WorldWideScience

Sample records for evolving t-cell vaccine

  1. Evolving T-cell vaccine strategies for HIV, the virus with a thousand faces

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    HIV's rapid global spread and the human suffering it has left in its wake have made AIDS a global heath priority for the 25 years since its discovery. Yet its capacity to rapidly evolve has made combating this virus a tremendous challenge. The obstacles to creating an effective HIV vaccine are formidable, but there are advances in the field on many fronts, in terms of novel vectors, adjuvants, and antigen design strategies. SIV live attenuated vaccine models are able to confer protection against heterologous challenge, and this continues to provide opportunities to explore the biological underpinnings of a protective effect (9). More indirect, but equally important, is new understanding regarding the biology of acute infection (43), the role of immune response in long-term non-progression (6,62, 81), and defining characteristics of broadly neutralizing antibodies (4). In this review we will focus on summarizing strategies directed towards a single issue, that of contending with HIV variation in terms of designing aT-cell vaccine. The strategies that prove most effective in this area can ultimately be combined with the best strategies under development in other areas, with the hope of ultimately converging on a viable vaccine candidate. Only two large HIV vaccine efficacy trials have been completed and both have failed to prevent infection or confer a benefit to infected individual (23,34), but there is ample reason to continue our efforts. A historic breakthrough came in 1996, when it was realized that although the virus could escape from a single antiretroviral (ARV) therapy, it could be thwarted by a combination of medications that simultaneously targeted different parts of the virus (HAART) (38). This revelation came after 15 years of research, thought, and clinical testing; to enable that vital progress the research and clinical communities had to first define and understand, then develop a strategy to counter, the remarkable evolutionary potential of the

  2. Polyfunctional CD4+ T Cells As Targets for Tuberculosis Vaccination

    Directory of Open Access Journals (Sweden)

    Deborah A. Lewinsohn

    2017-10-01

    Full Text Available Tuberculosis (TB, caused by Mycobacterium tuberculosis (Mtb, remains a leading cause of morbidity and mortality worldwide, despite the widespread use of the only licensed vaccine, Bacille Calmette Guerin (BCG. Eradication of TB will require a more effective vaccine, yet evaluation of new vaccine candidates is hampered by lack of defined correlates of protection. Animal and human studies of intracellular pathogens have extensively evaluated polyfunctional CD4+ T cells producing multiple pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2 as a possible correlate of protection from infection and disease. In this study, we review the published literature that evaluates whether or not BCG and/or novel TB vaccine candidates induce polyfunctional CD4+ T cells and if these T cell responses correlate with vaccine-mediated protection. Ample evidence suggests that BCG and several novel vaccine candidates evaluated in animal models and humans induce polyfunctional CD4+ T cells. However, while a number of studies utilizing the mouse TB model support that polyfunctional CD4+ T cells are associated with vaccine-induced protection, other studies in mouse and human infants demonstrate no correlation between these T cell responses and protection. We conclude that induction of polyfunctional CD4+ T cells is certainly not sufficient and may not even be necessary to mediate protection and suggest that other functional attributes, such as additional effector functions, T cell differentiation state, tissue homing potential, or long-term survival capacity of the T cell may be equally or more important to promote protection. Thus, a correlate of protection for TB vaccine development remains elusive. Future studies should address polyfunctional CD4+ T cells within the context of more comprehensive immunological signatures of protection that include other functions and phenotypes of T cells as well as the full spectrum of immune cells and mediators that participate in

  3. Towards Future T Cell-Mediated Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Thi H. O. Nguyen

    2016-04-01

    Full Text Available Influenza A virus (IAVs infections impact significantly on global health, being particularly problematic in children, the elderly, pregnant women, indigenous populations and people with co-morbidities. Antibody-based vaccines require annual administration to combat rapidly acquired mutations modifying the surface haemagglutinin (HA and neuraminidase (NA glycoproteins. Conversely, influenza-specific CD8+ T cell responses directed at peptides derived from the more conserved internal virus proteins are known to be protective, suggesting that T cell-based vaccines may provide long-lasting cross-protection. This review outlines the importance of CD8+ T cell immunity to seasonal influenza and pandemic IAVs and summarises current vaccination strategies for inducing durable CD8+ T cell memory. Aspects of future IAV vaccine design and the use of live virus challenge in humans to establish proof of principle are also discussed.

  4. T cell responses to viral infections - opportunities for peptide vaccination

    Directory of Open Access Journals (Sweden)

    Sietske eRosendahl Huber

    2014-04-01

    Full Text Available An effective immune response against viral infections depends on the activation of cytotoxic T cells that can clear the infection by killing virus-infected cells. Proper activation of these T cells depends on professional antigen presenting cells, such as dendritic cells (DCs. In this review, we will discuss the potential of peptide-based vaccines for prevention and treatment of viral diseases. We will describe features of an effective response against both acute and chronic infections, such as an appropriate magnitude, breadth and quality and discuss requirements for inducing such an effective antiviral immune response. We will address modifications that affect presentation of vaccine components by DCs, including choice of antigen, adjuvants, and formulation. Furthermore, we will describe differences in design between preventive and therapeutic peptide-based vaccines. The ultimate goal in the design of preventive vaccines, is to develop a universal vaccine that cross-protects against multiple strains of the virus. For therapeutic vaccines, cross-protection is of less importance, but enhancing existing T cell responses is essential. Although peptide vaccination is successful in inducing responses in Human Papilloma Virus (HPV infected patients, there are still several challenges such as choosing the right target epitopes, choosing safe adjuvants that improve immunogenicity of these epitopes, and steering the immune response in the desired direction. We will conclude with an overview of the current status of peptide vaccination, hurdles to overcome, and prospects for the future.

  5. Detecting T-cell reactivity to whole cell vaccines

    Science.gov (United States)

    Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.

    2012-01-01

    BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257

  6. How germinal centers evolve broadly neutralizing antibodies: the breadth of the follicular helper T cell response.

    Science.gov (United States)

    De Boer, Rob J; Perelson, Alan S

    2017-09-06

    Many HIV-1 infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years, and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest affinity receptors tend to acquire the most antigen from the FDC network, and present the highest density of cognate peptides to follicular helper T cells (Tfh), which provide survival signals to the B cell. BnAbs are therefore only expected to evolve when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than other lineages of more specific B cells. Here we develop mathematical models of Tfh in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process.Our results suggest that broadly reactive B cells presenting a high density of pMHC are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they be rescued by a large fraction of the Tfh repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing the magnitude of the Tfh response, or the breadth of the Tfh repertoire, both markedly facilitate the evolution of bnAbs. Because both can be increased by vaccination with several HIV-1 proteins, this calls for experiments testing.Importance Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such "broadly neutralizing antibodies" (bnAbs) could in the future become therapeutic agents. BnAbs appear very late and patients are typically not protected by them. At the moment we fail to understand why this takes so long, and how the immune system selects for broadly neutralizing capacity

  7. T-cell-directed cancer vaccines: the melanoma model.

    Science.gov (United States)

    Wang, E; Phan, G Q; Marincola, F M

    2001-03-01

    Significant advances in the understanding of the molecular basis for tumour/host interactions in humans have occurred in the last decade through studying patients with metastatic melanoma. This disease is characterised by its tendency to be modulated by immunologic factors. Furthermore, immunologic manipulation of the host with various systemic agents, in particular IL-2, frequently affects this natural phenomenon and can lead to complete rejection of cancer. By studying the cellular immunology occurring in patients undergoing immunotherapy, several tumour antigens (TA) and their epitopes recognised by human leukocyte antigen (HLA) class I-restricted cytotoxic T-lymphocytes (CTL) have been identified. Most of these TA are non-mutated molecules expressed by the majority of melanoma in vivo and most melanoma cell lines. In addition, unique minimal epitopic sequences play an immunodominant role in the context of specific HLA class I alleles. Since melanoma lesions from different patients often share expression of the same TA, and a minimal peptide sequence from a TA can cause immunologic changes in multiple patients, interest has grown in the development of TA-specific vaccines suitable for broad patient populations. Repeated in vitro stimulation of peripheral blood mononuclear cells (PBMC) with TA-derived epitopes can induce a high frequency of TA-reactive T-cells in melanoma patients. The same epitopes can also enhance TA-specific T-cell reactivity in vivo when administered subcutaneously in combination with Incomplete Freund's Adjuvant (IFA). Epitope-based vaccinations, however, have not shown strong clinical efficacy unless combined with IL-2 administration. Attempts to increase the efficacy of these vaccines have combined specialised antigen-presenting cells or the administration of whole TA through DNA- or RNA-based vaccines with the intention of increasing antigen presentation and processing. Save for scattered reports, however, the success of these approaches

  8. Heterosybtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines

    Directory of Open Access Journals (Sweden)

    Saranya eSridhar

    2016-05-01

    Full Text Available Influenza A virus (IAV remains a significant global health issue causing annual epidemics, pandemics and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the 21st century underlined the urgent need to develop new vaccines capable of protection against a broad range of influenza strains. Such universal influenza vaccines are based on the idea of heterosubtypic immunity wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognising conserved antigens are a key contributor to reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.

  9. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells.

    Science.gov (United States)

    Stary, Georg; Olive, Andrew; Radovic-Moreno, Aleksandar F; Gondek, David; Alvarez, David; Basto, Pamela A; Perro, Mario; Vrbanac, Vladimir D; Tager, Andrew M; Shi, Jinjun; Yethon, Jeremy A; Farokhzad, Omid C; Langer, Robert; Starnbach, Michael N; von Andrian, Ulrich H

    2015-06-19

    Genital Chlamydia trachomatis (Ct) infection induces protective immunity that depends on interferon-γ-producing CD4 T cells. By contrast, we report that mucosal exposure to ultraviolet light (UV)-inactivated Ct (UV-Ct) generated regulatory T cells that exacerbated subsequent Ct infection. We show that mucosal immunization with UV-Ct complexed with charge-switching synthetic adjuvant particles (cSAPs) elicited long-lived protection in conventional and humanized mice. UV-Ct-cSAP targeted immunogenic uterine CD11b(+)CD103(-) dendritic cells (DCs), whereas UV-Ct accumulated in tolerogenic CD11b(-)CD103(+) DCs. Regardless of vaccination route, UV-Ct-cSAP induced systemic memory T cells, but only mucosal vaccination induced effector T cells that rapidly seeded uterine mucosa with resident memory T cells (T(RM) cells). Optimal Ct clearance required both T(RM) seeding and subsequent infection-induced recruitment of circulating memory T cells. Thus, UV-Ct-cSAP vaccination generated two synergistic memory T cell subsets with distinct migratory properties. Copyright © 2015, American Association for the Advancement of Science.

  10. DNA-based HIV vaccines do not induce generalized activation in mucosal tissue T cells.

    Science.gov (United States)

    Reuter, Morgan A; Yuan, Sally; Marx, Preston A; Kutzler, Michele A; Weiner, David B; Betts, Michael R

    2012-11-01

    HIV preferentially infects activated T cells, and activated mucosal CD4+ T cells are the primary sites of viral replication. One potential explanation for increased HIV acquisition rates in the STEP study is that vaccination with adenoviral (Ad) vectors increased CD4+ T cell activation levels at the site of infection, a concept that others and we continue to explore. Whether vaccination with HIV vaccine platforms increases the activation state of CD4+ T cells within peripheral tissues, such as the gastro-intestinal (GI) mucosa, is exceptionally important to determine as a vaccine safety measure, given the susceptibility of activated CD4+ T cells to HIV infection. In this study we examined whether vaccination with DNA plasmids and chemokine adjuvants alter the activation state of T cells within the GI mucosa, inguinal LN, and peripheral blood. T cell activation state was measured by expression of CD25, CD69, and HLA-DR over the course of the prime/boost study. DNA plasmid vaccination did not increase expression of any of these markers in the 3 tissues studied. Addition of the gut-homing chemokine TECK during DNA plasmid vaccination did not alter activation levels of CD4+ T cells at any of these sites. These findings indicate that DNA vaccines do not elicit generalized mucosal T cell activation. Thus, DNA platforms may be especially suitable for HIV vaccine development, where bystander activation could promote increased HIV transmission.

  11. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.

    Science.gov (United States)

    Jordan, Kimberly R; McMahan, Rachel H; Kemmler, Charles B; Kappler, John W; Slansky, Jill E

    2010-03-09

    Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.

  12. In Vivo Expansion, Persistence and Function of Peptide Vaccine-Induced CD8 T Cells Occurs Independently of CD4 T Cells

    OpenAIRE

    Assudani, Deepak; Cho, Hyun-Il; DeVito, Nicholas; Bradley, Norma; Celis, Esteban

    2008-01-01

    Significant efforts are being devoted towards the development of effective therapeutic vaccines against cancer. Specifically, well-characterized subunit vaccines, which are designed to generate anti-tumor cytotoxic CD8 T cell responses. Since CD4 T cells participate at various stages of CD8 T cell responses, it is important to study the role of CD4 T cells in the induction and persistence of anti-tumor CD8 T cell responses by these vaccines. Recent evidence points to the requirement of CD4 T ...

  13. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine

    National Research Council Canada - National Science Library

    Frahm, Nicole; DeCamp, Allan C; Friedrich, David P; Carter, Donald K; Defawe, Olivier D; Kublin, James G; Casimiro, Danilo R; Duerr, Ann; Robertson, Michael N; Buchbinder, Susan P; Huang, Yunda; Spies, Gregory A; De Rosa, Stephen C; McElrath, M Juliana

    2012-01-01

    .... Here, we have identified and compared adenovirus-specific and HIV-specific T cell responses in subjects participating in two HIV-1 vaccine trials using a vaccine vectored by adenovirus serotype 5 (Ad5...

  14. Improving Antigenic Peptide Vaccines for Cancer Immunotherapy Using a Dominant Tumor-specific T Cell Receptor*

    Science.gov (United States)

    Buhrman, Jonathan D.; Jordan, Kimberly R.; Munson, Daniel J.; Moore, Brandon L.; Kappler, John W.; Slansky, Jill E.

    2013-01-01

    Vaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react with or that have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone, we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination. The TCR from this high affinity T cell clone was rarely identified in ex vivo evaluation of tumor-specific T cells elicited by mimotope vaccination. Conversely, a low affinity clone found in the tumor and following immunization was frequently identified. Using peptide libraries, we determined if this frequently identified TCR improved the discovery of efficacious mimotopes. We demonstrated that the representative TCR identified more protective mimotopes than the high affinity TCR. These results suggest that targeting a dominant fraction of tumor-specific T cells generates potent immunity and that consideration of the available T cell repertoire is necessary for targeted T cell therapy. These results have important implications when optimizing mimotope vaccines for cancer immunotherapy. PMID:24106273

  15. In vivo expansion, persistence, and function of peptide vaccine-induced CD8 T cells occur independently of CD4 T cells.

    Science.gov (United States)

    Assudani, Deepak; Cho, Hyun-Il; DeVito, Nicholas; Bradley, Norma; Celis, Esteban

    2008-12-01

    Significant efforts are being devoted toward the development of effective therapeutic vaccines against cancer. Specifically, well-characterized subunit vaccines, which are designed to generate antitumor cytotoxic CD8 T-cell responses. Because CD4 T cells participate at various stages of CD8 T-cell responses, it is important to study the role of CD4 T cells in the induction and persistence of antitumor CD8 T-cell responses by these vaccines. Recent evidence points to the requirement of CD4 T cells for the long-term persistence of memory CD8 T cells, which in the case of cancer immunotherapy would be critical for the prevention of tumor recurrences. The purpose of the present study was to assess whether CD4 T cells are necessary for the generation and maintenance of antigen-specific CD8 T cells induced by subunit (peptide or DNA) vaccines. We have used a vaccination strategy that combines synthetic peptides representing CD8 T-cell epitopes, a costimulatory anti-CD40 antibody and a Toll-like receptor agonist (TriVax) to generate large numbers of antigen-specific CD8 T-cell responses. Our results show that the rate of decline (clonal contraction) of the antigen-specific CD8 T cells and their functional state is not affected by the presence or absence of CD4 T cells throughout the immune response generated by TriVax. We believe that these results bear importance for the design of effective vaccination strategies against cancer.

  16. In Vivo Expansion, Persistence and Function of Peptide Vaccine-Induced CD8 T Cells Occurs Independently of CD4 T Cells

    Science.gov (United States)

    Assudani, Deepak; Cho, Hyun-Il; DeVito, Nicholas; Bradley, Norma; Celis, Esteban

    2008-01-01

    Significant efforts are being devoted towards the development of effective therapeutic vaccines against cancer. Specifically, well-characterized subunit vaccines, which are designed to generate anti-tumor cytotoxic CD8 T cell responses. Since CD4 T cells participate at various stages of CD8 T cell responses, it is important to study the role of CD4 T cells in the induction and persistence of anti-tumor CD8 T cell responses by these vaccines. Recent evidence points to the requirement of CD4 T cells for the long-term persistence of memory CD8 T cells, which in the case of cancer immunotherapy would be critical for the prevention of tumor recurrences. The purpose of the present study was to assess whether CD4 T cells are necessary for the generation and maintenance of antigen-specific CD8 T cells induced by subunit (peptide or DNA) vaccines. We have utilized a vaccination strategy that combines synthetic peptides representing CD8 T cell epitopes, a costimulatory anti-CD40 antibody and a Toll-like receptor agonist (TriVax) to generate large numbers of antigen-specific CD8 T cell responses. Our results show that the rate of decline (clonal contraction) of the antigen-specific CD8 T cells and their functional state is not affected by the presence or absence of CD4 T cells throughout the immune response generated by TriVax. We believe that these results bear importance for the design of effective vaccination strategies against cancer. PMID:19047170

  17. Comparing human T cell and NK cell responses in viral-based malaria vaccine trials.

    Science.gov (United States)

    Berthoud, Tamara K; Fletcher, Helen; Porter, David; Thompson, Fiona; Hill, Adrian V S; Todryk, Stephen M

    2009-12-10

    Vaccination with viral-based vaccines continues to hold promise for the prevention of malaria. Whilst antigen-specific T cell responses are considered a major aim of such an approach, a role for induced NK cells as anti-malarial effector cells, or in shaping T cell responses, has received less attention. In this study naïve human volunteers were vaccinated in a prime-boost vaccination regimen comprising recombinant viral vectors fowlpox (FP9) and modified vaccinia Ankara (MVA) encoding liver-stage antigens, or a virosome vaccine. Significant T cell responses specific for the vectored vaccine antigens were demonstrated by IFNgamma ELISPOT and intracellular cytokine staining (ICS) for IFNgamma and IL-2, the ICS being associated with increased time to parasitaemia following subsequent challenge. Numbers of CD56(bright) lymphocytes increased significantly following vaccination, as did CD3(+) CD56(+) lymphocytes, whilst CD56(dim) cells did not. No such increases were seen with the virosome vaccine. There was no significant correlation of these CD56(+) populations with the antigen-specific T cell responses nor time to parasitaemia. To investigate pathways of immune activation that could contribute to these lymphocyte responses, viral vectors were shown in vitro to efficiently infect APCs but not lymphocytes, and stimulated inflammatory cytokines such as type I interferons. In conclusion, measuring antigen-specific T cells is more meaningful than NK cells in these vaccination regimens.

  18. Augmenting Anti-Tumor T Cell Responses to Mimotope Vaccination by Boosting with Native Tumor Antigens

    Science.gov (United States)

    Buhrman, Jonathan D.; Jordan, Kimberly R.; U’Ren, Lance; Sprague, Jonathan; Kemmler, Charles B.; Slansky, Jill E.

    2012-01-01

    Vaccination with antigens expressed by tumors is one strategy for stimulating enhanced T cell responses against tumors. However, these peptide vaccines rarely result in efficient expansion of tumor-specific T cells or responses that protect against tumor growth. Mimotopes, or peptide mimics of tumor antigens, elicit increased numbers of T cells that cross-react with the native tumor antigen, resulting in potent anti-tumor responses. Unfortunately, mimotopes may also elicit cells that do not cross-react or have low affinity for tumor antigen. We previously showed that one such mimotope of the dominant MHC class I tumor antigen of a mouse colon carcinoma cell-line stimulates a tumor-specific T cell clone and elicits antigen-specific cells in vivo, yet protects poorly against tumor growth. We hypothesized that boosting the mimotope vaccine with the native tumor antigen would focus the T cell response elicited by the mimotope towards high affinity, tumor-specific T cells. We show that priming T cells with the mimotope, followed by a native tumor-antigen boost improves tumor immunity, compared to T cells elicited by the same prime with a mimotope boost. Our data suggest that the improved tumor immunity results from the expansion of mimotope-elicited tumor-specific T cells that have increased avidity for the tumor antigen. The enhanced T cells are phenotypically distinct and enriched for T cell receptors previously correlated with improved anti-tumor immunity. These results suggest that incorporation of native antigen into clinical mimotope vaccine regimens may improve the efficacy of anti-tumor T cell responses. PMID:23161490

  19. Vaccine-induced protection against orthopoxvirus infection is mediated through the combined functions of CD4 T cell-dependent antibody and CD8 T cell responses.

    Science.gov (United States)

    Chaudhri, Geeta; Tahiliani, Vikas; Eldi, Preethi; Karupiah, Gunasegaran

    2015-02-01

    Antibody production by B cells in the absence of CD4 T cell help has been shown to be necessary and sufficient for protection against secondary orthopoxvirus (OPV) infections. This conclusion is based on short-term depletion of leukocyte subsets in vaccinated animals, in addition to passive transfer of immune serum to naive hosts that are subsequently protected from lethal orthopoxvirus infection. Here, we show that CD4 T cell help is necessary for neutralizing antibody production and virus control during a secondary ectromelia virus (ECTV) infection. A crucial role for CD4 T cells was revealed when depletion of this subset was extended beyond the acute phase of infection. Sustained depletion of CD4 T cells over several weeks in vaccinated animals during a secondary infection resulted in gradual diminution of B cell responses, including neutralizing antibody, contemporaneous with a corresponding increase in the viral load. Long-term elimination of CD8 T cells alone delayed virus clearance, but prolonged depletion of both CD4 and CD8 T cells resulted in death associated with uncontrolled virus replication. In the absence of CD4 T cells, perforin- and granzyme A- and B-dependent effector functions of CD8 T cells became critical. Our data therefore show that both CD4 T cell help for antibody production and CD8 T cell effector function are critical for protection against secondary OPV infection. These results are consistent with the notion that the effectiveness of the smallpox vaccine is related to its capacity to induce both B and T cell memory. Smallpox eradication through vaccination is one of the most successful public health endeavors of modern medicine. The use of various orthopoxvirus (OPV) models to elucidate correlates of vaccine-induced protective immunity showed that antibody is critical for protection against secondary infection, whereas the role of T cells is unclear. Short-term leukocyte subset depletion in vaccinated animals or transfer of immune serum

  20. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis

    Science.gov (United States)

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas

    2016-01-01

    ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332

  1. Different T cell memory in preadolescents after whole-cell or acellular pertussis vaccination.

    Science.gov (United States)

    Smits, Kaatje; Pottier, Gaelle; Smet, Julie; Dirix, Violette; Vermeulen, Françoise; De Schutter, Iris; Carollo, Maria; Locht, Camille; Ausiello, Clara Maria; Mascart, Françoise

    2013-12-17

    To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Designing CD8+ T cell vaccines: it's not rocket science (yet).

    Science.gov (United States)

    Yewdell, Jonathan W

    2010-06-01

    CD8+ T cells play important roles in clearing viral infections and eradicating tumors. Designing vaccines that elicit effective CD8+ T cell responses requires a thorough knowledge of the pathways of antigen presentation in vivo. Here, I review recent progress in understanding the activation of naïve CD8+ T cells in vivo, with particular emphasis on cross-priming, the presentation of protein antigens acquired by dendritic cells from their environment. With the rapid advances in this area of research, the dawn of rational vaccine design is at hand. Published by Elsevier Ltd.

  3. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination.

    Science.gov (United States)

    Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M

    2016-01-01

    The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.

  4. Designing bovine T-cell vaccines via reverse immunology

    Science.gov (United States)

    T-cell responses contribute to immunity against many intra-cellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphop...

  5. Navigating the immune system: Improving CD8+ T cell responses for vaccine design

    NARCIS (Netherlands)

    Platteel, A.C.M.|info:eu-repo/dai/nl/375805613

    2016-01-01

    Most vaccines rely on the protective effect of the humoral response. In case of intracellular- or rapidly mutating pathogens, humoral responses are less protective and the cellular response, mainly CD8+ T cells, can convey protection. However, vaccine efficacy is hampered by insufficient knowledge

  6. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen....... There is a particular interest in developing robust high-throughput assays as chicken vaccine trials usually comprise many individuals. In many respects, the avian immune system differs from the mammalian, and T cell assessment protocols must be adjusted accordingly to account for, e.g., differences in leukocyte...

  7. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection.

    Directory of Open Access Journals (Sweden)

    J Mauricio Calvo-Calle

    2007-10-01

    Full Text Available Despite the importance of vaccinia virus in basic and applied immunology, our knowledge of the human immune response directed against this virus is very limited. CD4(+ T cell responses are an important component of immunity induced by current vaccinia-based vaccines, and likely will be required for new subunit vaccine approaches, but to date vaccinia-specific CD4(+ T cell responses have been poorly characterized, and CD4(+ T cell epitopes have been reported only recently. Classical approaches used to identify T cell epitopes are not practical for large genomes like vaccinia. We developed and validated a highly efficient computational approach that combines prediction of class II MHC-peptide binding activity with prediction of antigen processing and presentation. Using this approach and screening only 36 peptides, we identified 25 epitopes recognized by T cells from vaccinia-immune individuals. Although the predictions were made for HLA-DR1, eight of the peptides were recognized by donors of multiple haplotypes. T cell responses were observed in samples of peripheral blood obtained many years after primary vaccination, and were amplified after booster immunization. Peptides recognized by multiple donors are highly conserved across the poxvirus family, including variola, the causative agent of smallpox, and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response elicited to vaccinia virus. Moreover, the epitope identification approach developed here should find application to other large-genome pathogens.

  8. Human CD4+ T Cell Epitopes from Vaccinia Virus Induced by Vaccination or Infection

    Science.gov (United States)

    Calvo-Calle, J. Mauricio; Strug, Iwona; Nastke, Maria-Dorothea; Baker, Stephen P; Stern, Lawrence J

    2007-01-01

    Despite the importance of vaccinia virus in basic and applied immunology, our knowledge of the human immune response directed against this virus is very limited. CD4+ T cell responses are an important component of immunity induced by current vaccinia-based vaccines, and likely will be required for new subunit vaccine approaches, but to date vaccinia-specific CD4+ T cell responses have been poorly characterized, and CD4+ T cell epitopes have been reported only recently. Classical approaches used to identify T cell epitopes are not practical for large genomes like vaccinia. We developed and validated a highly efficient computational approach that combines prediction of class II MHC-peptide binding activity with prediction of antigen processing and presentation. Using this approach and screening only 36 peptides, we identified 25 epitopes recognized by T cells from vaccinia-immune individuals. Although the predictions were made for HLA-DR1, eight of the peptides were recognized by donors of multiple haplotypes. T cell responses were observed in samples of peripheral blood obtained many years after primary vaccination, and were amplified after booster immunization. Peptides recognized by multiple donors are highly conserved across the poxvirus family, including variola, the causative agent of smallpox, and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response elicited to vaccinia virus. Moreover, the epitope identification approach developed here should find application to other large-genome pathogens. PMID:17937498

  9. Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates.

    Science.gov (United States)

    Cicin-Sain, Luka; Smyk-Pearson, Susan; Smyk-Paerson, Sue; Currier, Noreen; Byrd, Laura; Koudelka, Caroline; Robinson, Tammie; Swarbrick, Gwendolyn; Tackitt, Shane; Legasse, Alfred; Fischer, Miranda; Nikolich-Zugich, Dragana; Park, Byung; Hobbs, Theodore; Doane, Cynthia J; Mori, Motomi; Axthelm, Michael K; Axthelm, Michael T; Lewinsohn, Deborah A; Nikolich-Zugich, Janko

    2010-06-15

    Aging is usually accompanied by diminished immune protection upon infection or vaccination. Although aging results in well-characterized changes in the T cell compartment of long-lived, outbred, and pathogen-exposed organisms, their relevance for primary Ag responses remain unclear. Therefore, it remains unclear whether and to what extent the loss of naive T cells, their partial replacement by oligoclonal memory populations, and the consequent constriction of TCR repertoire limit the Ag responses in aging primates. We show in this study that aging rhesus monkeys (Macaca mulatta) exhibit poor CD8 T cell and B cell responses in the blood and poor CD8 responses in the lungs upon vaccination with the modified vaccinia strain Ankara. The function of APCs appeared to be maintained in aging monkeys, suggesting that the poor response was likely intrinsic to lymphocytes. We found that the loss of naive CD4 and CD8 T cells, and the appearance of persisting T cell clonal expansions predicted poor CD8 responses in individual monkeys. There was strong correlation between early CD8 responses in the transitory CD28+ CD62L- CD8+ T cell compartment and the peak Ab titers upon boost in individual animals, as well as a correlation of both parameters of immune response to the frequency of naive CD8+ T cells in old but not in adult monkeys. Therefore, our results argue that T cell repertoire constriction and naive cell loss have prognostic value for global immune function in aging primates.

  10. Glycolipid-peptide conjugate vaccines enhance CD8+ T cell responses against human viral proteins.

    Science.gov (United States)

    Speir, M; Authier-Hall, A; Brooks, C R; Farrand, K J; Compton, B J; Anderson, R J; Heiser, A; Osmond, T L; Tang, C W; Berzofsky, J A; Terabe, M; Painter, G F; Hermans, I F; Weinkove, R

    2017-10-27

    An important goal of vaccination against viruses and virus-driven cancers is to elicit cytotoxic CD8+ T cells specific for virus-derived peptides. CD8+ T cell responses can be enhanced by engaging help from natural killer T (NKT) cells. We have produced synthetic vaccines that induce strong peptide-specific CD8+ T cell responses in vivo by incorporating an NKT cell-activating glycolipid. Here we examine the effect of a glycolipid-peptide conjugate vaccine incorporating an NKT cell-activating glycolipid linked to an MHC class I-restricted peptide from a viral antigen in human peripheral blood mononuclear cells. The vaccine induces CD1d-dependent activation of human NKT cells following enzymatic cleavage, activates human dendritic cells in an NKT-cell dependent manner, and generates a pool of activated antigen-specific CD8+ T cells with cytotoxic potential. Compared to unconjugated peptide, the vaccine upregulates expression of genes encoding interferon-γ, CD137 and granzyme B. A similar vaccine incorporating a peptide from the clinically-relevant human papilloma virus (HPV) 16 E7 oncoprotein induces cytotoxicity against peptide-expressing targets in vivo, and elicits a better antitumor response in a model of E7-expressing lung cancer than its unconjugated components. Glycolipid-peptide conjugate vaccines may prove useful for the prevention or treatment of viral infections and tumors that express viral antigens.

  11. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  12. T cell costimulatory molecules in anti-viral immunity: Potential role in immunotherapeutic vaccines.

    Science.gov (United States)

    Watts, Tania H; Bertram, Edward M; Bukczynski, Jacob; Wen, Tao

    2003-07-01

    T lymphocyte activation is required to eliminate or control intracellular viruses. The activation of T cells requires both an antigen specific signal, involving the recognition of a peptide/major histocompatibility protein complex by the T cell receptor, as well as additional costimulatory signals. In chronic viral diseases, T cell responses, although present, are unable to eliminate the infection. By providing antigens and costimulatory molecules together, investigators may be able to increase and broaden the immune response, resulting in better immunological control or even elimination of the infection. Recent progress in understanding the function of costimulatory molecules suggests that different costimulatory molecules are involved in initial immune responses than are involved in recall responses. These new developments have important implications for therapeutic vaccine design. In this review the authors discuss the function of T cell costimulatory molecules in immune system activation and their potential for enhancing the efficacy of therapeutic vaccines.

  13. Complex Minigene Library Vaccination for Discovery of Pre-Erythrocytic Plasmodium T Cell Antigens.

    Science.gov (United States)

    Stone, Brad C; Kas, Arnold; Billman, Zachary P; Fuller, Deborah H; Fuller, James T; Shendure, Jay; Murphy, Sean C

    2016-01-01

    Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens.

  14. Defining epitope coverage requirements for T cell-based HIV vaccines: Theoretical considerations and practical applications

    Science.gov (United States)

    2011-01-01

    Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products) is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated) and depth (the variant coverage within a T cell epitope) analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1) epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2) increasing the valency (number of T cell epitope variants present) of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3) considering multiple-hit models (more than one exact epitope match with an incoming HIV strain) places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming viruses important

  15. Defining epitope coverage requirements for T cell-based HIV vaccines: Theoretical considerations and practical applications

    Directory of Open Access Journals (Sweden)

    Currier Jeffrey R

    2011-12-01

    Full Text Available Abstract Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated and depth (the variant coverage within a T cell epitope analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1 epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2 increasing the valency (number of T cell epitope variants present of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3 considering multiple-hit models (more than one exact epitope match with an incoming HIV strain places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming

  16. Optimized Peptide Vaccines Eliciting Extensive CD8 T Cell Responses with Therapeutic Anti-Tumor Effects

    Science.gov (United States)

    Cho, Hyun-Il; Celis, Esteban

    2009-01-01

    A major challenge for developing effective therapeutic vaccines against cancer is overcoming immunological tolerance to tumor-associated antigens that are expressed on both malignant cells and normal tissues. Herein, we describe a novel vaccination approach, TriVax that utilizes synthetic peptides representing CD8 T cell epitopes, Toll-like receptor (TLR) agonists that function as a potent immunological adjuvants and costimulatory anti-CD40 antibodies to generate large numbers of high avidity antigen-reactive T cells capable of recognizing and killing tumor cells. Our results show that TriVax induced huge numbers of long-lasting antigen specific CD8 T cells that displayed significant anti-tumor effects in vivo. The administration of a TriVax formulation containing a CD8 T cell epitope derived from a melanosomal antigen (Trp2180-188) elicited antigen-specific CD8 T cells that induced systemic autoimmunity (vitiligo). More important, TriVax immunization was effective in eliciting potent protective anti-tumor immunity as well as remarkable therapeutic effects against established B16 melanoma. This therapeutic effect was mediated by CD8 T cells via perforin-mediated lysis and required the participation of type I-IFN but not IFNγ. These results suggest that similar strategies would be applicable for the design of effective vaccination for conducting clinical studies in cancer patients. PMID:19903852

  17. Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects.

    Science.gov (United States)

    Cho, Hyun-Il; Celis, Esteban

    2009-12-01

    A major challenge for developing effective therapeutic vaccines against cancer is overcoming immunologic tolerance to tumor-associated antigens that are expressed on both malignant cells and normal tissues. Herein, we describe a novel vaccination approach, TriVax, that uses synthetic peptides representing CD8 T-cell epitopes, Toll-like receptor agonists that function as potent immunologic adjuvants and costimulatory anti-CD40 antibodies to generate large numbers of high-avidity antigen-reactive T cells capable of recognizing and killing tumor cells. Our results show that TriVax induced huge numbers of long-lasting antigen-specific CD8 T cells that displayed significant antitumor effects in vivo. The administration of a TriVax formulation containing a CD8 T-cell epitope derived from a melanosomal antigen (Trp2(180-188)) elicited antigen-specific CD8 T cells that induced systemic autoimmunity (vitiligo). More important, TriVax immunization was effective in eliciting potent protective antitumor immunity as well as remarkable therapeutic effects against established B16 melanoma. This therapeutic effect was mediated by CD8 T cells via perforin-mediated lysis and required the participation of type-I IFN but not IFNgamma. These results suggest that similar strategies would be applicable for the design of effective vaccination for conducting clinical studies in cancer patients.

  18. Designing bovine T cell vaccines via reverse immunology

    DEFF Research Database (Denmark)

    Nene, Vishvanath; Svitek, Nicholas; Toye, Philip

    2012-01-01

    lymphoproliferative disease of cattle prevalent in sub-Saharan Africa and caused by Theileria parva. To complement the more traditional approaches to CTL antigen identification and vaccine development that we have previously undertaken we propose a use of immunoinformatics to predict CTL peptide epitopes followed......MHCpan may be used to predict parasite peptide epitopes by scanning the predicted T. parva proteome and known parasite CTL antigens. A range of pMHC tetramers, made “on-demand”, will then be used to assay cattle that are immune to ECF or in vaccine trials to determine if CTLs of the predicted epitope...

  19. Vaccine Targeting of Subdominant CD8+ T Cell Epitopes Increases the Breadth of the T Cell Response upon Viral Challenge, but May Impair Immediate Virus Control

    DEFF Research Database (Denmark)

    Steffensen, Maria A; Pedersen, Louise Holm; Jahn, Marie Louise

    2016-01-01

    , hence, a greater efficiency in controlling escape variants. However, to our knowledge the evidence supporting this concept is limited at best. To improve upon this, we used the murine lymphocytic choriomeningitis virus model and adenoviral vectors to compare a vaccine expressing unmodified Ag......As a result of the difficulties in making efficient vaccines against genetically unstable viruses such as HIV, it has been suggested that future vaccines should preferentially target subdominant epitopes, the idea being that this should allow a greater breadth of the induced T cell response and...... to a vaccine expressing the same Ag without its immunodominant epitope. We found that removal of the dominant epitope allowed the induction of CD8(+) T cell responses targeting at least two otherwise subdominant epitopes. Importantly, the overall magnitude of the induced T cell responses was similar, allowing...

  20. Challenges in the Design of a T Cell Vaccine in the Context of HIV-1 Diversity

    Directory of Open Access Journals (Sweden)

    Marcel Tongo

    2014-10-01

    Full Text Available The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored.

  1. Metabolic engineering of Salmonella vaccine bacteria to boost human Vγ2Vδ2 T cell immunity.

    Science.gov (United States)

    Workalemahu, Grefachew; Wang, Hong; Puan, Kia-Joo; Nada, Mohanad H; Kuzuyama, Tomohisa; Jones, Bradley D; Jin, Chenggang; Morita, Craig T

    2014-07-15

    Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing foreign (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a metabolite in the 2-C-methyl-D-erythritol-4-phosphate pathway used by most eubacteria and apicomplexan parasites, and self isopentenyl pyrophosphate, a metabolite in the mevalonate pathway used by humans. Whereas microbial infections elicit prolonged expansion of memory Vγ2Vδ2 T cells, immunization with prenyl pyrophosphates or aminobisphosphonates elicit short-term Vγ2Vδ2 expansion with rapid anergy and deletion upon subsequent immunizations. We hypothesized that a live, attenuated bacterial vaccine that overproduces HMBPP would elicit long-lasting Vγ2Vδ2 T cell immunity by mimicking a natural infection. Therefore, we metabolically engineered the avirulent aroA(-) Salmonella enterica serovar Typhimurium SL7207 strain by deleting the gene for LytB (the downstream enzyme from HMBPP) and functionally complementing for this loss with genes encoding mevalonate pathway enzymes. LytB(-) Salmonella SL7207 had high HMBPP levels, infected human cells as efficiently as did the wild-type bacteria, and stimulated large ex vivo expansions of Vγ2Vδ2 T cells from human donors. Importantly, vaccination of a rhesus monkey with live lytB(-) Salmonella SL7207 stimulated a prolonged expansion of Vγ2Vδ2 T cells without significant side effects or anergy induction. These studies provide proof-of-principle that metabolic engineering can be used to derive live bacterial vaccines that boost Vγ2Vδ2 T cell immunity. Similar engineering of metabolic pathways to produce lipid Ags or B vitamin metabolite Ags could be used to derive live bacterial vaccine for other unconventional T cells that recognize nonpeptide Ags.

  2. Regulatory T-cell vaccination independent of auto-antigen

    Science.gov (United States)

    Pascual, David W; Yang, Xinghong; Holderness, Kathryn; Jun, SangMu; Maddaloni, Massimo; Kochetkova, Irina

    2014-01-01

    To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated Salmonella vaccine expressing CFA/I fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine's capacity to protect against travelers' diarrhea or salmonellosis. By adapting the vaccine's anti-inflammatory properties, it was found that it could also dampen experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the required Treg cell subset for each disease. For MS-like disease, conventional CD25+ Treg cells are stimulated, but for arthritis CD39+ Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming growth factor-β and interleukin-10. PMID:24626168

  3. Optimized Peptide Vaccines Eliciting Extensive CD8 T Cell Responses with Therapeutic Anti-Tumor Effects

    OpenAIRE

    Cho, Hyun-Il; Celis, Esteban

    2009-01-01

    A major challenge for developing effective therapeutic vaccines against cancer is overcoming immunological tolerance to tumor-associated antigens that are expressed on both malignant cells and normal tissues. Herein, we describe a novel vaccination approach, TriVax that utilizes synthetic peptides representing CD8 T cell epitopes, Toll-like receptor (TLR) agonists that function as a potent immunological adjuvants and costimulatory anti-CD40 antibodies to generate large numbers of high avidity...

  4. Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion

    DEFF Research Database (Denmark)

    Brimnes, Marie Klinge; Gang, Anne Ortved; Donia, Marco

    2012-01-01

    ® ClinExVivo™CD3/CD28. We show here that the addition of an in vitro restimulation step with relevant peptides prior to bead expansion dramatically increased the proportion of tumor-specific T cells in PBMC-cultures. Importantly, peptide-pulsed dendritic cells (DCs) as well as allogeneic tumor lysate......-pulsed DCs from the DC vaccine preparation could be used with comparable efficiency to peptides for in vitro restimulation, to increase the tumor-specific T-cell response. Furthermore, we tested the use of different ratios and different types of Dynabeads® CD3/CD28 and CD3/CD28/CD137 T-cell expander......, for optimized expansion of tumor-specific T cells. A ratio of 1:3 of Dynabeads® CD3/CD28 T-cell expander to T cells resulted in the maximum number of tumor-specific T cells. The addition of CD137 did not improve functionality or fold expansion. Both T-cell expansion systems could generate tumor-specific T cells...

  5. Vaccination Produces CD4 T Cells with a Novel CD154-CD40-Dependent Cytolytic Mechanism.

    Science.gov (United States)

    Coler, Rhea N; Hudson, Thomas; Hughes, Sean; Huang, Po-Wei D; Beebe, Elyse A; Orr, Mark T

    2015-10-01

    The discovery of new vaccines against infectious diseases and cancer requires the development of novel adjuvants with well-defined activities. The TLR4 agonist adjuvant GLA-SE elicits robust Th1 responses to a variety of vaccine Ags and is in clinical development for both infectious diseases and cancer. We demonstrate that immunization with a recombinant protein Ag and GLA-SE also induces granzyme A expression in CD4 T cells and produces cytolytic cells that can be detected in vivo. Surprisingly, these in vivo CTLs were CD4 T cells, not CD8 T cells, and this cytolytic activity was not dependent on granzyme A/B or perforin. Unlike previously reported CD4 CTLs, the transcription factors Tbet and Eomes were not necessary for their development. CTL activity was also independent of the Fas ligand-Fas, TRAIL-DR5, and canonical death pathways, indicating a novel mechanism of CTL activity. Rather, the in vivo CD4 CTL activity induced by vaccination required T cell expression of CD154 (CD40L) and target cell expression of CD40. Thus, vaccination with a TLR4 agonist adjuvant induces CD4 CTLs, which kill through a previously unknown CD154-dependent mechanism. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Regulatory T cell frequencies and phenotypes following anti-viral vaccination.

    Science.gov (United States)

    de Wolf, A Charlotte M T; van Aalst, Susan; Ludwig, Irene S; Bodinham, Caroline L; Lewis, David J; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2017-01-01

    Regulatory T cells (Treg) function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg) and activated (aTreg) subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation of Treg

  7. Regulatory T cell frequencies and phenotypes following anti-viral vaccination.

    Directory of Open Access Journals (Sweden)

    A Charlotte M T de Wolf

    Full Text Available Regulatory T cells (Treg function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg and activated (aTreg subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation

  8. T cell immunity. Functional heterogeneity of human memory CD4⁺ T cell clones primed by pathogens or vaccines.

    Science.gov (United States)

    Becattini, Simone; Latorre, Daniela; Mele, Federico; Foglierini, Mathilde; De Gregorio, Corinne; Cassotta, Antonino; Fernandez, Blanca; Kelderman, Sander; Schumacher, Ton N; Corti, Davide; Lanzavecchia, Antonio; Sallusto, Federica

    2015-01-23

    Distinct types of CD4(+) T cells protect the host against different classes of pathogens. However, it is unclear whether a given pathogen induces a single type of polarized T cell. By combining antigenic stimulation and T cell receptor deep sequencing, we found that human pathogen- and vaccine-specific T helper 1 (T(H)1), T(H)2, and T(H)17 memory cells have different frequencies but comparable diversity and comprise not only clones polarized toward a single fate, but also clones whose progeny have acquired multiple fates. Single naïve T cells primed by a pathogen in vitro could also give rise to multiple fates. Our results unravel an unexpected degree of interclonal and intraclonal functional heterogeneity of the human T cell response and suggest that polarized responses result from preferential expansion rather than priming. Copyright © 2015, American Association for the Advancement of Science.

  9. Therapeutic Vaccination Using Cationic Liposome-Adjuvanted HIV Type 1 Peptides Representing HLA-Supertype-Restricted Subdominant T Cell Epitopes

    DEFF Research Database (Denmark)

    Román, Victor Raúl Gómez; Jensen, Kristoffer Jarlov; Jensen, Sanne Skov

    2013-01-01

    We have designed a therapeutic HIV-1 vaccine concept based on peptides together with the adjuvant CAF01. Peptides represented 15 HLA-supertype-restricted subdominant and conserved CD8 T cell epitopes and three CD4 T-helper cell epitopes. In this phase I clinical trial, safety and immunogenicity...... is feasible and safe in Guinea-Bissau and that it is possible to redirect T cell immunity with CAF01-adjuvanted HIV-1 peptide vaccine during untreated HIV-1 infection in some patients. However, relatively few preexisting and vaccine-induced HIV-1 T cell responses to CD8 T cell epitopes were detected against...

  10. A combined nucleocapsid vaccine induces vigorous SARS-CD8+ T-cell immune responses

    Science.gov (United States)

    Azizi, Ali; Aucoin, Susan; Tadesse, Helina; Frost, Rita; Ghorbani, Masoud; Soare, Catalina; Naas, Turaya; Diaz-Mitoma, Francisco

    2005-01-01

    Several studies have shown that cell-mediated immune responses play a crucial role in controlling viral replication. As such, a candidate SARS vaccine should elicit broad CD8+ T-cell immune responses. Several groups of mice were immunized alone or in combination with SARS-nucleocapsid immunogen. A high level of specific SARS-CD8+ T-cell response was demonstrated in mice that received DNA encoding the SARS-nucleocapsid, protein and XIAP as an adjuvant. We also observed that co-administration of a plasmid expressing nucleocapsid, recombinant protein and montanide/CpG induces high antibody titers in immunized mice. Moreover, this vaccine approach merits further investigation as a potential candidate vaccine against SARS. PMID:16115319

  11. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  12. Fragmentation of SIV-gag vaccine induces broader T cell responses.

    Directory of Open Access Journals (Sweden)

    Adel Benlahrech

    Full Text Available High mutation rates of human immunodeficiency virus (HIV allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-γ-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise

  13. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    Directory of Open Access Journals (Sweden)

    Fernando dos Santos Virgilio

    2014-01-01

    Full Text Available MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  14. Oral Vaccination with Lipid-Formulated BCG Induces a Long-lived, Multifunctional CD4+ T Cell Memory Immune Response

    Science.gov (United States)

    Ancelet, Lindsay R.; Aldwell, Frank E.; Rich, Fenella J.; Kirman, Joanna R.

    2012-01-01

    Oral delivery of BCG in a lipid formulation (Liporale™-BCG) targets delivery of viable bacilli to the mesenteric lymph nodes and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the effector and memory immune response induced by Liporale™-BCG vaccination is unknown. Therefore, we compared the effector and memory CD4+ T cell response in the spleen and lungs of mice vaccinated with Liporale™-BCG to the response induced by subcutaneous BCG vaccination. Liporale™-BCG vaccination induced a long-lived CD4+ T cell response, evident by the detection of effector CD4+ T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific CD4+ T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, Liporale™-BCG vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4+ T cells in the lungs capable of producing IFNγ and the number of multifunctional CD4+ T cells in the lungs at 30 weeks post vaccination. These results demonstrate that orally delivered Liporale™-BCG vaccine induces a long-lived multifunctional immune response, and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines. PMID:23049885

  15. Targeted DNA vaccines for enhanced induction of Idiotype (Id-specific B and T cells

    Directory of Open Access Journals (Sweden)

    Agnete Brunsvik Fredriksen

    2012-10-01

    Full Text Available Background: Idiotopes (Id are antigenic determinants localized in variable (V regions of Ig. Id-specific T and B cells (antibodies play a role in immunotherapy of Id+ tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id+ single chain Fragment variable (scFv from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen presenting cells (APC. APC-specific targeting units were either scFv from APC-specific mAb (anti-MHCII, anti-CD40 or chemokines (MIP-1α, RANTES. Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i Transfected cells secreted plasmid-encoded Id+ fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii Targeted vaccine molecules increased Id-specific B and T cell responses. (iii Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv Targeted Id DNA vaccines induced tumor resistance against challenges with Id+ tumors. (v Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi Human Id+ scFv from 4 multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii Human MIP-1α vaccine proteins enhanced human T cell responses in vitro (viii A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusions: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  16. Future of an “Asymptomatic” T-cell Epitope-Based Therapeutic Herpes Simplex Vaccine

    Science.gov (United States)

    Dervillez, Xavier; Gottimukkala, Chetan; Kabbara, Khaled W.; Nguyen, Chelsea; Badakhshan, Tina; Kim, Sarah M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2012-01-01

    Summary Considering the limited success of the recent herpes clinical vaccine trial [1], new vaccine strategies are needed. Infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) in the majority of men and women are usually asymptomatic and results in lifelong viral latency in neurons of sensory ganglia (SG). However, in a minority of men and women HSV spontaneous reactivation can cause recurrent disease (i.e., symptomatic individuals). Our recent findings show that T cells from symptomatic and asymptomatic men and women (i.e. those with and without recurrences, respectively) recognize different herpes epitopes. This finding breaks new ground and opens new doors to assess a new vaccine strategy: mucosal immunization with HSV-1 & HSV-2 epitopes that induce strong in vitro CD4 and CD8 T cell responses from PBMC derived from asymptomatic men and women (designated here as “asymptomatic” protective epitopes”) could boost local and systemic “natural” protective immunity, induced by wild-type infection. Here we highlight the rationale and the future of our emerging “asymptomatic” T cell epitope-based mucosal vaccine strategy to decrease recurrent herpetic disease. PMID:22701511

  17. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    Many novel vaccine strategies rely on recombinant viral vectors for antigen delivery, and adenovirus vectors have emerged among the most potent of these. In this report, we have compared the immune response induced through priming with adenovirus vector-encoded full-length viral protein to that e......Many novel vaccine strategies rely on recombinant viral vectors for antigen delivery, and adenovirus vectors have emerged among the most potent of these. In this report, we have compared the immune response induced through priming with adenovirus vector-encoded full-length viral protein...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T...

  18. On modeling HIV and T cells in vivo: assessing causal estimators in vaccine trials.

    Directory of Open Access Journals (Sweden)

    W David Wick

    2006-06-01

    Full Text Available The first efficacy trials--named STEP--of a T cell vaccine against HIV/AIDS began in 2004. The unprecedented structure of these trials raised new modeling and statistical challenges. Is it plausible that memory T cells, as opposed to antibodies, can actually prevent infection? If they fail at prevention, to what extent can they ameliorate disease? And how do we estimate efficacy in a vaccine trial with two primary endpoints, one traditional, one entirely novel (viral load after infection, and where the latter may be influenced by selection bias due to the former? In preparation for the STEP trials, biostatisticians developed novel techniques for estimating a causal effect of a vaccine on viral load, while accounting for post-randomization selection bias. But these techniques have not been tested in biologically plausible scenarios. We introduce new stochastic models of T cell and HIV kinetics, making use of new estimates of the rate that cytotoxic T lymphocytes--CTLs; the so-called killer T cells--can kill HIV-infected cells. Based on these models, we make the surprising discovery that it is not entirely implausible that HIV-specific CTLs might prevent infection--as the designers explicitly acknowledged when they chose the endpoints of the STEP trials. By simulating thousands of trials, we demonstrate that the new statistical methods can correctly identify an efficacious vaccine, while protecting against a false conclusion that the vaccine exacerbates disease. In addition to uncovering a surprising immunological scenario, our results illustrate the utility of mechanistic modeling in biostatistics.

  19. Suppression by thimerosal of ex-vivo CD4+ T cell response to influenza vaccine and induction of apoptosis in primary memory T cells.

    Directory of Open Access Journals (Sweden)

    Emily Loison

    Full Text Available Thimerosal is a preservative used widely in vaccine formulations to prevent bacterial and fungal contamination in multidose vials of vaccine. Thimerosal was included in the multidose non-adjuvanted pandemic 2009 H1N1 vaccine Panenza. In the context of the analysis of the ex-vivo T cell responses directed against influenza vaccine, we discovered the in vitro toxicity Panenza, due to its content in thimerosal. Because thimerosal may skew the immune response to vaccines, we investigated in detail the ex-vivo effects of thimerosal on the fate and functions of T cells in response to TCR ligation. We report that ex-vivo exposure of quiescent or TCR-activated primary human T cells to thimerosal induced a dose-dependent apoptotic cell death associated with depolarization of mitochondrial membrane, generation of reactive oxygen species, cytochrome c release from the mitochondria and caspase-3 activation. Moreover, exposure to non-toxic concentrations of thimerosal induced cell cycle arrest in G0/G1 phase of TCR-activated T cells, and inhibition of the release of proinflammatory cytokines such as IFN gamma, IL-1 beta, TNF alpha, IL-2, as well as the chemokine MCP1. No shift towards Th2 or Th17 cells was detected. Overall these results underline the proapoptotic effect of thimerosal on primary human lymphocytes at concentrations 100 times less to those contained in the multidose vaccine, and they reveal the inhibitory effect of this preservative on T-cell proliferation and functions at nanomolar concentrations.

