WorldWideScience

Sample records for evolve anticancer phenotypes

  1. The genotype-phenotype map of an evolving digital organism.

    Directory of Open Access Journals (Sweden)

    Miguel A Fortuna

    2017-02-01

    Full Text Available To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences, which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  2. The genotype-phenotype map of an evolving digital organism.

    Science.gov (United States)

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  3. The genotype-phenotype map of an evolving digital organism

    OpenAIRE

    Fortuna, Miguel A.; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms fr...

  4. Evolving phenotypic networks in silico.

    Science.gov (United States)

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae.

    Science.gov (United States)

    Oud, Bart; Guadalupe-Medina, Victor; Nijkamp, Jurgen F; de Ridder, Dick; Pronk, Jack T; van Maris, Antonius J A; Daran, Jean-Marc

    2013-11-05

    Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments.

  6. Robustness to Faults Promotes Evolvability: Insights from Evolving Digital Circuits.

    Science.gov (United States)

    Milano, Nicola; Nolfi, Stefano

    2016-01-01

    We demonstrate how the need to cope with operational faults enables evolving circuits to find more fit solutions. The analysis of the results obtained in different experimental conditions indicates that, in absence of faults, evolution tends to select circuits that are small and have low phenotypic variability and evolvability. The need to face operation faults, instead, drives evolution toward the selection of larger circuits that are truly robust with respect to genetic variations and that have a greater level of phenotypic variability and evolvability. Overall our results indicate that the need to cope with operation faults leads to the selection of circuits that have a greater probability to generate better circuits as a result of genetic variation with respect to a control condition in which circuits are not subjected to faults.

  7. Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It

    DEFF Research Database (Denmark)

    Mengistu, Henok; Lehman, Joel Anthony; Clune, Jeff

    2016-01-01

    of evolvable digital phenotypes. Although some types of selection in evolutionary computation indirectly encourage evolvability, one unexplored possibility is to directly select for evolvability. To do so, we estimate an individual's future potential for diversity by calculating the behavioral diversity of its...... immediate offspring, and select organisms with increased offspring variation. While the technique is computationally expensive, we hypothesized that direct selection would better encourage evolvability than indirect methods. Experiments in two evolutionary robotics domains confirm this hypothesis: in both...... domains, such Evolvability Search produces solutions with higher evolvability than those produced with Novelty Search or traditional objective-based search algorithms. Further experiments demonstrate that the higher evolvability produced by Evolvability Search in a training environment also generalizes...

  8. Melatonin Anticancer Effects: Review

    Directory of Open Access Journals (Sweden)

    Luigi Di Bella

    2013-01-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine, MLT, the main hormone produced by the pineal gland, not only regulates circadian rhythm, but also has antioxidant, anti-ageing and immunomodulatory properties. MLT plays an important role in blood composition, medullary dynamics, platelet genesis, vessel endothelia, and in platelet aggregation, leukocyte formula regulation and hemoglobin synthesis. Its significant atoxic, apoptotic, oncostatic, angiogenetic, differentiating and antiproliferative properties against all solid and liquid tumors have also been documented. Thanks, in fact, to its considerable functional versatility, MLT can exert both direct and indirect anticancer effects in factorial synergy with other differentiating, antiproliferative, immunomodulating and trophic molecules that form part of the anticancer treatment formulated by Luigi Di Bella (Di Bella Method, DBM: somatostatin, retinoids, ascorbic acid, vitamin D3, prolactin inhibitors, chondroitin-sulfate. The interaction between MLT and the DBM molecules counters the multiple processes that characterize the neoplastic phenotype (induction, promotion, progression and/or dissemination, tumoral mutation. All these particular characteristics suggest the use of MLT in oncological diseases.

  9. Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces

    Science.gov (United States)

    Partha, Raghavendran; Raman, Karthik

    2014-01-01

    Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to

  10. and in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Monika Toma

    2014-09-01

    Full Text Available Nowadays, cancer and anticancer therapy are increasingly mentioned topics. Groups of researchers keep looking for a tool that will specifically and efficiently eliminate abnormal cells without any harm for the normal ones. Such method entails the reduction of therapy’s side effects, thus also improving patient’s recovery. Discovery of synthetic lethality has become a new hope to create effective, personalized therapy of cancer. Researchers noted that pairs of simultaneously mutated genes can lead to cell death, whereas each gene from that pair mutated individually does not result in cell lethality. Cancer cells accumulate numerous changes in their genetic material. By defining the pairs of genes interacting in cell pathways we are able to identify a potential anticancer therapy. It is believed that such a process has evolved to create cell resistance for a single gene mutation. Proper functioning of a pathway is not dependent on a single gene. Such a solution, however, also led to the evolution of multifactorial diseases such as cancer. Research techniques using iRNA, shRNA or small molecule libraries allow us to find genes that are connected in synthetic lethality interactions. Synthetic lethality may be applied not only as an anticancer therapy but also as a tool for identifying the functions of recently recognized genes. In addition, studying synthetic lethality broadens our understanding of the molecular mechanisms governing cancer cells, which should be helpful in designing highly effective personalized cancer therapies.

  11. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    Science.gov (United States)

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  12. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    Science.gov (United States)

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  13. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    Directory of Open Access Journals (Sweden)

    Arno Steinacher

    Full Text Available Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest

  14. Criticality is an emergent property of genetic networks that exhibit evolvability.

    Directory of Open Access Journals (Sweden)

    Christian Torres-Sosa

    Full Text Available Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype while allowing for switching between multiple phenotypes (network states as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i preserve all the already acquired phenotypes (dynamical attractor states and (ii generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation while conserving the existing phenotypes (conservation suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape.

  15. Evolving Concepts of Asthma

    Science.gov (United States)

    Ray, Anuradha; Wenzel, Sally E.

    2015-01-01

    Our understanding of asthma has evolved over time from a singular disease to a complex of various phenotypes, with varied natural histories, physiologies, and responses to treatment. Early therapies treated most patients with asthma similarly, with bronchodilators and corticosteroids, but these therapies had varying degrees of success. Similarly, despite initial studies that identified an underlying type 2 inflammation in the airways of patients with asthma, biologic therapies targeted toward these type 2 pathways were unsuccessful in all patients. These observations led to increased interest in phenotyping asthma. Clinical approaches, both biased and later unbiased/statistical approaches to large asthma patient cohorts, identified a variety of patient characteristics, but they also consistently identified the importance of age of onset of disease and the presence of eosinophils in determining clinically relevant phenotypes. These paralleled molecular approaches to phenotyping that developed an understanding that not all patients share a type 2 inflammatory pattern. Using biomarkers to select patients with type 2 inflammation, repeated trials of biologics directed toward type 2 cytokine pathways saw newfound success, confirming the importance of phenotyping in asthma. Further research is needed to clarify additional clinical and molecular phenotypes, validate predictive biomarkers, and identify new areas for possible interventions. PMID:26161792

  16. Phenotypic and Functional Properties of Tumor-Infiltrating Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Gap Ryol Lee

    2017-01-01

    Full Text Available Regulatory T (Treg cells maintain immune homeostasis by suppressing excessive immune responses. Treg cells induce tolerance against self- and foreign antigens, thus preventing autoimmunity, allergy, graft rejection, and fetus rejection during pregnancy. However, Treg cells also infiltrate into tumors and inhibit antitumor immune responses, thus inhibiting anticancer therapy. Depleting whole Treg cell populations in the body to enhance anticancer treatments will produce deleterious autoimmune diseases. Therefore, understanding the precise nature of tumor-infiltrating Treg cells is essential for effectively targeting Treg cells in tumors. This review summarizes recent results relating to Treg cells in the tumor microenvironment, with particular emphasis on their accumulation, phenotypic, and functional properties, and targeting to enhance the efficacy of anticancer treatment.

  17. Programming adaptive control to evolve increased metabolite production.

    Science.gov (United States)

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  18. Anti-cancer vaccine therapy for hematologic malignancies: An evolving era.

    Science.gov (United States)

    Nahas, Myrna R; Rosenblatt, Jacalyn; Lazarus, Hillard M; Avigan, David

    2018-02-15

    The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  20. Targeting apoptotic machinery as approach for anticancer therapy: Smac mimetics as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nevine M.Y. Elsayed

    2015-06-01

    Full Text Available Apoptosis is a chief regulator of cellular homeostasis. Impairment of apoptotic machinery is a main characteristic of several diseases such as cancer, where the evasion of apoptosis is a cardinal hallmark of cancer. Apoptosis is regulated by contribution of pro- and anti- apoptotic proteins, where caspases are the main executioners of the apoptotic machinery. IAP (inhibitors of apoptosis proteins is a family of endogenous inhibitors of apoptosis, which perform their function through interference with the function of caspases. Smac (second mitochondria-derived activator of caspases is endogenous inhibitor of IAPs, thus it is one of the major proapoptotic endogenous proteins. Thus, the development of Smac mimetics has evolved as an approach for anticancer therapy. Several Smac mimetic agents have been introduced to clinical trial such as birinapanet 12. Herein, the history of development of Smac mimetics along with the recent development in this field is briefly discussed.

