Phil; Barrow, David A; Castell, Oliver K

    2016-01-01

    The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components.

  16. 3D Ceramic Microfluidic Device Manufacturing

    International Nuclear Information System (INIS)

    Natarajan, Govindarajan; Humenik, James N

    2006-01-01

    Today, semiconductor processing serves as the backbone for the bulk of micromachined devices. Precision lithography and etching technology used in the semiconductor industry are also leveraged by alternate techniques like electroforming and molding. The nature of such processing is complex, limited and expensive for any manufacturing foundry. This paper details the technology elements developed to manufacture cost effective and versatile microfluidic devices for applications ranging from medical diagnostics to characterization of bioassays. Two applications using multilayer ceramic technology to manufacture complex 3D microfluidic devices are discussed

  17. Microfluidic device for drug delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  18. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  19. Recent Advances in Magnetic Microfluidic Biosensors

    Directory of Open Access Journals (Sweden)

    Ioanna Giouroudi

    2017-07-01

    Full Text Available The development of portable biosening devices for the detection of biological entities such as biomolecules, pathogens, and cells has become extremely significant over the past years. Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale. The miniaturization process was made possible with the birth of microfluidics, a technology that could confine, manipulate, and mix very small volumes of liquids on devices integrated on standard silicon technology chips. Such devices are then directly translating the presence of these entities into an electronic signal that can be read out with a portable instrumentation. For the aforementioned tasks, the use of magnetic markers (magnetic particles—MPs—functionalized with ligands in combination with the application of magnetic fields is being strongly investigated by research groups worldwide. The greatest merits of using magnetic fields are that they can be applied either externally or from integrated microconductors and they can be well-tuned by adjusting the applied current on the microconductors. Moreover, the magnetic markers can be manipulated inside microfluidic channels by high gradient magnetic fields that can in turn be detected by magnetic sensors. All the above make this technology an ideal candidate for the development of such microfluidic biosensors. In this review, focus is given only to very recent advances in biosensors that use microfluidics in combination with magnetic sensors and magnetic markers/nanoparticles.

  20. Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI

    Science.gov (United States)

    Ledbetter, Micah P [Oakland, CA; Savukov, Igor M [Los Alamos, NM; Budker, Dmitry [El Cerrito, CA; Shah, Vishal K [Plainsboro, NJ; Knappe, Svenja [Boulder, CO; Kitching, John [Boulder, CO; Michalak, David J [Berkeley, CA; Xu, Shoujun [Houston, TX; Pines, Alexander [Berkeley, CA

    2011-08-09

    An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.

  1. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  2. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    Directory of Open Access Journals (Sweden)

    Andreas E. Vasdekis

    2011-08-01

    Full Text Available Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  3. Equilibrium and Nonequilibrium States in Microfluidic Double Emulsions

    DEFF Research Database (Denmark)

    Pannacci, N.; Bruus, Henrik; Bartolo, D.

    2008-01-01

    We describe experimental and theoretical studies dedicated to establishing the physics of formation of double droplets in microfluidic systems. We show that the morphologies (complete engulfing, partial engulfing, and nonengulfing) obtained at late times minimize the interfacial energy of the sys......We describe experimental and theoretical studies dedicated to establishing the physics of formation of double droplets in microfluidic systems. We show that the morphologies (complete engulfing, partial engulfing, and nonengulfing) obtained at late times minimize the interfacial energy...... of the system. We explain that nonequilibrium morphologies generated in the system can have long lifetimes. Remarkably, the physics of formation of the double droplets with microfluidics allows the synthesis of particles with new morphologies....

  4. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.

    Science.gov (United States)

    Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K

    2009-05-07

    Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.

  5. Electrogates for stop-and-go control of liquid flow in microfluidics

    Science.gov (United States)

    Arango, Y.; Temiz, Y.; Gökçe, O.; Delamarche, E.

    2018-04-01

    Diagnostics based on microfluidic devices necessitate specific reagents, flow conditions, and kinetics for optimal performance. Such an optimization is often achieved using assay-specific microfluidic chip designs or systems with external liquid pumps. Here, we present "electrogates" for stop-and-go control of flow of liquids in capillary-driven microfluidic chips by combining liquid pinning and electrowetting. Electrogates are simple to fabricate and efficient: a sample pipetted to a microfluidic chip flows autonomously in 15-μm-deep hydrophilic channels until the liquid meniscus is pinned at the edge of a 1.5-μm-deep trench patterned at the bottom of a rectangular microchannel. The flow can then be resumed by applying a DC voltage between the liquid and the trench via integrated electrodes. Using a trench geometry with a semicircular shape, we show that retention times longer than 30 min are achieved for various aqueous solutions such as biological buffers, artificial urine, and human serum. We studied the activation voltage and activation delay of electrogates using a chip architecture having 6 independent flow paths and experimentally showed that the flow can be resumed in less than 1 s for voltages smaller than 10 V, making this technique compatible with low-power and portable microfluidic systems. Electrogates therefore can make capillary-driven microfluidic chips very versatile by adding flow control in microfluidic channels in a flexible manner.

  6. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Jing Dai

    2016-10-01

    Full Text Available The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing.

  7. Design and Testing of Digital Microfluidic Biochips

    CERN Document Server

    Zhao, Yang

    2013-01-01

    This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  

  8. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    Science.gov (United States)

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  9. Microfluidic devices and methods for integrated flow cytometry

    Science.gov (United States)

    Srivastava, Nimisha [Goleta, CA; Singh, Anup K [Danville, CA

    2011-08-16

    Microfluidic devices and methods for flow cytometry are described. In described examples, various sample handling and preparation steps may be carried out within a same microfluidic device as flow cytometry steps. A combination of imaging and flow cytometry is described. In some examples, spiral microchannels serve as incubation chambers. Examples of automated sample handling and flow cytometry are described.

  10. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  11. Fabrication of polyimide based microfluidic channels for biosensor devices

    Science.gov (United States)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2015-03-01

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics.

  12. The microfluidic probe: operation and use for localized surface processing.

    Science.gov (United States)

    Perrault, Cecile M; Qasaimeh, Mohammad A; Juncker, David

    2009-06-04

    Microfluidic devices allow assays to be performed using minute amounts of sample and have recently been used to control the microenvironment of cells. Microfluidics is commonly associated with closed microchannels which limit their use to samples that can be introduced, and cultured in the case of cells, within a confined volume. On the other hand, micropipetting system have been used to locally perfuse cells and surfaces, notably using push-pull setups where one pipette acts as source and the other one as sink, but the confinement of the flow is difficult in three dimensions. Furthermore, pipettes are fragile and difficult to position and hence are used in static configuration only. The microfluidic probe (MFP) circumvents the constraints imposed by the construction of closed microfluidic channels and instead of enclosing the sample into the microfluidic system, the microfluidic flow can be directly delivered onto the sample, and scanned across the sample, using the MFP. . The injection and aspiration openings are located within a few tens of micrometers of one another so that a microjet injected into the gap is confined by the hydrodynamic forces of the surrounding liquid and entirely aspirated back into the other opening. The microjet can be flushed across the substrate surface and provides a precise tool for localized deposition/delivery of reagents which can be used over large areas by scanning the probe across the surface. In this video we present the microfluidic probe (MFP). We explain in detail how to assemble the MFP, mount it atop an inverted microscope, and align it relative to the substrate surface, and finally show how to use it to process a substrate surface immersed in a buffer.

  13. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.; Prykä ri, T.; Alarousu, E.; Lauri, J.; Myllylä , R.

    2010-01-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  14. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.

    2010-06-25

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  15. Evaluation of microfluidic channels with optical coherence tomography

    Science.gov (United States)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  16. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  17. A disposable and multifunctional capsule for easy operation of microfluidic elastomer systems

    International Nuclear Information System (INIS)

    Thorslund, Sara; Läräng, Thomas; Kreuger, Johan; Nguyen, Hugo; Barkefors, Irmeli

    2011-01-01

    The global lab-on-chip and microfluidic markets for cell-based assays have been predicted to grow considerably, as novel microfluidic systems enable cell biologists to perform in vitro experiments at an unprecedented level of experimental control. Nevertheless, microfluidic assays must, in order to compete with conventional assays, be made available at easily affordable costs, and in addition be made simple to operate for users having no previous experience with microfluidics. We have to this end developed a multifunctional microfluidic capsule that can be mass-produced at low cost in thermoplastic material. The capsule enables straightforward operation of elastomer inserts of optional design, here exemplified with insert designs for molecular gradient formation in microfluidic cell culture systems. The integrated macro–micro interface of the capsule ensures reliable connection of the elastomer fluidic structures to an external perfusion system. A separate compartment in the capsule filled with superabsorbent material is used for internal waste absorption. The capsule assembly process is made easy by integrated snap-fits, and samples within the closed capsule can be analyzed using both inverted and upright microscopes. Taken together, the capsule concept presented here could help accelerate the use of microfluidic-based biological assays in the life science sector. (technical note)

  18. A microfluidic device based on an evaporation-driven micropump

    NARCIS (Netherlands)

    Nie, C.; Frijns, A.J.H.; Mandamparambil, R.; Toonder, J.M.J. den

    2015-01-01

    In this paper we introduce a microfluidic device ultimately to be applied as a wearable sweat sensor. We show proof-of-principle of the microfluidic functions of the device, namely fluid collection and continuous fluid flow pumping. A filter-paper based layer, that eventually will form the interface

  19. Optimized fabrication protocols of microfluidic devices for X-ray analysis

    KAUST Repository

    Catalano, Rossella; Perozziello, Gerardo; Simone, Giuseppina; Candeloro, Patrizio; Gentile, Francesco T.; Coluccio, Maria Laura; Pardeo, Francesca; Burghammer, Manfred C.; Cuda, Giovanni; Riekel, Christian; Di Fabrizio, Enzo M.

    2014-01-01

    Microfluidics combined with X-ray scattering techniques allows probing conformational changes or assembly processes of biological materials. Our aim was to develop a highly X-ray transparent microfluidic cell for detecting small variations of X-ray

  20. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Gentile, Francesco T.; Coluccio, Maria Laura; Tallerico, Marco; De Grazia, Antonio; Nicastri, Annalisa; Perri, Angela Mena; Parrotta, Elvira; Pardeo, Francesca; Catalano, Rossella; Cuda, Giovanni; Di Fabrizio, Enzo M.

    2015-01-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological

  1. A zero-flow microfluidics for long-term cell culture and detection

    Directory of Open Access Journals (Sweden)

    Shengbo Sang

    2015-04-01

    Full Text Available A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells’ normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS will provide a research foundation for microfluidic technology.

  2. Advances in Microfluidic Platforms for Analyzing and Regulating Human Pluripotent Stem Cells

    Science.gov (United States)

    Qian, Tongcheng; Shusta, Eric V.; Palecek, Sean P.

    2015-01-01

    Microfluidic devices employ submillimeter length scale control of flow to achieve high-resolution spatial and temporal control over the microenvironment, providing powerful tools to elucidate mechanisms of human pluripotent stem cell (hPSC) regulation and to elicit desired hPSC fates. In addition, microfluidics allow control of paracrine and juxtracrine signaling, thereby enabling fabrication of microphysiological systems comprised of multiple cell types organized into organs-on-a-chip. Microfluidic cell culture systems can also be integrated with actuators and sensors, permitting construction of high-density arrays of cell-based biosensors for screening applications. This review describes recent advances in using microfluidics to understand mechanisms by which the microenvironment regulates hPSC fates and applications of microfluidics to realize the potential of hPSCs for in vitro modeling and screening applications. PMID:26313850

  3. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas

    2012-02-20

    Microfluidic chips have a variety of applications in the biological sciences and medicine. In contrast with traditional experimental approaches, microfluidics entails lower sample and reagent consumption, allows faster reactions and enables efficient separation. Additionally microfluidics offers other advantages accruing from the fluids’ various distinct behaviors, such as energy dissipation, fluidic resistance, laminar flow, and surface tension. Biological molecules suspended in fluid and transported through microfluidics channels interact with the channel-wall material. This interaction is even stronger in high surface-area-to-volume ratio (SAVR) microfluidic channels. Adsorption and inhibition of biomolecules occur when these materials come in contact with biomolecular reaction components. Polymerase chain reaction (PCR) is a thermal cycling procedure for amplifying target DNA. The PCR compatibility of silicon, silicon dioxide (SiO2) and other surfaces have been studied; however the results are inconclusive. Usually for protein-surface interaction measurements, bulky and expensive equipment is used, such as Atomic Force Microscopy (AFM), Scanning or Transmission Electron Microscopy (SEM, TEM), spectrophotometric protein concentration measurement, Fourier transform infrared spectroscopy (FTIR) or X-Ray photoelectron spectroscopy (XPS). \\tThe PCR reaction components include the DNA template, primers, DNA polymerase (the main component), dNTPs, a buffer, divalent ions (MgCl2), and KCl. \\tWe designed a simple, relatively quick measurement that only requires a PCR cycler; thus it mimics actual conditions in PCR cycling. In our study, we evaluated the inhibitory affect of different materials on PCR, which is one of the most frequently used enzymatic reactions in microfluidics. PCR reaction optimization through choice of surface materials is of the upmost importance, as it enables and improves enzymatic reaction in microfluidics. Our assessment of the PCR

  4. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.

    Science.gov (United States)

    Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard

    2010-02-21

    Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.

  5. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo

    2015-08-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological applications. The device is fabricated by micromilling and solvent assisted bonding, in which a microdialysis membrane (cut-off of 12-14 kDa) is sandwiched in between an upper and a bottom microfluidic chamber. An external frame connects the microfluidic device to external tubes, microvalves and syringe pumps. Bonding strength and interface sealing are pneumatically tested. Microfluidic protocols are also described by using the presented device to filter a sample composed of specific peptides (MW 1553.73 Da, at a concentration of 1.0 ng/μl) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancer, and albumin (MW 66.5 kDa, at a concentration of 35 μg/μl), the most represented protein in human plasma. The filtered samples coming out from the microfluidic device were subsequently deposited on a SERS (surface enhanced Raman scattering) substrate for further analysis by Raman spectroscopy. By using this approach, we were able to sort the small peptides from the bigger and highly concentrated protein albumin and to detect them by using a label-free technique at a resolution down to 1.0 ng/μl.

  6. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    Science.gov (United States)

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  7. Predicting the behavior of microfluidic circuits made from discrete elements

    Science.gov (United States)

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-10-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand.

  8. Predicting the behavior of microfluidic circuits made from discrete elements.

    Science.gov (United States)

    Bhargava, Krisna C; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-10-30

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand.

  9. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  10. Microfluidics' great promise for Biology - Microfluidics as a new engine for the molecular sciences

    KAUST Repository

    Kodzius, Rimantas

    2010-06-04

    History of the Life Sciences Origins of life Discoveries and instrumentation The power of genetic variation Diagnostics based on DNA/ protein variation Genomic scanning providers DNA sequencing companies Microfluidics story Commercial products available P

  11. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  12. Microfluidic Liquid-Liquid Contactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcculloch, Quinn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-25

    This report describes progress made on the microfluidic contactor. A model was developed to predict its failure, a surrogate chemical system was selected to demonstrate mass transfer, and an all-optical system has been invented and implemented to monitor carryover and flowrates.

  13. Printing-based fabrication method using sacrificial paper substrates for flexible and wearable microfluidic devices

    International Nuclear Information System (INIS)

    Chung, Daehan; Gray, Bonnie L

    2017-01-01

    We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5–46 ml min −1 . (paper)

  14. Printing-based fabrication method using sacrificial paper substrates for flexible and wearable microfluidic devices

    Science.gov (United States)

    Chung, Daehan; Gray, Bonnie L.

    2017-11-01

    We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5-46 ml min-1.

  15. A centrifugal microfluidic platform for point-of-care diagnostic applications

    CSIR Research Space (South Africa)

    Hugo, S

    2014-02-01

    Full Text Available Microfluidic systems enable precise control over tiny volumes of fluid in a compact and low-cost form, thus providing the ideal platform on which to develop point-of-care diagnostic solutions. Centrifugal microfluidic systems, also referred...

  16. Hysteresis in multiphase microfluidics at a T-junction.

    Science.gov (United States)

    Zagnoni, Michele; Anderson, Jamie; Cooper, Jonathan M

    2010-06-15

    Multiphase microfluidics offer a wide range of functionalities in the fields of fluid dynamics, biology, particle synthesis, and, more recently, also in logical computation. In this article, we describe the hysteresis of immiscible, multiphase flow obtained in hydrophilic, microfluidic systems at a T-junction. Stable and unstable state behaviors, in the form of segmented and parallel flow patterns of oil and water, were reliably produced, depending upon the history of the flow rates applied to the phases. The transition mechanisms between the two states were analyzed both experimentally and using numerical simulations, describing how the physical and fluid dynamic parameters influenced the hysteretic behavior of the flow. The characteristics of these multiphase systems render them suitable to be used as pressure comparators and also for the implementation of microfluidic logic operations.

  17. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    Science.gov (United States)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  18. Microfluidic isotachophoresis: A review

    Czech Academy of Sciences Publication Activity Database

    Smejkal, P.; Bottenus, D.; Breadmore, M. C.; Guijt, R. M.; Ivory, C. F.; Foret, František; Macka, M.

    2013-01-01

    Roč. 34, č. 11 (2013), s. 1493-1509 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081715 Keywords : chip * isotachophoresis * microfluidics * miniaturization Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  19. Disposable world-to-chip interface for digital microfluidics

    Science.gov (United States)

    Van Dam, R. Michael; Shah, Gaurav; Keng, Pei-Yuin

    2017-05-16

    The present disclosure sets forth incorporating microfluidic chips interfaces for use with digital microfluidic processes. Methods and devices according to the present disclosure utilize compact, integrated platforms that interface with a chip upstream and downstream of the reaction, as well as between intermediate reaction steps if needed. In some embodiments these interfaces are automated, including automation of a multiple reagent process. Various reagent delivery systems and methods are also disclosed.

  20. Coalescence kinetics of oil-in-water emulsions studied with microfluidics

    NARCIS (Netherlands)

    Krebs, T.; Schroen, C.G.P.H.; Boom, R.M.

    2013-01-01

    We report the results of experiments on the coalescence dynamics in flowing oil-in-water emulsions using an integrated microfluidic device. The microfluidic circuit permits direct observation of shear-induced collisions and coalescence events between emulsion droplets. Three mineral oils with a

  1. Thermal effects in microfluidics with thermal conductivity spatially modulated

    Science.gov (United States)

    Vargas Toro, Agustín.

    2014-05-01

    A heat transfer model on a microfluidic is resolved analytically. The model describes a fluid at rest between two parallel plates where each plate is maintained at a differentially specified temperature and the thermal conductivity of the microfluidic is spatially modulated. The heat transfer model in such micro-hydrostatic configuration is analytically resolved using the technique of the Laplace transform applying the Bromwich Integral and the Residue theorem. The temperature outline in the microfluidic is presented as an infinite series of Bessel functions. It is shown that the result for the thermal conductivity spatially modulated has as a particular case the solution when the thermal conductivity is spatially constant. All computations were performed using the computer algebra software Maple. It is claimed that the analytical obtained results are important for the design of nanoscale devices with applications in biotechnology. Furthermore, it is suggested some future research lines such as the study of the heat transfer model in a microfluidic resting between coaxial cylinders with radially modulated thermal conductivity in order to achieve future developments in this area.

  2. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    Directory of Open Access Journals (Sweden)

    André Darveau

    2007-09-01

    Full Text Available The desideratum to develop a fully integrated Lab-on-a-chip device capable ofrapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologiessuch as the microfluidics, microphotonics, immunoproteomics and Micro ElectroMechanical Systems (MEMS. In the present work, a silicon based microfluidic device hasbeen developed for carrying out fluorescence based immunoassay. By hybrid attachment ofthe microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing anintegrated Lab-on-a-chip type device for fluorescence based biosensing has beendemonstrated. Biodetection using the microfluidic device has been carried out usingantigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimentalresults prove that silicon is a compatible material for the present application given thevarious advantages it offers such as cost-effectiveness, ease of bulk microfabrication,superior surface affinity to biomolecules, ease of disposability of the device etc., and is thussuitable for fabricating Lab-on-a-chip type devices.

  3. IFSA: a microfluidic chip-platform for frit-based immunoassay protocols

    Science.gov (United States)

    Hlawatsch, Nadine; Bangert, Michael; Miethe, Peter; Becker, Holger; Gärtner, Claudia

    2013-03-01

    Point-of-care diagnostics (POC) is one of the key application fields for lab-on-a-chip devices. While in recent years much of the work has concentrated on integrating complex molecular diagnostic assays onto a microfluidic device, there is a need to also put comparatively simple immunoassay-type protocols on a microfluidic platform. In this paper, we present the development of a microfluidic cartridge using an immunofiltration approach. In this method, the sandwich immunoassay takes place in a porous frit on which the antibodies have immobilized. The device is designed to be able to handle three samples in parallel and up to four analytical targets per sample. In order to meet the critical cost targets for the diagnostic market, the microfluidic chip has been designed and manufactured using high-volume manufacturing technologies in mind. Validation experiments show comparable sensitivities in comparison with conventional immunofiltration kits.

  4. Recent microfluidic devices for studying gamete and embryo biomechanics.

    Science.gov (United States)

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Investigation of radialization and rerouting of the extensor digiti minimi (EDM) in the abduction deformity of the little finger: a cadaver study.

    Science.gov (United States)

    van Aaken, Jan; Zhu, Jin; Fasel, Jean H D; Beaulieu, Jean-Yves

    2011-06-01

    One of several operations to correct abduction deformity of the little finger, (Wartenberg's sign) in ulnar nerve palsy, is a combined procedure that radializes the extensor digiti minimi (EDM) at the level of the fifth metacarpophalangeal (MCP) joint and reroutes it from the fifth to fourth extensor compartment. This cadaveric study was designed to investigate the impact of both elements on adduction. Anatomy of the little finger extensor apparatus was studied in 16 freshly frozen cadaver hands sectioned at mid forearm. We observed little finger motion after different modifications of the EDM. We tested the effect of a rerouting maneuver by pulling on the EDM, as well as radialization of the EDM alone and in combination with rerouting. The EDM was present in all cases. Little finger extensor digitorum communis (EDC(V)) was missing in two cadavers. In no case was adduction created by rerouting the EDM to the fourth compartment. Radialization of the EDM corrected the abduction deformity beyond the axis of abduction/adduction of the fifth MCP joint in 13 cases and only up to it in three cases. In one of the three with limited correction, a rerouting maneuver allowed for further adduction. The key to correct abduction deformity of the little finger is radialization of the EDM, which can be done through a solitary incision at the level of the MCP joint. Rerouting alone does not correct the abduction deformity, and in combination with radialization it does not predictably enhance the correction.