  20. Induction of resident memory T cells enhances the efficacy of cancer vaccine.

    Science.gov (United States)

    Nizard, Mevyn; Roussel, Hélène; Diniz, Mariana O; Karaki, Soumaya; Tran, Thi; Voron, Thibault; Dransart, Estelle; Sandoval, Federico; Riquet, Marc; Rance, Bastien; Marcheteau, Elie; Fabre, Elizabeth; Mandavit, Marion; Terme, Magali; Blanc, Charlotte; Escudie, Jean-Baptiste; Gibault, Laure; Barthes, Françoise Le Pimpec; Granier, Clemence; Ferreira, Luis C S; Badoual, Cecile; Johannes, Ludger; Tartour, Eric

    2017-05-24

    Tissue-resident memory T cells (Trm) represent a new subset of long-lived memory T cells that remain in tissue and do not recirculate. Although they are considered as early immune effectors in infectious diseases, their role in cancer immunosurveillance remains unknown. In a preclinical model of head and neck cancer, we show that intranasal vaccination with a mucosal vector, the B subunit of Shiga toxin, induces local Trm and inhibits tumour growth. As Trm do not recirculate, we demonstrate their crucial role in the efficacy of cancer vaccine with parabiosis experiments. Blockade of TFGβ decreases the induction of Trm after mucosal vaccine immunization, resulting in the lower efficacy of cancer vaccine. In order to extrapolate this role of Trm in humans, we show that the number of Trm correlates with a better overall survival in lung cancer in multivariate analysis. The induction of Trm may represent a new surrogate biomarker for the efficacy of cancer vaccine. This study also argues for the development of vaccine strategies designed to elicit them.

  1. Peptide vaccination in the presence of adjuvants in patients after hematopoietic stem cell transplantation with CD4+ T cell reconstitution elicits consistent CD8+ T cell responses.

    Science.gov (United States)

    Schmitt, Michael; Schmitt, Anita; Wiesneth, Markus; Hückelhoven, Angela; Wu, Zeguang; Kuball, Jürgen; Wang, Lei; Schauwecker, Peter; Hofmann, Susanne; Götz, Marlies; Michels, Birgit; Maccari, Birgit; Wuchter, Patrick; Eckstein, Volker; Mertens, Thomas; Schnitzler, Paul; Döhner, Hartmut; Ho, Anthony D; Bunjes, Donald W; Dreger, Peter; Schrezenmeier, Hubert; Greiner, Jochen

    2017-01-01

    Rationale: Patients receiving an allogeneic stem cell graft from cytomegalovirus (CMV) seronegative donors are particularly prone to CMV reactivation with a high risk of disease and mortality. Therefore we developed and manufactured a novel vaccine and initiated a clinical phase I trial with a CMV phosphoprotein 65 (CMVpp65)-derived peptide. Methods: Ten patients after allogeneic stem cell transplantation received four vaccinations at a biweekly interval. All patients were monitored for CMVpp65 antigenemia. Flow cytometry for CMV-specific CD8+ and γδ T cells as well as neutralizing anti-CMV antibodies were correlated to clinical parameters. Results: The vaccination was well tolerated. Seven of nine patients cleared CMVpp65 antigenemia after four vaccinations and are still free from antigenemia to this day. Two patients with CMV reactivation showed persisting CMV antigenemia. One patient received prophylactic vaccination and did not develop antigenemia. An increase of up to six-fold in frequency of both CMV-specific CD8+ T cells and/or Vδ2negative γδ T cells was detected. Titers of neutralizing antibodies increased up to the tenfold. Humoral and cellular immune responses correlated with clearance of CMV. Conclusion: In summary, CMVpp65 peptide vaccination for patients after allogeneic stem cell transplantation at high risk for CMV reactivation was safe, well tolerated and clinically encouraging. A study in solid-organ transplant patients is ongoing.

  2. CD27 Agonism Plus PD-1 Blockade Recapitulates CD4+ T-cell Help in Therapeutic Anticancer Vaccination.

    Science.gov (United States)

    Ahrends, Tomasz; Bąbała, Nikolina; Xiao, Yanling; Yagita, Hideo; van Eenennaam, Hans; Borst, Jannie

    2016-05-15

    While showing promise, vaccination strategies to treat cancer require further optimization. Likely barriers to efficacy involve cancer-associated immunosuppression and peripheral tolerance, which limit the generation of effective vaccine-specific cytotoxic T lymphocytes (CTL). Because CD4(+) T cells improve CTL responsiveness, next-generation vaccines include helper epitopes. Here, we demonstrate in mice how CD4(+) T-cell help optimizes the CTL response to a clinically relevant DNA vaccine engineered to combat human papillomavirus-expressing tumors. Inclusion of tumor-unrelated helper epitopes greatly increased CTL priming, effector, and memory T-cell programming. CD4(+) T-cell help optimized the CTL response in all these aspects via CD27/CD70 costimulation. Notably, administration of an agonistic CD27 antibody could largely replace helper epitopes in promoting primary and memory CTL responses, acting directly on CD8(+) T cells. CD27 agonism improved efficacy of the vaccine without helper epitopes, more so than combined PD-1 and CTLA-4 blockade. Combining CD27 agonism with CTLA-4 blockade improved vaccine-induced CTL priming and tumor infiltration, but only combination with PD-1 blockade was effective at eradicating tumors, thereby fully recapitulating the effect of CD4(+) T-cell help on vaccine efficacy. PD-1 blockade alone did not affect CTL priming or tumor infiltration, so these results implied that it cooperated with CD4(+) T-cell help by alleviating immune suppression against CTL in the tumor. Helper epitope inclusion or CD27 agonism did not stimulate regulatory T cells, and vaccine efficacy was also improved by CD27 agonism in the presence of CD4(+) T-cell help. Our findings provide a preclinical rationale to apply CD27 agonist antibodies, either alone or combined with PD-1 blockade, to improve the therapeutic efficacy of cancer vaccines and immunotherapy generally. Cancer Res; 76(10); 2921-31. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association...... facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after...

  4. DNA/Ad5 vaccination with SIV epitopes induced epitope-specific CD4⁺ T cells, but few subdominant epitope-specific CD8⁺ T cells.

    Science.gov (United States)

    Vojnov, Lara; Bean, Alexander T; Peterson, Eric J; Chiuchiolo, Maria J; Sacha, Jonah B; Denes, Ferencz S; Sandor, Matyas; Fuller, Deborah H; Fuller, James T; Parks, Christopher L; McDermott, Adrian B; Wilson, Nancy A; Watkins, David I

    2011-10-06

    The goals of a T cell-based vaccine for HIV are to reduce viral peak and setpoint and prevent transmission. While it has been relatively straightforward to induce CD8(+) T cell responses against immunodominant T cell epitopes, it has been more difficult to broaden the vaccine-induced CD8(+) T cell response against subdominant T cell epitopes. Additionally, vaccine regimens to induce CD4(+) T cell responses have been studied only in limited settings. In this study, we sought to elicit CD8(+) T cells against subdominant epitopes and CD4(+) T cells using various novel and well-established vaccine strategies. We vaccinated three Mamu-A*01(+) animals with five Mamu-A*01-restricted subdominant SIV-specific CD8(+) T cell epitopes. All three vaccinated animals made high frequency responses against the Mamu-A*01-restricted Env TL9 epitope with one animal making a low frequency CD8(+) T cell response against the Pol LV10 epitope. We also induced SIV-specific CD4(+) T cells against several MHC class II DRBw*606-restricted epitopes. Electroporated DNA with pIL-12 followed by a rAd5 boost was the most immunogenic vaccine strategy. We induced responses against all three Mamu-DRB*w606-restricted CD4 epitopes in the vaccine after the DNA prime. Ad5 vaccination further boosted these responses. Although we successfully elicited several robust epitope-specific CD4(+) T cell responses, vaccination with subdominant MHC class I epitopes elicited few detectable CD8(+) T cell responses. Broadening the CD8(+) T cell response against subdominant MHC class I epitopes was, therefore, more difficult than we initially anticipated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Effector and Central Memory Poly-functional CD4+ and CD8+ T cells are Boosted upon ZOSTAVAX® Vaccination

    Directory of Open Access Journals (Sweden)

    Kalpit A Vora

    2015-10-01

    Full Text Available ZOSTAVAX® is a live attenuated varicella-zoster virus (VZV vaccine that is licensed for the protection of individuals ≥ 50 years against shingles, and its most common complication, post-herpetic neuralgia. While IFN responses increase upon vaccination, the quality of the T cell response has not been elucidated. By using polychromatic flow cytometry, we characterized the breadth, magnitude, and quality of ex vivo CD4+ and CD8+ T cell responses induced 3 – 4 weeks after ZOSTAVAX vaccination of healthy adults. We show, for the first time that the highest frequencies of VZV-specific CD4+ T cells were poly-functional CD154+IFNγ+IL-2+TNFα+ cells, which were boosted upon vaccination. The CD4+ T cells were broadly reactive to several VZV proteins, with IE63 ranking the highest amongst them in the fold-rise of poly-functional cells, followed by IE62, gB, ORF9, and gE. We identified a novel poly-functional ORF9-specific CD8+ T cell population in 62% of the subjects, and these were boosted upon vaccination. Poly-functional CD4+ and CD8+ T cells produced significantly higher levels of IFNγ, IL-2, and TNFα compared to mono-functional cells. After vaccination, a boost in the expression of IFN by poly-functional IE63-and ORF9-specific CD4+ T cells, and IFNγ, IL-2, and TNFα by ORF9-specific poly-functional CD8+ T cells was observed. Responding poly-functional T cells exhibited both effector (CCR7−CD45RA−CD45RO+, and central (CCR7+CD45RA−CD45RO+ memory phenotypes, which expressed comparable levels of cytokines. Altogether, our studies demonstrate that a boost in memory poly-functional CD4+ T cells, and ORF9-specific CD8+ T cells may contribute towards ZOSTAVAX efficacy.

  6. T-cell immune responses to Bordetella pertussis infection and vaccination.

    Science.gov (United States)

    Fedele, Giorgio; Cassone, Antonio; Ausiello, Clara Maria

    2015-10-01

    The recent immunological investigations, stemming from the studies performed in the nineties within the clinical trials of the acellular pertussis vaccines, have highlighted the important role played by T-cell immunity to pertussis in humans. These studies largely confirmed earlier investigations in the murine respiratory infection models that humoral immunity alone is not sufficient to confer protection against Bordetella pertussis infection and that T-cell immunity is required. Over the last years, knowledge of T-cell immune response to B. pertussis has expanded broadly, taking advantage of the general progress in the understanding of anti-bacterial immunity and of refinements in methods to approach immunological investigations. In particular, experimental models of B. pertussis infection highlighted the cooperative role played by T-helper (Th)1 and Th17 cells for protection. Furthermore, the new baboon experimental model suggested a plausible explanation for the differences observed in the strength and persistence of protective immunity induced by the acellular or whole-cell pertussis vaccines and natural infection in humans, contributing to explain the upsurge of recent pertussis outbreaks. Despite the progress, open questions remain, the answer to them will possibly provide better tools to fight one of the hardest-to-control vaccine preventable disease. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Detecting T-cell reactivity to whole cell vaccines: Proof of concept analysis of T-cell response to K562 cell antigens in CML patients.

    Science.gov (United States)

    Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M; Deangelo, Daniel J; Stone, Richard M; Lee, Jeng-Shin; Mulligan, Richard C; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J

    2012-10-01

    BCR-ABL(+) K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8(+) T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown.

  8. DNA vaccination with T-cell epitopes encoded within Ab molecules induces high-avidity anti-tumor CD8+ T cells.

    Science.gov (United States)

    Pudney, Victoria A; Metheringham, Rachael L; Gunn, Barbara; Spendlove, Ian; Ramage, Judith M; Durrant, Lindy G

    2010-03-01

    Stimulation of high-avidity CTL responses is essential for effective anti-tumor and anti-viral vaccines. In this study we have demonstrated that a DNA vaccine incorporating CTL epitopes within an Ab molecule results in high-avidity T-cell responses to both foreign and self epitopes. The avidity and frequency was superior to peptide, peptide-pulsed DC vaccines or a DNA vaccine incorporating the epitope within the native Ag. The DNA Ab vaccine was superior to an identical protein vaccine that can only cross-present, indicating a role for direct presentation by the DNA vaccine. However, the avidity of CTL responses was significantly reduced in Fc receptor gamma knockout mice or if the Fc region was removed suggesting that cross presentation of Ag via Fc receptor was also important in the induction of high-avidity CTL. These results suggest that generation of high-avidity CTL responses by the DNA vaccine is related to its ability to both directly present and cross-present the epitope. High-avidity responses were capable of efficient anti-tumor activity in vitro and in vivo. This study demonstrates a vaccine strategy to generate high-avidity CTL responses that can be used in anti-tumor and anti-viral vaccine settings.

  9. Polyfunctional cytokine production by central memory T cells from cattle in response to Mycobacterium bovis infection and BCG vaccination

    Science.gov (United States)

    Polyfunctional T cells simultaneously produce IFN-gamma, IL-2 and TNF-alpha and play relevant roles in several chronic infections, including TB. Mycobacterium bovis infection of cattle elicits ex vivo polyfunctional T cell responses. Vaccine-elicited IFN-gamma Tcm (CD4 plus CD45RO plus CCR7 plus) re...

  10. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    sites. Thus, our DNA vaccine induces a long-lived memory CD8+ T cell population that provides efficient protection against high-dose systemic infection. However, viral replication in solid non-lymphoid organs is not curtailed sufficiently fast to prevent significant virus-induced inflammation. Our......-restricted epitopes of lymphocytic choriomeningitis virus covalently linked to beta2-microglobulin. This vaccine construct primed for a stronger recall response than did a more conventional minigene construct. Despite this, vaccinated mice were only protected against systemic infection whereas protection against...... the consequences of peripheral challenge was limited. Phenotypic analysis revealed that DNA vaccine-primed CD8+ T cells in uninfected mice differed from virus-primed CD8+ T cells particularly regarding expression of very-late antigen (VLA)-4, an adhesion molecule important for targeting T cells to inflammatory...

  11. Successful Vaccination Induces Multifunctional Memory T-Cell Precursors Associated with Early Control of Hepatitis C Virus

    Science.gov (United States)

    Park, Su-Hyung; Shin, Eui-Cheol; Capone, Stefania; Caggiari, Laura; De Re, Valli; Nicosia, Alfredo; Folgori, Antonella; Rehermann, Barbara

    2012-01-01

    Background & Aims T cells are an important component for development of a vaccine against hepatitis C virus (HCV), but little is known about the features of successful vaccine-induced T cells. Methods We compared the phenotype, function, and kinetics of vaccine-induced and infection-induced T cells in chimpanzees with HCV infection using multicolor flow cytometry and real-time PCR. Results In chimpanzees successfully vaccinated with recombinant adenovirus and DNA against HCV NS3-NS5, HCV-specific T cells appeared earlier, maintained better functionality, and persisted at higher frequencies, for a longer time after HCV-challenge, than those of mock-vaccinated chimpanzees. Vaccine-induced T cells displayed higher levels of CD127, a marker of memory precursors, and lower levels of programmed death (PD)-1 than infection-induced T cells. Vaccine-induced, but not infection-induced T cells, were multifunctional; their ability to secrete interferon-γ and tumor necrosis factor-α correlated with early expression of CD127 but not PD-1. Based on a comparison of vaccine-induced and infection-induced T cells from the same chimpanzee, the CD127+ memory precursor phenotype was induced by the vaccine itself, rather than by low viremia. In contrast, PD-1 induction correlated with viremia, and levels of intrahepatic PD-1, PD-L1, and 2,5-OAS-1 mRNAs correlated with peak titers of HCV. Conclusions Compared with infection, vaccination induced HCV-specific CD127+ T cells with high functionality that persisted at higher levels for a longer time. Control of viremia prevented upregulation of PD-1 on T cells, and induction of PD-1, PD-L1, and 2,5-OAS-1 in the liver. Early development of a memory T-cell phenotype and, via control of viremia, attenuation of the inhibitory PD1–PD-L1 pathway might be necessary components of successful vaccine-induced protection against HCV. PMID:22705008

  12. Synthetic melanin bound to subunit vaccine antigens significantly enhances CD8+ T-cell responses.

    Directory of Open Access Journals (Sweden)

    Antoine F Carpentier

    Full Text Available Cytotoxic T-lymphocytes (CTLs play a key role in immunity against cancer; however, the induction of CTL responses with currently available vaccines remains difficult. Because several reports have suggested that pigmentation and immunity might be functionally linked, we investigated whether melanin can act as an adjuvant in vaccines. Short synthetic peptides (8-35 amino acids long containing T-cell epitopes were mixed with a solution of L-Dopa, a precursor of melanin. The mixture was then oxidized to generate nanoparticles of melanin-bound peptides. Immunization with melanin-bound peptides efficiently triggered CTL responses in mice, even against self-antigens and at a very low dose of peptides (microgram range. Immunization against a tumor antigen inhibited the growth of established tumors in mice, an effect that was abrogated by the depletion of CD8+ lymphocytes. These results demonstrate the efficacy of melanin as a vaccine adjuvant.

  13. Targeting CD137 Enhances Vaccine-Elicited Anti-RSV CD8+ T Cell Responses in Aged Mice

    OpenAIRE

    Lee, Sujin; Mittler, Robert S.; Moore, Martin L.

    2013-01-01

    Respiratory syncytial virus (RSV) causes significant morbidity and mortality in children and the elderly. There are no vaccines for RSV in use. Due to immunosenescence, the immunologic requirements for a successful RSV vaccine in the elderly might differ from a RSV vaccine for young children. Using an aged mouse model of RSV pathogenesis, we found that aged mice had impaired antigen-specific CD8+ T cell responses and delayed RSV clearance compared to young mice. In order to study vaccine-elic...

  14. CD8+ gamma-delta TCR+ and CD4+ T cells produce IFN-γat 5–7 days after yellow fever vaccination in Indian rhesus macaques, before the induction of classical antigen-specific T cell responses

    OpenAIRE

    Neves, Patrícia C. C.; Rudersdorf, Richard A.; Galler, Ricardo; Bonaldo, Myrna C.; de Santana, Marlon Gilsepp Veloso; Mudd, Philip A.; Martins, Maurício A.; Rakasz, Eva G.; Wilson, Nancy A.; Watkins, David I.

    2010-01-01

    The yellow fever 17D (YF-17D) vaccine is one of the most efficacious vaccines developed to date. Interestingly, vaccination with YF-17D induces IFN-γ production early after vaccination (d 5–7) before the development of classical antigen-specific CD8+ and CD4+ T cell responses. Here we investigated the cellular source of this early IFN-γ production. At days 5 and 7 post vaccination activated CD8+ gamma-delta TCR T cells produced IFN-γ and TNF-α. Activated CD4+ T cells produced IFN-γ and TNF-α ...

  15. Targeting regulatory T cells to improve vaccine immunogenicity in early life

    Directory of Open Access Journals (Sweden)

    Jorjoh eNdure

    2014-09-01

    Full Text Available Human newborns and infants are bombarded with multiple pathogens on leaving the sterile intra-uterine environment, and yet have suboptimal innate immunity and limited immunological memory, thus leading to increased susceptibility to infections in early life. They are thus the target age group for a host of vaccines against common bacterial and viral pathogens. They are also the target group for many vaccines in development, including those against tuberculosis (TB, malaria and HIV infection. However, neonatal and infant responses to many vaccines are suboptimal, and in the case of the polysaccharide vaccines, it has been necessary to develop the alternative conjugated formulations in order to induce immunity in early life. Immunoregulatory factors are an intrinsic component of natural immunity necessary to dampen or control immune responses, with the caveat that they may also decrease immunity to infections or lead to chronic infection. This review explores the key immunoregulatory factors at play in early life, with a particular emphasis on regulatory T cells (Tregs. It goes on to explore the role that Tregs play in limting vaccine immunogenicity, and describes animal and human studies in which Tregs have been depleted in order to enhance vaccine responses. A deeper understanding of the role that Tregs play in limiting or controlling vaccine induced immunity would provide strategies to improve vaccine immunogenicity in this critical age group. New adjuvants and drugs are being developed that can transiently suppress Treg function, and their use as part of human vaccination strategies against infections is becoming a real prospect for the future.

  16. Dendritic cell targeted HIV-1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8+T cells.

    Science.gov (United States)

    Ngu, Loveline N; Nji, Nadesh N; Ambada, Georgia; Ngoh, Apeh A; Njambe Priso, Ghislain D; Tchadji, Jules C; Lissom, Abel; Magagoum, Suzanne H; Sake, Carol N; Tchouangueu, Thibau F; Chukwuma, George O; Okoli, Arinze S; Sagnia, Bertrand; Chukwuanukwu, Rebecca; Tebit, Denis M; Esimone, Charles O; Waffo, Alain B; Park, Chae G; Überla, Klaus; Nchinda, Godwin W

    2018-03-01

    Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune-modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV-1 gag protein (DEC-Gag) vaccine; for the induction of helper CD4 + T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV-1 Gag P55 (rNDV-L-Gag) vaccine. We do so through successive administration of anti-DEC205-gagP24 protein plus polyICLC (DEC-Gag) vaccine and rNDV-L-Gag. First strong gag specific helper CD4 + T cells are induced in mice by selected targeting of anti-DEC205-gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV-L-Gag vaccine and improved both systemic and mucosal gag specific immunity. This sequential DEC-Gag vaccine prime followed by an rNDV-L-gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8 + T cells to a pathogenic virus infection site. Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8 + T cells to a pathogenic virus infection site such as the murine airway. © 2017 The Authors. Immunity, Inflammation and DiseasePublished by John Wiley & Sons Ltd.

  17. Profile of a Serial Killer: Cellular and Molecular Approaches to Study Individual Cytotoxic T-Cells following Therapeutic Vaccination

    Directory of Open Access Journals (Sweden)

    Emanuela M. Iancu

    2011-01-01

    Full Text Available T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.

  18. Profile of a serial killer: cellular and molecular approaches to study individual cytotoxic T-cells following therapeutic vaccination.

    Science.gov (United States)

    Iancu, Emanuela M; Baumgaertner, Petra; Wieckowski, Sébastien; Speiser, Daniel E; Rufer, Nathalie

    2011-01-01

    T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.

  19. T-cell Responses in Individuals Infected with Zika Virus and in Those Vaccinated Against Dengue Virus

    Directory of Open Access Journals (Sweden)

    Dominic Paquin-Proulx

    2017-06-01

    Full Text Available Background: The outbreak of Zika virus (ZIKV infection in Brazil has raised concerns that infection during pregnancy could cause microcephaly and other severe neurodevelopmental malformations in the fetus. The mechanisms by which ZIKV causes fetal abnormalities are largely unknown. The importance of pre-infection with dengue virus (DENV, or other flaviviruses endemic to Brazil, remains to be investigated. It has been reported that antibodies directed against DENV can increase ZIKV infectivity by antibody dependent enhancement (ADE, suggesting that a history of prior DENV infection might worsen the outcome of ZIKV infection. Methods: We used bioinformatics tools to design 18 peptides from the ZIKV envelope containing predicted HLA-I T-cell epitopes and investigated T-cell cross-reactivity between ZIKV-infected individuals and DENV-vaccinated subjects by IFNg ELISPOT. Results: Three peptides induced IFNg production in both ZIKV-infected subjects and in DENV-vaccinated individuals. Flow cytometry indicated that 1 ZIKV peptide induced a CD4+ T-cell response in DENV-vaccinated subjects. Conclusions: We demonstrated that vaccination against DENV induced a T-cell response against ZIKV and identified one such CD4+ T-cell epitope. The ZIKV-reactive CD4+ T cells induced by DENV vaccination and identified in this study could contribute to the appearance of cross-reactive antibodies mediating ADE.

  20. T-cell Responses in Individuals Infected with Zika Virus and in Those Vaccinated Against Dengue Virus.

    Science.gov (United States)

    Paquin-Proulx, Dominic; Leal, Fabio E; Terrassani Silveira, Cassia G; Maestri, Alvino; Brockmeyer, Claudia; Kitchen, Shannon M; Cabido, Vinicius D; Kallas, Esper G; Nixon, Douglas F

    2017-01-01

    The outbreak of Zika virus (ZIKV) infection in Brazil has raised concerns that infection during pregnancy could cause microcephaly and other severe neurodevelopmental malformations in the fetus. The mechanisms by which ZIKV causes fetal abnormalities are largely unknown. The importance of pre-infection with dengue virus (DENV), or other flaviviruses endemic to Brazil, remains to be investigated. It has been reported that antibodies directed against DENV can increase ZIKV infectivity by antibody dependent enhancement (ADE), suggesting that a history of prior DENV infection might worsen the outcome of ZIKV infection. We used bioinformatics tools to design 18 peptides from the ZIKV envelope containing predicted HLA-I T-cell epitopes and investigated T-cell cross-reactivity between ZIKV-infected individuals and DENV-vaccinated subjects by IFNγ ELISPOT. Three peptides induced IFNγ production in both ZIKV-infected subjects and in DENV-vaccinated individuals. Flow cytometry indicated that 1 ZIKV peptide induced a CD4+ T-cell response in DENV-vaccinated subjects. We demonstrated that vaccination against DENV induced a T-cell response against ZIKV and identified one such CD4+ T-cell epitope. The ZIKV-reactive CD4+ T cells induced by DENV vaccination and identified in this study could contribute to the appearance of cross-reactive antibodies mediating ADE.

  1. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins.

    Science.gov (United States)

    James, Eddie A; LaFond, Rebecca E; Gates, Theresa J; Mai, Duy T; Malhotra, Uma; Kwok, William W

    2013-12-01

    Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8(+) T cell responses, less is known about YFV-specific CD4(+) T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4(+) T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4(+) T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4(+) T cell responses that contract, forming a detectable memory population.

  2. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    NARCIS (Netherlands)

    Ip, Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all-or a part of

  3. A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP119.

    Science.gov (United States)

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Singh, Balwan; Oliveira-Ferreira, Joseli; da Costa Lima-Junior, Josué; Calvo-Calle, J Mauricio; Lozano, Jose Manuel; Moreno, Alberto

    2016-10-06

    The most widespread Plasmodium species, Plasmodium vivax, poses a significant public health threat. An effective vaccine is needed to reduce global malaria burden. Of the erythrocytic stage vaccine candidates, the 19 kDa fragment of the P. vivax Merozoite Surface Protein 1 (PvMSP119) is one of the most promising. Our group has previously defined several promiscuous T helper epitopes within the PvMSP1 protein, with features that allow them to bind multiple MHC class II alleles. We describe here a P. vivax recombinant modular chimera based on MSP1 (PvRMC-MSP1) that includes defined T cell epitopes genetically fused to PvMSP119. This vaccine candidate preserved structural elements of the native PvMSP119 and elicited cytophilic antibody responses, and CD4+ and CD8+ T cells capable of recognizing PvMSP119. Although CD8+ T cells that recognize blood stage antigens have been reported to control blood infection, CD8+ T cell responses induced by P. falciparum or P. vivax vaccine candidates based on MSP119 have not been reported. To our knowledge, this is the first time a protein based subunit vaccine has been able to induce CD8+ T cell against PvMSP119. The PvRMC-MSP1 protein was also recognized by naturally acquired antibodies from individuals living in malaria endemic areas with an antibody profile associated with protection from infection. These features make PvRMC-MSP1 a promising vaccine candidate.

  4. Targeting CD137 enhances vaccine-elicited anti-respiratory syncytial virus CD8+ T cell responses in aged mice.

    Science.gov (United States)

    Lee, Sujin; Mittler, Robert S; Moore, Martin L

    2014-01-01

    Respiratory syncytial virus (RSV) causes significant morbidity and mortality in children and the elderly. No vaccines for RSV are in use. Because of immunosenescence, the immunologic requirements for a successful RSV vaccine in the elderly might differ from a RSV vaccine for young children. Using an aged mouse model of RSV pathogenesis, we found that aged mice had impaired Ag-specific CD8(+) T cell responses and delayed RSV clearance compared with young mice. To study vaccine-elicited RSV-specific CD8(+) T cells in aged mice, we used a peptide vaccine approach. TriVax is a commixture of a peptide representing immunodominant RSV CD8(+) T cell epitope M282-90, a TLR agonist (polyinosinic-polycytidylic acid), and a costimulatory anti-CD40 Ab. TriVax vaccination generated robust, polyfunctional, and protective CD8(+) T cell responses in young BALB/c mice, but not in 18-mo-old (aged) BALB/c mice. We hypothesized that treatment of aged mice with agonistic anti-CD137 (41BB) mAb will partially restore T cell responses and TriVax efficacy in aged mice. We immunized 18-mo-old BALB/c mice twice with TriVax + anti-41BB mAb or TriVax + isotype control Ab. Coadministration of anti-41BB mAb with TriVax enhanced RSV-specific CD8(+) T cell responses and TriVax efficacy in challenge experiments. Triggering the 41BB costimulatory pathway may be a strategy for enhancing T cell responses to vaccines in the elderly.

  5. Targeting CD137 Enhances Vaccine-Elicited Anti-RSV CD8+ T Cell Responses in Aged Mice

    Science.gov (United States)

    Lee, Sujin; Mittler, Robert S.; Moore, Martin L.

    2013-01-01

    Respiratory syncytial virus (RSV) causes significant morbidity and mortality in children and the elderly. There are no vaccines for RSV in use. Due to immunosenescence, the immunologic requirements for a successful RSV vaccine in the elderly might differ from a RSV vaccine for young children. Using an aged mouse model of RSV pathogenesis, we found that aged mice had impaired antigen-specific CD8+ T cell responses and delayed RSV clearance compared to young mice. In order to study vaccine-elicited RSV-specific CD8+ T cells in aged mice, we used a peptide vaccine approach. TriVax is a co-mixture of a peptide representing immunodominant RSV CD8+ T cell epitope M282–90, a Toll-like receptor agonist (polyI:C), and a costimulatory anti-CD40 antibody. TriVax vaccination generated robust, polyfunctional, and protective CD8+ T cell responses in young BALB/c mice but not in 18 month old (aged) BALB/c mice. We hypothesized that treatment of aged mice with agonistic anti (α)-CD137 (41BB) monoclonal antibody will partially restore T cell responses and TriVax efficacy in aged mice. We immunized 18-month old BALB/c mice twice with TriVax + α-41BB mAb or TriVax + isotype control Ab. Co-administration of α-41BB mAb with TriVax enhanced RSV-specific CD8+ T cell responses and TriVax efficacy in challenge experiments. Triggering the 41BB costimulatory pathway may be a strategy for enhancing T cell responses to vaccines in the elderly. PMID:24285837

  6. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    The extremely high fatality rates of many filovirus (FILV) strains the recurrent but rarely identified origin of human epidemics, the only partly identified viral reservoirs and the continuing non-human primate epizootics in Africa make a broadly-protective filovirus vaccine highly desirable. Cytotoxic T-cells (CTL) have been shown to be protective in mice, guinea pigs and non-human primates. In murine models the cytotoxic T-cell epitopes that are protective against Ebola virus have been mapped and in non-human primates CTL-mediated protection between viral strains (John Dye: specify) has been demonstrated using two filoviral proteins, nucleoprotein (NP) and glycoprotein (GP). These immunological results suggest that the CTL avenue of immunity deserves consideration for a vaccine. The poorly-understood viral reservoirs means that it is difficult to predict what strains are likely to cause epidemics. Thus, there is a premium on developing a pan-filoviral vaccine. The genetic diversity of FILV is large, roughly the same scale as human immunodeficiency virus (HIV). This presents a serious challenge for the vaccine designer because a traditional vaccine aspiring to pan-filoviral coverage is likely to require the inclusion of many antigenic reagents. A recent method for optimizing cytotoxic T-cell lymphocyte epitope coverage with mosaic antigens was successful in improving potential CTL epitope coverage against HIV and may be useful in the context of very different viruses, such as the filoviruses discussed here. Mosaic proteins are recombinants composed of fragments of wild-type proteins joined at locations resulting in exclusively natural k-mers, 9 {le} k {le} 15, and having approximately the same length as the wild-type proteins. The use of mosaic antigens is motivated by three conjectures: (1) optimizing a mosaic protein to maximize coverage of k-mers found in a set of reference proteins will give better odds of including broadly-protective CTL epitopes in a vaccine

  7. GM-CSF production allows the identification of immunoprevalent antigens recognized by human CD4+ T cells following smallpox vaccination.

    Directory of Open Access Journals (Sweden)

    Valeria Judkowski

    Full Text Available The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a "T cell-driven" methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens.

  8. Induction of Foot-and-Mouth Disease Virus-Specific Cytotoxic T Cell Killing by Vaccination

    DEFF Research Database (Denmark)

    Patch, J.R.; Pedersen, Lasse Eggers; Toka, F.N.

    2011-01-01

    Foot-and-mouth disease (FMD) continues to be a significant threat to the health and economic value of livestock species. This acute infection is caused by the highly contagious FMD virus (FMDV), which infects cloven-hoofed animals including large and small ruminants and swine. Current vaccine str...... of MHC matched target cells in an antigen specific manner. Further, we confirm these results by MHC tetramer staining. This work presents the first demonstration of FMDV specific, CTL killing and confirmation by MHC tetramer staining in response to vaccination against FMDV.......Foot-and-mouth disease (FMD) continues to be a significant threat to the health and economic value of livestock species. This acute infection is caused by the highly contagious FMD virus (FMDV), which infects cloven-hoofed animals including large and small ruminants and swine. Current vaccine...... cytopathic virus. Here, we have used recombinant human adenovirus vectors as a means of delivering FMDV antigens in a T cell-directed vaccine in pigs. We tested the hypothesis that impaired processing of the FMDV capsid would enhance cytolytic activity, presumably by targeting all proteins for degradation...

  9. An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent antitumor effects

    OpenAIRE

    Cho, Hyun-Il; Jung, Soo-Hyun; Sohn, Hyun-Jung; Celis, Esteban; Kim, Tai-Gyu

    2015-01-01

    Therapeutic cancer vaccines are an attractive alternative to conventional therapies for treating malignant tumors, and successful tumor eradication depends primarily on obtaining high numbers of long-lasting tumor-reactive CD8+ T cells. Dendritic cell (DC)-based vaccines constitute a promising approach for treating cancer, but in most instances low immune responses and suboptimal therapeutic effects are achieved indicating that further optimization is required. We describe here a novel vaccin...

  10. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design.

    Directory of Open Access Journals (Sweden)

    Pratima Kunwar

    Full Text Available A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i increasing the breadth of vaccine-induced responses or (ii increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8(+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8(+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS by three different methods (prevalence, entropy and conseq on clade-B and group-M sequence alignments. The majority of CD8(+ T cell responses were directed against variable epitopes (p<0.01. Interestingly, increasing breadth of CD8(+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009. Moreover, subjects possessing CD8(+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021. The association between viral control and the breadth of conserved CD8(+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215. The associations with viral control were independent of functional avidity of CD8(+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus

  11. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    Science.gov (United States)

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  12. Age-associated DNA methylation changes in naive CD4+T cells suggest an evolving autoimmune epigenotype in aging T cells.

    Science.gov (United States)

    Dozmorov, Mikhail G; Coit, Patrick; Maksimowicz-McKinnon, Kathleen; Sawalha, Amr H

    2017-04-01

    We sought to define age-associated DNA methylation changes in naive CD4 + T cells. Naive CD4 + T cells were collected from 74 healthy individuals (age 19-66 years), and age-related DNA methylation changes were characterized. We identified 11,431 age-associated CpG sites, 57% of which were hypermethylated with age. Hypermethylated sites were enriched in CpG islands and repressive transcription factor binding sites, while hypomethylated sites showed T cell specific enrichment in active enhancers marked by H3K27ac and H3K4me1. Our data emphasize cancer-related DNA methylation changes with age, and also reveal age-associated hypomethylation in immune-related pathways, such as T cell receptor signaling, FCγR-mediated phagocytosis, apoptosis and the mammalian target of rapamycin signaling pathway. The MAPK signaling pathway was hypermethylated with age, consistent with a defective MAPK signaling in aging T cells. Age-associated DNA methylation changes may alter regulatory mechanisms and signaling pathways that predispose to autoimmunity.

  13. The evolving history of influenza viruses and influenza vaccines.

    Science.gov (United States)

    Hannoun, Claude

    2013-09-01

    The isolation of influenza virus 80 years ago in 1933 very quickly led to the development of the first generation of live-attenuated vaccines. The first inactivated influenza vaccine was monovalent (influenza A). In 1942, a bivalent vaccine was produced after the discovery of influenza B. It was later discovered that influenza viruses mutated leading to antigenic changes. Since 1973, the WHO has issued annual recommendations for the composition of the influenza vaccine based on results from surveillance systems that identify currently circulating strains. In 1978, the first trivalent vaccine included two influenza A strains and one influenza B strain. Currently, there are two influenza B lineages circulating; in the latest WHO recommendations, it is suggested that a second B strain could be added to give a quadrivalent vaccine. The history of influenza vaccine and the associated technology shows how the vaccine has evolved to match the evolution of influenza viruses.

  14. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination.

    Directory of Open Access Journals (Sweden)

    Rosanne W Wieten

    Full Text Available Prompted by recent amendments of Yellow Fever (YF vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity.PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT. Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07-3.1%. On day 180, these cells were still present (median 0.06%, range 0.02-0.78%. The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27- on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+ persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28 vs. 2.2 (day 180 p = 0.0625, suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583, nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells.The presence of a functionally competent YF

  15. Pre-Vaccination Frequencies of Th17 Cells Correlate with Vaccine-Induced T-Cell Responses to Survivin-Derived Peptide Epitopes

    DEFF Research Database (Denmark)

    Køllgaard, Tania; Ugurel-Becker, Selma; Idorn, Manja

    2015-01-01

    as well as clinical outcome in metastatic melanoma patients vaccinated with survivin-derived peptides. Notably, we observed dysfunctional Th1 and cytotoxic T cells, i.e. down-regulation of the CD3ζchain (p=0.001) and an impaired IFNγ-production (p=0.001) in patients compared to healthy donors, suggesting......Various subsets of immune regulatory cells are suggested to influence the outcome of therapeutic antigen-specific anti-tumor vaccinations. We performed an exploratory analysis of a possible correlation of pre-vaccination Th17 cells, MDSCs, and Tregs with both vaccination-induced T-cell responses...... an altered activity of immune regulatory cells. Moreover, the frequencies of Th17 cells (p=0.03) and Tregs (p=0.02) were elevated as compared to healthy donors. IL-17-secreting CD4+ T cells displayed an impact on the immunological and clinical effects of vaccination: Patients characterized by high...

  16. CD4+ T-cell lines used to evaluate a Mycobacterium avium subsp. paratuberculosis (MAP) peptide vaccine

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Al-Touama, Zainab

    in average 92 % for PPDj, and -3 % for E. coli sonicate. CD4+ T-cell lines stimulated with PPDj showed a 6 fold increase in IFN- γ production compared to controls. These results indicated that the T-cell lines were MAP-specific. The protocol was subsequently used to evaluate MAP-specific peptides as vaccine......The aim of the study was to establish a protocol for generation of MAP-specific T-cell lines and to use these lines for evaluation of a peptide vaccine. A protocol for culturing T-cell lines from peripheral blood of goats naturally infected with MAP was established. CD4+ T cells were positively...... antigens. T-cell lines were now generated by cultivating CD4+ cells with peptides instead of PPDj. Initially, both healthy and MAP-infected goats were vaccinated with 119 peptides defined by in silico analysis. Cellular responses to the peptides were not detected using standard IFN- γ plasma ELISA. However...

  17. Primary Vaccination with Low Dose Live Dengue 1 Virus Generates a Proinflammatory, Multifunctional T Cell Response in Humans

    Science.gov (United States)

    Lindow, Janet C.; Borochoff-Porte, Nathan; Durbin, Anna P.; Whitehead, Stephen S.; Fimlaid, Kelly A.; Bunn, Janice Y.; Kirkpatrick, Beth D.

    2012-01-01

    The four dengue virus serotypes (DENV-1–DENV-4) have a large impact on global health, causing 50–100 million cases of dengue fever annually. Herein, we describe the first kinetic T cell response to a low-dose DENV-1 vaccination study (10 PFU) in humans. Using flow cytometry, we found that proinflammatory cytokines, IFNγ, TNFα, and IL-2, were generated by DENV-1-specific CD4+ cells 21 days post-DENV-1 exposure, and their production continued through the latest time-point, day 42 (p<0.0001 for all cytokines). No statistically significant changes were observed at any time-points for IL-10 (p = 0.19), a regulatory cytokine, indicating that the response to DENV-1 was primarily proinflammatory in nature. We also observed little T cell cross-reactivity to the other 3 DENV serotypes. The percentage of multifunctional T cells (T cells making ≥2 cytokines simultaneously) increased with time post-DENV-1 exposure (p<0.0001). The presence of multifunctional T cells together with neutralizing antibody data suggest that the immune response generated to the vaccine may be protective. This work provides an initial framework for defining primary T cell responses to each DENV serotype and will enhance the evaluation of a tetravalent DENV vaccine. PMID:22816004

  18. Primary vaccination with low dose live dengue 1 virus generates a proinflammatory, multifunctional T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Janet C Lindow

    Full Text Available The four dengue virus serotypes (DENV-1-DENV-4 have a large impact on global health, causing 50-100 million cases of dengue fever annually. Herein, we describe the first kinetic T cell response to a low-dose DENV-1 vaccination study (10 PFU in humans. Using flow cytometry, we found that proinflammatory cytokines, IFNγ, TNFα, and IL-2, were generated by DENV-1-specific CD4(+ cells 21 days post-DENV-1 exposure, and their production continued through the latest time-point, day 42 (p<0.0001 for all cytokines. No statistically significant changes were observed at any time-points for IL-10 (p = 0.19, a regulatory cytokine, indicating that the response to DENV-1 was primarily proinflammatory in nature. We also observed little T cell cross-reactivity to the other 3 DENV serotypes. The percentage of multifunctional T cells (T cells making ≥ 2 cytokines simultaneously increased with time post-DENV-1 exposure (p<0.0001. The presence of multifunctional T cells together with neutralizing antibody data suggest that the immune response generated to the vaccine may be protective. This work provides an initial framework for defining primary T cell responses to each DENV serotype and will enhance the evaluation of a tetravalent DENV vaccine.

  19. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype.

    Science.gov (United States)

    Demento, Stacey L; Cui, Weiguo; Criscione, Jason M; Stern, Eric; Tulipan, Jacob; Kaech, Susan M; Fahmy, Tarek M

    2012-06-01

    Particulate vaccines are emerging promising technologies for the creation of tunable prophylactics against a wide variety of conditions. Vesicular and solid biodegradable polymer platforms, exemplified by liposomes and polyesters, respectively, are two of the most ubiquitous platforms in vaccine delivery studies. Here we directly compared the efficacy of each in a long-term immunization study and in protection against a model bacterial antigen. Immunization with poly(lactide-co-glycolide) (PLGA) nanoparticles elicited prolonged antibody titers compared to liposomes and alum. The magnitude of the cellular immune response was also highest in mice vaccinated with PLGA, which also showed a higher frequency of effector-like memory T cell phenotype, leading to an effective clearance of intracellular bacteria. The difference in performance of these two common particulate platforms is shown not to be due to material differences but appears to be connected to the kinetics of antigen delivery. Thus, this study highlights the importance of sustained antigen release mediated by particulate platforms and its role in the long-term appearance of effector memory cellular response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Vaccine-Elicited CD8+ T Cells Protect against Respiratory Syncytial Virus Strain A2-Line19F-Induced Pathogenesis in BALB/c Mice

    OpenAIRE

    Lee, Sujin; Stokes, Kate L.; Currier, Michael G.; Sakamoto, Kaori; Lukacs, Nicholas W.; Celis, Esteban; Moore, Martin L.

    2012-01-01

    CD8+ T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8+ T cells responding to RSV infection, vaccine-elicited anti-RSV CD8+ T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8+ T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M282-90 peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) ag...

  1. CD4+ T cells mediate the protective effect of the recombinant Asp f3-based anti-aspergillosis vaccine.

    Science.gov (United States)

    Diaz-Arevalo, Diana; Bagramyan, Karine; Hong, Teresa B; Ito, James I; Kalkum, Markus

    2011-06-01

    The mortality and morbidity caused by invasive aspergillosis present a major obstacle to the successful treatment of blood cancers with hematopoietic cell transplants. Patients who receive hematopoietic cell transplants are usually immunosuppressed for extended periods, and infection with the ubiquitous mold Aspergillus fumigatus is responsible for most cases of aspergillosis. Previously, we demonstrated that vaccination with recombinant forms of the A. fumigatus protein Asp f3 protected cortisone acetate-immunosuppressed mice from experimentally induced pulmonary aspergillosis. Here, we investigated the vaccine's protective mechanism and evaluated in particular the roles of antibodies and T cells. After vaccination, Asp f3-specific preinfection IgG titers did not significantly differ between surviving and nonsurviving mice, and passive transfer of anti-Asp f3 antibodies did not protect immunosuppressed recipients from aspergillosis. We experimentally confirmed Asp f3's predicted peroxisomal localization in A. fumigatus hyphae. We found that fungal Asp f3 is inaccessible to antibodies, unless both cell walls and membranes have been permeabilized. Antibody-induced depletion of CD4+ T cells reduced the survival of recombinant Asp f3 (rAsp f3)-vaccinated mice to nonimmune levels, and transplantation of purified CD4+ T cells from rAsp f3-vaccinated mice into nonimmunized recipients transferred antifungal protection. In addition, residues 60 to 79 and 75 to 94 of Asp f3 contain epitopes that induce proliferation of T cells from vaccinated survivors. Vaccine-primed CD4+ T cells are not expected to clear the fungal pathogen directly; however, they may locally activate immunosuppressed phagocytes that elicit the antifungal effect.

  2. CD4+ T Cells Mediate the Protective Effect of the Recombinant Asp f3-Based Anti-Aspergillosis Vaccine

    Science.gov (United States)

    Diaz-Arevalo, Diana; Bagramyan, Karine; Hong, Teresa B.; Ito, James I.; Kalkum, Markus

    2011-01-01

    The mortality and morbidity caused by invasive aspergillosis present a major obstacle to the successful treatment of blood cancers with hematopoietic cell transplants. Patients who receive hematopoietic cell transplants are usually immunosuppressed for extended periods, and infection with the ubiquitous mold Aspergillus fumigatus is responsible for most cases of aspergillosis. Previously, we demonstrated that vaccination with recombinant forms of the A. fumigatus protein Asp f3 protected cortisone acetate-immunosuppressed mice from experimentally induced pulmonary aspergillosis. Here, we investigated the vaccine's protective mechanism and evaluated in particular the roles of antibodies and T cells. After vaccination, Asp f3-specific preinfection IgG titers did not significantly differ between surviving and nonsurviving mice, and passive transfer of anti-Asp f3 antibodies did not protect immunosuppressed recipients from aspergillosis. We experimentally confirmed Asp f3's predicted peroxisomal localization in A. fumigatus hyphae. We found that fungal Asp f3 is inaccessible to antibodies, unless both cell walls and membranes have been permeabilized. Antibody-induced depletion of CD4+ T cells reduced the survival of recombinant Asp f3 (rAsp f3)-vaccinated mice to nonimmune levels, and transplantation of purified CD4+ T cells from rAsp f3-vaccinated mice into nonimmunized recipients transferred antifungal protection. In addition, residues 60 to 79 and 75 to 94 of Asp f3 contain epitopes that induce proliferation of T cells from vaccinated survivors. Vaccine-primed CD4+ T cells are not expected to clear the fungal pathogen directly; however, they may locally activate immunosuppressed phagocytes that elicit the antifungal effect. PMID:21422177

  3. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8+ T cells in African adults

    Directory of Open Access Journals (Sweden)

    Gaudensia Mutua

    2016-01-01

    Full Text Available We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8+ T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy.

  4. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase.

    Directory of Open Access Journals (Sweden)

    Huafeng Wang

    2016-08-01

    Full Text Available Soaring rates of systemic fungal infections worldwide underscore the need for vaccine prevention. An understanding of the elements that promote vaccine immunity is essential. We previously reported that Th17 cells are required for vaccine immunity to the systemic dimorphic fungi of North America, and that Card9 and MyD88 signaling are required for the development of protective Th17 cells. Herein, we investigated where, when and how MyD88 regulates T cell development. We uncovered a novel mechanism in which MyD88 extrinsically regulates the survival of activated T cells during the contraction phase and in the absence of inflammation, but is dispensable for the expansion and differentiation of the cells. The poor survival of activated T cells in Myd88-/- mice is linked to increased caspase3-mediated apoptosis, but not to Fas- or Bim-dependent apoptotic pathways, nor to reduced expression of the anti-apoptotic molecules Bcl-2 or Bcl-xL. Moreover, TLR3, 7, and/or 9, but not TLR2 or 4, also were required extrinsically for MyD88-dependent Th17 cell responses and vaccine immunity. Similar MyD88 requirements governed the survival of virus primed T cells. Our data identify unappreciated new requirements for eliciting adaptive immunity and have implications for designing vaccines.

  5. Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma

    Science.gov (United States)

    Chodon, Thinle; Comin-Anduix, Begonya; Chmielowski, Bartosz; Koya, Richard C; Wu, Zhongqi; Auerbach, Martin; Ng, Charles; Avramis, Earl; Seja, Elizabeth; Villanueva, Arturo; McCannel, Tara A.; Ishiyama, Akira; Czernin, Johannes; Radu, Caius G.; Wang, Xiaoyan; Gjertson, David W.; Cochran, Alistair J.; Cornetta, Kenneth; Wong, Deborah J.L.; Kaplan-lefko, Paula; Hamid, Omid; Samlowski, Wolfram; Cohen, Peter A.; Daniels, Gregory A.; Mukherji, Bijay; Yang, Lili; Zack, Jerome A.; Kohn, Donald B.; Heath, James R.; Glaspy, John A.; Witte, Owen N.; Baltimore, David; Economou, James S.; Ribas, Antoni

    2014-01-01

    Purpose It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. Experimnetal Design A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. Results 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Conclusion Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses. PMID:24634374

  6. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  7. Flow cytometric assessment of chicken T cell-mediated immune responses after Newcastle disease virus vaccination and challenge

    DEFF Research Database (Denmark)

    Dalgaard, T. S.; Norup, L. R.; Pedersen, A.R.

    2010-01-01

    The objective of this study was to use flow cytometry to assess chicken T cell-mediated immune responses. In this study two inbred genetic chicken lines (L130 and L133) were subjected to two times vaccination against Newcastle disease (ND) and a subsequent challenge by ND virus (NDV) infection....... Furthermore, peripheral lymphocytes from L133 exhibited a significantly higher expression of CD44 and CD45 throughout the experiment. Interestingly, also vaccine-induced differences were observed in L133 as immune chickens had a significantly higher CD45 expression on their lymphocytes than the naïve controls....... Immune chickens from both lines had a significantly higher frequency of circulating γδ T cells than the naïve controls both after vaccination and challenge. Finally, the proliferative capacity of peripheral CD4+ and CD8+ cells specific for NDV was addressed 3 weeks after vaccination and 1 week after...

  8. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    Science.gov (United States)

    Ip, Peng Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W; Daemen, Toos

    2014-01-01

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8+ T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections. PMID:24370701

  9. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses.

    Science.gov (United States)

    Kagina, Benjamin M N; Tameris, Michele D; Geldenhuys, Hennie; Hatherill, Mark; Abel, Brian; Hussey, Gregory D; Scriba, Thomas J; Mahomed, Hassan; Sadoff, Jerald C; Hanekom, Willem A; Mansoor, Nazma; Hughes, Jane; de Kock, Marwou; Whatney, Wendy; Africa, Hadn; Krohn, Colleen; Veldsman, Ashley; Kany, Angelique Luabeya Kany; Douoguih, Macaya; Pau, Maria Grazia; Hendriks, Jenny; McClainc, Bruce; Benko, Jacqueline; Snowden, Margaret A; Hokey, David A

    2014-10-14

    Efforts to reduce risk of tuberculosis disease in children include development of effective vaccines. Our aim was to test safety and immunogenicity of the new adenovirus 35-vectored tuberculosis vaccine candidate AERAS-402 in infants, administered as a boost following a prime with the Bacille Calmette-Guerin vaccine. In a phase 1 randomised, double-blind, placebo-controlled, dose-escalation trial, BCG-vaccinated infants aged 6-9 months were sequentially assigned to four study groups, then randomized to receive an increasing dose-strength of AERAS-402, or placebo. The highest dose group received a second dose of vaccine or placebo 56 days after the first. The primary study outcome was safety. Whole blood intracellular cytokine staining assessed immunogenicity. Forty-two infants received AERAS-402 and 15 infants received placebo. During follow-up of 182 days, an acceptable safety profile was shown with no serious adverse events or discontinuations related to the vaccine. AERAS-402 induced a specific T cell response. A single dose of AERAS-402 induced CD4T cells predominantly expressing single IFN-γ whereas two doses induced CD4T cells predominantly expressing IFN-γ, TNF-α and IL-2 together. CD8T cells were induced and were more likely to be present after 2 doses of AERAS-402. AERAS-402 was safe and immunogenic in healthy infants previously vaccinated with BCG at birth. Administration of the highest dose twice may be the most optimal vaccination strategy, based on the induced immunity. Multiple differences in T cell responses when infants are compared with adults vaccinated with AERAS-402, in the same setting and using the same whole blood intracellular cytokine assay, suggest specific strategies may be important for vaccination for each population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Rhesus Macaque Myeloid-Derived Suppressor Cells Demonstrate T Cell Inhibitory Functions and Are Transiently Increased after Vaccination.