  1. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    Science.gov (United States)

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  2. The phenotypic spectrum of organic acidurias and urea cycle disorders Part 2: the evolving clinical phenotype

    NARCIS (Netherlands)

    Kölker, Stefan; Valayannopoulos, Vassili; Burlina, Alberto B.; Sykut-Cegielska, Jolanta; Wijburg, Frits A.; Teles, Elisa Leão; Zeman, Jiri; Dionisi-Vici, Carlo; Barić, Ivo; Karall, Daniela; Arnoux, Jean-Baptiste; Avram, Paula; Baumgartner, Matthias R.; Blasco-Alonso, Javier; Boy, S. P. Nikolas; Rasmussen, Marlene Bøgehus; Burgard, Peter; Chabrol, Brigitte; Chakrapani, Anupam; Chapman, Kimberly; Cortès I Saladelafont, Elisenda; Couce, Maria L.; de Meirleir, Linda; Dobbelaere, Dries; Furlan, Francesca; Gleich, Florian; González, Maria Julieta; Gradowska, Wanda; Grünewald, Stephanie; Honzik, Tomas; Hörster, Friederike; Ioannou, Hariklea; Jalan, Anil; Häberle, Johannes; Haege, Gisela; Langereis, Eveline; de Lonlay, Pascale; Martinelli, Diego; Matsumoto, Shirou; Mühlhausen, Chris; Murphy, Elaine; de Baulny, Hélène Ogier; Ortez, Carlos; Pedrón, Consuelo C.; Pintos-Morell, Guillem; Pena-Quintana, Luis; Ramadža, Danijela Petković; Rodrigues, Esmeralda; Scholl-Bürgi, Sabine; Sokal, Etienne; Summar, Marshall L.; Thompson, Nicholas; Vara, Roshni; Pinera, Inmaculada Vives; Walter, John H.; Williams, Monique; Lund, Allan M.; Garcia-Cazorla, Angeles; Garcia Cazorla, Angeles

    2015-01-01

    Background The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood. Aims To evaluate the complex clinical phenotype of OAD and UCD patients at different ages. Results Acquired microcephaly and movement disorders

  3. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability.

    Directory of Open Access Journals (Sweden)

    Sam F Greenbury

    2016-03-01

    Full Text Available Mutational neighbourhoods in genotype-phenotype (GP maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps-a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure-to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i If a particular (non-neutral phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i and ii reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii may instead facilitate evolutionary exploration

  4. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability

    Science.gov (United States)

    Greenbury, Sam F.; Schaper, Steffen; Ahnert, Sebastian E.; Louis, Ard A.

    2016-01-01

    Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps—a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure—to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so

  5. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  6. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  7. Anticancer peptides from bacteria

    OpenAIRE

    Tomasz M. Karpiński; Anna K. Szkaradkiewicz

    2013-01-01

    Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data ...

  8. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  9. PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models.

    Science.gov (United States)

    Glueck, Michael; Naeini, Mahdi Pakdaman; Doshi-Velez, Finale; Chevalier, Fanny; Khan, Azam; Wigdor, Daniel; Brudno, Michael

    2018-01-01

    PhenoLines is a visual analysis tool for the interpretation of disease subtypes, derived from the application of topic models to clinical data. Topic models enable one to mine cross-sectional patient comorbidity data (e.g., electronic health records) and construct disease subtypes-each with its own temporally evolving prevalence and co-occurrence of phenotypes-without requiring aligned longitudinal phenotype data for all patients. However, the dimensionality of topic models makes interpretation challenging, and de facto analyses provide little intuition regarding phenotype relevance or phenotype interrelationships. PhenoLines enables one to compare phenotype prevalence within and across disease subtype topics, thus supporting subtype characterization, a task that involves identifying a proposed subtype's dominant phenotypes, ages of effect, and clinical validity. We contribute a data transformation workflow that employs the Human Phenotype Ontology to hierarchically organize phenotypes and aggregate the evolving probabilities produced by topic models. We introduce a novel measure of phenotype relevance that can be used to simplify the resulting topology. The design of PhenoLines was motivated by formative interviews with machine learning and clinical experts. We describe the collaborative design process, distill high-level tasks, and report on initial evaluations with machine learning experts and a medical domain expert. These results suggest that PhenoLines demonstrates promising approaches to support the characterization and optimization of topic models.

  10. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  11. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.

    Science.gov (United States)

    Ali, Imran; Lone, Mohammad Nadeem; Al-Othman, Zeid A; Al-Warthan, Abdulrahman; Sanagi, Mohd Marsin

    2015-01-01

    Cancer has been cursed for human beings for long time. Millions people lost their lives due to cancer. Despite of the several anticancer drugs available, cancer cannot be cured; especially at the late stages without showing any side effect. Heterocyclic compounds exhibit exciting medicinal properties including anticancer. Some market selling heterocyclic anticancer drugs include 5-flourouracil, methortrexate, doxorubicin, daunorubicin, etc. Besides, some natural products such as vinblastine and vincristine are also used as anticancer drugs. Overall, heterocyclic moeities have always been core parts in the expansion of anticancer drugs. This article describes the importance of heterocyclic nuclei in the development of anticancer drugs. Besides, the attempts have been made to discuss both naturally occurring and synthetic heterocyclic compounds as anticancer agents. In addition, some market selling anticancer heterocyclic compounds have been described. Moreover, the efforts have been made to discuss the mechanisms of actions and recent advances in heterocyclic compounds as anticancer agents. The current challenges and future prospectives of heterocyclic compounds have also been discussed. Finally, the suggestions for syntheses of effective, selective, fast and human friendly anticancer agents are discussed into the different sections.

  12. Evolution of the androgen-induced male phenotype.

    Science.gov (United States)

    Fuxjager, Matthew J; Miles, Meredith C; Schlinger, Barney A

    2018-01-01

    The masculine reproductive phenotype varies significantly across vertebrates. As a result, biologists have long recognized that many of the mechanisms that support these phenotypes-particularly the androgenic system-is evolutionarily labile, and thus susceptible to the effects of selection for different traits. However, exactly how androgenic signaling systems vary in a way which results in dramatically different functional outputs, remain largely unclear. We explore this topic here by outlining four key-but non-mutually exclusive-hypotheses that propose how the mechanisms of androgenic signaling might change over time to potentiate the emergence of phenotypical variation in masculine behavior and physiology. We anchor this framework in a review of our own studies of a tropical bird called the golden-collared manakin (Manacus vitellinus), which has evolved an exaggerated acrobatic courtship display that is heavily androgen-dependent. The result is an example of how the cellular basis of androgenic action can be modified to support a unique reproductive repertoire. We end this review by highlighting a broad pathway forward to further pursue the intricate ways by which the mechanisms of hormone action evolve to support processes of adaptation and animal design.

  13. Directional selection effects on patterns of phenotypic (co)variation in wild populations.

    Science.gov (United States)

    Assis, A P A; Patton, J L; Hubbe, A; Marroig, G

    2016-11-30

    Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. © 2016 The Author(s).

  14. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  15. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  16. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Science.gov (United States)

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  17. Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community

    Directory of Open Access Journals (Sweden)

    Yook Karen

    2011-01-01

    Full Text Available Abstract Background Caenorhabditis elegans gene-based phenotype information dates back to the 1970's, beginning with Sydney Brenner and the characterization of behavioral and morphological mutant alleles via classical genetics in order to understand nervous system function. Since then C. elegans has become an important genetic model system for the study of basic biological and biomedical principles, largely through the use of phenotype analysis. Because of the growth of C. elegans as a genetically tractable model organism and the development of large-scale analyses, there has been a significant increase of phenotype data that needs to be managed and made accessible to the research community. To do so, a standardized vocabulary is necessary to integrate phenotype data from diverse sources, permit integration with other data types and render the data in a computable form. Results We describe a hierarchically structured, controlled vocabulary of terms that can be used to standardize phenotype descriptions in C. elegans, namely the Worm Phenotype Ontology (WPO. The WPO is currently comprised of 1,880 phenotype terms, 74% of which have been used in the annotation of phenotypes associated with greater than 18,000 C. elegans genes. The scope of the WPO is not exclusively limited to C. elegans biology, rather it is devised to also incorporate phenotypes observed in related nematode species. We have enriched the value of the WPO by integrating it with other ontologies, thereby increasing the accessibility of worm phenotypes to non-nematode biologists. We are actively developing the WPO to continue to fulfill the evolving needs of the scientific community and hope to engage researchers in this crucial endeavor. Conclusions We provide a phenotype ontology (WPO that will help to facilitate data retrieval, and cross-species comparisons within the nematode community. In the larger scientific community, the WPO will permit data integration, and

  18. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-01

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  19. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-15

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  20. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Directory of Open Access Journals (Sweden)

    Anwar Rayan

    Full Text Available Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  1. Anticancer drugs during pregnancy.

    Science.gov (United States)

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Developments in platinum anticancer drugs

    Science.gov (United States)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  3. Current situation and future usage of anticancer drug databases.

    Science.gov (United States)

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  4. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Zheng, E-mail: wppzheng@126.com [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Zhu, Yu-Xia [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang [Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Meng, Yue-Zhong [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  5. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    International Nuclear Information System (INIS)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-01-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  6. Polypharmacology of Approved Anticancer Drugs.

    Science.gov (United States)

    Amelio, Ivano; Lisitsa, Andrey; Knight, Richard A; Melino, Gerry; Antonov, Alexey V

    2017-01-01

    The major drug discovery efforts in oncology have been concentrated on the development of selective molecules that are supposed to act specifically on one anticancer mechanism by modulating a single or several closely related drug targets. However, a bird's eye view on data from multiple available bioassays implies that most approved anticancer agents do, in fact, target many more proteins with different functions. Here we will review and systematize currently available information on the targets of several anticancer drugs along with revision of their potential mechanisms of action. Polypharmacology of the current antineoplastic agents suggests that drug clinical efficacy in oncology can be achieved only via modulation of multiple cellular mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Anticancer Properties of Capsaicin Against Human Cancer.

    Science.gov (United States)

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Anticancer Activity of Amauroderma rude

    Science.gov (United States)

    Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B.

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  9. Anticancer activity of Amauroderma rude.

    Directory of Open Access Journals (Sweden)

    Chunwei Jiao

    Full Text Available More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities.