  6. The negative-differential-resistance (NDR) mechanism of a hydroelastic microfluidic oscillator

    International Nuclear Information System (INIS)

    Xia, H M; Wu, J W; Wang, Z P

    2017-01-01

    A microfluidic oscillator is of interest because it converts a stable laminar flow to oscillatory flow, especially in view of the fact that turbulence is typically absent in miniaturized fluidic devices. One important design approach is to utilize hydroelastic effect-induced autonomous oscillations to modify the flow, so to reduce the reliance on external controllers. However, as complex fluid-structure interactions are involved, the prediction of its mechanism is rather challenging. Here, we present a simple equivalent circuit model and investigate the negative-differential-resistance (NDR) mechanism of a hydroelastic microfluidic oscillator. We show that a variety of complex flow behaviors including the onset of oscillation, formation of different oscillation patterns, collapse of the channel, etc can be well explained by this model. It provides a generic approach for construction of microfluidic NDR oscillators, following which a new design is also proposed. Relevant findings give more insights into the hydroelastic instability problems in microfluidics, and enrich the study of microfluidic flow control devices based on the electric circuit theory. (paper)

  7. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.

    Science.gov (United States)

    Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung

    2018-04-11

    Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

  8. Design Considerations for Integration of Terahertz Time-Domain Spectroscopy in Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Rasha Al-Hujazy

    2018-03-01

    Full Text Available Microfluidic platforms have received much attention in recent years. In particular, there is interest in combining spectroscopy with microfluidic platforms. This work investigates the integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS systems. A semiclassical computational model is used to simulate the emission of THz radiation from a GaAs photoconductive THz emitter. This model incorporates white noise with increasing noise amplitude (corresponding to decreasing dynamic range values. White noise is selected over other noise due to its contributions in THz-TDS systems. The results from this semiclassical computational model, in combination with defined sample thicknesses, can provide the maximum measurable absorption coefficient for a microfluidic-based THz-TDS system. The maximum measurable frequencies for such systems can be extracted through the relationship between the maximum measurable absorption coefficient and the absorption coefficient for representative biofluids. The sample thickness of the microfluidic platform and the dynamic range of the THz-TDS system play a role in defining the maximum measurable frequency for microfluidic-based THz-TDS systems. The results of this work serve as a design tool for the development of such systems.

  9. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.

    Science.gov (United States)

    Kim, Kyukwang; Kim, Seunggyu; Jeon, Jessie S

    2018-02-03

    Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT) to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  10. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems

    Directory of Open Access Journals (Sweden)

    Kyukwang Kim

    2018-02-01

    Full Text Available Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  11. Microfluidic device for acoustic cell lysis

    Science.gov (United States)

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  12. Micro-Fluidic Device for Drug Delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  13. Field effect control of electro-osmotic flow in microfluidic networks

    NARCIS (Netherlands)

    van der Wouden, E.J.

    2006-01-01

    This thesis describes the development of a Field Effect Flow Control (FEFC) system for the control of Electro Osmotic Flow (EOF) in microfluidic networks. For this several aspects of FEFC have been reviewed and a process to fabricate microfluidic channels with integrated electrodes has been

  14. Application-specific fault-tolerant architecture synthesis for digital microfluidic biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2013-01-01

    , but as discrete droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, split, are performed on this array by routing the corresponding droplets on a series of electrodes. Researchers have proposed several approaches for the synthesis of digital microfluidic biochips. All previous...

  15. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observ...

  16. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  17. Automated quantitative cytological analysis using portable microfluidic microscopy.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selective distribution of enzymes in a microfluidic reactor

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Pereira Rosinha Grundtvig, Ines; Krühne, Ulrich

    Off stoichiometric thiol-ene mixtures are well suited for preparation of microfluidic devices with highly functional surfaces. Here a two stage process employing first thiol-ene chemistry (TEC) to prepare two opposite parts of a microfluidic system with a 30x30 mm reactor and subsequently a thiol......-epoxy bonding was used to prepare a fully sealed microfluidic system. The reactor was surface functionalized in-situ with allyl glycidyl ether in different patterns (half-reactor, full-reactor, checkerboard structures) on the surface to provide a controlled distribution of epoxides. The method additionally...... enables the selective immobilization on either top-side or bottom-side or both sides of the reactor. Thereafter horseradish peroxidase was immobilized on the surface and activity tests illustrated how this distribution of the enzyme on the surface could be used to optimize the activity of the enzyme...

  19. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  20. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography

    Science.gov (United States)

    Wu, Yuanzi; Jiang, Ye; Zheng, Xiaoshan; Jia, Shasha; Zhu, Zhi; Ren, Bin; Ma, Hongwei

    2018-04-01

    We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.

  1. Sex differences in the branching position of the nerve to the abductor digiti minimi muscle: an anatomical study of cadavers.

    Science.gov (United States)

    Mizuno, Daisuke; Naito, Munekazu; Hayashi, Shogo; Ohmichi, Yusuke; Ohmichi, Mika; Nakano, Takashi

    2015-01-01

    The nerve to the abductor digiti minimi muscle (ADMM nerve) is the first branch of the lateral plantar nerve or originates directly from the posterior tibial nerve. Damage to the ADMM nerve is a cause of heel pain and eventually results in ADMM atrophy. It is known that ADMM atrophy occurs more often in females than in males, and the reason remains unclear. This study aimed to explore sex differences in the branching pattern, position, and angle of the ADMM nerve. Forty-two cadavers (20 males, 22 females) were dissected at Aichi Medical University between 2011 and 2015. Cases of foot deformity or atrophy were excluded and 67 ft (30 male, 37 female) were examined to assess the branching pattern, position, and angle of the ADMM nerve. The branching positions of the ADMM nerve were superior to the malleolar-calcaneal axis (MCA) in 37 ft (55 %), on the MCA in 10 ft (15 %), and inferior to the MCA in 20 ft (30 %). There was no case among male feet in which the ADMM nerve branched inferior to the MCA, whereas this pattern was observed in 19 of 37 female feet (51 %). The branching position of the ADMM nerve was significantly closer to the MCA in female feet than in male feet. There were no significant sex differences in the branching pattern and angle of the ADMM nerve. The ADMM nerve sometimes branches off inferior to the MCA in females, but not in males. This difference may be the reason for the more frequent occurrence of ADMM atrophy in females than in males.

  2. Integrated Microfluidic Gas Sensors for Water Monitoring

    Science.gov (United States)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  3. Diffusion dynamics in micro-fluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  4. Droplet-based microfluidic method for synthesis of microparticles

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2012-10-01

    Full Text Available Droplet-based microfluidics has, in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology such as the synthesis of hydrogel microparticles. Hydrogels have been used in many..., in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology, such as synthesis of hydrogel microparticles. CONCLUSION AND OUTLOOK The droplet-based microfluidic method offers...

  5. Accurate, consistent, and fast droplet splitting and dispensing in electrowetting on dielectric digital microfluidics

    Science.gov (United States)

    Nikapitiya, N. Y. Jagath B.; Nahar, Mun Mun; Moon, Hyejin

    2017-12-01

    This letter reports two novel electrode design considerations to satisfy two very important aspects of EWOD operation—(1) Highly consistent volume of generated droplets and (2) Highly improved accuracy in the generated droplet volume. Considering the design principles investigated two novel designs were proposed; L-junction electrode design to offer high throughput droplet generation and Y-junction electrode design to split a droplet very fast while maintaining equal volume of each part. Devices of novel designs were fabricated and tested, and the results are compared with those of conventional approach. It is demonstrated that inaccuracy and inconsistency of droplet volume dispensed in the device with novel electrode designs are as low as 0.17 and 0.10%, respectively, while those of conventional approach are 25 and 0.76%, respectively. The dispensing frequency is enhanced from 4 to 9 Hz by using the novel design.

  6. Isolation of cancer cells by "in situ" microfluidic biofunctionalization protocols

    KAUST Repository

    De Vitis, Stefania; Matarise, Giuseppina; Pardeo, Francesca; Catalano, Rossella; Malara, Natalia Maria; Trunzo, Valentina; Tallerico, Rossana; Gentile, Francesco T.; Candeloro, Patrizio; Coluccio, Maria Laura; Massaro, Alessandro S.; Viglietto, Giuseppe; Carbone, Ennio; Kutter, Jö rg Peter; Perozziello, Gerardo; Di Fabrizio, Enzo M.

    2014-01-01

    The aim of this work is the development of a microfluidic immunosensor for the immobilization of cancer cells and their separation from healthy cells by using "in situ" microfluidic biofunctionalization protocols. These protocols allow to link antibodies on microfluidic device surfaces and can be used to study the interaction between cell membrane and biomolecules. Moreover they allow to perform analysis with high processing speed, small quantity of reagents and samples, short reaction times and low production costs. In this work the developed protocols were used in microfluidic devices for the isolation of cancer cells in heterogeneous blood samples by exploiting the binding of specific antibody to an adhesion protein (EpCAM), overexpressed on the tumor cell membranes. The presented biofunctionalization protocols can be performed right before running the experiment: this allows to have a flexible platform where biomolecules of interest can be linked on the device surface according to the user's needs. © 2014 Elsevier B.V. All rights reserved.

  7. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system

    International Nuclear Information System (INIS)

    Weng, Chen-Hsun; Lee, Gwo-Bin; Huang, Chih-Chia; Yeh, Chen-Sheng; Lei, Huan-Yao

    2008-01-01

    A new microfluidic reaction system capable of mixing, transporting and reacting is developed for the synthesis of gold nanoparticles. It allows for a rapid and a cost-effective approach to accelerate the synthesis of gold nanoparticles. The microfluidic reaction chip is made from micro-electro-mechanical-system technologies which integrate a micro-mixer, micro-pumps, a micro-valve, micro-heaters and a micro temperature sensor on a single chip. Successful synthesis of dispersed gold nanoparticles has been demonstrated within a shorter period of time, as compared to traditional methods. It is experimentally found that precise control of the mixing/heating time for gold salts and reducing agents plays an essential role in the synthesis of gold nanoparticles. The growth process of hexagonal gold nanoparticles by a thermal aqueous approach is also systematically studied by using the same microfluidic reaction system. The development of the microfluidic reaction system could be promising for the synthesis of functional nanoparticles for future biomedical applications

  8. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Heidary Araghi, Behnaz; Beydaghi, Vahid; Geraili, Armin; Moradi, Farshid; Jafari, Parya; Janmaleki, Mohsen; Valente, Karolina Papera; Akbari, Mohsen; Sanati-Nezhad, Amir

    2016-10-01

    In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Isolation of cancer cells by "in situ" microfluidic biofunctionalization protocols

    KAUST Repository

    De Vitis, Stefania

    2014-07-01

    The aim of this work is the development of a microfluidic immunosensor for the immobilization of cancer cells and their separation from healthy cells by using "in situ" microfluidic biofunctionalization protocols. These protocols allow to link antibodies on microfluidic device surfaces and can be used to study the interaction between cell membrane and biomolecules. Moreover they allow to perform analysis with high processing speed, small quantity of reagents and samples, short reaction times and low production costs. In this work the developed protocols were used in microfluidic devices for the isolation of cancer cells in heterogeneous blood samples by exploiting the binding of specific antibody to an adhesion protein (EpCAM), overexpressed on the tumor cell membranes. The presented biofunctionalization protocols can be performed right before running the experiment: this allows to have a flexible platform where biomolecules of interest can be linked on the device surface according to the user\\'s needs. © 2014 Elsevier B.V. All rights reserved.

  10. Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography

    International Nuclear Information System (INIS)

    Nam, Yoonkwang; Kim, Minseok; Kim, Taesung

    2013-01-01

    Most polymer-replica-based microfluidic devices are mainly fabricated by using standard soft-lithography technology so that multi-level masters (MLMs) require multiple spin-coatings, mask alignments, exposures, developments, and bakings. In this paper, we describe a simple method for fabricating MLMs for planar microfluidic channels with multi-level barriers (MLBs). A single photomask is necessary for standard photolithography technology to create a polydimethylsiloxane grey-scale photomask (PGSP), which adjusts the total amount of UV absorption in a negative-tone photoresist via a wide range of dye concentrations. Since the PGSP in turn adjusts the degree of cross-linking of the photoresist, this method enables the fabrication of MLMs for an MLB-integrated microfluidic device. Since the PGSP-based soft-lithography technology provides a simple but powerful fabrication method for MLBs in a microfluidic device, we believe that the fabrication method can be widely used for micro total analysis systems that benefit from MLBs. We demonstrate an MLB-integrated microfluidic device that can separate microparticles. (paper)

  11. Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; van den Berg, A.; Segerink, L.I.; Segerink, Loes Irene; Unknown, [Unknown

    2015-01-01

    Lab-on-a-chip devices for point of care diagnostics have been present in clinics for several years now. Alongside their continual development, research is underway to bring the organs and tissue on-a-chip to the patient, amongst other medical applications of microfluidics. This book provides the

  12. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2017-01-01

    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....

  13. Microfluidics and photonics for Bio-System-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip.

    Science.gov (United States)

    Godin, Jessica; Chen, Chun-Hao; Cho, Sung Hwan; Qiao, Wen; Tsai, Frank; Lo, Yu-Hwa

    2008-10-01

    Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.

  14. Development of a Microfluidic Platform to Analyze Evolution of Programmed Bacterial Death

    Science.gov (United States)

    2015-12-20

    droplet-based microfluidic technology to generate population ‘bottleneck’. This platform will serve as a critical foundation for our long-term goal to...Final Report: Development of a Microfluidic Platform to Analyze Evolution of Programmed Bacterial Death The views, opinions and/or findings contained...Triangle Park, NC 27709-2211 Microfluidics , systems biology REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM

  15. Transforming nanomedicine manufacturing toward Quality by Design and microfluidics

    DEFF Research Database (Denmark)

    Colombo, Stefano; Beck-Broichsitter, Moritz; Bøtker, Johan Peter

    2018-01-01

    -oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger...... proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control...... and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic...

  16. Synthesis of Digital Microfluidic Biochips with Reconfigurable Operation Execution

    DEFF Research Database (Denmark)

    Maftei, Elena

    several real-life case studies and synthetic benchmarks. The experiments show that by considering the dynamically reconfigurable nature of microfluidic operations, significant improvements can be obtained, decreasing the biochemical application completion times, reducing thus the biochip area...... of electrodes. The main objective of this thesis is to develop top-down synthesis techniques for digital microfluidic biochips. So far, researchers have assumed that operations are executing on virtual modules of rectangular shape, formed by grouping adjacent electrodes, and which have a fixed placement...... on the microfluidic array. However, operations can actually execute by routing the droplets on any sequence of electrodes on the biochip. Thus, we have proposed a routing-based model of operation execution, and we have developed several associated synthesis approaches, which progressively relax the assumption...

  17. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich; Mashraei, Yousof; Agambayev, Sumeyra; Salama, Khaled N.

    2017-01-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided

  18. Spintronic microfluidic platform for biomedical and environmental applications

    Science.gov (United States)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.

    2010-09-01

    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were

  19. Simple Check Valves for Microfluidic Devices

    Science.gov (United States)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  20. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiankang, E-mail: jiankanghe@mail.xjtu.edu.cn; Chen, Ruomeng; Lu, Yongjie; Zhan, Li; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2016-02-01

    It is a huge challenge to engineer vascular networks in vital organ tissue engineering. Although the incorporation of artificial microfluidic network into thick tissue-engineered constructs has shown great promise, most of the existing microfluidic strategies are limited to generate rectangle cross-sectional channels rather than circular vessels in soft hydrogels. Here we present a facile approach to fabricate branched microfluidic network with circular cross-sections in gelatin hydrogels by combining micromolding and enzymatically-crosslinking mechanism. Partially crosslinked hydrogel slides with predefined semi-circular channels were molded, assembled and in situ fully crosslinked to form a seamless and circular microfluidic network. The bonding strength of the resultant gelatin hydrogels was investigated. The morphology and the dimension of the resultant circular channels were characterized using scanning electron microscopy (SEM) and micro-computerized tomography (μCT). Computational fluid dynamic simulation shows that the fabrication error had little effect on the distribution of flow field but affected the maximum velocity in comparison with designed models. The microfluidic gelatin hydrogel facilitates the attachment and spreading of human umbilical endothelial cells (HUVECs) to form a uniform endothelialized layer around the circular channel surface, which successfully exhibited barrier functions. The presented method might provide a simple way to fabricate circular microfluidic networks in biologically-relevant hydrogels to advance various applications of in vitro tissue models, organ-on-a-chip systems and tissue engineering. - Highlights: • A facile method was proposed to build a circular fluidic network in gelatin hydrogel. • The fluidic network is mechanically robust and supports physiological flow. • HUVECs formed endothelialized layer around the channel to express barrier function.

  1. Sperm quality assessment via separation and sedimentation in a microfluidic device.

    Science.gov (United States)

    Chen, Chang-Yu; Chiang, Tsun-Chao; Lin, Cheng-Ming; Lin, Shu-Sheng; Jong, De-Shien; Tsai, Vincent F-S; Hsieh, Ju-Ton; Wo, Andrew M

    2013-09-07

    A major reason for infertility is due to male factors, including the quality of spermatozoa, which is a primary factor and often difficult to assess, particularly the total sperm concentration and its motile percentage. This work presents a simple microfluidic device to assess sperm quality by quantifying both total and motile sperm counts. The key design feature of the microfluidic device is two channels separated by a permeative phase-guide structure, where one channel is filled with raw semen and the other with pure buffer. The semen sample was allowed to reach equilibrium in both chambers, whereas non-motile sperms remained in the original channel, and roughly half of the motile sperms would swim across the phase-guide barrier into the buffer channel. Sperms in each channel agglomerated into pellets after centrifugation, with the corresponding area representing total and motile sperm concentrations. Total sperm concentration up to 10(8) sperms per ml and motile percentage in the range of 10-70% were tested, encompassing the cutoff value of 40% stated by World Health Organization standards. Results from patient samples show compact and robust pellets after centrifugation. Comparison of total sperm concentration between the microfluidic device and the Makler chamber reveal they agree within 5% and show strong correlation, with a coefficient of determination of R(2) = 0.97. Motile sperm count between the microfluidic device and the Makler chamber agrees within 5%, with a coefficient of determination of R(2) = 0.84. Comparison of results from the Makler Chamber, sperm quality analyzer, and the microfluidic device revealed that results from the microfluidic device agree well with the Makler chamber. The sperm microfluidic chip analyzes both total and motile sperm concentrations in one spin, is accurate and easy to use, and should enable sperm quality analysis with ease.

  2. Integration of microelectronic chips in microfluidic systems on printed circuit board

    International Nuclear Information System (INIS)

    Burdallo, I; Jimenez-Jorquera, C; Fernández-Sánchez, C; Baldi, A

    2012-01-01

    A new scheme for the integration of small semiconductor transducer chips with microfluidic structures on printed circuit board (PCB) is presented. The proposed approach is based on a packaging technique that yields a large and flat area with small and shallow (∼44 µm deep) openings over the chips. The photocurable encapsulant material used, based on a diacrylate bisphenol A polymer, enables irreversible bonding of polydimethylsiloxane microfluidic structures at moderate temperatures (80 °C). This integration scheme enables the insertion of transducer chips in microfluidic systems with a lower added volume than previous schemes. Leakage tests have shown that the bonded structures withstand more than 360 kPa of pressure. A prototype microfluidic system with two detection chips, including one inter-digitated electrode (IDE) chip for conductivity and one ion selective field effect transistor (ISFET) chip for pH, has been implemented and characterized. Good electrical insulation of the chip contacts and silicon edge surfaces from the solution in the microchannels has been achieved. This integration procedure opens the door to the low-cost fabrication of complex analytical microsystems that combine the extraordinary potential of both the microfluidics and silicon microtechnology fields. (paper)

  3. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  4. Magnetic particle mixing with magnetic micro-convection for microfluidics

    International Nuclear Information System (INIS)

    Kitenbergs, Guntars; Erglis, Kaspars; Perzynski, Régine; Cēbers, Andrejs

    2015-01-01

    In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the miscible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele–Shaw cell. Subsequent image analysis both qualitatively and quantitatively reveals the high enhancement of mixing efficiency provided by this method. The mixing efficiency dependence on the magnetic field and the physical limits is discussed. A suitable model for a continuous-flow microfluidics setup for mixing with magnetic micro-convection is also proposed and justified with an experiment. In addition, possible applications in improving the speed of ferrohydrodynamic sorting and magnetic label or selected tracer mixing in lab on a chip systems are noted. - Highlights: • We study the magnetic micro-convection as a mixing method in microfluidics. • We show that the method enhances mixing with magnetic field squared dependency. • We propose a flow cell setup for mixing and justify it with a sample experiment. • The mixing method can be easily implemented in an existing microfluidics setup

  5. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    International Nuclear Information System (INIS)

    Sabourin, D; Snakenborg, D; Dufva, M

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observation. The interconnection block method is scalable, flexible and supports high interconnection density. The average pressure limit of the interconnection block was near 5.5 bar and all individual results were well above the 2 bar threshold considered applicable to most microfluidic applications

  6. Multi-depth valved microfluidics for biofilm segmentation

    International Nuclear Information System (INIS)

    Meyer, M T; Bentley, W E; Ghodssi, R; Subramanian, S; Kim, Y W; Ben-Yoav, H; Gnerlich, M; Gerasopoulos, K

    2015-01-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information. (paper)

  7. Multi-depth valved microfluidics for biofilm segmentation

    Science.gov (United States)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  8. Differential white cell count by centrifugal microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  9. Fabrication of a multiplexed microfluidic system for scaled up production of cross-linked biocatalytic microspheres

    CSIR Research Space (South Africa)

    Mbanjwa, M

    2014-06-01

    Full Text Available the design and fabrication of a multiplexed microfluidic system for producing biocatalytic microspheres. The microfluidic system consists of an array of 10 parallel microfluidic circuits, for simultaneous operation to demonstrate increased production...

  10. Cyclohexanone microfluidic extraction of radioactive perrhenate from acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dalmázio, Ilza [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oehlke, Elisabeth, E-mail: E.Oehlke@tudelft.nl [Section Radiation and Isotopes for Health, Department of Radiation Science and Technology, Delft University of Technology (Netherlands)

    2017-07-01

    Several studies have investigated the application of microfluidic devices in extraction processes. A potential use of microfluidic devices is in radionuclide generators based on solvent extraction, as the {sup 188}W/{sup 188}Re generator. The aim of this work is to present the initial results of microfluidic solvent extraction of radioactive perrhenate. Aqueous solutions of ammonium perrhenate at 0.1 mg/mL (in water, HCl or sodium tungstate) were used as feed solution and cyclohexanone as extractant. As a first step, the fluid behaviour inside the glass microchannel was evaluated to reach laminar flow. The second step was the determination of extraction efficiency using thermal neutron activated perrhenate to produce feed solutions. The extraction conditions permitted liquid-liquid contact times as short as 0.5 s. Increasing of the contact time, resulted in a higher extraction efficiency of perrhenate, e.g. 14 % for 0.5 s and 32 % for 1.1 s using a 0.1 mol/L HCl feed solution. The extraction of perrhenate improved also when applying a feed solution with higher acidity, e.g. 52% for 1 mol/L HCl with contact time of 1.1 s. The influence of adding sodium tungstate to the feed solution was also examined. To the best of our knowledge, these are the first results related to perrhenate solvent extraction using a microfluidic device. The usefulness of microfluidic devices to screen extraction conditions was demonstrated making it possible to evaluate the effect of electrolytes on the perrhenate extraction process in a short time-frame. (author)

  11. A microfluidic approach for hemoglobin detection in whole blood

    Directory of Open Access Journals (Sweden)

    Nikita Taparia

    2017-10-01

    Full Text Available Diagnosis of anemia relies on the detection of hemoglobin levels in a blood sample. Conventional blood analyzers are not readily available in most low-resource regions where anemia is prevalent, so detection methods that are low-cost and point-of-care are needed. Here, we present a microfluidic approach to measure hemoglobin concentration in a sample of whole blood. Unlike conventional approaches, our microfluidic approach does not require hemolysis. We detect the level of hemoglobin in a blood sample optically by illuminating the blood in a microfluidic channel at a peak wavelength of 540 nm and measuring its absorbance using a CMOS sensor coupled with a lens to magnify the image onto the detector. We compare measurements in microchannels with channel heights of 50 and 115 μm and found the channel with the 50 μm height provided a better range of detection. Since we use whole blood and not lysed blood, we fit our data to an absorption model that includes optical scattering in order to obtain a calibration curve for our system. Based on this calibration curve and data collected, we can measure hemoglobin concentration within 1 g/dL for severe cases of anemia. In addition, we measured optical density for blood flowing at a shear rate of 500 s-1 and observed it did not affect the nonlinear model. With this method, we provide an approach that uses microfluidic detection of hemoglobin levels that can be integrated with other microfluidic approaches for blood analysis.