    Science.gov (United States)

    Lin, Ang; Liang, Frank; Thompson, Elizabeth A; Vono, Maria; Ols, Sebastian; Lindgren, Gustaf; Hassett, Kimberly; Salter, Hugh; Ciaramella, Giuseppe; Loré, Karin

    2018-01-01

    Myeloid-derived suppressor cells (MDSCs) are major regulators of T cell responses in several pathological conditions. Whether MDSCs increase and influence T cell responses in temporary inflammation, such as after vaccine administration, is unknown. Using the rhesus macaque model, which is critical for late-stage vaccine testing, we demonstrate that monocytic (M)-MDSCs and polymorphonuclear (PMN)-MDSCs can be detected using several of the markers used in humans. However, whereas rhesus M-MDSCs lacked expression of CD33, PMN-MDSCs were identified as CD33+ low-density neutrophils. Importantly, both M-MDSCs and PMN-MDSCs showed suppression of T cell proliferation in vitro. The frequency of circulating MDSCs rapidly and transiently increased 24 h after vaccine administration. M-MDSCs infiltrated the vaccine injection site, but not vaccine-draining lymph nodes. This was accompanied by upregulation of genes relevant to MDSCs such as arginase-1, IDO1, PDL1, and IL-10 at the injection site. MDSCs may therefore play a role in locally maintaining immune balance during vaccine-induced inflammation. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Ex Vivo Restimulation of Human PBMC Expands a CD3+CD4−CD8− γδ + T Cell Population That Can Confound the Evaluation of CD4 and CD8 T Cell Responses to Vaccination

    Science.gov (United States)

    Sedgmen, B. J.; Papalia, L.; Wang, L.; Dyson, A. R.; McCallum, H. A.; Simson, C. M.; Pearse, M. J.; Maraskovsky, E.; Hung, D.; Eomois, P. P.; Hartel, G.; Barnden, M. J.; Rockman, S. P.

    2013-01-01

    The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI) in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4−CD8− γδ + T cell population in the peripheral blood of 90/610 (15%) healthy subjects. The appearance of CD3+CD4−CD8− γδ + T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4−CD8− γδ + T cells are either excluded or separately enumerated from the overall frequency determination. PMID:24066003

  12. Ex Vivo Restimulation of Human PBMC Expands a CD3+CD4-CD8-γδ+ T Cell Population That Can Confound the Evaluation of CD4 and CD8 T Cell Responses to Vaccination

    Directory of Open Access Journals (Sweden)

    B. J. Sedgmen

    2013-01-01

    Full Text Available The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4-CD8-γδ+ T cell population in the peripheral blood of 90/610 (15% healthy subjects. The appearance of CD3+CD4-CD8-γδ+ T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4-CD8-γδ+ T cells are either excluded or separately enumerated from the overall frequency determination.

  13. Vaccine-elicited CD8+ T cells protect against respiratory syncytial virus strain A2-line19F-induced pathogenesis in BALB/c mice.

    Science.gov (United States)

    Lee, Sujin; Stokes, Kate L; Currier, Michael G; Sakamoto, Kaori; Lukacs, Nicholas W; Celis, Esteban; Moore, Martin L

    2012-12-01

    CD8(+) T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8(+) T cells responding to RSV infection, vaccine-elicited anti-RSV CD8(+) T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8(+) T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M2(82-90) peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) agonist poly(I·C), and a costimulatory anti-CD40 antibody. TriVax vaccination induced potent effector anti-RSV CD8(+) cytotoxic T lymphocytes (CTL). Mice were challenged with RSV strain A2-line19F, a model of RSV pathogenesis leading to airway mucin expression. Mice were protected against RSV infection and against RSV-induced airway mucin expression and cellular lung inflammation when challenged 6 days after vaccination. Compared to A2-line19F infection alone, TriVax vaccination followed by challenge resulted in effector CD8(+) T cells with greater cytokine expression and the more rapid appearance of RSV-specific CD8(+) T cells in the lung. When challenged 42 days after TriVax vaccination, memory CD8(+) T cells were elicited with RSV-specific tetramer responses equivalent to TriVax-induced effector CD8(+) T cells. These memory CD8(+) T cells had lower cytokine expression than effector CD8(+) T cells, and protection against A2-line19F was partial during the memory phase. We found that vaccine-elicited effector anti-RSV CD8(+) T cells protected mice against RSV infection and pathogenesis, and waning protection correlated with reduced CD8(+) T cell cytokine expression.

  14. Vaccine-Elicited CD8+ T Cells Protect against Respiratory Syncytial Virus Strain A2-Line19F-Induced Pathogenesis in BALB/c Mice

    Science.gov (United States)

    Lee, Sujin; Stokes, Kate L.; Currier, Michael G.; Sakamoto, Kaori; Lukacs, Nicholas W.; Celis, Esteban

    2012-01-01

    CD8+ T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8+ T cells responding to RSV infection, vaccine-elicited anti-RSV CD8+ T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8+ T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M282-90 peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) agonist poly(I·C), and a costimulatory anti-CD40 antibody. TriVax vaccination induced potent effector anti-RSV CD8+ cytotoxic T lymphocytes (CTL). Mice were challenged with RSV strain A2-line19F, a model of RSV pathogenesis leading to airway mucin expression. Mice were protected against RSV infection and against RSV-induced airway mucin expression and cellular lung inflammation when challenged 6 days after vaccination. Compared to A2-line19F infection alone, TriVax vaccination followed by challenge resulted in effector CD8+ T cells with greater cytokine expression and the more rapid appearance of RSV-specific CD8+ T cells in the lung. When challenged 42 days after TriVax vaccination, memory CD8+ T cells were elicited with RSV-specific tetramer responses equivalent to TriVax-induced effector CD8+ T cells. These memory CD8+ T cells had lower cytokine expression than effector CD8+ T cells, and protection against A2-line19F was partial during the memory phase. We found that vaccine-elicited effector anti-RSV CD8+ T cells protected mice against RSV infection and pathogenesis, and waning protection correlated with reduced CD8+ T cell cytokine expression. PMID:23015695

  15. Vaccination produces CD4 T cells with a novel CD154-CD40 dependent cytolytic mechanism ¶

    Science.gov (United States)

    Coler, Rhea N.; Hudson, Thomas; Hughes, Sean; Huang, Po-wei D.; Beebe, Elyse A.; Orr, Mark T.

    2015-01-01

    The discovery of new vaccines against infectious diseases and cancer requires the development of novel adjuvants with well-defined activities. The TLR4 agonist adjuvant GLA-SE elicits robust TH1 responses to a variety of vaccine antigens and is in clinical development for both infectious diseases and cancer. We demonstrate that immunization with a recombinant protein antigen and GLA-SE also induces granzyme A expression in CD4 T cells and produces cytolytic cells that can be detected in vivo. Surprisingly these in vivo CTLs were CD4 T cells, not CD8 T cells and this cytolytic activity was not dependent on granzyme A/B or perforin. Unlike previously reported CD4 CTLs the transcription factors Tbet and Eomes were not necessary for their development. CTL activity was also independent of the FasL-Fas, TRAIL-DR5, and canonical death pathways, indicating a novel mechanism of CTL activity. Rather, the in vivo CD4 CTL activity induced by vaccination required T cell expression of CD154 (CD40 ligand) and target cell expression of CD40. Thus, vaccination with a TLR4 agonist adjuvant induces CD4 CTLs which kill through a previously unknown CD154-dependent mechanism. PMID:26297758

  16. Strong vaccine-induced CD8 T-cell responses have cytolytic function in a chimpanzee clearing HCV infection

    NARCIS (Netherlands)

    B.E. Verstrepen (Babs); E.J. Verschoor (Ernst); Z. Fagrouch (Zahra); P. Mooij (Petra); N.G. Groot (Natasja); R.E. Bontrop (Ronald ); W. Bogers (Willy); J.L. Heeney (Jonathan); G. Koopman (Gerrit)

    2014-01-01

    textabstractA single correlate of effective vaccine protection against chronic HCV infection has yet to be defined. In this study, we analyzed T-cell responses in four chimpanzees, immunized with core-E1-E2-NS3 and subsequently infected with HCV1b. Viral clearance was observed in one animal, while

  17. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.

    Science.gov (United States)

    Akondy, Rama S; Monson, Nathan D; Miller, Joseph D; Edupuganti, Srilatha; Teuwen, Dirk; Wu, Hong; Quyyumi, Farah; Garg, Seema; Altman, John D; Del Rio, Carlos; Keyserling, Harry L; Ploss, Alexander; Rice, Charles M; Orenstein, Walter A; Mulligan, Mark J; Ahmed, Rafi

    2009-12-15

    The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.

  18. An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent antitumor effects.

    Science.gov (United States)

    Cho, Hyun-Il; Jung, Soo-Hyun; Sohn, Hyun-Jung; Celis, Esteban; Kim, Tai-Gyu

    2015-11-01

    Therapeutic cancer vaccines are an attractive alternative to conventional therapies for treating malignant tumors, and successful tumor eradication depends primarily on obtaining high numbers of long-lasting tumor-reactive CD8+ T cells. Dendritic cell (DC)-based vaccines constitute a promising approach for treating cancer, but in most instances low immune responses and suboptimal therapeutic effects are achieved indicating that further optimization is required. We describe here a novel vaccination strategy with peptide-loaded DCs followed by a mixture of synthetic peptides, polyinosine-polycytidylic acid (poly-IC) and anti-CD40 antibodies (TriVax) for improving the immunogenicity and therapeutic efficacy of DC-based vaccines in a melanoma mouse model. TriVax immunization 7-12 d after priming with antigen-loaded DCs generated large numbers of long-lasting multiple antigen-specific CD8+ T cells capable of recognizing tumor cells. These responses were far superior to those generated by homologous immunizations with either TriVax or DCs. CD8+ T cells but not CD4+ T cells or NK cells mediated the therapeutic efficacy of this heterologous prime-boost strategy. Moreover, combinations of this vaccination regimen with programmed cell death-1 (PD-1) blockade or IL2 anti-IL2 antibody complexes led to complete disease eradication and survival enhancement in melanoma-bearing mice. The overall results suggest that similar strategies would be applicable for the design of effective therapeutic vaccination for treating viral diseases and various cancers, which may circumvent current limitations of cell-based cancer vaccines.

  19. An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent antitumor effects

    Science.gov (United States)

    Cho, Hyun-Il; Jung, Soo-Hyun; Sohn, Hyun-Jung; Celis, Esteban; Kim, Tai-Gyu

    2015-01-01

    Therapeutic cancer vaccines are an attractive alternative to conventional therapies for treating malignant tumors, and successful tumor eradication depends primarily on obtaining high numbers of long-lasting tumor-reactive CD8+ T cells. Dendritic cell (DC)-based vaccines constitute a promising approach for treating cancer, but in most instances low immune responses and suboptimal therapeutic effects are achieved indicating that further optimization is required. We describe here a novel vaccination strategy with peptide-loaded DCs followed by a mixture of synthetic peptides, polyinosine-polycytidylic acid (poly-IC) and anti-CD40 antibodies (TriVax) for improving the immunogenicity and therapeutic efficacy of DC-based vaccines in a melanoma mouse model. TriVax immunization 7–12 d after priming with antigen-loaded DCs generated large numbers of long-lasting multiple antigen-specific CD8+ T cells capable of recognizing tumor cells. These responses were far superior to those generated by homologous immunizations with either TriVax or DCs. CD8+ T cells but not CD4+ T cells or NK cells mediated the therapeutic efficacy of this heterologous prime-boost strategy. Moreover, combinations of this vaccination regimen with programmed cell death-1 (PD-1) blockade or IL2 anti-IL2 antibody complexes led to complete disease eradication and survival enhancement in melanoma-bearing mice. The overall results suggest that similar strategies would be applicable for the design of effective therapeutic vaccination for treating viral diseases and various cancers, which may circumvent current limitations of cell-based cancer vaccines. PMID:26451316

  20. A cancer vaccine induces expansion of NY-ESO-1-specific regulatory T cells in patients with advanced melanoma.

    Directory of Open Access Journals (Sweden)

    Lisa M Ebert

    Full Text Available Cancer vaccines are designed to expand tumor antigen-specific T cells with effector function. However, they may also inadvertently expand regulatory T cells (Treg, which could seriously hamper clinical efficacy. To address this possibility, we developed a novel assay to detect antigen-specific Treg based on down-regulation of surface CD3 following TCR engagement, and used this approach to screen for Treg specific to the NY-ESO-1 tumor antigen in melanoma patients treated with the NY-ESO-1/ISCOMATRIX™ cancer vaccine. All patients tested had Treg (CD25(bright FoxP3(+ CD127(neg specific for at least one NY-ESO-1 epitope in the blood. Strikingly, comparison with pre-treatment samples revealed that many of these responses were induced or boosted by vaccination. The most frequently detected response was toward the HLA-DP4-restricted NY-ESO-1(157-170 epitope, which is also recognized by effector T cells. Notably, functional Treg specific for an HLA-DR-restricted epitope within the NY-ESO-1(115-132 peptide were also identified at high frequency in tumor tissue, suggesting that NY-ESO-1-specific Treg may suppress local anti-tumor immune responses. Together, our data provide compelling evidence for the ability of a cancer vaccine to expand tumor antigen-specific Treg in the setting of advanced cancer, a finding which should be given serious consideration in the design of future cancer vaccine clinical trials.

  1. A Cancer Vaccine Induces Expansion of NY-ESO-1-Specific Regulatory T Cells in Patients with Advanced Melanoma

    Science.gov (United States)

    Ebert, Lisa M.; MacRaild, Sarah E.; Zanker, Damien; Davis, Ian D.

    2012-01-01

    Cancer vaccines are designed to expand tumor antigen-specific T cells with effector function. However, they may also inadvertently expand regulatory T cells (Treg), which could seriously hamper clinical efficacy. To address this possibility, we developed a novel assay to detect antigen-specific Treg based on down-regulation of surface CD3 following TCR engagement, and used this approach to screen for Treg specific to the NY-ESO-1 tumor antigen in melanoma patients treated with the NY-ESO-1/ISCOMATRIXTM cancer vaccine. All patients tested had Treg (CD25bright FoxP3+ CD127neg) specific for at least one NY-ESO-1 epitope in the blood. Strikingly, comparison with pre-treatment samples revealed that many of these responses were induced or boosted by vaccination. The most frequently detected response was toward the HLA-DP4-restricted NY-ESO-1157–170 epitope, which is also recognized by effector T cells. Notably, functional Treg specific for an HLA-DR-restricted epitope within the NY-ESO-1115–132 peptide were also identified at high frequency in tumor tissue, suggesting that NY-ESO-1-specific Treg may suppress local anti-tumor immune responses. Together, our data provide compelling evidence for the ability of a cancer vaccine to expand tumor antigen-specific Treg in the setting of advanced cancer, a finding which should be given serious consideration in the design of future cancer vaccine clinical trials. PMID:23110239

  2. The Breadth of Synthetic Long Peptide Vaccine-Induced CD8+ T Cell Responses Determines the Efficacy against Mouse Cytomegalovirus Infection.

    Directory of Open Access Journals (Sweden)

    Eleni Panagioti

    2016-09-01

    Full Text Available There is an ultimate need for efficacious vaccines against human cytomegalovirus (HCMV, which causes severe morbidity and mortality among neonates and immunocompromised individuals. In this study we explored synthetic long peptide (SLP vaccination as a platform modality to protect against mouse CMV (MCMV infection in preclinical mouse models. In both C57BL/6 and BALB/c mouse strains, prime-booster vaccination with SLPs containing MHC class I restricted epitopes of MCMV resulted in the induction of strong and polyfunctional (i.e., IFN-γ+, TNF+, IL-2+ CD8+ T cell responses, equivalent in magnitude to those induced by the virus itself. SLP vaccination initially led to the formation of effector CD8+ T cells (KLRG1hi, CD44hi, CD127lo, CD62Llo, which eventually converted to a mixed central and effector-memory T cell phenotype. Markedly, the magnitude of the SLP vaccine-induced CD8+ T cell response was unrelated to the T cell functional avidity but correlated to the naive CD8+ T cell precursor frequency of each epitope. Vaccination with single SLPs displayed various levels of long-term protection against acute MCMV infection, but superior protection occurred after vaccination with a combination of SLPs. This finding underlines the importance of the breadth of the vaccine-induced CD8+ T cell response. Thus, SLP-based vaccines could be a potential strategy to prevent CMV-associated disease.

  3. A lipidated peptide of Mycobacterium tuberculosis resuscitates the protective efficacy of BCG vaccine by evoking memory T cell immunity.

    Science.gov (United States)

    Rai, Pradeep K; Chodisetti, Sathi Babu; Zeng, Weiguang; Nadeem, Sajid; Maurya, Sudeep K; Pahari, Susanta; Janmeja, Ashok K; Jackson, David C; Agrewala, Javed N

    2017-10-06

    The current BCG vaccine induces only short-term protection against Mycobacterium tuberculosis (Mtb), suggesting its failure to generate long-lasting memory T cells. Previously, we have demonstrated that a self-adjuvanting peptide of Mtb (L91), successfully generated enduring memory Th1 cells. Consequently, we investigated if L91 was able to recuperate BCG potency in perpetuating the generation of memory T cells and protection against Mtb infected mice. In the present study, we evaluated the potency of a self adjuvanting Mtb peptide vaccine L91 in invigorating BCG immune response against Mtb in mice. Female BALB/c mice were immunized with BCG. Later, they were boosted twice with L91 or an antigenically irrelevant lipidated influenza virus hemagglutinin peptide (LH). Further, PBMCs obtained from BCG vaccinated healthy subjects were cultured in vitro with L91. T cell responses were determined by surface markers and intracellular cytokine staining. Secretion of cytokines was estimated in the culture supernatants (SNs) by ELISA. Compared to the BCG-vaccinated controls, L91 booster significantly enhanced the percentage of memory Th1 cells and Th17 cells and reduced the mycobacterial burden in BCG primed and L91-boosted (BCG-L91) group, even after 229 days of BCG vaccination. Further, substantial augmentation in the central (CD44 hi CD62L hi CD127 hi ) and effector memory (CD44 hi CD62L lo CD127 lo ) CD4 T cells was detected. Furthermore, greater frequency of polyfunctional Th1 cells (IFN-γ + TNF-α + ) and Th17 cells (IFN-γ + IL-17A + ) was observed. Importantly, BCG-L91 successfully prevented CD4 T cells from exhaustion by decreasing the expression of PD-1 and Tim-3. Additionally, augmentation in the frequency of Th1 cells, Th17 cells and memory CD4 T cells was observed in the PBMCs of the BCG-vaccinated healthy individuals following in vitro stimulation with L91. Our study demonstrated that L91 robustly reinvigorate BCG potency to invoke enduring protection against

  4. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination.

    Directory of Open Access Journals (Sweden)

    Jill M Brooks

    2016-04-01

    Full Text Available Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501, as well as subdominant responses through common class I alleles (e.g. B7 and C*0304. Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.

  5. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    M Honda; R Wang; W Kong; M Kanekiyo; Q Akahata; L Xu; K Matsuo; K Natarajan; H Robinson; et al.

    2011-12-31

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  6. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M.; Robinson, H.; Wang, R.; Kong, W.-P.; Kanekiyo, M.; Akahata, W.; Xu, L.; Matsuo, K.; Natarajan, K.; Asher, T. E.; Price, D. A.; Douek, D. C.; Margulies, D. H.; Nabel, G. J.

    2009-08-15

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  7. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  8. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors.

    Science.gov (United States)

    Soares, Kevin C; Rucki, Agnieszka A; Wu, Annie A; Olino, Kelly; Xiao, Qian; Chai, Yi; Wamwea, Anthony; Bigelow, Elaine; Lutz, Eric; Liu, Linda; Yao, Sheng; Anders, Robert A; Laheru, Daniel; Wolfgang, Christopher L; Edil, Barish H; Schulick, Richard D; Jaffee, Elizabeth M; Zheng, Lei

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to late detection and resistance to conventional therapies. Published studies show that the PDA tumor microenvironment is predominantly infiltrated with immune suppressive cells and signals that if altered, would allow effective immunotherapy. However, single-agent checkpoint inhibitors including agents that alter immune suppressive signals in other human cancers such as cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1), and its ligand PD-L1, have failed to demonstrate objective responses when given as single agents to PDA patients. We recently reported that inhibition of the CTLA-4 pathway when given together with a T cell inducing vaccine gives objective responses in metastatic PDA patients. In this study, we evaluated blockade of the PD-1/PD-L1 pathway. We found that PD-L1 is weakly expressed at a low frequency in untreated human and murine PDAs but treatment with a granulocyte macrophage colony-stimulating factor secreting PDA vaccine (GVAX) significantly upregulates PD-L1 membranous expression after treatment of tumor-bearing mice. In addition, combination therapy with vaccine and PD-1 antibody blockade improved murine survival compared with PD-1 antibody monotherapy or GVAX therapy alone. Furthermore, PD-1 blockade increased effector CD8 T lymphocytes and tumor-specific interferon-γ production of CD8 T cells in the tumor microenvironment. Immunosuppressive pathways, including regulatory T cells and CTLA-4 expression on T cells were overcome by the addition of vaccine and low-dose cyclophosphamide to PD-1 blockade. Collectively, our study supports combining PD-1 or PD-L1 antibody therapy with a T cell inducing agent for PDA treatment.

  9. Both CD4+ and CD8+ T cells can mediate vaccine-induced protection against Coccidioides immitis infection in mice.

    Science.gov (United States)

    Fierer, Joshua; Waters, Crystal; Walls, Lorraine

    2006-05-01

    To determine which lymphocytes are required for vaccine-induced immunity to coccidioidomycosis, we used a temperature-sensitive mutant of Coccidioides immitis to immunize mice lacking subsets of lymphocytes or specific cytokines and infected the mice 4 weeks later with virulent C. immitis. After 2 weeks, we determined the number of fungi in their lungs and spleens. Vaccine-induced immunity required alpha beta T lymphocytes. beta -2 microglobulin knockout (KO) mice were protected by immunization, and we transferred protection using CD4+ T cells from immunized mice. However, vaccination also protected CD4+ KO mice, which suggests that CD8+ T cells played a role in vaccine-induced immunity, even though they were not required. We adaptively transferred protection using spleen cells from immunized CD4+ KO mice to nonimmune B6 mice, but CD8+ -depleted spleen cells did not protect against infection. Recipients of spleen cells from immunized CD4+ KO mice had 6 times more tumor necrosis factor (TNF)- alpha mRNA in their lungs than did mice that received nonimmune spleen cells, and TNF receptor-1 KO mice were not fully protected by immunization. These results show that both CD4+ and CD8+ T cells can protect against coccidioidomycosis and that TNF- alpha is a necessary component of the acquired immune response.

  10. T cell immunity to influenza in older adults: A pathophysiological framework for development of more effective vaccines

    Directory of Open Access Journals (Sweden)

    Janet E McElhaney

    2016-02-01

    Full Text Available One of the most profound public health consequences of immune senescence is reflected in an increased susceptibility to influenza and other acute respiratory illnesses, as well as a loss of influenza vaccine effectiveness in older people. Common medical conditions and mental and psychosocial health issues as well as degree of frailty and functional dependence accelerate changes associated with immune senescence. All contribute to the increased risk for complications of influenza infection including pneumonias, heart diseases and strokes that lead to hospitalization, disability and death in the over 65 population. Changes in mucosal barrier mechanisms and both innate and adaptive immune functions converge in the reduced response to influenza infection, and lead to a loss of antibody-mediated protection against influenza with age. The interactions of immune senescence and reduced adaptive immune responses, persistent cytomegalovirus infection, inflammaging (chronic elevation of inflammatory cytokines, and dysregulated cytokine production, pose major challenges to the development of vaccines designed to improve T-cell mediated immunity. In older adults, the goal of vaccination is more realistically targeted to providing clinical protection against disease rather than to inducing sterilizing immunity to infection. Standard assays of antibody titres correlate with protection against influenza illness but do not detect important changes in cellular immune mechanisms that correlate with vaccine-mediated protection against influenza in older people. This article will discuss: i the burden of influenza in older adults and how this relates to changes in T cell function, ii age-related changes in different T cell subsets and immunologic targets for improved influenza vaccine efficacy in older, and iii the development of correlates of clinical protection against influenza disease to expedite the process of new vaccine development for the 65 and older

  11. Major role for CD8 T cells in the protection against Toxoplasma gondii following dendritic cell vaccination.

    Science.gov (United States)

    Guiton, R; Zagani, R; Dimier-Poisson, I

    2009-10-01

    Toxoplasma gondii is the causative agent of toxoplasmosis, a worldwide zoonosis for which an effective vaccine is needed. Vaccination with pulsed dendritic cells is very efficient but their use in a vaccination protocol is unconceivable. Nevertheless, unravelling the induced effector mechanisms is crucial to design new vaccine strategies. We vaccinated CBA/J mice with parasite extract-pulsed dendritic cells, challenged them with T. gondii cysts and carried out in vivo depletion of CD4(+) or CD8(+) T lymphocytes to study the subsequent cellular immune response and protective mechanisms. CD4(+) lymphocytes were poorly implicated either in spleen and mesenteric lymph node (MLN) cytokine secretion or in mice protection. By contrast, the increasing number of intracerebral cysts and depletion of CD8(+) cells were strongly correlated, revealing a prominent role for CD8(+) lymphocytes in the protection of mice. Splenic CD8(+) lymphocytes induce a strong Th1 response controlled by a Th2 response whereas CD8(+) cells from MLNs inhibit both Th1 and Th2 responses. CD8(+) cells are the main effectors following dendritic cell vaccination and Toxoplasma infection while CD4(+) T cells only play a minor role. This contrasts with T. gondii infection which elicits the generation of CD4(+) and CD8(+) T cells that provide protective immunity.

  12. Minimally invasive monitoring of CD4 T cells at multiple mucosal tissues after intranasal vaccination in rhesus macaques.

    Science.gov (United States)

    Dorta-Estremera, Stephanie; Nehete, Pramod N; Yang, Guojun; He, Hong; Nehete, Bharti P; Shelton, Kathryn A; Barry, Michael A; Sastry, K Jagannadha

    2017-01-01

    Studies in nonhuman primates (NHP) for prospective immune cell monitoring subsequent to infection and/or vaccination usually rely on periodic sampling of the blood samples with only occasional collections of biopsies from mucosal tissues because of safety concerns and practical constraints. Here we present evidence in support of cytobrush sampling of oral, rectal, and genital mucosal tissues as a minimally invasive approach for the phenotypic analyses of different T cells subsets de novo as well as prospectively after intranasal immunization in rhesus macaques. Significant percentages of viable lymphocytes were obtained consistently from both naïve and chronically SIV-infected rhesus macaques. The percentages of CD3+ T cells in the blood were significantly higher compared to those in the mucosal tissues analyzed in the naïve animals, while in the SIV+ animals the CD3+ T cells were significantly elevated in the rectal tissues, relative to all other sites analyzed. In the naïve, but not SIV+ macaques, the rectal and vaginal mucosal tissues, compared to oral mucosa and blood, showed higher diversity and percentages of CD4+ T cells expressing the HIV entry co-receptor CCR5 and mucosal specific adhesion (CD103) as well as activation (HLA-DR) and proliferation (Ki67) markers. Sequential daily cytobrush sampling from the oral, rectal, and genital mucosal tissues was performed in SIV+ animals from an ongoing study where they were administered intranasal immunization with adenoviral vectored vaccines incorporating the green fluorescent protein (GFP) reporter gene. We detected a transient increase in GFP+ CD4 T cells in only oral mucosa suggesting limited mucosal trafficking. In general, CD4+ and CD8+ T cells expressing Ki67 transiently increased in all mucosal tissues, but those expressing the CCR5, HLA-DR, and CD103 markers exhibited minor changes. We propose the minimally invasive cytobrush sampling as a practical approach for effective and prospective immune

  13. In silico prediction of B- and T- cell epitope on Lassa virus proteins for peptide based subunit vaccine design.

    Science.gov (United States)

    Verma, Sitansu Kumar; Yadav, Soni; Kumar, Ajay

    2015-01-01

    Lassa fever is a severe, often-fatal and one of the most virulent disease in primates. However, the mechanism of escape of virus from the T-cell mediated immune response of the host cell is not explained in any studies yet. In our studies we had aimed to predict B- and T- cell epitope of Lassa virus protein, for impaling the futuristic approach of developing preventive measures against this disease, further we can also study its presumed viral- host mechanism. Peptide based subunit vaccine was developed from all four protein against Lassa virus. We adopted sequence, 3D structure and fold level in silico analysis to predict B-cell and T-cell epitopes. The 3-D structure was determined for all protein by homology modeling and the modeled structure validated. One T-cell epitope from Glycoprotein (WDCIMTSYQ) and one from Nucleoprotein (WPYIASRTS) binds to maximum no of MHC class I and MHC class II alleles. They also specially bind to HLA alleles namely, A*0201, A*2705, DRB*0101 and DRB*0401. Taken together, the results indicate the Glycoprotein and nucleoprotein are most suitable vaccine candidates against Lassa virus.

  14. Human T-cell clones with reactivity to Mycobacterium leprae as tools for the characterization of potential vaccines against leprosy.

    OpenAIRE

    Emmrich, F; Kaufmann, S H

    1986-01-01

    T-cell clones with the T4 phenotype were established from patients with tuberculoid leprosy. The antigen reactivity of these clones ranged from stringent specificity for Mycobacterium leprae to broad cross-reactivity with other mycobacteria. Killed M. leprae had a weak stimulatory capacity which could be enhanced by ultrasonication. Among the three candidate antileprosy vaccines, M. leprae, M. bovis BCG, and the ICRC (Indian Cancer Research Center) strain, the last was superior in stimulating...

  15. Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines.

    Science.gov (United States)

    John, Mina; Gaudieri, Silvana

    2014-01-01

    Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-exist among certain populations by virtue of common blood-borne, sexual, or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate, and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism, and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4(+) and CD8(+) T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however, studies of "elite controllers," or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy, has provided the strongest evidence for CD8(+) T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human

  16. Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children

    DEFF Research Database (Denmark)

    Mortensen, Rasmus; Nissen, Thomas Nørrelykke; Fredslund, Sine

    2016-01-01

    No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well......-conserved among different GAS strains, upregulated in host-pathogen interaction studies, and predicted to be extracellular or associated with the surface of the bacteria. The antigens were tested for both antibody recognition and T cell responses in human adults and children. The antigenicity of a selected group...

  17. Protective Immunity against Lethal F. tularensis holarctica LVS Provided by Vaccination with Selected Novel CD8+ T Cell Epitopes

    Science.gov (United States)

    Bar-Haim, Erez; Bar-On, Liat; Ehrlich, Sharon; Shafferman, Avigdor

    2014-01-01

    Recently we described an unbiased bacterial whole-genome immunoinformatic analysis aimed at selection of potential CTL epitopes located in “hotspots” of predicted MHC-I binders. Applying this approach to the proteome of the facultative intra-cellular pathogen Francisella tularensis resulted in identification of 170 novel CTL epitopes, several of which were shown to elicit highly robust T cell responses. Here we demonstrate that by DNA immunization using a short DNA fragment expressing six of the most prominent identified CTL epitopes a potent and specific CD8+ T cell responses is being induced, to all encoded epitopes, a response not observed in control mice immunized with the DNA vector alone Moreover, this CTL-specific mediated immune response prevented disease development, allowed for a rapid clearance of the bacterial infection and provided complete protection against lethal challenge (10LD50) with F. tularensis holarctica Live Vaccine Strain (LVS) (a total to 30 of 30 immunized mice survived the challenge while all control DNA vector immunized mice succumbed). Furthermore, and in accordance with these results, CD8 deficient mice could not be protected from lethal challenge after immunization with the CTL-polyepitope. Vaccination with the DNA poly-epitope construct could even protect mice (8/10) against the more demanding pulmonary lethal challenge of LVS. Our approach provides a proof-of-principle for selecting and generating a multi-epitpoe CD8 T cell-stimulating vaccine against a model intracellular bacterium. PMID:24400128

  18. Protective immunity against lethal F. tularensis holarctica LVS provided by vaccination with selected novel CD8+ T cell epitopes.

    Science.gov (United States)

    Rotem, Shahar; Cohen, Ofer; Bar-Haim, Erez; Bar-On, Liat; Ehrlich, Sharon; Shafferman, Avigdor

    2014-01-01

    Recently we described an unbiased bacterial whole-genome immunoinformatic analysis aimed at selection of potential CTL epitopes located in "hotspots" of predicted MHC-I binders. Applying this approach to the proteome of the facultative intra-cellular pathogen Francisella tularensis resulted in identification of 170 novel CTL epitopes, several of which were shown to elicit highly robust T cell responses. Here we demonstrate that by DNA immunization using a short DNA fragment expressing six of the most prominent identified CTL epitopes a potent and specific CD8+ T cell responses is being induced, to all encoded epitopes, a response not observed in control mice immunized with the DNA vector alone Moreover, this CTL-specific mediated immune response prevented disease development, allowed for a rapid clearance of the bacterial infection and provided complete protection against lethal challenge (10LD50) with F. tularensis holarctica Live Vaccine Strain (LVS) (a total to 30 of 30 immunized mice survived the challenge while all control DNA vector immunized mice succumbed). Furthermore, and in accordance with these results, CD8 deficient mice could not be protected from lethal challenge after immunization with the CTL-polyepitope. Vaccination with the DNA poly-epitope construct could even protect mice (8/10) against the more demanding pulmonary lethal challenge of LVS. Our approach provides a proof-of-principle for selecting and generating a multi-epitpoe CD8 T cell-stimulating vaccine against a model intracellular bacterium.

  19. Novel G3/DT adjuvant promotes the induction of protective T cells responses after vaccination with a seasonal trivalent inactivated split-virion influenza vaccine.

    Science.gov (United States)

    van de Sandt, Carolien E; Kreijtz, Joost H C M; Geelhoed-Mieras, Martina M; Vogelzang-van Trierum, Stella E; Nieuwkoop, Nella J; van de Vijver, David A M C; Fouchier, Ron A M; Osterhaus, Albert D M E; Morein, Bror; Rimmelzwaan, Guus F

    2014-09-29

    Vaccines used against seasonal influenza are poorly effective against influenza A viruses of novel subtypes that may have pandemic potential. Furthermore, pre(pandemic) influenza vaccines are poorly immunogenic, which can be overcome by the use of adjuvants. A limited number of adjuvants has been approved for use in humans, however there is a need for alternative safe and effective adjuvants that can enhance the immunogenicity of influenza vaccines and that promote the induction of broad-protective T cell responses. Here we evaluated a novel nanoparticle, G3, as an adjuvant for a seasonal trivalent inactivated influenza vaccine in a mouse model. The G3 adjuvant was formulated with or without steviol glycosides (DT, for diterpenoid). The use of both formulations enhanced the virus-specific antibody response to all three vaccine strains considerably. The adjuvants were well tolerated without any signs of discomfort. To assess the protective potential of the vaccine-induced immune responses, an antigenically distinct influenza virus strain, A/Puerto Rico/8/34 (A/PR/8/34), was used for challenge infection. The vaccine-induced antibodies did not cross-react with strain A/PR/8/34 in HI and VN assays. However, mice immunized with the G3/DT-adjuvanted vaccine were partially protected against A/PR/8/34 infection, which correlated with the induction of anamnestic virus-specific CD8(+) T cell responses that were not observed with the use of G3 without DT. Both formulations induced maturation of human dendritic cells and promoted antigen presentation to a similar extent. In conclusion, G3/DT is a promising adjuvant formulation that not only potentiates the antibody response induced by influenza vaccines, but also induces T cell immunity which could afford broader protection against antigenically distinct influenza viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  1. Cytokine-dependent anti-viral role of CD4-positive T cells in therapeutic vaccination against chronic hepatitis B viral infection.

    Science.gov (United States)

    Ren, Fenyu; Hino, Keisuke; Yamaguchi, Yuhki; Funatsuki, Kiyomi; Hayashi, Akio; Ishiko, Hiroaki; Furutani, Muneko; Yamasaki, Takahiro; Korenaga, Keiko; Yamashita, Satoyoshi; Konishi, Tomomi; Okita, Kiwamu

    2003-11-01

    There are several lines of evidence suggesting that specific vaccine therapy with a standard hepatitis B virus (HBV) vaccination reduces HBV replication. The aim of this study was to investigate the anti-viral mechanism of vaccine therapy in chronic hepatitis B patients. Nineteen patients were assigned to receive either vaccine therapy (n = 13) or no treatment as a control (n = 6). Vaccinated patients were analyzed for T cell proliferative responses specific for envelope antigen and cytokine production by antigen-specific T cells. ELISPOT and cytotoxicity assays also were carried out for limited blood samples. Serum HBV DNA levels decreased significantly at 3 months after completion of therapy and thereafter as compared to the baseline ones, and were significantly lower in vaccinated patients than in controls at 12 and 18 months after completion of therapy. Vaccination induced antigen-specific CD4+ T cell proliferative responses in four patients (30.8%). The production of high levels of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) by antigen-specific T cells was found in six patients (46.0%) who showed significantly lower HBV DNA levels in serum at 6 (P = 0.04) and 18 months (P = 0.005) after completion of therapy than those without high levels of cytokine production. Vaccination did not induce antigen-specific CD8+ T cells or cytotoxic T cells. These results suggest that envelope-specific CD4+ T cells may control directly HBV replication by producing anti-viral cytokines rather than providing help for cytotoxic T cells in therapeutic vaccination against chronic HBV infection. Copyright 2003 Wiley-Liss, Inc.

  2. DNA Priming Increases Frequency of T-Cell Responses to a Vesicular Stomatitis Virus HIV Vaccine with Specific Enhancement of CD8+ T-Cell Responses by Interleukin-12 Plasmid DNA.

    Science.gov (United States)

    Li, Shuying S; Kochar, Nidhi K; Elizaga, Marnie; Hay, Christine M; Wilson, Gregory J; Cohen, Kristen W; De Rosa, Stephen C; Xu, Rong; Ota-Setlik, Ayuko; Morris, Daryl; Finak, Greg; Allen, Mary; Tieu, Hong-Van; Frank, Ian; Sobieszczyk, Magdalena E; Hannaman, Drew; Gottardo, Raphael; Gilbert, Peter B; Tomaras, Georgia D; Corey, Lawrence; Clarke, David K; Egan, Michael A; Eldridge, John H; McElrath, M Juliana; Frahm, Nicole

    2017-11-01

    The HIV Vaccine Trials Network (HVTN) 087 vaccine trial assessed the effect of increasing doses of pIL-12 (interleukin-12 delivered as plasmid DNA) adjuvant on the immunogenicity of an HIV-1 multiantigen (MAG) DNA vaccine delivered by electroporation and boosted with a vaccine comprising an attenuated vesicular stomatitis virus expressing HIV-1 Gag (VSV-Gag). We randomized 100 healthy adults to receive placebo or 3 mg HIV-MAG DNA vaccine (ProfectusVax HIV-1 gag/pol or ProfectusVax nef/tat/vif, env) coadministered with pIL-12 at 0, 250, 1,000, or 1,500 μg intramuscularly by electroporation at 0, 1, and 3 months followed by intramuscular inoculation with 3.4 × 107 PFU VSV-Gag vaccine at 6 months. Immune responses were assessed after the prime and boost and 6 months after the last vaccination. High-dose pIL-12 increased the magnitude of CD8+ T-cell responses postboost compared to no pIL-12 (P = 0.02), while CD4+ T-cell responses after the prime were higher in the absence of pIL-12 than with low- and medium-dose pIL-12 (P ≤ 0.05). The VSV boost increased Gag-specific CD4+ and CD8+ T-cell responses in all groups (P T cells), inducing a median of four Gag epitopes in responders. Six to 9 months after the boost, responses decreased in magnitude, but CD8+ T-cell response rates were maintained. The addition of a DNA prime dramatically improved responses to the VSV vaccine tested previously in the HVTN 090 trial, leading to broad epitope targeting and maintained CD8+ T-cell response rates at early memory. The addition of high-dose pIL-12 given with a DNA prime by electroporation and boosted with VSV-Gag increased the CD8+ T-cell responses but decreased the CD4+ responses. This approach may be advantageous in reshaping the T-cell responses to a variety of chronic infections or tumors. (This study has been registered at ClinicalTrials.gov under registration no. NCT01578889.). Copyright © 2017 American Society for Microbiology.

  3. Trypanosoma cruzi adjuvants potentiate T cell-mediated immunity induced by a NY-ESO-1 based antitumor vaccine.

    Directory of Open Access Journals (Sweden)

    Caroline Junqueira

    Full Text Available Immunological adjuvants that induce T cell-mediate immunity (TCMI with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL and CpGs oligodeoxynucleotides (CpG ODNs derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL, lipopeptide (Pam3Cys, and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+ T and CD8(+ T cell responses. In particular, both GIPLs (GTH, and GY and CpG ODNs (B344, B297 and B128 derived from T. cruzi elicited interferon-gamma (IFN-γ production by CD4(+ T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+ T lymphocytes. The side effects were also evaluated by local pain (hypernociception. The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+ T and CD8(+ T cell responses elicited by a specific immunological adjuvant.

  4. Trypanosoma cruzi Adjuvants Potentiate T Cell-Mediated Immunity Induced by a NY-ESO-1 Based Antitumor Vaccine

    Science.gov (United States)

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A.; Salgado, Ana Paula C.; Cunha, Thiago M.; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L. O.; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q.; Gazzinelli, Ricardo T.

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4+ T and CD8+ T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4+ T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8+ T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant. PMID:22567144

  5. T Cell-Derived IL-10 Determines Leishmaniasis Disease Outcome and Is Suppressed by a Dendritic Cell Based Vaccine

    Science.gov (United States)

    Schwarz, Tobias; Remer, Katharina A.; Nahrendorf, Wiebke; Masic, Anita; Siewe, Lisa; Müller, Werner; Roers, Axel; Moll, Heidrun

    2013-01-01

    In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection. PMID:23825956

  6. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine.

    Science.gov (United States)

    Schwarz, Tobias; Remer, Katharina A; Nahrendorf, Wiebke; Masic, Anita; Siewe, Lisa; Müller, Werner; Roers, Axel; Moll, Heidrun

    2013-01-01

    In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection.

  7. A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens.

    Science.gov (United States)

    Swaminathan, Gokul; Thoryk, Elizabeth A; Cox, Kara S; Meschino, Steven; Dubey, Sheri A; Vora, Kalpit A; Celano, Robert; Gindy, Marian; Casimiro, Danilo R; Bett, Andrew J

    2016-01-02

    Sub-unit vaccines are primarily designed to include antigens required to elicit protective immune responses and to be safer than whole-inactivated or live-attenuated vaccines. But their purity and inability to self-adjuvant often result in weaker immunogenicity. Emerging evidence suggests that bio-engineered nanoparticles can be used as immunomodulatory adjuvants. Therefore, in this study we explored the potential of novel Merck-proprietary lipid nanoparticle (LNP) formulations to enhance immune responses to sub-unit viral antigens. Immunization of BALB/c and C57BL/6 mice revealed that LNPs alone or in combination with a synthetic TLR9 agonist, immune-modulatory oligonucleotides, IMO-2125 (IMO), significantly enhanced immune responses to hepatitis B virus surface antigen (HBsAg) and ovalbumin (OVA). LNPs enhanced total B-cell responses to both antigens tested, to levels comparable to known vaccine adjuvants including aluminum based adjuvant, IMO alone and a TLR4 agonist, 3-O-deactytaled monophosphoryl lipid A (MPL). Investigation of the quality of B-cell responses demonstrated that the combination of LNP with IMO agonist elicited a stronger Th1-type response (based on the IgG2a:IgG1 ratio) than levels achieved with IMO alone. Furthermore, the LNP adjuvant significantly enhanced antigen specific cell-mediated immune responses. In ELISPOT assays, depletion of specific subsets of T cells revealed that the LNPs elicited potent antigen-specific CD4(+) and CD8(+)T cell responses. Intracellular FACS analyses revealed that LNP and LNP+IMO formulated antigens led to higher frequency of antigen-specific IFNγ(+)TNFα(+)IL-2(+), multi-functional CD8(+)T cell responses, than unadjuvanted vaccine or vaccine with IMO only. Overall, our results demonstrate that lipid nanoparticles can serve as future sub-unit vaccine adjuvants to boost both B-cell and T-cell responses in vivo, and that addition of IMO can be used to manipulate the quality of immune responses. Copyright © 2015

  8. Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2

    DEFF Research Database (Denmark)

    Bjoern, J; Brimnes, M K; Andersen, M H

    2011-01-01

    In this study, changes in peripheral blood regulatory T cell (Treg) levels were evaluated in 46 progressive patients with melanoma treated with a dendritic cell-based vaccine and concomitant low-dose IFN-α and IL-2. The regulatory subset of CD4 T cells, characterized by CD25(high...

  9. Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2

    DEFF Research Database (Denmark)

    Bjoern, J; Brimnes, M K; Andersen, M H

    2011-01-01

    In this study, changes in peripheral blood regulatory T cell (Treg) levels were evaluated in 46 progressive patients with melanoma treated with a dendritic cell-based vaccine and concomitant low-dose IFN-a and IL-2. The regulatory subset of CD4 T cells, characterized by CD25(high...

  10. Prototype Alzheimer's disease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide

    National Research Council Canada - National Science Library

    Agadjanyan, Michael G; Ghochikyan, Anahit; Petrushina, Irina; Vasilevko, Vitaly; Movsesyan, Nina; Mkrtichyan, Mikayel; Saing, Tommy; Cribbs, David H

    2005-01-01

    ...) prevents Alzheimer's disease (AD)-like neuropathology. The first immunotherapy clinical trial used fibrillar Abeta, containing the B and T cell self epitopes of Abeta, as the immunogen formulated with QS21 as the adjuvant in the vaccine...

  11. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells.

    Science.gov (United States)

    Kimura, Takayuki; Tse, Kevin; McArdle, Sara; Gerhardt, Teresa; Miller, Jacqueline; Mikulski, Zbigniew; Sidney, John; Sette, Alessandro; Wolf, Dennis; Ley, Klaus

    2017-04-01

    Although immunization with major histocompatibility complex (MHC) class II-restricted apolipoprotein B (ApoB) peptides has been shown to be atheroprotective, the mechanism is unclear. Here, we investigated CD4+ T cell populations in immunized atherosclerotic mice. Peptides (16-mers) from mouse ApoB, the core protein of low-density lipoprotein (LDL), were screened for binding to I-Ab by computer prediction and confirmed by radiolabeled peptide competition. Three new peptides, P101 (FGKQGFFPDSVNKALY, 5.5 nM IC50), P102 (TLYALSHAVNSYFDVD, 6.8 nM), and P103 (LYYKEDKTSLSASAAS, 95 nM), were tested in an atherosclerosis model (Apoe-/- mice on Western diet). Immunization with each of the three peptides (1 time in complete Freund's adjuvant subcuntaneously and 4 time in incomplete Freund's adjuvant intraperitoneally) but not with adjuvant alone showed significantly reduced atherosclerotic plaques in the aortic root by serial sections and in the whole aorta by en face staining. There were no differences in body weight, LDL cholesterol, or triglycerides. Peritoneal leukocytes from ApoB peptide-immunized mice, but not control mice, secreted significant amounts of IL-10 (150 pg/ml). Flow cytometry showed that peptide immunization induced IL-10 in 10% of peritoneal CD4+ T cells, some of which also expressed chemokine (C-C motif) receptor 5 (CCR5). Vaccination with ApoB peptides expanded peritoneal FoxP3+ regulatory CD4+ T cells and more than tripled the number of CCR5+FoxP3+ cells. Similar trends were also seen in the draining mediastinal lymph nodes but not in the nondraining inguinal lymph nodes. We conclude that vaccination with MHC class II-restricted autologous ApoB peptides induces regulatory T cells (Tregs) and IL-10, suggesting a plausible mechanism for atheroprotection.NEW & NOTEWORTHY Vaccination against apolipoprotein B (ApoB), the protein of LDL, attracts attention as a novel approach to prevent atherosclerosis. We discovered major histocompatibility complex class II

  12. Unconventional cytokine profiles and development of T cell memory in long-term survivors after cancer vaccination

    DEFF Research Database (Denmark)

    Kyte, Jon Amund; Trachsel, Sissel; Risberg, Bente

    2009-01-01

    Cancer vaccine trials frequently report on immunological responses, without any clinical benefit. This paradox may reflect the challenge of discriminating between effective and pointless immune responses and sparse knowledge on their long-term development. Here, we have analyzed T cell responses...... in long-term survivors after peptide vaccination. There were three main study aims: (1) to characterize the immune response in patients with a possible clinical benefit. (2) To analyze the long-term development of responses and effects of booster vaccination. (3) To investigate whether the Th1/Th2...... display unconventional cytotoxicity and specifically kill tumor cells expressing mutated TGFbeta receptor II. Cytokine profiling on the long-term survivors demonstrates high IFN gamma/IL10-ratios, favoring immunity over tolerance, and secretion of multiple chemokines likely to mobilize the innate...

  13. Inability to induce consistent T-cell responses recognizing conserved regions within HIIV-1 antigens: a potential mechanism for lack of vaccine efficacy in the step study

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Szinger, James [Los Alamos National Laboratory

    2009-01-01

    T cell based vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a high probability of matching the epitope induced by vaccination with the infecting viral strain. We compared the frequency and specificity of the CTL epitopes elicited by the replication defective AdS gag/pol/nef vaccine used in the STEP trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. On average vaccination elicited only one epitope per gene. Importantly, the highly conserved epitopes in gag, pol, and nef (> 80% of strains in the current collection of the Los Alamos database [www.hiv.lanl.gov]) were rarely elicited by vaccination. Moreover there was a statistically significant skewing of the T cell response to relative variable epitopes of each gene; only 20% of persons possessed > 3 T cell responses to epitopes likely to be found in circulating strains in the CladeB populations in which the Step trial was conducted. This inability to elicit T cell responses likely to be found in circulating viral strains is a likely factor in the lack of efficacy of the vaccine utilized in the STEP trial. Modeling of the epitope specific responses elicited by vaccination, we project that a median of 8-10 CD8+ T cell epitopes are required to provide >80% likelihood of eliciting at least 3 CD8+ T cell epitopes that would be found on a circulating population of viruses. Development of vaccine regimens which elicit either a greater breadth of responses or elicit responses to conserved regions of the HIV-1 genome are needed to fully evaluate the concept of whether induction of T cell immunity can alter HIV-1 in vivo.

  14. Strong vaccine-induced CD8 T-cell responses have cytolytic function in a chimpanzee clearing HCV infection.

    Directory of Open Access Journals (Sweden)

    Babs E Verstrepen

    Full Text Available A single correlate of effective vaccine protection against chronic HCV infection has yet to be defined. In this study, we analyzed T-cell responses in four chimpanzees, immunized with core-E1-E2-NS3 and subsequently infected with HCV1b. Viral clearance was observed in one animal, while the other three became chronically infected. In the animal that cleared infection, NS3-specific CD8 T-cell responses were observed to be more potent in terms of frequency and polyfunctionality of cytokine producing cells. Unique to this animal was the presence of killing-competent CD8 T-cells, specific for NS3 1258-1272, being presented by the chimpanzee MHC class I molecule Patr-A*03∶01, and a high affinity recognition of this epitope. In the animals that became chronically infected, T-cells were able to produce cytokines against the same peptide but no cytolysis could be detected. In conclusion, in the animal that was able to clear HCV infection not only cytokine production was observed but also cytolytic potential against specific MHC class I/peptide-combinations.

  15. Pitfalls in anti-influenza T cell detection by Elispot using thimerosal containing pandemic H1N1 vaccine as antigen.

    Science.gov (United States)

    Chauvat, A; Benhamouda, N; Loison, E; Gougeon, M L; Gey, A; Levionnois, E; Ravel, P; Abitbol, V; Roncelin, S; Marcheteau, E; Quintin-Colonna, F; Fridman, W H; Launay, O; Tartour, E

    2012-04-30

    Monitoring T cells in combination with humoral response may be of value to predict clinical protection and cross-protective immunity after influenza vaccination. Elispot technique which measures cytokine produced after antigen-specific T cell stimulation is used routinely to detect and characterize anti-viral T cells. We found that the preservative thimerosal present in most H1N1 pandemic vaccines, induced in vitro abortive activation of T cells followed by cell death leading to false-positive results with the Elispot technique. The size of the spots, usually not measured in routine analysis, appears to be a discriminative criterion to detect this bias. Multi-dose vials of vaccine containing thimerosal remain important for vaccine delivery and our results alert about false-positive results of Elispot to monitor the clinical efficacy of these vaccines. We showed that this finding extends for other T cell monitoring techniques based on cytokine production such as ELISA. Although measuring in vitro immune response using the whole vaccine used for human immunization directly reflects in vivo global host response to the vaccine, the present study strongly supports the use of individual vaccine components for immune monitoring due to the presence of contaminants, such as thimerosal, leading to a bias in interpretation of the results. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Specificity for the tumor-associated self-antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination.

    Science.gov (United States)

    Pospori, Constandina; Xue, Shao-An; Holler, Angelika; Voisine, Cecile; Perro, Mario; King, Judith; Fallah-Arani, Farnaz; Flutter, Barry; Chakraverty, Ronjon; Stauss, Hans J; Morris, Emma C

    2011-06-23

    Recently, vaccines against the Wilms Tumor antigen 1 (WT1) have been tested in cancer patients. However, it is currently not known whether physiologic levels of WT1 expression in stem and progenitor cells of normal tissue result in the deletion or tolerance induction of WT1-specific T cells. Here, we used an human leukocyte antigen-transgenic murine model to study the fate of human leukocyte antigen class-I restricted, WT1-specific T cells in the thymus and in the periphery. Thymocytes expressing a WT1-specific T-cell receptor derived from high avidity human CD8 T cells were positively selected into the single-positive CD8 population. In the periphery, T cells specific for the WT1 antigen differentiated into CD44-high memory phenotype cells, whereas T cells specific for a non-self-viral antigen retained a CD44(low) naive phenotype. Only the WT1-specific T cells, but not the virus-specific T cells, displayed rapid antigen-specific effector function without prior vaccination. Despite long-term persistence of WT1-specific memory T cells, the animals did not develop autoimmunity, and the function of hematopoietic stem and progenitor cells was unimpaired. This is the first demonstration that specificity for a tumor-associated self-antigen may drive differentiation of functionally competent memory T cells.