  10. Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortalized

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation or if...

  11. Hormones and phenotypic plasticity in an ecological context: linking physiological mechanisms to evolutionary processes.

    Science.gov (United States)

    Lema, Sean C

    2014-11-01

    Hormones are chemical signaling molecules that regulate patterns of cellular physiology and gene expression underlying phenotypic traits. Hormone-signaling pathways respond to an organism's external environment to mediate developmental stage-specific malleability in phenotypes, so that environmental variation experienced at different stages of development has distinct effects on an organism's phenotype. Studies of hormone-signaling are therefore playing a central role in efforts to understand how plastic phenotypic responses to environmental variation are generated during development. But, how do adaptive, hormonally mediated phenotypes evolve if the individual signaling components (hormones, conversion enzymes, membrane transporters, and receptors) that comprise any hormone-signaling pathway show expressional flexibility in response to environmental variation? What relevance do these components hold as molecular targets for selection to couple or decouple correlated hormonally mediated traits? This article explores how studying the endocrine underpinnings of phenotypic plasticity in an ecologically relevant context can provide insights into these, and other, crucial questions into the role of phenotypic plasticity in evolution, including how plasticity itself evolves. These issues are discussed in the light of investigations into how thyroid hormones mediate morphological plasticity in Death Valley's clade of pupfishes (Cyprinodon spp.). Findings from this work with pupfish illustrate that the study of hormone-signaling from an ecological perspective can reveal how phenotypic plasticity contributes to the generation of phenotypic novelty, as well as how physiological mechanisms developmentally link an organism's phenotype to its environmental experiences. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  13. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  14. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    Directory of Open Access Journals (Sweden)

    Chi H.J. Kao

    2013-02-01

    Full Text Available ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides being widely known as the major active ingredients, the different biological pathways by which they exert their anti-cancer effect remain poorly defined. Therefore, understanding the mechanisms of action may lead to more widespread use of Ganoderma as an anti-cancer agent.The aim of this paper is to summarise the various bioactive mechanisms that have been proposed for the anti-cancer properties of triterpenes and polysaccharides extracted from G. lucidum. A literature search of published papers on NCBI with keywords “Ganoderma” and “cancer” was performed. Among those, studies which specifically examined the anti-cancer activities of Ganoderma triterpenes and polysaccharides were selected to be included in this paper.We have found five potential mechanisms which are associated with the anti-cancer activities of Ganoderma triterpenes and three potential mechanisms for Ganoderma polysaccharides. In addition, G. lucidum has been used in combination with known anti-cancer agents to improve the anti-cancer efficacies. This suggests Ganoderma’s bioactive pathways may compliment that of anti-cancer agents. In this paper we present several potential anti-cancer mechanisms of Ganoderma triterpenes and polysaccharides which can be used for the development of Ganoderma as an anti-cancer agent.

  15. Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging

    KAUST Repository

    Hajjar, Dina

    2017-06-13

    Natural products have been used for medical applications since ancient times. Commonly, natural products are structurally complex chemical compounds that efficiently interact with their biological targets, making them useful drug candidates in cancer therapy. Here, we used cell-based phenotypic profiling and image-based high-content screening to study the mode of action and potential cellular targets of plants historically used in Saudi Arabia\\'s traditional medicine. We compared the cytological profiles of fractions taken from Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam), and Citrullus colocynthis (Hanzal) with a set of reference compounds with established modes of action. Cluster analyses of the cytological profiles of the tested compounds suggested that these plants contain possible topoisomerase inhibitors that could be effective in cancer treatment. Using histone H2AX phosphorylation as a marker for DNA damage, we discovered that some of the compounds induced double-strand DNA breaks. Furthermore, chemical analysis of the active fraction isolated from Juniperus phoenicea revealed possible anti-cancer compounds. Our results demonstrate the usefulness of cell-based phenotypic screening of natural products to reveal their biological activities.

  16. New genes as drivers of phenotypic evolution

    Science.gov (United States)

    Chen, Sidi; Krinsky, Benjamin H.; Long, Manyuan

    2014-01-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution. PMID:23949544

  17. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Lloyd, Colton J.; Palsson, Bernhard O.

    2017-01-01

    conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent "generalist" strain developed, while in another, two "specialist" subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists...... maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating environments by evolving Escherichia coli to conditions of frequently switching growth substrate. Characterization...... of evolved strains via a number of different data types revealed the various genetic and phenotypic changes implemented in pursuit of growth optimality and how these differed across the different growth substrates and switching protocols. This work not only helps to establish general principles of adaptation...

  18. Whole genome duplication affects evolvability of flowering time in an autotetraploid plant.

    Directory of Open Access Journals (Sweden)

    Sara L Martin

    Full Text Available Whole genome duplications have occurred recurrently throughout the evolutionary history of eukaryotes. The resulting genetic and phenotypic changes can influence physiological and ecological responses to the environment; however, the impact of genome copy number on evolvability has rarely been examined experimentally. Here, we evaluate the effect of genome duplication on the ability to respond to selection for early flowering time in lines drawn from naturally occurring diploid and autotetraploid populations of the plant Chamerion angustifolium (fireweed. We contrast this with the result of four generations of selection on synthesized neoautotetraploids, whose genic variability is similar to diploids but genome copy number is similar to autotetraploids. In addition, we examine correlated responses to selection in all three groups. Diploid and both extant tetraploid and neoautotetraploid lines responded to selection with significant reductions in time to flowering. Evolvability, measured as realized heritability, was significantly lower in extant tetraploids (^b(T =  0.31 than diploids (^b(T =  0.40. Neotetraploids exhibited the highest evolutionary response (^b(T  =  0.55. The rapid shift in flowering time in neotetraploids was associated with an increase in phenotypic variability across generations, but not with change in genome size or phenotypic correlations among traits. Our results suggest that whole genome duplications, without hybridization, may initially alter evolutionary rate, and that the dynamic nature of neoautopolyploids may contribute to the prevalence of polyploidy throughout eukaryotes.

  19. Clinical pharmacology of novel anticancer drug formulations

    NARCIS (Netherlands)

    Stuurman, F.E.

    2013-01-01

    Studies outlined in this thesis describe the impact of drug formulations on pharmacology of anticancer drugs. It consists of four parts and starts with a review describing the mechanisms of low oral bioavailability of anti-cancer drugs and strategies for improvement of the bioavailability. The

  20. Cognitive Phenotypes and the Evolution of Animal Decisions.

    Science.gov (United States)

    Mendelson, Tamra C; Fitzpatrick, Courtney L; Hauber, Mark E; Pence, Charles H; Rodríguez, Rafael L; Safran, Rebecca J; Stern, Caitlin A; Stevens, Jeffrey R

    2016-11-01

    Despite the clear fitness consequences of animal decisions, the science of animal decision making in evolutionary biology is underdeveloped compared with decision science in human psychology. Specifically, the field lacks a conceptual framework that defines and describes the relevant components of a decision, leading to imprecise language and concepts. The 'judgment and decision-making' (JDM) framework in human psychology is a powerful tool for framing and understanding human decisions, and we apply it here to components of animal decisions, which we refer to as 'cognitive phenotypes'. We distinguish multiple cognitive phenotypes in the context of a JDM framework and highlight empirical approaches to characterize them as evolvable traits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mining for genotype-phenotype relations in Saccharomyces using partial least squares

    Directory of Open Access Journals (Sweden)

    Sæbø Solve

    2011-08-01

    Full Text Available Abstract Background Multivariate approaches are important due to their versatility and applications in many fields as it provides decisive advantages over univariate analysis in many ways. Genome wide association studies are rapidly emerging, but approaches in hand pay less attention to multivariate relation between genotype and phenotype. We introduce a methodology based on a BLAST approach for extracting information from genomic sequences and Soft- Thresholding Partial Least Squares (ST-PLS for mapping genotype-phenotype relations. Results Applying this methodology to an extensive data set for the model yeast Saccharomyces cerevisiae, we found that the relationship between genotype-phenotype involves surprisingly few genes in the sense that an overwhelmingly large fraction of the phenotypic variation can be explained by variation in less than 1% of the full gene reference set containing 5791 genes. These phenotype influencing genes were evolving 20% faster than non-influential genes and were unevenly distributed over cellular functions, with strong enrichments in functions such as cellular respiration and transposition. These genes were also enriched with known paralogs, stop codon variations and copy number variations, suggesting that such molecular adjustments have had a disproportionate influence on Saccharomyces yeasts recent adaptation to environmental changes in its ecological niche. Conclusions BLAST and PLS based multivariate approach derived results that adhere to the known yeast phylogeny and gene ontology and thus verify that the methodology extracts a set of fast evolving genes that capture the phylogeny of the yeast strains. The approach is worth pursuing, and future investigations should be made to improve the computations of genotype signals as well as variable selection procedure within the PLS framework.

  2. Clinician's guide to genes associated with Rett-like phenotypes - Investigation of a Danish cohort and review of the literature

    DEFF Research Database (Denmark)

    Schönewolf-Greulich, Bitten; Bisgaard, Anne-Marie; Møller, Rikke S

    2018-01-01

    The differential diagnostics in Rett syndrome has evolved with the development of next generation sequencing based techniques and many patients have been diagnosed with other syndromes or variants in newly described genes where the associated phenotype(s) is yet to be fully explored. The term Ret...

  3. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  4. Anticancer Properties of Lamellarins

    Directory of Open Access Journals (Sweden)

    Christian Bailly

    2015-02-01

    Full Text Available In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.

  5. High-resolution phenotypic profiling of natural products-induced effects on the single-cell level

    KAUST Repository

    Kremb, Stephan Georg; Voolstra, Christian R.