  12. Cyclohexanone microfluidic extraction of radioactive perrhenate from acid solutions

    International Nuclear Information System (INIS)

    Dalmázio, Ilza; Oehlke, Elisabeth

    2017-01-01

    Several studies have investigated the application of microfluidic devices in extraction processes. A potential use of microfluidic devices is in radionuclide generators based on solvent extraction, as the 188 W/ 188 Re generator. The aim of this work is to present the initial results of microfluidic solvent extraction of radioactive perrhenate. Aqueous solutions of ammonium perrhenate at 0.1 mg/mL (in water, HCl or sodium tungstate) were used as feed solution and cyclohexanone as extractant. As a first step, the fluid behaviour inside the glass microchannel was evaluated to reach laminar flow. The second step was the determination of extraction efficiency using thermal neutron activated perrhenate to produce feed solutions. The extraction conditions permitted liquid-liquid contact times as short as 0.5 s. Increasing of the contact time, resulted in a higher extraction efficiency of perrhenate, e.g. 14 % for 0.5 s and 32 % for 1.1 s using a 0.1 mol/L HCl feed solution. The extraction of perrhenate improved also when applying a feed solution with higher acidity, e.g. 52% for 1 mol/L HCl with contact time of 1.1 s. The influence of adding sodium tungstate to the feed solution was also examined. To the best of our knowledge, these are the first results related to perrhenate solvent extraction using a microfluidic device. The usefulness of microfluidic devices to screen extraction conditions was demonstrated making it possible to evaluate the effect of electrolytes on the perrhenate extraction process in a short time-frame. (author)

  13. A microfluidic approach for hemoglobin detection in whole blood

    Science.gov (United States)

    Taparia, Nikita; Platten, Kimsey C.; Anderson, Kristin B.; Sniadecki, Nathan J.

    2017-10-01

    Diagnosis of anemia relies on the detection of hemoglobin levels in a blood sample. Conventional blood analyzers are not readily available in most low-resource regions where anemia is prevalent, so detection methods that are low-cost and point-of-care are needed. Here, we present a microfluidic approach to measure hemoglobin concentration in a sample of whole blood. Unlike conventional approaches, our microfluidic approach does not require hemolysis. We detect the level of hemoglobin in a blood sample optically by illuminating the blood in a microfluidic channel at a peak wavelength of 540 nm and measuring its absorbance using a CMOS sensor coupled with a lens to magnify the image onto the detector. We compare measurements in microchannels with channel heights of 50 and 115 μm and found the channel with the 50 μm height provided a better range of detection. Since we use whole blood and not lysed blood, we fit our data to an absorption model that includes optical scattering in order to obtain a calibration curve for our system. Based on this calibration curve and data collected, we can measure hemoglobin concentration within 1 g/dL for severe cases of anemia. In addition, we measured optical density for blood flowing at a shear rate of 500 s-1 and observed it did not affect the nonlinear model. With this method, we provide an approach that uses microfluidic detection of hemoglobin levels that can be integrated with other microfluidic approaches for blood analysis.

  14. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    Science.gov (United States)

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-05

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  15. The upcoming 3D-printing revolution in microfluidics

    Science.gov (United States)

    Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert

    2016-01-01

    In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers. PMID:27101171

  16. A smartphone controlled handheld microfluidic liquid handling system.

    Science.gov (United States)

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  17. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio; Esposito, Francesco; Allione, Marco; Coluccio, Maria Laura; Tallerico, Rossana; Valpapuram, Immanuel; Tirinato, Luca; Das, Gobind; Giugni, Andrea; Torre, Bruno; Veltri, Pierangelo; Kruhne, Ulrich; Della Valle, Giuseppe; Di Fabrizio, Enzo M.

    2015-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where

  18. Integrated Microfluidic Sensor System with Magnetostrictive Resonators

    KAUST Repository

    Liang, Cai; Kosel, Jü rgen; Gooneratne, Chinthaka

    2011-01-01

    The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (.mu.TAS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.

  19. Integrated Microfluidic Sensor System with Magnetostrictive Resonators

    KAUST Repository

    Liang, Cai

    2011-12-08

    The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (.mu.TAS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.

  20. Split and flow: reconfigurable capillary connection for digital microfluidic devices.

    Science.gov (United States)

    Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent

    2014-09-21

    Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup.

  1. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  2. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  3. Microfluidics and Nanofluidics Handbook Fabrication, Implementation, and Applications

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Num

  4. Microfluidic devices for biological applications

    CSIR Research Space (South Africa)

    Potgieter, S

    2010-01-01

    Full Text Available Microfluidics is a multi-disciplinary field that deals with the behaviour, control and manipulation of fluids constrained to sub-millilitre volumes. It is proving to be a useful tool for biological studies, affording advantages such as reduced cost...

  5. Microfluidic Multichannel Flow Cytometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a "Microfluidic Multichannel Flow Cytometer." Several novel concepts are integrated to produce the final design, which is compatible with...

  6. Stack air-breathing membraneless glucose microfluidic biofuel cell

    International Nuclear Information System (INIS)

    Galindo-de-la-Rosa, J; Moreno-Zuria, A; Vallejo-Becerra, V; Guerra-Balcázar, M; Ledesma-García, J; Arjona, N; Arriaga, L G

    2016-01-01

    A novel stacked microfluidic fuel cell design comprising re-utilization of the anodic and cathodic solutions on the secondary cell is presented. This membraneless microfluidic fuel cell employs porous flow-through electrodes in a “V”-shape cell architecture. Enzymatic bioanodic arrays based on glucose oxidase were prepared by immobilizing the enzyme onto Toray carbon paper electrodes using tetrabutylammonium bromide, Nafion and glutaraldehyde. These electrodes were characterized through the scanning electrochemical microscope technique, evidencing a good electrochemical response due to the electronic transference observed with the presence of glucose over the entire of the electrode. Moreover, the evaluation of this microfluidic fuel cell with an air-breathing system in a double-cell mode showed a performance of 0.8951 mWcm -2 in a series connection (2.2822mAcm -2 , 1.3607V), and 0.8427 mWcm -2 in a parallel connection (3.5786mAcm -2 , 0.8164V). (paper)

  7. Low consumption single-use microvalve for microfluidic PCB-based platforms

    International Nuclear Information System (INIS)

    Flores, G; Aracil, C; Perdigones, F; Quero, J M

    2014-01-01

    In this paper, a single-use and unidirectional microvalve with low consumption of energy for PCB-based microfluidic platforms is reported. Its activation is easy because it works as a fuse. The fabrication process of the device is based on PCB technology and a typical SU-8 process, using the PCB as a substrate and SU-8 for the microfluidic channels and chambers. The microvalve is intended to be used to impulse small volumes of fluids and it has been designed to be highly integrable in PCB-based microfluidic platforms. The proposed device has been fabricated, integrated and tested in a general purpose microfluidic circuit, resulting in a low activation time, of about 100 μs, and a low consumption of energy, with a maximum of 27 mJ. These results show a significant improvement because the energy consumption is about 84% lower and the time response is about four orders of magnitude shorter if compared with similar microvalves for impulsion of fluids on PCB-based platforms. (paper)

  8. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.

    Science.gov (United States)

    Ong, Louis Jun Ye; Islam, Anik; DasGupta, Ramanuj; Iyer, Narayanan Gopalakkrishna; Leo, Hwa Liang; Toh, Yi-Chin

    2017-09-11

    The advent of 3D printing technologies promises to make microfluidic organ-on-chip technologies more accessible for the biological research community. To date, hydrogel-encapsulated cells have been successfully incorporated into 3D printed microfluidic devices. However, there is currently no 3D printed microfluidic device that can support multicellular spheroid culture, which facilitates extensive cell-cell contacts important for recapitulating many multicellular functional biological structures. Here, we report a first instance of fabricating a 3D printed microfluidic cell culture device capable of directly immobilizing and maintaining the viability and functionality of 3D multicellular spheroids. We evaluated the feasibility of two common 3D printing technologies i.e. stereolithography (SLA) and PolyJet printing, and found that SLA could prototype a device comprising of cell immobilizing micro-structures that were housed within a microfluidic network with higher fidelity. We have also implemented a pump-free perfusion system, relying on gravity-driven flow to perform medium perfusion in order to reduce the complexity and footprint of the device setup, thereby improving its adaptability into a standard biological laboratory. Finally, we demonstrated the biological performance of the 3D printed device by performing pump-free perfusion cultures of patient-derived parental and metastatic oral squamous cell carcinoma tumor and liver cell (HepG2) spheroids with good cell viability and functionality. This paper presents a proof-of-concept in simplifying and integrating the prototyping and operation of a microfluidic spheroid culture device, which will facilitate its applications in various drug efficacy, metabolism and toxicity studies.

  9. Microfluidic Organ-on-a-Chip Models of Human IntestineSummary

    Directory of Open Access Journals (Sweden)

    Amir Bein

    Full Text Available Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine. Keywords: Organs-on-Chips, Gut-on-a-Chip, Intestine-on-a-Chip, Microfluidic

  10. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    International Nuclear Information System (INIS)

    Lu, J-C; Liao, W-H; Tung, Y-C

    2012-01-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research. (paper)

  11. Transfer of extensor digiti minimi and extensor carpi ulnaris nerve branches to the intrinsic motor nerve branches: A histological study on cadaver.

    Science.gov (United States)

    Namazi, H; Haji Vandi, S

    2017-06-01

    In cases of high ulnar and median nerve palsy, result of nerve repair in term of intrinsic muscle recovery is unsatisfactory. Distal nerve transfer can alleviate the regeneration time and improve the results. Transfer of the extensor digiti minimi (EDM) and extensor carpi ulnaris (ECU) nerve branches to the deep branch of ulnar nerve (DBUN)/recurrent branch of median nerve (RMN) at wrist had been used to restore intrinsic hand function but, incomplete recovery occurred. The axon count at the donor nerve has a strong influence on the final results. This cadaveric study aims to analyses the histology of this nerve transfer to evaluate whether these donor nerves are suitable for this transfer or another donor nerve may be considered. Ten cadaveric upper limbs dissected to identify the location of the EDM, ECU, RMN and DBUN. Surface area, fascicle count, and axon number was determined by histological methods. The mean of axon number in the EDM, ECU, RMN and DBUN branches was 5931, 7355, 30960 and 35426, respectively. In this study, the number of axons in the EDM and ECU branches was 37% (13281/35426) of that in the DBUN. Also, the number of axons in the EDM and ECU branches was 42% (13281/30960) of that in the RMN. The axon count data showed an unfavorable match between the EDM, ECU and DBUN/RMN. Therefore, it is suggested that another donor nerve with higher axon number to be considered. Cadaver study (histological study). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Topology optimization of microfluidic mixers

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Gersborg, Allan Roulund; Sigmund, Ole

    2009-01-01

    This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering...

  13. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    Science.gov (United States)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  14. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.

    Science.gov (United States)

    Kokalj, Tadej; Park, Younggeun; Vencelj, Matjaž; Jenko, Monika; Lee, Luke P

    2014-11-21

    Reliable, autonomous, internally self-powered microfluidic pumps are in critical demand for rapid point-of-care (POC) devices, integrated molecular-diagnostic platforms, and drug delivery systems. Here we report on a Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation (SIMPLE), which is disposable, autonomous, easy to use and fabricate, robust, and cost efficient, as a solution for self-powered microfluidic POC devices. The imbibition pump introduces the working liquid which is sucked into a porous material (paper) upon activation. The suction of the working liquid creates a reduced pressure in the analytical channel and induces the sequential sample flow into the microfluidic circuits. It requires no external power or control and can be simply activated by a fingertip press. The flow rate can be programmed by defining the shape of utilized porous material: by using three different paper shapes with circular section angles 20°, 40° and 60°, three different volume flow rates of 0.07 μL s(-1), 0.12 μL s(-1) and 0.17 μL s(-1) are demonstrated at 200 μm × 600 μm channel cross-section. We established the SIMPLE pumping of 17 μL of sample; however, the sample volume can be increased to several hundreds of μL. To demonstrate the design, fabrication, and characterization of SIMPLE, we used a simple, robust and cheap foil-laminating fabrication technique. The SIMPLE can be integrated into hydrophilic or hydrophobic materials-based microfluidic POC devices. Since it is also applicable to large-scale manufacturing processes, we anticipate that a new chapter of a cost effective, disposable, autonomous POC diagnostic chip is addressed with this technical innovation.

  15. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences. The book gives an overview of the development of MC and CE technology as well as technology that now allows for the fabrication of MC-CE devices. It describes the operating principles that make integration possible and illustrates some achievements already made by the application of MC-CE devices in hospitals, clinics, food safety, and environmental research. The authors envision further applications for private and public use once the proof-of-concept stage has been passed and obstacles to increased commercialization are ad...

  16. Shannon Meets Fick on the Microfluidic Channel: Diffusion Limit to Sum Broadcast Capacity for Molecular Communication.

    Science.gov (United States)

    Bicen, A Ozan; Lehtomaki, Janne J; Akyildiz, Ian F

    2018-03-01

    Molecular communication (MC) over a microfluidic channel with flow is investigated based on Shannon's channel capacity theorem and Fick's laws of diffusion. Specifically, the sum capacity for MC between a single transmitter and multiple receivers (broadcast MC) is studied. The transmitter communicates by using different types of signaling molecules with each receiver over the microfluidic channel. The transmitted molecules propagate through microfluidic channel until reaching the corresponding receiver. Although the use of different types of molecules provides orthogonal signaling, the sum broadcast capacity may not scale with the number of the receivers due to physics of the propagation (interplay between convection and diffusion based on distance). In this paper, the performance of broadcast MC on a microfluidic chip is characterized by studying the physical geometry of the microfluidic channel and leveraging the information theory. The convergence of the sum capacity for microfluidic broadcast channel is analytically investigated based on the physical system parameters with respect to the increasing number of molecular receivers. The analysis presented here can be useful to predict the achievable information rate in microfluidic interconnects for the biochemical computation and microfluidic multi-sample assays.

  17. Screening applications in drug discovery based on microfluidic technology

    Science.gov (United States)

    Eribol, P.; Uguz, A. K.; Ulgen, K. O.

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays. PMID:26865904

  18. Screening applications in drug discovery based on microfluidic technology.

    Science.gov (United States)

    Eribol, P; Uguz, A K; Ulgen, K O

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.

  19. Three-dimensional micro structured nanocomposite beams by microfluidic infiltration

    International Nuclear Information System (INIS)

    Lebel, L L; Paez, O A; Therriault, D; Aïssa, B; El Khakani, M A

    2009-01-01

    Three-dimensional (3D) micro structured beams reinforced with a single-walled carbon nanotube (C-SWNT)/polymer nanocomposite were fabricated using an approach based on the infiltration of 3D microfluidic networks. The 3D microfluidic network was first fabricated by the direct-write assembly method, which consists of the robotized deposition of fugitive ink filaments on an epoxy substrate, forming thereby a 3D micro structured scaffold. After encapsulating the 3D micro-scaffold structure with an epoxy resin, the fugitive ink was liquefied and removed, resulting in a 3D network of interconnected microchannels. This microfluidic network was then infiltrated by a polymer loaded with C-SWNTs and subsequently cured. Prior to their incorporation in the polymer matrix, the UV-laser synthesized C-SWNTs were purified, functionalized and dispersed into the matrix using a three-roll mixing mill. The final samples consist of rectangular beams having a complex 3D skeleton structure of C-SWNT/polymer nanocomposite fibers, adapted to offer better performance under flexural solicitation. Dynamic mechanical analysis in flexion showed an increase of 12.5% in the storage modulus compared to the resin infiltrated beams. The nanocomposite infiltration of microfluidic networks demonstrated here opens new prospects for the achievement of 3D reinforced micro structures

  20. Selection of Easily Accessible PCR- and Bio-Compatible Materials for Microfluidic Chips

    KAUST Repository

    Xiao, Kang; Kodzius, Rimantas; Wu, Jinbo

    2013-01-01

    Conventional fabrication of microfluidic chip is a complicated and time, effort and material consuming process. Consequently, due to high expenses, it has poor applicability for performing mass biological analysis by microfluidics. In this study, we

  1. Applications of micro/nanoparticles in microfluidic sensors: a review.

    KAUST Repository

    Jiang, Yusheng

    2014-04-21

    This paper reviews the applications of micro/nanoparticles in microfluidics device fabrication and analytical processing. In general, researchers have focused on two properties of particles--electric behavior and magnetic behavior. The applications of micro/nanoparticles could be summarized on the chip fabrication level and on the processing level. In the fabrication of microfluidic chips (chip fabrication level), particles are good additives in polydimethylsiloxane (PDMS) to prepare conductive or magnetic composites which have wide applications in sensors, valves and actuators. On the other hand, particles could be manipulated according to their electric and magnetic properties under external electric and magnetic fields when they are travelling in microchannels (processing level). Researchers have made a great progress in preparing modified PDMS and investigating the behaviors of particles in microchannels. This article attempts to present a discussion on the basis of particles applications in microfluidics.

  2. Various on-chip sensors with microfluidics for biological applications.

    Science.gov (United States)

    Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W

    2014-09-12

    In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  3. Microfluidics to Mimic Blood Flow in Health and Disease

    Science.gov (United States)

    Sebastian, Bernhard; Dittrich, Petra S.

    2018-01-01

    Throughout history, capillary systems have aided the establishment of the fundamental laws of blood flow and its non-Newtonian properties. The advent of microfluidics technology in the 1990s propelled the development of highly integrated lab-on-a-chip platforms that allow highly accurate replication of vascular systems' dimensions, mechanical properties, and biological complexity. Applications include the detection of pathological changes to red blood cells, white blood cells, and platelets at unparalleled sensitivity and the efficacy assessment of drug treatment. Recent efforts have aimed at the development of microfluidics-based tests usable in a clinial environment or the replication of more complex diseases such as thrombosis. These microfluidic disease models enable the study of onset and progression of disease as well as the identification of key players and risk factors, which have led to a spectrum of clinically relevant findings.

  4. Macromolecular Crystallization in Microfluidics for the International Space Station

    Science.gov (United States)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  5. Logic control of microfluidics with smart colloid

    KAUST Repository

    Wang, Limu

    2010-01-01

    We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate. © The Royal Society of Chemistry 2010.

  6. Microfluidic Mixing Technology for a Universal Health Sensor

    Science.gov (United States)

    Chan, Eugene Y.; Bae, Candice

    2009-01-01

    A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform. These geometries allow for cleaning in a reusable manner, and also allow for complete mixing of fluid streams. The microfluidic mixing is performed by flowing two streams of fluid into an elliptical or curvilinear design that allows the combination of the flows into one channel. The mixing is accomplished by either chaotic advection around micro - fluidic loops. All components of the microfluidic chip are flow-through, meaning that cleaning solution can be introduced into the chip to flush out cells, plasma proteins, and dye. Tests were performed on multiple chip geometries to show that cleaning is efficient in any flowthrough design. The conclusion from these experiments is that the chip can indeed be flushed out with microliter volumes of solution and biological samples are cleaned readily from the chip with minimal effort. The technology can be applied in real-time health monitoring at patient s bedside or in a doctor s office, and real-time clinical intervention in acute situations. It also can be used for daily measurement of hematocrit for patients on anticoagulant drugs, or to detect acute myocardial damage outside a hospital.

  7. A Droplet Microfluidic Platform for Automating Genetic Engineering.

    Science.gov (United States)

    Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K

    2016-05-20

    We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.

  8. Synthesis of Bioactive Microcapsules Using a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Chang-Soo Lee

    2012-07-01

    Full Text Available Bioactive microcapsules containing Bacillus thuringiensis (BT spores were generated by a combination of a hydro gel, microfluidic device and chemical polymerization method. As a proof-of-principle, we used BT spores displaying enhanced green fluorescent protein (EGFP on the spore surface to spatially direct the EGFP-presenting spores within microcapsules. BT spore-encapsulated microdroplets of uniform size and shape are prepared through a flow-focusing method in a microfluidic device and converted into microcapsules through hydrogel polymerization. The size of microdroplets can be controlled by changing both the dispersion and continuous flow rate. Poly(N-isoproplyacrylamide (PNIPAM, known as a hydrogel material, was employed as a biocompatible material for the encapsulation of BT spores and long-term storage and outstanding stability. Due to these unique properties of PNIPAM, the nutrients from Luria-Bertani complex medium diffused into the microcapsules and the microencapsulated spores germinated into vegetative cells under adequate environmental conditions. These results suggest that there is no limitation of transferring low-molecular-weight-substrates through the PNIPAM structures, and the viability of microencapsulated spores was confirmed by the culture of vegetative cells after the germinations. This microfluidic-based microencapsulation methodology provides a unique way of synthesizing bioactive microcapsules in a one-step process. This microfluidic-based strategy would be potentially suitable to produce microcapsules of various microbial spores for on-site biosensor analysis.

  9. Ligation-based mutation detection and RCA in surface un-modified OSTE+ polymer microfluidic chambers

    DEFF Research Database (Denmark)

    Saharil, Farizah; Ahlford, Annika; Kuhnemund, Malte

    2013-01-01

    For the first time, we demonstrate DNA mutation detection in surface un-modified polymeric microfluidic chambers without suffering from bubble trapping or bubble formation. Microfluidic devices were manufactured in off-stoichiometry thiol-ene epoxy (OSTE+) polymer using an uncomplicated and rapid...... during bio-operation at elevated temperatures. In contrast, PMMA, PDMS and COP microfluidic devices required specific surface treatment....

  10. Optical calorimetry in microfluidic droplets.

    Science.gov (United States)

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  11. Microfluidic very large-scale integration for biochips: Technology, testing and fault-tolerant design

    DEFF Research Database (Denmark)

    Araci, Ismail Emre; Pop, Paul; Chakrabarty, Krishnendu

    2015-01-01

    of this paper is on continuous-flow biochips, where the basic building block is a microvalve. By combining these microvalves, more complex units such as mixers, switches, multiplexers can be built, hence the name of the technology, “microfluidic Very Large-Scale Integration” (mVLSI). A roadblock......Microfluidic biochips are replacing the conventional biochemical analyzers by integrating all the necessary functions for biochemical analysis using microfluidics. Biochips are used in many application areas, such as, in vitro diagnostics, drug discovery, biotech and ecology. The focus...... presents the state-of-the-art in the mVLSI platforms and emerging research challenges in the area of continuous-flow microfluidics, focusing on testing techniques and fault-tolerant design....