  17. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control

    DEFF Research Database (Denmark)

    Sorensen, Maria R; Holst, Peter J; Pircher, Hanspeter

    2009-01-01

    vaccination with adenovirus expressing GP alone (Ad-GP), or GP and Ii unlinked (Ad-GP+Ii). Ad-Ii-GP- induced tumor control depended on an improved generation of the tumor-associated neoantigen-specific CD8(+) T-cell response and was independent of CD4(+) T cells. IFN-gamma was shown to be a key player during......Antigen-specific immunotherapy is an attractive strategy for cancer control. In the context of antiviral vaccines, adenoviral vectors have emerged as a favorable means for immunization. Therefore, we chose a strategy combining use of these vectors with another successful approach, namely linkage...... of the vaccine antigen to invariant chain (Ii). To evaluate this strategy we used a mouse model, in which an immunodominant epitope (GP33) of the LCMV glycoprotein (GP) represents the tumor-associated neoantigen. Prophylactic vaccination of C57BL/6 mice with a replication-deficient human adenovirus 5 vector...

  18. Decrease in circulating CD25(hi)Foxp3(+) regulatory T cells following vaccination with the candidate malaria vaccine RTS,S.

    Science.gov (United States)

    Parsons, Emily; Epstein, Judith; Sedegah, Martha; Villasante, Eileen; Stewart, Ann

    2016-08-31

    Regulatory T (Treg) cells have been shown in some cases to limit vaccine-specific immune responses and impact efficacy. Very little is known about the regulatory responses to the leading malaria vaccine candidate, RTS,S. The goal of this study was to begin to characterize the regulatory responses to the RTS,S vaccine. Using multi-parameter flow cytometry, we examined responses in 13 malaria naïve adult volunteers who received 2 doses of RTS,S given eight weeks apart. Five of these volunteers had previously received 3 doses of a candidate DNA-CSP vaccine, with the final dose given approximately one year prior to the first dose of the RTS,S vaccine. We found that the frequency of CD25(hi)Foxp3(+) Treg cells decreased following administration of RTS,S (p=0.0195), with no differences based on vaccine regimen. There was a concomitant decrease in CTLA-4 expression on CD25(hi)Foxp3(+) Treg cells (p=0.0093) and PD-1 levels on CD8(+) T cells (p=0.0002). Additionally, the frequency of anergic CTLA-4(+)CCR7(+) T cells decreased following vaccination. An inverse correlation was observed between the frequency of Plasmodium falciparum circumsporozoite protein (PfCSP)-specific IFN-γ and PfCSP-specific IL-10, as well as an inverse correlation between IL-10 induced by Hepatitis B surface antigen, the carrier of RTS,S, and PfCSP-specific IFN-γ, suggesting that immunity against the vaccine backbone could impact vaccine immunogenicity. These results have implications for future malaria vaccine design. Copyright © 2016. Published by Elsevier Ltd.

  19. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox.

    Directory of Open Access Journals (Sweden)

    Melanie Kremer

    Full Text Available Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination.

  20. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox.

    Science.gov (United States)

    Kremer, Melanie; Suezer, Yasemin; Volz, Asisa; Frenz, Theresa; Majzoub, Monir; Hanschmann, Kay-Martin; Lehmann, Michael H; Kalinke, Ulrich; Sutter, Gerd

    2012-01-01

    Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA) or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination.

  1. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  2. Combination of nanoparticle-based therapeutic vaccination and transient ablation of regulatory T cells enhances anti-viral immunity during chronic retroviral infection.

    Science.gov (United States)

    Knuschke, Torben; Rotan, Olga; Bayer, Wibke; Sokolova, Viktoriya; Hansen, Wiebke; Sparwasser, Tim; Dittmer, Ulf; Epple, Matthias; Buer, Jan; Westendorf, Astrid M

    2016-04-14

    Regulatory T cells (Tregs) have been shown to limit anti-viral immunity during chronic retroviral infection and to restrict vaccine-induced T cell responses. The objective of the study was to assess whether a combinational therapy of nanoparticle-based therapeutic vaccination and concomitant transient ablation of Tregs augments anti-viral immunity and improves virus control in chronically retrovirus-infected mice. Therefore, chronically Friend retrovirus (FV)-infected mice were immunized with calcium phosphate (CaP) nanoparticles functionalized with TLR9 ligand CpG and CD8(+) or CD4(+) T cell epitope peptides (GagL85-93 or Env gp70123-141) of FV. In addition, Tregs were ablated during the immunization process. Reactivation of CD4(+) and CD8(+) effector T cells was analysed and the viral loads were determined. Therapeutic vaccination of chronically FV-infected mice with functionalized CaP nanoparticles transiently reactivated cytotoxic CD8(+) T cells and significantly reduced the viral loads. Transient ablation of Tregs during nanoparticle-based therapeutic vaccination strongly enhanced anti-viral immunity and further decreased viral burden. Our data illustrate a crucial role for CD4(+) Foxp3(+) Tregs in the suppression of anti-viral T cell responses during therapeutic vaccination against chronic retroviral infection. Thus, the combination of transient Treg ablation and therapeutic nanoparticle-based vaccination confers robust and sustained anti-viral immunity.

  3. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    2016-07-01

    Full Text Available A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  4. Influenza-specific T cells from older people are enriched in the late effector subset and their presence inversely correlates with vaccine response.

    Directory of Open Access Journals (Sweden)

    Lisa E Wagar

    Full Text Available T cells specific for persistent pathogens accumulate with age and express markers of immune senescence. In contrast, much less is known about the state of T cell memory for acutely infecting pathogens. Here we examined T cell responses to influenza in human peripheral blood mononuclear cells from older (>64 and younger (<40 donors using whole virus restimulation with influenza A (A/PR8/34 ex vivo. Although most donors had pre-existing influenza reactive T cells as measured by IFNγ production, older donors had smaller populations of influenza-responsive T cells than young controls and had lost a significant proportion of their CD45RA-negative functional memory population. Despite this apparent dysfunction in a proportion of the older T cells, both old and young donors' T cells from 2008 could respond to A/California/07/2009 ex vivo. For HLA-A2+ donors, MHC tetramer staining showed that a higher proportion of influenza-specific memory CD8 T cells from the 65+ group co-express the markers killer cell lectin-like receptor G1 (KLRG1 and CD57 compared to their younger counterparts. These markers have previously been associated with a late differentiation state or immune senescence. Thus, memory CD8 T cells to an acutely infecting pathogen show signs of advanced differentiation and functional deterioration with age. There was a significant negative correlation between the frequency of KLRG1(+CD57(+ influenza M1-specific CD8 T cells pre-vaccination and the ability to make antibodies in response to vaccination with seasonal trivalent inactivated vaccine, whereas no such trend was observed when the total CD8(+KLRG1(+CD57(+ population was analyzed. These results suggest that the state of the influenza-specific memory CD8 T cells may be a predictive indicator of a vaccine responsive healthy immune system in old age.

  5. Human CD4+ T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity

    Science.gov (United States)

    Angelo, Michael A.; Grifoni, Alba; O'Rourke, Patrick H.; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D.; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A.; Kirkpatrick, Beth D.; Whitehead, Stephen S.; Durbin, Anna P.; Sette, Alessandro

    2016-01-01

    ABSTRACT Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8+ T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4+ T cell responses after live vaccination is important because CD4+ T cells are known contributors to host immunity, including cytokine production, help for CD8+ T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4+ T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4+ T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4+ cell responses closely mirroring those observed in a population associated with natural immunity. IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4+ responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against dengue

  6. Human CD4+T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity.

    Science.gov (United States)

    Angelo, Michael A; Grifoni, Alba; O'Rourke, Patrick H; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A; Kirkpatrick, Beth D; Whitehead, Stephen S; Durbin, Anna P; Sette, Alessandro; Weiskopf, Daniela

    2017-03-01

    Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8 + T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4 + T cell responses after live vaccination is important because CD4 + T cells are known contributors to host immunity, including cytokine production, help for CD8 + T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4 + T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4 + T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4 + cell responses closely mirroring those observed in a population associated with natural immunity. IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4 + responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against dengue

  7. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    Directory of Open Access Journals (Sweden)

    Manami Miyai

    Full Text Available Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01 in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB gene next generation sequencing (NGS to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3 rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF. Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133% even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB

  8. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    Science.gov (United States)

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS

  9. Enhanced response to antigen within lymph nodes of SJL/J mice that were protected against experimental allergic encephalomyelitis by T cell vaccination

    DEFF Research Database (Denmark)

    Zeine, R; Heath, D; Owens, T

    1993-01-01

    . The number of central nervous system (CNS) infiltrates and mean clinical EAE scores were significantly reduced. This is the first report demonstrating T cell vaccination in the SJL/J mouse, a strain in which PLP is the predominant encephalitogen in RSCH. The vaccinating cells were of the memory/effector (CD......The effects of T cell vaccination on peripheral immune responsiveness are not yet fully understood. We have induced resistance to rat spinal cord homogenate (RSCH)-induced experimental allergic encephalomyelitis (EAE) in SJL/J mice by vaccination with four T cell lines (RZ8, RZ15, RZ16, and A51......) which were reactive to myelin basic protein (MBP) but not to proteolipid protein (PLP). The effect was relatively neuroantigen-specific since vaccination with ovalbumin (OVA)-reactive and alloantigen-specific cells did not prevent EAE induction. Alloantigen-reactive cells reduced the rate of relapse...

  10. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Holst, Peter J; Christensen, Jan P

    2009-01-01

    against lethal peripheral challenge. The current study questioned whether the same strategy, i.e. linkage of GP to an Ii chain, could be applied to a naked DNA vaccine. Following gene-gun immunization with the linked construct (DNA-IiGP), GP-specific CD4(+) T cells could not be detected by flow cytometry...... with the unlinked construct. In contrast, substantial protection against peripheral challenge was not observed. Additional experiments with T-cell subset-depleted or perforin-deficient mice revealed that virus control in vaccinated mice depends critically on cytotoxic CD8(+) T cells. Finally, priming with the naked...

  11. Naturally Occurring Hepatitis B Virus B-Cell and T-Cell Epitope Mutants in Hepatitis B Vaccinated Children

    Directory of Open Access Journals (Sweden)

    Yu-Min Lin

    2013-01-01

    Full Text Available To control hepatitis B virus (HBV infection, a universal HBV vaccination program for infants was launched in Taiwan in 1984. The aim of this study was to investigate the role of B-cell and T-cell epitope variations of HBsAg and polymerase in HBV infection in vaccinated children. One hundred sixty-three sera from vaccinated children were enrolled randomly. HBV serum markers, including hepatitis B surface antigen (HBsAg and antibodies to HBsAg (anti-HBs and core antigen (anti-HBc, were detected by ELISA. Nucleotide sequences encoding the S and the pre-S regions of HBsAg were analyzed in all HBsAg positive sera. Five children were HBsAg positive. Sequence analysis of S, pre-S, and overlapped polymerase (P genes showed that HBV isolates of HBsAg-positive vaccinees were variants; no G145R but G145A and other substitutions were found in the “a” determinant. Fifteen, six, and eight amino acid substitutions within B-cell and T-cell epitopes of S, pre-S, and P regions were detected, respectively. Several immune-epitope mutants, such as S45T/A, N131T, I194V, and S207N in S, were detected in all isolates. In conclusion, our results suggested that these naturally occurring immunoepitope mutants, which changed their immunogenicity leading to escape from immune response, might cause HBV infection.

  12. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine.

    Directory of Open Access Journals (Sweden)

    Adriana Weinberg

    Full Text Available Influenza infections have high frequency and morbidity in HIV-infected pregnant women, underscoring the importance of vaccine-conferred protection. To identify the factors that determine vaccine immunogenicity in this group, we characterized the relationship of B- and T-cell responses to pandemic H1N1 (pH1N1 vaccine with HIV-associated immunologic and virologic characteristics. pH1N1 and seasonal-H1N1 (sH1N1 antibodies were measured in 119 HIV-infected pregnant women after two double-strength pH1N1 vaccine doses. pH1N1-IgG and IgA B-cell FluoroSpot, pH1N1- and sH1N1-interferon γ (IFNγ and granzyme B (GrB T-cell FluoroSpot, and flow cytometric characterization of B- and T-cell subsets were performed in 57 subjects. pH1N1-antibodies increased after vaccination, but less than previously described in healthy adults. pH1N1-IgG memory B cells (Bmem increased, IFNγ-effector T-cells (Teff decreased, and IgA Bmem and GrB Teff did not change. pH1N1-antibodies and Teff were significantly correlated with each other and with sH1N1-HAI and Teff, respectively, before and after vaccination. pH1N1-antibody responses to the vaccine significantly increased with high proportions of CD4+, low CD8+ and low CD8+HLADR+CD38+ activated (Tact cells. pH1N1-IgG Bmem responses increased with high proportions of CD19+CD27+CD21- activated B cells (Bact, high CD8+CD39+ regulatory T cells (Treg, and low CD19+CD27-CD21- exhausted B cells (Bexhaust. IFNγ-Teff responses increased with low HIV plasma RNA, CD8+HLADR+CD38+ Tact, CD4+FoxP3+ Treg and CD19+IL10+ Breg. In conclusion, pre-existing antibody and Teff responses to sH1N1 were associated with increased responses to pH1N1 vaccination in HIV-infected pregnant women suggesting an important role for heterosubtypic immunologic memory. High CD4+% T cells were associated with increased, whereas high HIV replication, Tact and Bexhaust were associated with decreased vaccine immunogenicity. High Treg increased antibody responses but

  13. BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses.

    Science.gov (United States)

    Cho, Hyun-Il; Barrios, Kelly; Lee, Young-Ran; Linowski, Angelika K; Celis, Esteban

    2013-04-01

    Therapeutic vaccines for the treatment of cancer are an attractive alternative to some of the conventional therapies that are currently used. More importantly, vaccines could be very useful to prevent recurrences when applied after primary therapy. Unfortunately, most therapeutic vaccines for cancer have performed poorly due to the low level of immune responses that they induce. Previous work done in our laboratory in cancer mouse models demonstrated that vaccines consisting of synthetic peptides representing minimal CD8 T-cell epitopes administered i.v. mixed with poly-IC and anti-CD40 antibodies (TriVax) were capable of inducing massive T cell responses similar to those found during acute infections. We now report that some peptides are capable of inducing similarly large T cell responses after vaccination with poly-IC alone (BiVax). The results show that amphiphilic peptides are more likely to function as strong immunogens in BiVax and that systemic immunizations (i.v. or i.m.) were more effective than local (s.c.) vaccine administration. The immune responses induced by BiVax were found to be effective against established tumors in two mouse cancer models. The roles of various immune-related pathways such as type-I IFN, CD40 costimulation, CD4 T cells, TLRs and the MDA5 RNA helicase were examined. The present findings could facilitate the development of simple and effective subunit vaccines for diseases where CD8 T cells provide a therapeutic benefit.

  14. BiVax: A peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T cell responses

    Science.gov (United States)

    Cho, Hyun-Il; Barrios, Kelly; Lee, Young-Ran; Linowski, Angelika K.; Celis, Esteban

    2013-01-01

    Therapeutic vaccines for the treatment of cancer are an attractive alternative to some of the conventional therapies that are currently used. More importantly, vaccines could be very useful to prevent recurrences when applied after primary therapy. Unfortunately, most therapeutic vaccines for cancer have performed poorly due to the low level of immune responses that they induce. Previous work done in our laboratory in cancer mouse models demonstrated that vaccines consisting of synthetic peptides representing minimal CD8 T cell epitopes administered i.v. mixed with poly-IC and anti-CD40 antibodies (TriVax) were capable of inducing massive T cell responses similar to those found during acute infections. We now report that some peptides are capable of inducing similarly large T cell responses after vaccination with poly-IC alone (BiVax). The results show that amphiphilic peptides are more likely to function as strong immunogens in BiVax and that systemic immunizations (i.v. or i.m.) were more effective than local (s.c.) vaccine administration. The immune responses induced by BiVax were found to be effective against established tumors in two mouse cancer models. The roles of various immune related pathways such as type-I IFN, CD40 costimulation, CD4 T cells, TLRs and the MDA5 RNA helicase were examined. The present findings could facilitate the development of simple and effective subunit vaccines for diseases where CD8 T cells provide a therapeutic benefit. PMID:23266830

  15. Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses.

    Science.gov (United States)

    Naarding, Marloes A; Fernandez, Natalia; Kappes, John C; Hayes, Peter; Ahmed, Tina; Icyuz, Mert; Edmonds, Tara G; Bergin, Philip; Anzala, Omu; Hanke, Tomas; Clark, Lorna; Cox, Josephine H; Cormier, Emmanuel; Ochsenbauer, Christina; Gilmour, Jill

    2014-07-01

    Emergence of SIV and HIV specific CD8 T cells has been shown to correlate with control of in vivo replication. Poor correlation between IFN-γ ELISPOT responses and in vivo control of the virus has triggered the development of more relevant assays to assess functional HIV-1 specific CD8 T-cell responses for the evaluation and prioritization of new HIV-1 vaccine candidates. We previously established a viral inhibition assay (VIA) that measures the ability of vaccine-induced CD8 T-cell responses to inhibit viral replication in autologous CD4 T cells. In this assay, viral replication is determined by measuring p24 in the culture supernatant. Here we describe the development of a novel VIA, referred to as IMC LucR VIA that exploits replication-competent HIV-1 infectious molecular clones (IMCs) in which the complete proviral genome is strain-specific and which express the Renilla luciferase (LucR) gene to determine viral growth and inhibition. The introduction of the luciferase readout does provide significant improvement of the read out time. In addition to switching to the LucR read out, changes made to the overall protocol resulted in the miniaturization of the assay from a 48 to a 96-well plate format, which preserved sample and allowed for the introduction of replicates. The overall assay time was reduced from 13 to 8 days. The assay has a high degree of specificity, and the previously observed non-specific background inhibition in cells from HIV-1 negative volunteers has been reduced dramatically. Importantly, we observed an increase in positive responses, indicating an improvement in sensitivity compared to the original VIA. Currently, only a limited number of "whole-genome" IMC-LucR viruses are available and our efforts will focus on expanding the panel to better evaluate anti-viral breadth. Overall, we believe the IMC LucR VIA provides a platform to assess functional CD8 T-cell responses in large-scale clinical trial testing, which will enhance the ability to

  16. DNA vaccine with discontinuous T-cell epitope insertions into HSP65 scaffold as a potential means to improve immunogenicity of multi-epitope Mycobacterium tuberculosis vaccine.

    Science.gov (United States)

    Wu, Manli; Li, Min; Yue, Yan; Xu, Wei

    2016-09-01

    DNA-based vaccine is a promising candidate for immunization and induction of a T-cell-focused protective immune response against infectious pathogens such as Mycobacterium tuberculosis (M. tb). To induce multi-functional T response against multi-TB antigens, a multi-epitope DNA vaccine and a 'protein backbone grafting' design method is adopted to graft five discontinuous T-cell epitopes into HSP65 scaffold protein of M. tb for enhancement of epitope processing and immune presentation. A DNA plasmid with five T-cell epitopes derived from ESAT-6, Ag85B, MTB10.4, PPE25 and PE19 proteins of H37Rv strain of M. tb genetically inserted into HSP65 backbone was constructed and designated as pPES. After confirmation of its in vitro expression efficiency, pPES DNA was i.m. injected into C57BL/6 mice with four doses of 50 µg DNA followed by mycobacterial challenge 4 weeks after the final immunization. It was found that pPES DNA injection maintained the ability of HSP65 backbone to induce specific serum IgG. ELISPOT assay demonstrated that pPES epitope-scaffold construct was significantly more potent to induce IFN-γ(+) T response to five T-cell epitope proteins than other DNA constructs (with epitopes alone or with epitope series connected to HSP65), especially in multi-functional-CD4(+) T response. It also enhanced granzyme B(+) CTL and IL-2(+) CD8(+) T response. Furthermore, significantly improved protection against Mycobacterium bovis BCG challenge was achieved by pPES injection compared to other DNA constructs. Taken together, HSP65 scaffold grafting strategy for multi-epitope DNA vaccine represents a successful example of rational protein backbone engineering design and could prove useful in TB vaccine design. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  17. Vaccine-specific local T cell reactivity in immunotherapy-associated vitiligo in melanoma patients.

    NARCIS (Netherlands)

    Jacobs, J.F.M.; Aarntzen, E.H.J.G.; Sibelt, L.A.G.; Blokx, W.A.M.; Boullart, A.C.I.; Gerritsen, M.J.P.; Hoogerbrugge, P.M.; Figdor, C.G.; Adema, G.J.; Punt, C.J.A.; Vries, I.J.M. de

    2009-01-01

    The occurrence of vitiligo in patients with melanoma is especially reported for patients undergoing immunotherapy. While vitiligo in these patients is thought to be related to an immune response directed against melanoma cells, solid evidence is lacking. Here we report local cytotoxic T cell

  18. Vaccine-specific local T cell reactivity in immunotherapy-associated vitiligo in melanoma patients

    NARCIS (Netherlands)

    Jacobs, Joannes F. M.; Aarntzen, Erik H. J. G.; Sibelt, Lenny A. G.; Blokx, Willeke A.; Boullart, Anna C. I.; Gerritsen, Marie-Jeanne; Hoogerbrugge, Peter M.; Figdor, Carl G.; Adema, Gosse J.; Punt, Cornelis J. A.; de Vries, I. Jolanda M.

    2009-01-01

    The occurrence of vitiligo in patients with melanoma is especially reported for patients undergoing immunotherapy. While vitiligo in these patients is thought to be related to an immune response directed against melanoma cells, solid evidence is lacking. Here we report local cytotoxic T cell

  19. Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Ji, Ping; Hu, Zhi-Dong; Kang, Han; Yuan, Qin; Ma, Hui; Wen, Han-Li; Wu, Juan; Li, Zhong-Ming; Lowrie, Douglas B; Fan, Xiao-Yong

    2016-02-01

    The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.

  20. The challenges and opportunities for the development of a T-cell epitope-based herpes simplex vaccine.

    Science.gov (United States)

    Kuo, Tiffany; Wang, Christine; Badakhshan, Tina; Chilukuri, Sravya; BenMohamed, Lbachir

    2014-11-28

    Herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) infections have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a billion individuals worldwide. HSV-1 infections are predominant than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries, their development has been difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One "common denominator" among previously failed clinical herpes vaccine trials is that they either used a whole virus or a whole viral protein, which contain both "pathogenic symptomatic" and "protective asymptomatic" antigens and epitopes. In this report, we continue to advocate developing "asymptomatic" epitope-based sub-unit vaccine strategies that selectively incorporate "protective asymptomatic" epitopes which: (i) are exclusively recognized by effector memory CD4(+) and CD8(+) T cells (TEM cells) from "naturally" protected seropositive asymptomatic individuals; and (ii) protect human leukocyte antigen (HLA) transgenic animal models of ocular and genital herpes. We review the role of animal models in herpes vaccine development and discuss their current status, challenges, and prospects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of cyclophosphamide and IL-2 on regulatory CD4+ T cell frequency and function in melanoma patients vaccinated with HLA-class I peptides: impact on the antigen-specific T cell response.

    Science.gov (United States)

    Camisaschi, Chiara; Filipazzi, Paola; Tazzari, Marcella; Casati, Chiara; Beretta, Valeria; Pilla, Lorenzo; Patuzzo, Roberto; Maurichi, Andrea; Cova, Agata; Maio, Michele; Chiarion-Sileni, Vanna; Tragni, Gabrina; Santinami, Mario; Vergani, Barbara; Villa, Antonello; Berti, Emilio; Umansky, Ludmila; Beckhove, Philipp; Umansky, Viktor; Parmiani, Giorgio; Rivoltini, Licia; Castelli, Chiara

    2013-05-01

    The frequency and function of regulatory T cells (Tregs) were studied in stage II-III melanoma patients who were enrolled in a phase II randomized trial of vaccination with HLA-A*0201-modified tumor peptides versus observation. The vaccinated patients received low-dose cyclophosphamide (CTX) and low-dose interleukin-2 (IL-2). Tregs were analyzed in the lymph nodes (LNs) of stage III patients who were undergoing complete lymph node dissection and in peripheral blood mononuclear cells (PBMCs) collected before vaccination and at different time points during the vaccination period. The LNs of the vaccinated patients, which were surgically removed after two rounds of vaccination and one dose of CTX, displayed a low frequency of Tregs and a less immunosuppressive environment compared with those of the untreated patients. The accurate time-course analysis of the PBMCs of patients enrolled in the vaccination arm indicated a limited and transient modulation in the frequencies of Tregs in PBMCs collected after low-dose CTX administration and a strong Treg boost in those PBMCs collected after low-dose IL-2 administration. However, a fraction of the IL-2-boosted Tregs was functionally modulated to a Th-1-like phenotype in the vaccinated patients. Moreover, low-dose IL-2 promoted the concomitant expansion of conventional activated CD4(+) T cells. Despite the amplification of Tregs, IL-2 administration maintained or further increased the number of antigen-specific CD8(+) T cells that were induced by vaccination as demonstrated by the ex vivo human leukocyte antigen-multimer staining and IFN-γ ELISpot assays. Our study suggests that the use of CTX as a Treg modulator should be revised in terms of the administration schedule and of patients who may benefit from this drug treatment. Despite the Treg expansion that was observed in this study, low-dose IL-2 is not detrimental to the functional activities of vaccine-primed CD8(+) T cell effectors when used in the inflammatory

  2. Human T cell responses induced by vaccination with Mycobacterium bovis bacillus Calmette-Guérin

    DEFF Research Database (Denmark)

    Ravn, P; Boesen, H; Pedersen, B K

    1997-01-01

    Many aspects of the widely used bacillus Calmette-Guérin (BCG) vaccine against tuberculosis are still the subject of controversy. There is a huge variation in efficacy from one clinical trial to another and no relationship between vaccine-induced skin test conversion and subsequent protection. We...

  3. Human T cell responses induced by vaccination with Mycobacterium bovis bacillus Calmette-Guérin

    DEFF Research Database (Denmark)

    Ravn, P; Boesen, H; Pedersen, B K

    1997-01-01

    depending on the prevaccination sensitivity to PPD. Previously sensitized donors mounted a potent and highly accelerated recall response within the first week of BCG vaccination. Nonsensitized donors, in contrast, exhibited a gradually increasing responsiveness to mycobacterial Ags, reaching maximal levels......Many aspects of the widely used bacillus Calmette-Guérin (BCG) vaccine against tuberculosis are still the subject of controversy. There is a huge variation in efficacy from one clinical trial to another and no relationship between vaccine-induced skin test conversion and subsequent protection. We...... have studied in vitro cell-mediated immune responses primed by BCG vaccination in 22 healthy Danish donors with different levels of in vitro purified protein derivative (PPD) reactivity before vaccination. The study demonstrated a markedly different development of reactivity to mycobacterial Ags...

  4. Nonintegrating Lentiviral Vector-Based Vaccine Efficiently Induces Functional and Persistent CD8+ T Cell Responses in Mice

    Directory of Open Access Journals (Sweden)

    Donatella R. M. Negri

    2010-01-01

    Full Text Available CD8+ T cells are an essential component of an effective host immune response to tumors and viral infections. Genetic immunization is particularly suitable for inducing CTL responses, because the encoded proteins enter the MHC class I processing pathway through either transgene expression or cross-presentation. In order to compare the efficiency and persistence of immune response induced by genetic vaccines, BALB/c mice were immunized either twice intramuscularly with DNA plasmid expressing a codon-optimized HIV-1 gp120 Envelope sequence together with murine GM-CSF sequence or with a single immunization using an integrase defective lentiviral vector (IDLV expressing the same proteins. Results strongly indicated that the schedule based on IDLV vaccine was more efficient in inducing specific immune response, as evaluated three months after the last immunization by IFN ELISPOT in both splenocytes and bone marrow- (BM- derived cells, chromium release assay in splenocytes, and antibody detection in sera. In addition, IDLV immunization induced high frequency of polyfunctional CD8+ T cells able to simultaneously produce IFN, TNF, and IL2.

  5. A vaccine encoding conserved promiscuous HIV CD4 epitopes induces broad T cell responses in mice transgenic to multiple common HLA class II molecules.

    Directory of Open Access Journals (Sweden)

    Susan Pereira Ribeiro

    Full Text Available Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, "promiscuous" (multiple HLA-DR-binding B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II- transgenic mice (-DR2, -DR4, -DQ6 and -DQ8. Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.

  6. Adenoviral vaccine induction of CD8+ T cell memory inflation: Impact of co-infection and infection order.

    Directory of Open Access Journals (Sweden)

    Lian N Lee

    2017-12-01

    Full Text Available The efficacies of many new T cell vaccines rely on generating large populations of long-lived pathogen-specific effector memory CD8 T cells. However, it is now increasingly recognized that prior infection history impacts on the host immune response. Additionally, the order in which these infections are acquired could have a major effect. Exploiting the ability to generate large sustained effector memory (i.e. inflationary T cell populations from murine cytomegalovirus (MCMV and human Adenovirus-subtype (AdHu5 5-beta-galactosidase (Ad-lacZ vector, the impact of new infections on pre-existing memory and the capacity of the host's memory compartment to accommodate multiple inflationary populations from unrelated pathogens was investigated in a murine model. Simultaneous and sequential infections, first with MCMV followed by Ad-lacZ, generated inflationary populations towards both viruses with similar kinetics and magnitude to mono-infected groups. However, in Ad-lacZ immune mice, subsequent acute MCMV infection led to a rapid decline of the pre-existing Ad-LacZ-specific inflating population, associated with bystander activation of Fas-dependent apoptotic pathways. However, responses were maintained long-term and boosting with Ad-lacZ led to rapid re-expansion of the inflating population. These data indicate firstly that multiple specificities of inflating memory cells can be acquired at different times and stably co-exist. Some acute infections may also deplete pre-existing memory populations, thus revealing the importance of the order of infection acquisition. Importantly, immunization with an AdHu5 vector did not alter the size of the pre-existing memory. These phenomena are relevant to the development of adenoviral vectors as novel vaccination strategies for diverse infections and cancers. (241 words.

  7. Adenovirus-based HIV-1 vaccine candidates tested in efficacy trials elicit CD8+ T cells with limited breadth of HIV-1 inhibition.

    Science.gov (United States)

    Hayes, Peter J; Cox, Josephine H; Coleman, Adam R; Fernandez, Natalia; Bergin, Philip J; Kopycinski, Jakub T; Nitayaphan, Sorachai; Pitisuttihum, Punnee; de Souza, Mark; Duerr, Ann; Morgan, Cecilia; Gilmour, Jill W

    2016-07-17

    The ability of HIV-1 vaccine candidates MRKAd5, VRC DNA/Ad5 and ALVAC/AIDSVAX to elicit CD8 T cells with direct antiviral function was assessed and compared with HIV-1-infected volunteers. Adenovirus serotype 5 (Ad5)-based regimens MRKAd5 and VRC DNA/Ad5, designed to elicit HIV-1-specific T cells, are immunogenic but failed to prevent infection or impact on viral loads in volunteers infected subsequently. Failure may be due in part to a lack of CD8 T cells with effective antiviral functions. An in-vitro viral inhibition assay tested the ability of bispecific antibody expanded CD8 T cells from peripheral blood mononuclear cells to inhibit replication of a multiclade panel of HIV-1 isolates in autologous CD4 T cells. HIV-1 proteins recognized by CD8 T cells were assessed by IFNγ enzyme-linked immunospot assay. Ad5-based regimens elicited CD8 T cells that inhibited replication of HIV-1 IIIB isolate with more limited inhibition of other isolates. IIIB isolate Gag and Pol genes have high sequence identities (>96%) to vector HIV-1 gene inserts, and these were the predominant HIV-1 proteins recognized by CD8 T cells. Virus inhibition breadth was greater in antiretroviral naïve HIV-1-infected volunteers naturally controlling viremia (plasma viral load elicited by the ALVAC/AIDSVAX regimen. The Ad5-based regimens, although immunogenic, elicited CD8 T cells with limited HIV-1-inhibition breadth. Effective T-cell-based vaccines should presumably elicit broader HIV-1-inhibition profiles. The viral inhibition assay can be used in vaccine design and to prioritize promising candidates with greater inhibition breadth for further clinical trials.

  8. Elimination of immunodominant epitopes from multispecific DNA-based vaccines allows induction of CD8 T cells that have a striking antiviral potential

    DEFF Research Database (Denmark)

    Riedl, Petra; Wieland, Andreas; Lamberth, Kasper

    2009-01-01

    Immunodominance limits the TCR diversity of specific antiviral CD8 T cell responses elicited by vaccination or infection. To prime multispecific T cell responses, we constructed DNA vaccines that coexpress chimeric, multidomain Ags (with CD8 T cell-defined epitopes of the hepatitis B virus (HBV......) surface (S), core (C), and polymerase (Pol) proteins and/or the OVA Ag as stress protein-capturing fusion proteins. Priming of mono- or multispecific, HLA-A*0201- or K(b)-restricted CD8 T cell responses by these DNA vaccines differed. K(b)/OVA(257-264)- and K(b)/S(190-197)-specific CD8 T cell responses...... did not allow priming of a K(b)/C(93-100)-specific CD8 T cell response in mice immunized with multidomain vaccines. Tolerance to the S- Ag in transgenic Alb/HBs mice (that express large amounts of transgene-encoded S- Ag in the liver) facilitated priming of subdominant, K(b)/C(93-100)-specific CD8 T...

  9. Tumor Antigen-Dependent and Tumor Antigen-Independent Activation of Antitumor Activity in T Cells by a Bispecific Antibody-Modified Tumor Vaccine

    Directory of Open Access Journals (Sweden)

    Philippe Fournier

    2010-01-01

    Full Text Available New approaches of therapeutic cancer vaccination are needed to improve the antitumor activity of T cells from cancer patients. We studied over the last years the activation of human T cells for tumor attack. To this end, we combined the personalized therapeutic tumor vaccine ATV-NDV—which is obtained by isolation, short in vitro culture, irradiation, and infection of patient's tumor cells by Newcastle Disease Virus (NDV—with bispecific antibodies (bsAbs binding to this vaccine and introducing anti-CD3 (signal 1 and anti-CD28 (signal 2 antibody activities. This vaccine called ATV-NDV/bsAb showed the unique ability to reactivate a preexisting potentially anergized antitumor memory T cell repertoire. But it also activated naive T cells to have antitumor properties in vitro and in vivo. This innovative concept of direct activation of cancer patients' T cells via cognate and noncognate interactions provides potential for inducing strong antitumor activities aiming at overriding T cell anergy and tumor immune escape mechanisms.

  10. Vaccinated C57BL/6 Mice Develop Protective and Memory T Cell Responses to Coccidioides posadasii Infection in the Absence of Interleukin-10

    Science.gov (United States)

    Castro-Lopez, Natalia; Cole, Garry T.

    2014-01-01

    High concentrations of lung tissue-associated interleukin-10 (IL-10), an anti-inflammatory and immunosuppressive cytokine, correlate with susceptibility of mice to Coccidioides spp. infection. In this study, we found that macrophages, dendritic cells, neutrophils, and both CD8+ and CD4+ T cells recruited to Coccidioides posadasii-infected lungs of nonvaccinated and vaccinated mice contributed to the production of IL-10. The major IL-10-producing leukocytes were CD8+ T cells, neutrophils, and macrophages in lungs of nonvaccinated mice, while both Foxp3+ and Foxp3− subsets of IL-10+ CD4+ T cells were significantly elevated in vaccinated mice. Profiles of the recruited leukocytes in lungs revealed that only CD4+ T cells were significantly increased in IL-10−/− knockout mice compared to their wild-type counterparts. Furthermore, ex vivo recall assays showed that CD4+ T cells isolated from vaccinated IL-10−/− mice compared to vaccinated wild-type mice produced significantly higher amounts of IL-2, gamma interferon (IFN-γ), IL-4, IL-6, and IL-17A in the presence of a coccidioidal antigen, indicating that IL-10 suppresses Th1, Th2, and Th17 immunity to Coccidioides infection. Analysis of absolute numbers of CD44+ CD62L− CD4+ T effector memory T cells (TEM) and IFN-γ- and IL-17A-producing CD4+ T cells in the lungs of Coccidioides-infected mice correlated with better fungal clearance in nonvaccinated IL-10−/− mice than in nonvaccinated wild-type mice. Our results suggest that IL-10 suppresses CD4+ T-cell immunity in nonvaccinated mice during Coccidioides infection but does not impede the development of a memory response nor exacerbate immunopathology of vaccinated mice over at least a 4-month period after the last immunization. PMID:24478103

  11. Identification of cytotoxic T lymphocyte epitopes on swine viruses: multi-epitope design for universal T cell vaccine.

    Science.gov (United States)

    Liao, Yu-Chieh; Lin, Hsin-Hung; Lin, Chieh-Hua; Chung, Wen-Bin

    2013-01-01

    Classical swine fever (CSF), foot-and-mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are the primary diseases affecting the pig industry globally. Vaccine induced CD8(+) T cell-mediated immune response might be long-lived and cross-serotype and thus deserve further attention. Although large panels of synthetic overlapping peptides spanning the entire length of the polyproteins of a virus facilitate the detection of cytotoxic T lymphocyte (CTL) epitopes, it is an exceedingly costly and cumbersome approach. Alternatively, computational predictions have been proven to be of satisfactory accuracy and are easily performed. Such a method enables the systematic identification of genome-wide CTL epitopes by incorporating epitope prediction tools in analyzing large numbers of viral sequences. In this study, we have implemented an integrated bioinformatics pipeline for the identification of CTL epitopes of swine viruses including the CSF virus (CSFV), FMD virus (FMDV) and PRRS virus (PRRSV) and assembled these epitopes on a web resource to facilitate vaccine design. Identification of epitopes for cross protections to different subtypes of virus are also reported in this study and may be useful for the development of a universal vaccine against such viral infections among the swine population. The CTL epitopes identified in this study have been evaluated in silico and possibly provide more and wider protection in compared to traditional single-reference vaccine design. The web resource is free and open to all users through http://sb.nhri.org.tw/ICES.

  12. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes.

    Science.gov (United States)

    Weiskopf, Daniela; Angelo, Michael A; Bangs, Derek J; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Lindow, Janet C; Diehl, Sean A; Whitehead, Stephen; Durbin, Anna; Kirkpatrick, Beth; Sette, Alessandro

    2015-01-01

    The incidence of infection with any of the four dengue virus serotypes (DENV1 to -4) has increased dramatically in the last few decades, and the lack of a treatment or vaccine has contributed to significant morbidity and mortality worldwide. A recent comprehensive analysis of the human T cell response against wild-type DENV suggested an human lymphocyte antigen (HLA)-linked protective role for CD8(+) T cells. We have collected one-unit blood donations from study participants receiving the monovalent or tetravalent live attenuated DENV vaccine (DLAV), developed by the U.S. National Institutes of Health. Peripheral blood mononuclear cells from these donors were screened in gamma interferon enzyme-linked immunosorbent spot assays with pools of predicted, HLA-matched, class I binding peptides covering the entire DENV proteome. Here, we characterize for the first time CD8(+) T cell responses after live attenuated dengue vaccination and show that CD8(+) T cell responses in vaccinees were readily detectable and comparable to natural dengue infection. Interestingly, whereas broad responses to structural and nonstructural (NS) proteins were observed after monovalent vaccination, T cell responses following tetravalent vaccination were, dramatically, focused toward the highly conserved NS proteins. Epitopes were highly conserved in a vast variety of field isolates and able to elicit multifunctional T cell responses. Detailed knowledge of the T cell response will contribute to the identification of robust correlates of protection in natural immunity and following vaccination against DENV. The development of effective vaccination strategies against dengue virus (DENV) infection and clinically significant disease is a task of high global public health value and significance, while also being a challenge of significant complexity. A recent efficacy trial of the most advanced dengue vaccine candidate, demonstrated only partial protection against all four DENV serotypes, despite

  13. The Human CD8+ T Cell Responses Induced by a Live Attenuated Tetravalent Dengue Vaccine Are Directed against Highly Conserved Epitopes

    Science.gov (United States)

    Angelo, Michael A.; Bangs, Derek J.; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D.; Lindow, Janet C.; Diehl, Sean A.; Whitehead, Stephen; Durbin, Anna; Kirkpatrick, Beth; Sette, Alessandro

    2014-01-01

    ABSTRACT The incidence of infection with any of the four dengue virus serotypes (DENV1 to -4) has increased dramatically in the last few decades, and the lack of a treatment or vaccine has contributed to significant morbidity and mortality worldwide. A recent comprehensive analysis of the human T cell response against wild-type DENV suggested an human lymphocyte antigen (HLA)-linked protective role for CD8+ T cells. We have collected one-unit blood donations from study participants receiving the monovalent or tetravalent live attenuated DENV vaccine (DLAV), developed by the U.S. National Institutes of Health. Peripheral blood mononuclear cells from these donors were screened in gamma interferon enzyme-linked immunosorbent spot assays with pools of predicted, HLA-matched, class I binding peptides covering the entire DENV proteome. Here, we characterize for the first time CD8+ T cell responses after live attenuated dengue vaccination and show that CD8+ T cell responses in vaccinees were readily detectable and comparable to natural dengue infection. Interestingly, whereas broad responses to structural and nonstructural (NS) proteins were observed after monovalent vaccination, T cell responses following tetravalent vaccination were, dramatically, focused toward the highly conserved NS proteins. Epitopes were highly conserved in a vast variety of field isolates and able to elicit multifunctional T cell responses. Detailed knowledge of the T cell response will contribute to the identification of robust correlates of protection in natural immunity and following vaccination against DENV. IMPORTANCE The development of effective vaccination strategies against dengue virus (DENV) infection and clinically significant disease is a task of high global public health value and significance, while also being a challenge of significant complexity. A recent efficacy trial of the most advanced dengue vaccine candidate, demonstrated only partial protection against all four DENV

  14. Polytopic vaccination with a live-attenuated dengue vaccine enhances B-cell and T-cell activation, but not neutralizing antibodies

    Directory of Open Access Journals (Sweden)

    Taweewun Hunsawong

    2017-03-01

    Full Text Available Dengue, caused by dengue viruses (DENVs, is the most common arboviral disease of humans. Several dengue vaccine candidates are at different stages of clinical development and one has been licensed. Inoculation with live-attenuated DENV constructs is an approach that has been used by vaccine developers. Unfortunately, the simultaneous injection of all four attenuated DENV serotypes (DENV1-4 into a single injection site (monotopic vaccination has been postulated to result in interference in the replication of some serotypes in favor of others, an important obstacle in obtaining a balanced immune response against all serotypes. Here, we demonstrate the virus replicative and immunostimulatory effects of polytopic monovalent dengue vaccination (PV in which, each of the four components of the tetravalent vaccine is simultaneously delivered to four different sites versus the more traditional monotopic tetravalent vaccination (MV in a non-human primate (NHP model. With the exception of DENV-2, there was no significant difference in detectable viral RNA levels between PV and MV inoculation. Interestingly, longer periods of detection and higher viral RNA levels were seen in the lymph nodes of NHPs inoculated PV compared to MV. Induction of lymph node dendritic cell maturation and of blood T- and B-cell activation showed different kinetics in PV inoculated NHPs compared to MV. The MV inoculated group showed earlier maturation of dendritic cells and activation of B and T cells compared to PV inoculated NHPs. A similar kinetic difference was also observed in the cytokine response: MV induced earlier cytokine responses compared to PV. However, similar levels of DENV neutralizing antibodies were observed in PV and MV NHPs. These findings indicate that cellular immune response after vaccination may be affected by the location of inoculation. Design of vaccine delivery may need to take into account the effects of locations of vaccine delivery of multiples

  15. Th1 versus Th2 T cell polarization by whole-cell and acellular childhood pertussis vaccines persists upon re-immunization in adolescence and adulthood.

    Science.gov (United States)

    Bancroft, Tara; Dillon, Myles B C; da Silva Antunes, Ricardo; Paul, Sinu; Peters, Bjoern; Crotty, Shane; Lindestam Arlehamn, Cecilia S; Sette, Alessandro

    2016-01-01

    The recent increase in cases of whooping cough among teenagers in the US suggests that the acellular Bordetella pertussis vaccine (aP) that became standard in the mid 1990s might be relatively less effective than the whole-bacteria formulation (wP) previously used since the 1950s. To understand this effect, we compared antibody and T cell responses to a booster immunization in subjects who received either the wP or aP vaccine as their initial priming dose in childhood. Antibody responses in wP- and aP-primed donors were similar. Magnitude of T cell responses was higher in aP-primed individuals. Epitope mapping revealed the T cell immunodominance patterns were similar for both vaccines. Further comparison of the ratios of IFNγ and IL-5 revealed that IFNγ strongly dominates the T cell response in wP-primed donors, while IL-5 is dominant in aP primed individuals. Surprisingly, this differential pattern is maintained after booster vaccination, at times from eighteen years to several decades after the original aP/wP priming. These findings suggest that childhood aP versus wP vaccination induces functionally different T cell responses to pertussis that become fixed and are unchanged even upon boosting. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Identification of Coxiella burnetii CD8+ T-Cell Epitopes and Delivery by Attenuated Listeria monocytogenes as a Vaccine Vector in a C57BL/6 Mouse Model.

    Science.gov (United States)

    Xiong, Xiaolu; Jiao, Jun; Gregory, Anthony E; Wang, Pengcheng; Bi, Yujing; Wang, Xiaoyi; Jiang, Yongqiang; Wen, Bohai; Portnoy, Daniel A; Samuel, James E; Chen, Chen

    2017-05-15

    Coxiella burnetii is a gram-negative bacterium that causes acute and chronic Q fever. Because of the severe adverse effect of whole-cell vaccination, identification of immunodominant antigens of C. burnetii has become a major focus of Q fever vaccine development. We hypothesized that secreted C. burnetii type IV secretion system (T4SS) effectors may represent a major class of CD8+ T-cell antigens, owing to their cytosolic localization. Twenty-nine peptides were identified that elicited robust CD8+ T-cell interferon γ (IFN-γ) recall responses from mice infected with C. burnetii. Interestingly, 22 of 29 epitopes were derived from 17 T4SS-related proteins, none of which were identified as immunodominant antigens by using previous antibody-guided approaches. These epitopes were expressed in an attenuated Listeria monocytogenes vaccine strain. Immunization with recombinant L. monocytogenes vaccines induced a robust CD8+ T-cell response and conferred measurable protection against C. burnetii infection in mice. These data suggested that T4SS effectors represent an important class of C. burnetii antigens that can induce CD8+ T-cell responses. We also showed that attenuated L. monocytogenes vaccine vectors are an efficient antigen-delivery platform that can be used to induce robust protective CD8+ T-cell immune responses against C. burnetii infection. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Vaccination with recombinant adenovirus expressing peste des petits ruminants virus-F or -H proteins elicits T cell responses to epitopes that arises during PPRV infection.

    Science.gov (United States)

    Rojas, José Manuel; Avia, Miguel; Pascual, Elena; Sevilla, Noemí; Martín, Verónica

    2017-11-21

    Peste des petits ruminants virus (PPRV) causes an economically important disease that limits productivity in small domestic ruminants and often affects the livestock of the poorest populations in developing countries. Animals that survive PPRV develop strong cellular and humoral responses, which are probably necessary for protection. Vaccination should thus aim at mimicking these natural responses. Immunization strategies against this morbillivirus using recombinant adenoviruses expressing PPRV-F or -H proteins can protect PPRV-challenged animals and permit differentiation of infected from vaccinated animals. Little is known of the T cell repertoire these recombinant vaccines induce. In the present work, we identified several CD4+ and CD8+ T cell epitopes in sheep infected with PPRV. We also show that recombinant adenovirus vaccination induced T cell responses to the same epitopes, and led to memory T cell differentiation. T cells primed by these recombinant adenovirus vaccines expanded after PPRV challenge and probably contributed to protection. These data validate the use of recombinant adenovirus expressing PPRV genes as DIVA strategies to control this highly contagious disease.

  18. Formulation of influenza T cell peptides : in search of a universal influenza vaccine

    NARCIS (Netherlands)

    Soema, Peter Christiaan

    2015-01-01

    Current seasonal influenza vaccines rely on the induction of antibodies to neutralize the virus. However, influenza viruses frequently undergo genetic mutations due to antigenic drift and shift, altering the surface proteins hemagglutinin and neuraminidase to which antibodies usually bind. This

  19. Influence of host genetic variation on rubella-specific T cell cytokine responses following rubella vaccination

    OpenAIRE

    Ovsyannikova, Inna G.; Ryan, Jenna E.; Robert A Vierkant; O’Byrne, Megan M.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2009-01-01

    The variability of immune response modulated by immune response gene polymorphisms is a significant factor in the protective effect of vaccines. We studied the association between cellular (cytokine) immunity and HLA genes among 738 schoolchildren (396 males and 342 females) between the ages of 11 and 19 years, who received two doses of rubella vaccine (Merck). Cytokine secretion levels in response to rubella virus stimulation were determined in PBMC cultures by ELISA. Cell supernatants were ...

  20. Regulatory, pro-inflammatory and inhibitory human T-cell responses to M. bovis BCG : opposing T-cell forces in TB-vaccination

    NARCIS (Netherlands)

    Boer, Marianne Christine

    2015-01-01

    There is no effective vaccine against tuberculosis (TB). The only available TB-vaccine, M. bovis BCG, induces only limited, and highly variable protection. TB-vaccine efficacy would have to include protection against active pulmonary TB, since this is the transmissible form of the disease, in the

  1. The administration route is decisive for the ability of the vaccine adjuvant CAF09 to induce antigen-specific CD8(+) T-cell responses

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Khadke, Swapnil; Korsholm, Karen Smith

    2016-01-01

    A prerequisite for vaccine-mediated induction of CD8(+) T-cell responses is the targeting of dendritic cell (DC) subsets specifically capable of cross-presenting antigen epitopes to CD8(+) T cells. Administration of a number of cationic adjuvants via the intraperitoneal (i.p.) route has been shown...... to result in strong CD8(+) T-cell responses, whereas immunization via e.g. the intramuscular (i.m.) or subcutaneous (s.c.) routes often stimulate weak CD8(+) T-cell responses. The hypothesis for this is that self-drainage of the adjuvant/antigen to the lymphoid organs, which takes place upon i.p...... with polyinosinic:polycytidylic acid electrostatically adsorbed to the surface. Biodistribution studies with radiolabeled CAF09 and a surface-adsorbed model antigen [ovalbumin (OVA)] showed that a significantly larger fraction of the vaccine dose localized in the draining lymph nodes (dLNs) and the spleen 6h after...

  2. Structural Simulation of MHC-peptide Interactions using T-cell Epitope in Iron-acquisition Protein of N. meningitides for Vaccine Design

    OpenAIRE

    Namrata Mishra; Priyanka Chaubey; Ankita Mishra; Kavita Shah

    2010-01-01

    The present work uses a structural simulation approach to identify the potential target vaccine candidates or T cell epitopes (antigenic region that can activate T cell response) in two iron acquisition proteins from Neisseria. An iron regulated outer membrane protein frpB: extracellular, [NMB1988], and a Major ferric Iron-binding protein fbpA: periplasmic, [NMB0634] critical for the survival of the pathogen in the host were used. Ten novel promiscuous epitopes from the two iron acqu...

  3. MHC-I-restricted epitopes conserved among variola and other related orthopoxviruses are recognized by T cells 30 years after vaccination

    DEFF Research Database (Denmark)

    Tang, Sheila Tuyet; Wang, M.; Lamberth, K.

    2008-01-01

    It is many years since the general population has been vaccinated against smallpox virus. Here, we report that human leukocyte antigen (HLA) class I restricted T cell epitopes can be recognized more than 30 years after vaccination. Using bioinformatic methods, we predicted 177 potential cytotoxic...... to a better understanding of poxvirus immunity and may aid in the development of new improved vaccines and diagnostic tools.......It is many years since the general population has been vaccinated against smallpox virus. Here, we report that human leukocyte antigen (HLA) class I restricted T cell epitopes can be recognized more than 30 years after vaccination. Using bioinformatic methods, we predicted 177 potential cytotoxic T...... lymphocyte epitopes. Eight epitopes were confirmed to stimulate IFN-gamma release by T cells in smallpox-vaccinated subjects. The epitopes were restricted by five supertypes (HLA-A1, -A2, -A24 -A26 and -B44). Significant T cell responses were detected against 8 of 45 peptides with an HLA class I affinity...

  4. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs.

    Science.gov (United States)

    de Melo, Andréa Barbosa; Nascimento, Eduardo J M; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P; Sidney, John; Sette, Alessandro; Montenegro, Silvia M L; Marques, Ernesto T A

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4(+) and CD8(+) T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines.

  5. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs.

    Directory of Open Access Journals (Sweden)

    Andréa Barbosa de Melo

    Full Text Available The yellow fever vaccines (YF-17D-204 and 17DD are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env and nonstructural (NS proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4(+ and CD8(+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines.

  6. DNA fusion vaccine designs to induce tumor-lytic CD8+ T-cell attack via the immunodominant cysteine-containing epitope of NY-ESO 1.

    Science.gov (United States)

    Campos-Perez, Juan; Rice, Jason; Escors, David; Collins, Mary; Paterson, Alex; Savelyeva, Natalia; Stevenson, Freda K

    2013-09-15

    The cancer/testis antigen NY-ESO-1 contains an immunodominant HLA-A2-binding peptide (SLLMWITQC), designated S9C, an attractive target for vaccination against several human cancers. As cysteine contains a reactive -SH, the oxidation status of exogenous synthetic peptide is uncertain. We have designed tolerance-breaking DNA fusion vaccines incorporating a domain of tetanus toxin fused to tumor-derived peptide sequences (p.DOM-peptide), placed at the C-terminus for optimal immunogenicity. In a "humanized" HLA-A2 preclinical model, p.DOM-S9C primed S9C-specific CD8+ T cells more effectively than adjuvanted synthetic peptide. A DNA vaccine encoding the full NY-ESO-1 sequence alone induced only weak S9C-specific responses, amplified by addition of DOM sequence. The analog peptide (SLLMWITQL) also primed peptide-specific CD8+ T cells, again increased by DNA delivery. Importantly, T cells induced by S9C-encoding DNA vaccines killed tumor cells expressing endogenous NY-ESO-1. Only a fraction of T cells induced by the S9L-encoding DNA vaccines was able to recognize S9C and kill tumor cells. These data indicate that DNA vaccines mimic posttranslational modifications of -SH-containing peptides expressed by tumor cells. Instability of synthetic peptides and the potential dangers of analog peptides contrast with the ability of DNA vaccines to induce high levels of tumor-lytic peptide-specific CD8+ T cells. These findings encourage clinical exploration of this vaccine strategy to target NY-ESO-1. Copyright © 2013 UICC.