    2017-01-01

    Natural products (NPs) are highly evolved molecules making them a valuable resource for new therapeutics. Here we demonstrate the usefulness of broad-spectrum phenotypic profiling of NP-induced perturbations on single cells with imaging-based High

  6. Antimicrobial and anticancer activities of extracts from Urginea ...

    African Journals Online (AJOL)

    Background: Increasing antibiotic resistance among human pathogenic microorganisms and the failure of conventional cancer therapies attracting great attention among scientists in the field of herbal medicine to develop natural antimicrobial and anticancer drugs. Thus, the antimicrobial and anticancer activities from fruits ...

  7. Anticancer Effect of AntiMalarial Artemisinin Compounds | Das ...

    African Journals Online (AJOL)

    A PubMed search of about 127 papers on anti‑cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. ... Keywords: Anticancer agents, Antimalarials, Antitumor activity, Artemisinins, Novel chemotherapy ...

  8. Observation and Analysis of Anti-cancer Drug Use and Dose ...

    African Journals Online (AJOL)

    As all anti-cancer drugs are of narrow therapeutic window so dose individualization is required to be done. A study was conducted to check the use of anti-cancer drugs in the local anti-cancer facility of Bahawalpur i.e. Bahawalpur Institute of Nuclear Medicine and Oncology (BINO). In this study, the dose individualization ...

  9. Bioactivity-Guided Isolation of Anticancer Agents from Bauhinia ...

    African Journals Online (AJOL)

    Background: Flowers of Bauhinia kockiana were investigated for their anticancer properties. Methods: Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was ...

  10. Anticancer Activity of Bacterial Proteins and Peptides.

    Science.gov (United States)

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  11. Prediction of anticancer activity of aliphatic nitrosoureas using ...

    African Journals Online (AJOL)

    Design and development of new anticancer drugs with low toxicity is a very challenging task and computer aided methods are being increasingly used to solve this problem. In this study, we investigated the anticancer activity of aliphatic nitrosoureas using quantum chemical quantitative structure activity relation (QSAR) ...

  12. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  13. Anticancer Activity Of Plant Genus Clerodendrum (Lamiaceae: A Review

    Directory of Open Access Journals (Sweden)

    Donald Emilio Kalonio

    2017-12-01

    Full Text Available Plants of the genus Clerodendrum (Lamiaceae is widespread in tropical and subtropical regions. Plants of this genus are used both empirically and scientifically as anti-inflammatory, antidiabetic, antimalarial, antiviral, antihypertensive, hypolipidemic, antioxidant, and antitumor. Results of the molecular docking simulation of chemical content of these plants could potentially provide an anticancer effect. This paper aims to review the anticancer activity of plant genus Clerodendrum based on scientific data. The method used in this study is the literature study. Searches were conducted online (in the database PubMed, Science Direct and Google Scholar and on various books (Farmakope Herbal Indonesia and PROSEA. A total 12 plants of the genus Clerodendrum have anticancer activity in vitro and in vivo, thus potentially to be developed as a source of new active compounds with anticancer activity.

  14. The effects of stabilizing and directional selection on phenotypic and genotypic variation in a population of RNA enzymes.

    Science.gov (United States)

    Hayden, Eric J; Bratulic, Sinisa; Koenig, Iwo; Ferrada, Evandro; Wagner, Andreas

    2014-02-01

    The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population's response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.

  15. Mechanisms by Which Phenotypic Plasticity Affects Adaptive Divergence and Ecological Speciation.

    Science.gov (United States)

    Nonaka, Etsuko; Svanbäck, Richard; Thibert-Plante, Xavier; Englund, Göran; Brännström, Åke

    2015-11-01

    Phenotypic plasticity is the ability of one genotype to produce different phenotypes depending on environmental conditions. Several conceptual models emphasize the role of plasticity in promoting reproductive isolation and, ultimately, speciation in populations that forage on two or more resources. These models predict that plasticity plays a critical role in the early stages of speciation, prior to genetic divergence, by facilitating fast phenotypic divergence. The ability to plastically express alternative phenotypes may, however, interfere with the early phase of the formation of reproductive barriers, especially in the absence of geographic barriers. Here, we quantitatively investigate mechanisms under which plasticity can influence progress toward adaptive genetic diversification and ecological speciation. We use a stochastic, individual-based model of a predator-prey system incorporating sexual reproduction and mate choice in the predator. Our results show that evolving plasticity promotes the evolution of reproductive isolation under diversifying environments when individuals are able to correctly select a more profitable habitat with respect to their phenotypes (i.e., adaptive habitat choice) and to assortatively mate with relatively similar phenotypes. On the other hand, plasticity facilitates the evolution of plastic generalists when individuals have a limited capacity for adaptive habitat choice. We conclude that plasticity can accelerate the evolution of a reproductive barrier toward adaptive diversification and ecological speciation through enhanced phenotypic differentiation between diverging phenotypes.

  16. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  17. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    and retention (EPR) effect. The liposomes consists of sPLA2 IIA sensitive phospholipids having anticancer drugs covalently attached to the sn-2 position of the glycerol backbone in the phospholipids, hence drug leakage is avoided from the carrier system. Various known anticancer agents, like chlorambucil, all......) based strategy using a limited number of reaction types. Upon coupling of unsaturated building blocks ring closing metathesis cascades were used to “reprogram” the molecular scaffold and highly diverse structures were obtained. In total 20 novel compounds with a broad structural diversity were prepared...

  18. Ethnomedicine Claim Directed in Silico Prediction of Anticancer ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... 0.70, MACCS fingerprint), and the top 346 compounds it identified were identical to compounds with proven anticancer activity on 60 cell lines (23). Given such performance of. CDRUG, our finding can be taken as a preliminary evidence of anticancer activity by many of the medicinal plants used for treating.

  19. Adaptive evolution of molecular phenotypes

    International Nuclear Information System (INIS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-01-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak. (paper)

  20. Phenotypic covariance at species' borders.

    Science.gov (United States)

    Caley, M Julian; Cripps, Edward; Game, Edward T

    2013-05-28

    Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.

  1. Is Neurofibromatosis Type 1-Noonan Syndrome a Phenotypic Result of Combined Genetic and Epigenetic Factors?

    Science.gov (United States)

    Yapijakis, Christos; Pachis, Nikos; Natsis, Stavros; Voumvourakis, Costas

    2016-01-01

    Neurofibromatosis 1-Noonan syndrome (NFNS) presents combined characteristics of both autosomal dominant disorders: NF1 and Noonan syndrome (NS). The genes causing NF1 and NS are located on different chromosomes, making it uncertain whether NFNS is a separate entity as previously suggested, or rather a clinical variation. We present a four-membered Greek family. The father was diagnosed with familial NF1 and the mother with generalized epilepsy, being under hydantoin treatment since the age of 18 years. Their two male children exhibited NFNS characteristics. The father and his sons shared R1947X mutation in the NF1 gene. The two children with NFNS phenotype presented with NF1 signs inherited from their father and fetal hydantoin syndrome-like phenotype due to exposure to that anticonvulsant during fetal development. The NFNS phenotype may be the result of both a genetic factor (mutation in the NF1 gene) and an epigenetic/environmental factor (e.g. hydantoin). Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fascaplysin Sensitizes Anti-Cancer Effects of Drugs Targeting AKT and AMPK

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-12-01

    Full Text Available Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB, also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK, which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.

  4. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Rachael E Hawtin

    2010-04-01

    Full Text Available Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research.Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent.As a first-in-class anticancer

  5. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype.

    Science.gov (United States)

    Kölker, Stefan; Valayannopoulos, Vassili; Burlina, Alberto B; Sykut-Cegielska, Jolanta; Wijburg, Frits A; Teles, Elisa Leão; Zeman, Jiri; Dionisi-Vici, Carlo; Barić, Ivo; Karall, Daniela; Arnoux, Jean-Baptiste; Avram, Paula; Baumgartner, Matthias R; Blasco-Alonso, Javier; Boy, S P Nikolas; Rasmussen, Marlene Bøgehus; Burgard, Peter; Chabrol, Brigitte; Chakrapani, Anupam; Chapman, Kimberly; Cortès I Saladelafont, Elisenda; Couce, Maria L; de Meirleir, Linda; Dobbelaere, Dries; Furlan, Francesca; Gleich, Florian; González, Maria Julieta; Gradowska, Wanda; Grünewald, Stephanie; Honzik, Tomas; Hörster, Friederike; Ioannou, Hariklea; Jalan, Anil; Häberle, Johannes; Haege, Gisela; Langereis, Eveline; de Lonlay, Pascale; Martinelli, Diego; Matsumoto, Shirou; Mühlhausen, Chris; Murphy, Elaine; de Baulny, Hélène Ogier; Ortez, Carlos; Pedrón, Consuelo C; Pintos-Morell, Guillem; Pena-Quintana, Luis; Ramadža, Danijela Petković; Rodrigues, Esmeralda; Scholl-Bürgi, Sabine; Sokal, Etienne; Summar, Marshall L; Thompson, Nicholas; Vara, Roshni; Pinera, Inmaculada Vives; Walter, John H; Williams, Monique; Lund, Allan M; Garcia-Cazorla, Angeles; Garcia Cazorla, Angeles

    2015-11-01

    The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood. To evaluate the complex clinical phenotype of OAD and UCD patients at different ages. Acquired microcephaly and movement disorders were common in OAD and UCD highlighting that the brain is the major organ involved in these diseases. Cardiomyopathy [methylmalonic (MMA) and propionic aciduria (PA)], prolonged QTc interval (PA), optic nerve atrophy [MMA, isovaleric aciduria (IVA)], pancytopenia (PA), and macrocephaly [glutaric aciduria type 1 (GA1)] were exclusively found in OAD patients, whereas hepatic involvement was more frequent in UCD patients, in particular in argininosuccinate lyase (ASL) deficiency. Chronic renal failure was often found in MMA, with highest frequency in mut(0) patients. Unexpectedly, chronic renal failure was also observed in adolescent and adult patients with GA1 and ASL deficiency. It had a similar frequency in patients with or without a movement disorder suggesting different pathophysiology. Thirteen patients (classic OAD: 3, UCD: 10) died during the study interval, ten of them during the initial metabolic crisis in the newborn period. Male patients with late-onset ornithine transcarbamylase deficiency were presumably overrepresented in the study population. Neurologic impairment is common in OAD and UCD, whereas the involvement of other organs (heart, liver, kidneys, eyes) follows a disease-specific pattern. The identification of unexpected chronic renal failure in GA1 and ASL deficiency emphasizes the importance of a systematic follow-up in patients with rare diseases.