  12. Selection of Easily Accessible PCR- and Bio-Compatible Materials for Microfluidic Chips

    KAUST Repository

    Xiao, Kang

    2013-10-30

    Conventional fabrication of microfluidic chip is a complicated and time, effort and material consuming process. Consequently, due to high expenses, it has poor applicability for performing mass biological analysis by microfluidics. In this study, we repor

  13. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  14. Making the invisible visible: a microfluidic chip using a low refractive index polymer.

    Science.gov (United States)

    Hanada, Yasutaka; Ogawa, Tatsuya; Koike, Kazuhiko; Sugioka, Koji

    2016-07-07

    Microfluidic frameworks known as micro-total-analysis-systems or lab-on-a-chip have become versatile tools in cell biology research, since functional biochips are able to streamline dynamic observations of various cells. Glass or polymers are generally used as the substrate due to their high transparency, chemical stability and cost-effectiveness. However, these materials are not well suited for the microscopic observation of cell migration at the fluid boundary due to the refractive index mismatch between the medium and the biochip material. For this reason, we have developed a new method of fabricating three-dimensional (3D) microfluidic chips made of the low refractive index fluoric polymer CYTOP. This novel fabrication procedure involves the use of a femtosecond laser for direct writing, followed by wet etching with a dilute fluorinated solvent and annealing, to create high-quality 3D microfluidic chips inside a polymer substrate. A microfluidic chip made in this manner enabled us to more clearly observe the flagellum motion of a Dinoflagellate moving in circles near the fluid surface compared to the observations possible using conventional microfluidic chips. We believe that CYTOP microfluidic chips made using this new method may allow more detailed analysis of various cell migrations near solid boundaries.

  15. Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures

    KAUST Repository

    Wang, Limu

    2013-10-10

    We report a fast and simple prototyping method to fabricate polymer-based microfluidic chips using Direct Laser Plotting (DLP) technique, by which various functional micro-structures can be realized within minutes, in a mask-free and out-of-cleanroom fashion. A 2D Computer-Aid-Design (CAD) software was employed to layout the required micro-structures and micro-channels, a CO2 laser plotter was then used to construct the microstructures. The desired patterns can be plotted directly on PDMS substrates and bio-compatible polymer films by manipulating the strength and density of laser pulses. With the DLP technique, chip-embedded micro-electrodes, micro-mixers and 3D microfluidic chips with 5 layers, which normally require several days of work in a cleanroom facility, can be fabricated in minutes in common laboratory. This novel method can produce microfluidic channels with average feature size of 100 μm, while feature size of 50 μm or smaller is achievable by making use of the interference effect from laser impulsion. In this report, we present the optimized parameters for successful fabrication of 3D microchannels, micro-mixers and microfluidic chips for protein concentration measurements (Bovine Serum Albumine (BSA) test), and a novel procedure to pattern flexible embedding electrodes on PDMS-based microfluidic chips. DLP offers a convenient and low cost alternative to conventional microfluidic channel fabrication technique which relies on complicated and hazardous soft lithography process.

  16. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhadeep

    2011-01-01

    Full Text Available Abstract Polymethylmethacrylate (PMMA microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices.

  17. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    Science.gov (United States)

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  18. Merging microfluidics and sonochemistry: towards greener and more efficient micro-sono-reactors.

    Science.gov (United States)

    Fernandez Rivas, David; Cintas, Pedro; Gardeniers, Han J G E

    2012-11-18

    Microfluidics enable the manipulation of chemical reactions using very small amounts of fluid, in channels with dimensions of tens to hundreds of micrometers; so-called microstructured devices, from which the iconic image of chips emerges. The immediate attraction of microfluidics lies in its greenness: use of small quantities of reagents and solvents, and hence less waste, a precise control of reaction conditions, integration of functionality for process intensification, safer and often faster protocols, reliable scale-up, and possibility of performing multiphase reactions. Among the limitations found in microfluidics the facile formation of precipitating products should be highlighted, and in this context, the search for efficient mass and energy transfers is a must. Such limitations have been partially overcome with the aid of ultrasound in conventional flow systems, and can now be successfully used in microreactors, which provide new capabilities. Novel applications and a better understanding of the physical and chemical aspects of sonochemistry can certainly be achieved by combining microfluidics and ultrasound. We will review this nascent area of research, paying attention to the latest developments and showing future directions, which benefit both from the existing microfluidic technology and sonochemistry itself.

  19. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.

    Science.gov (United States)

    Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen

    2010-10-15

    In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.

  20. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    Science.gov (United States)

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  1. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids

    Science.gov (United States)

    Awang, Robiatun A.; Tovar-Lopez, Francisco J.; Baum, Thomas; Sriram, Sharath; Rowe, Wayne S. T.

    2017-03-01

    High sensitivity microwave frequency microfluidic sensing is gaining popularity in chemical and biosensing applications for evaluating the dielectric properties of liquid samples. Here, we show that a tiny microfluidic channel positioned in the gaps of a dual-gap meta-atom split-ring resonator can exploit the electric field sensitivity to predict the dielectric properties of liquid samples. Employing an empirical relation between resonant characteristics of the fabricated sensor and the complex permittivity of water-ethanol or water-methanol mixtures produces good congruence to standardized values from the literature. This microfluidic sensor offers a potential lab-on-chip solution for liquid dielectric characterization without external electrical connections.

  2. A Student-Made Microfluidic Device for Electrophoretic Separation of Food Dyes

    Science.gov (United States)

    Teerasong, Saowapak; McClain, Robert L.

    2011-01-01

    We have developed an undergraduate laboratory activity to introduce students to microfluidics. In the activity, each student constructs their own microfluidic device using simple photolithographic techniques and then uses the device to separate a food dye mixture by electrophoresis. Dyes are used so that students are able to visually observe the…

  3. Computational Fluid Dynamics at work - Design and Optimization of Microfluidic Applications

    DEFF Research Database (Denmark)

    Krühne, Ulrich; Bodla, Vijaya Krishna; Møllenbach, Jacob

    2012-01-01

    and a simple biological model. The result is a suggestion of an improved geometry design. In the second case study a microfluidic cartridge of a novel automated in vitro fertilization device is presented, where the CFD model has supported the fluidic design of the microfluidic network in which the stem cells...

  4. A microfluidic device with pillars

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a microfluidic device for mixing liquid reagents, the device comprises, a chip forming at least one reaction chamber between a bottom and a top and extending between an inlet and an outlet. To enable manufacturing from less rigid materials, the device comprises pillars...

  5. Development of a microfluidic perfusion 3D cell culture system

    Science.gov (United States)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  6. Clear Castable Polyurethane Elastomer for Fabrication of Microfluidic Devices

    Science.gov (United States)

    Domansky, Karel; Leslie, Daniel C.; McKinney, James; Fraser, Jacob P.; Sliz, Josiah D.; Hamkins-Indik, Tiama; Hamilton, Geraldine A.; Bahinski, Anthony; Ingber, Donald E.

    2013-01-01

    Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules. PMID:23954953

  7. Various On-Chip Sensors with Microfluidics for Biological Applications

    Directory of Open Access Journals (Sweden)

    Hun Lee

    2014-09-01

    Full Text Available In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR and surface-enhanced Raman scattering (SERS to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV and greater depth of field (DOF. As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  8. Quantum dot-based microfluidic biosensor for cancer detection

    Science.gov (United States)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  9. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.

    Science.gov (United States)

    Zhang, Yu Shrike; Pi, Qingmeng; van Genderen, Anne Metje

    2017-08-11

    Engineering vascularized tissue constructs and organoids has been historically challenging. Here we describe a novel method based on microfluidic bioprinting to generate a scaffold with multilayer interlacing hydrogel microfibers. To achieve smooth bioprinting, a core-sheath microfluidic printhead containing a composite bioink formulation extruded from the core flow and the crosslinking solution carried by the sheath flow, was designed and fitted onto the bioprinter. By blending gelatin methacryloyl (GelMA) with alginate, a polysaccharide that undergoes instantaneous ionic crosslinking in the presence of select divalent ions, followed by a secondary photocrosslinking of the GelMA component to achieve permanent stabilization, a microfibrous scaffold could be obtained using this bioprinting strategy. Importantly, the endothelial cells encapsulated inside the bioprinted microfibers can form the lumen-like structures resembling the vasculature over the course of culture for 16 days. The endothelialized microfibrous scaffold may be further used as a vascular bed to construct a vascularized tissue through subsequent seeding of the secondary cell type into the interstitial space of the microfibers. Microfluidic bioprinting provides a generalized strategy in convenient engineering of vascularized tissues at high fidelity.

  10. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio

    2016-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...... cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm...

  11. Direct current insulator based dielectrophoresis (DC-iDEP) microfluidic chip for blood plasma separation

    OpenAIRE

    Mohammadi, Mahdi

    2015-01-01

    Lab-on-a-Chip (LOC) integrated microfluidics has been a powerful tool for new developments in analytical chemistry. These microfluidic systems enable the miniaturization, integration and automation of complex biochemical assays through the reduction of reagent use and enabling portability.Cell and particle separation in microfluidic systems has recently gained significant attention in many sample preparations for clinical procedures. Direct-current insulator-based dielectrophoresis (DC-iDEP) ...

  12. Digital microfluidics for automated hanging drop cell spheroid culture.

    Science.gov (United States)

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. © 2014 Society for Laboratory Automation and Screening.

  13. Merging microfluidics and sonochemistry: towards greener and more efficient micro-sono-reactors

    NARCIS (Netherlands)

    Fernandez Rivas, David; Cintas, P.; Gardeniers, Johannes G.E.

    2012-01-01

    Microfluidics enable the manipulation of chemical reactions using very small amounts of fluid, in channels with dimensions of tens to hundreds of micrometers; so-called microstructured devices, from which the iconic image of chips emerges. The immediate attraction of microfluidics lies in its

  14. Mixing in a Microfluid Device

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Deryabin, Mikhail

    Mixing of fluids in microchannels cannot rely on turbulence since the flow takes place at extremly low Reynolds numbers. Various active and passive devices have been developed to induce mixing in microfluid flow devices. We describe here a model of an active mixer where a transverse periodic flow...

  15. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.

    Science.gov (United States)

    Mauk, Michael G; Liu, Changchun; Qiu, Xianbo; Chen, Dafeng; Song, Jinzhao; Bau, Haim H

    2017-01-01

    Microfluidic cassettes ("chips") for processing and analysis of clinical specimens and other sample types facilitate point-of-care (POC) immunoassays and nucleic acid based amplification tests. These single-use test chips can be self-contained and made amenable to autonomous operation-reducing or eliminating supporting instrumentation-by incorporating laminated, pliable "pouch" and membrane structures for fluid storage, pumping, mixing, and flow control. Materials and methods for integrating flexible pouch compartments and diaphragm valves into hard plastic (e.g., acrylic and polycarbonate) microfluidic "chips" for reagent storage, fluid actuation, and flow control are described. We review several versions of these pouch chips for immunoassay and nucleic acid amplification tests, and describe related fabrication techniques. These protocols thus offer a "toolbox" of methods for storage, pumping, and flow control functions in microfluidic devices.

  16. A new UV-curing elastomeric substrate for rapid prototyping of microfluidic devices

    Science.gov (United States)

    Alvankarian, Jafar; Yeop Majlis, Burhanuddin

    2012-03-01

    Rapid prototyping in the design cycle of new microfluidic devices is very important for shortening time-to-market. Researchers are facing the challenge to explore new and suitable substrates with simple and efficient microfabrication techniques. In this paper, we introduce and characterize a UV-curing elastomeric polyurethane methacrylate (PUMA) for rapid prototyping of microfluidic devices. The swelling and solubility of PUMA in different chemicals is determined. Time-dependent measurements of water contact angle show that the native PUMA is hydrophilic without surface treatment. The current monitoring method is used for measurement of the electroosmotic flow mobility in the microchannels made from PUMA. The optical, physical, thermal and mechanical properties of PUMA are evaluated. The UV-lithography and molding process is used for making micropillars and deep channel microfluidic structures integrated to the supporting base layer. Spin coating is characterized for producing different layer thicknesses of PUMA resin. A device is fabricated and tested for examining the strength of different bonding techniques such as conformal, corona treating and semi-curing of two PUMA layers in microfluidic application and the results show that the bonding strengths are comparable to that of PDMS. We also report fabrication and testing of a three-layer multi inlet/outlet microfluidic device including a very effective fluidic interconnect for application demonstration of PUMA as a promising new substrate. A simple micro-device is developed and employed for observing the pressure deflection of membrane made from PUMA as a very effective elastomeric valve in microfluidic devices.

  17. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Science.gov (United States)

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  18. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.

    Science.gov (United States)

    Lin, Hangyu; Chen, Junfang; Chen, Chuanpin

    2016-09-01

    Microbubbles are used as ultrasound contrast agents, which enhance ultrasound imaging techniques. In addition, microbubbles currently show promise in disease therapeutics. Microfluidic devices have increased the ability to produce microbubbles with precise size, and high monodispersity compared to microbubbles created using traditional methods. This paper will review several variations in microfluidic device structures used to produce microbubbles as ultrasound contrast agents. Microfluidic device structures include T-junction, and axisymmetric and asymmetric flow-focusing. These devices have made it possible to produce microbubbles that can enter the vascular space; these microbubbles must be less than 10 μm in diameter and have high monodispersity. For different demands of microbubbles production rate, asymmetric flow-focusing devices were divided into individual and integrated devices. In addition, asymmetric flow-focusing devices can produce double layer and multilayer microbubbles loaded with drug or biological components. Details on the mechanisms of both bubble formation and device structures are provided. Finally, microfluidically produced microbubble acoustic responses, microbubble stability, and microbubble use in ultrasound imaging are discussed.

  19. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Directory of Open Access Journals (Sweden)

    Jenny Jeong

    Full Text Available Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  20. Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues.

    Science.gov (United States)

    Huang, Yu; Williams, Justin C; Johnson, Stephen M

    2012-06-21

    Isolated brain tissue, especially brain slices, are valuable experimental tools for studying neuronal function at the network, cellular, synaptic, and single channel levels. Neuroscientists have refined the methods for preserving brain slice viability and function and converged on principles that strongly resemble the approach taken by engineers in developing microfluidic devices. With respect to brain slices, microfluidic technology may 1) overcome the traditional limitations of conventional interface and submerged slice chambers and improve oxygen/nutrient penetration into slices, 2) provide better spatiotemporal control over solution flow/drug delivery to specific slice regions, and 3) permit successful integration with modern optical and electrophysiological techniques. In this review, we highlight the unique advantages of microfluidic devices for in vitro brain slice research, describe recent advances in the integration of microfluidic devices with optical and electrophysiological instrumentation, and discuss clinical applications of microfluidic technology as applied to brain slices and other non-neuronal tissues. We hope that this review will serve as an interdisciplinary guide for both neuroscientists studying brain tissue in vitro and engineers as they further develop microfluidic chamber technology for neuroscience research.

  1. Microfluidic pressure sensing using trapped air compression.

    Science.gov (United States)

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  2. Thermo-driven microcrawlers fabricated via a microfluidic approach

    International Nuclear Information System (INIS)

    Wang Wei; Yao Chen; Zhang Maojie; Ju Xiaojie; Xie Rui; Chu Liangyin

    2013-01-01

    A novel thermo-driven microcrawler that can transform thermal stimuli into directional mechanical motion is developed by a simple microfluidic approach together with emulsion-template synthesis. The microcrawler is designed with a thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel body and a bell-like structure with an eccentric cavity. The asymmetric shrinking–swelling circulation of the microcrawlers enables a thermo-driven locomotion responding to repeated temperature changes, which provides a novel model with symmetry breaking principle for designing biomimetic soft microrobots. The microfluidic approach offers a novel and promising platform for design and fabrication of biomimetic soft microrobots. (paper)

  3. Fabricating PFPE Membranes for Microfluidic Valves and Pumps

    Science.gov (United States)

    Greer, Frank; White, Victor E.; Lee, Michael C.; Willis, Peter A.; Grunthaner, Frank J.; Rolland, Jason; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating membranes of a perfluoropolyether (PFPE) and integrating them into valves and pumps in laboratory-on-achip microfluidic devices. Membranes of poly(tetrafluoroethylene) [PTFE] and poly(dimethylsilane) [PDMS] have been considered for this purpose and found wanting. By making it possible to use PFPE instead of PTFE or PDMS, the present process expands the array of options for further development of microfluidic devices for diverse applications that could include detection of biochemicals of interest, detection of toxins and biowarfare agents, synthesis and analysis of proteins, medical diagnosis, and synthesis of fuels.

  4. Fabrication, Metrology, and Transport Characteristics of Single Polymeric Nanopores in Three-Dimensional Hybrid Microfluidic/Nanofluidic Devices

    Science.gov (United States)

    King, Travis L.

    2009-01-01

    The incorporation of nanofluidic elements between microfluidic channels to form hybrid microfluidic/nanofluidic architectures allows the extension of microfluidic systems into the third dimension, thus removing the constraints imposed by planarity. Measuring and understanding the behavior of these devices creates new analytical challenges due to…

  5. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.

    Science.gov (United States)

    Wang, Jidong; Chen, Wenwen; Sun, Jiashu; Liu, Chao; Yin, Qifang; Zhang, Lu; Xianyu, Yunlei; Shi, Xinghua; Hu, Guoqing; Jiang, Xingyu

    2014-05-21

    This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications.

  6. Intensely oscillating cavitation bubble in microfluidics

    International Nuclear Information System (INIS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-01-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range. (paper)

  7. Comparison of static and microfluidic protease assays using modified bioluminescence resonance energy transfer chemistry.

    Directory of Open Access Journals (Sweden)

    Nan Wu

    Full Text Available BACKGROUND: Fluorescence and bioluminescence resonance energy transfer (F/BRET are two forms of Förster resonance energy transfer, which can be used for optical transduction of biosensors. BRET has several advantages over fluorescence-based technologies because it does not require an external light source. There would be benefits in combining BRET transduction with microfluidics but the low luminance of BRET has made this challenging until now. METHODOLOGY: We used a thrombin bioprobe based on a form of BRET (BRET(H, which uses the BRET(1 substrate, native coelenterazine, with the typical BRET(2 donor and acceptor proteins linked by a thrombin target peptide. The microfluidic assay was carried out in a Y-shaped microfluidic network. The dependence of the BRET(H ratio on the measurement location, flow rate and bioprobe concentration was quantified. Results were compared with the same bioprobe in a static microwell plate assay. PRINCIPAL FINDINGS: The BRET(H thrombin bioprobe has a lower limit of detection (LOD than previously reported for the equivalent BRET(1-based version but it is substantially brighter than the BRET(2 version. The normalised BRET(H ratio of the bioprobe changed 32% following complete cleavage by thrombin and 31% in the microfluidic format. The LOD for thrombin in the microfluidic format was 27 pM, compared with an LOD of 310 pM, using the same bioprobe in a static microwell assay, and two orders of magnitude lower than reported for other microfluidic chip-based protease assays. CONCLUSIONS: These data demonstrate that BRET based microfluidic assays are feasible and that BRET(H provides a useful test bed for optimising BRET-based microfluidics. This approach may be convenient for a wide range of applications requiring sensitive detection and/or quantification of chemical or biological analytes.

  8. Microfluidic Diatomite Analytical Devices for Illicit Drug Sensing with ppb-Level Sensitivity.

    Science.gov (United States)

    Kong, Xianming; Chong, Xinyuan; Squire, Kenny; Wang, Alan X

    2018-04-15

    The escalating research interests in porous media microfluidics, such as microfluidic paper-based analytical devices, have fostered a new spectrum of biomedical devices for point-of-care (POC) diagnosis and biosensing. In this paper, we report microfluidic diatomite analytical devices (μDADs), which consist of highly porous photonic crystal biosilica channels, as an innovative lab-on-a-chip platform to detect illicit drugs. The μDADs in this work are fabricated by spin-coating and tape-stripping diatomaceous earth on regular glass slides with cross section of 400×30µm 2 . As the most unique feature, our μDADs can simultaneously perform on-chip chromatography to separate small molecules from complex biofluidic samples and acquire the surface-enhanced Raman scattering spectra of the target chemicals with high specificity. Owing to the ultra-small dimension of the diatomite microfluidic channels and the photonic crystal effect from the fossilized diatom frustules, we demonstrate unprecedented sensitivity down to part-per-billion (ppb) level when detecting pyrene (1ppb) from mixed sample with Raman dye and cocaine (10 ppb) from human plasma. This pioneering work proves the exclusive advantage of μDADs as emerging microfluidic devices for chemical and biomedical sensing, especially for POC drug screening.

  9. Silk-microfluidics for advanced biotechnological applications: A progressive review.

    Science.gov (United States)

    Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B

    2016-01-01

    Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks

    OpenAIRE

    Heintz, Keely A.; Mayerich, David; Slater, John H.

    2017-01-01

    This detailed protocol outlines the implementation of image-guided, laser-based hydrogel degradation for the fabrication of vascular-derived microfluidic networks embedded in PEGDA hydrogels. Here, we describe the creation of virtual masks that allow for image-guided laser control; the photopolymerization of a micromolded PEGDA hydrogel, suitable for microfluidic network fabrication and pressure head-driven flow; the setup and use of a commercially available laser scanning confocal microscope...

  11. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  12. Review of Commercially Available Microfluidic Materials and Fabricating Techniques for Point of Care Testing

    Directory of Open Access Journals (Sweden)

    Luck EREKU

    2016-07-01

    Full Text Available During the last two decades silicon and MEMs technology had been the mainstay of early microfluidic devices. However, recent times have brought into focus the need for low cost and readily available materials capable of achieving the expected microfluidics physical and chemical requirements. Also what mentioning is the rapid improvement in microfabrication technology over the years, which has significantly aided new and cheaper ways to produce microfluidic Point-Of-Care-Testing devices commercially or for research purposes. This review article discusses the usefulness of a wide range of available materials and their unique properties suitability in microfluidic applications. Likewise, advantages and drawbacks of manufacturing procedures and outputs of different fabrication methods are also brought into focus.

  13. Standardized and modular microfluidic platform for fast lab on chip system development

    NARCIS (Netherlands)

    Dekker, Stefan; van den Berg, Albert; Odijk, Mathieu; Lee, Abraham; DeVoe, Don

    2017-01-01

    This paper reports a modular microfluidic system with standardized parts, enabling rapid prototyping of lab on chip systems. Herewith contributing to the technology transfer from academy to industry. The use of standardized parts also makes it possible to design a microfluidic systems in a top down

  14. Particle Manipulation Methods in Droplet Microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  15. Micromechanical photothermal analyser of microfluidic samples

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a micromechanical photothermal analyser of microfluidic samples comprising an oblong micro-channel extending longitudinally from a support element, the micro-channel is made from at least two materials with different thermal expansion coefficients, wherein...