  7. Influence of host genetic variation on rubella-specific T cell cytokine responses following rubella vaccination.

    Science.gov (United States)

    Ovsyannikova, Inna G; Ryan, Jenna E; Vierkant, Robert A; O'Byrne, Megan M; Pankratz, V Shane; Jacobson, Robert M; Poland, Gregory A

    2009-05-26

    The variability of immune response modulated by immune response gene polymorphisms is a significant factor in the protective effect of vaccines. We studied the association between cellular (cytokine) immunity and HLA genes among 738 schoolchildren (396 males and 342 females) between the ages of 11 and 19 years, who received two doses of rubella vaccine (Merck). Cytokine secretion levels in response to rubella virus stimulation were determined in PBMC cultures by ELISA. Cell supernatants were assayed for Th1 (IFN-gamma, IL-2, and IL-12p40), Th2 (IL-4, IL-5, and IL-10), and innate/proinflammatory (TNF-alpha, GM-CSF, and IL-6) cytokines. We found a strong association between multiple alleles of the HLA-DQA1 (global p-value 0.022) and HLA-DQB1 (global p-value 0.007) loci and variations in rubella-specific IL-2 cytokine secretion. Additionally, the relationships between alleles of the HLA-A (global p-value 0.058), HLA-B (global p-value 0.035), and HLA-C (global p-value 0.023) loci and TNF-alpha secretion suggest the importance of HLA class I molecules in innate/inflammatory immune response. Better characterization of these genetic profiles could help to predict immune responses at the individual and population level, provide data on mechanisms of immune response development, and further inform vaccine development and vaccination policies.

  8. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys

    NARCIS (Netherlands)

    Liu, J.; O'Brien, K.L.; Lynch, D.M.; Simmons, N.L.; Porte, A. La; Riggs, A.M.; Abbink, P.; Coffey, R.T.; Grandpre, L.E.; Seaman, M.S.; Landucci, G.; Forthal, D.N.; Montefiori, D.C.; Carville, A.; Mansfield, K.G.; Havenga, M.J.; Pau, M.G.; Goudsmit, J.; Barouch, D.H.

    2009-01-01

    A recombinant adenovirus serotype 5 (rAd5) vector-based vaccine for HIV-1 has recently failed in a phase 2b efficacy study in humans. Consistent with these results, preclinical studies have demonstrated that rAd5 vectors expressing simian immunodeficiency virus (SIV) Gag failed to reduce peak or

  9. Broadening CD4(+) and CD8(+) T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes

    DEFF Research Database (Denmark)

    Filskov, Jonathan; Mikkelsen, Marianne; Hansen, Paul R.

    2017-01-01

    Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance...... and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice...

  10. Placental malaria is associated with attenuated CD4 T-cell responses to tuberculin PPD 12 months after BCG vaccination

    Directory of Open Access Journals (Sweden)

    Walther Brigitte

    2012-01-01

    Full Text Available Abstract Background Placental malaria (PM is associated with prenatal malaise, but many PM+ infants are born without symptoms. As malaria has powerful immunomodulatory effects, we tested the hypothesis that PM predicts reduced T-cell responses to vaccine challenge. Methods We recruited healthy PM+ and PM- infants at birth. At six and 12 months, we stimulated PBMCs with tuberculin purified protein derivative (PPD and compared expression of CD154, IL-2 and IFNγ by CD4 T-cells to a negative control using flow cytometry. We measured the length, weight and head circumference at birth and 12 months. Results IL-2 and CD154 expression were low in both groups at both timepoints, without discernable differences. Expression of IFNγ was similarly low at 6 months but by 12 months, the median response was higher in PM- than PM + infants (p = 0.026. The PM+ infants also had a lower weight (p = 0.032 and head circumference (p = 0.041 at 12 months, indicating lower growth rates. At birth, the size and weight of the PM+ and PM- infants were equivalent. By 12 months, the PM+ infants had a lower weight and head circumference than the PM- infants. Conclusions Placental malaria was associated with reduced immune responses 12 months after immune challenge in infants apparently healthy at birth.

  11. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour.

    Science.gov (United States)

    Herd, Karen A; Harvey, Tracey; Khromykh, Alexander A; Tindle, Robert W

    2004-02-20

    The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses.

  12. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV.

    Science.gov (United States)

    Liu, William J; Zhao, Min; Liu, Kefang; Xu, Kun; Wong, Gary; Tan, Wenjie; Gao, George F

    2017-01-01

    Over 12 years have elapsed since severe acute respiratory syndrome (SARS) triggered the first global alert for coronavirus infections. Virus transmission in humans was quickly halted by public health measures and human infections of SARS coronavirus (SARS-CoV) have not been observed since. However, other coronaviruses still pose a continuous threat to human health, as exemplified by the recent emergence of Middle East respiratory syndrome (MERS) in humans. The work on SARS-CoV widens our knowledge on the epidemiology, pathophysiology and immunology of coronaviruses and may shed light on MERS coronavirus (MERS-CoV). It has been confirmed that T-cell immunity plays an important role in recovery from SARS-CoV infection. Herein, we summarize T-cell immunological studies of SARS-CoV and discuss the potential cross-reactivity of the SARS-CoV-specific immunity against MERS-CoV, which may provide useful recommendations for the development of broad-spectrum vaccines against coronavirus infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Adenoviral Vector Vaccination Induces a Conserved Program of CD8+ T Cell Memory Differentiation in Mouse and Man

    Directory of Open Access Journals (Sweden)

    Beatrice Bolinger

    2015-11-01

    Full Text Available Following exposure to vaccines, antigen-specific CD8+ T cell responses develop as long-term memory pools. Vaccine strategies based on adenoviral vectors, e.g., those developed for HCV, are able to induce and sustain substantial CD8+ T cell populations. How such populations evolve following vaccination remains to be defined at a transcriptional level. We addressed the transcriptional regulation of divergent CD8+ T cell memory pools induced by an adenovector encoding a model antigen (beta-galactosidase. We observe transcriptional profiles that mimic those following infection with persistent pathogens, murine and human cytomegalovirus (CMV. Key transcriptional hallmarks include upregulation of homing receptors and anti-apoptotic pathways, driven by conserved networks of transcription factors, including T-bet. In humans, an adenovirus vaccine induced similar CMV-like phenotypes and transcription factor regulation. These data clarify the core features of CD8+ T cell memory following vaccination with adenovectors and indicate a conserved pathway for memory development shared with persistent herpesviruses.

  14. Delayed BCG vaccination results in minimal alterations in T cell immunogenicity of acellular pertussis and tetanus immunizations in HIV-exposed infants.

    Science.gov (United States)

    Blakney, Anna K; Tchakoute, Christophe Toukam; Hesseling, Anneke C; Kidzeru, Elvis B; Jones, Christine E; Passmore, Jo-Ann S; Sodora, Donald L; Gray, Clive M; Jaspan, Heather B

    2015-09-11

    Bacille Calmette-Guerin (BCG) is effective in preventing disseminated tuberculosis (TB) in children but may also have non-specific benefits, and is thought to improve immunity to unrelated antigens through trained innate immunity. In HIV-infected infants, there is a risk of BCG-associated adverse events. We aimed to explore whether delaying BCG vaccination by 8 weeks, in utero or perinatal HIV infection is excluded, affected T-cell responses to B. pertussis (BP) and tetanus toxoid (TT), in HIV-exposed, uninfected infants. Infants were randomized to receive BCG vaccination at birth or 8 weeks of age. At 8 and 14 weeks, T cell proliferation and intracellular cytokine (IL-2, IL-13, IL-17, and IFN-γ) expression was analyzed in response to BP, TT and Staphylococcal enterotoxin B (SEB) antigens. Delaying BCG vaccination did not alter T-cell proliferation to BP or TT antigens. Infants immunized with BCG at birth had higher CD4+ T cell proliferation to SEB at 14 weeks of age (p=0.018). Birth-vaccinated infants had increased CD8+ IL-2 expression in response to BP, but not TT or SEB, at 8 weeks. Infants vaccinated with BCG at 8 weeks had significantly lower IL-13 expression by BP-specific CD4+ and CD8+ T cells at 14 weeks (p=0.032 and p=0.0035, respectively). There were no observed differences in multifunctional cytokine response to TT, BP or SEB between infants vaccinated with BCG at birth versus 8 weeks of age. Delaying BCG vaccination until 8 weeks of age results in robust T-cellular responses to BP and TT in HIV-exposed infants. NCT02062580. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Shivali Gupta

    2015-05-01

    Full Text Available In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv. We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38% and CD8+ (22-42% T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4 with type 1 cytokine (IFNγ+ and TFNα+ production and cytolytic T lymphocyte (CTL activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease.

  16. Vaccines Targeting the Cancer Testis Antigen SSX-2 Elicit HLA-A2 Epitope-Specific Cytolytic T Cells

    Science.gov (United States)

    Smith, Heath A.; McNeel, Douglas G.

    2011-01-01

    The cancer-testis antigen SSX-2 is a potentially attractive target for tumor immunotherapy based upon its tissue-restricted expression to germline cells and its frequent expression in malignancies. The goal of the current study was to evaluate a genetic vaccine encoding SSX-2 to prioritize HLA-A2-specific epitopes and determine if a DNA vaccine can elicit SSX-2-specific cytolytic T lymphocytes (CTL) capable of lysing prostate cancer cells. HLA-A2-restricted epitopes were identified based on their in vitro binding affinity for HLA-A2 and by the ability of a genetic vaccine to elicit peptide-specific CTL in A2/DR1 (HLA-A2.1+/HLA-DR1+/H-2 class I-/class II-knockout) transgenic mice. We found that SSX-2 peptides p41-49 (KASEKIFYV) and p103-111 (RLQGISPKI) had high affinity for HLA-A2 and were immunogenic in vivo, however peptide p103-111 was immunodominant with robust peptide-specific immune responses elicited in mice vaccinated with a plasmid DNA vaccine encoding SSX-2. Furthermore, p103-111-specific CTL were able to lyse an HLA-A2+ prostate cancer cell line. The immunodominance of this epitope was found not to be due to a putative HLA-DR1 epitope (p98-112) flanking p103-111. Finally, we demonstrated that SSX-2 epitope-specific CTL could be detected and cultured from the peripheral blood of HLA-A2+ prostate cancer patients, notably patients with advanced prostate cancer. Overall, we conclude that SSX-2 peptide p103-111 is an immunodominant HLA-A2-restricted epitope, and epitope-specific CD8+ T cells can be detected in patients with prostate cancer, suggesting that tolerance to SSX-2 can be circumvented in vivo. Together, these findings suggest that SSX-2 may be a relevant target antigen for prostate cancer vaccine approaches. PMID:21904219

  17. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Ørskov, Cathrine; Thomsen, Allan Randrup

    2010-01-01

    Adenoviral vectors have been widely used for experimental gene therapy and vaccination, yet there is a surprising lack of knowledge connecting the route and dose of adenovirus administration to the induced transgene-specific immune response. We have recently demonstrated polyfunctional CD8(+) T...... effector functions, accumulated in the spleen. These findings indicate that the localization of the adenoviral inoculum and not the total Ag load determines the quality of the CD8(+) T cell response induced with adenoviral vaccines....

  18. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours

    Science.gov (United States)

    Bialkowski, Lukasz; van Weijnen, Alexia; Van der Jeught, Kevin; Renmans, Dries; Daszkiewicz, Lidia; Heirman, Carlo; Stangé, Geert; Breckpot, Karine; Aerts, Joeri L.; Thielemans, Kris

    2016-01-01

    The lack of appropriate mouse models is likely one of the reasons of a limited translational success rate of therapeutic vaccines against cervical cancer, as rapidly growing ectopic tumours are commonly used for preclinical studies. In this work, we demonstrate that the tumour microenvironment of TC-1 tumours differs significantly depending on the anatomical location of tumour lesions (i.e. subcutaneously, in the lungs and in the genital tract). Our data demonstrate that E7-TriMix mRNA vaccine-induced CD8+ T lymphocytes migrate into the tumour nest and control tumour growth, although they do not express mucosa-associated markers such as CD103 or CD49a. We additionally show that despite the presence of the antigen-specific T cells in the tumour lesions, the therapeutic outcomes in the genital tract model remain limited. Here, we report that such a hostile tumour microenvironment can be reversed by cisplatin treatment, leading to a complete regression of clinically relevant tumours when combined with mRNA immunization. We thereby demonstrate the necessity of utilizing clinically relevant models for preclinical evaluation of anticancer therapies and the importance of a simultaneous combination of anticancer immune response induction with targeting of tumour environment. PMID:26931556

  19. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours.

    Science.gov (United States)

    Bialkowski, Lukasz; van Weijnen, Alexia; Van der Jeught, Kevin; Renmans, Dries; Daszkiewicz, Lidia; Heirman, Carlo; Stangé, Geert; Breckpot, Karine; Aerts, Joeri L; Thielemans, Kris

    2016-03-02

    The lack of appropriate mouse models is likely one of the reasons of a limited translational success rate of therapeutic vaccines against cervical cancer, as rapidly growing ectopic tumours are commonly used for preclinical studies. In this work, we demonstrate that the tumour microenvironment of TC-1 tumours differs significantly depending on the anatomical location of tumour lesions (i.e. subcutaneously, in the lungs and in the genital tract). Our data demonstrate that E7-TriMix mRNA vaccine-induced CD8(+) T lymphocytes migrate into the tumour nest and control tumour growth, although they do not express mucosa-associated markers such as CD103 or CD49a. We additionally show that despite the presence of the antigen-specific T cells in the tumour lesions, the therapeutic outcomes in the genital tract model remain limited. Here, we report that such a hostile tumour microenvironment can be reversed by cisplatin treatment, leading to a complete regression of clinically relevant tumours when combined with mRNA immunization. We thereby demonstrate the necessity of utilizing clinically relevant models for preclinical evaluation of anticancer therapies and the importance of a simultaneous combination of anticancer immune response induction with targeting of tumour environment.

  20. Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II peptide-pulsed DCs

    Directory of Open Access Journals (Sweden)

    Satthaporn Sukchai

    2009-03-01

    Full Text Available Abstract Background Optimal techniques for DC generation for immunotherapy in cancer are yet to be established. Study aims were to evaluate: (i DC activation/maturation milieu (TNF-α +/- IFN-α and its effects on CD8+ hTERT-specific T cell responses to class I epitopes (p540 or p865, (ii CD8+ hTERT-specific T cell responses elicited by vaccination with class I alone or both class I and II epitope (p766 and p672-pulsed DCs, prepared without IFN-α, (iii association between circulating T regulatory cells (Tregs and clinical responses. Methods Autologous DCs were generated from 10 patients (HLA-0201 with advanced cancer by culturing CD14+ blood monocytes in the presence of GM-CSF and IL-4 supplemented with TNF-α [DCT] or TNF-α and IFN-α [DCTI]. The capacity of the DCs to induce functional CD8+ T cell responses to hTERT HLA-0201 restricted nonapeptides was assessed by MHC tetramer binding and peptide-specific cytotoxicity. Each DC preparation (DCT or DCTI was pulsed with only one type of hTERT peptide (p540 or p865 and both preparations were injected into separate lymph node draining regions every 2–3 weeks. This vaccination design enabled comparison of efficacy between DCT and DCTI in generating hTERT peptide specific CD8+ T cells and comparison of class I hTERT peptide (p540 or p865-loaded DCT with or without class II cognate help (p766 and p672 in 6 patients. T regulatory cells were evaluated in 8 patients. Results (i DCTIs and DCTs, pulsed with hTERT peptides, were comparable (p = 0.45, t-test in inducing peptide-specific CD8+ T cell responses. (ii Class II cognate help, significantly enhanced (p (iii Clinical responders had significantly lower (p Conclusion Addition of IFN-α to ex vivo monocyte-derived DCs, did not significantly enhance peptide-specific T cell responses in vivo, compared with TNF-α alone. Class II cognate help significantly augments peptide-specific T cell responses. Clinically favourable responses were seen in patients

  1. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA enhances CD8+ T Cell responses providing protection against Leishmania (Viannia.

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2011-06-01

    Full Text Available Leishmania (Viannia parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.Using a newly developed mouse model of chronic L. (Viannia panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP could provide protection against infection/disease.Heterologous prime - boost (DNA/MVA vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V. panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that

  2. Epitope-Specific Vaccination Limits Clonal Expansion of Heterologous Naive T Cells during Viral Challenge

    Directory of Open Access Journals (Sweden)

    Lexus R. Johnson

    2016-10-01

    Full Text Available Despite robust secondary T cell expansion primed by vaccination, the impact on primary immune responses to heterotypic antigens remains undefined. Here we show that secondary expansion of epitope-specific memory CD8+ T cells primed by prior infection with recombinant pathogens limits the primary expansion of naive CD8+ T cells with specificity to new heterologous antigens, dampening protective immunity against subsequent pathogen challenge. The degree of naive T cell repression directly paralleled the magnitude of the recall response. Suppressed primary T cell priming reflects competition for antigen accessibility, since clonal expansion was not inhibited if the primary and secondary epitopes were expressed on different dendritic cells. Interestingly, robust recall responses did not impact antigen-specific NK cells, suggesting that adaptive and innate lymphocyte responses possess different activation requirements or occur in distinct anatomical locations. These findings have important implications in pathogen vaccination strategies that depend on the targeting of multiple T cell epitopes.

  3. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    Directory of Open Access Journals (Sweden)

    Vinicius Canato Santana

    2015-01-01

    Full Text Available T-cell based vaccines against human immunodeficiency virus (HIV generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+ T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

  4. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses.

    Science.gov (United States)

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-12-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

  5. Live Attenuated Influenza Vaccines engineered to express the nucleoprotein of a recent isolate stimulate human influenza CD8+T cells more relevant to current infections.

    Science.gov (United States)

    Korenkov, D; Nguyen, T H O; Isakova-Sivak, I; Smolonogina, T; Brown, L E; Kedzierska, K; Rudenko, L

    2017-12-18

    Live attenuated influenza vaccines (LAIV) induce CD8 + T lymphocyte responses that play an important role in killing virus-infected cells. Despite the relative conservation of internal influenza A proteins, the epitopes recognized by T cells can undergo drift under immune pressure. The internal proteins of Russian LAIVs are derived from the master donor virus A/Leningrad/134/17/57 (Len/17) isolated 60 years ago and as such, some CD8 + T cell epitopes may vary between the vaccine and circulating wild-type strains. To partially overcome this issue, the nucleoprotein (NP) gene of wild-type virus can be incorporated into LAIV reassortant virus, along with the HA and NA genes. The present study compares the human CD8+ T cell memory responses to H3N2 LAIVs with the Len/17 or the wild-type NP using an in vitro model.

  6. The relationship between RTS,S vaccine-induced antibodies, CD4⁺ T cell responses and protection against Plasmodium falciparum infection.

    Directory of Open Access Journals (Sweden)

    Michael T White

    Full Text Available Vaccination with the pre-erythrocytic malaria vaccine RTS,S induces high levels of antibodies and CD4(+ T cells specific for the circumsporozoite protein (CSP. Using a biologically-motivated mathematical model of sporozoite infection fitted to data from malaria-naive adults vaccinated with RTS,S and subjected to experimental P. falciparum challenge, we characterised the relationship between antibodies, CD4(+ T cell responses and protection from infection. Both anti-CSP antibody titres and CSP-specific CD4(+ T cells were identified as immunological surrogates of protection, with RTS,S induced anti-CSP antibodies estimated to prevent 32% (95% confidence interval (CI 24%-41% of infections. The addition of RTS,S-induced CSP-specific CD4(+ T cells was estimated to increase vaccine efficacy against infection to 40% (95% CI, 34%-48%. This protective efficacy is estimated to result from a 96.1% (95% CI, 93.4%-97.8% reduction in the liver-to-blood parasite inoculum, indicating that in volunteers who developed P. falciparum infection, a small number of parasites (often the progeny of a single surviving sporozoite are responsible for breakthrough blood-stage infections.

  7. Vaccination against Oncoproteins of HPV16 for Noninvasive Vulvar/Vaginal Lesions : Lesion Clearance Is Related to the Strength of the T-Cell Response

    NARCIS (Netherlands)

    van Poelgeest, Mariette I. E.; Welters, Marij J. P.; Vermeij, Renee; Stynenbosch, Linda F. M.; Loof, Nikki M.; Berends-van der Meer, Dorien M. A.; Lowik, Margriet J. G.; Hamming, Ineke L. E.; van Esch, Edith M. G.; Hellebrekers, Bart W. J.; van Beurden, Marc; Schreuder, Henk W.; Kagie, Marjolein J.; Trimbos, J. Baptist M. Z.; Fathers, Lorraine M.; Daemen, Toos; Hollema, Harry; Valentijn, A. Rob P. M.; Oostendorp, Jaap; Oude Elberink, J. Hanneke N. G.; Fleuren, Gertjan J.; Bosse, Tjalling; Kenter, Gemma G.; Stijnen, Theo; Nijman, Hans W.; Melief, Cornelis J. M.; van der Burg, Sjoerd H.

    2016-01-01

    Purpose: Therapeutic vaccination with human papillomavirus type 16 (HPV16) E6 and E7 synthetic long peptides (SLP) is effective against HPV16-induced high-grade vulvar and vaginal intraepithelial neoplasia (VIN/VaIN). However, clinical non-responders displayed weak CD8(+) T-cell reactivity. Here, we

  8. Vaccination against Oncoproteins of HPV16 for Noninvasive Vulvar/Vaginal Lesions : Lesion Clearance Is Related to the Strength of the T-Cell Response

    NARCIS (Netherlands)

    van Poelgeest, Mariëtte I E; Welters, Marij J P; Vermeij, Renee; Stynenbosch, Linda F M; Loof, Nikki M; Berends-van der Meer, Dorien M A; Löwik, Margriet J G; Hamming, Ineke L E; van Esch, Edith M G; Hellebrekers, Bart W J; van Beurden, Marc; Schreuder, Henk W; Kagie, Marjolein J; Trimbos, J Baptist M Z; Fathers, Lorraine M; Daemen, Toos; Hollema, Harry; Valentijn, A Rob P M; Oostendorp, Jaap; Oude Elberink, J Hanneke N G; Fleuren, Gertjan J; Bosse, Tjalling; Kenter, Gemma G; Stijnen, Theo; Nijman, Hans W; Melief, Cornelis J M; van der Burg, Sjoerd H

    PURPOSE: Therapeutic vaccination with human papillomavirus type 16 (HPV16) E6 and E7 synthetic long peptides (SLP) is effective against HPV16-induced high-grade vulvar and vaginal intraepithelial neoplasia (VIN/VaIN). However, clinical nonresponders displayed weak CD8(+) T-cell reactivity. Here, we

  9. Costimulatory ligand CD70 allows induction of CD8+ T-cell immunity by immature dendritic cells in a vaccination setting

    NARCIS (Netherlands)

    Keller, Anna M.; Xiao, Yanling; Peperzak, Victor; Naik, Shalin H.; Borst, Jannie

    2009-01-01

    The use of dendritic cells (DCs) as anticancer vaccines holds promise for therapy but requires optimization. We have explored the potential of costimulatory ligand CD70 to boost the capacity of DCs to evoke effective CD8(+) T-cell immunity. We show that immature conventional DCs, when endowed with

  10. The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype.

    Science.gov (United States)

    Munier, C Mee Ling; van Bockel, David; Bailey, Michelle; Ip, Susanna; Xu, Yin; Alcantara, Sheilajen; Liu, Sue Min; Denyer, Gareth; Kaplan, Warren; Suzuki, Kazuo; Croft, Nathan; Purcell, Anthony; Tscharke, David; Cooper, David A; Kent, Stephen J; Zaunders, John J; Kelleher, Anthony D

    2016-10-17

    Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear. We undertook a detailed functional and genetic characterization of CD4 T-cells during acute VV-infection of humans. VV-specific T-cells were identified by up-regulation of activation markers directly ex vivo and through cytokine and co-stimulatory molecule expression. At day-13-post primary inoculation with VV, CD38highCD45RO+ CD4 T-cells were purified by cell sorting, RNA isolated and analysed by microarray. Differential expression of up-regulated genes in activated CD4 T-cells was confirmed at the mRNA and protein levels. We compared analyses of VV-specific CD4 T-cells to studies on 12 subjects with primary HIV infection (PHI). VV-specific T-cells lines were established from PBMCs collected post vaccination and checked for cytotoxicity potential. A median 11.9% CD4 T-cells were CD38highCD45RO+ at day-13 post-VV inoculation, compared to 3.0% prior and 10.4% during PHI. Activated CD4 T-cells had an up-regulation of genes related to cytolytic function, including granzymes K and A, perforin, granulysin, TIA-1, and Rab27a. No difference was seen between CD4 T-cell expression of perforin or TIA-1 to VV and PHI, however granzyme k was more dominant in the VV response. At 25:1 effector to target ratio, two VV-specific T-cell lines exhibited 62% and 30% cytotoxicity respectively and CD107a degranulation. We show for the first time that CD4 CTL are prominent in the early response to VV. Understanding the role of CD4 CTL in the generation of an effective anti-viral memory may help develop more effective vaccines for diseases such as HIV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Prediction of T-cell Epitopes for Therapeutic and Prophylactic Vaccines

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby

    2007-01-01

    The spread of existing infectious diseases and the emergence of new ones call for efficient methods for vaccine development. Some of the important players in conferring immunity against pathogens are the Cytotoxic T Lymphocytes (CTL), which eliminate infected cells. Due to their deleterious effects...... of the cell. The pathway leading to MHC class I presentation is initiated when the cell’s proteins are degraded by a multi-subunit, cytoplasmic protease named the proteasome. This process generates peptides, which can be transported into the Endoplasmatic Reticulum (ER) by Transporter associated with Antigen...... Processing (TAP) molecules. Once inside the ER, some of the peptides will bind to empty MHC class I molecules and subsequently be transported to the cell surface. Passing CTLs will recognize any non-self peptide and kill the presenting cell. The ability to predict CTL epitopes is essential for rational...

  12. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4+T cell transcriptomal molecular signatures.

    Science.gov (United States)

    Hoft, D F; Xia, M; Zhang, G L; Blazevic, A; Tennant, J; Kaplan, C; Matuschak, G; Dube, T J; Hill, H; Schlesinger, L S; Andersen, P L; Brusic, V

    2017-08-30

    Protective efficacy of Bacillus Calmette-Guérin (BCG) may be affected by the methods and routes of vaccine administration. We have studied the safety and immunogenicity of oral (PO) and/or intradermal (ID) administration of BCG in healthy human subjects. No major safety concerns were detected in the 68 healthy adults vaccinated with PO and/or ID BCG. Although both PO and ID BCG could induce systemic Th1 responses capable of IFN-γ production, ID BCG more strongly induced systemic Th1 responses. In contrast, stronger mucosal responses (TB-specific secretory IgA and bronchoalveolar lavage T cells) were induced by PO BCG vaccination. To generate preliminary data comparing the early gene signatures induced by mucosal and systemic BCG vaccination, CD4 + memory T cells were isolated from subsets of BCG vaccinated subjects pre- (Day 0) and post-vaccination (Days 7 and 56), rested or stimulated with BCG infected dendritic cells, and then studied by Illumina BeadArray transcriptomal analysis. Notably, distinct gene expression profiles were identified both on Day 7 and Day 56 comparing the PO and ID BCG vaccinated groups by GSEA analysis. Future correlation analyses between specific gene expression patterns and distinct mucosal and systemic immune responses induced will be highly informative for TB vaccine development.Mucosal Immunology advance online publication 30 August 2017; doi:10.1038/mi.2017.67.

  14. Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Waeckerle-Men, Ying; Bruffaerts, Nicolas; Liang, Yuan; Jurion, Fabienne; Sander, Peter; Kündig, Thomas M; Huygen, Kris; Johansen, Pål

    2013-02-04

    Vaccination with Mycobacterium bovis BCG provides limited protection against pulmonary tuberculosis and a risk of dissemination in immune-compromised vaccinees. For the development of new TB vaccines that stimulate strong T-cell responses a variety of strategies is being followed, especially recombinant BCG and attenuated M. tuberculosis. The objective of the current study was to test potential benefits of vaccination through direct lymph-node targeting of wildtype BCG; the recommended route of vaccination with BCG is intradermal. C57BL/6 mice were immunised with BCG by intradermal, subcutaneous or intralymphatic injections. Cellular immune responses and protection against M. tuberculosis were determined. Intralymphatic vaccination was 100-1000 times more effective in stimulating BCG-specific immune responses than intradermal or subcutaneous immunisation. Intralymphatic administration stimulated high frequencies of mycobacterium-specific lymphocytes with strong proliferating capacity and production of TNF-α, IL-2, IL-17 and, especially, IFN-γ secretion by. CD4 and CD8 T cells. Most importantly, intralymphatic vaccination with 2×10(3)CFU BCG induced sustained protection against M. tuberculosis in intratracheally challenged C57BL/6 mice, whereas subcutaneous vaccination with 2×10(5)CFU BCG conferred only a transient protection. Hence, direct administration of M. bovis BCG to lymph nodes demonstrates that efficient targeting to lymph nodes may help to overcome the efficacy problems of vaccination with BCG. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Long-term follow up of human T-cell responses to conserved HIV-1 regions elicited by DNA/simian adenovirus/MVA vaccine regimens.

    Directory of Open Access Journals (Sweden)

    Nathifa Moyo

    Full Text Available Durability of vaccine-elicited immune responses is one of the key determinants for vaccine success. Our aim is to develop a vaccination strategy against the human immunodeficiency virus type 1 (HIV-1, which induces protective and durable CD8+ T-cell responses. The central theorem of our approach is to focus T cells on highly conserved regions of the HIV-1 proteome and this is achieved through the use of the first-generation conserved vaccine immunogen HIVconsv. This immunogen vectored by plasmid DNA, simian adenovirus and poxvirus MVA was tested in healthy, HIV-1-negative adults in UK and induced high magnitudes of HIVconsv-specific plurifunctional CD8+ T cells capable of in vitro HIV-1 inhibition. Here, we assessed the durability of these responses.Vaccine recipients in trial HIV-CORE 002 were invited to provide a blood sample at 1 and 2 years after vaccination. Their PBMCs were tested in IFN-γ ELISPOT, 25-analyte Luminex, CFSE proliferation and intracellular cytokine staining assays, the last enhanced by HLA-peptide dextramer analysis.12/12 (1 year and 8/8 (2 years returning subjects had median (range of 990 (150-2495 and 763 (70-1745 IFN-γ SFU/106 PBMC specific for HIVconsv, respectively, and recognized 5 (1-6 out of 6 peptide pools at 2 years. Over one-half of the HIVconsv-specific cells expressed at least 3 functions IFN-γ, TNF-α and CD107a, and were capable of proliferation. Among dextramer-reactive cells, naïve, transitional, effector and terminally differentiated memory subsets were similarly represented.First generation HIVconsv vaccine induced human T cells, which were plurifunctional and persisted for at least 2 years.ClinicalTrials.gov NCT01151319.

  16. Intraspleen Delivery of a DNA Vaccine Coding for Superoxide Dismutase (SOD) of Brucella abortus Induces SOD-Specific CD4+ and CD8+ T Cells

    Science.gov (United States)

    Muñoz-Montesino, Carola; Andrews, Edilia; Rivers, Rodolfo; González-Smith, Andrés; Moraga-Cid, Gustavo; Folch, Hugo; Céspedes, Sandra; Oñate, Angel A.

    2004-01-01

    In the development of vaccines capable of providing immunity against brucellosis, Cu-Zn superoxide dismutase (SOD) has been demonstrated to be one of the protective immunogens of Brucella abortus. In an earlier study, we provided strong evidence that intramuscular injection with a plasmid DNA carrying the SOD gene (pcDNA-SOD) was able to induce a protective immune response. The present study was designed to characterize T-cell immune responses after an intraspleen (i.s.) vaccination of BALB/c mice with pcDNA-SOD. Animals vaccinated with pcDNA-SOD did not develop SOD-specific antibodies, at least until week 4 after immunization (the end of the experiment), and in vitro stimulation of their splenocytes with either recombinant Cu-Zn SOD or crude Brucella protein induced the secretion of gamma interferon (IFN-γ), but not interleukin-4, and elicited the induction of cytotoxic-T-lymphocyte activity. Upon analyzing the SOD-specific T-cell responses, the pcDNA-SOD vaccination was found to be stimulating both CD4+- and CD8+-T-cell populations. However, only the CD4+ population was able to produce IFN-γ and only the CD8+ population was able to induce cytotoxic activity. Nevertheless, although i.s. route vaccination induces a significant level of protection in BALB/c mice against challenge with the virulent B. abortus strain 2308, vaccination by the intramuscular route with a similar amount of plasmid DNA does not protect. Based on these results, we conclude that i.s. immunization with pcDNA-SOD vaccine efficiently induced a Th1 type of immune response and a protective response that could be related to IFN-γ production and cytotoxic activity against infected cells by SOD-specific CD4+ and CD8+ T cells, respectively. PMID:15039330

  17. The pig as a model for therapeutic human anti-cancer vaccine development, elucidating the T-cell reactivity against IDO and RhoC

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    here introduce pigs as a superior large animal model for human cancer vaccine development via the use of our unique technology for swine leukocyte antigen (SLA) production. IDO and RhoC, both known to be important in human cancer development and progression, were used as vaccine targets. Pigs were......Immunotherapy against cancer has shown increased overall survival of metastatic cancer patients and is a promising new vaccine target. For this to succeed, appropriate tailoring of vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses towards co-delivered cancer antigens...... is important. Previous development of therapeutic cancer vaccines has largely been based on studies in mice and the majority of these candidate vaccines failed to establish therapeutic responses in subsequent human clinical trials. Since the porcine immunome is more closely related to the human counterpart, we...

  18. Long-term central and effector SHIV-specific memory T cell responses elicited after a single immunization with a novel lentivector DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Géraldine Arrode-Brusés

    Full Text Available Prevention of HIV acquisition and replication requires long lasting and effective immunity. Given the state of HIV vaccine development, innovative vectors and immunization strategies are urgently needed to generate safe and efficacious HIV vaccines. Here, we developed a novel lentivirus-based DNA vector that does not integrate in the host genome and undergoes a single-cycle of replication. Viral proteins are constitutively expressed under the control of Tat-independent LTR promoter from goat lentivirus. We immunized six macaques once only with CAL-SHIV-IN- DNA using combined intramuscular and intradermal injections plus electroporation. Antigen-specific T cell responses were monitored for 47 weeks post-immunization (PI. PBMCs were assessed directly ex vivo or after 6 and 12 days of in vitro culture using antigenic and/or homeostatic proliferation. IFN-γ ELISPOT was used to measure immediate cytokine secretion from antigen specific effector cells and from memory precursors with high proliferative capacity (PHPC. The memory phenotype and functions (proliferation, cytokine expression, lytic content of specific T cells were tested using multiparametric FACS-based assays. All immunized macaques developed lasting peripheral CD8+ and CD4+ T cell responses mainly against Gag and Nef antigens. During the primary expansion phase, immediate effector cells as well as increasing numbers of proliferating cells with limited effector functions were detected which expressed markers of effector (EM and central (CM memory phenotypes. These responses contracted but then reemerged later in absence of antigen boost. Strong PHPC responses comprising vaccine-specific CM and EM T cells that readily expanded and acquired immediate effector functions were detected at 40/47 weeks PI. Altogether, our study demonstrated that a single immunization with a replication-limited DNA vaccine elicited persistent vaccine-specific CM and EM CD8+ and CD4+ T cells with immediate and

  19. The Immunodominance Change and Protection of CD4+ T-Cell Responses Elicited by an Envelope Protein Domain III-Based Tetravalent Dengue Vaccine in Mice.

    Directory of Open Access Journals (Sweden)

    Hsin-Wei Chen

    Full Text Available Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3 is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4, we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost. A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.

  20. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response

    Directory of Open Access Journals (Sweden)

    Carmen W. E. Embregts

    2017-10-01

    Full Text Available Although spring viremia of carp virus (SVCV can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and the in vitro proliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine.

  1. CD154 and IL-2 signaling of CD4+ T cells play a critical role in multiple phases of CD8+ CTL responses following adenovirus vaccination.

    Directory of Open Access Journals (Sweden)

    Channakeshava Sokke Umeshappa

    Full Text Available Adenoviral (AdV vectors represent most commonly utilized viral vaccines in clinical studies. While the role of CD8(+ cytotoxic T lymphocyte (CTL responses in mediating AdV-induced protection is well understood, the involvement of CD4(+ T cell-provided signals in the development of functional CD8(+ CTL responses remain unclear. To explore CD4(+ T helper signals required for AdVova-stimulated CTL responses, we established an adoptive transfer system by transferring CD4(+ T cells derived from various knock out and transgenic mice into wild-type and/or CD4-deficient animals, followed by immunizing with recombinant ovalbumin (OVA-expressing AdVova vector. Without CD4(+ T help, both primary and memory CTL responses were greatly reduced in this model, and were associated with increased PD-1 expression. The provision of OVA-specific CD4(+ T help in CD4(+ T cell-deficient mice restored AdVova-induced primary CTL responses, and supported survival and recall responses of AdVova-stimulated memory CTLs. These effects were specifically mediated by CD4(+ T cell-produced IL-2 and CD154 signals. Adoptive transfer of "helped" or "unhelped" effector and memory CTLs into naïve CD4(+ T cell-deficient or -sufficient mice also revealed an additional role for polyclonal CD4(+ T cell environment in the survival of AdVova-stimulated CTLs, partially explaining the extension of CTL contraction phase. Finally, during recall responses, CD4(+ T cell environment, particularly involving memory CD4(+ T cells, greatly enhanced expansion of memory CTLs. Collectively, our data strongly suggest a critical role for CD4(+ T help in multiple phases of AdV-stimulated CTL responses, and could partially explain certain failures in AdV-based immunization trials targeting malignant tumors and chronic diseases that are often associated with compromised CD4(+ T cell population and function.

  2. OMOLOGICAL AND HETEROLOGICAL ANTIBODY AND T CELL IMMUNE RESPONSES TO LIVE ATTENUATED INFLUENZA VACCINE A (H5N2 AND A (H7N3

    Directory of Open Access Journals (Sweden)

    A. N. Naykhin

    2015-01-01

    Full Text Available From the beginning of 21th century outbreaks of H5, H7 and H9 avian flu are registered from time to time. These viruses are considered as one of the possible causes of the next pandemia. The development of avian influenza vaccines is one of the WHO priorities. The aim of this work was to study antibody and cellular immune responses to avian A (H5N2 and A (H7N3 live attenuated influenza vaccines (LAIVs. We examined serum antibodies (HAI assay, microneutralization assay, ELISA, local antibodies (ELISA and virus-specific CD4+ and CD8+ central memory and effector memory T cells. Two doses vaccination of healthy volunteers with A (H5N2 and A (H7N3 LAIVs induced homological antibody and cellular immune responses (i. e. serum and local antibody conversions, virus-specific memory T cell growth. These vaccines also stimulated heterological immunity (heterological serum and local antibodies and T cells. Heterological immune response intensity depended on antigenic structure of vaccine strain and heterological virus, particularly on HA type. 

  3. Trichomonas vaginalis infection induces vaginal CD4+ T-cell infiltration in a mouse model: a vaccine strategy to reduce vaginal infection and HIV transmission.

    Science.gov (United States)

    Smith, Jeffrey D; Garber, Gary E

    2015-07-15

    Complications related to the diagnosis and treatment of Trichomonas vaginalis infection, as well as the association between T. vaginalis infection and increased transmission of and susceptibility to human immunodeficiency virus, highlight the need for alternative interventions. We tested a human-safe, aluminum hydroxide-adjuvanted whole-cell T. vaginalis vaccine for efficacy in a BALB/c mouse model of vaginal infection. A whole-cell T. vaginalis vaccine was administered subcutaneously to BALB/c mice, using a prime-boost vaccination schedule. CD4(+) T-cell infiltration in the murine vaginal tissue and local and systemic levels of immunoglobulins were measured at time points up to 4 weeks following infection. Vaccination reduced the incidence and increased the clearance of T. vaginalis infection and induced both systemic and local humoral immune responses. CD4(+) T cells were detected in vaginal tissues following intravaginal infection with T. vaginalis but were not seen in uninfected mice. The presence of CD4(+) T cells following T. vaginalis infection can potentially increase susceptibility to and transmission of human immunodeficiency virus. The vaccine induces local and systemic immune responses and confers significantly greater protection against vaginal infection than seen in unvaccinated mice (P vaginalis infection that could also influence the incidence of human immunodeficiency virus infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Peptide vaccination in the presence of adjuvants in patients after hematopoietic stem cell transplantation with CD4+ T cell reconstitution elicits consistent CD8+ T cell responses

    NARCIS (Netherlands)

    Schmitt, Michael; Schmitt, Anita; Wiesneth, Markus; Hückelhoven, Angela; Wu, Zeguang; Kuball, J.; Wang, Lei; Schauwecker, Peter; Hofmann, Susanne; Götz, Marlies; Michels, Birgit; Maccari, Birgit; Wuchter, Patrick; Eckstein, Volker; Mertens, Thomas; Schnitzler, Paul; Döhner, Hartmut; Ho, Anthony D.; Bunjes, Donald W.; Dreger, Peter; Schrezenmeier, Hubert; Greiner, Jochen

    2017-01-01

    Rationale: Patients receiving an allogeneic stem cell graft from cytomegalovirus (CMV) seronegative donors are particularly prone to CMV reactivation with a high risk of disease and mortality. Therefore we developed and manufactured a novel vaccine and initiated a clinical phase I trial with a CMV

  5. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  6. Mucosal immunity and novel tuberculosis vaccine strategies: route of immunisation-determined T-cell homing to restricted lung mucosal compartments.

    Science.gov (United States)

    Lai, Rocky; Afkhami, Sam; Haddadi, Siamak; Jeyanathan, Mangalakumari; Xing, Zhou

    2015-06-01

    Despite the use of bacille Calmette-Guérin (BCG) for almost a century, pulmonary tuberculosis (TB) continues to be a serious global health concern. Therefore, there has been a pressing need for the development of new booster vaccines to enhance existing BCG-induced immunity. Protection following mucosal intranasal immunisation with AdHu5Ag85A is associated with the localisation of antigen-specific T-cells to the lung airway. However, parenteral intramuscular immunisation is unable to provide protection despite the apparent presence of antigen-specific T-cells in the lung interstitium. Recent advances in intravascular staining have allowed us to reassess the previously established T-cell distribution profile and its relationship with the observed differential protection. Respiratory mucosal immunisation empowers T-cells to home to both the lung interstitium and the airway lumen, whereas intramuscular immunisation-activated T-cells are largely trapped within the pulmonary vasculature, unable to populate the lung interstitium and airway. Given the mounting evidence supporting the safety and enhanced efficacy of respiratory mucosal immunisation over the traditional parenteral immunisation route, a greater effort should be made to clinically develop respiratory mucosal-deliverable TB vaccines. Copyright ©ERS 2015.

  7. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.; Fischer, Nicholas O.; Corzett, Michele; Lehmann, Doerte; Boone, Tyler; Hoeprich, Paul; Driks, Adam; Rasley, Amy

    2017-03-01

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. We utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4+ and CD8+ T cells in vitro compared to co-administration of free OVA and MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4+ and CD8+ T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.

  8. Conservation and diversity of influenza A H1N1 HLA-restricted T cell epitope candidates for epitope-based vaccines.

    Directory of Open Access Journals (Sweden)

    Paul Thiamjoo Tan

    2010-01-01

    Full Text Available The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated.HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54 peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-gamma ELISpot assay. The 54 peptides were compared to the 2007-2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes.Seventeen (17 T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.

  9. Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine.

    Directory of Open Access Journals (Sweden)

    Angela Fuery

    Full Text Available Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months were significantly associated with post-boost (13 months SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12.Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming.

  10. An Unexpected Major Role for Proteasome-Catalyzed Peptide Splicing in Generation of T Cell Epitopes: Is There Relevance for Vaccine Development?

    Directory of Open Access Journals (Sweden)

    Anouk C. M. Platteel

    2017-11-01

    Full Text Available Efficient and safe induction of CD8+ T cell responses is a desired characteristic of vaccines against intracellular pathogens. To achieve this, a new generation of safe vaccines is being developed accommodating single, dominant antigens of pathogens of interest. In particular, the selection of such antigens is challenging, since due to HLA polymorphism the ligand specificities and immunodominance hierarchies of pathogen-specific CD8+ T cell responses differ throughout the human population. A recently discovered mechanism of proteasome-mediated CD8+ T cell epitope generation, i.e., by proteasome-catalyzed peptide splicing (PCPS, expands the pool of peptides and antigens, presented by MHC class I HLA molecules. On the cell surface, one-third of the presented self-peptides are generated by PCPS, which coincides with one-fourth in terms of abundance. Spliced epitopes are targeted by CD8+ T cell responses during infection and, like non-spliced epitopes, can be identified within antigen sequences using a novel in silico strategy. The existence of spliced epitopes, by enlarging the pool of peptides available for presentation by different HLA variants, opens new opportunities for immunotherapies and vaccine design.

  11. A role for impaired regulatory T cell function in adverse responses to aluminum adjuvant-containing vaccines in genetically susceptible individuals.

    Science.gov (United States)

    Terhune, Todd D; Deth, Richard C

    2014-09-08

    Regulatory T cells play a critical role in the immune response to vaccination, but there is only a limited understanding of the response of regulatory T cells to aluminum adjuvants and the vaccines that contain them. Available studies in animal models show that although induced T regulatory cells may be induced concomitantly with effector T cells following aluminum-adjuvanted vaccination, they are unable to protect against sensitization, suggesting that under the Th2 immune-stimulating effects of aluminum adjuvants, Treg cells may be functionally compromised. Allergic diseases are characterized by immune dysregulation, with increases in IL-4 and IL-6, both of which exert negative effects on Treg function. For individuals with a genetic predisposition, the beneficial influence of adjuvants on immune responsiveness may be accompanied by immune dysregulation, leading to allergic diseases. This review examines aspects of the regulatory T cell response to aluminum-adjuvanted immunization and possible genetic susceptibility factors related to that response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. An Immunoinformatics-Derived DNA Vaccine Encoding Human Class 2 T Cell Epitopes of Ebola Virus, Sudan Virus, and Venezuelan Equine Encephalitis Virus is Immunogenic in HLA Transgenic Mice

    Science.gov (United States)

    2017-04-07

    1 An immunoinformatics-derived DNA vaccine encoding human Class II T cell epitopes of 1 Ebola virus, Sudan virus, and Venezuelan equine...connie.s.schmaljohn.civ@mail.mil 13 14 Keywords: genome-derived vaccine, epitope-based vaccine, DNA vaccine, peptide vaccine, T 15 cell epitope, Ebola virus, EBOV...for biodefense. We previously developed and 53 tested DNA vaccines expressing the envelope glycoproteins of these viruses in mice and 54 nonhuman

  13. T cell responses induced by adenoviral vectored vaccines can be adjuvanted by fusion of antigen to the oligomerization domain of C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Emily K Forbes

    Full Text Available Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp as a candidate T cell "molecular adjuvant" when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5 vectored vaccines in BALB/c mice. We demonstrate that i C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4(+ and CD8(+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP1(42 or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1, but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation.

  14. Vaccination with Altered Peptide Ligands of a Plasmodium berghei Circumsporozoite Protein CD8 T-Cell Epitope: A Model to Generate T Cells Resistant to Immune Interference by Polymorphic Epitopes.

    Science.gov (United States)

    Minigo, Gabriela; Flanagan, Katie L; Slattery, Robyn M; Plebanski, Magdalena

    2017-01-01

    Many pathogens, including the malaria parasite Plasmodium falciparum, display high levels of polymorphism within T-cell epitope regions of proteins associated with protective immunity. The T-cell epitope variants are often non-cross-reactive. Herein, we show in a murine model, which modifies a protective CD8 T-cell epitope from the circumsporozoite protein (CS) of Plasmodium berghei (SYIPSAEKI), that simultaneous or sequential co-stimulation with two of its putative similarly non-cross-reactive altered peptide ligand (APL) epitopes (SYIPSAEDI or SYIPSAEAI) has radically different effects on immunity. Hence, co-immunization or sequential stimulation in vivo of SYIPSAEKI with its APL antagonist SYIPSAEDI decreases immunity to both epitopes. By contrast, co-immunization with SYIPSAEAI has no apparent initial effect, but it renders the immune response to SYIPSAEKI resistant to being turned off by subsequent immunization with SYIPSAEDI. These results suggest a novel strategy for vaccines that target polymorphic epitopes potentially capable of mutual immune interference in the field, by initiating an immune response by co-immunization with the desired index epitope, together with a carefully selected "potentiator" APL peptide.

  15. Vitamin A deficiency impairs adaptive B and T cell responses to a prototype monovalent attenuated human rotavirus vaccine and virulent human rotavirus challenge in a gnotobiotic piglet model.

    Directory of Open Access Journals (Sweden)

    Kuldeep S Chattha

    Full Text Available Rotaviruses (RV are a major cause of gastroenteritis in children. Widespread vitamin A deficiency is associated with reduced efficacy of vaccines and higher incidence of diarrheal infections in children in developing countries. We established a vitamin A deficient (VAD gnotobiotic piglet model that mimics subclinical vitamin A deficiency in children to study its effects on an oral human rotavirus (HRV vaccine and virulent HRV challenge. Piglets derived from VAD and vitamin A sufficient (VAS sows were orally vaccinated with attenuated HRV or mock, with/without supplemental vitamin A and challenged with virulent HRV. Unvaccinated VAD control piglets had significantly lower hepatic vitamin A, higher severity and duration of diarrhea and HRV fecal shedding post-challenge as compared to VAS control pigs. Reduced protection coincided with significantly higher innate (IFNα cytokine and CD8 T cell frequencies in the blood and intestinal tissues, higher pro-inflammatory (IL12 and 2-3 fold lower anti-inflammatory (IL10 cytokines, in VAD compared to VAS control pigs. Vaccinated VAD pigs had higher diarrhea severity scores compared to vaccinated VAS pigs, which coincided with lower serum IgA HRV antibody titers and significantly lower intestinal IgA antibody secreting cells post-challenge in the former groups suggesting lower anamnestic responses. A trend for higher serum HRV IgG antibodies was observed in VAD vs VAS vaccinated groups post-challenge. The vaccinated VAD (non-vitamin A supplemented pigs had significantly higher serum IL12 (PID2 and IFNγ (PID6 compared to vaccinated VAS groups suggesting higher Th1 responses in VAD conditions. Furthermore, regulatory T-cell responses were compromised in VAD pigs. Supplemental vitamin A in VAD pigs did not fully restore the dysregulated immune responses to AttHRV vaccine or moderate virulent HRV diarrhea. Our findings suggest that that VAD in children in developing countries may partially contribute to more

  16. Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice.

    Science.gov (United States)

    Hoffmann, Corinna; Stanke, Jonas; Kaufmann, Andreas M; Loddenkemper, Christoph; Schneider, Achim; Cichon, Günter

    2010-01-01

    We generated an adenovirus-based T-cell vaccine (Ad-p14) that reliably elicits T-cell responses to human papillomavirus (HPV) oncogenes of the 2 most common high-risk HPV serotypes. The artificial gene used to create the vaccine comprising 415 aa (1248 bp) was cloned by fusing 14 polymerase chain reaction fragments of HPV16 and HPV18 E6 and E7 oncogenes devoid of sequences with transforming potential. Although ensuring maximal biologic safety, the construct includes approximately 70% of the relevant T-cell epitopes. In a tumor model for cervical cancer (C3), therapeutic vaccination led to complete eradication in 100% of the mice. In a second model (TC1), it induced initial tumor mass reduction, but 90% of the animals showed delayed tumor progression. To further improve the therapeutic effect, vaccination was combined with systemic application of imiquimod, anti-CD4, alpha-interferon, or anti-GITR. Although adding alpha-interferon improved the therapeutic potential of Ad-p14 by 40%, the combination with anti-GITR resulted in complete and permanent eradication of all TC1 tumors. Ad-p14 has clinical potential for treating HPV-induced lesions, and the added effect of immune response modifiers stresses the importance of combined protocols for immunotherapy of malignant tumors.

  17. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Science.gov (United States)

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective

  18. Pertussis circulation has increased T-cell immunity during childhood more than a second acellular booster vaccination in Dutch children 9 years of age.

    Directory of Open Access Journals (Sweden)

    Rose-Minke Schure

    Full Text Available UNLABELLED: Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA- were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN64117538.

  19. The kinetics of CD4+ and CD8+ T-cell gene expression correlate with protection in Atlantic salmon (Salmo salar L) vaccinated against infectious pancreatic necrosis.