  6. Medicinal plants combating against cancer--a green anticancer approach.

    Science.gov (United States)

    Sultana, Sabira; Asif, Hafiz Muhammad; Nazar, Hafiz Muhammad Irfan; Akhtar, Naveed; Rehman, Jalil Ur; Rehman, Riaz Ur

    2014-01-01

    Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.

  7. Anticancer properties of brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Swaczynová, Jana; Malíková, J.; Hoffmannová, L.; Kohout, Ladislav; Strnad, Miroslav

    2007-01-01

    Roč. 72, č. 11 (2007), - ISSN 0032-0943. [Annual Congress on Medicinal Plant Research /54./. 29.08.2006-02.09.2006, Helsinki] Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : brassinosteroids * anticancer activity * proliferation * apoptosis Subject RIV: CC - Organic Chemistry

  8. Natural flora and anticancer regime: milestones and roadmap.

    Science.gov (United States)

    Bhatnagar, Ira; Thomas, Noel Vinay; Kim, Se-Kwon

    2013-07-01

    Cancer has long been an area of extensive research both at the molecular as well as pharmaceutical level. However, lack of understanding of the underlying molecular signalling and the probable targets of therapeutics is a major concern in successful treatment of cancer. The situation becomes even worse, with the increasing side effects of the existing synthetic commercial drugs. Natural compounds especially those derived from plants have been best explored for their anticancer properties and most of them have been efficient against the known molecular targets of cancer. However, advent of biotechnology and resulting advances in medical arena have let to the increasing knowledge of newer carcinogenic signaling agents which has made the anticancer drug discovery even more demanding. The present review aims to bring forward the molecular mediators of cancer and compiles the plant derived anticancer agents with special emphasis on their clinical status. Since marine arena has proved to be a tremendous source of pharmaceutical agents, this review also focuses on the anticancer potential of marine plants especially algae. This is a comprehensive review covering major aspects of cancer mediation and utilization of marine flora for remediation of this deadly disease.

  9. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone

    Directory of Open Access Journals (Sweden)

    Xuejing Lin

    2015-05-01

    Full Text Available Costunolide (CE and dehydrocostuslactone (DE are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.

  10. Green tea phytocompounds as anticancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-04-01

    Full Text Available Green tea is universally considered significant and its benefits have been experimentally explored by researchers and scientists. Anticancer potential of green tea has been completely recognized now. Green tea contains anti-cancerous constituents and nutrients that have powerful remedial effects. By using electronic data base (1998–2015, different compounds in green tea possessing anticancer activity including epigallocatechin-3-gallate, paclitaxel and docetaxel combinations, ascorbic acid, catechins, lysine, synergistic arginine, green tea extract, proline, and green tea polyphenols has been reported. Green tea extracts exhibited remedial potential against cancer of lung, colon, liver, stomach, leukemic cells, prostate, breast, human cervical cells, head, and neck. For centuries, green tea has been utilized as medicine for therapeutic purposes. It originated in China and extensively used in Asian countries for blood pressure depression and as anticancer medicine. Green tea has therapeutic potential against many diseases such as lowering of blood pressure, Parkinson’s disease, weight loss, esophageal disease, skin-care, cholesterol, Alzheimer’s disease and diabetes.

  11. Anticancer drugs from marine flora: an overview.

    Science.gov (United States)

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  12. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  13. Cortical plasticity within and across lifetimes: How can development inform us about phenotypic transformations?

    Directory of Open Access Journals (Sweden)

    James C Dooley

    2013-10-01

    Full Text Available The neocortex is the part of the mammalian brain that is involved in perception, cognition, and volitional motor control. It is a highly dynamic structure that is dramatically altered within the lifetime of an animal and in different lineages throughout the course of evolution. These alterations account for the remarkable variations in behavior that species exhibit. Of particular interest is how these cortical phenotypes change within the lifetime of the individual and eventually evolve in species over time. Because we cannot study the evolution of the neocortex directly we use comparative analysis to appreciate the types of changes that have been made to the neocortex and the similarities that exist across taxa. Developmental studies inform us about how these phenotypic transitions may arise by alterations in developmental cascades or changes in the physical environment in which the brain develops. Both genes and the sensory environment contribute to aspects of the phenotype and similar features, such as the size of a cortical field, can be altered in a variety of ways. Although both genes and the laws of physics place constraints on the evolution of the neocortex, mammals have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution.

  14. Coffin-Siris syndrome: phenotypic evolution of a novel SMARCA4 mutation.

    Science.gov (United States)

    Tzeng, Michael; du Souich, Christèle; Cheung, Helen Wing-Hong; Boerkoel, Cornelius F

    2014-07-01

    Coffin-Siris Syndrome (CSS) is an intellectual disability disorder caused by mutation of components of the SWI/SNF chromatin-remodeling complex. We describe the evolution of the phenotypic features for a male patient with CSS from birth to age 7 years and 9 months and by review of reported CSS patients, we expand the phenotype to include neonatal and infantile hypertonia and upper airway obstruction. The propositus had a novel de novo heterozygous missense mutation in exon 17 of SMARCA4 (NM_001128849.1:c.2434C>T (NP_001122321.1:p.Leu812Phe)). This is the first reported mutation within motif Ia of the SMARCA4 SNF2 domain. In summary, SMARCA4-associated CSS is a pleiotropic disorder in which the pathognomic clinical features evolve and for which the few reported individuals do not demonstrate a clear genotype-phenotype correlation. © 2014 Wiley Periodicals, Inc.

  15. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  16. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.

    Science.gov (United States)

    Cai, Yanbin; Shen, Haosheng; Zhan, Jie; Lin, Mingliang; Dai, Liuhan; Ren, Chunhua; Shi, Yang; Liu, Jianfeng; Gao, Jie; Yang, Zhimou

    2017-03-01

    Nuclear delivery and accumulation are very important for many anticancer drugs that interact with DNA or its associated enzymes in the nucleus. However, it is very difficult for neutrally and negatively charged anticancer drugs such as 10-hydroxycamptothecine (HCPT). Here we report a simple strategy to construct supramolecular nanomedicines for nuclear delivery of dual synergistic anticancer drugs. Our strategy utilizes the coassembly of a negatively charged HCPT-peptide amphiphile and the positively charged cisplatin. The resulting nanomaterials behave as the "Trojan Horse" that transported soldiers (anticancer drugs) across the walls of the castle (cell and nucleus membranes). Therefore, they show improved inhibition capacity to cancer cells including the drug resistant cancer cell and promote the synergistic tumor suppression property in vivo. We envision that our strategy of constructing nanomaterials by metal chelation would offer new opportunities to develop nanomedicines for combination chemotherapy.

  17. NF1 truncating mutations associated to aggressive clinical phenotype with elephantiasis neuromatosa and solid malignancies.

    Science.gov (United States)

    Ponti, Giovanni; Martorana, Davide; Pellacani, Giovanni; Ruini, Cristel; Loschi, Pietro; Baccarani, Alessio; De Santis, Giorgio; Pollio, Annamaria; Neri, Tauro Maria; Mandel, Victor Desmond; Maiorana, Antonio; Maccio, Livia; Maccaferri, Monia; Tomasi, Aldo

    2014-06-01

    Von Recklinghausen disease is a syndrome characterized by a wide phenotypic variability giving rise to both, cutaneous and visceral benign and malignant neoplasms. The first include cutaneous neurofibromas, subcutaneous and plexiform neurofibromas. The latter can undergo malignant transformation and/or determine elephantiasis neuromatosa. Visceral tumors may include malignant peripheral nerve sheet tumors, gastrointestinal stromal tumors, cerebral gliomas and abdominal neurofibromas. In the present study, the authors discuss the clinical and biomolecular characterization of a cohort of 20 families with a diagnosis of type 1 neurofibromatosis. Clinically, the cohort includes three probands with elephantiasis neuromatosa and a peculiarly high incidence of breast and gastrointestinal cancer. Among the 14 NF1 mutations documented, 10 encoding for a truncated protein have been associated to particularly aggressive clinical phenotypes including elephantiasis neuromatosa, malignant peripheral nerve sheet tumors, breast cancer, gastrointestinal stromal tumors. This effect on protein synthesis, rather than the type of NF1 mutation, is the key to the explanation of the genotype-phenotype correlations in the context of neurofibromatosis type 1. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs

    International Nuclear Information System (INIS)

    Maeda, Noriyuki; Miyazawa, Souichiro; Shimizu, Kosuke; Asai, Tomohiro; Yonezawa, Sei; Oku, Naoto; Kitazawa, Sadaya; Namba, Yukihiro; Tsukada, Hideo

    2006-01-01

    We previously observed the enhanced anticancer efficacy of anticancer drugs encapsulated in Ala-Pro-Arg-Pro-Gly-polyethyleneglycol-modified liposome (APRPG-PEG-Lip) in tumor-bearing mice, since APRPG peptide was used as an active targeting tool to angiogenic endothelium. This modality, antineovascular therapy (ANET), aims to eradicate tumor cells indirectly through damaging angiogenic vessels. In the present study, we examined the in vivo trafficking of APRPG-PEG-Lip labeled with [2- 18 F]2-fluoro-2-deoxy- D -glucose ([2- 18 F]FDG) by use of positron emission tomography (PET), and observed that the trafficking of this liposome was quite similar to that of non-targeted long-circulating liposome (PEG-Lip). Then, histochemical analysis of intratumoral distribution of both liposomes was performed by use of fluorescence-labeled liposomes. In contrast to in vivo trafficking, intratumoral distribution of both types of liposomes was quite different: APRPG-PEG-Lip was colocalized with angiogenic endothelial cells that were immunohistochemically stained for CD31, although PEG-Lip was localized around the angiogenic vessels. These results strongly suggest that intratumoral distribution of drug carrier is much more important for therapeutic efficacy than the total accumulation of the anticancer drug in the tumor, and that active delivery of anticancer drugs to angiogenic vessels is useful for cancer treatment. (author)

  19. Proximate effects of temperature versus evolved intrinsic constraints for embryonic development times among temperate and tropical songbirds

    Science.gov (United States)

    Ton, Riccardo; Martin, Thomas E.