  16. Rapid antibiotic susceptibility testing in a microfluidic pH sensor.

    Science.gov (United States)

    Tang, Yanyan; Zhen, Li; Liu, Jingqing; Wu, Jianmin

    2013-03-05

    For appropriate selection of antibiotics in the treatment of pathogen infection, rapid antibiotic susceptibility testing (AST) is urgently needed in clinical practice. This study reports the utilization of a microfluidic pH sensor for monitoring bacterial growth rate in culture media spiked with different kinds of antibiotics. The microfluidic pH sensor was fabricated by integration of pH-sensitive chitosan hydrogel with poly(dimethylsiloxane) (PDMS) microfluidic channels. For facilitating the reflectometric interference spectroscopic measurements, the chitosan hydrogel was coated on an electrochemically etched porous silicon chip, which was used as the substrate of the microfluidic channel. Real-time observation of the pH change in the microchannel can be realized by Fourier transform reflectometric interference spectroscopy (FT-RIFS), in which the effective optical thickness (EOT) was selected as the optical signal for indicating the reversible swelling process of chitosan hydrogel stimulated by pH change. With this microfluidic pH sensor, we demonstrate that confinement of bacterial cells in a nanoliter size channel allows rapid accumulation of metabolic products and eliminates the need for long-time preincubation, thus reducing the whole detection time. On the basis of this technology, the whole bacterial growth curve can be obtained in less than 2 h, and consequently rapid AST can be realized. Compared with conventional methods, the AST data acquired from the bacterial growth curve can provide more detailed information for studying the antimicrobial behavior of antibiotics during different stages. Furthermore, the new technology also provides a convenient method for rapid minimal inhibition concentration (MIC) determination of individual antibiotics or the combinations of antibiotics against human pathogens that will find application in clinical and point-of-care medicine.

  17. A Sensitive Chemotaxis Assay Using a Novel Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2013-01-01

    Full Text Available Existing chemotaxis assays do not generate stable chemotactic gradients and thus—over time—functionally measure only nonspecific random motion (chemokinesis. In comparison, microfluidic technology has the capacity to generate a tightly controlled microenvironment that can be stably maintained for extended periods of time and is, therefore, amenable to adaptation for assaying chemotaxis. We describe here a novel microfluidic device for sensitive assay of cellular migration and show its application for evaluating the chemotaxis of smooth muscle cells in a chemokine gradient.

  18. [Synthesis of hollow titania microspheres by using microfluidic droplet-template].

    Science.gov (United States)

    Ma, Jingyun; Jiang, Lei; Qin, Jianhu

    2011-09-01

    Droplet-based microfluidics is of great interest due to its particular characteristics compared with the conventional methods, such as reduced reagent consumption, rapid mixing, high-throughput, shape controlled, etc. A novel method using microfluidic droplet as soft template for the synthesis of hollow titania microspheres was developed. A typical polydimethylsiloxane (PDMS) microfluidic device containing "flow-focusing" geometry was used to generate water/oil (W/O) droplet. The mechanism for the hollow structure formation was based on the interfacial hydrolysis reaction between the continuous phase containing titanium butoxide precursor and the dispersed containing water. The continuous phase mixed with butanol was added in the downstream of the channel after the hydrolysis reaction. This step was used for drawing the water out of the microgels for further hydrolysis. The microgels obtained through a glass pipe integrated were washed, dried under vacuum and calcined after aging for a certain time. The fluorescence and scanning electron microscope (SEM) image of the microspheres indicated the hollow structure and the thickness of the shell. In addition, these microspheres with thin shell (about 2 microm) were apt to rupture and collapse. Droplet-based microfluidic offered a gentle and size-controllable manner to moderate this problem. Moreover, it has potential applications in photocatalysis combined with some modification realized on the chip simultaneously.

  19. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.

    Science.gov (United States)

    Chen, Arnold; Pan, Tingrui

    2014-09-07

    Bistable microvalves are of particular interest because of their distinct nature of requiring energy consumption only during the transition between the open and closed states. This characteristic can be highly advantageous in reducing the number of external inputs and the complexity of control circuitries since microfluidic devices as contemporary lab-on-a-chip platforms are transferring from research settings to low-resource environments with high integrability and a small form factor. In this paper, we first present manually operatable, on-chip bistable pneumatic microstructures (BPMs) for microfluidic manipulation. The structural design and operation of the BPM devices can be readily integrated into any pneumatically powered microfluidic network consisting of pneumatic and fluidic channels. It is mainly composed of a vacuum activation chamber (VAC) and a pressure release chamber (PRC), of which users have direct control through finger pressing to switch either to the bistable vacuum state (VS) or the atmospheric state (AS). We have integrated multiple BPM devices into a 4-to-1 microfluidic multiplexor to demonstrate on-chip digital flow switching from different sources. Furthermore, we have shown its clinical relevance in a point-of-care diagnostic chip that processes blood samples to identify the distinct blood types (A/B/O) on-chip.

  20. Optical bio-sensors in microfluidic chips

    NARCIS (Netherlands)

    Pollnau, Markus; Dongre, C.; Pham Van So, P.V.S.; Bernhardi, Edward; Worhoff, Kerstin; de Ridder, R.M.; Hoekstra, Hugo

    2012-01-01

    Direct femtosecond laser writing is used to integrate optical waveguides that intersect the microfluidic channels in a commercial optofluidic chip. With laser excitation, fluorescently labeled DNA molecules of different sizes are separated by capillary electrophoresis with high operating speed and

  1. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.

    Science.gov (United States)

    Berenguel-Alonso, Miguel; Sabés-Alsina, Maria; Morató, Roser; Ymbern, Oriol; Rodríguez-Vázquez, Laura; Talló-Parra, Oriol; Alonso-Chamarro, Julián; Puyol, Mar; López-Béjar, Manel

    2017-10-01

    Assisted reproductive technology (ART) can benefit from the features of microfluidic technologies, such as the automation of time-consuming labor-intensive procedures, the possibility to mimic in vivo environments, and the miniaturization of the required equipment. To date, most of the proposed approaches are based on polydimethylsiloxane (PDMS) as platform substrate material due to its widespread use in academia, despite certain disadvantages, such as the elevated cost of mass production. Herein, we present a rapid fabrication process for a cyclic olefin copolymer (COC) monolithic microfluidic device combining hot embossing-using a low-temperature cofired ceramic (LTCC) master-and micromilling. The microfluidic device was suitable for trapping and maturation of bovine oocytes, which were further studied to determine their ability to be fertilized. Furthermore, another COC microfluidic device was fabricated to store sperm and assess its quality parameters over time. The study herein presented demonstrates a good biocompatibility of the COC when working with gametes, and it exhibits certain advantages, such as the nonabsorption of small molecules, gas impermeability, and low fabrication costs, all at the prototyping and mass production scale, thus taking a step further toward fully automated microfluidic devices in ART.

  2. Automated Microfluidic Platform for Serial Polymerase Chain Reaction and High-Resolution Melting Analysis.

    Science.gov (United States)

    Cao, Weidong; Bean, Brian; Corey, Scott; Coursey, Johnathan S; Hasson, Kenton C; Inoue, Hiroshi; Isano, Taisuke; Kanderian, Sami; Lane, Ben; Liang, Hongye; Murphy, Brian; Owen, Greg; Shinoda, Nobuhiko; Zeng, Shulin; Knight, Ivor T

    2016-06-01

    We report the development of an automated genetic analyzer for human sample testing based on microfluidic rapid polymerase chain reaction (PCR) with high-resolution melting analysis (HRMA). The integrated DNA microfluidic cartridge was used on a platform designed with a robotic pipettor system that works by sequentially picking up different test solutions from a 384-well plate, mixing them in the tips, and delivering mixed fluids to the DNA cartridge. A novel image feedback flow control system based on a Canon 5D Mark II digital camera was developed for controlling fluid movement through a complex microfluidic branching network without the use of valves. The same camera was used for measuring the high-resolution melt curve of DNA amplicons that were generated in the microfluidic chip. Owing to fast heating and cooling as well as sensitive temperature measurement in the microfluidic channels, the time frame for PCR and HRMA was dramatically reduced from hours to minutes. Preliminary testing results demonstrated that rapid serial PCR and HRMA are possible while still achieving high data quality that is suitable for human sample testing. © 2015 Society for Laboratory Automation and Screening.

  3. Detection of Plasmodium Aldolase Using a Smartphone and Microfluidic Enzyme Linked Immunosorbent Assay

    Directory of Open Access Journals (Sweden)

    Nikhil S. Gopal

    2017-01-01

    Full Text Available Background. Malaria control efforts are limited in rural areas. A low-cost system to monitor response without the use of electricity is needed. Plasmodium aldolase is a malaria biomarker measured using enzyme linked immunosorbent assay (ELISA techniques. A three-part system using ELISA was developed consisting of a microfluidic chip, hand crank centrifuge, and a smartphone. Methods. A circular microfluidic chip was fabricated using clear acrylic and a CO2 laser. A series of passive valves released reagents at precise times based upon centrifugal force. Color change was measured via smartphone camera using an application programmed in Java. The microchip was compared to a standard 96-well sandwich ELISA. Results. Results from standard ELISA were compared to microchip at varying concentrations (1–10 ng/mL. Over 15 different microfluidic patterns were tested, and a final prototype of the chip was created. The prototype microchip was compared to standard sandwich ELISA (n=20 using samples of recombinant aldolase. Color readings of standard ELISA and microfluidic microchip showed similar results. Conclusion. A low-cost microfluidic system could detect and follow therapeutic outcomes in rural areas and identify resistant strains.

  4. Microfluidic interconnects

    Science.gov (United States)

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  5. A microfluidic cell culture device with integrated microelectrodes for barrier studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Dufva, Martin; Kutter, Jörg P.

    We present an eight cell culture microfluidic device fabricated using thiol-ene ‘click’ chemistry with embedded microelectrodes for evaluating barrier properties of human intestinal epithelial cells. The capability of the microelectrodes for trans-epithelial electrical resistance (TEER) measureme......) measurements was demonstrated by using confluent human colorectal epithelial cells (Caco-2) and rat fibroblast (CT 26) cells cultured in the microfluidic device....

  6. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    Science.gov (United States)

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  7. Application of microfluidics for the development of intensified aminotransferase (ATA) processes

    DEFF Research Database (Denmark)

    Heintz, Søren

    Development of biocatalytic processes is greatly dominated by well-established batch process based screening technologies, e.g. glass vials (mL) and microtiter plates (μL). However, there is still a need for improvement of currently available technologies and for new technologies enabling...... relatively easy screening and characterization of different process options. For example, small-scale microfluidic platforms enable testing of complex process options, by combining multiple process steps in a plug-and-play manner, that are difficult to assess with conventional methods. Early...... of biocatalytic processes. Within this thesis, microfluidic modules are applied as tools to screen, characterize, and test reactor and separation process options. Furthermore, multiple microfluidic modules are combined in order to test complex process configurations, i.e. reactor modules combined with separation...

  8. Binary particle separation in droplet microfluidics using acoustophoresis

    Science.gov (United States)

    Fornell, Anna; Cushing, Kevin; Nilsson, Johan; Tenje, Maria

    2018-02-01

    We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

  9. A microfluidic direct formate fuel cell on paper.

    Science.gov (United States)

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Integrated microfluidic capillary in a waveguide resonator for chemical and biomedical sensing

    International Nuclear Information System (INIS)

    Pavuluri, S K; Lopez-Villarroya, R; McKeever, E; Goussetis, G; Desmulliez, M P Y; Kavanagh, D

    2009-01-01

    A novel microfluidic sensing device based on waveguide cavity filters is proposed for the characterisation, detection of cells in solution and chemical substances in micro-litre volumes. The sensor consists of a micromachined microfluidic channel within a waveguide-based resonator localised increased near-fields and could potentially be designed for different frequency regimes to improve the sensitivity. The present sensor has been proposed for fabrication in different manufacturing platforms and an initial prototype with a 100μm micromachined channel that is embedded within an X-band E-plane waveguide has been fabricated and tested. The design methodology for the microfluidic channel and the E-plane filter is also presented.

  11. Generation of emulsion droplets and micro-bubbles in microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-04-01

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology to manipulate small amounts of liquid samples. In addition to microdroplets, microbubbles are also needed for various pro- cesses in the food, healthcare and cosmetic industries. Polydimethylsiloxane (PDMS) soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. In ad- dition, current methods have the limited capabilities for fabrication of microfluidic devices within three dimensional (3D) structures. Novel methods for fabrication of droplet-based microfluidic devices for the generation microdroplets and microbubbles are therefore of great interest in current research. In this thesis, we have developed several simple, rapid and low-cost methods for fabrication of microfluidic devices, especially for generation of microdroplets and mi- crobubbles. We first report an inexpensive full-glass microfluidic devices with as- sembly of glass capillaries, for generating monodisperse multiple emulsions. Different types of devices have been designed and tested and the experimental results demon- strated the robust capability of preparing monodisperse single, double, triple and multi-component emulsions. Second, we propose a similar full-glass device for generation of microbubbles, but with assembly of a much smaller nozzle of a glass capillary. Highly monodisperse microbubbles with diameter range from 3.5 to 60 microns have been successfully produced, at rates up to 40 kHz. A simple scaling law based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. Recently, the emergent 3D printing technology provides an attractive fabrication technique, due to its simplicity and low cost. A handful of studies have already demonstrated droplet production through 3D-printed microfluidic devices. However, two

  12. Electrochemistry, biosensors and microfluidics: a convergence of fields.

    Science.gov (United States)

    Rackus, Darius G; Shamsi, Mohtashim H; Wheeler, Aaron R

    2015-08-07

    Electrochemistry, biosensors and microfluidics are popular research topics that have attracted widespread attention from chemists, biologists, physicists, and engineers. Here, we introduce the basic concepts and recent histories of electrochemistry, biosensors, and microfluidics, and describe how they are combining to form new application-areas, including so-called "point-of-care" systems in which measurements traditionally performed in a laboratory are moved into the field. We propose that this review can serve both as a useful starting-point for researchers who are new to these topics, as well as being a compendium of the current state-of-the art for experts in these evolving areas.

  13. CD-Based Microfluidics for Primary Care in Extreme Point-of-Care Settings

    Directory of Open Access Journals (Sweden)

    Suzanne Smith

    2016-01-01

    Full Text Available We review the utility of centrifugal microfluidic technologies applied to point-of-care diagnosis in extremely under-resourced environments. The various challenges faced in these settings are showcased, using areas in India and Africa as examples. Measures for the ability of integrated devices to effectively address point-of-care challenges are highlighted, and centrifugal, often termed CD-based microfluidic technologies, technologies are presented as a promising platform to address these challenges. We describe the advantages of centrifugal liquid handling, as well as the ability of a standard CD player to perform a number of common laboratory tests, fulfilling the role of an integrated lab-on-a-CD. Innovative centrifugal approaches for point-of-care in extremely resource-poor settings are highlighted, including sensing and detection strategies, smart power sources and biomimetic inspiration for environmental control. The evolution of centrifugal microfluidics, along with examples of commercial and advanced prototype centrifugal microfluidic systems, is presented, illustrating the success of deployment at the point-of-care. A close fit of emerging centrifugal systems to address a critical panel of tests for under-resourced clinic settings, formulated by medical experts, is demonstrated. This emphasizes the potential of centrifugal microfluidic technologies to be applied effectively to extremely challenging point-of-care scenarios and in playing a role in improving primary care in resource-limited settings across the developing world.

  14. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures

    Directory of Open Access Journals (Sweden)

    Tsud Nataliya

    2008-02-01

    Full Text Available Abstract Background Polymers are attractive materials for both biomedical engineering and cardiovascular applications. Although nano-topography has been found to influence cell behaviour, no established method exists to understand and evaluate the effects of nano-topography on polymer-blood interaction. Results We optimized a micro-fluidic set-up to study the interaction of whole blood with nano-structured polymer surfaces under flow conditions. Micro-fluidic chips were coated with polymethylmethacrylate films and structured by polymer demixing. Surface feature size varied from 40 nm to 400 nm and feature height from 5 nm to 50 nm. Whole blood flow rate through the micro-fluidic channels, platelet adhesion and von Willebrand factor and fibrinogen adsorption onto the structured polymer films were investigated. Whole blood flow rate through the micro-fluidic channels was found to decrease with increasing average surface feature size. Adhesion and spreading of platelets from whole blood and von Willebrand factor adsorption from platelet poor plasma were enhanced on the structured surfaces with larger feature, while fibrinogen adsorption followed the opposite trend. Conclusion We investigated whole blood behaviour and plasma protein adsorption on nano-structured polymer materials under flow conditions using a micro-fluidic set-up. We speculate that surface nano-topography of polymer films influences primarily plasma protein adsorption, which results in the control of platelet adhesion and thrombus formation.

  15. Research highlights: microfluidics meets big data.

    Science.gov (United States)

    Tseng, Peter; Weaver, Westbrook M; Masaeli, Mahdokht; Owsley, Keegan; Di Carlo, Dino

    2014-03-07

    In this issue we highlight a collection of recent work in which microfluidic parallelization and automation have been employed to address the increasing need for large amounts of quantitative data concerning cellular function--from correlating microRNA levels to protein expression, increasing the throughput and reducing the noise when studying protein dynamics in single-cells, and understanding how signal dynamics encodes information. The painstaking dissection of cellular pathways one protein at a time appears to be coming to an end, leading to more rapid discoveries which will inevitably translate to better cellular control--in producing useful gene products and treating disease at the individual cell level. From these studies it is also clear that development of large scale mutant or fusion libraries, automation of microscopy, image analysis, and data extraction will be key components as microfluidics contributes its strengths to aid systems biology moving forward.

  16. Microfluidic Analytical Separator for Proteomics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SHOT proposes an innovative microfluidic device designed to effect a 2-dimensional resolution of a mixture of proteins based on isoelectric point (pI) and molecular...

  17. Tutorial: Digital microfluidic biochips: Towards hardware/software co-design and cyber-physical system integration

    DEFF Research Database (Denmark)

    Ho, Tsung-Yi; Huang, Juinn-Dar; Pop, Paul

    2013-01-01

    This tutorial will first provide an overview of typical bio-molecular applications (market drivers) such as immunoassays, DNA sequencing, clinical chemistry, etc. Next, microarrays and various microfluidic platforms will be discussed. The next part of the tutorial will focus on electro-wetting-ba......This tutorial will first provide an overview of typical bio-molecular applications (market drivers) such as immunoassays, DNA sequencing, clinical chemistry, etc. Next, microarrays and various microfluidic platforms will be discussed. The next part of the tutorial will focus on electro......-wetting-based digital micro-fluidic biochips. The key idea here is to manipulate liquids as discrete droplets. A number of case studies based on representative assays and laboratory procedures will be interspersed in appropriate places throughout the tutorial. Basic concepts in micro-fabrication techniques will also...... be discussed. Attendees will next learn about CAD and reconfiguration aspects of digital microfluidic biochips. Synthesis tools will be described to map assay protocols from the lab bench to a droplet-based microfluidic platform and generate an optimized schedule of bioassay operations, the binding of assay...

  18. An investigation of paper based microfluidic devices for size based separation and extraction applications.

    Science.gov (United States)

    Zhong, Z W; Wu, R G; Wang, Z P; Tan, H L

    2015-09-01

    Conventional microfluidic devices are typically complex and expensive. The devices require the use of pneumatic control systems or highly precise pumps to control the flow in the devices. This work investigates an alternative method using paper based microfluidic devices to replace conventional microfluidic devices. Size based separation and extraction experiments conducted were able to separate free dye from a mixed protein and dye solution. Experimental results showed that pure fluorescein isothiocyanate could be separated from a solution of mixed fluorescein isothiocyanate and fluorescein isothiocyanate labeled bovine serum albumin. The analysis readings obtained from a spectrophotometer clearly show that the extracted tartrazine sample did not contain any amount of Blue-BSA, because its absorbance value was 0.000 measured at a wavelength of 590nm, which correlated to Blue-BSA. These demonstrate that paper based microfluidic devices, which are inexpensive and easy to implement, can potentially replace their conventional counterparts by the use of simple geometry designs and the capillary action. These findings will potentially help in future developments of paper based microfluidic devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Slopes To Prevent Trapping of Bubbles in Microfluidic Channels

    Science.gov (United States)

    Greer, Harold E.; Lee, Michael C.; Smith, J. Anthony; Willis, Peter A.

    2010-01-01

    The idea of designing a microfluidic channel to slope upward along the direction of flow of the liquid in the channel has been conceived to help prevent trapping of gas bubbles in the channel. In the original application that gave rise to this idea, the microfluidic channels are parts of micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. It is necessary to prevent trapping of gas bubbles in these devices because uninterrupted liquid pathways are essential for sustaining the electrical conduction and flows that are essential for CE. The idea is also applicable to microfluidic devices that may be developed for similar terrestrial microCE biotechnological applications or other terrestrial applications in which trapping of bubbles in microfluidic channels cannot be tolerated. A typical microCE device in the original application includes, among other things, multiple layers of borosilicate float glass wafers. Microfluidic channels are formed in the wafers, typically by use of wet chemical etching. The figure presents a simplified cross section of part of such a device in which the CE channel is formed in the lowermost wafer (denoted the channel wafer) and, according to the present innovation, slopes upward into a via hole in another wafer (denoted the manifold wafer) lying immediately above the channel wafer. Another feature of the present innovation is that the via hole in the manifold wafer is made to taper to a wider opening at the top to further reduce the tendency to trap bubbles. At the time of reporting the information for this article, an effort to identify an optimum technique for forming the slope and the taper was in progress. Of the techniques considered thus far, the one considered to be most promising is precision milling by use of femtosecond laser pulses. Other similar techniques that may work equally well are precision milling using a focused ion beam, or a small diamond

  20. Heterogenous integration of a thin-film GaAs photodetector and a microfluidic device on a silicon substrate

    International Nuclear Information System (INIS)

    Song, Fuchuan; Xiao, Jing; Udawala, Fidaali; Seo, Sang-Woo

    2011-01-01

    In this paper, heterogeneous integration of a III–V semiconductor thin-film photodetector (PD) with a microfluidic device is demonstrated on a SiO 2 –Si substrate. Thin-film format of optical devices provides an intimate integration of optical functions with microfluidic devices. As a demonstration of a multi-material and functional system, the biphasic flow structure in the polymeric microfluidic channels was co-integrated with a III–V semiconductor thin-film PD. The fluorescent drops formed in the microfluidic device are successfully detected with an integrated thin-film PD on a silicon substrate. The proposed three-dimensional integration structure is an alternative approach to combine optical functions with microfluidic functions on silicon-based electronic functions.

  1. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    Science.gov (United States)

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. © 2016 Society for Laboratory Automation and Screening.