    Science.gov (United States)

    Munang'andu, Hetron Mweemba; Fredriksen, Børge Nilsen; Mutoloki, Stephen; Dalmo, Roy Ambli; Evensen, Oystein

    2013-04-08

    Infectious pancreatic necrosis virus (IPNV) is a highly contagious disease causing high mortalities in juvenile salmonids. Lack of correlation between neutralizing antibodies and infecting virus suggests a likelihood of involvement of the cellular mediated immune response in vaccine protection. To elucidate the kinetics of CD4 and CD8 T-cells responses in vaccine protection, Atlantic salmon (Salmo salar L) were vaccinated with a high antigen (HiAg) or low antigen (LoAg) dose vaccine and challenged by cohabitation using a highly virulent Norwegian Sp strain. Analysis of T-cell gene expression in lymphoid organs (headkidney and spleen) showed that GATA-3 was positively correlated with increase in antibody levels when T-bet was low. Conversely, T-bet and FoxP3 were positively correlated with viral infection and negatively correlated with increase in antibody levels. Among the CD8+ T cell genes, expression of eomes and CD8α were positively correlated with increase in viral copy numbers and negatively correlated with increase in antibody levels. Up-regulation of granzyme A was highly correlated with increase in viral copy numbers in the LoAg and control groups indicating that this gene could save as a diagnostic marker of acute infection for IPNV during acute infection. In contrast, its down regulation in the HiAg which had low viral copy numbers corresponded with high antibody levels. Overall, these data show that the kinetics of CD4 and CD8 T-cell genes expression follow the same pattern as that observed in higher vertebrates. These findings suggest that functional signatures of the cellular mediated immune response could be evolutionary conserved across the vertebrate taxa and that they can effectively be used to monitor vaccine protection and infection progression of IPNV in Atlantic salmon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Idiotype vaccines against human T cell acute lymphoblastic leukemia. I. Generation and characterization of biologically active monoclonal anti-idiotopes.

    Science.gov (United States)

    Bhattacharya-Chatterjee, M; Pride, M W; Seon, B K; Kohler, H

    1987-08-15

    vaccines against human T cell leukemia.

  1. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector.

    Directory of Open Access Journals (Sweden)

    Isabelle Magalhaes

    Full Text Available BACKGROUND: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB. We tested BCG (SSI1331 (in 6 animals, delivered intradermally and a recombinant (rBCG AFRO-1 expressing perfringolysin (in 6 animals followed by two boosts (delivered intramuscullary with non-replicating adenovirus 35 (rAd35 expressing a fusion protein composed of Ag85A, Ag85B and TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta. Control animals received diluent (3 animals. METHODS AND FINDINGS: Cellular immune responses were analyzed longitudinally (12 blood draws for each animal using intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma, T cell proliferation was measured in CD4(+, CD8alpha/beta(+, and CD8alpha/alpha(+ T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay, WBA using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i increased Ag85B-specific IFN-gamma production in the WBA assay (median >400 pg/ml for 6 animals one week after the first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (<200 pg/ml, ii stronger T cell proliferation in the CD8alpha/alpha(+ T cell subset (proliferative index 17% as compared to BCG-primed animals (proliferative index 5% in CD8alpha/alpha(+ T cells. Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2 production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity. CONCLUSION: AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell

  2. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.

    Science.gov (United States)

    Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H

    2014-12-15

    Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. The therapeutic HIV Env C5/gp41 vaccine candidate Vacc-C5 induces specific T cell regulation in a phase I/II clinical study.

    Science.gov (United States)

    Brekke, Kristin; Sommerfelt, Maja; Ökvist, Mats; Dyrhol-Riise, Anne Margarita; Kvale, Dag

    2017-03-24

    Levels of non-neutralising antibodies (AB) to the C5 domain of HIV Env gp120 are inversely related to progression of HIV infection. In this phase I/II clinical study we investigated safety of Vacc-C5, a peptide-based therapeutic vaccine candidate corresponding to C5/gp41732-744 as well as the effects on pre-existing AB levels to C5/gp41732-744, immune activation and T cell responses including exploratory assessments of Vacc-C5-induced T cell regulation. Our hypothesis was that exposure of the C5 peptide motif may have detrimental effects due to several of its HLA-like features and that enhancement of non-neutralising anti-C5 AB by vaccination could reduce C5 exposure and thereby chronic immune activation. Thirty-six HIV patients on effective antiretroviral therapy were randomised to one of three dose levels of Vacc-C5 administered intramuscularly with Alhydrogel or intradermally with GM-CSF as adjuvant through initial immunisation and two booster periods over 26 weeks. Vacc-C5-specific AB were measured by ELISA and T cell responses by both IFN-γ ELISPOT and proliferative assays analysed by flow cytometry. Immune regulation was assessed by functional blockade of the two inhibitory cytokines IL-10 and TGF-β in parallel cultures. Non-parametric statistical tests were applied. Vacc-C5 was found safe and well tolerated in all patients. Only marginal changes in humoral and cellular responses were induced, without any effect on immune activation. Overall, anti-Vacc-C5 AB levels seemed to decrease compared to pre-existing levels. Whereas Vacc-C5-specific CD8+ T cell proliferative responses increased after the first booster period (p = 0.020; CD4+, p = 0.057), they were reduced after the second. In contrast, Vacc-C5-induced T cell regulation increased after completed vaccination (p ≤ 0.027) and was lower at baseline in the few AB responders identified (p = 0.027). The therapeutic HIV vaccine candidate Vacc-C5 safely induced only marginal immune responses

  4. CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma.

    Directory of Open Access Journals (Sweden)

    Stefan Jellbauer

    Full Text Available The Salmonella type III secretion system (T3SS efficiently translocates heterologous proteins into the cytosol of eukaryotic cells. This leads to an antigen-specific CD8 T-cell induction in mice orally immunized with recombinant Salmonella. Recently, we have used Salmonella's T3SS as a prophylactic and therapeutic intervention against a murine fibrosarcoma. In this study, we constructed a recombinant Salmonella strain translocating the immunogenic H-2D(b-specific CD8 T-cell epitope VILTNPISM (KDR2 from the murine vascular endothelial growth factor receptor 2 (VEGFR2. VEGFR2 is a member of the tyrosine protein kinase family and is upregulated on proliferating endothelial cells of the tumor vasculature. After single orogastric vaccination, we detected significant numbers of KDR2-tetramer-positive CD8 T cells in the spleens of immunized mice. The efficacy of these cytotoxic T cells was evaluated in a prophylactic setting to protect mice from challenges with B16F10 melanoma cells in a flank tumor model, and to reduce dissemination of spontaneous pulmonary melanoma metastases. Vaccinated mice revealed a reduction of angiogenesis by 62% in the solid tumor and consequently a significant decrease of tumor growth as compared to non-immunized mice. Moreover, in the lung metastasis model, immunization with recombinant Salmonella resulted in a reduction of the metastatic melanoma burden by approximately 60%.

  5. Tumor Protective Activity of CD4+ but Not of CD8+ T Cells in DNA-Vaccinated Mice Challenged with bcr-abl-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Martina Petráčková

    2013-01-01

    Full Text Available In the recent past, it has repeatedly been reported that CD4 cells play an important role in the immunology of chronic myeloid leukaemia. It was therefore of interest to test their activity in an animal model using bcr-abl-transformed cells. BALB/c mice were four times immunized with a DNA vaccine carrying the bcr-abl fusion gene. Two weeks after the last vaccine dose, the animals were challenged with syngeneic bcr-abl-transformed 12B1 cells which form solid tumors after subcutaneous administration. At the time of challenge, animals were treated with antibodies against the CD8+ T cells or CD4+ T cells. The efficacy of the depletion was monitored and found highly effective. All nonimmunized animals developed tumors. All animals untreated with the antibodies as well as those in which CD8+ T cells had been depleted, were fully protected against the challenge. On the other hand, almost all mice treated with anti-CD4+ antibody developed tumors. These results strongly suggested that the CD4+ T cells acted as effectors in the present system.

  6. The safety and immunogenicity of an adenovirus type 35-vectored TB vaccine in HIV-infected, BCG-vaccinated adults with CD4(+) T cell counts >350 cells/mm(3).

    Science.gov (United States)

    Churchyard, Gavin John; Snowden, Margaret Ann; Hokey, David; Dheenadhayalan, Veerabadran; McClain, J Bruce; Douoguih, Macaya; Pau, Maria Grazia; Sadoff, Jerry; Landry, Bernard

    2015-04-08

    The safety and immunogenicity of a replication deficient adenovirus serotype 35 tuberculosis (TB) vaccine containing gene inserts for Antigens (Ag) 85A, Ag85B and TB10.4 (AERAS-402/AD35.TB-S) was evaluated in previously BCG vaccinated, HIV-infected South African adults with baseline CD4 counts >350 cells/mm(3). Subjects were randomized (1:1) to receive two doses of either intramuscular AERAS-402/AD35.TB-S or placebo at month 0 and at month 1. Participants were monitored for adverse events 28 days after each vaccination and for serious adverse events over 12 months. CD4(+) and CD8(+) T-cell and antibody responses to vaccine antigens were evaluated post first and second vaccination. 26 subjects were randomly assigned to receive AERAS-402/AD35.TB-S (N=13) or placebo (N=13). The mean age was 29.0 years, all were Black-African, 88.5% were female, 46.2% were QuantiFERON Test (QFT) positive at baseline, and the median CD4 count was 559.5 cells/mm(3), all similar by treatment group. All subjects received their first vaccination and 24 subjects received their second vaccination. Injection site reactions and some systemic reactions were reported more commonly in the AERAS-402/AD35.TB-S versus placebo recipients. AERAS-402/AD35.TB-S did not appear to influence CD4 counts and HIV-1 viral load over the course of study follow-up. AERAS-402/AD35.TB-S induced a mixed CD4(+) T-cell and CD8(+) T-cell responses to Ag85B. The CD4(+) T-cell responses peaked to Ag85A and Ag85B 14 days after the second vaccination and had declined by Day 182. AERAS-402/AD35.TB-S predominantly induced CD4(+) T-cells expressing three (IFN-γ, TNF, IL-2) or two (IL-2 and TNF) cytokines, two weeks after the last vaccination, which did not differ by baseline Quantiferon test status. AERAS-402/AD35.TB-S induced strong Ag85A and Ag85B specific antibody responses, particularly after the second vaccination. AERAS-402/AD35.TB-S was well tolerated, safe and induced predominantly polyfunctional CD4(+) and CD8(+) T-cell

  7. Identification of conserved subdominant HIV Type 1 CD8(+) T Cell epitopes restricted within common HLA Supertypes for therapeutic HIV Type 1 vaccines

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Kløverpris, Henrik; Jensen, Kristoffer Jarlov

    2012-01-01

    The high HIV-1 prevalence, up to 4.6% in Guinea-Bissau, West Africa, makes it a relevant location for testing of therapeutic vaccines. With the aim of performing a clinical study in Guinea-Bissau, after first testing the vaccine for safety in Denmark, Europe, we here describe the design...... of a universal epitope peptide-based T cell vaccine with relevance for any geographic locations. The two major obstacles when designing such a vaccine are the high diversities of the HIV-1 genome and of the human major histocompatibility complex (MHC) class I. We selected 15 CD8-restricted epitopes predicted...... from conserved regions of HIV-1 that were subdominant (i.e., infrequently targeted) within natural infections. Moreover, the epitopes were predicted to be restricted to at least one of the five common HLA supertypes (HLA-A01, A02, A03, B07, and B44). Here, we validated the resulting peptide...

  8. Evaluation of humoral and antigen-specific T-cell responses after vaccination of pigs against pseudorabies in the presence of maternal antibodies.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2010-08-26

    In this study the influence of maternal immunity against pseudorabies virus (PRV) on the development of humoral and T-cell mediated immune (CMI) responses was investigated under the experimental condition. Pigs born to immune sows were vaccinated with gE-deleted vaccine according to five different schedules. Peripheral blood mononuclear cells (PBMC), collected after vaccination, were used for PRV-induced lymphocyte proliferation assay (LPA). Antibodies to the gB and gE of PRV in serum were determined using ELISA kits. Maternally derived antibodies (MDA) in the serum of unvaccinated piglets born to immune sows were above the level considered to be positive until about 10-11 weeks of life. The active humoral as well as CMI responses was the highest in group vaccinated at 10 and 14 weeks of age. The results of this study suggest that MDA may disturb or even block development of active humoral response. Early priming of T-cells with attenuated gE-deleted PRV vaccine in the presence of MDA could be successful, but obtaining a long-term cellular immunity at least one booster is required. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages.

    Science.gov (United States)

    Lee, Young-Tae; Ko, Eun-Ju; Hwang, Hye Suk; Lee, Jong Seok; Kim, Ki-Hye; Kwon, Young-Man; Kang, Sang-Moo

    2015-01-01

    The mechanisms of protection against respiratory syncytial virus (RSV) are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs]) have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs) in inducing long-term protection, mice that were 12 months earlier vaccinated with formalin-inactivated RSV (FI-RSV) or FG VLPs were treated with clodronate liposome prior to RSV infection. FI-RSV immune mice with clodronate liposome treatment showed increases in eosinophils, plasmacytoid dendritic cells, interleukin (IL)-4(+) T-cell infiltration, proinflammatory cytokines, chemokines, and, in particular, mucus production upon RSV infection. In contrast to FI-RSV immune mice with severe pulmonary histopathology, FG VLP immune mice showed no overt sign of histopathology and significantly lower levels of eosinophils, T-cell infiltration, and inflammatory cytokines, but higher levels of interferon-γ, which are correlated with protection against RSV disease. FG VLP immune mice with depletion of AMs showed increases in inflammatory cytokines and chemokines, as well as eosinophils. The results in this study suggest that FG nanoparticle vaccination induces long-term protection against RSV and that AMs play a role in the RSV protection by modulating eosinophilia, mucus production, inflammatory cytokines, and T-cell infiltration.

  10. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  11. Enhanced CD103 Expression and Reduced Frequencies of Virus-Specific CD8+ T Cells Among Airway Lymphocytes After Influenza Vaccination of Mice Deficient in Vitamins A + D.

    Science.gov (United States)

    Surman, Sherri L; Jones, Bart G; Woodland, David L; Hurwitz, Julia L

    2017-11-13

    Previous research has evaluated antibody responses toward an influenza virus vaccine in the context of deficiencies for vitamins A and D (VAD+VDD). Results showed that antibodies and antibody-forming cells in the respiratory tract were reduced in VAD+VDD mice. However, effectors were recovered when oral supplements of vitamins A + D were delivered at the time of vaccination. Here we address the question of how vaccine-induced CD8+ T cell responses are affected by deficiencies for vitamins A + D. VAD+VDD and control mice were vaccinated with an intranasal, cold-adapted influenza virus A/Puerto Rico/8/34 vaccine, with or without oral supplements of vitamins A + D. Results showed that the percentages of vaccine-induced CD8+ T cell and total CD4+ T cell responses were low among lymphocytes in the airways of VAD+VDD animals compared to controls. The CD103 membrane marker, a protein that binds e-cadherin (expressed on respiratory tract epithelial cells), was unusually high on virus-specific T cells in VAD+VDD mice compared to controls. Interestingly, when T cells specific for the PA224-233/Db epitope were compared with T cells specific for the NP366-374/Db epitope, the former population was more strongly positive for CD103. Preliminary experiments revealed normal or above-normal percentages for vaccine-induced T cells in airways when VAD+VDD animals were supplemented with vitamins A + D at the time of vaccination and on days 3 and 7 after vaccination. Our results suggest that close attention should be paid to levels of vitamins A and D among vaccine recipients in the clinical arena, as low vitamin levels may render individuals poorly responsive to vaccines.

  12. Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines.

    Science.gov (United States)

    Wen, Xiaobo; Wen, Ke; Cao, Dianjun; Li, Guohua; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka; Yuan, Lijuan

    2014-07-31

    Currently available live oral rotavirus vaccines, Rotarix(®) and RotaTeq(®), are highly efficacious in developed countries. However, the immunogenicity and efficacy of such vaccines in some developing countries are low. We reported previously that bacterially-expressed rotavirus ΔVP8* subunit vaccine candidates with P[8], P[4] or P[6] specificity elicited high-titer virus neutralizing antibodies in animals immunized intramuscularly. Of note was the finding that antibodies induced with the P[8]ΔVP8* vaccine neutralized both homotypic P[8] and heterotypic P[4] rotavirus strains to high titer. To further improve its vaccine potential, a tetanus toxoid universal CD4(+) T cell epitope P2 was introduced into P[8] or P[6]ΔVP8* construct. The resulting recombinant fusion proteins expressed in Escherichia coli were of high solubility and were produced with high yield. Two doses (10 or 20 μg/dose) of the P2-P[8]ΔVP8* vaccine or P2-P[6]ΔVP8* vaccine with aluminum phosphate adjuvant elicited significantly higher geometric mean homologous neutralizing antibody titers than the vaccines without P2 in intramuscularly immunized guinea pigs. Interestingly, high levels of neutralizing antibody responses induced in guinea pigs with 3 doses of the P2-P[8]ΔVP8* vaccine persisted for at least 6 months. Furthermore, in the gnotobiotic piglet challenge study, three intramuscular doses (50 μg/dose) of the P2-P[8]ΔVP8* vaccine with aluminum phosphate adjuvant significantly delayed the onset of diarrhea and significantly reduced the duration of diarrhea and the cumulative diarrhea score after oral challenge with virulent human rotavirus Wa (G1P[8]) strain. The P2-P[8]ΔVP8* vaccine induced serum virus neutralizing antibody and VP4-specific IgG antibody production prechallenge, and primed the pigs for higher antibody and intestinal and systemic virus-specific IFN-γ producing CD4(+) T cell responses postchallenge. These two subunit vaccines could be used at a minimum singly or

  13. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    Directory of Open Access Journals (Sweden)

    Jagadish Hiremath

    Full Text Available Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV. Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA nanoparticle (PLGA-NP based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2 chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  14. In vitro stimulation with HBV therapeutic vaccine candidate Nasvac activates B and T cells from chronic hepatitis B patients and healthy donors.

    Science.gov (United States)

    Lobaina, Yadira; Hardtke, Svenja; Wedemeyer, Heiner; Aguilar, Julio Cesar; Schlaphoff, Verena

    2015-02-01

    Hepatitis B virus (HBV) chronic infections remain a considerable health problem worldwide. The standard therapies have demonstrated limited efficacy, side effects or need life-long treatments. Nowadays therapeutic vaccination is a promising option. Recently, we developed a new vaccine formulation called Nasvac, based on the combination of surface and core antigens from HBV. Clinical trials already performed showed good efficacy in virus control. However, the exact mode of action of Nasvac formulation remains unclear. So far the functional impairment of DCs during persistent HBV infection is a controversial issue. On the other hand, it is known that B cells may function as antigen presenting cells (APC) activating T cells. The hepatitis B core antigen contained in Nasvac vaccine is able to bind and activate a high frequency of naive human B cells. In the present study the surface expression of activation and exhaustion markers on B cells and the subsequent activation of T cells after in vitro stimulation with Nasvac antigens were evaluated in chronic HBV patients and healthy donors. B- and T-cell phenotype and proliferation were assessed by flow cytometry. Our results indicate that in contrast to exhaustions markers B cell activation markers were increased on both study groups after Nasvac stimulation. A shift toward an activation phenotype was observed for both B and T cells. The present work suggests that B cells could act as efficient APCs for Nasvac antigens in humans, which might suggest the use of activated B cells as immunotherapeutic strategy for chronic hepatitis B. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance.

    Directory of Open Access Journals (Sweden)

    Emily Xie

    Full Text Available The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.

  16. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance

    Science.gov (United States)

    Xie, Emily; Kotha, Abhiroop; Biaco, Tracy; Sedani, Nikita; Zou, Jonathan; Stashenko, Phillip; Duncan, Margaret J.; Campos-Neto, Antonio; Cayabyab, Mark J.

    2015-01-01

    The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases. PMID:26618634

  17. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guérin (BCG) vaccination

    DEFF Research Database (Denmark)

    Elias, D; Wolday, D; Akuffo, H

    2001-01-01

    The protective efficacy of BCG vaccination against pulmonary tuberculosis (TB) is highly variable in different populations. The reason remains to be elucidated. This study aims to investigate the possible effect of intestinal helminths on the immune response to PPD in naturally immunized or BCG...... tuberculin skin test-negative in both groups were BCG vaccinated and later on tested for PPD-specific responses. Albendazole induced elimination/or reduction in intestinal worms resulting in a significant improvement in T cell proliferation and in interferon-gamma production by peripheral blood mononuclear...... cells (PBMC) stimulated with PPD. Moreover, BCG vaccination significantly improved PPD-specific immune responses in the treated group but not in the placebo group. The differences in the in vivo skin test responses were not significant. The data show that cellular immune responses to PPD are reduced...

  18. Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Deborah Heydenburg Fuller

    Full Text Available Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT, during antiretroviral therapy (ART induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans.

  19. Structural Simulation of MHC-peptide Interactions using T-cell Epitope in Iron-acquisition Protein of N. meningitides for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Namrata Mishra

    2010-12-01

    Full Text Available The present work uses a structural simulation approach to identify the potential target vaccine candidates or T cell epitopes (antigenic region that can activate T cell response in two iron acquisition proteins from Neisseria. An iron regulated outer membrane protein frpB: extracellular, [NMB1988], and a Major ferric Iron-binding protein fbpA: periplasmic, [NMB0634] critical for the survival of the pathogen in the host were used. Ten novel promiscuous epitopes from the two iron acquisition proteins were identified using bioinformatics interface. Of these epitopes, 630VQKAVGSIL638 present on frpB with high binding affinity for allele HLA*DR1 was identified with an anchor position at P2, an aliphatic residue at P4 and glycine at P6 making it thereby a potential quality choice for linking peptide-loaded MHC dynamics to T-cell activation and vaccine constructs. The feasibility and structural binding of predicted peptide to the respective HLA allele was investigated by molecular modeling and template-based structural simulation. The conformational properties of the linear peptide were investigated by molecular dynamics using GROMOS96 package and Swiss PDB viewer.

  20. CD4+ CD25− FoxP3+ regulatory cells are the predominant responding regulatory T cells after human rotavirus infection or vaccination in gnotobiotic pigs

    Science.gov (United States)

    Wen, Ke; Li, Guohua; Yang, Xingdong; Bui, Tammy; Bai, Muqun; Liu, Fangning; Kocher, Jacob; Yuan, Lijuan

    2012-01-01

    The distribution and dynamic changes of CD4+ CD25+ FoxP3+ and CD4+ CD25− FoxP3+ regulatory T (Treg) cells induced by human rotavirus (HRV) infection and vaccination were examined in neonatal gnotobiotic pigs infected with virulent HRV (VirHRV) or vaccinated with attenuated HRV (AttHRV). Subsets of gnotobiotic pigs in the AttHRV and control groups were challenged with VirHRV at post-inoculation day (PID) 28. We demonstrated that VirHRV infection or AttHRV vaccination reduced frequencies and numbers of tissue-residing Treg cells, and decreased the frequencies of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) producing CD4+ CD25− Treg cells in ileum, spleen and blood at PID 28. The frequencies of IL-10 and TGF-β producing CD4+ CD25− Treg cells in all sites at PID 28 were significantly inversely correlated with the protection rate against VirHRV-caused diarrhoea (r = −1, P protective immunity against rotavirus. Our results highlighted the importance of CD4+ CD25− Treg cells over CD4+ CD25+ Treg cells in rotavirus infection and immunity. AttHRV vaccination (induction of immune effector responses) reduced the expansion of CD4+ CD25− Treg cells in ileum seen in the challenged naive pigs during the acute phase of VirHRV infection and preserved normal levels of intestinal TGF-β producing Treg cells post-challenge. The reduced suppressive effect of Treg cells in AttHRV-vaccinated pigs would unleash effector/memory T-cell activation upon challenge. Preserving TGF-β producing CD4+ CD25− Treg cells is important in maintaining homeostasis. Based on our findings, a model is proposed to depict the dynamic equilibrium course of Treg and effector T-cell responses after primary rotavirus infection/vaccination and challenge. PMID:22716916

  1. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies.

    Science.gov (United States)

    Stanfield, Brent A; Pahar, Bapi; Chouljenko, Vladimir N; Veazey, Ronald; Kousoulas, Konstantin G

    2017-01-23

    We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG 1 after two booster vaccinations, while IgG subtypes IgG 2 and IgG 3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27 high CD38 high ) and mature memory (CD21 - IgM - ) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67 + ) follicular T helper cells and regulatory CXCR5 + CD8 + cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67 + ) CD4 + and CD8 + T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG 1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help

  2. Negative Correlation between Circulating CD4+FOXP3+CD127− Regulatory T Cells and Subsequent Antibody Responses to Infant Measles Vaccine but Not Diphtheria–Tetanus–Pertussis Vaccine Implies a Regulatory Role

    Directory of Open Access Journals (Sweden)

    Jorjoh Ndure

    2017-08-01

    Full Text Available Regulatory T cells (Tregs play a key homeostatic role by suppressing immune responses. They have been targeted in mouse and human cancer studies to improve vaccine immunogenicity and tumor clearance. A number of commercially available drugs and experimental vaccine adjuvants have been shown to target Tregs. Infants have high numbers of Tregs and often have poor responses to vaccination, yet the role Tregs play in controlling vaccine immunogenicity has not been explored in this age group. Herein, we explore the role of CD4+FOXP3+CD127− Tregs in controlling immunity in infant males and females to vaccination with diphtheria–tetanus–whole cell pertussis (DTP and/or measles vaccine (MV. We find correlative evidence that circulating Tregs at the time of vaccination suppress antibody responses to MV but not DTP; and Tregs 4 weeks after DTP vaccination may suppress vaccine-specific cellular immunity. This opens the exciting possibility that Tregs may provide a future target for improved vaccine responses in early life, including reducing the number of doses of vaccine required. Such an approach would need to be safe and the benefits outweigh the risks, thus further research in this area is required.

  3. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults

    NARCIS (Netherlands)

    Abel, Brian; Tameris, Michele; Mansoor, Nazma; Gelderbloem, Sebastian; Hughes, Jane; Abrahams, Deborah; Makhethe, Lebohang; Erasmus, Mzwandile; de Kock, Marwou; van der Merwe, Linda; Hawkridge, Anthony; Veldsman, Ashley; Hatherill, Mark; Schirru, Giulia; Pau, Maria Grazia; Hendriks, Jenny; Weverling, Gerrit Jan; Goudsmit, Jaap; Sizemore, Donata; McClain, J. Bruce; Goetz, Margaret; Gearhart, Jacqueline; Mahomed, Hassan; Hussey, Gregory D.; Sadoff, Jerald C.; Hanekom, Willem A.

    2010-01-01

    RATIONALE: AERAS-402 is a novel tuberculosis vaccine designed to boost immunity primed by bacillus Calmette-Guérin (BCG), the only licensed vaccine. OBJECTIVES: We investigated the safety and immunogenicity of AERAS-402 in healthy Mycobacterium tuberculosis-uninfected BCG-vaccinated adults from a

  4. An accelerated rabies vaccine schedule based on toll-like receptor 3 (TLR3) agonist PIKA adjuvant augments rabies virus specific antibody and T cell response in healthy adult volunteers.

    Science.gov (United States)

    Wijaya, Limin; Tham, Christine Y L; Chan, Yvonne F Z; Wong, Abigail W L; Li, L T; Wang, Lin-Fa; Bertoletti, Antonio; Low, Jenny G

    2017-02-22

    Rabies is a fatal disease where post-exposure prophylaxis (PEP) is crucial in preventing infection. However, deaths even after appropriate PEP, have been reported. The PIKA Rabies vaccine adjuvant is a TLR3 agonist that activates B and T cells leading to a robust immune response. We conducted a phase I, open label, randomized study in healthy adults to assess the safety and immunogenicity of the PIKA Rabies vaccine and an accelerated vaccine regimen. Thirty-seven subjects were randomized into 3 groups: control vaccine classic regimen, PIKA vaccine classic regimen and PIKA vaccine accelerated regimen. Subjects were followed up for safety, rabies virus neutralizing antibodies (RVNA) and T cell responses. Both the control and PIKA Rabies vaccine were well tolerated. All adverse events (AEs) were mild and self-limiting. Seventy-five percent of subjects in the PIKA accelerated regimen achieved a RVNA titer ⩾0.5IU/mL on day 7, compared to 53.9% in the PIKA classic regimen (p=0.411) and 16.7% in control vaccine classic regimen (p=0.012). The PIKA rabies vaccine elicited multi-specific rabies CD4 mediated T cell response already detectable ex vivo at day 7 after vaccination and that was maintained at day 42. The investigational PIKA rabies vaccine was well tolerated and more immunogenic than the commercially available vaccine in healthy adults. Clinical trial registry: The study was registered with clinicaltrials.gov NCT02657161. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma.

    Science.gov (United States)

    Garg, Abhishek D; Vandenberk, Lien; Koks, Carolien; Verschuere, Tina; Boon, Louis; Van Gool, Stefaan W; Agostinis, Patrizia

    2016-03-02

    The promise of dendritic cell (DC)-based immunotherapy has been established by two decades of translational research. Of the four malignancies most targeted with clinical DC immunotherapy, high-grade glioma (HGG) has shown the highest susceptibility. HGG-induced immunosuppression is a roadblock to immunotherapy, but may be overcome by the application of T helper 1 (T(H)1) immunity-biased, next-generation, DC immunotherapy. To this end, we combined DC immunotherapy with immunogenic cell death (ICD; a modality shown to induce T(H)1 immunity) induced by hypericin-based photodynamic therapy. In an orthotopic HGG mouse model involving prophylactic/curative setups, both biologically and clinically relevant versions of ICD-based DC vaccines provided strong anti-HGG survival benefit. We found that the ability of DC vaccines to elicit HGG rejection was significantly blunted if cancer cell-associated reactive oxygen species and emanating danger signals were blocked either singly or concomitantly, showing hierarchical effect on immunogenicity, or if DCs, DC-associated MyD88 signal, or the adaptive immune system (especially CD8(+) T cells) were depleted. In a curative setting, ICD-based DC vaccines synergized with standard-of-care chemotherapy (temozolomide) to increase survival of HGG-bearing mice by ~300%, resulting in ~50% long-term survivors. Additionally, DC vaccines also induced an immunostimulatory shift in the brain immune contexture from regulatory T cells to T(H)1/cytotoxic T lymphocyte/T(H)17 cells. Analysis of the The Cancer Genome Atlas glioblastoma cohort confirmed that increased intratumor prevalence of T(H)1/cytotoxic T lymphocyte/T(H)17 cells linked genetic signatures was associated with good patient prognosis. Therefore, pending final preclinical checks, ICD-based vaccines can be clinically translated for glioma treatment. Copyright © 2016, American Association for the Advancement of Science.

  6. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors

    Directory of Open Access Journals (Sweden)

    Hatano Manabu

    2004-11-01

    Full Text Available Abstract Background A novel tyrosine kinase receptor EphA2 is expressed at high levels in advanced and metastatic cancers. We examined whether vaccinations with synthetic mouse EphA2 (mEphA2-derived peptides that serve as T cell epitopes could induce protective and therapeutic anti-tumor immunity. Methods C57BL/6 mice received subcutaneous (s.c. vaccinations with bone marrow-derived dendritic cells (DCs pulsed with synthetic peptides recognized by CD8+ (mEphA2671–679, mEphA2682–689 and CD4+ (mEphA230–44 T cells. Splenocytes (SPCs were harvested from primed mice to assess the induction of cytotoxic T lymphocyte (CTL responses against syngeneic glioma, sarcoma and melanoma cell lines. The ability of these vaccines to prevent or treat tumor (s.c. injected MCA205 sarcoma or B16 melanoma; i.v. injected B16-BL6 establishment/progression was then assessed. Results Immunization of C57BL/6 mice with mEphA2-derived peptides induced specific CTL responses in SPCs. Vaccination with mEPhA2 peptides, but not control ovalbumin (OVA peptides, prevented the establishment or prevented the growth of EphA2+ or EphA2-negative syngeneic tumors in both s.c. and lung metastasis models. Conclusions These data indicate that mEphA2 can serve as an attractive target against which to direct anti-tumor immunity. The ability of mEphA2 vaccines to impact EphA2-negative tumors such as the B16 melanoma may suggest that such beneficial immunity may be directed against alternative EphA2+ target cells, such as the tumor-associated vascular endothelial cells.

  7. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity.

    Science.gov (United States)

    Kanagavelu, Saravana; Termini, James M; Gupta, Sachin; Raffa, Francesca N; Fuller, Katherine A; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S; Stone, Geoffrey W

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia

  8. Subunit vaccine candidate AMM down-regulated the regulatory T cells and enhanced the protective immunity of BCG on a suitable schedule.

    Science.gov (United States)

    Luo, Y; Jiang, W; Da, Z; Wang, B; Hu, L; Zhang, Y; An, R; Yu, H; Sun, H; Tang, K; Tang, Z; Wang, Y; Jing, T; Zhu, B

    2012-03-01

    Mycobacterium bovis bacillus Calmette-Guérin (BCG) priming and subunit vaccine boosting strategies are urgently needed to improve the protective efficacy of BCG in adult population. However, the schedule of subunit vaccine boosting is not well investigated, especially the optimal immune responses and vaccine immunization schedules are still not clear. We have constructed a novel subunit vaccine candidate consisting of fusion protein Ag85B-Mpt64 (190-198)-Mtb8.4 (AMM) in a complex adjuvant composed of dimo-thylidioctyl ammonium bromide (DDA) and BCG polysaccharide nucleic acid (BCG-PSN). In this study, we compared the effect of different boosting schedules of the subunit vaccine in the prime-boost strategies. C57BL/6 mice were primed with BCG first and then boosted with the AMM vaccine once at 10th week, twice at 8th, 10th week, or thrice at 6th, 8th, 10th week, respectively. The immune responses were evaluated at the 14th and 20th weeks, respectively. Twelve weeks after the last immunization, the mice were challenged with virulent Mycobacterium tuberculosis strain H37Rv, and the protective effect was evaluated. The results showed that BCG priming and the AMM vaccine boosting twice induced the strongest antigen-specific IFN-γ and IL-2 production, down-regulated CD4+ CD25+ FoxP3+ regulatory T cells (Tregs) and had the best protective effect among all groups, while boosting thrice induced the strongest IL-4 production and did not improve BCG-primed protection significantly. Boosting BCG with the AMM vaccine twice instead of once or thrice induced strong Th1-type immunity and down-regulated Tregs significantly, which correlated with the best protection against M. tuberculosis infection in mice. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  9. A long peptide from MELOE-1 contains multiple HLA class II T cell epitopes in addition to the HLA-A*0201 epitope: an attractive candidate for melanoma vaccination.

    Science.gov (United States)

    Rogel, Anne; Vignard, Virginie; Bobinet, Mathilde; Labarriere, Nathalie; Lang, François

    2011-03-01

    CD4(+) T cells contribute importantly to the antitumor T cell response, and thus, long peptides comprising CD4 and CD8 epitopes may be efficient cancer vaccines. We have previously identified an overexpressed antigen in melanoma, MELOE-1, presenting a CD8(+) T cell epitope, MELOE-1(36-44), in the HLA-A*0201 context. A T cell repertoire against this epitope is present in HLA-A*0201+ healthy subjects and melanoma patients and the adjuvant injection of TIL containing MELOE-1 specific CD8(+) T cells to melanoma patients was shown to be beneficial. In this study, we looked for CD4(+) T cell epitopes in the vicinity of the HLA-A*0201 epitope. Stimulation of PBMC from healthy subjects with MELOE-1(26-46) revealed CD4 responses in multiple HLA contexts and by cloning responsive CD4(+) T cells, we identified one HLA-DRβ1*1101-restricted and one HLA-DQβ1*0603-restricted epitope. We showed that the two epitopes could be efficiently presented to CD4(+) T cells by MELOE-1-loaded dendritic cells but not by MELOE-1+ melanoma cell-lines. Finally, we showed that the long peptide MELOE-1(22-46), containing the two optimal class II epitopes and the HLA-A*0201 epitope, was efficiently processed by DC to stimulate CD4(+) and CD8(+) T cell responses in vitro, making it a potential candidate for melanoma vaccination.

  10. GTL001 and bivalent CyaA-based therapeutic vaccine strategies against human papillomavirus and other tumor-associated antigens induce effector and memory T-cell responses that inhibit tumor growth.

    Science.gov (United States)

    Esquerré, Michaël; Momot, Marie; Goubier, Anne; Gonindard, Christophe; Leung-Theung-Long, Stéphane; Misseri, Yolande; Bissery, Marie-Christine

    2017-03-13

    GTL001 is a bivalent therapeutic vaccine containing human papillomavirus (HPV) 16 and HPV18 E7 proteins inserted in the Bordetella pertussis adenylate cyclase (CyaA) vector intended to prevent cervical cancer in HPV-infected women with normal cervical cytology or mild abnormalities. To be effective, therapeutic cervical cancer vaccines should induce both a T cell-mediated effector response against HPV-infected cells and a robust CD8+ T-cell memory response to prevent potential later infection. We examined the ability of GTL001 and related bivalent CyaA-based vaccines to induce, in parallel, effector and memory CD8+ T-cell responses to both vaccine antigens. Intradermal vaccination of C57BL/6 mice with GTL001 adjuvanted with a TLR3 agonist (polyinosinic-polycytidylic acid) or a TLR7 agonist (topical 5% imiquimod cream) induced strong HPV16 E7-specific T-cell responses capable of eradicating HPV16 E7-expressing tumors. Tumor-free mice also had antigen-specific memory T-cell responses that protected them against a subsequent challenge with HPV18 E7-expressing tumor cells. In addition, vaccination with bivalent vaccines containing CyaA-HPV16 E7 and CyaA fused to a tumor-associated antigen (melanoma-specific antigen A3, MAGEA3) or to a non-viral, non-tumor antigen (ovalbumin) eradicated HPV16 E7-expressing tumors and protected against a later challenge with MAGEA3- and ovalbumin-expressing tumor cells, respectively. These results show that CyaA-based bivalent vaccines such as GTL001 can induce both therapeutic and prophylactic anti-tumor T-cell responses. The CyaA platform can be adapted to different antigens and adjuvants, and therefore may be useful for developing other therapeutic vaccines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine

    NARCIS (Netherlands)

    Welters, Marij J. P.; Kenter, Gemma G.; Piersma, Sytse J.; Vloon, Annelies P. G.; Löwik, Margriet J. G.; Berends-van der Meer, Dorien M. A.; Drijfhout, Jan W.; Valentijn, A. Rob P. M.; Wafelman, Amon R.; Oostendorp, Jaap; Fleuren, Gert Jan; Offringa, Rienk; Melief, Cornelis J. M.; van der Burg, Sjoerd H.

    2008-01-01

    PURPOSE: The study aims to evaluate the effect of a human papillomavirus type 16 (HPV16) E6 and E7 synthetic long peptides vaccine on the antigen-specific T-cell response in cervical cancer patients. EXPERIMENTAL DESIGN: Patients with resected HPV16-positive cervical cancer were vaccinated with an

  12. Strain-specific Plasmodium falciparum multifunctional CD4(+) T cell cytokine expression in Malian children immunized with the FMP2.1/AS02A vaccine candidate.

    Science.gov (United States)

    Graves, Shawna F; Kouriba, Bourema; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Coulibaly, Drissa; Keita, Yamoussa; Laurens, Matthew B; Berry, Andrea A; Vekemans, Johan; Ripley Ballou, W; Lanar, David E; Dutta, Sheetij; Gray Heppner, D; Soisson, Lorraine; Diggs, Carter L; Thera, Mahamadou A; Doumbo, Ogobara K; Plowe, Christopher V; Sztein, Marcelo B; Lyke, Kirsten E

    2016-05-17

    Based on Plasmodium falciparum (Pf) apical membrane antigen 1 (AMA1) from strain 3D7, the malaria vaccine candidate FMP2.1/AS02A showed strain-specific efficacy in a Phase 2 clinical trial in 400 Malian children randomized to 3 doses of the AMA1 vaccine candidate or control rabies vaccine on days 0, 30 and 60. A subset of 10 Pf(-) (i.e., no clinical malaria episodes) AMA1 recipients, 11 Pf(+) (clinical malaria episodes with parasites with 3D7 or Fab9-type AMA1 cluster 1 loop [c1L]) AMA1 recipients, and 10 controls were randomly chosen for analysis. Peripheral blood mononuclear cells (PBMCs) isolated on days 0, 90 and 150 were stimulated with full-length 3D7 AMA1 and c1L from strains 3D7 (c3D7) and Fab9 (cFab9). Production of IFN-γ, TNF-α, IL-2, and/or IL-17A was analyzed by flow cytometry. Among AMA1 recipients, 18/21 evaluable samples stimulated with AMA1 demonstrated increased IFN-γ, TNF-α, and IL-2 derived from CD4(+) T cells by day 150 compared to 0/10 in the control group (pvaccines, CD4(+) cells expressing both TNF-α and IL-2 were increased in Pf(-) children compared to Pf(+) children. When PBMCs were stimulated with c3D7 and cFab9 separately, 4/18 AMA1 recipients with an AMA1-specific CD4(+) response had a significant response to one or both c1L. This suggests that recognition of the AMA1 antigen is not dependent upon c1L alone. In summary, AMA1-specific T cell responses were notably increased in children immunized with an AMA1-based vaccine candidate. The role of CD4(+)TNF-α(+)IL-2(+)-expressing T cells in vaccine-induced strain-specific protection against clinical malaria requires further exploration. Clinicaltrials.gov Identifier: NCT00460525. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gene Expression Driven by a Strong Viral Promoter in MVA Increases Vaccination Efficiency by Enhancing Antibody Responses and Unmasking CD8⁺ T Cell Epitopes.

    Science.gov (United States)

    Becker, Pablo D; Nörder, Miriam; Weissmann, Sebastian; Ljapoci, Ronny; Erfle, Volker; Drexler, Ingo; Guzmán, Carlos A

    2014-07-22

    Viral vectors are promising tools for vaccination strategies and immunotherapies. However, CD8⁺ T cell responses against pathogen-derived epitopes are usually limited to dominant epitopes and antibody responses to recombinant encoded antigens (Ags) are mostly weak. We have previously demonstrated that the timing of viral Ag expression in infected professional Ag-presenting cells strongly shapes the epitope immunodominance hierarchy. T cells recognizing determinants derived from late viral proteins have a clear disadvantage to proliferate during secondary responses. In this work we evaluate the effect of overexpressing the recombinant Ag using the modified vaccinia virus early/late promoter H5 (mPH5). Although the Ag-expression from the natural promoter 7.5 (P7.5) and the mPH5 seemed similar, detailed analysis showed that mPH5 not only induces higher expression levels than P7.5 during early phase of infection, but also Ag turnover is enhanced. The strong overexpression during the early phase leads to broader CD8 T cell responses, while preserving the priming efficiency of stable Ags. Moreover, the increase in Ag-secretion favors the induction of strong antibody responses. Our findings provide the rationale to develop new strategies for fine-tuning the responses elicited by recombinant modified vaccinia virus Ankara by using selected promoters to improve the performance of this viral vector.

  14. Gene Expression Driven by a Strong Viral Promoter in MVA Increases Vaccination Efficiency by Enhancing Antibody Responses and Unmasking CD8+ T Cell Epitope

    Science.gov (United States)

    Becker, Pablo D.; Nörder, Miriam; Weissmann, Sebastian; Ljapoci, Ronny; Erfle, Volker; Drexler, Ingo; Guzmán, Carlos A.

    2014-01-01

    Viral vectors are promising tools for vaccination strategies and immunotherapies. However, CD8+ T cell responses against pathogen-derived epitopes are usually limited to dominant epitopes and antibody responses to recombinant encoded antigens (Ags) are mostly weak. We have previously demonstrated that the timing of viral Ag expression in infected professional Ag-presenting cells strongly shapes the epitope immunodominance hierarchy. T cells recognizing determinants derived from late viral proteins have a clear disadvantage to proliferate during secondary responses. In this work we evaluate the effect of overexpressing the recombinant Ag using the modified vaccinia virus early/late promoter H5 (mPH5). Although the Ag-expression from the natural promoter 7.5 (P7.5) and the mPH5 seemed similar, detailed analysis showed that mPH5 not only induces higher expression levels than P7.5 during early phase of infection, but also Ag turnover is enhanced. The strong overexpression during the early phase leads to broader CD8 T cell responses, while preserving the priming efficiency of stable Ags. Moreover, the increase in Ag-secretion favors the induction of strong antibody responses. Our findings provide the rationale to develop new strategies for fine-tuning the responses elicited by recombinant modified vaccinia virus Ankara by using selected promoters to improve the performance of this viral vector. PMID:26344747

  15. Gene Expression Driven by a Strong Viral Promoter in MVA Increases Vaccination Efficiency by Enhancing Antibody Responses and Unmasking CD8+ T Cell Epitopes

    Directory of Open Access Journals (Sweden)

    Pablo D. Becker

    2014-07-01

    Full Text Available Viral vectors are promising tools for vaccination strategies and immunotherapies. However, CD8+ T cell responses against pathogen-derived epitopes are usually limited to dominant epitopes and antibody responses to recombinant encoded antigens (Ags are mostly weak. We have previously demonstrated that the timing of viral Ag expression in infected professional Ag-presenting cells strongly shapes the epitope immunodominance hierarchy. T cells recognizing determinants derived from late viral proteins have a clear disadvantage to proliferate during secondary responses. In this work we evaluate the effect of overexpressing the recombinant Ag using the modified vaccinia virus early/late promoter H5 (mPH5. Although the Ag-expression from the natural promoter 7.5 (P7.5 and the mPH5 seemed similar, detailed analysis showed that mPH5 not only induces higher expression levels than P7.5 during early phase of infection, but also Ag turnover is enhanced. The strong overexpression during the early phase leads to broader CD8 T cell responses, while preserving the priming efficiency of stable Ags. Moreover, the increase in Ag-secretion favors the induction of strong antibody responses. Our findings provide the rationale to develop new strategies for fine-tuning the responses elicited by recombinant modified vaccinia virus Ankara by using selected promoters to improve the performance of this viral vector.

  16. Comparison of Vaccine-Induced Effector CD8 T Cell Responses Directed against Self- and Non-Self-Tumor Antigens

    DEFF Research Database (Denmark)

    Pedersen, Sara R; Sørensen, Maria R; Buus, Søren

    2013-01-01

    . Prophylactic vaccination with adenoviral vectors expressing either TRP-2 (Ad-Ii-TRP-2) or GP100 (Ad-Ii-GP100) had little or no effect on the growth of s.c. B16 melanomas, and only Ad-Ii-TRP-2 was able to induce a marginal reduction of B16 lung metastasis. In contrast, vaccination with a similar vector...

  17. CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination

    DEFF Research Database (Denmark)

    Elvang, Tara; Christensen, Jan P; Billeskov, Rolf

    2009-01-01

    BACKGROUND: Although CD4 T cells are crucial for defense against M.tb, it is still not clear whether the optimal response against M.tb in fact involves both CD4 and CD8 T cells. To test this, we used a new vaccine strategy that generated a strong balanced T cell response consisting of both CD4......-alpha(+), whereas most of the CD8 T cells expressed IFN-gamma(+) and TNF-alpha(+) and possessed strong cytotoxic potential. The heterologous prime boost protocol also gave an increase in protective efficacy against M.tb challenge compared to H4/CAF01 and Ad-H4. Both the H4 specific CD4 and CD8 T cells were...... on the priming of CD4 and CD8 cells and in terms of the protective capacity of the vaccine, and therefore represent an interesting new vaccine strategy against M.tb. However, CD4 and CD8 T cells respond very differently to live M.tb challenge, in a manner which supports the consensus that CD4 T cells do play...

  18. Tomatine Adjuvantation of Protective Immunity to a Major Pre-erythrocytic Vaccine Candidate of Malaria is Mediated via CD8+ T Cell Release of IFN-γ

    Directory of Open Access Journals (Sweden)

    Karen G. Heal

    2010-01-01

    Full Text Available The glycoalkaloid tomatine, derived from the wild tomato, can act as a powerful adjuvant to elicit an antigen-specific cell-mediated immune response to the circumsporozoite (CS protein, a major pre-erythrocytic stage malaria vaccine candidate antigen. Using a defined MHC-class-I-restricted CS epitope in a Plasmodium berghei rodent model, antigen-specific cytotoxic T lymphocyte activity and IFN-γ secretion ex vivo were both significantly enhanced compared to responses detected from similarly stimulated splenocytes from naive and tomatine-saline-immunized mice. Further, through lymphocyte depletion it is demonstrated that antigen-specific IFN-γ is produced exclusively by the CD8+ T cell subset. We conclude that the processing of the P. berghei CS peptide as an exogenous antigen and its presentation via MHC class I molecules to CD8+ T cells leads to an immune response that is an in vitro correlate of protection against pre-erythrocytic malaria. Further characterization of tomatine as an adjuvant in malaria vaccine development is indicated.

  19. Intra- and inter-clade cross-reactivity by HIV-1 Gag specific T-cells reveals exclusive and commonly targeted regions: implications for current vaccine trials.

    Directory of Open Access Journals (Sweden)

    Lycias Zembe

    Full Text Available The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128 and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001. Consistent with these results, the predicted Major Histocompatibility Complex Class I IC(50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001, suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.

  20. Identification and retrospective validation of T-cell epitopes in the hepatitis C virus genotype 4 proteome: an accelerated approach toward epitope-driven vaccine development.

    Science.gov (United States)

    Abdel-Hady, Karim M; Gutierrez, Andres H; Terry, Frances; Desrosiers, Joe; De Groot, Anne S; Azzazy, Hassan M E

    2014-01-01

    With over 150 million people chronically infected worldwide and millions more infected annually, hepatitis C continues to pose a burden on the global healthcare system. The standard therapy of hepatitis C remains expensive, with severe associated side effects and inconsistent cure rates. Vaccine development against the hepatitis C virus has been hampered by practical and biological challenges posed by viral evasion mechanisms. Despite these challenges, HCV vaccine research has presented a number of candidate vaccines that progressed to phase II trials. However, those efforts focused mainly on HCV genotypes 1 and 2 as vaccine targets and barely enough attention was given to genotype 4, the variant most prevalent in the Middle East and central Africa. We describe herein the in silico identification of highly conserved and immunogenic T-cell epitopes from the HCV genotype 4 proteome, using the iVAX immunoinformatics toolkit, as targets for an epitope-driven vaccine. We also describe a fast and inexpensive approach for results validation using the empirical data on the Immune Epitope Database (IEDB) as a reference. Our analysis identified 90 HLA class I epitopes of which 20 were found to be novel and 19 more had their binding predictions retrospectively validated; empirical data for the remaining 51 epitopes was insufficient to validate their binding predictions. Our analysis also identified 14 HLA class II epitopes, of which 8 had most of their binding predictions validated. Further investigation is required regarding the efficacy of the identified epitopes as vaccine targets in populations where HCV genotype 4 is most prevalent.

  1. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    Science.gov (United States)

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Annual vaccination against influenza virus hampers development of virus-specific CD8 + T cell immunity in children

    NARCIS (Netherlands)

    R. Bodewes (Rogier); P.L.A. Fraaij (Pieter); M.M. Geelhoed-Mieras (Martina); C.A. van Baalen (Carel); H.A.W.M. Tiddens (Harm); A.M.C. van Rossum (Annemarie); F.R. van der Klis (Fiona); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    2011-01-01

    textabstractInfection with seasonal influenza A viruses induces immunity to potentially pandemic influenza A viruses of other subtypes (heterosubtypic immunity). We recently demonstrated that vaccination against seasonal influenza prevented the induction of heterosubtypic immunity against influenza

  3. Novel Role for Interleukin-17 in Enhancing Type 1 Helper T Cell Immunity in the Female Genital Tract following Mucosal Herpes Simplex Virus 2 Vaccination.

    Science.gov (United States)

    Bagri, Puja; Anipindi, Varun C; Nguyen, Philip V; Vitali, Danielle; Stämpfli, Martin R; Kaushic, Charu

    2017-12-01

    It is well established that interferon gamma (IFN-γ) production by CD4 + T cells is critical for antiviral immunity against herpes simplex virus 2 (HSV-2) genital infection. However, the role of interleukin-17A (IL-17A) production by CD4 + T cells in HSV-2 antiviral immunity is yet to be elucidated. Here we demonstrate that IL-17A plays an important role in enhancing antiviral T helper type 1 (T h 1) responses in the female genital tract (FGT) and is essential for effective protection conferred by HSV-2 vaccination. While IL-17A did not play a critical role during primary genital HSV-2 infection, seen by lack of differences in susceptibility between IL-17A-deficient ( IL-17A -/- ) and wild-type (WT) C57BL/6 mice, it was critical for mediating antiviral responses after challenge/reexposure. Compared to WT mice, IL-17A -/- mice (i) infected intravaginally and reexposed or (ii) vaccinated intranasally and challenged intravaginally demonstrated poor outcomes. Following intravaginal HSV-2 reexposure or challenge, vaccinated IL-17A -/- mice had significantly higher mortality, greater disease severity, higher viral shedding, and higher levels of proinflammatory cytokines and chemokines in vaginal secretions. Furthermore, IL-17A -/- mice had impaired T h 1 cell responses after challenge/reexposure, with significantly lower proportions of vaginal IFN-γ + CD4 + T cells. The impaired T h 1 cell responses in IL-17A -/- mice coincided with smaller populations of IFN-γ + CD4 + tissue resident memory T (T RM ) cells in the genital tract postimmunization. Taken together, these findings describe a novel role for IL-17A in regulating antiviral IFN-γ + T h 1 cell immunity in the vaginal tract. This strategy could be exploited to enhance antiviral immunity following HSV-2 vaccination. IMPORTANCE T helper type 1 (T h 1) immunity, specifically interferon gamma (IFN-γ) production by CD4 + T cells, is critical for protection against genital herpesvirus (HSV-2) infection, and

  4. The Challenges and Opportunities for Development of a T-Cell Epitope-Based Herpes Simplex Vaccine

    Science.gov (United States)

    Kuo, Tiffany; Wang, Christine; Badakhshan, Tina; Chilukuri, Sravya; BenMohamed, Lbachir

    2014-01-01

    The infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a half billion individuals worldwide. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. HSV-1 infections are more prevalent than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. While genital herpes in mainly caused by HSV-2 infections, in recent years, there is an increase in the proportion of genital herpes caused by HSV-1 infections in young adults, which reach 50% in some western societies. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries their development has been notoriously difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One “common denominator” among previously failed clinical herpes vaccine trials is that they either used a whole virus or whole viral proteins, which contain both pathogenic “symptomatic” and protective “asymptomatic” antigens/epitopes. In this report, we continue to advocate that using an “asymptomatic” epitope-based vaccine strategy that selectively incorporates protective epitopes which: (i) are exclusively recognized, in vitro, by effector memory CD4+ and CD8+ TEM cells from “naturally” protected seropositive asymptomatic individuals; and (ii) protect, in vivo, human leukocyte antigen (HLA) transgenic animal models from ocular and genital herpes infections and diseases, could be the answer to many of the scientific challenges facing HSV vaccine

  5. Assessment of vaccine-induced CD4 T cell responses to the 119-143 immunodominant region of the tumor-specific antigen NY-ESO-1 using DRB1*0101 tetramers.