    2017-01-01

    The relative importance of intrinsic constraints imposed by evolved physiological trade-offs versus the proximate effects of temperature for interspecific variation in embryonic development time remains unclear. Understanding this distinction is important because slow development due to evolved trade-offs can yield phenotypic benefits, whereas slow development from low temperature can yield costs. We experimentally increased embryonic temperature in free-living tropical and north temperate songbird species to test these alternatives. Warmer temperatures consistently shortened development time without costs to embryo mass or metabolism. However, proximate effects of temperature played an increasingly stronger role than intrinsic constraints for development time among species with colder natural incubation temperatures. Long development times of tropical birds have been thought to primarily reflect evolved physiological trade-offs that facilitate their greater longevity. In contrast, our results indicate a much stronger role of temperature in embryonic development time than currently thought.

  20. Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans

    Science.gov (United States)

    Palmer, Sara R.; Miller, James H.; Abranches, Jacqueline; Zeng, Lin; Lefebure, Tristan; Richards, Vincent P.; Lemos, José A.; Stanhope, Michael J.; Burne, Robert A.

    2013-01-01

    High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease. PMID:23613838

  1. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Sara R Palmer

    Full Text Available High coverage, whole genome shotgun (WGS sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat and exposure to competence stimulating peptide (CSP. Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease.

  2. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  3. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  4. Anticancer and cytotoxic compounds from seashells of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2009-12-01

    Full Text Available Background: Pre-clinical studies for isolation and purification of marine compounds continued at an active pace since the last decade. Today, more than 60% of the anticancer drugs commercially available are of naturally origin thus the sea is a very favorable bed for the discovery of novel anticancer agents. Methods: A total of known 611 seashells species in the Persian Gulf were investigated for synonymy in OBIS database. Then, all the species, including their synonymy were searched in PubMed databse to find their isolated bioactive agents. Results: From 611 known seashells in the Persian Gulf, 172 genera/species had bioactive compounds. Anticancer agents were isolated and purified for 8 genera. These compounds had various structures they were polypeptide, polysaccharide, glycoprotein, alkaloid, cerebroside, and cembranoid which had different mechanism of actions including induction of apoptosis, destroying the skeletal structures of the cells, immune bioactivity and inhibition of topoisomerase I. Spisulosine is the only anticancer agent which is currently under clinical trial. Conclusions: Although, the known seashells from the Persian Gulf have potential anticancer and cytotoxic compounds but a very few investigations had been reported. Further investigations for isolation and purification on bioactive compounds from seashells of the Persian Gulf is recommended.

  5. Exploring the influence of culture conditions on kefir's anticancer properties.

    Science.gov (United States)

    Hatmal, Ma'mon M; Nuirat, Abeer; Zihlif, Malek A; Taha, Mutasem O

    2018-05-01

    Cancer is a major health problem in many parts of the world. Conventional anticancer treatments are painful, expensive, and unsafe. Therefore, demand is increasing for cancer treatments preferentially in the form of functional foods or nutritional supplements. Kefir, a traditional fermented milk dairy product, has significant antimutagenic and antitumor properties. This research addresses the hypothesis that kefir's anticancer properties are affected by fermentation conditions. Initially, kefir extracts prepared under standard conditions were screened against 7 cancer cell lines using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Colon cancer and chronic myelogenous leukemia cells were found to be most susceptible to kefir extracts. Subsequently, a factorial design was implemented to assess the effects of 3 fermentation times (24, 48, and 72 h), 3 kefir-to-milk ratios (2, 5, and 10% wt/vol), and 3 fermentation temperatures (4, 25, and 40°C) on kefir's anticancer properties. Remarkably, exploration of the fermentation conditions allowed the anticancer properties of kefir to be enhanced by 5- to 8-fold against susceptible cell lines. Overall, these results demonstrate the possibility of optimizing the anticancer properties of kefir as a functional food in cancer therapy. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. [The Necessity and the Current Status of Safe Handling of Anticancer Drugs].

    Science.gov (United States)

    Kanda, Kiyoko

    2017-07-01

    Number of people who handle anticancer drugs in their profession is increasing. Anticancer drugs, which are hazardous drugs(HD), exert cytocidal effects on cancer cells, but many have also been shown to have mutagenicity, teratogenicity and carcinogenicity; therefore, safe handling of anticancer drugs is necessary. In July 2015, the first Japanese guidelines for exposure control measures, namely, the "Joint Guidelines for Safe Handling of Cancer Chemotherapy Drugs", were published jointly by 3 societies. Our guideline is the creation of the Japanese Society of Cancer Nursing(JSCN), Japanese Society of Medical Oncology(JSMO)and Japanese Society of Pharmaceutical Oncology(JASPO)and has a historical significance. This paper states the necessity of safe handling of anticancer drugs, Japan's recent movement of safe handling, the introduction of joint guidelines of safe handling of anticancer drugs, and new movement of safe handling of USP chapter 800 in the United States.

  7. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    Science.gov (United States)

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  8. Rapid divergence and convergence of life-history in experimentally evolved Drosophila melanogaster.

    Science.gov (United States)

    Burke, Molly K; Barter, Thomas T; Cabral, Larry G; Kezos, James N; Phillips, Mark A; Rutledge, Grant A; Phung, Kevin H; Chen, Richard H; Nguyen, Huy D; Mueller, Laurence D; Rose, Michael R

    2016-09-01

    Laboratory selection experiments are alluring in their simplicity, power, and ability to inform us about how evolution works. A longstanding challenge facing evolution experiments with metazoans is that significant generational turnover takes a long time. In this work, we present data from a unique system of experimentally evolved laboratory populations of Drosophila melanogaster that have experienced three distinct life-history selection regimes. The goal of our study was to determine how quickly populations of a certain selection regime diverge phenotypically from their ancestors, and how quickly they converge with independently derived populations that share a selection regime. Our results indicate that phenotypic divergence from an ancestral population occurs rapidly, within dozens of generations, regardless of that population's evolutionary history. Similarly, populations sharing a selection treatment converge on common phenotypes in this same time frame, regardless of selection pressures those populations may have experienced in the past. These patterns of convergence and divergence emerged much faster than expected, suggesting that intermediate evolutionary history has transient effects in this system. The results we draw from this system are applicable to other experimental evolution projects, and suggest that many relevant questions can be sufficiently tested on shorter timescales than previously thought. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors.

    Science.gov (United States)

    Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît

    2015-01-01

    Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.

  10. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    Science.gov (United States)

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  11. How accurate is the phenotype? – An analysis of developmental noise in a cotton aphid clone

    Directory of Open Access Journals (Sweden)

    Babbitt Gregory A

    2008-02-01

    Full Text Available Abstract Background The accuracy by which phenotype can be reproduced by genotype potentially is important in determining the stability, environmental sensitivity, and evolvability of morphology and other phenotypic traits. Because two sides of an individual represent independent development of the phenotype under identical genetic and environmental conditions, average body asymmetry (or "fluctuating asymmetry" can estimate the developmental instability of the population. The component of developmental instability not explained by intrapopulational differences in gene or environment (or their interaction can be further defined as internal developmental noise. Surprisingly, developmental noise remains largely unexplored despite its potential influence on our interpretations of developmental stability, canalization, and evolvability. Proponents of fluctuating asymmetry as a bioindicator of environmental or genetic stress, often make the assumption that developmental noise is minimal and, therefore, that phenotype can respond sensitively to the environment. However, biologists still have not measured whether developmental noise actually comprises a significant fraction of the overall environmental response of fluctuating asymmetry observed within a population. Results In a morphometric study designed to partition developmental noise from fluctuating asymmetry in the wing morphology of a monoclonal culture of cotton aphid, Aphis gossipyii, it was discovered that fluctuating asymmetry in the aphid wing was nearly four times higher than in other insect species. Also, developmental noise comprised a surprisingly large fraction (≈ 50% of the overall response of fluctuating asymmetry to a controlled graded temperature environment. Fluctuating asymmetry also correlated negatively with temperature, indicating that environmentally-stimulated changes in developmental instability are mediated mostly by changes in the development time of individuals

  12. Sensitivity test of tumor cell to anticancer drug using diffusion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Soejima, S [Hirosaki Univ., Aomori (Japan). School of Medicine