  2. Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Uddalok; Chatterjee, Souvick [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607 (United States); Sen, Swarnendu [Mechanical Engineering Department, Jadavpur University, Kolkata, 700032 India (India); Tiwari, Manish K. [Department of Mechanical Engineering, University College London, London, WC1E 7JE UK (United Kingdom); Mukhopadhyay, Achintya [Mechanical Engineering Department, Jadavpur University, Kolkata, 700032 India (India); Ganguly, Ranjan, E-mail: ranjan@pe.jusl.ac.in [Department of Power Engineering, Jadavpur University, Kolkata, 700098 India (India)

    2017-01-01

    Active control of droplet generation in a microfluidic platform attracts interest for development of digital microfluidic devices ranging from biosensors to micro-reactors to point-of-care diagnostic devices. The present paper characterizes, through an unsteady three-dimensional Volume of Fluid (VOF) simulation, the active control of ferrofluid droplet generation in a microfluidic T-junction in presence of a non-uniform magnetic field created by an external magnetic dipole. Two distinctly different positions of the dipole were considered – one upstream of the junction and one downstream. While keeping the ferrofluid flow rate fixed, a parametric variation of the continuous phase capillary number, dipole strength, and dipole position was carried out. Differences in the flow behaviour in terms of dripping or jetting and the droplet characteristics in terms of droplet formation time period and droplet size were studied. The existence of a threshold dipole strength, below which the magnetic force was not able to influence the flow behaviour, was identified. It was also observed that, for dipoles placed upstream of the junction, droplet formation was suppressed at some higher dipole strengths, and this value was found to increase with increasing capillary number. Droplet time period was also found to increase with increasing dipole strength, along with droplet size, i.e. an increase in droplet volume. - Highlights: • Active control of ferrofluid droplet generation in a microfluidic T-junction is demonstrated. • Unsteady three-dimensional Volume of Fluid (VOF) simulation is adopted. • Capillary number, dipole strength and position influence droplet shedding behaviour. • Magnetic actuation of a microfluidic droplet generator is characterised.

  3. Properties of frozen dairy desserts processed by microfluidization of their mixes.

    Science.gov (United States)

    Olson, D W; White, C H; Watson, C E

    2003-04-01

    Sensory properties and rate of meltdown of nonfat (0% fat) and low-fat (2% fat) vanilla ice creams processed either by conventional valve homogenization or microfluidization of their mixes were compared with each other and to ice cream (10% fat) processed by conventional valve homogenization. Mixes for frozen dairy desserts containing 0, 2, and 10% fat were manufactured. Some of the nonfat and low-fat ice cream mixes were processed by microfluidization at 50, 100, 150, and 200 MPa, and the remaining nonfat and low-fat ice cream mixes and all of the ice cream mix were processed by conventional valve homogenization at 13.8 MPa, first stage, and 3.4 MPa, second stage. The finished frozen and hardened products were evaluated at d 1 and 45 for meltdown rate and for flavor and body and texture by preference testing. Nonfat and low-fat ice creams that usually had a slower meltdown were produced when processing their mixes by microfluidization instead of by conventional valve homogenization. Sensory scores for the ice cream were significantly higher than sensory scores for the nonfat and low-fat ice creams, but the sensory scores for the conventional valve homogenized controls for the nonfat ice cream and low-fat ice cream were not significantly different from the sensory scores for the nonfat ice cream and low-fat ice cream processed by microfluidization of the mixes, respectively. Microfluidization produced nonfat and low-fat ice creams that usually had a slower meltdown without affecting sensory properties.

  4. A Microfluidics-HPLC/Differential Mobility Spectrometer Macromolecular Detection System for Human and Robotic Missions

    Science.gov (United States)

    Coy, S. L.; Killeen, K.; Han, J.; Eiceman, G. A.; Kanik, I.; Kidd, R. D.

    2011-01-01

    Our goal is to develop a unique, miniaturized, solute analyzer based on microfluidics technology. The analyzer consists of an integrated microfluidics High Performance Liquid Chromatographic chip / Differential Mobility Spectrometer (?HPLCchip/ DMS) detection system

  5. Microfluidic Analytical Separator for Proteomics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a microfluidic device designed to effect a 2-dimensional resolution of a mixture of proteins based on isoelectric point (pI) and molecular...

  6. Parallel single-cell analysis microfluidic platform

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Gool, Elmar; Frimat, Jean-Philippe; Bomer, Johan G.; van den Berg, Albert; le Gac, Severine

    2011-01-01

    We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed.

  7. Porous Microfluidic Devices - Fabrication adn Applications

    NARCIS (Netherlands)

    de Jong, J.; Geerken, M.J.; Lammertink, Rob G.H.; Wessling, Matthias

    2007-01-01

    The major part of microfluidic devices nowadays consists of a dense material that defines the fluidic structure. A generic fabrication method enabling the production of completely porous micro devices with user-defined channel networks is developed. The channel walls can be used as a (selective)

  8. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    International Nuclear Information System (INIS)

    Warnat, S; King, H; Hubbard, T; Wasay, A; Sameoto, D

    2016-01-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x - y and rotational accuracy of  ±2 µ m and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ∼15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µ m s −1 and 20 µ m s −1 . (technical note)

  9. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

    Science.gov (United States)

    Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung

    2012-10-21

    Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.

  10. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices.

    Science.gov (United States)

    Guckenberger, David J; de Groot, Theodorus E; Wan, Alwin M D; Beebe, David J; Young, Edmond W K

    2015-06-07

    This tutorial review offers protocols, tips, insight, and considerations for practitioners interested in using micromilling to create microfluidic devices. The objective is to provide a potential user with information to guide them on whether micromilling would fill a specific need within their overall fabrication strategy. Comparisons are made between micromilling and other common fabrication methods for plastics in terms of technical capabilities and cost. The main discussion focuses on "how-to" aspects of micromilling, to enable a user to select proper equipment and tools, and obtain usable microfluidic parts with minimal start-up time and effort. The supplementary information provides more extensive discussion on CNC mill setup, alignment, and programming. We aim to reach an audience with minimal prior experience in milling, but with strong interests in fabrication of microfluidic devices.

  11. Control of the ZnO nanowires nucleation site using microfluidic channels.

    Science.gov (United States)

    Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi

    2006-03-09

    We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

  12. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip.

    Science.gov (United States)

    Sun, Yung-Shin; Li, Chang-Jyun; Hsu, Jin-Cherng

    2016-12-30

    A curved D-type optical fiber sensor (OFS) combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR) of the Kretchmann's configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA)-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10 -5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.

  13. Rapid fabrication of microfluidic chips based on the simplest LED lithography

    Science.gov (United States)

    Li, Yue; Wu, Ping; Luo, Zhaofeng; Ren, Yuxuan; Liao, Meixiang; Feng, Lili; Li, Yuting; He, Liqun

    2015-05-01

    Microfluidic chips are generally fabricated by a soft lithography method employing commercial lithography equipment. These heavy machines require a critical room environment and high lamp power, and the cost remains too high for most normal laboratories. Here we present a novel microfluidics fabrication method utilizing a portable ultraviolet (UV) LED as an alternative UV source for photolithography. With this approach, we can repeat several common microchannels as do these conventional commercial exposure machines, and both the verticality of the channel sidewall and lithography resolution are proved to be acceptable. Further microfluidics applications such as mixing, blood typing and microdroplet generation are implemented to validate the practicability of the chips. This simple but innovative method decreases the cost and requirement of chip fabrication dramatically and may be more popular with ordinary laboratories.

  14. Rapid fabrication of microfluidic chips based on the simplest LED lithography

    International Nuclear Information System (INIS)

    Li, Yue; Wu, Ping; Liao, Meixiang; Feng, Lili; Li, Yuting; He, Liqun; Luo, Zhaofeng; Ren, Yuxuan

    2015-01-01

    Microfluidic chips are generally fabricated by a soft lithography method employing commercial lithography equipment. These heavy machines require a critical room environment and high lamp power, and the cost remains too high for most normal laboratories. Here we present a novel microfluidics fabrication method utilizing a portable ultraviolet (UV) LED as an alternative UV source for photolithography. With this approach, we can repeat several common microchannels as do these conventional commercial exposure machines, and both the verticality of the channel sidewall and lithography resolution are proved to be acceptable. Further microfluidics applications such as mixing, blood typing and microdroplet generation are implemented to validate the practicability of the chips. This simple but innovative method decreases the cost and requirement of chip fabrication dramatically and may be more popular with ordinary laboratories. (paper)

  15. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.

    2012-01-01

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in......-field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...... and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants....

  16. Extraction, amplification and detection of DNA in microfluidic chip-based assays

    KAUST Repository

    Wu, Jinbo

    2013-12-20

    This review covers three aspects of PCR-based microfluidic chip assays: sample preparation, target amplification, and product detection. We also discuss the challenges related to the miniaturization and integration of each assay and make a comparison between conventional and microfluidic schemes. In order to accomplish these essential assays without human intervention between individual steps, the micro-components for fluid manipulation become critical. We therefore summarize and discuss components such as microvalves (for fluid regulation), pumps (for fluid driving) and mixers (for blending fluids). By combining the above assays and microcomponents, DNA testing of multi-step bio-reactions in microfluidic chips may be achieved with minimal external control. The combination of assay schemes with the use of micro-components also leads to rapid methods for DNA testing via multi-step bioreactions. Contains 259 references.

  17. Fabrication of All Glass Bifurcation Microfluidic Chip for Blood Plasma Separation

    Directory of Open Access Journals (Sweden)

    Hyungjun Jang

    2017-02-01

    Full Text Available An all-glass bifurcation microfluidic chip for blood plasma separation was fabricated by a cost-effective glass molding process using an amorphous carbon (AC mold, which in turn was fabricated by the carbonization of a replicated furan precursor. To compensate for the shrinkage during AC mold fabrication, an enlarged photoresist pattern master was designed, and an AC mold with a dimensional error of 2.9% was achieved; the dimensional error of the master pattern was 1.6%. In the glass molding process, a glass microchannel plate with negligible shape errors (~1.5% compared to AC mold was replicated. Finally, an all-glass bifurcation microfluidic chip was realized by micro drilling and thermal fusion bonding processes. A separation efficiency of 74% was obtained using the fabricated all-glass bifurcation microfluidic chip.

  18. Low-cost rapid prototyping of flexible plastic paper based microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities. © 2013 IEEE.

  19. Advanced gas-emission anode design for microfluidic fuel cell eliminating bubble accumulation

    International Nuclear Information System (INIS)

    Zhang, Hao; Xuan, Jin; Wang, Huizhi; Leung, Dennis Y C; Xu, Hong; Zhang, Li

    2017-01-01

    A microfluidic fuel cell is a low cost, easily fabricated energy device and is considered a promising energy supplier for portable electronics. However, the currently developed microfluidic fuel cells that are fed with hydrocarbon fuels are confronted with a bubble problem especially when operating at high current density conditions. In this work, a gas-emission anode is presented to eliminate the gas accumulation at the anode. This gas-emission anode is verified as a valid design for discharging gaseous products, which is especially beneficial for stable operation of microfluidic fuel cells. The electrochemical performance of a counter-flow microfluidic fuel cell equipped with a gas-emission anode was measured. The results indicate that the specific design of the gas-emission anode is essential for reducing the oxygen reduction reaction parasitic effect at the anode. Fuel utilization of 76.4% was achieved at a flow rate of 0.35 µ l min −1 . Current–voltage curves of single electrodes were measured and the parasitic effect at the anode was identified as the main performance limiting factor in the presented anode design. (paper)

  20. The application of microfluidic-based technologies in the cycle of metabolic engineering

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ma

    2016-09-01

    Full Text Available The process of metabolic engineering consists of multiple cycles of design, build, test and learn, which is typically laborious and time-consuming. To increase the efficiency and the rate of success of strain engineering, novel instrumentation must be applied. Microfluidics, the control of liquid flow in microstructures, has enabled flexible, accurate, automatic, and high-throughput manipulation of cells in liquid at picoliter to nanoliter scale. These attributes hold great promise in advancing metabolic engineering in terms of the phases of design, build, test and learn. To promote the application of microfluidic-based technologies in strain improvement, this review addressed the potentials of microfluidics and the related approaches in DNA assembly, transformation, strain screening, genotyping and phenotyping, and highlighted their adaptations for single-cell analysis. As a result, this facilitates in-depth understanding of the metabolic network, which in turn promote efficient optimization in the following cycles of strain engineering. Taken together, microfluidic-based technologies enable on-chip workflow, and could greatly accelerate the turnaround of metabolic engineering.

  1. A single microfluidic chip with dual surface properties for protein drug delivery.

    Science.gov (United States)

    Bokharaei, Mehrdad; Saatchi, Katayoun; Häfeli, Urs O

    2017-04-15

    Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo

    2015-12-11

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562). © 2015 Optical Society of America.

  3. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    Evander, Mikael; Tenje, Maria

    2014-01-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  4. Accumulation of BSA in Packed-bed Microfluidics

    Science.gov (United States)

    Summers, Samantha; Hu, Chuntian; Hartman, Ryan

    2012-11-01

    Alzheimers and Parkinsons are two diseases that are associated with protein deposition in the brain, causing loss of either cognitive or muscle functioning. Protein deposition diseases are considered progressive diseases since the continual aggregation of protein causes the patient's symptoms to slowly worsen over time. There are currently no known means of treatment for protein deposition diseases. Our goal is to understand the potential for packed-bed microfluidics to study protein accumulation. Measurement of the resistance to flow through micro-scale packed-beds is critical to understanding the process of protein accumulation. Aggregation in bulk is fundamentally different from accumulation on surfaces. Our study attempts to distinguish between either mechanism. The results from our experiments involving protein injection through a microfluidic system will be presented and discussed. Funding received by NSF REU Grant 1062611.

  5. Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method

    Science.gov (United States)

    Yip, Hon Ming; Li, John C. S.; Cui, Xin; Gao, Qiannan; Leung, Chi Chiu

    2014-01-01

    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities. PMID:25133248

  6. Automated long-term monitoring of parallel microfluidic operations applying a machine vision-assisted positioning method.

    Science.gov (United States)

    Yip, Hon Ming; Li, John C S; Xie, Kai; Cui, Xin; Prasad, Agrim; Gao, Qiannan; Leung, Chi Chiu; Lam, Raymond H W

    2014-01-01

    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities.

  7. Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method

    Directory of Open Access Journals (Sweden)

    Hon Ming Yip

    2014-01-01

    Full Text Available As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities.

  8. Fabrication and Characterization of Polyvinylidene Fluoride Microfilms for Microfluidic Applications

    Science.gov (United States)

    Rao, Yammani Venkat Subba; Raghavan, Aravinda Narayanan; Viswanathan, Meenakshi

    2016-10-01

    The ability to create patterns of piezo responsive material on smooth substrate is an important method to develop efficient microfluidic mixers. This paper reports the fabrication of Poly vinylidene fluoride microfilms using spin-coating on smooth glass surface. The suitable crystalline phases, surface morphology and microstructural properties of the PVDF films have been investigated. We found that films of average thickness 10μm, had average roughness of 0.13μm. These PVDF films are useful in microfluidic mixer applications.

  9. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.

    Science.gov (United States)

    Hamad, E M; Bilatto, S E R; Adly, N Y; Correa, D S; Wolfrum, B; Schöning, M J; Offenhäusser, A; Yakushenko, A

    2016-01-07

    Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing.

  10. Fundamentals of microfluidics for high school students with no prior knowledge of fluid mechanics.

    Science.gov (United States)

    Tandon, Vishal; Peck, Walter

    2013-01-01

    Three microfluidics-based laboratory exercises were developed and implemented in a high school science classroom setting. The first exercise demonstrated ways in which flows are characterized, including viscosity, turbulence, shear stress, reversibility, compressibility, and hydrodynamic resistance. Students characterized flows in poly(dimethylsiloxane) microfluidic devices in the other two exercises, where they observed the mixing characteristics of laminar flows, and conservation of volumetric flow rate for incompressible flows. In surveys, the students self-reported increased knowledge of microfluidics, and an improved attitude toward science and nanotechnology.

  11. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bio analysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  12. Light-responsive polymers for microfluidic applications

    NARCIS (Netherlands)

    ter Schiphorst, J.; Saez, J.; Diamond, D.; Benito-Lopez, F.; Schenning, A.P.H.J.

    2018-01-01

    While the microfluidic device itself may be small, often the equipment required to control fluidics in the chip unit is large e.g. pumps, valves and mixing units, which can severely limit practical use and functional scalability. In addition, components associated with fluidic control of the device,

  13. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bioanalysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  14. Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media

    NARCIS (Netherlands)

    Galindo-Rosales, F.J.; Campo-Deano, L.; Pinho, F.T.; Van Bokhorst, E.; Hamersma, P.J.; Oliveira, M.S.N.; Alves, M.A.

    2011-01-01

    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better

  15. A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform

    OpenAIRE

    Gerard , Charline ,; Ferry , Gilles; Vuillard , Laurent ,; Boutin , Jean ,; Ferte , Nathalie ,; Grossier , Romain ,; Candoni , Nadine ,; Veesler , Stéphane ,

    2018-01-01

    Here, we describe a plug-and-play microfluidic platform, suitable for protein crystallization. The droplet factory is designed to generate hundreds of droplets as small as a few nanoliters (2 to 10nL) for screening and optimization of crystallization conditions. Commercially-available microfluidic junctions and tubing are combined to create the appropriate geometry. In addition, a " chemical library " is produced in tubing. The microfluidic geometry for a " crystallization agent-based chemica...

  16. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas.

    Science.gov (United States)

    Bao, Bo; Riordon, Jason; Mostowfi, Farshid; Sinton, David

    2017-08-08

    Microfluidic systems that leverage unique micro-scale phenomena have been developed to provide rapid, accurate and robust analysis, predominantly for biomedical applications. These attributes, in addition to the ability to access high temperatures and pressures, have motivated recent expanded applications in phase measurements relevant to industrial CO 2 , oil and gas applications. We here present a comprehensive review of this exciting new field, separating microfluidic and nanofluidic approaches. Microfluidics is practical, and provides similar phase properties analysis to established bulk methods with advantages in speed, control and sample size. Nanofluidic phase behaviour can deviate from bulk measurements, which is of particular relevance to emerging unconventional oil and gas production from nanoporous shale. In short, microfluidics offers a practical, compelling replacement of current bulk phase measurement systems, whereas nanofluidics is not practical, but uniquely provides insight into phase change phenomena at nanoscales. Challenges, trends and opportunities for phase measurements at both scales are highlighted.

  17. Thin film metal sensors in fusion bonded glass chips for high-pressure microfluidics

    International Nuclear Information System (INIS)

    Andersson, Martin; Ek, Johan; Hedman, Ludvig; Johansson, Fredrik; Sehlstedt, Viktor; Stocklassa, Jesper; Snögren, Pär; Pettersson, Victor; Larsson, Jonas; Vizuete, Olivier; Hjort, Klas; Klintberg, Lena

    2017-01-01

    High-pressure microfluidics offers fast analyses of thermodynamic parameters for compressed process solvents. However, microfluidic platforms handling highly compressible supercritical CO 2 are difficult to control, and on-chip sensing would offer added control of the devices. Therefore, there is a need to integrate sensors into highly pressure tolerant glass chips. In this paper, thin film Pt sensors were embedded in shallow etched trenches in a glass wafer that was bonded with another glass wafer having microfluidic channels. The devices having sensors integrated into the flow channels sustained pressures up to 220 bar, typical for the operation of supercritical CO 2 . No leakage from the devices could be found. Integrated temperature sensors were capable of measuring local decompression cooling effects and integrated calorimetric sensors measured flow velocities over the range 0.5–13.8 mm s −1 . By this, a better control of high-pressure microfluidic platforms has been achieved. (paper)

  18. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump.

    Science.gov (United States)

    Wang, Yao-Nan; Tsai, Chien-Hsiung; Fu, Lung-Ming; Lin Liou, Lung-Kai

    2013-01-01

    A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2 m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200 μm and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump.

  19. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems.

    Science.gov (United States)

    Leem, Juyoung; Kang, Hyun Wook; Ko, Seung Hwan; Sung, Hyung Jin

    2014-03-07

    We present a microfluidic patterning system for fabricating nanostructured Ag thin films via a polyol method. The fabricated Ag thin films can be used immediately in a real-time SERS sensing system. The Ag thin films are formed on the inner surfaces of a microfluidic channel so that a Ag-patterned Si wafer and a Ag-patterned PDMS channel are produced by the fabrication. The optimum sensing region and fabrication duration for effective SERS detection were determined. As SERS active substrates, the patterned Ag thin films exhibit an enhancement factor (EF) of 4.25 × 10(10). The Ag-patterned polymer channel was attached to a glass substrate and used as a microfluidic sensing system for the real-time monitoring of biomolecule concentrations. This microfluidic patterning system provides a low-cost process for the fabrication of materials that are useful in medical and pharmaceutical detection and can be employed in mass production.

  20. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  1. An inkjet-printed microfluidic device for liquid-liquid extraction.

    Science.gov (United States)

    Watanabe, Masashi

    2011-04-07

    A microfluidic device for liquid-liquid extraction was quickly produced using an office inkjet printer. An advantage of this method is that normal end users, who are not familiar with microfabrication, can produce their original microfluidic devices by themselves. In this method, the printer draws a line on a hydrophobic and oil repellent surface using hydrophilic ink. This line directs a fluid, such as water or xylene, to form a microchannel along the printed line. Using such channels, liquid-liquid extraction was successfully performed under concurrent and countercurrent flow conditions. © The Royal Society of Chemistry 2011

  2. Connecting and disconnecting nematic disclination lines in microfluidic channels.

    Science.gov (United States)

    Agha, Hakam; Bahr, Christian

    2016-05-14

    Disclination lines in nematic liquid crystals can be used as "soft rails" for the transport of colloids or droplets through microfluidic channels [A. Sengupta, C. Bahr and S. Herminghaus, Soft Matter, 2013, 9, 7251]. In the present study we report on a method to connect and disconnect disclination lines in microfluidic channels using the interplay between anchoring, flow, and electric field. We show that the application of an electric field establishes a continuous disclination that spans across a channel region in which a disclination usually would not exist (because of different anchoring conditions), demonstrating an interruptible and reconnectable soft rail for colloidal transport.

  3. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  4. Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays.