    Science.gov (United States)

    Ayyoub, Maha; Pignon, Pascale; Dojcinovic, Danijel; Raimbaud, Isabelle; Old, Lloyd J; Luescher, Immanuel; Valmori, Danila

    2010-09-15

    NY-ESO-1 (ESO), a tumor-specific antigen of the cancer/testis group, is presently viewed as an important model antigen for the development of generic anticancer vaccines. The ESO(119-143) region is immunodominant following immunization with a recombinant ESO vaccine. In this study, we generated DRB1*0101/ESO(119-143) tetramers and used them to assess CD4 T-cell responses in vaccinated patients expressing DRB1*0101 (DR1). We generated tetramers of DRB1*0101 incorporating peptide ESO(119-143) using a previously described strategy. We assessed ESO(119-143)-specific CD4 T cells in peptide-stimulated postvaccine cultures using the tetramers. We isolated DR1/ESO(119-143) tetramer(+) cells by cell sorting and characterized them functionally. We assessed vaccine-induced CD4(+) DR1/ESO(119-143) tetramer(+) T cells ex vivo and characterized them phenotypically. Staining of cultures from vaccinated patients with DR1/ESO(119-143) tetramers identified vaccine-induced CD4 T cells. Tetramer(+) cells isolated by cell sorting were of T(H)1 type and efficiently recognized full-length ESO. We identified ESO(123-137) as the minimal optimal epitope recognized by DR1-restricted ESO-specific CD4 T cells. By assessing DR1/ESO(119-143) tetramer(+) cells using T cell receptor (TCR) β chain variable region (Vβ)-specific antibodies, we identified several frequently used Vβ. Finally, direct ex vivo staining of patients' CD4 T cells with tetramers allowed the direct quantification and phenotyping of vaccine-induced ESO-specific CD4 T cells. The development of DR1/ESO(119-143) tetramers, allowing the direct visualization, isolation, and characterization of ESO-specific CD4 T cells, will be instrumental for the evaluation of spontaneous and vaccine-induced immune responses to this important tumor antigen in DR1-expressing patients. ©2010 AACR.

  6. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice.

    Science.gov (United States)

    Xie, Yufeng; Wu, Jie; Xu, Aizhang; Ahmeqd, Shahid; Sami, Amer; Chibbar, Rajni; Freywald, Andrew; Zheng, Changyu; Xiang, Jim

    2018-03-07

    DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-T EXO capable of stimulating HER2-specific CD8 + T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdV HuRt expressing HuRt fusion protein composed of NH 2 -HER2 1-407 (Hu) and COOH-neu 408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-T EXO using polyclonal CD4 + T-cells uptaking exosomes released by AdV HuRt -transfected dendritic cells. We found that the HuRt-T EXO vaccine stimulates enhanced CD4 + T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-T EXO vaccine. By using PE-H-2K d /HER2 23-71 tetramer, we determined that HuRt-T EXO stimulates stronger HER2-specific CD8 + T-cell responses eradicating 90% of HER2-specific target cells, while HER2-T EXO -induced CD8 + T-cell responses only eliminating 53% targets. Furthermore, HuRt-T EXO , but not HER2-T EXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1 HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10 A2/HER2 melanoma. HuRt-T EXO -stimulated HER2-specific CD8 + T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-T EXO, circumventing HER2 tolerance, may provide a new

  7. A candidate HIV/AIDS vaccine (MVA-B lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available The vaccinia virus (VACV C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  8. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Joanne M Lumsden

    Full Text Available A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP-specific CD4(+ T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (T(E/EM and/or central memory (T(CM CD4(+ T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both T(E/EM and T(CM cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4(+ T(E/EM cells and of CD4(+ T(CM cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4(+ T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4(+ T(E/EM cells and of CD4(+ T(E/EM cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both T(E/EM and T(CM cells are major producers of IL-2.

  9. Mosaic vaccines elicit CD8+ T cell responses in monkeys that confer immune coverage of diverse HIV strains

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Will [Los Alamos National Laboratory; Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    Creation of a successful HIV vaccine will require the development of a strategy to generate cellular immunity with sufficient cross-clade breadth to deal with the extreme genetic diversity of the virus. Polyvalent mosaic immunogens derived from in silica recombination of natural strains of HIV are designed to induce cellular immune responses that maximally cover the sequence diversity of circulating virus isolates. Immunization of rhesus monkeys with plasmid DNA and recombinant vaccinia virus vaccine constructs expressing either consensus immunogens or polyvalent mosaic immunogens elicited a CD4+ T lymphocyte-biased response with comparably broad epitope-specific total T lymphocyte specificities. However, immunization with the mosaic immunogens induced HIV-specific CD8+ T lymphocyte responses with markedly greater depth and breadth. Therefore, the use of polyvalent mosaic immunogens is a promising strategy for a global vaccine for HIV.

  10. Single-chain lipopeptide vaccines for the induction of virus-specific cytotoxic T cell responses in randomly selected populations.

    Science.gov (United States)

    Gras-Masse, H

    2001-12-01

    Effective vaccine development is now taking advantage of the rapidly accumulating information concerning the molecular basis of a protective immune response. Analysts and medicinal chemists have joined forces with immunologists and taken up the clear challenge of identifying immunologically active structural elements and synthesizing them in pure, reproducible forms. Current literature reveals the growing interest for extremely reductionist approaches aiming at producing totally synthetic vaccines that would be fully defined at the molecular level and particularly safe. The sequential information contained in these formulations tends to be minimized to those epitopes which elicit neutralizing antibodies, or cell-mediated responses. In the following review, we describe some of our results in developing fully synthetic, clinically acceptable lipopeptide vaccines for inducing cytotoxic T lymphocytes (CTL) responses in randomly selected populations.

  11. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    Directory of Open Access Journals (Sweden)

    Mayara Fernanda Maggioli

    2016-10-01

    Full Text Available Central memory T cells (Tcm and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB; however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector / memory populations from bacille Calmette Guerin (BCG vaccinated and non-vaccinated calves prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves; only differing in magnitude (i.e., infected > vaccinated. BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (three weeks post-infection, non-vaccinates had greater antigen-specific IFN-γ/TNF-α and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains were detected in memory subsets, as well as in effector cells, as early as three weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB.

  12. EVOLVE

    CERN Document Server

    Deutz, André; Schütze, Oliver; Legrand, Pierrick; Tantar, Emilia; Tantar, Alexandru-Adrian

    2017-01-01

    This book comprises nine selected works on numerical and computational methods for solving multiobjective optimization, game theory, and machine learning problems. It provides extended versions of selected papers from various fields of science such as computer science, mathematics and engineering that were presented at EVOLVE 2013 held in July 2013 at Leiden University in the Netherlands. The internationally peer-reviewed papers include original work on important topics in both theory and applications, such as the role of diversity in optimization, statistical approaches to combinatorial optimization, computational game theory, and cell mapping techniques for numerical landscape exploration. Applications focus on aspects including robustness, handling multiple objectives, and complex search spaces in engineering design and computational biology.

  13. Pertussis specific T-cell immunity in Dutch children: Differences after whole-cell versus acellular vaccination

    NARCIS (Netherlands)

    Schure, R.M.

    2014-01-01

    Bordetella pertussis is the causative bacteria of whooping cough. Whooping cough is a highly contagious infection, which is characterized by coughing with whooping and post-tussive vomiting. In particular, infants under 6 months of age who have not been fully vaccinated, are at risk for serious

  14. Broadening of the T-cell repertoire to HIV-1 Gag p24 by vaccination of HLA-A2/DR transgenic mice with overlapping peptides in the CAF05 adjuvant

    DEFF Research Database (Denmark)

    Korsholm, Karen S; Karlsson, Ingrid; Tang, Sheila T

    2013-01-01

    -cell responses in CB6F1 mice. The adjuvanted vaccine also induced functional antigen-specific cytotoxicity in vivo. Furthermore, we found that when fragmenting the Gag p24 protein into overlapping Gag p24 peptides, a broader T-cell epitope specificity was induced in the humanized human leukocyte antigen (HLA)-A2....../DR-transgenic mouse model. Thus, combining overlapping Gag p24 peptides with CAF05 appears to be a promising and simple strategy for inducing broader T-cell responses to multiple conserved epitopes which will be relevant for both prophylactic and therapeutic HIV-1 vaccines....

  15. Expanding specificity of class I restricted CD8+ T cells for viral epitopes following multiple inoculations of swine with a human adenovirus vectored foot-and-mouth disease virus (FMDV) vaccine

    DEFF Research Database (Denmark)

    Pedersen, Lasse E.; Patch, Jared R; Kenney, Mary

    2016-01-01

    class I major histocompatibility complex (MHC) tetramer staining. We also showed that a modified replication defective human adenovirus 5 vector expressing the FMDV structural proteins (Ad5-FMDV-T vaccine) targets the induction of a CD8(+) CTL response with a minimal humoral response. In this report, we...... show that the specificity of the CD8(+) T cell response to Ad5-FMDV-T varies between cohorts of genetically identical animals. Further, we demonstrate epitope specificity of CD8(+) T cells expands following multiple immunizations with this vaccine....

  16. Elucidating the T-cell reactivity against porcine IDO and RhoC to establish the pig as an animal model for vaccine development against human cancer

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    is a requirement for activation of CTLs. Previously, the development of therapeutic anti-cancer vaccines have largely been based on rodent models, in particular mice; however the majority of these fail to establish a therapeutic response once put into clinical trials. Pigs have the potential of serving as a model...... measured the peptide-SLA complex stability of these and found a total of 89 stable (t½ ≥ 0.5 hours) peptide-MHC complexes with SLA-1*04:01, -1*07:02, -2*04:01, -2*05:02 and/or -3*04:01. For a pilot study, 12 pigs were immunized with overlapping 20-mer peptides spanning the entire IDO and RhoC sequences......Immune therapy of cancer has recently experienced a great breakthrough with prolonged overall survival in patients with metastatic disease following the use of checkpoint inhibitors and T cell therapy with ex vivo expanded CD8+ cytotoxic T cells (CTLs). In the further development of immune...

  17. Live, Attenuated Venezuelan Equine Encephalitis Virus Vaccine (TC83) Causes Persistent Brain Infection in Mice with Non-functional αβ T-Cells

    Science.gov (United States)

    Taylor, Katherine; Kolokoltsova, Olga; Ronca, Shannon E.; Estes, Mark; Paessler, Slobodan

    2017-01-01

    Intranasal infection with vaccine strain of Venezuelan equine encephalitis virus (TC83) caused persistent viral infection in the brains of mice without functional αβ T-cells (αβ-TCR -/-). Remarkably, viral kinetics, host response gene transcripts and symptomatic disease are similar between αβ-TCR -/- and wild-type C57BL/6 (WT) mice during acute phase of infection [0–13 days post-infection (dpi)]. While WT mice clear infectious virus in the brain by 13 dpi, αβ-TCR -/- maintain infectious virus in the brain to 92 dpi. Persistent brain infection in αβ-TCR -/- correlated with inflammatory infiltrates and elevated cytokine protein levels in the brain at later time points. Persistent brain infection of αβ-TCR -/- mice provides a novel model to study prolonged alphaviral infection as well as the effects and biomarkers of long-term viral inflammation in the brain. PMID:28184218

  18. Long term disease-free survival and T cell and antibody responses in women with high-risk Her2+ breast cancer following vaccination against Her2

    Directory of Open Access Journals (Sweden)

    Anders Carey

    2007-09-01

    Full Text Available Abstract Background The HER2-inhibiting antibody trastuzumab, in combination with chemotherapy, significantly improves survival of women with resected, HER2-overexpressing breast cancers, but is associated with toxicities including a risk of cardiomyopathy. Additionally, the beneficial effect of trastuzumab is expected to decrease once the drug is discontinued. We proposed to address these concerns by using cancer vaccines to stimulate HER2 intracellular domain (ICD-specific T cell and antibody responses. Methods Subjects with stage II (≥ 6 +LN, III, or stage IV breast cancerwith > 50% HER2 overexpressing tumor cells who were disease-free after surgery and adjuvant therapy were eligible. Vaccines consisted of immature, cultured DC (n = 3, mature cultured DC (n = 3, or mature Flt3-ligand mobilized peripheral blood DC (n = 1 loaded with ICD, or tetanus toxoid, keyhole limpet hemocyanin or CMV peptide as controls, and were administered intradermally/subcutaneously four times at 3 week intervals. ICD-specific T cell and antibody responses were measured. Cardiac function was determined by MUGA or ECHO; long term disease status was obtained from patient contact. Results All seven patients successfully underwent DC generation and five received all 4 immunizations. There were no toxicities greater than grade 1 or ejection fraction decrements below normal. Delayed-type hypersensitivity (DTH reactions at the injection site occurred in 6/7 patients and HER2 specificity was detected by cytokine flow cytometry or ELISPOT in 5 patients. At more than 5 years of follow-up, 6/7 had detectable anti-ICD antibodies. One patient experienced a pulmonary recurrence at 4 years from their study immunizations. This recurrence was resected and they are without evidence of disease. All patients are alive and disease-free at 4.6–6.7 years of follow-up. Conclusion Although this was a small pilot study, the well-tolerated nature of the vaccines, the lack of cardiac

  19. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-Staph) Vaccines Induce Sustained Protective Humoral and Cellular Immune Responses, with a Critical Role for Effector CD4 T Cells at Low Antibody Titers

    Science.gov (United States)

    Monaci, Elisabetta; Mancini, Francesca; Lofano, Giuseppe; Bacconi, Marta; Tavarini, Simona; Sammicheli, Chiara; Arcidiacono, Letizia; Giraldi, Monica; Galletti, Bruno; Rossi Paccani, Silvia; Torre, Antonina; Fontana, Maria Rita; Grandi, Guido; de Gregorio, Ennio; Bensi, Giuliano; Chiarot, Emiliano; Nuti, Sandra; Bagnoli, Fabio; Soldaini, Elisabetta; Bertholet, Sylvie

    2015-01-01

    Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen. PMID:26441955

  20. MF59- and Al(OH3-adjuvanted Staphylococcus aureus (4C-Staph vaccines induce sustained protective humoral and cellular immune responses, with a critical role for effector CD4 T cells at low antibody titers.

    Directory of Open Access Journals (Sweden)

    Elisabetta eMonaci

    2015-09-01

    Full Text Available Staphylococcus aureus (S. aureus is an important opportunistic pathogen that may cause invasive life-threatening infections like sepsis and pneumonia. Due to increasing antibiotic-resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell deficient mice, we demonstrated that both T and B cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.

  1. Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88.

    Science.gov (United States)

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; Benmohamed, Lbachir

    2012-11-01

    Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p herpes infection and disease.

  2. Conservation of HIV-1 T cell epitopes across time and clades: validation of immunogenic HLA-A2 epitopes selected for the GAIA HIV vaccine.

    Science.gov (United States)

    Levitz, Lauren; Koita, Ousmane A; Sangare, Kotou; Ardito, Matthew T; Boyle, Christine M; Rozehnal, John; Tounkara, Karamoko; Dao, Sounkalo M; Koné, Youssouf; Koty, Zoumana; Buus, Soren; Moise, Leonard; Martin, William D; De Groot, Anne S

    2012-12-14

    HIV genomic sequence variability has complicated efforts to generate an effective globally relevant vaccine. Regions of the viral genome conserved in sequence and across time may represent the "Achilles' heel" of HIV. In this study, highly conserved T-cell epitopes were selected using immunoinformatics tools combining HLA-A2 supertype binding predictions with relative global conservation. Analysis performed in 2002 on 10,803 HIV-1 sequences, and again in 2009, on 43,822 sequences, yielded 38 HLA-A2 epitopes. These epitopes were experimentally validated for HLA binding and immunogenicity with PBMCs from HIV-infected patients in Providence, Rhode Island, and/or Bamako, Mali. Thirty-five (92%) stimulated an IFNγ response in PBMCs from at least one subject. Eleven of fourteen peptides (79%) were confirmed as HLA-A2 epitopes in both locations. Validation of these HLA-A2 epitopes conserved across time, clades, and geography supports the hypothesis that such epitopes could provide effective coverage of virus diversity and would be appropriate for inclusion in a globally relevant HIV vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  4. False-positive serologic tests for human T-cell lymphotropic virus type I among blood donors following influenza vaccination, 1992.

    Science.gov (United States)

    1993-03-12

    From October 31 through December 15, 1991, 10 blood donors to the American Red Cross Blood Services, Badger Region (ARCBS), were found to have false-positive screening enzyme-linked immunosorbent assays (ELISAs) for antibodies to two or more of the following viruses: human immunodeficiency virus type 1 (HIV-1), human T-cell lymphotrophic virus type 1 (HTLV-I), and hepatitis C virus (HCV). An investigation by the Division of Health, Wisconsin Department of Health and Social Services (WDOH), and the ARCBS indicated that the risk for false-positive reactivity was associated with antecedent receipt of influenza vaccine formulated for the 1991-92 season. In March 1992, the ARCBS began use of newly available ELISAs for anti-HIV (HIVAB, HIV-1/HIV-2 (rDNA) EIA [Abbott Laboratories, Abbott Park, Illinois]) and anti-HCV (HCV 2.0 ELISA [Ortho Diagnostic Systems, Raritan, New Jersey]), while continuing to test with the ELISA for anti-HTLV-I [HTLV-I ELISA (Abbott Laboratories) used in 1991. From January 1 through October 13, 1992, the ARCBS identified 19 blood donors with repeatedly reactive ELISAs for HTLV-I. However, from October 14 through November 10, 15 false-positive ELISAs for HTLV-I were reported by the ARCBS to the WDOH. As a result of this increase, the ARCBS conducted a case-control study to assess the relation between influenza vaccination and testing positive for HTLV-I. This report summarizes the results of the study.

  5. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens

    2011-01-01

    memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...

  6. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    Science.gov (United States)

    Central memory T cells (Tcm’s) and polyfunctional CD4 T responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by ...

  7. An oral Salmonella-based vaccine inhibits liver metastases by promoting tumor-specific T cell-mediated immunity in celiac & portal lymph nodes. A preclinical study.

    Directory of Open Access Journals (Sweden)

    Alejandrina eVendrell

    2016-03-01

    Full Text Available Primary tumor excision is one of the therapies of cancer most widely used. However, the risk of metastases development still exists following tumor resection. The liver is a common site of metastatic disease for numerous cancers. Breast cancer is one of the most frequent source of metastases to the liver. The aim of this work was to evaluate the efficacy of the orally-administered Salmonella Typhi vaccine strain CVD 915 on the development of liver metastases in a mouse model of breast cancer. To this end, one group of BALB/c mice was immunized with CVD 915 via o.g. while another received PBS as a control. After 24 h, mice were injected with LM3 mammary adenocarcinoma cells into the spleen and subjected to splenectomy. This oral Salmonella-based vaccine produced an antitumor effect, leading to a decrease in the number and volume of liver metastases. Immunization with Salmonella induced an early cellular immune response in mice. This innate stimulation rendered a large production of IFN-γ by intrahepatic immune cells (IHIC detected within 24 h. An antitumor adaptive immunity was found in the liver and celiac & portal lymph nodes (LDLN 21 days after oral bacterial inoculation. The antitumor immune response inside the liver was associated with increased CD4+ and DC cell populations as well as with an inflammatory infiltrate located around liver metastatic nodules. Enlarged levels of inflammatory cytokines (IFN-γ and TNF were also detected in IHIC. Furthermore, a tumor-specific production of IFN-γ and TNF as well as tumor-specific IFN-γ-producing CD8 T cells (CD8+IFN-γ+ were found in the celiac & portal lymph nodes of Salmonella-treated mice. This study provides first evidence for the involvement of LDLN in the development of an efficient cellular immune response against hepatic tumors, which resulted in the elimination of liver metastases after oral Salmonella-based vaccination.

  8. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  9. Different Levels of Immunogenicity of Two Strains of Fowlpox Virus as Recombinant Vaccine Vectors Eliciting T-Cell Responses in Heterologous Prime-Boost Vaccination Strategies

    OpenAIRE

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T.; Richard J Anderson; Howard, M. Keith; Schneider, Jörg; Skinner, Michael A.

    2006-01-01

    The FP9 strain of Fowlpox virus has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recom...

  10. Antibody and T cell responses induced in chickens immunized with avian influenza virus N1 and NP DNA vaccine with chicken IL-15 and IL-18.

    Science.gov (United States)

    Lim, Kian-Lam; Jazayeri, Seyed Davoud; Yeap, Swee Keong; Mohamed Alitheen, Noorjahan Banu; Bejo, Mohd Hair; Ideris, Aini; Omar, Abdul Rahman

    2013-12-01

    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (PPPNP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Altered Memory T-Cell Responses to Bacillus Calmette-Guerin and Tetanus Toxoid Vaccination and Altered Cytokine Responses to Polyclonal Stimulation in HIV-Exposed Uninfected Kenyan Infants.

    Directory of Open Access Journals (Sweden)

    Miguel A Garcia-Knight

    Full Text Available Implementation of successful prevention of mother-to-child transmission of HIV strategies has resulted in an increased population of HIV-exposed uninfected (HEU infants. HEU infants have higher rates of morbidity and mortality than HIV-unexposed (HU infants. Numerous factors may contribute to poor health in HEU infants including immunological alterations. The present study assessed T-cell phenotype and function in HEU infants with a focus on memory Th1 responses to vaccination. We compared cross-sectionally selected parameters at 3 and 12 months of age in HIV-exposed (n = 42 and HU (n = 28 Kenyan infants. We measured ex vivo activated and bulk memory CD4 and CD8 T-cells and regulatory T-cells by flow cytometry. In addition, we measured the magnitude, quality and memory phenotype of antigen-specific T-cell responses to Bacillus Calmette-Guerin and Tetanus Toxoid vaccine antigens, and the magnitude and quality of the T cell response following polyclonal stimulation with staphylococcal enterotoxin B. Finally, the influence of maternal disease markers on the immunological parameters measured was assessed in HEU infants. Few perturbations were detected in ex vivo T-cell subsets, though amongst HEU infants maternal HIV viral load positively correlated with CD8 T cell immune activation at 12 months. Conversely, we observed age-dependent differences in the magnitude and polyfunctionality of IL-2 and TNF-α responses to vaccine antigens particularly in Th1 cells. These changes mirrored those seen following polyclonal stimulation, where at 3 months, cytokine responses were higher in HEU infants compared to HU infants, and at 12 months, HEU infant cytokine responses were consistently lower than those seen in HU infants. Finally, reduced effector memory Th1 responses to vaccine antigens were observed in HEU infants at 3 and 12 months and higher central memory Th1 responses to M. tuberculosis antigens were observed at 3 months only. Long-term monitoring of

  12. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a ...

  13. Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients.

    Science.gov (United States)

    Mizote, Yu; Taniguchi, Taku; Tanaka, Kei; Isobe, Midori; Wada, Hisashi; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Uenaka, Akiko; Nakayama, Eiichi

    2010-07-19

    Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Prophylactic Sublingual Immunization with Mycobacterium tuberculosis Subunit Vaccine Incorporating the Natural Killer T Cell Agonist Alpha-Galactosylceramide Enhances Protective Immunity to Limit Pulmonary and Extra-Pulmonary Bacterial Burden in Mice

    Directory of Open Access Journals (Sweden)

    Arshad Khan

    2017-12-01

    Full Text Available Infection by Mycobacterium tuberculosis (Mtb remains a major global concern and the available Bacillus Calmette-Guerin (BCG vaccine is poorly efficacious in adults. Therefore, alternative vaccines and delivery strategies focusing on Mtb antigens and appropriate immune stimulating adjuvants are needed to induce protective immunity targeted to the lungs, the primary sites of infections and pathology. We present here evidence in support of mucosal vaccination by the sublingual route in mice using the subunit Mtb antigens Ag85B and ESAT-6 adjuvanted with the glycolipid alpha-galactosylceramide (α-GalCer, a potent natural killer T (NKT cell agonist. Vaccinated animals exhibited strong antigen-specific CD4 and CD8 T cells responses in the spleen, cervical lymph nodes and lungs. In general, inclusion of the α-GalCer adjuvant significantly enhanced these responses that persisted over 50 days. Furthermore, aerosolized Mtb infection of vaccinated mice resulted in a significant reduction of bacterial load of the lungs and spleens as compared to levels seen in naïve controls or those vaccinated with subunit proteins, adjuvant , or BCG alone. The protection induced by the Mtb antigens and-GalCer vaccine through sublingual route correlated with a TH1-type immunity mediated by antigen-specific IFN-γ and IL-2 producing T cells.

  15. Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against leishmania major infection.

    Science.gov (United States)

    Rhee, Elizabeth G; Mendez, Susana; Shah, Javeed A; Wu, Chang-you; Kirman, Joanna R; Turon, Tara N; Davey, Dylan F; Davis, Heather; Klinman, Dennis M; Coler, Rhea N; Sacks, David L; Seder, Robert A

    2002-06-17

    CpG oligodeoxynucleotides (ODN) have potent effects on innate and adaptive cellular immune responses. In this report, the ability of CpG ODN to confer long-term immunity and protection when used as a vaccine adjuvant with a clinical grade of leishmanial antigen, autoclaved Leishmania major (ALM), or a recombinant leishmanial protein was studied. In two different mouse models of L. major infection, vaccination with ALM plus CpG ODN was able to control infection and markedly reduce lesion development in susceptible BALB/c and resistant C57BL/6 (B6) mice, respectively, up to 12 wk after immunization. Moreover, B6 mice immunized with ALM plus CpG ODNs were still protected against infectious challenge even 6 mo after vaccination. In terms of immune correlates of protection, ALM plus CpG ODN-vaccinated mice displayed L. major-specific T helper cell 1 and CD8+ responses. In addition, complete protection was markedly abrogated in mice depleted of CD8+ T cells at the time of vaccination. Similarly, mice vaccinated with a recombinant leishmanial protein plus CpG ODN also had long-term protection that was dependent on CD8+ T cells in vivo. Together, these data demonstrate that CpG ODN, when used as a vaccine adjuvant with either a recombinant protein or heat-killed leishmanial antigen, can induce long-term protection against an intracellular infection in a CD8-dependent manner.

  16. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    Science.gov (United States)

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p herpes infection and disease. PMID:23018456

  17. Virus-Like Particle Vaccine Containing the F Protein of Respiratory Syncytial Virus Confers Protection without Pulmonary Disease by Modulating Specific Subsets of Dendritic Cells and Effector T Cells.

    Science.gov (United States)

    Kim, Ki-Hye; Lee, Young-Tae; Hwang, Hye Suk; Kwon, Young-Man; Kim, Min-Chul; Ko, Eun-Ju; Lee, Jong Seok; Lee, Youri; Kang, Sang-Moo

    2015-11-01

    There is no licensed vaccine against respiratory syncytial virus (RSV) since the failure of formalin-inactivated RSV (FI-RSV) due to its vaccine-enhanced disease. We investigated immune correlates conferring protection without causing disease after intranasal immunization with virus-like particle vaccine containing the RSV fusion protein (F VLP) in comparison to FI-RSV and live RSV. Upon RSV challenge, FI-RSV immune mice showed severe weight loss, eosinophilia, and histopathology, and RSV reinfection also caused substantial RSV disease despite their viral clearance. In contrast, F VLP immune mice showed least weight loss and no sign of histopathology and eosinophilia. High levels of interleukin-4-positive (IL-4(+)) and tumor necrosis factor alpha-positive (TNF-α(+)) CD4(+) T cells were found in FI-RSV immune mice, whereas gamma interferon-positive (IFN-γ(+)) and TNF-α(+) CD4(+) T cells were predominantly detected in live RSV-infected mice. More importantly, in contrast to FI-RSV and live RSV that induced higher levels of CD11b(+) dendritic cells, F VLP immunization induced CD8α(+) and CD103(+) dendritic cells, as well as F-specific IFN-γ(+) and TNF-α(+) CD8(+) T cells. These results suggest that F VLP can induce protection without causing pulmonary RSV disease by inducing RSV neutralizing antibodies, as well as modulating specific subsets of dendritic cells and CD8 T cell immunity. It has been a difficult challenge to develop an effective and safe vaccine against respiratory syncytial virus (RSV), a leading cause of respiratory disease. Immune correlates conferring protection but preventing vaccine-enhanced disease remain poorly understood. RSV F virus-like particle (VLP) would be an efficient vaccine platform conferring protection. Here, we investigated the protective immune correlates without causing disease after intranasal immunization with RSV F VLP in comparison to FI-RSV and live RSV. In addition to inducing RSV neutralizing antibodies responsible for

  18. Memory T cell proliferative responses and IFN-γ productivity sustain long-lasting efficacy of a Cap-based PCV2 vaccine upon PCV2 natural infection and associated disease.

    Science.gov (United States)

    Ferrari, Luca; Borghetti, Paolo; De Angelis, Elena; Martelli, Paolo

    2014-04-16

    Porcine circovirus type 2 (PCV2) vaccination represents an important measure to cope with PCV2 infection; however, data regarding the modulation of the immune cell compartment are still limited, especially under field conditions. This study is aimed at investigating the features of the cellular immune response in conventional piglets induced by vaccination using a capsid (Cap) protein-based PCV2 vaccine compared to unvaccinated animals when exposed to PCV2 natural infection. Immune reactivity was evaluated by quantifying peripheral cell subsets involved in the anti-viral response and characterizing the interferon-gamma (IFN-γ) secreting cell (SC) responsiveness both in vivo and upon in vitro whole PCV2 recall. The vaccination triggered an early and intense IFN-γ secreting cell response and induced the activation of peripheral lymphocytes. The early increase of IFN-γ SC frequencies resulted in a remarkable and transient tendency to increased IFN-γ productivity in vaccinated pigs. In vaccinated animals, soon before the onset of infection occurred 15-16 weeks post-vaccination, the recalled PCV2-specific immune response was characterized by moderate PCV2-specific IFN-γ secreting cell frequencies and augmented productivity together with reactive CD4+CD8+ memory T cells. Conversely, upon infection, unvaccinated animals showed very high frequencies of IFN-γ secreting cells and a tendency to lower productivity, which paralleled with effector CD4-CD8+ cytotoxic cell responsiveness. The study shows that PCV2 vaccination induces a long-lasting immunity sustained by memory T cells and IFN-γ secreting cells that potentially played a role in preventing the onset of infection; the extent and duration of this reactivity can be an important feature for evaluating the protective immunity induced by vaccination.

  19. The Combined Deficiency of Immunoproteasome Subunits Affects Both the Magnitude and Quality of Pathogen- and Genetic Vaccination-Induced CD8+ T Cell Responses to the Human Protozoan Parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Jonatan Ersching

    2016-04-01

    Full Text Available The β1i, β2i and β5i immunoproteasome subunits have an important role in defining the repertoire of MHC class I-restricted epitopes. However, the impact of combined deficiency of the three immunoproteasome subunits in the development of protective immunity to intracellular pathogens has not been investigated. Here, we demonstrate that immunoproteasomes play a key role in host resistance and genetic vaccination-induced protection against the human pathogen Trypanosoma cruzi (the causative agent of Chagas disease, immunity to which is dependent on CD8+ T cells and IFN-γ (the classical immunoproteasome inducer. We observed that infection with T. cruzi triggers the transcription of immunoproteasome genes, both in mice and humans. Importantly, genetically vaccinated or T. cruzi-infected β1i, β2i and β5i triple knockout (TKO mice presented significantly lower frequencies and numbers of splenic CD8+ effector T cells (CD8+CD44highCD62Llow specific for the previously characterized immunodominant (VNHRFTLV H-2Kb-restricted T. cruzi epitope. Not only the quantity, but also the quality of parasite-specific CD8+ T cell responses was altered in TKO mice. Hence, the frequency of double-positive (IFN-γ+/TNF+ or single-positive (IFN-γ+ cells specific for the H-2Kb-restricted immunodominant as well as subdominant T. cruzi epitopes were higher in WT mice, whereas TNF single-positive cells prevailed among CD8+ T cells from TKO mice. Contrasting with their WT counterparts, TKO animals were also lethally susceptible to T. cruzi challenge, even after an otherwise protective vaccination with DNA and adenoviral vectors. We conclude that the immunoproteasome subunits are key determinants in host resistance to T. cruzi infection by influencing both the magnitude and quality of CD8+ T cell responses.

  20. Application of rapid in vitro co-culture system of macrophages and T-cell subsets to assess the immunogenicity of dogs vaccinated with live attenuated Leishmania donovani centrin deleted parasites (LdCen-/-).

    Science.gov (United States)

    Viana, Kelvinson Fernandes; Fiuza, Jacqueline Araújo; Gannavaram, Sreenivas; Dey, Ranadhir; Selvapandiyan, Angamuthu; Bartholomeu, Daniella Castanheira; da Silveira-Lemos, Denise; Bueno, Lilian Lacerda; Dutra, Walderez Ornelas; Fujiwara, Ricardo Toshio; Nakhasi, Hira L; Giunchetti, Rodolfo Cordeiro

    2016-04-30

    Live attenuated Leishmania donovani parasites as LdCen(-/-) were shown to confer protective immunity against Leishmania infection in mice, hamsters, and dogs. Strong immunogenicity in dogs vaccinated with LdCen(-/-) has been previously reported, including increased antibody response favoring Th1 response lymphoproliferative responses, CD4(+) and CD8(+) T-cells activation, increased levels of Th1 and reduction of Th2 cytokines, in addition to a significant reduction in parasite burden after 18 and 24 months post virulent parasite challenge. Aimed at validating a new method using in vitro co-culture systems with macrophages and purified CD4(+) or CD8(+) or CD4(+):CD8(+) T-cells of immunized dogs with both LdCen(-/-) and Leishmune® to assess microbicide capacity of macrophages and the immune response profile as the production of IFN-γ, TNF-α, IL-12, IL-4 and IL-10 cytokines. Our data showed co-cultures of macrophages and purified T-cells from dogs immunized with LdCen(-/-) and challenged with L. infantum were able to identify high microbicidal activity, especially in the co-culture using CD4(+) T-cells, as compared to the Leishmune® group. Similarly, co-cultures with CD8(+) T-cells or CD4(+):CD8(+) T-cells in both experimental groups were able to detect a reduction in the parasite burden in L. infantum infected macrophages. Moreover, co-cultures using CD4(+) or CD8(+) or CD4(+):CD8(+) T-cells from immunized dogs with both LdCen(-/-) and Leishmune® were able to identify higher levels of IFN-γ and IL-12 cytokines, reduced levels of IL-4 and IL-10, and a higher IFN-γ/IL-10 ratio. While the highest IFN-γ levels and IFN-γ/IL-10 ratio were the hallmarks of LdCen(-/-) group in the co-culture using CD4(+) T-cells, resulting in strong reduction of parasitism, the Leishmune® immunization presented a differential production of TNF-α in the co-culture using CD4(+):CD8(+) T-cells. The distinct conditions of co-culture systems were validated and able to detect the

  1. Alterations in p53-specific T cells and other lymphocyte subsets in breast cancer patients during vaccination with p53-peptide loaded dendritic cells and low-dose interleukin-2

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Pedersen, Anders E; Nikolajsen, Kirsten

    2008-01-01

    We have previously established a cancer vaccine using autologous DCs, generated by in vitro stimulation with IL-4 and GM-CSF, and pulsed with six HLA-A*0201 binding wild-type p53 derived peptides. This vaccine was used in combination with low-dose interleukin-2 in a recently published clinical...... Phase II trial where 26 HLA-A2+ patients with progressive late-stage metastatic breast cancer (BC) were included. Almost 1/3rd of the patients obtained stable disease or minor regression during treatment with a positive correlation to tumour over-expression of p53. In the present study, we performed...... a comprehensive analysis of the effector stage of the p53-specific CD8+ T cells by the use of Dextramer Technology and multicolour FACS. Pre- and post-treatment blood samples from eight BC patients were analysed. Independent of clinical outcome p53-specific T cells were phenotypic distinctly antigen experienced...

  2. Induction of Plasmodium falciparum-specific CD4+ T cells and memory B cells in Gabonese children vaccinated with RTS,S/AS01(E and RTS,S/AS02(D.

    Directory of Open Access Journals (Sweden)

    Selidji T Agnandji

    2011-04-01

    Full Text Available The recombinant circumsporozoite protein (CS based vaccine, RTS,S, confers protection against Plasmodium falciparum infection in controlled challenge trials and in field studies. The RTS,S recombinant antigen has been formulated with two adjuvant systems, AS01 and AS02, which have both been shown to induce strong specific antibody responses and CD4 T cell responses in adults. As infants and young children are particularly susceptible to malaria infection and constitute the main target population for a malaria vaccine, we have evaluated the induction of adaptive immune responses in young children living in malaria endemic regions following vaccination with RTS,S/AS01(E and RTS,S/AS02(D. Our data show that a CS-specific memory B cell response is induced one month after the second and third vaccine dose and that CS-specific antibodies and memory B cells persist up to 12 months after the last vaccine injection. Both formulations also induced low but significant amounts of CS-specific IL-2(+ CD4(+ T cells one month after the second and third vaccine dose, upon short-term in vitro stimulation of whole blood cells with peptides covering the entire CS derived sequence in RTS,S. These results provide evidence that both RTS,S/AS01(E and RTS,S/AS02(D induced adaptive immune responses including antibodies, circulating memory B cells and CD4(+ T cells directed against P. falciparum CS protein.ClinicalTrials.gov NCT00307021.

  3. A single, low dose of a cGMP recombinant BCG vaccine elicits protective T cell immunity against the human respiratory syncytial virus infection and prevents lung pathology in mice.

    Science.gov (United States)

    Céspedes, Pablo F; Rey-Jurado, Emma; Espinoza, Janyra A; Rivera, Claudia A; Canedo-Marroquín, Gisela; Bueno, Susan M; Kalergis, Alexis M

    2017-02-01

    Human respiratory syncytial virus (hRSV) is a major health burden worldwide, causing the majority of hospitalizations in children under two years old due to bronchiolitis and pneumonia. HRSV causes year-to-year outbreaks of disease, which also affects the elderly and immunocompromised adults. Furthermore, both hRSV morbidity and epidemics are explained by a consistently high rate of re-infections that take place throughout the patient life. Although significant efforts have been invested worldwide, currently there are no licensed vaccines to prevent hRSV infection. Here, we describe that a recombinant Bacillus Calmette-Guerin (BCG) vaccine expressing the nucleoprotein (N) of hRSV formulated under current good manufacture practices (cGMP rBCG-N-hRSV) confers protective immunity to the virus in mice. Our results show that a single dose of the GMP rBCG-N-hRSV vaccine retains its capacity to protect mice against a challenge with a disease-causing infection of 1×107 plaque-forming units (PFUs) of the hRSV A2 clinical strain 13018-8. Compared to unimmunized infected controls, vaccinated mice displayed reduced weight loss and less infiltration of neutrophils within the airways, as well as reduced viral loads in bronchoalveolar lavages, parameters that are characteristic of hRSV infection in mice. Also, ex vivo re-stimulation of splenic T cells at 28days post-immunization activated a repertoire of T cells secreting IFN-γ and IL-17, which further suggest that the rBCG-N-hRSV vaccine induced a mixed, CD8+ and CD4+ T cell response capable of both restraining viral spread and preventing damage of the lungs. All these features support the notion that rBCG-N-hRSV is a promising candidate vaccine to be used in humans to prevent the disease caused by hRSV in the susceptible population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Curcumin improves the therapeutic efficacy of Listeriaat-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1

    Science.gov (United States)

    Singh, Manisha; Ramos, Ilyssa; Asafu-Adjei, Denise; Quispe-Tintaya, Wilber; Chandra, Dinesh; Jahangir, Arthee; Zang, Xingxing; Aggarwal, Bharat B; Gravekamp, Claudia

    2013-01-01

    Abstract Success of cancer vaccination is strongly hampered by immune suppression in the tumor microenvironment (TME). Interleukin (IL)-6 is particularly and highly produced by triple-negative breast cancer (TNBC) cells, and has been considered as an important contributor to immune suppression in the TME. Therefore, we hypothesized that IL-6 reduction may improve efficacy of vaccination against TNBC cancer through improved T-cell responses. To prove this hypothesis, we investigated the effect of curcumin, an inhibitor of IL-6 production, on vaccination of a highly attenuated Listeria monocytogenes (Listeriaat), encoding tumor-associated antigens (TAA) Mage-b in a TNBC model 4T1. Two therapeutic vaccination strategies with Listeriaat-Mage-b and curcumin were tested. The first immunization strategy involved all Listeriaat-Mage-b vaccinations and curcumin after tumor development. As curcumin has been consumed all over the world, the second immunization strategy involved curcumin before and all therapeutic vaccinations with Listeriaat-Mage-b after tumor development. Here, we demonstrate that curcumin significantly improves therapeutic efficacy of Listeriaat-Mage-b with both immunization strategies particularly against metastases in a TNBC model (4T1). The combination therapy was slightly but significantly more effective against the metastases when curcumin was administered before compared to after tumor development. With curcumin before tumor development in the combination therapy, the production of IL-6 was significantly decreased and IL-12 increased by myeloid-derived suppressor cells (MDSC), in correlation with improved CD4 and CD8 T-cell responses in blood. Our study suggests that curcumin improves the efficacy of Listeriaat-Mage-b vaccine against metastases in TNBC model 4T1 through reversal of tumor-induced immune suppression. This study is focused on improving cancer vaccination by reducing immune suppression. Here we demonstrate that curcumin improves vaccine

  5. Replication-defective virus vaccine-induced protection of mice from genital herpes simplex virus 2 requires CD4 T cells

    Science.gov (United States)

    Morrison, Lynda A.

    2008-01-01

    Replication-defective herpes simplex virus 2 (HSV-2), used as an immunization strategy, protects against HSV-2 challenge in animal models. The roles of replication-defective virus-induced T cell subsets in control of HSV-2 infection have not been established. Mice lacking B cells (μMT) were immunized, depleted of CD4 or CD8 T cells, and then challenged intravaginally with HSV-2 to elucidate T cell subset contributions in the absence of virus-specific antibody. Immunized, CD4-depleted μMT mice developed severe infection of the genital tract and nervous system. In contrast, depletion of CD8 T cells from μMT mice did not attenuate protection. Immunized wild-type mice depleted of CD4 T cells also developed more severe HSV-2 infection than mice from which CD8 T cells were depleted. Thus, immunization with replication-defective virus induces T cell responses that effectively control HSV-2 infection in the absence of HSV-immune antibody, and CD4 T cells play the predominant role in this protective effect. PMID:18410949

  6. In situ detection of antigen-specific T cells in cryo-sections using MHC class I tetramers after dendritic cell vaccination of melanoma patients.

    NARCIS (Netherlands)

    Vries, I.J.M. de; Bernsen, M.R.; Geloof, W. van; Scharenborg, N.M.; Lesterhuis, W.J.; Rombout, P.D.M.; Muijen, G.N.P. van; Figdor, C.G.; Punt, C.J.A.; Ruiter, D.J.; Adema, G.J.

    2007-01-01

    Application of tetrameric MHC class I-peptide complexes has significantly improved the monitoring of antigen-specific T cell immune responses in mouse models as well as in clinical studies. Especially MHC class I tetramer analysis of tumor-specific T cells in suspension or on thick vibratome

  7. One Dose of Staphylococcus aureus 4C-Staph Vaccine Formulated with a Novel TLR7-Dependent Adjuvant Rapidly Protects Mice through Antibodies, Effector CD4+ T Cells, and IL-17A.

    Science.gov (United States)

    Mancini, Francesca; Monaci, Elisabetta; Lofano, Giuseppe; Torre, Antonina; Bacconi, Marta; Tavarini, Simona; Sammicheli, Chiara; Arcidiacono, Letizia; Galletti, Bruno; Laera, Donatello; Pallaoro, Michele; Tuscano, Giovanna; Fontana, Maria Rita; Bensi, Giuliano; Grandi, Guido; Rossi-Paccani, Silvia; Nuti, Sandra; Rappuoli, Rino; De Gregorio, Ennio; Bagnoli, Fabio; Soldaini, Elisabetta; Bertholet, Sylvie

    2016-01-01

    A rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine. This increased efficacy was paralleled by higher vaccine-specific and α-hemolysin-neutralizing antibody titers and Th1/Th17 cell responses. Antibodies played a crucial protective role, as shown by the lack of protection of 4C-Staph/T7-alum vaccine in B-cell-deficient mice and by serum transfer experiments. Depletion of effector CD4+ T cells not only reduced survival but also increased S. aureus load in kidneys of mice immunized with 4C-Staph/T7-alum. The role of IL-17A in the control of bacterial dissemination in 4C-Staph/T7-alum vaccinated mice was indicated by in vivo neutralization experiments. We conclude that single dose 4C-Staph/T7-alum vaccine promptly and efficiently protected mice against S. aureus through the combined actions of antibodies, CD4+ effector T cells, and IL-17A. These data suggest that inclusion of an adjuvant that induces not only fast antibody responses but also IL-17-producing cell-mediated effector responses could efficaciously protect patients scheduled for major surgeries or in intensive care units.

  8. One Dose of Staphylococcus aureus 4C-Staph Vaccine Formulated with a Novel TLR7-Dependent Adjuvant Rapidly Protects Mice through Antibodies, Effector CD4+ T Cells, and IL-17A.

    Directory of Open Access Journals (Sweden)

    Francesca Mancini

    Full Text Available A rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine. This increased efficacy was paralleled by higher vaccine-specific and α-hemolysin-neutralizing antibody titers and Th1/Th17 cell responses. Antibodies played a crucial protective role, as shown by the lack of protection of 4C-Staph/T7-alum vaccine in B-cell-deficient mice and by serum transfer experiments. Depletion of effector CD4+ T cells not only reduced survival but also increased S. aureus load in kidneys of mice immunized with 4C-Staph/T7-alum. The role of IL-17A in the control of bacterial dissemination in 4C-Staph/T7-alum vaccinated mice was indicated by in vivo neutralization experiments. We conclude that single dose 4C-Staph/T7-alum vaccine promptly and efficiently protected mice against S. aureus through the combined actions of antibodies, CD4+ effector T cells, and IL-17A. These data suggest that inclusion of an adjuvant that induces not only fast antibody responses but also IL-17-producing cell-mediated effector responses could efficaciously protect patients scheduled for major surgeries or in intensive care units.

  9. A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+ T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a “Humanized” HLA Transgenic Rabbit Model

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A.; Huang, Jiawei; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2015-01-01

    Purpose. A clinical vaccine that protects from ocular herpes simplex virus type 1 (HSV-1) infection and disease still is lacking. In the present study, preclinical vaccine trials of nine asymptomatic (ASYMP) peptides, selected from HSV-1 glycoproteins B (gB), and tegument proteins VP11/12 and VP13/14, were performed in the “humanized” HLA–transgenic rabbit (HLA-Tg rabbit) model of ocular herpes. We recently reported that these peptides are highly recognized by CD8+ T cells from “naturally” protected HSV-1–seropositive healthy ASYMP individuals (who have never had clinical herpes disease). Methods. Mixtures of three ASYMP CD8+ T-cell peptides derived from either HSV-1 gB, VP11/12, or VP13/14 were delivered subcutaneously to different groups of HLA-Tg rabbits (n = 10) in incomplete Freund's adjuvant, twice at 15-day intervals. The frequency and function of HSV-1 epitope-specific CD8+ T cells induced by these peptides and their protective efficacy, in terms of survival, virus replication in the eye, and ocular herpetic disease were assessed after an ocular challenge with HSV-1 (strain McKrae). Results. All mixtures elicited strong and polyfunctional IFN-γ– and TNF-α–producing CD107+CD8+ cytotoxic T cells, associated with a significant reduction in death, ocular herpes infection, and disease (P herpes, and provide a prototype vaccine formulation that may be highly efficacious for preventing ocular herpes in humans. PMID:26098469

  10. T-Cell Lymphoma

    Science.gov (United States)

    Getting the Facts T-Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are Hodgkin lymphoma ... develop into lymphomas: B-lymphocytes (B-cells) and T-lymphocytes (T-cells). T-cell lymphomas account for ...

  11. Diversity and recognition efficiency of T cell responses to cancer.

    Directory of Open Access Journals (Sweden)

    Tor B Stuge

    2004-11-01

    Full Text Available Melanoma patients vaccinated with tumor-associated antigens frequently develop measurable peptide-specific CD8+ T cell responses; however, such responses often do not confer clinical benefit. Understanding why vaccine-elicited responses are beneficial in some patients but not in others will be important to improve targeted cancer immunotherapies.We analyzed peptide-specific CD8+ T cell responses in detail, by generating and characterizing over 200 cytotoxic T lymphocyte clones derived from T cell responses to heteroclitic peptide vaccination, and compared these responses to endogenous anti-tumor T cell responses elicited naturally (a heteroclitic peptide is a modification of a native peptide sequence involving substitution of an amino acid at an anchor residue to enhance the immunogenicity of the peptide. We found that vaccine-elicited T cells are diverse in T cell receptor variable chain beta expression and exhibit a different recognition profile for heteroclitic versus native peptide. In particular, vaccine-elicited T cells respond to native peptide with predominantly low recognition efficiency--a measure of the sensitivity of a T cell to different cognate peptide concentrations for stimulation--and, as a result, are inefficient in tumor lysis. In contrast, endogenous tumor-associated-antigen-specific T cells show a predominantly high recognition efficiency for native peptide and efficiently lyse tumor targets.These results suggest that factors that shape the peptide-specific T cell repertoire after vaccination may be different from those that affect the endogenous response. Furthermore, our findings suggest that current heteroclitic peptide vaccination protocols drive expansion of peptide-specific T cells with a diverse range of recognition efficiencies, a significant proportion of which are unable to respond to melanoma cells. Therefore, it is critical that the recognition efficiency of vaccine-elicited T cells be measured, with the goal of

  12. A phase I vaccination study with dendritic cells loaded with NY-ESO-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients.

    Science.gov (United States)

    Gasser, Olivier; Sharples, Katrina J; Barrow, Catherine; Williams, Geoffrey M; Bauer, Evelyn; Wood, Catherine E; Mester, Brigitta; Dzhelali, Marina; Caygill, Graham; Jones, Jeremy; Hayman, Colin M; Hinder, Victoria A; Macapagal, Jerome; McCusker, Monica; Weinkove, Robert; Painter, Gavin F; Brimble, Margaret A; Findlay, Michael P; Dunbar, P Rod; Hermans, Ian F

    2018-02-01

    Vaccines that elicit targeted tumor antigen-specific T-cell responses have the potential to be used as adjuvant therapy in patients with high risk of relapse. However, the responses induced by vaccines in cancer patients have generally been disappointing. To improve vaccine function, we investigated the possibility of exploiting the immunostimulatory capacity of type 1 Natural killer T (NKT) cells, a cell type enriched in lymphoid tissues that can trigger improved antigen-presenting function in dendritic cells (DCs). In this phase I dose escalation study, we treated eight patients with high-risk surgically resected stage II-IV melanoma with intravenous autologous monocyte-derived DCs loaded with the NKT cell agonist α-GalCer and peptides derived from the cancer testis antigen NY-ESO-1. Two synthetic long peptides spanning defined immunogenic regions of the NY-ESO-1 sequence were used. This therapy proved to be safe and immunologically effective, inducing increases in circulating NY-ESO-1-specific T cells that could be detected directly ex vivo in seven out of eight patients. These responses were achieved using as few as 5 × 10 5 peptide-loaded cells per dose. Analysis after in vitro restimulation showed increases in polyfunctional CD4 + and CD8 + T cells that were capable of manufacturing two or more cytokines simultaneously. Evidence of NKT cell proliferation and/or NKT cell-associated cytokine secretion was seen in most patients. In light of these strong responses, the concept of including NKT cell agonists in vaccine design requires further investigation.

  13. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients

    Directory of Open Access Journals (Sweden)

    Berinstein Neil L

    2012-08-01

    Full Text Available Abstract Background DepoVaxTM is a novel non-emulsion depot-forming vaccine platform with the capacity to significantly enhance the immunogenicity of peptide cancer antigens. Naturally processed HLA-A2 restricted peptides presented by breast, ovarian and prostate cancer cells were used as antigens to create a therapeutic cancer vaccine, DPX-0907. Methods A phase I clinical study was designed to examine the safety and immune activating potential of DPX-0907 in advanced stage breast, ovarian and prostate cancer patients. A total of 23 late stage cancer patients were recruited and were divided into two dose/volume cohorts in a three immunization protocol. Results DPX-0907 was shown to be safe with injection site reactions being the most commonly reported adverse event. All breast cancer patients (3/3, most of ovarian (5/6 and one third of prostate (3/9 cancer patients exhibited detectable immune responses, resulting in a 61% immunological response rate. Immune responses were generally observed in patients with better disease control after their last prior treatment. Antigen-specific responses were detected in 73% of immune responders (44% of evaluable patients after the first vaccination. In 83% of immune responders (50% of evaluable patients, peptide-specific T cell responses were detected at ≥2 time points post vaccination with 64% of the responders (39% of evaluable patients showing evidence of immune persistence. Immune monitoring also demonstrated the generation of antigen-specific T cell memory with the ability to secrete multiple Type 1 cytokines. Conclusions The novel DepoVax formulation promotes multifunctional effector memory responses to peptide-based tumor associated antigens. The data supports the capacity of DPX-0907 to elicit Type-1 biased immune responses, warranting further clinical development of the vaccine. This study underscores the importance of applying vaccines in clinical settings in which patients are more likely to be

  14. Increase of Circulating CD4(+)CD25(high)Foxp3(+) Regulatory T Cells in Patients With Metastatic Renal Cell Carcinoma During Treatment With Dendritic Cell Vaccination and Low-Dose Interleukin-2

    DEFF Research Database (Denmark)

    Berntsen, Annika; Brimnes, M.K.; Straten, P.T.