    1978-11-01

    The diffusion chamber method and xenogeneic transplantation of human cancer cells in rats were studied clinically to test the sensitivity of these cells to anticancer drugs. The growth of Hirosaki sarcoma in a diffusion chamber inserted in to Wistar rats was influenced by the difference in tumor cell counts in the chamber. The growth rate in the chamber inserted in to the subcutaneous tissue was more constant than in the abdominal cavity, but the degree of proliferation of tumor cells in the abdominal cavity was more than in the subcutaneous tissue. Sarcoma and solid type sarcoma were affected by mitomycin C (MMC). The effect was greater in dd-mice than in Donryu rats. Solid type Yoshida sarcoma inserted in to the subcutaneous tissue of Donryu rat was not affected by MMC. The degree of sensitivity of methylcholanthrene induced tumor cells, inserted in to the subcutaneous tissue of Donryu rats, to MMC differed according to various conditions of the hosts. Clinically, the influences of anticancer drugs on human cancer cells inserted in to the subcutaneous tissue of /sup 60/Co-irradiated Donryu rats were observed. There were various grades of sensitivity of gastric cancer cells to anticancer drugs. MMC was effective in 53% of the cases, Cyclophosphamide in 40%, 5-FU in 54%, cytosine arabinoside in 32%, and FT-207 in 57%. Twenty-seven percent were not affected by anticancer drugs. On histological examination, tubular adenocarcinoma cells had a high sensitivity to anticancer drugs, while poorly differentiated adenocarcinoma cells had a low sensitive. Anticancer drugs selected according to the sensitivity of human cancer cells had a marked effective on advanced cancer cells. The diffusion chamber method was useful in determining the degree of bone marrow toxicity of anticancer drugs.

  13. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Anticancer effects of Ganoderma lucidum: a review of scientific evidence.

    Science.gov (United States)

    Yuen, John W M; Gohel, Mayur Danny I

    2005-01-01

    "Lingzhi" (Ganoderma lucidum), a popular medicinal mushroom, has been used in China for longevity and health promotion since ancient times. Investigations into the anticancer activity of lingzhi have been performed in both in vitro and in vivo studies, supporting its application for cancer treatment and prevention. The proposed anticancer activity of lingzhi has prompted its usage by cancer patients. It remains debatable as to whether lingzhi is a food supplement for health maintenance or actually a therapeutic "drug" for medical proposes. Thus far there has been no report of human trials using lingzhi as a direct anticancer agent, despite some evidence showing the usage of lingzhi as a potential supplement to cancer patients. Cellular immune responses and mitogenic reactivity of cancer patients have been enhanced by lingzhi, as reported in two randomized and one nonrandomized trials, and the quality of life of 65% of lung cancer patients improved in one study. The direct cytotoxic and anti-angiogenesis mechanisms of lingzhi have been established by in vitro studies; however, clinical studies should not be neglected to define the applicable dosage in vivo. At present, lingzhi is a health food supplement to support cancer patients, yet the evidence supporting the potential of direct in vivo anticancer effects should not be underestimated. Lingzhi or its products can be classified as an anticancer agent when current and more direct scientific evidence becomes available.

  15. Anti-cancer natural products isolated from chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wu Guosheng

    2011-07-01

    Full Text Available Abstract In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin, alkaloids (berberine, terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid, quinones (shikonin and emodin and saponins (ginsenoside Rg3, which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

  16. Anticancer Efficacy of Polyphenols and Their Combinations

    Directory of Open Access Journals (Sweden)

    Aleksandra Niedzwiecki

    2016-09-01

    Full Text Available Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract with vitamin C, amino acids and other micronutrients (EPQ demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion

  17. Apoptin towards safe and efficient anticancer therapies.

    Science.gov (United States)

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  18. Anticancer potency of black sea cucumber (Holothuria atra) from Mentawai Islands, Indonesia

    OpenAIRE

    Mieke Hemiawati Satari; Utmi Arma; Syafruddin Ilyas; Dian Handayani

    2017-01-01

    ABSTRACT Introduction: The source of bioactive compounds believed to have strong anticancer potency is derived from sea cucumber. Black sea cucumber (Holothuria atra) is a dominant species in Mentawai Islands, West Sumatera, Indonesia. Key factor compound that acts as anticancer in sea cucumber extract is tritepenoid also known as Frondoside A. The purpose of this study was to determine the effectiveness of the active compound taken from black sea cucumber as anticancer. Methods: Methods u...

  19. Recent discoveries of anticancer flavonoids.

    Science.gov (United States)

    Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe

    2017-12-15

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  1. The evolution of phenotypic plasticity in fish swimming

    Science.gov (United States)

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  2. Amphibious fishes: evolution and phenotypic plasticity.

    Science.gov (United States)

    Wright, Patricia A; Turko, Andy J

    2016-08-01

    Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods. © 2016. Published by The Company of Biologists Ltd.

  3. Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas.

    Science.gov (United States)

    Esquerré, Damien; Scott Keogh, J

    2016-07-01

    Pythons and boas are globally distributed and distantly related radiations with remarkable phenotypic and ecological diversity. We tested whether pythons, boas and their relatives have evolved convergent phenotypes when they display similar ecology. We collected geometric morphometric data on head shape for 1073 specimens representing over 80% of species. We show that these two groups display strong and widespread convergence when they occupy equivalent ecological niches and that the history of phenotypic evolution strongly matches the history of ecological diversification, suggesting that both processes are strongly coupled. These results are consistent with replicated adaptive radiation in both groups. We argue that strong selective pressures related to habitat-use have driven this convergence. Pythons and boas provide a new model system for the study of macro-evolutionary patterns of morphological and ecological evolution and they do so at a deeper level of divergence and global scale than any well-established adaptive radiation model systems. © 2016 John Wiley & Sons Ltd/CNRS.

  4. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  5. Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.

    Science.gov (United States)

    Rubin, Ilan N; Doebeli, Michael

    2017-12-21

    Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into

  6. Tumor progression: analysis of the instability of the metastatic phenotype, sensitivity to radiation and chemotherapy

    International Nuclear Information System (INIS)

    Welch, D.R.

    1984-01-01

    The major complications for tumor therapy are 1) tumor spread (metastasis); 2) the mixed nature of tumors (heterogeneity); and 3) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during pasage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. The results demonstrated that 1) tumor cells are heterogeneous for multiple phenotypes; 2) tumor cells are unstable for multiple phenotypes; 3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; 4) the sensitivity of cell clones to ionizing radiation (γ or heat) and chemotherapy agents is independent of their metastatic potential; 5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and 6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles

  7. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-02-01

    Full Text Available A total of forty novel glycyrrhetinic acid (GA derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231 in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively and merits further exploration as a new anticancer agent.

  8. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  9. Pharmacokinetic-Pharmacodynamic Modelling & Simulation for Anticancer Drugs with Complex Absorption Characteristics

    NARCIS (Netherlands)

    Yu, Huixin

    2016-01-01

    Cancer is still one of the leading causes of death in the world. In recent years, targeted anticancer agents have shown to be a major breakthrough in the battle against cancer. These targeted anticancer agents, mostly administered orally, specifically target molecular defects of tumour cells

  10. Unique characteristics of regulatory approval and pivotal studies of orphan anticancer drugs in Japan.

    Science.gov (United States)

    Nakayama, Hiroki; Tsukamoto, Katsura

    2018-04-17

    The approval of orphan anticancer drugs has increased, with the number exceeding that of non-orphan drugs in Japan in recent years. Although orphan anticancer drugs may have unique characteristics due to their rarity, these have not been fully characterized. We investigated anticancer drugs approved in Japan between April 2004 and November 2017 to reveal the characteristics of regulatory approval and pivotal studies on orphan anticancer drugs compared to non-orphan drugs. The median regulatory review time and number of patients in pivotal studies on orphan anticancer drugs (281.0 days [interquartile range, 263.3-336.0]; 222.5 patients [66.0-454.3]) were significantly lower than those on non-orphan drugs (353.0 days [277.0-535.5]; 521.0 patients [303.5-814.5], respectively) (P < 0.001). Phase II, non-randomized and non-controlled designs were more frequently used in pivotal studies on orphan anticancer drugs (45.9%, 41.9% and 43.2%) than non-orphan drugs (17.2%, 14.1% and 14.1%, respectively). Response rate was more commonly used as a primary endpoint in pivotal studies on orphan anticancer drugs (48.6%) than non-orphan drugs (17.2%). Indications limited by molecular features, second or later treatment line, and accelerated approval in the United States were associated with the use of response rate in orphan anticancer drug studies. In conclusion, we demonstrated that orphan anticancer drugs in Japan have unique characteristics compared to non-orphan drugs: shorter regulatory review and pivotal studies frequently using phase II, non-randomized, or non-controlled designs and response rate as a primary endpoint, with fewer patients.

  11. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population

    DEFF Research Database (Denmark)

    Bailey, Susan; Hinz, Aaron; Kassen, Rees

    2014-01-01

    Conventional wisdom holds that synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have no detectable effect on phenotype or fitness. However, a growing body of evidence from both comparative and experimental studies suggests otherwise. Synonymous mutations have been...... shown to impact gene expression, protein folding and fitness, however, direct evidence that they can be positively selected, and so contribute to adaptation, is lacking. Here we report the recovery of two beneficial synonymous single base pair changes that arose spontaneously and independently...... in an experimentally evolved population of Pseudomonas fluorescens. We show experimentally that these mutations increase fitness by an amount comparable to non-synonymous mutations and that the fitness increases stem from increased gene expression. These results provide unequivocal evidence that synonymous mutations...