    Science.gov (United States)

    Sathish, Shivani; Ricoult, Sébastien G; Toda-Peters, Kazumi; Shen, Amy Q

    2017-05-21

    Microfluidic systems integrated with protein and DNA micro- and nanoarrays have been the most sought-after technologies to satisfy the growing demand for high-throughput disease diagnostics. As the sensitivity of these systems relies on the bio-functionalities of the patterned recognition biomolecules, the primary concern has been to develop simple technologies that enable biomolecule immobilization within microfluidic devices whilst preserving bio-functionalities. To address this concern, we introduce a two-step patterning approach to create micro- and nanoarrays of biomolecules within microfluidic devices. First, we introduce a simple aqueous based microcontact printing (μCP) method to pattern arrays of (3-aminopropyl)triethoxysilane (APTES) on glass substrates, with feature sizes ranging from a few hundred microns down to 200 nm (for the first time). Next, these substrates are integrated with microfluidic channels to then covalently couple DNA aptamers and antibodies with the micro- and nanopatterned APTES. As these biomolecules are covalently tethered to the device substrates, the resulting bonds enable them to withstand the high shear stresses originating from the flow in these devices. We further demonstrated the flexibility of this technique, by immobilizing multiple proteins onto these APTES-patterned substrates using liquid-dispensing robots to create multiple microarrays. Next, to validate the functionalities of these microfluidic biomolecule microarrays, we perform (i) aptamer-based sandwich immunoassays to detect human interleukin 6 (IL6); and (ii) antibody-based sandwich immunoassays to detect human c-reactive protein (hCRP) with the limit of detection at 5 nM, a level below the range required for clinical screening. Lastly, the shelf-life potential of these ready-to-use microfluidic microarray devices is validated by effectively functionalizing the patterns with biomolecules up to 3 months post-printing. In summary, with a single printing step, this

  5. Multilayer microfluidic systems with indium-tin-oxide microelectrodes for studying biological cells

    International Nuclear Information System (INIS)

    Wu, Hsiang-Chiu; Chen, Hsin; Lyau, Jia-Bo; Lin, Min-Hsuan; Chuang, Yung-Jen

    2017-01-01

    Contemporary semiconductor and micromachining technologies have been exploited to develop lab-on-a-chip microsystems, which enable parallel and efficient experiments in molecular and cellular biology. In these microlab systems, microfluidics play an important role for automatic transportation or immobilization of cells and bio-molecules, as well as for separation or mixing of different chemical reagents. However, seldom microlab systems allow both morphology and electrophysiology of biological cells to be studied in situ . This kind of study is important, for example, for understanding how neuronal networks grow in response to environmental stimuli. To fulfill this application need, this paper investigates the possibility of fabricating multi-layer photoresists as microfluidic systems directly above a glass substrate with indium-tin-oxide (ITO) electrodes. The microfluidic channels are designed to guide and trap biological cells on top of ITO electrodes, through which the electrical activities of cells can be recorded or elicited. As both the microfluidic system and ITO electrodes are transparent, the cellular morphology is observable easily during electrophysiological studies. Two fabrication processes are proposed and compared. One defines the structure and curing depth of each photoresist layer simply by controlling the exposure time in lithography, while the other further utilizes a sacrificial layer to defines the structure of the bottom layer. The fabricated microfluidic system is proved bio-compatible and able to trap blood cells or neurons. Therefore, the proposed microsystem will be useful for studying cultured cells efficiently in applications such as drug-screening. (paper)

  6. Fabricating process of hollow out-of-plane Ni microneedle arrays and properties of the integrated microfluidic device

    Science.gov (United States)

    Zhu, Jun; Cao, Ying; Wang, Hong; Li, Yigui; Chen, Xiang; Chen, Di

    2013-07-01

    Although microfluidic devices that integrate microfluidic chips with hollow out-of-plane microneedle arrays have many advantages in transdermal drug delivery applications, difficulties exist in their fabrication due to the special three-dimensional structures of hollow out-of-plane microneedles. A new, cost-effective process for the fabrication of a hollow out-of-plane Ni microneedle array is presented. The integration of PDMS microchips with the Ni hollow microneedle array and the properties of microfluidic devices are also presented. The integrated microfluidic devices provide a new approach for transdermal drug delivery.

  7. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  8. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].

    Science.gov (United States)

    Yuan, Huiling; Dong, Libing; Tu, Ran; Du, Wenbin; Ji, Shiru; Wang, Qinhong

    2014-01-01

    Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.

  9. Accessing microfluidics through feature-based design software for 3D printing

    Science.gov (United States)

    Shankles, Peter G.; Millet, Larry J.; Aufrecht, Jayde A.

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to ‘jump-over’ channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics. PMID:29596418

  10. Accessing microfluidics through feature-based design software for 3D printing.

    Science.gov (United States)

    Shankles, Peter G; Millet, Larry J; Aufrecht, Jayde A; Retterer, Scott T

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.

  11. Automated Blood Sample Preparation Unit (ABSPU) for Portable Microfluidic Flow Cytometry.

    Science.gov (United States)

    Chaturvedi, Akhil; Gorthi, Sai Siva

    2017-02-01

    Portable microfluidic diagnostic devices, including flow cytometers, are being developed for point-of-care settings, especially in conjunction with inexpensive imaging devices such as mobile phone cameras. However, two pervasive drawbacks of these have been the lack of automated sample preparation processes and cells settling out of sample suspensions, leading to inaccurate results. We report an automated blood sample preparation unit (ABSPU) to prevent blood samples from settling in a reservoir during loading of samples in flow cytometers. This apparatus automates the preanalytical steps of dilution and staining of blood cells prior to microfluidic loading. It employs an assembly with a miniature vibration motor to drive turbulence in a sample reservoir. To validate performance of this system, we present experimental evidence demonstrating prevention of blood cell settling, cell integrity, and staining of cells prior to flow cytometric analysis. This setup is further integrated with a microfluidic imaging flow cytometer to investigate cell count variability. With no need for prior sample preparation, a drop of whole blood can be directly introduced to the setup without premixing with buffers manually. Our results show that integration of this assembly with microfluidic analysis provides a competent automation tool for low-cost point-of-care blood-based diagnostics.

  12. Digitally programmable microfluidic automaton for multiscale combinatorial mixing and sample processing†

    Science.gov (United States)

    Jensen, Erik C.; Stockton, Amanda M.; Chiesl, Thomas N.; Kim, Jungkyu; Bera, Abhisek; Mathies, Richard A.

    2013-01-01

    A digitally programmable microfluidic Automaton consisting of a 2-dimensional array of pneumatically actuated microvalves is programmed to perform new multiscale mixing and sample processing operations. Large (µL-scale) volume processing operations are enabled by precise metering of multiple reagents within individual nL-scale valves followed by serial repetitive transfer to programmed locations in the array. A novel process exploiting new combining valve concepts is developed for continuous rapid and complete mixing of reagents in less than 800 ms. Mixing, transfer, storage, and rinsing operations are implemented combinatorially to achieve complex assay automation protocols. The practical utility of this technology is demonstrated by performing automated serial dilution for quantitative analysis as well as the first demonstration of on-chip fluorescent derivatization of biomarker targets (carboxylic acids) for microchip capillary electrophoresis on the Mars Organic Analyzer. A language is developed to describe how unit operations are combined to form a microfluidic program. Finally, this technology is used to develop a novel microfluidic 6-sample processor for combinatorial mixing of large sets (>26 unique combinations) of reagents. The digitally programmable microfluidic Automaton is a versatile programmable sample processor for a wide range of process volumes, for multiple samples, and for different types of analyses. PMID:23172232

  13. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays.

    Science.gov (United States)

    Fang, Xueen; Wei, Shasha; Kong, Jilie

    2014-03-07

    In this report, we describe a simple, low-cost, straight forward and highly reproducible fabrication method of microfluidic systems. This system was cut on a glass fiber membrane by a common cutter without using any other sophisticated equipment or organic solvents. This format represents a novel type of paper-based microfluidics with high resolution of the microchannel down to ~137 μm, comparable to those made by conventional photolithography. We successfully applied this method to microfluidics to create a star micro-array format of multiplexed urine tests in this study.

  14. Microfluidics & nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Gentile, Francesco T.; Nicastri, Annalisa; Perri, Angela Mena; Coluccio, Maria Laura; Adamo, A.; Pardeo, Francesca; Catalano, Rossella; Parrotta, Elvira; Espinosa, Horacio Dante; Cuda, Giovanni; Di Fabrizio, Enzo M.

    2014-01-01

    In this paper, we describe an innovative modular microfluidic platform allowing filtering, concentration and analysis of peptides from a complex mixture. The platform is composed of a microfluidic filtering device and a superhydrophobic surface integrating surface enhanced Raman scattering (SERS) sensors. The microfluidic device was used to filter specific peptides (MW 1553.73 D) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancers, from albumin (66.5 KD), the most represented protein in human plasma. The filtering process consisted of driving the complex mixture through a porous membrane having a cut-off of 12-14 kD by hydrodynamic flow. The filtered samples coming out of the microfluidic device were subsequently deposited on a superhydrophobic surface formed by micro pillars on top of which nanograins were fabricated. The nanograins coupled to a Raman spectroscopy instrument acted as a SERS sensor and allowed analysis of the filtered sample on top of the surface once it evaporated. By using the presented platform, we demonstrate being able to sort small peptides from bigger proteins and to detect them by using a label-free technique at a resolution down to 0.1 ng μL-1. The combination of microfluidics and nanotechnology to develop the presented microfluidic platform may give rise to a new generation of biosensors capable of detecting low concentration samples from complex mixtures without the need for any sample pretreatment or labelling. The developed devices could have future applications in the field of early diagnosis of severe illnesses, e.g. early cancer detection. This journal is

  15. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2016-12-01

    Full Text Available A curved D-type optical fiber sensor (OFS combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR of the Kretchmann’s configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10−5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.

  16. Microfluidic devices, systems, and methods for quantifying particles using centrifugal force

    Science.gov (United States)

    Schaff, Ulrich Y.; Sommer, Gregory J.; Singh, Anup K.

    2015-11-17

    Embodiments of the present invention are directed toward microfluidic systems, apparatus, and methods for measuring a quantity of cells in a fluid. Examples include a differential white blood cell measurement using a centrifugal microfluidic system. A method may include introducing a fluid sample containing a quantity of cells into a microfluidic channel defined in part by a substrate. The quantity of cells may be transported toward a detection region defined in part by the substrate, wherein the detection region contains a density media, and wherein the density media has a density lower than a density of the cells and higher than a density of the fluid sample. The substrate may be spun such that at least a portion of the quantity of cells are transported through the density media. Signals may be detected from label moieties affixed to the cells.

  17. Transient sensing of liquid films in microfluidic channels with optofluidic microresonators

    International Nuclear Information System (INIS)

    Grad, M; Attinger, D; Tsai, C C; Wong, C W; Yu, M; Kwong, D-L

    2010-01-01

    We demonstrate that optical ring resonators can be used as time-resolved refractive index sensors embedded in microfluidic channels. The nanophotonic structures are integrated into soft silicone microchannels interfaced with a transparent hard polymer manifold and standard microfluidic connections. The steady-state sensitivity, resolution and detection limit of the sensors are characterized using aqueous saline solutions at various concentrations. Time-resolved measurements are performed by sensing thin liquid films (0–400 nm) associated with oil/water segmented flow in microfluidic channels. The influence of the interrogation wavelength is investigated, and the optimal wavelength is determined. Millisecond resolution is demonstrated by sensing the shape of a single drop as it flows past the sensor. Finally, the film thickness between the droplet and the resonator is measured for different capillary numbers and channel diameters, and compared with existing theoretical and experimental results

  18. Interfacial waves generated by electrowetting-driven contact line motion

    Science.gov (United States)

    Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young

    2016-10-01

    The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.

  19. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows

    NARCIS (Netherlands)

    Lettieri, Gian-Luca; Dodge, Arash; Boer, Gerben; De Rooij, Nico F.; Verpoorte, Elisabeth

    2003-01-01

    There are only a few examples in which beads are employed for heterogeneous assays on microfluidic devices, because of the difficulties associated with packing and handling these in etched microstructures. This contribution describes a microfluidic device that allows the capture, preconcentration,

  20. Microfluidics expanding the frontiers of microbial ecology.

    Science.gov (United States)

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.

  1. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gubala, Vladimir, E-mail: V.Gubala@kent.ac.uk [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Medway School of Pharmacy, University of Kent, Central Avenue, Anson 120, Chatham Maritime, Kent ME4 4TB (United Kingdom); Siegrist, Jonathan; Monaghan, Ruairi; O' Reilly, Brian; Gandhiraman, Ram Prasad [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Daniels, Stephen [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology (NCPST), Dublin City University, Dublin 9 (Ireland); Williams, David E. [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, University of Auckland, Auckland 1142 (New Zealand); Ducree, Jens [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. Black-Right-Pointing-Pointer Development for dilution by surface-adsorption based depletion of protein samples. Black-Right-Pointing-Pointer It can easily be done using a readily available apparatus like a spin-coater. Black-Right-Pointing-Pointer The assessment tool is facile and quantitative. Black-Right-Pointing-Pointer Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor{sup Registered-Sign }) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor{sup Registered-Sign} substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor{sup Registered-Sign }, and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and

  2. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    International Nuclear Information System (INIS)

    Gubala, Vladimir; Siegrist, Jonathan; Monaghan, Ruairi; O’Reilly, Brian; Gandhiraman, Ram Prasad; Daniels, Stephen; Williams, David E.; Ducrée, Jens

    2013-01-01

    Highlights: ► A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. ► Development for dilution by surface-adsorption based depletion of protein samples. ► It can easily be done using a readily available apparatus like a spin-coater. ► The assessment tool is facile and quantitative. ► Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor ® ) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor ® substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor ® , and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real

  3. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    Science.gov (United States)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  4. Characterization of printable cellular micro-fluidic channels for tissue engineering

    International Nuclear Information System (INIS)

    Zhang, Yahui; Chen, Howard; Ozbolat, Ibrahim T; Yu, Yin

    2013-01-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. (paper)

  5. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  6. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.

    Science.gov (United States)

    Cesewski, Ellen; Haring, Alexander P; Tong, Yuxin; Singh, Manjot; Thakur, Rajan; Laheri, Sahil; Read, Kaitlin A; Powell, Michael D; Oestreich, Kenneth J; Johnson, Blake N

    2018-06-13

    Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.

  7. A microfluidic platform for the investigation of elongation growth in pollen tubes

    International Nuclear Information System (INIS)

    Agudelo, C G; Sanati, A; Ghanbari, M; Packirisamy, M; Geitmann, A

    2012-01-01

    Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon/SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays. (paper)

  8. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    Science.gov (United States)

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  9. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Yujing Li

    2016-10-01

    Full Text Available Polyethylenimine (PEI as a cationic polymer is commonly used as a carrier for gene delivery. PEI-800 is less toxic than PEI-25K but it is also less efficient. A novel nanocarrier was developed by combining PEI-800 with a pH-sensitive lipid to form polymer-lipid hybrid nanoparticles (P/LNPs. They were synthesized by microfluidic focusing (MF. Two microfluidic devices were used to synthesize P/LNPs loaded with VEGF siRNA. A series of P/LNPs with different particle sizes and distributions were obtained by altering the flow rate and geometry of microfluidic chips, and introducing sonication. Furthermore, the P/LNPs can be loaded with VEGF siRNA efficiently and were stable in serum for 12 h. Finally, P/LNPs produced by the microfluidic chip showed greater cellular uptake as well as down-regulation of VEGF protein level in both A549 and MCF-7 with reduced cellular toxicity. All in all, the P/LNPs produced by MF method were shown to be a safe and efficient carrier for VEGF siRNA, with potential application for siRNA therapeutics.

  10. Microfluidic desalination techniques and their potential applications

    NARCIS (Netherlands)

    Roelofs, Susan Helena; van den Berg, Albert; Odijk, Mathieu

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination

  11. Bistable diverter valve in microfluidics

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Bandulasena, H.C.H.

    2011-01-01

    Roč. 50, č. 5 (2011), s. 1225-1233 ISSN 0723-4864 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * bistable diverter valves * pressure-driven microfluidics Subject RIV: BK - Fluid Dynamics Impact factor: 1.735, year: 2011 http://www.springerlink.com/content/x4907p1908151522/

  12. Method for using magnetic particles in droplet microfluidics

    Science.gov (United States)

    Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)

    2012-01-01

    Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.

  13. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.

    Science.gov (United States)

    Ozcelikkale, Altug; Moon, Hye-Ran; Linnes, Michael; Han, Bumsoo

    2017-09-01

    Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  14. Biofabrication of Tobacco mosaic virus-nanoscaffolded supercapacitors via temporal capillary microfluidics

    Science.gov (United States)

    Zang, Faheng; Chu, Sangwook; Gerasopoulos, Konstantinos; Culver, James N.; Ghodssi, Reza

    2017-06-01

    This paper reports the implementation of temporal capillary microfluidic patterns and biological nanoscaffolds in autonomous microfabrication of nanostructured symmetric electrochemical supercapacitors. A photoresist layer was first patterned on the substrate, forming a capillary microfluidics layer with two separated interdigitated microchannels. Tobacco mosaic virus (TMV) macromolecules suspended in solution are autonomously delivered into the microfluidics, and form a dense bio-nanoscaffolds layer within an hour. This TMV layer is utilized in the electroless plating and thermal oxidation for creating nanostructured NiO supercapacitor. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures. The rapid creation of nanostructure-textured microdevices with only simple photolithography and bionanostructure self-assembly can completely eliminate the needs for sophisticated synthesis or deposition processes. This method will contribute to rapid prototyping of wide range of nano-/micro-devices with enhanced performance.

  15. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode.

    Science.gov (United States)

    Mardanpour, Mohammad Mahdi; Yaghmaei, Soheila

    2016-05-15

    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459 mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104 Wm(-3) was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of 5.2 μW cm(-2) obtained in this study is significantly greater than the power densities reported previously for microsized MFCs and glucose fuel cells. The maximum power density of 14 Wm(-3) obtained using urea indicates the successful performance of a microfluidic MFC using human excreta. It features high power density, self-regeneration, waste management and a low production cost (microfluidic MFC as a power supply was characterized based on polarization behavior and cell potential in different substrates, operational modes, and concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microfluidic biosensor for β-Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis.

    Science.gov (United States)

    Weng, Xuan; Zhao, Wenting; Neethirajan, Suresh; Duffield, Todd

    2015-02-12

    Determination of β-hydroxybutyrate (βHBA) is a gold standard for diagnosis of Subclinical Ketosis (SCK), a common disease in dairy cows that causes significant economic loss. Early detection of SCK can help reduce the risk of the disease progressing into clinical stage, thus minimizing economic losses on dairy cattle. Conventional laboratory methods are time consuming and labor-intensive, requiring expensive and bulky equipment. Development of portable and robust devices for rapid on-site SCK diagnosis is an effective way to prevent and control ketosis and can significantly aid in the management of dairy animal health. Microfluidic technology provides a rapid, cost-effective way to develop handheld devices for on-farm detection of sub-clinical ketosis. In this study, a highly sensitive microfluidics-based biosensor for on-site SCK diagnosis has been developed. A rapid, low-cost microfluidic biosensor with high sensitivity and specificity was developed for SCK diagnosis. Determination of βHBA was employed as the indicator in the diagnosis of SCK. On-chip detection using miniaturized and cost-effective optical sensor can be finished in 1 minute with a detection limit of 0.05 mM concentration. Developed microfluidic biosensor was successfully tested with the serum samples from dairy cows affected by SCK. The results of the developed biosensor agreed well with two other laboratory methods. The biosensor was characterized by high sensitivity and specificity towards βHBA with a detection limit of 0.05 mM. The developed microfluidic biosensor provides a promising prototype for a cost-effective handheld meter for on-site SCK diagnosis. By using microfluidic method, the detection time is significantly decreased compared to other laboratory methods. Here, we demonstrate a field-deployable device to precisely identify and measure subclinical ketosis by specific labeling and quantification of β-hydroxybutyate in cow blood samples. A real-time on-site detection system will

  17. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection.

    Science.gov (United States)

    Hosseini, Samira; Aeinehvand, Mohammad M; Uddin, Shah M; Benzina, Abderazak; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Madou, Marc J; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-11-09

    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.

  18. Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environment

    International Nuclear Information System (INIS)

    Capretto, Lorenzo; Cheng Wei; Carugo, Dario; Katsamenis, Orestis L; Zhang Xunli; Hill, Martyn

    2012-01-01

    Microreactors have been shown to be a powerful tool for the production of nanoparticles (NPs); however, there is still a lack of understanding of the role that the microfluidic environment plays in directing the nanoprecipitation process. Here we investigate the mechanism of nanoprecipitation of block copolymer stabilized organic NPs using a microfluidic-based reactor in combination with computational fluid dynamics (CFD) modelling of the microfluidic implementation. The latter also accounts for the complex interplay between molecular and hydrodynamic phenomena during the nanoprecipitation process, in order to understand the hydrodynamics and its influence on the NP formation process. It is demonstrated that the competitive reactions result in the formation of two types of NPs, i.e., either with or without loading organic actives. The obtained results are interpreted by taking into consideration a new parameter representing the mismatching between the aggregations of the polymers and actives, which plays a decisive role in determining the size and polydispersity of the prepared hybrid NPs. These results expand the current understanding of the co-nanoprecipitation mechanism of active and block copolymer stabilizer, and on the role exerted by the microfluidic environment, giving information that could be translated to the emerging fields of microfluidic formation of NPs and nanomedicine. (paper)

  19. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    Science.gov (United States)

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  20. Easy fabrication of high quality nickel mold for deep polymer microfluidic channels

    International Nuclear Information System (INIS)

    Wong, Ten It; Tan, Christina Yuan Ling; Zhou, Xiaodong; Limantoro, Julian; Fong, Kin Phang; Quan, Chenggen; Sun, Ling Ling

    2016-01-01

    Mass fabrication of disposable microfluidic chips with hot embossing is a key technology for microfluidic chip based biosensors. In this work, we develop a new method of fabricating high quality and highly durable nickel molds for hot embossing polymer chips. The process involves the addition of a thick, patterned layer of negative photoresist AZ-125nxT to a 4″ silicon wafer, followed by nickel electroplating and delamination of the nickel mold. Our investigations found that compared to a pillar mask, a hole mask can minimize the diffraction effect in photolithography of a thick photoresist, reduce the adhesion of the AZ-125nxT to the photomask in photolithography, and facilitate clean development of the photoresist patterns. By optimizing the hot embossing and chip bonding parameters, microfluidic chips with deep channels are achieved. (paper)

  1. Label-free monitoring of diffusion in microfluidics

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Kristensen, Anders

    2017-01-01

    Label-free, real-time detection of concentration gradients is demonstrated in a microfluidic H-filter, using an integrated photonic crystal slab sensor to monitor sample refractive index with spatial resolution. The recorded diffusion profiles reveal root-mean-square diffusion lengths for non...

  2. Microfluidic Sensing Platforms for Medicine and Diagnostics

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine

    the specialized laboratory. Microfluidic cell migration devices, imitating in vivo conditions were developed with success, improving the in vitro experimental setup for basic research and drug discovery. Polymer biosensors have reached a new level of maturity, and pathogen detection could benefit from...

  3. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-01-01

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax o

  4. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-11-04

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax o

  5. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency.

    Science.gov (United States)

    Tran, Reginald; Myers, David R; Denning, Gabriela; Shields, Jordan E; Lytle, Allison M; Alrowais, Hommood; Qiu, Yongzhi; Sakurai, Yumiko; Li, William C; Brand, Oliver; Le Doux, Joseph M; Spencer, H Trent; Doering, Christopher B; Lam, Wilbur A

    2017-10-04

    Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1 + ) and human (CD34 + ) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Effect of microfluidization on casein micelle size of bovine milk

    Science.gov (United States)

    Sinaga, H.; Deeth, H.; Bhandari, B.

    2018-02-01

    The properties of milk are likely to be dependent on the casein micelle size, and various processing technologies produce particular change in the average size of casein micelles. The main objective of this study was to manipulate casein micelle size by subjecting milk to microfluidizer. The experiment was performed as a complete block randomised design with three replications. The sample was passed through the microfluidizer at the set pressure of 83, 97, 112 and 126 MPa for one, two, three, four, five and six cycles, except for the 112 MPa. The results showed that microfluidized milk has smaller size by 3% with pressure up to 126 MPa. However, at each pressure, no further reduction was observed after increasing the passed up to 6 cycles. Although the average casein micelle size was similar, elevating pressure resulted in narrower size distribution. In contrast, increasing the number of cycles had little effect on casein micelle distribution. The finding from this study can be applied for future work to characterize the fundamental and functional properties of the treated milk.