    2010-01-01

    Regulatory T cells (Treg) play an important role in the maintenance of immune tolerance and may be one of the obstacles of successful tumor immunotherapy. In this study, we analyzed the impact of administration of dendritic cell (DC) vaccination in combination with low-dose interleukin (IL)-2...... in patients with metastatic renal cell carcinoma on the frequency of CD4(+) CD25(high)Foxp3(+) Treg cells in peripheral blood. We found that the treatment increased the frequency of Treg cells more than 7-fold compared with pretreatment levels (P cells decreased when patients...... had been off IL-2 treatment for only 8 days, but remained higher than pretreatment levels. A functional assay showed that isolated Treg cells were capable of inhibiting proliferation of responder cells. Also, in vitro studies showed that coculture of mature DCs, autologous T cells and IL-2 leads...

  15. BiVax: A peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T cell responses

    OpenAIRE

    Cho, Hyun-Il; Barrios, Kelly; Lee, Young-Ran; Linowski, Angelika K.; Celis, Esteban

    2012-01-01

    Therapeutic vaccines for the treatment of cancer are an attractive alternative to some of the conventional therapies that are currently used. More importantly, vaccines could be very useful to prevent recurrences when applied after primary therapy. Unfortunately, most therapeutic vaccines for cancer have performed poorly due to the low level of immune responses that they induce. Previous work done in our laboratory in cancer mouse models demonstrated that vaccines consisting of synthetic pept...

  16. T-cell mRNA Expression in Response to Mycobacterium bovis BCG Vaccination and Mycobacterium bovis Infection of White-tailed deer

    Science.gov (United States)

    Understanding immune responses of white-tailed deer (WTD) to infection with Mycobacterium bovis provides insight into mechanisms of pathogen control and may provide clues to development of effective vaccine strategies. WTD were vaccinated with either BCG strain Pasteur or BCG Danish. Both vaccinates...

  17. Improve T Cell Therapy in Neuroblastoma

    Science.gov (United States)

    2015-09-01

    down regulation in LTE-T cells is not caused by specific culture conditions. T lymphocytes were activated with immobilized OKT3 (1 μg ml) and...a lethal acute respiratory distress syndrome and severe eosinophilia were reported in a patient vaccinated with irradiated autologous myeloblasts...condition ‘day 15’ indicates HPSE expression in LTE-T cells cultured for 14 d and re-stimulated with immobilized OKT3 and CD28-specific antibodies

  18. T cell immunity using transgenic B lymphocytes

    Science.gov (United States)

    Gerloni, Mara; Rizzi, Marta; Castiglioni, Paola; Zanetti, Maurizio

    2004-03-01

    Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (102). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.

  19. Production of NY-ESO-1 peptide/DRB1*08:03 tetramers and ex vivo detection of CD4 T-cell responses in vaccinated cancer patients.

    Science.gov (United States)

    Mizote, Yu; Uenaka, Akiko; Isobe, Midori; Wada, Hisashi; Kakimi, Kazuhiro; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Oka, Mikio; Nakayama, Eiichi

    2014-02-12

    We established CD4 T-cell clones, Mz-1B7, and Ue-21, which recognized the NY-ESO-1 121-138 peptide from peripheral blood mononuclear cells (PBMCs) of an esophageal cancer patient, E-2, immunized with an NY-ESO-1 protein and determined the NY-ESO-1 minimal epitopes. Minimal peptides recognized by Mz-1B7 and Ue-21 were NY-ESO-1 125-134 and 124-134, respectively, both in restriction to DRB1*08:03. Using a longer peptide, 122-135, and five other related peptides, including either of the minimal epitopes recognized by the CD4 T-cell clones, we investigated the free peptide/DR recognition on autologous EBV-B cells as APC and peptide/DR tetramer binding. The results showed a discrepancy between them. The tetramers with several peptides recognized by either Mz-1B7 or the Ue-21 CD4 T-cell clone did not bind to the respective clone. On the other hand, unexpected binding of the tetramer with the peptide not recognized by CD4 T-cells was observed. The clone Mz-1B7 did not recognize the free peptide 122-135 on APC, but the peptide 122-135/DRB1*08:03 tetramer bound to the TCR on those cells. The failure of tetramer production and the unexpected tetramer binding could be due to a subtly modified structure of the peptide/DR tetramer from the structure of the free peptide/DR molecule. We also demonstrated that the NY-ESO-1 123-135/DRB1*08:03 tetramer detected ex vivo CD4 T-cell responses in PBMCs from patients after NY-ESO-1 vaccination in immunomonitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. T Cells in Fish

    OpenAIRE

    Teruyuki Nakanishi; Yasuhiro Shibasaki; Yuta Matsuura

    2015-01-01

    Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4+ and CD8α+ T cells in allograft rejection and graft-versus-ho...

  1. Increase of circulating CD4+CD25highFoxp3+ regulatory T cells in patients with metastatic renal cell carcinoma during treatment with dendritic cell vaccination and low-dose interleukin-2

    DEFF Research Database (Denmark)

    Berntsen, Annika; Brimnes, Marie Klinge; thor Straten, Per

    2010-01-01

    Regulatory T cells (Treg) play an important role in the maintenance of immune tolerance and may be one of the obstacles of successful tumor immunotherapy. In this study, we analyzed the impact of administration of dendritic cell (DC) vaccination in combination with low-dose interleukin (IL)-2...... in patients with metastatic renal cell carcinoma on the frequency of CD4+CD25highFoxp3+ Treg cells in peripheral blood. We found that the treatment increased the frequency of Treg cells more than 7-fold compared with pretreatment levels (P...

  2. T-cell responses in malaria

    DEFF Research Database (Denmark)

    Hviid, L; Jakobsen, P H; Abu-Zeid, Y A

    1992-01-01

    Malaria is caused by infection with protozoan parasites of the genus Plasmodium. It remains one of the most severe health problems in tropical regions of the world, and the rapid spread of resistance to drugs and insecticides has stimulated intensive research aimed at the development of a malaria...... vaccine. Despite this, no efficient operative vaccine is currently available. A large amount of information on T-cell responses to malaria antigens has been accumulated, concerning antigens derived from all stages of the parasite life cycle. The present review summarizes some of that information......, and discusses factors affecting the responses of T cells to malaria antigens....

  3. Characterization of bovine gamma delta T cells phenotype during post-natal development and following Mycobacterium bovis vaccination or virulent infection

    Science.gov (United States)

    Bovine tuberculosis caused by Mycobacterium bovis is a globally significant veterinary health problem. Gamma delta T cells are known to participate in the immune control of mycobacterial infections. Data in human and non-human primates suggest that mycobacterial infection regulates memory/effector p...

  4. Carbohydrates and T cells: a sweet twosome.

    Science.gov (United States)

    Avci, Fikri Y; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L

    2013-04-01

    Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Carbohydrates and T cells: A sweet twosome

    Science.gov (United States)

    Avci, Fikri Y.; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L.

    2013-01-01

    Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically-linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease. PMID:23757291

  6. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    DEFF Research Database (Denmark)

    Baldwin, Susan L; Roeffen, Will; Singh, Susheel K

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment...... of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions...

  7. Understanding and Exploiting the T - Cell Memory

    Directory of Open Access Journals (Sweden)

    Kshipra Chandrashekhar1

    Full Text Available Immunological memory is one of the lesser understood aspects of adaptive immunity which protects organisms from recurrent and persistent attack by pathogens. The central event in the generation of both humoral and cell mediated immune responses is the activation and clonal expansion of T cells. T cell activation is initiated by interaction of the TCR-CD3 complex with processed antigenic peptide bound to either a class I (CD8+cells or class II (CD 4+cells MHC molecule on the surface of antigen presenting cell (APC. On interaction of a naïve T cell with the processed antigen initiates a cascade of events which activates the resting T cell to enter the cell cycle, proliferating and developing into a clone of progeny cells, which differentiate into memory or effector T cells. Memory T cells are generated by antigen interaction and remain long but quiescent in nature, however responding with greater reactivity to a subsequent challenge with the same antigen, generating a secondary response. Memory cells, though in the G0 stage of the cell cycle require a lower level of activation than so naïve cells. A lot of work in this direction can yield a whole lot of interesting findings which will help us develop better vaccines for chronic animal diseases like Tuberculosis, Johne’s disease using suitable animal models. A better understanding of these issues may lead to improvements in the design of vaccines which can be used to generate potent protective T cell memory against pathogens. In the present article various properties of memory T cells along with their implications to vaccine development have been reviewed. [Veterinary World 2010; 3(7.000: 343-345

  8. Topical herpes simplex virus 2 (HSV-2) vaccination with human papillomavirus vectors expressing gB/gD ectodomains induces genital-tissue-resident memory CD8+ T cells and reduces genital disease and viral shedding after HSV-2 challenge.

    Science.gov (United States)

    Çuburu, Nicolas; Wang, Kening; Goodman, Kyle N; Pang, Yuk Ying; Thompson, Cynthia D; Lowy, Douglas R; Cohen, Jeffrey I; Schiller, John T

    2015-01-01

    No herpes simplex virus 2 (HSV-2) vaccine has been licensed for use in humans. HSV-2 glycoproteins B (gB) and D (gD) are targets of neutralizing antibodies and T cells, but clinical trials involving intramuscular (i.m.) injection of HSV-2 gB and gD in adjuvants have not been effective. Here we evaluated intravaginal (ivag) genetic immunization of C57BL/6 mice with a replication-defective human papillomavirus pseudovirus (HPV PsV) expressing HSV-2 gB (HPV-gB) or gD (HPV-gD) constructs to target different subcellular compartments. HPV PsV expressing a secreted ectodomain of gB (gBsec) or gD (gDsec), but not PsV expressing a cytoplasmic or membrane-bound form, induced circulating and intravaginal-tissue-resident memory CD8(+) T cells that were able to secrete gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) as well as moderate levels of serum HSV neutralizing antibodies. Combined immunization with HPV-gBsec and HPV-gDsec (HPV-gBsec/gDsec) vaccines conferred longer survival after vaginal challenge with HSV-2 than immunization with HPV-gBsec or HPV-gDsec alone. HPV-gBsec/gDsec ivag vaccination was associated with a reduced severity of genital lesions and lower levels of viral shedding in the genital tract after HSV-2 challenge. In contrast, intramuscular vaccination with a soluble truncated gD protein (gD2t) in alum and monophosphoryl lipid A (MPL) elicited high neutralizing antibody titers and improved survival but did not reduce genital lesions and viral shedding. Vaccination combining ivag HPV-gBsec/gDsec and i.m. gD2t-alum-MPL improved survival and reduced genital lesions and viral shedding. Finally, high levels of circulating HSV-2-specific CD8(+) T cells, but not serum antibodies, correlated with reduced viral shedding. Taken together, our data underscore the potential of HPV PsV as a platform for a topical mucosal vaccine to control local manifestations of primary HSV-2 infection. Genital herpes is a highly prevalent chronic disease caused by

  9. T Cells in Fish.

    Science.gov (United States)

    Nakanishi, Teruyuki; Shibasaki, Yasuhiro; Matsuura, Yuta

    2015-09-25

    Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4⁺ and CD8α⁺ T cells in allograft rejection and graft-versus-host reaction (GVHR) has been demonstrated using monoclonal antibodies. Conservation of CD4⁺ helper T cell functions among teleost fishes has been suggested in a number studies employing mixed leukocyte culture (MLC) and hapten/carrier effect. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ginbuna and rainbow trout. Furthermore, the important role of cell-mediated immunity rather than humoral immunity has been reported in the protection against intracellular bacterial infection. Recently, the direct antibacterial activity of CD8α⁺, CD4⁺ T-cells and sIgM⁺ cells in fish has been reported. In this review, we summarize the recent progress in T cell research focusing on the tissue distribution and function of fish T cells.

  10. Specific memory B cell response and participation of CD4+central and effector memory T cells in mice immunized with liposome encapsulated recombinant NE protein based Hepatitis E vaccine candidate.

    Science.gov (United States)

    Kulkarni, Shruti P; Thanapati, Subrat; Arankalle, Vidya A; Tripathy, Anuradha S

    2016-11-21

    Liposome encapsulated neutralizing epitope protein of Hepatitis E virus (HEV), rNEp, our Hepatitis E vaccine candidate, was shown to be immunogenic and safe in pregnant and non-pregnant mice and yielded sterilizing immunity in rhesus monkeys. The current study in Balb/c mice assessed the levels and persistence of anti-HEV IgG antibodies by ELISA, frequencies of B, memory B, T and memory T cells by flow cytometry and HEV-specific IgG secreting memory B cells by ELISPOT till 420days post immunization (PI) with 5?g rNEp encapsulated in liposome based adjuvant (2 doses, 4weeks apart). Mice immunized with a lower dose (1?g) were assessed only for anamnestic response post booster dose. Vaccine candidate immunized mice (5?g dose) elicited strong anti-HEV IgG response that was estimated to persist for lifetime. At day 120 PI, frequency of memory B cells was higher in immunized mice than those receiving adjuvant alone. Anti-HEV IgG titers were lower in mice immunized with 1?g dose. A booster dose yielded a heightened antibody response in mice with both high (>800GMT, 5?g) and low (?100GMT, 1?g) anti-HEV IgG titers. At day 6th post booster dose, HEV-specific antibody secreting plasma cells (ASCs) were detected in 100% and 50% of mice with high and low anti-HEV IgG titers, respectively, whereas the frequencies of CD4 + central and effector memory T cells were high in mice with high anti-HEV IgG titers only. Taken together, the vaccine candidate effectively generates persistent and anamnestic antibody response, elicits participation of CD4 + memory T cells and triggers memory B cells to differentiate into ASCs upon boosting. This approach of assessing the immunogenicity of vaccine candidate could be useful to explore the longevity of HEV-specific memory response in future HEV vaccine trials in human. Copyright © 2016. Published by Elsevier Ltd.

  11. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus–Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens

    Science.gov (United States)

    Nyombayire, Julien; Anzala, Omu; Gazzard, Brian; Karita, Etienne; Bergin, Philip; Hayes, Peter; Kopycinski, Jakub; Omosa-Manyonyi, Gloria; Jackson, Akil; Bizimana, Jean; Farah, Bashir; Sayeed, Eddy; Parks, Christopher L.; Inoue, Makoto; Hironaka, Takashi; Hara, Hiroto; Shu, Tsugumine; Matano, Tetsuro; Dally, Len; Barin, Burc; Park, Harriet; Gilmour, Jill; Lombardo, Angela; Excler, Jean-Louis; Fast, Patricia; Laufer, Dagna S.; Cox, Josephine H.

    2017-01-01

    Background. We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)–vectored, human immunodeficiency virus type 1 (HIV-1) vaccine. Methods. Sixty-five HIV-1–uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35–vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SLA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SHA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (ASH); and priming and boosting with a higher-dose SeV-Gag given intranasally (SHSH). Results. All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot–determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (SLA and SHA) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8+ T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the SLA and SHA groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the ASH group. In contrast, the highest Gag-specific antibody titers were seen in the ASH group. Mucosal antibody responses were sporadic. Conclusions. SeV-Gag primed functional, durable HIV-specific T-cell

  12. Intramuscular DNA vaccination of juvenile carp against spring viremia of carp virus induces full p3wrotection and Establishes a Virus-Specific B and T Cell Response

    NARCIS (Netherlands)

    Embregts, Carmen W.E.; Rigaudeau, Dimitri; Veselỳ, Tomáš; Pokorová, Dagmar; Lorenzen, Niels; Petit, Jules; Houel, Armel; Dauber, Malte; Schütze, Heike; Boudinot, Pierre; Wiegertjes, Geert F.; Forlenza, Maria

    2017-01-01

    Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1

  13. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    NARCIS (Netherlands)

    Baldwin, S.L.; Roeffen, W.; Singh, S.K; Tiendrebeogo, R.W.; Christiansen, M.; Beebe, E.; Carter, D.; Fox, C.B.; Howard, R.F.; Reed, S.G.; Sauerwein, R.; Theisen, M.

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the

  14. Increased B and T Cell Responses in M. bovis Bacille Calmette-Guérin Vaccinated Pigs Co-Immunized with Plasmid DNA Encoding a Prototype Tuberculosis Antigen

    DEFF Research Database (Denmark)

    Bruffaerts, Nicolas; Pedersen, Lasse Eggers; Vandermeulen, Gaëlle

    2015-01-01

    two regions with strong predicted SLA-1*0401/SLA-1*0801 binding affinity, was promiscuously recognized by 6/6 animals vaccinated with the BCG-pAg85A combination. Our study provides a proof of concept in a large mammalian species, for a new Th1 and CD8+ targeting tuberculosis vaccine, based on BCG...

  15. Prediction and In Silico Identification of Novel B-Cells and T-Cells Epitopes in the S1-Spike Glycoprotein of M41 and CR88 (793/B Infectious Bronchitis Virus Serotypes for Application in Peptide Vaccines

    Directory of Open Access Journals (Sweden)

    Faruku Bande

    2016-01-01

    Full Text Available Bioinformatic analysis was used to predict antigenic B-cell and T-cell epitopes within the S1 glycoprotein of M41 and CR88 IBV strains. A conserved linear B-cell epitope peptide, YTSNETTDVTS175–185, was identified in M41 IBV strains while three such epitopes types namely, VSNASPNSGGVD279–290, HPKCNFRPENI328–338, and NETNNAGSVSDCTAGT54–69, were predicted in CR88 IBV strains. Analysis of MHCI binding peptides in M41 IBV strains revealed the presence of 15 antigenic peptides out of which 12 were highly conserved in 96–100% of the total M41 strains analysed. Interestingly three of these peptides, GGPITYKVM208, WFNSLSVSI356, and YLADAGLAI472, relatively had high antigenicity index (>1.0. On the other hand, 11 MHCI binding epitope peptides were identified in CR88 IBV strains. Of these, five peptides were found to be highly conserved with a range between 90% and 97%. However, WFNSLSVSL358, SYNISAASV88, and YNISAASVA89 peptides comparably showed high antigenicity scores (>1.0. Combination of antigenic B-cells and T-cells peptides that are conserved across many strains as approach to evoke humoral and CTL immune response will potentially lead to a broad-based vaccine that could reduce the challenges in using live attenuated vaccine technology in the control of IBV infection in poultry.

  16. Therapy with radio-attenuated vaccine in experimental murine visceral leishmaniasis showed enhanced T cell and inducible nitric oxide synthase levels, suppressed tumor growth factor-beta production with higher expression of some signaling molecules.

    Science.gov (United States)

    Datta, Sanchita; Roy, Syamal; Manna, Madhumita

    2015-01-01

    Visceral leishmaniasis (VL) or Kala-Azar (KA) is one of the most deadly forms of disease among all neglected tropical diseases. There are no satisfactory drugs or vaccine candidates available for this dreaded disease. Our previous studies showed promising therapeutic and prophylactic efficacy of the live, radio-attenuated parasites through intramuscular (I.M.) and intraperitoneal (I.P.) route in BALB/c mice model. The T-cell proliferation level, the mRNA expression level of inducible nitric oxide synthase (iNOS) and tumor growth factor-beta (TGF-β) genes and finally the phosphorylation levels of phosphoinositide dependent kinase 1 (PDK1), phosphoinositide 3 kinase (PI3K) and p38 mitogen activated protein kinase (p38MAPK) molecules were checked in BALB/c mice model immunized with radio-attenuated Leishmania donovani parasites through I.M. route. Higher T-cell proliferation, increased iNOS level, and suppressed TGF-β level were found in treated infected animal groups (100 and 150Gy) in relation to untreated infected animals. Likewise, phosphorylation levels of PDK1, PI3K and p38MAPK of these two groups were increased when compared to untreated infected controls. The clearance of the parasites from treated infected groups of animals may be mediated by the restoration of T-cell due to therapy with radio-attenuated L. donovani parasites. The killing of parasites was mediated by increase in nitric oxide release through PDK1, PI3K and p38MAPK signaling pathways. A lower TGF-β expression has augmented the restored Th1 ambience in the 100 and 150Gy treated animal groups proving further the efficacy of the candidate vaccine. Copyright © 2015. Published by Elsevier Editora Ltda.

  17. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  18. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination.

    Directory of Open Access Journals (Sweden)

    Danushka K Wijesundara

    Full Text Available Qualitative characteristics of cytotoxic CD8+ T cells (CTLs are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV-HIV prime followed by a recombinant vaccinia virus (VV-HIV booster were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold, to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.

  19. Design, development and experimental trialof a tailored cytotoxic T-cell vaccine againstPorcine Reproductive and RespiratorySyndrome Virus-2

    DEFF Research Database (Denmark)

    Welner, Simon

    . In the present PhD thesis, I describe the development of an innovative vaccine for the induction of a cytotoxic Tlymphocyte response against PRRSV-2. A major part of the project outline was to design a vaccine that would protect beyond genetic drift, why focus has been on identifying and selecting conserved...... however indicate an effect that was significant in one part of the lungs. Conclusively, the present study provides proof-of-concept that a peptide-specific CMI can be induced by vaccination with VRPs encoding conserved epitopes, along with indications of a protective effect on viral load in lungs. However...

  20. Improved influenza viral vector based Brucella abortus vaccine induces robust B and T-cell responses and protection against Brucella melitensis infection in pregnant sheep and goats.

    Science.gov (United States)

    Mailybayeva, Aigerim; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Sansyzbay, Abylai; Renukaradhya, Gourapura J; Petrovsky, Nikolai; Tabynov, Kaissar

    2017-01-01

    We previously developed a potent candidate vaccine against bovine brucellosis caused by Brucella abortus using the influenza viral vector expressing Brucella Omp16 and L7/L12 proteins (Flu-BA). Our success in the Flu-BA vaccine trial in cattle and results of a pilot study in non-pregnant small ruminants prompted us in the current study to test its efficacy against B. melitensis infection in pregnant sheep and goats. In this study, we improved the Flu-BA vaccine formulation and immunization method to achieve maximum efficacy and safety. The Flu-BA vaccine formulation had two additional proteins Omp19 and SOD, and administered thrice with 20% Montanide Gel01 adjuvant, simultaneously by both subcutaneous and conjunctival routes at 21 days intervals in pregnant sheep and goats. At 42 days post-vaccination (DPV) we detected antigen-specific IgG antibodies predominantly of IgG2a isotype but also IgG1, and also detected a strong lymphocyte recall response with IFN-γ production. Importantly, our candidate vaccine prevented abortion in 66.7% and 77.8% of pregnant sheep and goats, respectively. Furthermore, complete protection (absence of live B. melitensis 16M) was observed in 55.6% and 66.7% of challenged sheep and goats, and 72.7% and 90.0% of their fetuses (lambs/yeanlings), respectively. The severity of B. melitensis 16M infection in vaccinated sheep and goats and their fetuses (index of infection and rates of Brucella colonization in tissues) was significantly lower than in control groups. None of the protection parameters after vaccination with Flu-BA vaccine were statistically inferior to protection seen with the commercial B. melitensis Rev.1 vaccine (protection against abortion and vaccination efficacy, alpha = 0.18-0.34, infection index, P = 0.37-0.77, Brucella colonization, P = 0.16 to P > 0.99). In conclusion, our improved Flu-BA vaccine formulation and delivery method were found safe and effective in protecting pregnant sheep and goats against adverse

  1. Preclinical development of BCG.HIVA2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity

    Science.gov (United States)

    Mahant, Aakash; Saubi, Narcís; Eto, Yoshiki; Guitart, Núria; Gatell, Josep Ma; Hanke, Tomáš; Joseph, Joan

    2017-01-01

    ABSTRACT One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVAint, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA2auxo.int. Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVAint was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on “double” auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth. PMID:28426273

  2. Preclinical development of BCG.HIVA2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity.

    Science.gov (United States)

    Mahant, Aakash; Saubi, Narcís; Eto, Yoshiki; Guitart, Núria; Gatell, Josep Ma; Hanke, Tomáš; Joseph, Joan

    2017-08-03

    One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVA int , expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA 2auxo.int . Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVA int was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA 2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on "double" auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.

  3. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host.

    Directory of Open Access Journals (Sweden)

    Jodi L McGill

    Full Text Available Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.

  4. Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8+and CD4+T-cell responses with multiple specificities including a novel DR7-restricted epitope.

    Science.gov (United States)

    Baumgaertner, P; Costa Nunes, C; Cachot, A; Maby-El Hajjami, H; Cagnon, L; Braun, M; Derré, L; Rivals, J-P; Rimoldi, D; Gnjatic, S; Abed Maillard, S; Marcos Mondéjar, P; Protti, M P; Romano, E; Michielin, O; Romero, P; Speiser, D E; Jandus, C

    2016-01-01

    Long synthetic peptides and CpG-containing oligodeoxynucleotides are promising components for cancer vaccines. In this phase I trial, 19 patients received a mean of 8 (range 1-12) monthly vaccines s.c. composed of the long synthetic NY-ESO-1 79-108 peptide and CpG-B (PF-3512676), emulsified in Montanide ISA-51. In 18/18 evaluable patients, vaccination induced antigen-specific CD8 + and CD4 + T-cell and antibody responses, starting early after initiation of immunotherapy and lasting at least one year. The T-cells responded antigen-specifically, with strong secretion of IFNγ and TNFα, irrespective of patients' HLAs. The most immunogenic regions of the vaccine peptide were NY-ESO-1 89-102 for CD8 + and NY-ESO-1 83-99 for CD4 + T-cells. We discovered a novel and highly immunogenic epitope (HLA-DR7/NY-ESO-1 87-99 ); 7/7 HLA-DR7 + patients generated strong CD4 + T-cell responses, as detected directly ex vivo with fluorescent multimers. Thus, vaccination with the long synthetic NY-ESO-1 79-108 peptide combined with the strong immune adjuvant CpG-B induced integrated, robust and functional CD8 + and CD4 + T-cell responses in melanoma patients, supporting the further development of this immunotherapeutic approach.

  5. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    Science.gov (United States)

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and

  6. T CELL REPLICATIVE SENESCENCE IN HUMAN AGING

    Science.gov (United States)

    Chou, Jennifer P.; Effros, Rita B.

    2013-01-01

    The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of pro-inflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has far-reaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad. PMID:23061726

  7. Roles of Aluminum Hydroxide and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency To Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine.

    Science.gov (United States)

    Ko, Eun-Ju; Lee, Young-Tae; Kim, Ki-Hye; Lee, Youri; Jung, Yu-Jin; Kim, Min-Chul; Lee, Yu-Na; Kang, Taeuk; Kang, Sang-Moo

    2017-01-01

    Vaccine adjuvant effects in the CD4-deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and aluminum hydroxide (Alum) adjuvant (MPL+Alum) in inducing immunity after immunization of CD4 knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched Abs, IgG-secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from Alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHC class II KO mice suggest that MHC class II+ APCs contribute to providing alternative B cell help in the CD4-deficient condition in the context of MPL+Alum-adjuvanted vaccination. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. Interferon-γ induced by in vitro re-stimulation of CD4+ T-cells correlates with in vivo FMD vaccine induced protection of cattle against disease and persistent infection.

    Science.gov (United States)

    Oh, Yooni; Fleming, Lucy; Statham, Bob; Hamblin, Pip; Barnett, Paul; Paton, David J; Park, Jong-Hyeon; Joo, Yi Seok; Parida, Satya

    2012-01-01

    The immune defense against FMDV has been correlated to the antibody mediated component. However, there are occasions when some animals with high virus neutralising (VN) antibody are not protected following challenge and some with low neutralising antibody which do not succumb to disease. The importance of cell mediated immunity in clinical protection is less clear and so we investigated the source and production of interferon-gamma (IFN-γ) in re-stimulated whole blood of FMDV immunized cattle and its correlation to vaccine induced protection and FMDV persistence. We were able to show a positive correlation between IFN-γ response and vaccine induced protection as well as reduction of long term persistence of FMD virus. When combining this IFN-γ response in re-stimulated blood with virus neutralizing antibody titer in serum on the day of challenge, a better correlation of vaccine-induced protection with IFN-γ and VN antibody was predicted. Our investigations also showed that CD4+ T-cells are the major proliferating phenotype and IFN-γ producing cells.

  9. Markers of T Cell Senescence in Humans

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as “immunosenescence” can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.

  10. Vaccine-induced virus-neutralizing antibodies and cytotoxic T cells do not protect macaques from experimental infection with simian immunodeficiency virus SIVmac32H (J5).

    NARCIS (Netherlands)

    E.G.J. Hulskotte (Ellen); A.M. Geretti (Anna Maria); C.H.J. Siebelink (Kees); G. van Amerongen (Geert); M.P. Cranage (Martin); E. Rud; S.G. Norley (Stephen); P. de Vries (Petra); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractTo gain further insight into the ability of subunit vaccines to protect monkeys from experimental infection with simian immunodeficiency virus (SIV), two groups of cynomolgus macaques were immunized with either recombinant SIVmac32H-derived envelope glycoproteins (Env) incorporated into

  11. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human...

  12. IFN-γ and TNF-α producing CD4+ T-cells in the blood after Mycoplasma hyosynoviae challenge of vaccinated pigs

    DEFF Research Database (Denmark)

    Riber, Ulla; Hansen, Mette Sif; Lauritsen, Klara Tølbøll

    . hyosynoviae challenge inoculation three weeks later. Vaccination induced both antibodies and a cell-mediated immune response (CMI) in vaccinated pigs compared to placebo pigs as shown by M. hyosynoviae antigen (Ag) specific IFN-γ response in an IL-18 potentiated whole-blood IFN-γ stimulation assay (mean IFN...... placebo pigs the cytokine production before (day -1), and after (day 15) challenge inoculation was therefore further characterized by flow cytometry. Briefly, PBMC cultures were incubated with Ag, PBS or staphylococcus enterotoxin B (SEB) in the presence of recombinant porcine IL-18 (50 ng/ml). Cultured......-α were rare. However, CD4+ cells producing IFN-γ or TNF-α after Ag-stimulation were detected in vaccinated pigs, and increased IFN-γ level (iMFI) in cells co-producing IFN-γ and TNF-α was more pronounced in vaccinated pigs compared to placebo pigs in response to M. hyosynoviae challenge (day 15 p...

  13. rBCG Induces Strong Antigen-Specific T Cell Responses in Rhesus Macaques in a Prime-Boost Setting with an Adenovirus 35 Tuberculosis Vaccine Vector

    NARCIS (Netherlands)

    Magalhaes, Isabelle; Sizemore, Donata R.; Ahmed, Raija K.; Mueller, Stefanie; Wehlin, Lena; Scanga, Charles; Weichold, Frank; Schirru, Giulia; Pau, Maria Grazia; Goudsmit, Jaap; Kühlmann-Berenzon, Sharon; Spångberg, Mats; Andersson, Jan; Gaines, Hans; Thorstensson, Rigmor; Skeiky, Yasir A. W.; Sadoff, Jerry; Maeurer, Markus

    2008-01-01

    BACKGROUND: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB). We tested BCG (SSI1331) (in 6 animals, delivered intradermally) and a recombinant (rBCG) AFRO-1 expressing

  14. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    NARCIS (Netherlands)

    Bolton, Diane L.; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A.; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston

  15. The Early Activation of CD8+ T Cells Is Dependent on Type I IFN Signaling following Intramuscular Vaccination of Adenovirus Vector

    Directory of Open Access Journals (Sweden)

    Masahisa Hemmi

    2014-01-01

    Full Text Available Few of the vaccines in current use can induce antigen- (Ag- specific immunity in both mucosal and systemic compartments. Hence, the development of vaccines that realize both mucosal and systemic protection against various pathogens is a high priority in global health. Recently, it has been reported that intramuscular (i.m. vaccination of an adenovirus vector (Adv can induce Ag-specific cytotoxic T lymphocytes (CTLs in both systemic and gut mucosal compartments. We previously revealed that type I IFN signaling is required for the induction of gut mucosal CTLs, not systemic CTLs. However, the molecular mechanism via type I IFN signaling is largely unknown. Here, we report that type I IFN signaling following i.m. Adv vaccination is required for the expression of type I IFN in the inguinal lymph nodes (iLNs, which are the draining lymph nodes of the administration site. We also showed that the type I IFN signaling is indispensable for the early activation of CTLs in iLNs. These data suggested that type I IFN signaling has an important role in the translation of systemic innate immune response into mucosal adaptive immunity by amplifying the innate immune signaling and activating CTLs in the iLN.

  16. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Kirkby, N

    1999-01-01

    degree of controllability. We have examined the induction of murine CTL's by this approach using DNA plasmid minigene vaccines encoding known mouse K(k) minimal CTL epitopes (8 amino acids) from the influenza A virus hemagglutinin and nucleoprotein. We here report that such an approach is feasible...

  17. Low-dose adenovirus vaccine encoding chimeric hepatitis B virus surface antigen-human papillomavirus type 16 E7 proteins induces enhanced E7-specific antibody and cytotoxic T-cell responses.

    Science.gov (United States)

    Báez-Astúa, Andrés; Herráez-Hernández, Elsa; Garbi, Natalio; Pasolli, Hilda A; Juárez, Victoria; Zur Hausen, Harald; Cid-Arregui, Angel

    2005-10-01

    Induction of effective immune responses may help prevent cancer progression. Tumor-specific antigens, such as those of human papillomaviruses involved in cervical cancer, are targets with limited intrinsic immunogenicity. Here we show that immunization with low doses (10(6) infectious units/dose) of a recombinant human adenovirus type 5 encoding a fusion of the E7 oncoprotein of human papillomavirus type 16 to the carboxyl terminus of the surface antigen of hepatitis B virus (HBsAg) induces remarkable E7-specific humoral and cellular immune responses. The HBsAg/E7 fusion protein assembled efficiently into virus-like particles, which stimulated antibody responses against both carrier and foreign antigens, and evoked antigen-specific kill of an indicator cell population in vivo. Antibody and T-cell responses were significantly higher than those induced by a control adenovirus vector expressing wild-type E7. Such responses were not affected by preexisting immunity against either HBsAg or adenovirus. These data demonstrate that the presence of E7 on HBsAg particles does not interfere with particle secretion, as it occurs with bigger proteins fused to the C terminus of HBsAg, and results in enhancement of CD8(+)-mediated T-cell responses to E7. Thus, fusion to HBsAg is a convenient strategy for developing cervical cancer therapeutic vaccines, since it enhances the immunogenicity of E7 while turning it into an innocuous secreted fusion protein.

  18. Encapsulation of an EP67-Conjugated CTL Peptide Vaccine in Nanoscale Biodegradable Particles Increases the Efficacy of Respiratory Immunization and Affects the Magnitude and Memory Subsets of Vaccine-Generated Mucosal and Systemic CD8(+) T Cells in a Diameter-Dependent Manner.

    Science.gov (United States)

    Karuturi, Bala V K; Tallapaka, Shailendra B; Yeapuri, Pravin; Curran, Stephen M; Sanderson, Sam D; Vetro, Joseph A

    2017-05-01

    The diameter of biodegradable particles used to coencapsulate immunostimulants and subunit vaccines affects the magnitude of memory CD8(+) T cells generated by systemic immunization. Possible effects on the magnitude of CD8(+) T cells generated by mucosal immunization or memory subsets that potentially correlate more strongly with protection against certain pathogens, however, are unknown. In this study, we conjugated our novel host-derived mucosal immunostimulant, EP67, to the protective MCMV CTL epitope, pp89, through a lysosomal protease-labile double arginine linker (pp89-RR-EP67) and encapsulated in PLGA 50:50 micro- or nanoparticles. We then compared total magnitude, effector/central memory (CD127/KRLG1/CD62L), and IFN-γ/TNF-α/IL-2 secreting subsets of pp89-specific CD8(+) T cells as well as protection of naive female BALB/c mice against primary respiratory infection with MCMV 21 days after respiratory immunization. We found that decreasing the diameter of encapsulating particle from ∼5.4 μm to ∼350 nm (i) increased the magnitude of pp89-specific CD8(+) T cells in the lungs and spleen; (ii) partially changed CD127/KLRG1 effector memory subsets in the lungs but not the spleen; (iii) changed CD127/KRLG1/CD62L effector/central memory subsets in the spleen; (iv) changed pp89-responsive IFN-γ/TNF-α/IL-2 secreting subsets in the lungs and spleen; (v) did not affect the extent to which encapsulation increased efficacy against primary MCMV respiratory infection over unencapsulated pp89-RR-EP67. Thus, although not observed under our current experimental conditions with MCMV, varying the diameter of nanoscale biodegradable particles may increase the efficacy of mucosal immunization with coencapsulated immunostimulant/subunit vaccines against certain pathogens by selectively increasing memory subset(s) of CD8(+) T cells that correlate the strongest with protection.

  19. Characterization of a branched lipopeptide candidate vaccine against influenza A/Puerto Rico 8/34 which is recognized by human B and T-cell immune responses

    OpenAIRE

    Samayoa, Liz; Diaz-Mitoma, Francisco; Azizi, Ali

    2011-01-01

    Abstract The use of synthetic peptides as immunogens represents an exciting alternative to traditional vaccines. However, to date most of these synthetic peptides are not highly immunogenic. The lack of immunogenicity might be addressed by conjugation between T or B cell epitopes with universal or immunodominant T-helper epitopes. The construction of lipidated peptides, branched peptides, or designs combining both of these elements might enhance the immunogenicity, as they might target Toll-L...

  20. A liposome-based mycobacterial vaccine induces potent adult and neonatal multifunctional T cells through the exquisite targeting of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Arun T Kamath

    Full Text Available BACKGROUND: In the search for more potent and safer tuberculosis vaccines, CAF01 was identified as a remarkable formulation. Based on cationic liposomes and including a synthetic mycobacterial glycolipid as TLR-independent immunomodulator, it induces strong and protective T helper-1 and T helper-17 adult murine responses to Ag85B-ESAT-6, a major mycobacterial fusion protein. Here, we assessed whether these properties extend to early life and how CAF01 mediates its adjuvant properties in vivo. METHODS/FINDINGS: Following adult or neonatal murine immunization, Ag85B-ESAT-6/CAF01 similarly reduced the post-challenge bacterial growth of M. bovis BCG, whereas no protection was observed using Alum as control. This protection was mediated by the induction of similarly strong Th1 and Th17 responses in both age groups. Multifunctional Th1 cells were already elicited after a single vaccine dose and persisted at high levels for at least 6 months even after neonatal priming. Unexpectedly, this potent adjuvanticity was not mediated by a massive targeting/activation of dendritic cells: in contrast, very few DCs in the draining lymph nodes were bearing the labeled antigen/adjuvant. The increased expression of the CD40 and CD86 activation markers was restricted to the minute portion of adjuvant-bearing DCs. However, vaccine-associated activated DCs were recovered several days after immunization. CONCLUSION: The potent adult and neonatal adjuvanticity of CAF01 is associated in vivo with an exquisite but prolonged DC uptake and activation, fulfilling the preclinical requirements for novel tuberculosis vaccines to be used in early life.

  1. Immunity to Schistosoma mansoni in guinea-pigs vaccinated with radiation-attenuated cercariae. T-cell activation of macrophages for larval killing

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.R.; McLaren, D.J.

    1988-02-01

    This study addresses macrophage activation in guinea-pigs vaccinated with radiation-attenuated cercariae of Schistosom mansoni. Peritoneal exudate macrophages elicited in vaccinated animals by mineral oil injection were activated to kill larval schistosomes in vitro. Killing efficiency is dependent upon the cell:target ratio employed and is enhanced by, but is not strictly dependent on, the presence of specific antibodies. Macrophages co-cultured with parasites release superoxide radicals and hydrogen peroxide, but the use of inhibitors has shown that neither of these reactive oxygen intermediates are the causal agents of cellular cytotoxicity in this system. Oil-elicited macrophages from naive guinea-pigs do not show comparable activation; they can, however, be activated in vitro by incubation with culture supernatant fluids from schistosome antigen-stimulated spleen, or lymph node cells harvested from vaccinated guinea-pigs. Naive macrophages activated in this way kill schistosomula in vitro and release the activation markers IL-l and superoxide anion. The macrophage-activating factor (MAF) present in spleen cell culture supernatant fluids has a MW of 35,000-55,000, but does not have the chemical characteristics of gamma-interferon.

  2. T-cell costimulation

    DEFF Research Database (Denmark)

    Owens, T

    1996-01-01

    The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses....

  3. T cell traffic signals.

    Science.gov (United States)

    Van Epps, Heather L

    2005-08-15

    In 1990, Charles Mackay and colleagues combined classical physiology with modern molecular biology to provide the first concrete evidence that naive and memory T cells follow distinct migratory routes out of the bloodstream--a discovery that helped invigorate the field of lymphocyte homing.

  4. The live-attenuated yellow fever vaccine 17D induces broad and potent T cell responses against several viral proteins in Indian rhesus macaques – implications for recombinant vaccine design

    OpenAIRE

    Mudd, Philip A.; Piaskowski, Shari M.; Neves, Patricia C. Costa; Rudersdorf, Richard; Kolar, Holly L.; Eernisse, Christopher M.; Weisgrau, Kim L.; Veloso de Santana, Marlon G.; Wilson, Nancy A.; Bonaldo, Myrna C.; Galler, Ricardo; Rakasz, Eva G.; Watkins, David I.

    2010-01-01

    The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domai...

  5. The induction of CD80 and apoptosis on B cells and CD40L in CD4+ T cells in response to seasonal influenza vaccination distinguishes responders versus non-responders in healthy controls and aviremic ART-treated HIV-infected individuals.

    Science.gov (United States)

    Powell, Anna M; Luo, Zhenwu; Martin, Lisa; Wan, Zhuang; Ma, Lei; Liao, Guoyang; Song, Yuxia; Li, Xiaochun; Michael Kilby, J; Huang, Lei; Jiang, Wei

    2017-02-01

    Studies have shown that HIV infection is associated with an impaired influenza vaccine response. We examined the role of cellular phenotypes and function in influenza vaccine responsiveness in healthy controls and aviremic HIV-infected subjects on antiretroviral treatment (ART). 16 healthy controls and 26 ART+ aviremic HIV+ subjects were enrolled in the current study. Blood was collected at pre-vaccination (D0), and on days 7-10 (D7) and 14-21 (D14) following the 2013-2014 seasonal influenza vaccine administrations. Subjects were classified as responders if neutralizing titers against H1N1 virus increased ⩾4-fold at D14 compared to D0. A serial analysis of B and CD4+ T cell frequencies and activation was performed on D0 and D7 by flow cytometry. 9 of 26 (34.6%) HIV-infected individuals and 7 of 16 (43.8%) healthy controls were classified as responders to influenza vaccines. Total B cell apoptosis (annexin V) was increased on D7 post-vaccination in non-responders but not in responders among both controls and HIV+ subjects. Surface CD80 expression on memory B cells and intracellular CD40L expression on memory CD4+ T cells were induced on D7 in responders of controls but not in non-responders. The CD80 and CD40L induction was not demonstrable in HIV-infected subjects regardless of responders and non-responders. Memory CD4+ T cell cycling tended to increase on D7 in the four study groups but did not achieve significance. All the other parameters were indistinguishable between responders and non-responders, regardless of HIV-infection status. The perturbation of activation and apoptotic induction on B cells or CD4+ T cells after seasonal influenza vaccination in non-responders and HIV-infected subjects may help understand the mechanism of impaired vaccine responsiveness. Copyright © 2016. Published by Elsevier Ltd.

  6. Recognition of lipid antigens by T cells.

    Science.gov (United States)

    De Libero, Gennaro; Mori, Lucia

    2005-06-01

    Recent studies have shown that the recognition of lipid antigens by the immune system is important for defence against infection and other diseases, and that lipid-specific responses occur at higher frequencies than previously suspected. Thanks to several recent advances in this field, we now have a better appreciation of the molecular and cellular requirements of T-cell stimulation by lipids. These findings have raised new questions about the mechanisms of lipid presentation, the priming and clonal expansion of lipid-specific T cells, and their differentiation into memory cells. A greater understanding of lipid-specific T cells and the molecular mechanisms of lipid immunogenicity should facilitate the development of lipid-based vaccines.

  7. The role of T cell immunity in HIV-1 infection.

    Science.gov (United States)

    Munier, C Mee Ling; Kelleher, Anthony D; Kent, Stephen J; De Rose, Robert

    2013-08-01

    The interplay between the T cell immune response and human immunodeficiency virus (HIV)-1 largely determines the outcome of infection. Typically, the virus overcomes the immune defences leading to a gradual decline in function that permits the development of disease. In recent years, a concerted effort in comparing T cell responses between 'controllers' and 'progressors' is beginning to identify the T cell subsets and factors that affect disease progression related to the effector functions of both CD4 and CD8 T cells. These efforts are providing opportunities for development of novel therapies and vaccines. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Inferring Protective CD8+ T-Cell Epitopes for NS5 Protein of Four Serotypes of Dengue Virus Chinese Isolates Based on HLA-A, -B and -C Allelic Distribution: Implications for Epitope-Based Universal Vaccine Design.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Li, Jianfan; Li, Yanhan; Wang, Haixuan; Hu, Yunzhang

    2015-01-01

    Dengue is one of the most globally serious vector-borne infectious diseases in tropical and subtropical areas for which there are currently no effective vaccines. The most highly conserved flavivirus protein, NS5, is an indispensable target of CD8+ T-cells, making it an ideal vaccine design target. Using the Immune Epitope Database (IEDB), CD8+ T-cell epitopes of the dengue virus (DENV) NS5 protein were predicted by genotypic frequency of the HLA-A,-B, and-C alleles in Chinese population. Antigenicity scores of all predicted epitopes were analyzed using VaxiJen v2.0. The IEDB analysis revealed that 116 antigenic epitopes for HLA-A (21),-B (53), and-C (42) had high affinity for HLA molecules. Of them, 14 had 90.97-99.35% conversancy among the four serotypes. Moreover, five candidate epitopes, including 200NS5210 (94.84%, A*11:01), 515NS5525 (98.71%, A*24:02), 225NS5232 (99.35%, A*33:03), 516NS5523 (98.71%, A*33:03), and 284NS5291 (98.06%, A*33:03), were presented by HLA-A. Four candidate epitopes, including 234NS5241 (96.77%, B*13:01), 92NS599 (98.06%, B*15:01, B*15:02, and B*46:01), 262NS5269 (92.90%, B*38:02), and 538NS5547 (90.97%, B*51:01), were presented by HLA-B. Another 9 candidate epitopes, including 514NS5522 (98.71%, C*01:02), 514NS5524 (98.71%, C*01:02 and C*14:02), 92NS599 (98.06%, C*03:02 and C*15:02), 362NS5369 (44.84%, C*03:04 and C*08:01), 225NS5232 (99.35%, C*04:01), 234NS5241(96.77%, C*04:01), 361NS5369 (94.84%, C*04:01), 515NS5522 (98.71%, C*14:02), 515NS5524 (98.71%, C*14:02), were presented by HLA-C. Further data showed that the four-epitope combination of 92NS599 (B*15:01, B*15:02, B*46:01, C*03:02 and C*15:02), 200NS5210 (A*11:01), 362NS5369 (C*03:04, C*08:01), and 514NS5524 (C*01:02, C*14:02) could vaccinate >90% of individuals in China. Further in vivo study of our inferred novel epitopes will be needed for a T-cell epitope-based universal vaccine development that may prevent all four China-endemic DENV serotypes.

  9. Inferring Protective CD8+ T-Cell Epitopes for NS5 Protein of Four Serotypes of Dengue Virus Chinese Isolates Based on HLA-A, -B and -C Allelic Distribution: Implications for Epitope-Based Universal Vaccine Design.

    Directory of Open Access Journals (Sweden)

    Jiandong Shi

    Full Text Available Dengue is one of the most globally serious vector-borne infectious diseases in tropical and subtropical areas for which there are currently no effective vaccines. The most highly conserved flavivirus protein, NS5, is an indispensable target of CD8+ T-cells, making it an ideal vaccine design target. Using the Immune Epitope Database (IEDB, CD8+ T-cell epitopes of the dengue virus (DENV NS5 protein were predicted by genotypic frequency of the HLA-A,-B, and-C alleles in Chinese population. Antigenicity scores of all predicted epitopes were analyzed using VaxiJen v2.0. The IEDB analysis revealed that 116 antigenic epitopes for HLA-A (21,-B (53, and-C (42 had high affinity for HLA molecules. Of them, 14 had 90.97-99.35% conversancy among the four serotypes. Moreover, five candidate epitopes, including 200NS5210 (94.84%, A*11:01, 515NS5525 (98.71%, A*24:02, 225NS5232 (99.35%, A*33:03, 516NS5523 (98.71%, A*33:03, and 284NS5291 (98.06%, A*33:03, were presented by HLA-A. Four candidate epitopes, including 234NS5241 (96.77%, B*13:01, 92NS599 (98.06%, B*15:01, B*15:02, and B*46:01, 262NS5269 (92.90%, B*38:02, and 538NS5547 (90.97%, B*51:01, were presented by HLA-B. Another 9 candidate epitopes, including 514NS5522 (98.71%, C*01:02, 514NS5524 (98.71%, C*01:02 and C*14:02, 92NS599 (98.06%, C*03:02 and C*15:02, 362NS5369 (44.84%, C*03:04 and C*08:01, 225NS5232 (99.35%, C*04:01, 234NS5241(96.77%, C*04:01, 361NS5369 (94.84%, C*04:01, 515NS5522 (98.71%, C*14:02, 515NS5524 (98.71%, C*14:02, were presented by HLA-C. Further data showed that the four-epitope combination of 92NS599 (B*15:01, B*15:02, B*46:01, C*03:02 and C*15:02, 200NS5210 (A*11:01, 362NS5369 (C*03:04, C*08:01, and 514NS5524 (C*01:02, C*14:02 could vaccinate >90% of individuals in China. Further in vivo study of our inferred novel epitopes will be needed for a T-cell epitope-based universal vaccine development that may prevent all four China-endemic DENV serotypes.

  10. The evolving epidemiology of rotavirus gastroenteritis in central Portugal with modest vaccine coverage.

    Science.gov (United States)

    Rodrigues, Fernanda; Iturriza-Gómara, Miren; Marlow, Robin; Gray, Jim; Nawaz, Sameena; Januário, Luís; Finn, Adam

    2013-02-01

    Rotavirus (RV) vaccines have been available on the private market in Portugal since 2006, with an estimated coverage rising from 16 to 42% between 2007 and 2010. To assess trends, surveillance of children presenting with acute gastroenteritis (AG) to a large paediatric emergency service (ES) in the central region of Portugal was conducted yearly during the winter-spring seasons. Stool samples, collected throughout five epidemic seasons (January-June, 2006 to 2010) from children ≤ 36 months of age attending the ES with AG, were tested for RV by immunochromatographic rapid test and positive samples were genotyped. A total of 6145 AG cases were identified: 1956 (32%) provided a stool sample (range: 28% in 2008-37% in 2009). The proportion of AG subjects who tested positive for RV fluctuated over the five surveillance seasons (49%, 39%, 25%, 26% and 39%, respectively) as did the distribution of co-circulating RV genotypes. There were no consistent changes in seasonality or age distribution and the proportion of admitted AG subjects who tested RV-positive did not show progressive trends over time. Our results demonstrate fluctuations in RVAG incidence with no clear progressive trends or seasonal RV shifts among our surveillance subjects over five years, in the context of limited rotavirus vaccine coverage. Significant annual changes in genotype distributions were detected. Higher vaccine coverage may be necessary than at present for consistent impact on disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Vaccines for canine leishmaniasis.

    Science.gov (United States)

    Palatnik-de-Sousa, Clarisa B

    2012-01-01

    Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost-effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL.

  12. Vaccines for canine leishmaniasis

    Directory of Open Access Journals (Sweden)

    Clarisa B. Palatnik-De-Sousa

    2012-04-01

    Full Text Available Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global-warming, co-infection with immunosuppressive diseases and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL in the Americas, the Middle East, Central Asia, China and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost-effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine visceral leishmaniasis. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans

  13. Vaccines for Canine Leishmaniasis

    Science.gov (United States)

    Palatnik-de-Sousa, Clarisa B.

    2012-01-01

    Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost–effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL. PMID:22566950

  14. Characterization of a branched lipopeptide candidate vaccine against influenza A/Puerto Rico 8/34 which is recognized by human B and T-cell immune responses.

    Science.gov (United States)

    Samayoa, Liz; Diaz-Mitoma, Francisco; Azizi, Ali

    2011-06-16

    The use of synthetic peptides as immunogens represents an exciting alternative to traditional vaccines. However, to date most of these synthetic peptides are not highly immunogenic. The lack of immunogenicity might be addressed by conjugation between T or B cell epitopes with universal or immunodominant T-helper epitopes. The construction of lipidated peptides, branched peptides, or designs combining both of these elements might enhance the immunogenicity, as they might target Toll-Like Receptors and/or mimic the 3-dimensional structure of epitopes within the native protein. Herein, a recognized peptide immunogen based on the hemagglutinin protein of A/Puerto Rico/8/34 was chosen as a backbone and modified to evaluate if the construction of branched peptides, lipidation, the addition of cysteine residues, or mutations could indeed alter epitope reactivity. Screening the different designs with various antibody binding and cellular assays revealed that combining a branched design with the addition of lipid moieties greatly enhanced the immunoreactivity.

  15. Peripheral blood lymphocytes from low-grade squamous intraepithelial lesions patients recognize vaccine antigens in the presence of activated dendritic cells, and produced high levels of CD8 + IFNγ + T cells and low levels of IL-2 when induced to proliferate

    Directory of Open Access Journals (Sweden)

    Hernández-Montes Jorge

    2012-05-01

    Full Text Available Abstract Background Most infections with human papillomavirus (HPV are resolved without clinical intervention, but a minority evolves into chronic lesions of distinct grades, including cervical-uterine cancer. It is known that in most cases the immune system mediates elimination of HPV infection. However, the mechanism of immune evasion leading to HPV persistence and development of early cervical lesi