  7. Relaxation of microparticles exposed to hydrodynamic forces in microfluidic conduits.

    Science.gov (United States)

    Janča, Josef; Halabalová, Věra; Polášek, Vladimír; Vašina, Martin; Menshikova, Anastasia Yu

    2011-02-01

    The behavior of microparticles exposed to gravitational and lift forces and to the velocity gradient in flow velocity profile formed in microfluidic conduits is studied from the viewpoint of the transient period (the relaxation) between the moment at which a particle starts to be transported by the hydrodynamic flow and the time at which it reaches an equilibrium position, characterized by a balance of all active forces. The theoretical model allowing the calculation of the relaxation time is proposed. The numerical calculus based on the proposed model is compared with the experimental data obtained under different experimental conditions, namely, for different lengths of microfluidic channels, different average linear velocities of the carrier liquid, and different sizes and densities of the particles used in the study. The results are important for the optimization of microfluidic separation units such as microthermal field-flow fractionation channels in which the separation or manipulation of the microparticles of various origin, synthetic, natural, biological, etc., is performed under similar experimental conditions but by applying an additional thermodynamic force.

  8. Transfection in perfused microfluidic cell culture devices: A case study.

    Science.gov (United States)

    Raimes, William; Rubi, Mathieu; Super, Alexandre; Marques, Marco P C; Veraitch, Farlan; Szita, Nicolas

    2017-08-01

    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.

  9. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  10. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  11. Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains.

    Science.gov (United States)

    Uyama, Makoto; Inoue, Kaori; Kinoshita, Koichi; Miyahara, Reiji; Yokoyama, Hirokazu; Nakano, Minoru

    2018-01-01

    It has been reported that a lot of receptors localize in lipid raft domains and that the microfluidity of these domains regulates the activation of these receptors. In this study, we focused on the lipid raft and in order to evaluate the physicochemical effects of surfactants on microfluidity of lipid membranes, we used liposomes comprising of egg-yolk L-α-phosphatidylcholine, egg-yolk sphingomyelin, and cholesterol as a model of cell membranes containing raft domains. The microfluidity of the domains was characterized by fluorescence spectrometry using 1,6-diphenyl-1,3,5-hexatriene and 2-dimethylamino-6-lauroylnaphthalene. Among several surfactants, dialkylammonium-type cationic surfactants most efficiently increased the microfluidity. It is therefore concluded that (1) the electrostatic interaction between the cationic surfactant and eggPC/eggSM/cholesterol liposome could be important, (2) surfactants with alkyl chains more effectively inserted into membranes than those with acyl chains, and (3) cationic surfactants with lower T m values have a greater ability to increase the fluidity.

  12. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.

    Science.gov (United States)

    Daniele, Michael A; Boyd, Darryl A; Adams, André A; Ligler, Frances S

    2015-01-07

    Fiber-based materials provide critical capabilities for biomedical applications. Microfluidic fiber fabrication has recently emerged as a very promising route to the synthesis of polymeric fibers at the micro and nanoscale, providing fine control over fiber shape, size, chemical anisotropy, and biological activity. This Progress Report summarizes advanced microfluidic methods for the fabrication of both microscale and nanoscale fibers and illustrates how different methods are enabling new biomedical applications. Microfluidic fabrication methods and resultant materials are explained from the perspective of their microfluidic device principles, including co-flow, cross-flow, and flow-shaping designs. It is then detailed how the microchannel design and flow parameters influence the variety of synthesis chemistries that can be utilized. Finally, the integration of biomaterials and microfluidic strategies is discussed to manufacture unique fiber-based systems, including cell scaffolds, cell encapsulation, and woven tissue matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations

    KAUST Repository

    Perozziello, Gerardo

    2013-07-01

    In this study, we propose a fast, simple method to biofunctionalise microfluidic systems for cellomic investigations based on micro-fluidic protocols. Many available processes either require expensive and time-consuming protocols or are incompatible with the fabrication of microfluidic systems. Our method differs from the existing since it is applicable to an assembled system, uses few microlitres of reagents and it is based on the use of microbeads. The microbeads have specific surface moieties to link the biomolecules and couple cell receptors. Furthermore, the microbeads serve as arm spacer and offer the benefit of the multi-valent interaction. Microfluidics was adapted together with topology and biochemistry surface modifications to offer the microenvironment for cellomic studies. Based on this principle, we exploit the streptavidin-biotin interaction to couple antibodies to the biofunctionalised microfluidic environment within 5 h using 200 μL of reagents and biomolecules. We selected the antibodies able to form complexes with the MHC class I (MHC-I) molecules present on the cell membrane and involved in the immune surveillance. To test the microfluidic system, tumour cell lines (RMA) were rolled across the coupled antibodies to recognise and strip MHC-I molecules. As result, we show that cell rolling performed inside a microfluidic chamber functionalised with beads and the opportune antibody facilitate the removal of MHC class I molecules. We showed that the level of median fluorescent intensity of the MHC-I molecules is 300 for cells treated in a not biofunctionalised surface. It decreased to 275 for cells treated in a flat biofunctionalised surface and to 250 for cells treated on a surface where biofunctionalised microbeads were immobilised. The cells with reduced expression of MHC-I molecules showed, after cytotoxicity tests, susceptibility 3.5 times higher than normal cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microfluidic-chip platform for cell sorting

    Science.gov (United States)

    Malik, Sarul; Balyan, Prerna; Akhtar, J.; Agarwal, Ajay

    2016-04-01

    Cell sorting and separation are considered to be very crucial preparatory steps for numerous clinical diagnostics and therapeutics applications in cell biology research arena. Label free cell separation techniques acceptance rate has been increased to multifold by various research groups. Size based cell separation method focuses on the intrinsic properties of the cell which not only avoids clogging issues associated with mechanical and centrifugation filtration methods but also reduces the overall cost for the process. Consequentially flow based cell separation method for continuous flow has attracted the attention of millions. Due to the realization of structures close to particle size in micro dimensions, the microfluidic devices offer precise and rapid particle manipulation which ultimately leads to an extraordinary cell separation results. The proposed microfluidic device is fabricated to separate polystyrene beads of size 1 µm, 5 µm, 10 µm and 20 µm. The actual dimensions of blood corpuscles were kept in mind while deciding the particle size of polystyrene beads which are used as a model particles for study.

  15. Patent protection and licensing in microfluidics.

    Science.gov (United States)

    Yetisen, Ali K; Volpatti, Lisa R

    2014-07-07

    Microfluidic devices offer control over low-volume samples in order to achieve high-throughput analysis, and reduce turnaround time and costs. Their efficient commercialisation has implications for biomedical sciences, veterinary medicine, environmental monitoring and industrial applications. In particular, market diffusion of microfluidic laboratory and point-of-care diagnostic devices can contribute to the improvement of global health. In their commercialisation, consultancy and patent protection are essential elements that complement academic publishing. The awareness of knowledge transfer strategies can help academics to create value for their research. The aim of this article is to provide a guidance to (1) overview the terminology in patent law, (2) elucidate the process of filing a patent in the US, EU, Japan and internationally, (3) discuss strategies to licence a patent, and (4) explain tactics to defend a patent in a potential infringement. Awareness of the patent law and rights allows obtaining optimised, valid and valuable patents, while accelerating implementation to market route. Striking a balance between academic publishing, consultancy to industry and patent protection can increase commercial potential, enhance economic growth and create social impact.

  16. Printed microfluidic filter for heparinized blood.

    Science.gov (United States)

    Bilatto, Stanley E R; Adly, Nouran Y; Correa, Daniel S; Wolfrum, Bernhard; Offenhäusser, Andreas; Yakushenko, Alexey

    2017-05-01

    A simple lab-on-a-chip method for blood plasma separation was developed by combining stereolithographic 3D printing with inkjet printing, creating a completely sealed microfluidic device. In some approaches, one dilutes the blood sample before separation, reducing the concentration of a target analyte and increasing a contamination risk. In this work, a single drop (8  μ l) of heparinized whole blood could be efficiently filtered using a capillary effect without any external driving forces and without dilution. The blood storage in heparin tubes during 24 h at 4 °C initiated the formation of small crystals that formed auto-filtration structures in the sample upon entering the 3D-printed device, with pores smaller than the red blood cells, separating plasma from the cellular content. The total filtration process took less than 10 s. The presented printed plasma filtration microfluidics fabricated with a rapid prototyping approach is a miniaturized, fast and easy-to-operate device that can be integrated into healthcare/portable systems for point-of-care diagnostics.

  17. 3D printed Lego®-like modular microfluidic devices based on capillary driving.

    Science.gov (United States)

    Nie, Jing; Gao, Qing; Qiu, Jing-Jiang; Sun, Miao; Liu, An; Shao, Lei; Fu, Jian-Zhong; Zhao, Peng; He, Yong

    2018-03-12

    The field of how to rapidly assemble microfluidics with modular components continuously attracts researchers' attention, however, extra efforts must be devoted to solving the problems of leaking and aligning between individual modules. This paper presents a novel type of modular microfluidic device, driven by capillary force. There is no necessity for a strict seal or special alignment, and its open structures make it easy to integrate various stents and reactants. The key rationale for this method is to print different functional modules with a low-cost three-dimensional (3D) printer, then fill the channels with capillary materials and assemble them with plugs like Lego ® bricks. This rapidly reconstructed modular microfluidic device consists of a variety of common functional modules and other personalized modules, each module having a unified standard interface for easy assembly. As it can be printed by a desktop 3D printer, the manufacturing process is simple and efficient, with controllable regulation of the flow channel scale. Through diverse combinations of different modules, a variety of different functions can be achieved, without duplicating the manufacturing process. A single module can also be taken out for testing and analysis. What's more, combined with basic circuit components, it can serve as a low-cost Lego ® -like modular microfluidic circuits. As a proof of concept, the modular microfluidic device has been successfully demonstrated and used for stent degradation and cell cultures, revealing the potential use of this method in both chemical and biological research.

  18. Microfluidic Devices for Blood Fractionation

    OpenAIRE

    Hou, Han Wei; Bhagat, Ali Asgar S.; Lee, Wong Cheng J.; Huang, Sha; Han, Jongyoon; Lim, Chwee Teck

    2011-01-01

    Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. ...

  19. A small-scale, rolled-membrane microfluidic artificial lung designed towards future large area manufacturing.

    Science.gov (United States)

    Thompson, A J; Marks, L H; Goudie, M J; Rojas-Pena, A; Handa, H; Potkay, J A

    2017-03-01

    Artificial lungs have been used in the clinic for multiple decades to supplement patient pulmonary function. Recently, small-scale microfluidic artificial lungs (μAL) have been demonstrated with large surface area to blood volume ratios, biomimetic blood flow paths, and pressure drops compatible with pumpless operation. Initial small-scale microfluidic devices with blood flow rates in the μ l/min to ml/min range have exhibited excellent gas transfer efficiencies; however, current manufacturing techniques may not be suitable for scaling up to human applications. Here, we present a new manufacturing technology for a microfluidic artificial lung in which the structure is assembled via a continuous "rolling" and bonding procedure from a single, patterned layer of polydimethyl siloxane (PDMS). This method is demonstrated in a small-scale four-layer device, but is expected to easily scale to larger area devices. The presented devices have a biomimetic branching blood flow network, 10  μ m tall artificial capillaries, and a 66  μ m thick gas transfer membrane. Gas transfer efficiency in blood was evaluated over a range of blood flow rates (0.1-1.25 ml/min) for two different sweep gases (pure O 2 , atmospheric air). The achieved gas transfer data closely follow predicted theoretical values for oxygenation and CO 2 removal, while pressure drop is marginally higher than predicted. This work is the first step in developing a scalable method for creating large area microfluidic artificial lungs. Although designed for microfluidic artificial lungs, the presented technique is expected to result in the first manufacturing method capable of simply and easily creating large area microfluidic devices from PDMS.

  20. Design of microfluidic bioreactors using topology optimization

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Bruus, Henrik

    2007-01-01

    We address the design of optimal reactors for supporting biological cultures using the method of topology optimization. For some years this method have been used to design various optimal microfluidic devices.1-4 We apply this method to distribute optimally biologic cultures within a flow...

  1. Biocatalytic process development using microfluidic miniaturized systems

    DEFF Research Database (Denmark)

    Krühne, Ulrich; Heintz, Søren; Ringborg, Rolf Hoffmeyer

    2014-01-01

    The increasing interest in biocatalytic processes means there is a clear need for a new systematic development paradigm which encompasses both protein engineering and process engineering. This paper argues that through the use of a new microfluidic platform, data can be collected more rapidly...

  2. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling

    International Nuclear Information System (INIS)

    Wang, Chao; Yu, Chenxu

    2015-01-01

    With the rapid development of analytical techniques, it has become much easier to detect chemical and biological analytes, even at very low detection limits. In recent years, techniques based on vibrational spectroscopy, such as surface enhanced Raman spectroscopy (SERS), have been developed for non-destructive detection of pathogenic microorganisms. SERS is a highly sensitive analytical tool that can be used to characterize chemical and biological analytes interacting with SERS-active substrates. However, it has always been a challenge to obtain consistent and reproducible SERS spectroscopic results at complicated experimental conditions. Microfluidics, a tool for highly precise manipulation of small volume liquid samples, can be used to overcome the major drawbacks of SERS-based techniques. High reproducibility of SERS measurement could be obtained in continuous flow generated inside microfluidic devices. This article provides a thorough review of the principles, concepts and methods of SERS-microfluidic platforms, and the applications of such platforms in trace analysis of chemical and biological analytes. (topical review)

  3. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.

    Science.gov (United States)

    Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas

    2014-06-30

    Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.

  4. Flash μ-fluidics: a rapid prototyping method for fabricating microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2016-08-01

    Microfluidics has advanced in terms of design and structures; however, fabrication methods are time-consuming or expensive relative to facility costs and equipment needed. This work demonstrates a fast and economically viable 2D/3D maskless digital light-projection method based on a stereolithography process. Unlike other fabrication methods, one exposure step is used to form the whole device. Flash microfluidics is achieved by incorporating bonding and channel fabrication of complex structures in just 2.5 s to 4 s and by fabricating channel heights between 25 μm and 150 μm with photopolymer resin. The features of this fabrication technique, such as time and cost saving and easy fabrication, are used to build devices that are mostly needed in microfluidic/lab-on-chip systems. Due to the fast production method and low initial setup costs, the process could be used for point of care applications. © 2016 The Royal Society of Chemistry.

  5. Flash μ-fluidics: a rapid prototyping method for fabricating microfluidic devices

    KAUST Repository

    Buttner, Ulrich; Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Salama, Khaled N.

    2016-01-01

    Microfluidics has advanced in terms of design and structures; however, fabrication methods are time-consuming or expensive relative to facility costs and equipment needed. This work demonstrates a fast and economically viable 2D/3D maskless digital light-projection method based on a stereolithography process. Unlike other fabrication methods, one exposure step is used to form the whole device. Flash microfluidics is achieved by incorporating bonding and channel fabrication of complex structures in just 2.5 s to 4 s and by fabricating channel heights between 25 μm and 150 μm with photopolymer resin. The features of this fabrication technique, such as time and cost saving and easy fabrication, are used to build devices that are mostly needed in microfluidic/lab-on-chip systems. Due to the fast production method and low initial setup costs, the process could be used for point of care applications. © 2016 The Royal Society of Chemistry.

  6. Methods of reducing non-specific adsorption in microfluidic biosensors

    International Nuclear Information System (INIS)

    Choi, Seokheun; Chae, Junseok

    2010-01-01

    Non-specific adsorption (NSA) of biomolecules is a persistent challenge in microfluidic biosensors. Microfluidic biosensors often have immobilized bioreceptors such as antibodies, enzymes, DNAs, etc, via linker molecules such as SAMs (self-assembled monolayers) to enhance immobilization. However, the linker molecules are very susceptible to NSA, causing false responses and decreasing sensitivity. In this paper, we present design methods to reduce the NSA of alkanethiol SAMs, which are popular linker molecules on microfluidic biosensors. Three design parameters were studied for two different chain-length SAMs (n = 2 and 10): (i) SAM incubation time, (ii) surface roughness [0.8 nm and 4.4 nm RMS (root mean square)] and (iii) gold crystal re-growth along (1 1 1) the target orientation. NSA was monitored by surface plasmon resonance (SPR). The results suggest that increased SAM incubation time reduces NSA, and that short-chain SAMs respond more favorably than the long-chain SAMs. Both SAMs were shown to be sensitive to surface roughness, and long-chain SAMs reduced NSA by 75%. Gold crystal re-growth along (1 1 1) the target orientation profoundly reduced NSA on the short-chain SAM. On a gold surface where surface roughness was 0.8 nm and there was strong directional alignment along the (1 1 1) gold crystal, final concentrations of nonspecifically bound proteins were 0.05 ng mm −2 (fibrinogen) and 0.075 ng mm −2 (lysozyme)—significantly lower than other known methods. The results show that optimizing three parameters (SAM incubation time, gold surface roughness and gold crystal orientation) improved SAM sensitivity for fibrinogen–anti-fibrinogen conjugates by a factor of 5 in 2.94 pM, suggesting that the methods are effective for reducing NSA in microfluidic biosensors.

  7. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs......Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing......, these devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...

  8. Formation of actin networks in microfluidic concentration gradients

    Directory of Open Access Journals (Sweden)

    Natalja eStrelnikova

    2016-05-01

    Full Text Available The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  9. Simulation and fabrication of integrated polystyrene microlens in microfluidic system

    KAUST Repository

    Fan, Yiqiang

    2013-05-17

    This paper presents a simple and quick method to integrate microlens with the microfluidics systems. The polystyrene (PS) based microlens is fabricated with the free surface thermal compression molding methods, a thin PS sheet with the microlens is bonded to a PMMA substrate which contains the laser ablated microchannels. The convex profiler of the microlens will give a magnified images of the microchannels for easier observation. Optical simulation software is being used for the design and simulation of the microlens to have optimal optical performance with the desired focal length. A microfluidic system with the integrated PS microlens is also fabricated for demonstration.

  10. Design, fabrication and characterisation of a microfluidic time-temperature indicator

    Science.gov (United States)

    Schmitt, P.; Wedrich, K.; Müller, L.; Mehner, H.; Hoffmann, M.

    2017-11-01

    This paper describes a concept for a passive microfluidic time-temperature indicator (TTI) intended for intelligent food packaging. A microfluidic system is presented that makes use of the temperature-dependent flow of suitable food ingredients in a microcapillary. Based on the creeping distance inside the capillary, the time-temperature integral can be determined. A demonstrator of the microsystem has been designed, fabricated and characterised using liquid sugar alcohols as indicator fluids. To enable a first wireless read-out of the passive TTI, the sensor was read out using a commercial RFID equipment, and capacitive measurements have been carried out.

  11. Simulation and fabrication of integrated polystyrene microlens in microfluidic system

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Conchouso Gonzalez, David; Foulds, Ian G.

    2013-01-01

    This paper presents a simple and quick method to integrate microlens with the microfluidics systems. The polystyrene (PS) based microlens is fabricated with the free surface thermal compression molding methods, a thin PS sheet with the microlens is bonded to a PMMA substrate which contains the laser ablated microchannels. The convex profiler of the microlens will give a magnified images of the microchannels for easier observation. Optical simulation software is being used for the design and simulation of the microlens to have optimal optical performance with the desired focal length. A microfluidic system with the integrated PS microlens is also fabricated for demonstration.

  12. Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Nichols, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-27

    This report describes the preliminary validation of a high-temperature microfluidic chip system for sampling of electrochemical process salt. Electroanalytical and spectroscopic techniques are attractive candidates for improvement through high-throughput sample analysis via miniaturization. Further, microfluidic chip systems are amenable to micro-scale chemical processing such as rapid, automated sample purification to improve sensor performance. The microfluidic chip was tested to determine the feasibility of the system for high temperature applications and conditions under which microfluidic systems can be used to generate salt droplets at process temperature to support development of material balance and control systems in a used fuel treatment facility. In FY13, the project focused on testing a quartz microchip device with molten salts at near process temperatures. The equipment was installed in glove box and tested up to 400°C using commercial thermal transfer fluids as the carrier phase. Preliminary tests were carried out with a low-melting halide salt to initially characterize the properties of this novel liquid-liquid system and to investigate the operating regimes for inducing droplet flow within candidate carrier fluids. Initial results show that the concept is viable for high temperature sampling but further development is required to optimize the system to operate with process relevant molten salts.

  13. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    Science.gov (United States)

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  14. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro

    Science.gov (United States)

    Wu, H.-M.; Lee, T.-A.; Ko, P.-L.; Chiang, H.-J.; Peng, C.-C.; Tung, Y.-C.

    2018-04-01

    Gaseous microenvironments play important roles in various biological activities in vivo. However, it is challenging to precisely control gaseous microenvironments in vitro for cell culture due to the high diffusivity nature of gases. In recent years, microfluidics has paved the way for the development of new types of cell culture devices capable of manipulating cellular microenvironments, and provides a powerful tool for in vitro cell studies. This paper reviews recent developments of microfluidic cell culture devices for the control of gaseous microenvironments, and discusses the advantages and limitations of current devices. We conclude with suggestions for the future development of microfluidic cell culture devices for the control of gaseous microenvironments.

  15. Next generation digital microfluidic technology: Electrophoresis of charged droplets

    Energy Technology Data Exchange (ETDEWEB)

    Im, Do Jin [Pukyong National University, Busan (Korea, Republic of)

    2015-06-15

    Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.

  16. Microfluidic hubs, systems, and methods for interface fluidic modules

    Science.gov (United States)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  17. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2013-01-01

    Full Text Available We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  18. CFD simulations to study the effects of wall protrusions on microfluidic mixing

    Science.gov (United States)

    Sarkar, Sourav; Singh, K. K.; Shankar, V.; Shenoy, K. T.

    2015-08-01

    In this study the effects of different types of wall protrusions on microfluidic mixing are studied using computational fluid dynamics (CFD) simulations. Two new protrusions, single first bracket protrusions and double opposite first bracket protrusions (DOFBPs), are conceptualized, evaluated through CFD simulations and compared to protrusions having standard geometrical shapes, e.g. rectangular protrusions, triangular protrusions and semicircular protrusions. In the range of Reynolds numbers covered in this study, the microchannel having an opposed T-junction and DOFBPs is found to provide good mixing. A hybrid approach relying on the modification of microfluidic junctions as well as wall protrusions for enhancing microfluidic mixing is also evaluated. The microchannel based on the hybrid approach of an OA 10°-20°-165° WY-junction and DOFBPs is also found to provide very good mixing for a wide range of Reynolds numbers.

  19. “Connecting worlds – a view on microfluidics for a wider application”

    DEFF Research Database (Denmark)

    Fernandes, Ana C.; Gernaey, Krist V.; Krühne, Ulrich

    2018-01-01

    acceptance and more widespread use, are introduced. A brief review of the main materials and fabrication strategies used in these fields, is also presented. Finally, a step-wise guide towards the development of microfluidic systems is introduced with special focus on the integration of sensors...... of miniaturizing industrial production plants, thereby increasing their automation and operational safety at low cost; (2) being able to identify rare diseases by running bioanalytics directly on the patient’s skin; (3) allowing health diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However...... and biotechnology fields, focusing mainly on the specialization on a single target of most microfluidic devices and offering a perspective on the alternate, multi-use, “plug and play” approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility with different substrates...

  20. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang; Li, Shunbo; Wang, Limu; Yi, Xin; Hui, Yu Sanna; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.