  12. Review of pharmacological interactions of oral anticancer drugs provided at pharmacy department

    Directory of Open Access Journals (Sweden)

    E. Sánchez Gómez

    2014-07-01

    Full Text Available Abstract: Objective: To identify the pharmacologic interactions of oral anti-cancer drugs provided at an outpatient clinic. Material and methods: Anti-cancer drugs included in the Phamacotherapeutic Guideline of the Hospital were identified. A literature search was carried out on the pharmacologic interactions in MEDLINE® and EMBASE® (with the filer language English or Spanish, and the descriptors: “name of the anti-cancer drug” AND (“drug interactions” OR “pharmacokinetic”, Up-to-date®, MICROMEDEX® and the drug information sheet for the EMA and the FDA. Information was also gathered from the abstract presented to European and Spanish scientific meetings for the last 4 years. When an interaction was analyzed and had clinical relevance, the best pharmacotherapeutic interaction-free alternative was sought. Results: Twenty-three drugs were identified, of which Chlorambucil, Fludarabine, Lenalidomide, Melphalan, and Thalidomide were the active compounds with the lowest likelihood of producing a pharmacologic interaction. Tyrosine kinase inhibitors (particularly Erlotinib, Imatinib, Lapatinib, and Pazopanib are the drugs with highest number of pharmacologic interactions described, many of them with severe clinical consequences, with increases and decreases of the plasma levels of anti-cancer drugs. The active compounds identified that may have pharmacologic interactions with anticancer drugs were mainly: Allopurinol, Amiodarone, Carbamazepine, Dabigatran, Digoxin, Spironolactone, Phenytoin, Itraconazol, Repaglinide, Silodosin, Tamoxifen, Verapamil, and Warfarin. Pharmacologic interactions through the cytochrome P450 1A2, 2D6, 2C8, 2C9, 3A4 were the most important for tyrosine kinase inhibitors. Other non-pharmacologic compounds, with an important potential of producing relevant pharmacologic interaction were immunomodulators (Echinacea extracts and Hypericum perforatum. Conclusions: Oral anticancer drugs have numerous pharmacologic

  13. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S. (Keio Univ., Tokyo (Japan). School of Medicine)

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  14. Studies on anticancer activities of lactoferrin and lactoferricin.

    Science.gov (United States)

    Yin, Cui Ming; Wong, Jack Ho; Xia, Jiang; Ng, Tzi Bun

    2013-09-01

    This review mainly summarizes results of recent studies on the anticancer activity of the multifunctional protein lactoferrin (Lf) and its derived peptide lactoferricin (Lfcin). The basic information on Lf and Lfcin, such as their sources, structures, and biological properties which favor their antitumor activity is introduced. The major anticancer mechanisms of Lf and Lfcin including cell cycle arrest, apoptosis, anti-angiogenesis, antimetastasis, immune modulation and necrosis are discussed. Other information from in vivo studies employing a mouse model is also provided. In addition, the roles of talatoferrin and delta lactoferrin, as well as improvement in drug delivery will be covered.

  15. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S [Keio Univ., Tokyo (Japan). School of Medicine

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  16. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    Science.gov (United States)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  17. Anticancer Effect of AntiMalarial Artemisinin Compounds

    African Journals Online (AJOL)

    Artemisinin is a naturally occurring antimalarial showing anticancer properties. ..... Artemisinins usually promote apoptosis rather than necrosis in most cases ... artemisinin-mediated inhibition of vascular endothelial growth factor C (VEGF-C).

  18. Having your cake and eating it - Staphylococcus aureus small colony variants can evolve faster growth rate without losing their antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Gerrit Brandis

    2017-08-01

    Full Text Available Staphylococcus aureus can produce small colony variants (SCVs during infections. These cause significant clinical problems because they are difficult to detect in standard microbiological screening and are associated with persistent infections. The major causes of the SCV phenotype are mutations that inhibit respiration by inactivation of genes of the menadione or hemin biosynthesis pathways. This reduces the production of ATP required to support fast growth. Importantly, it also decreases cross-membrane potential in SCVs, resulting in decreased uptake of cationic compounds, with reduced susceptibility to aminoglycoside antibiotics as a consequence. Because SCVs are slow-growing (mutations in men genes are associated with growth rates in rich medium ~30% of the wild-type growth rate bacterial cultures are very susceptible to rapid takeover by faster-growing mutants (revertants or suppressors. In the case of reversion, the resulting fast growth is obviously associated with the loss of antibiotic resistance. However, direct reversion is relatively rare due to the very small genetic target size for such mutations. We explored the phenotypic consequences of SCVs evolving faster growth by routes other than direct reversion, and in particular whether any of those routes allowed for the maintenance of antibiotic resistance. In a recent paper (mBio 8: e00358-17 we demonstrated the existence of several different routes of SCV evolution to faster growth, one of which maintained the antibiotic resistance phenotype. This discovery suggests that SCVs might be more adaptable and problematic that previously thought. They are capable of surviving as a slow-growing persistent form, before evolving into a significantly faster-growing form without sacrificing their antibiotic resistance phenotype.

  19. Metabolic immune restraints: implications for anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone

    2010-01-01

    Metabolic immune restraints belong to a highly complex network of molecular mechanisms underlying the failure of naturally occurring and therapeutically induced immune responses against cancer. In the light of the disappointing results yielded so far with anticancer vaccines in the clinical setting, the dissection of the cascade of molecular events leading to tumor immune escape appears the most promising way to develop more effective immunotherapeutic strategies. Here we review the significant advances recently made in the understanding of the tumor-specific metabolic features that contribute to keep malignant cells from being recognized and destroyed by immune effectors. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits and thus to enhance the effectiveness of anticancer vaccines.

  20. Proteomics of anti-cancer drugs

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Hana; Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Hajdůch, M.; Gadher, S. J.

    2009-01-01

    Roč. 276, Supplement 1 (2009), s. 84-84 E-ISSN 1742-4658. [34th FEBS Congress. 04.07.2009-09.07.2009, Praha] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : proteomics * anti-cancer drugs * biomarkers Subject RIV: FD - Oncology ; Hematology

  1. Isocorydine Derivatives and Their Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Mei Zhong

    2014-08-01

    Full Text Available In order to improve the anticancer activity of isocorydine (ICD, ten isocorydine derivatives were prepared through chemical structure modifications, and their in vitro and in vivo activities were experimentally investigated. 8-Amino-isocorydine (8 and 6a,7-dihydrogen-isocorydione (10 could inhibit the growth of human lung (A549, gastric (SGC7901 and liver (HepG2 cancer cell lines in vitro. Isocorydione (2 could inhibit the tumor growth of murine sarcoma S180-bearing mice, and 8-acetamino-isocorydine (11, a pro-drug of 8-amino-isocorydine (8, which is instable in water solution at room temperature, had a good inhibitory effect on murine hepatoma H22-induced tumors. The results suggested that the isocorydine structural modifications at C-8 could significantly improve the biological activity of this alkaloid, indicating its suitability as a lead compound in the development of an effective anticancer agent.

  2. Consensus-based evaluation of clinical significance and management of anticancer drug interactions

    NARCIS (Netherlands)

    Jansman, F.G.A.; Reyners, A.K.L.; van Roon, E.N.; Smorenburg, C.H.; Helgason, H.H.; le Comte, M.; Wensveen, B.M.; van den Tweel, A.M.A.; de Blois, M.; Kwee, W.; Kerremans, A.L.; Brouwers, J.R.B.J.

    Background: Anticancer drug interactions can affect the efficacy and toxicity of anticancer treatment and that of the interacting drugs. However, information on the significance, prevention, and management of these interactions is currently lacking. Objective: The purpose of this study was to assess

  3. Novel walnut peptide–selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity

    Directory of Open Access Journals (Sweden)

    Liao W

    2016-04-01

    Full Text Available Wenzhen Liao,1 Rong Zhang,1 Chenbo Dong,2 Zhiqiang Yu,3 Jiaoyan Ren11College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China; 2Civil and Environmental Engineering, Rice University, Houston, TX, USA; 3School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, Guangdong, People’s Republic of ChinaAbstract: This contribution reports a facile synthesis of degreased walnut peptides (WP1-functionalized selenium nanoparticles (SeNPs hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7 was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly

  4. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  5. A rapid in vitro screening system for the identification and evaluation of anticancer drugs

    International Nuclear Information System (INIS)

    Kao, J.W.; Collins, J.L.

    1989-01-01

    We report the development of an in vitro screening system that can be used to identify new anticancer drugs that are specifically cytotoxic for dividing cells. The screening system takes advantage of the potential of many cell lines, including tumor cells, to stop dividing when they are plated at high cell density. The cytotoxic effects of anticancer drugs on dividing (i.e., cells plated at low cell density) and nondividing cells (i.e., cells plated at high cell density) is measured by the incorporation of 51Cr. This in vitro system was evaluated by measuring the cytotoxic effects of the anticancer drugs cisplatin, thiotepa, doxorubicin, methotrexate, and vinblastine on the cell lines B/C-N, ME-180, and MCF-7. In this in vitro system the concentrations of the anticancer drugs that produced significant cytotoxicity on only dividing cells are similar to the concentrations that are used clinically. The fact that this in vitro system is rapid, simple, applicable to many cell types, and able to predict effective concentrations of anticancer drugs should make it useful for the screening of new anticancer drugs and for the design of preclinical studies

  6. Preface: evolving rotifers, evolving science: Proceedings of the XIV International Rotifer Symposium

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav; Fontaneto, D.; Jersabek, Ch.D.; Welch, D.B.M.; May, L.; Walsh, E.J.

    2017-01-01

    Roč. 796, č. 1 (2017), s. 1-6 ISSN 0018-8158 Institutional support: RVO:60077344 Keywords : evolving rotifers * 14th International Rotifer Symposium * evolving science Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.056, year: 2016

  7. Phenotypic and genetic characteristics of fluoroquinolone- and methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Moreno-Flores, Antonio; Potel-Alvarellos, Carmen; Otero-Fernández, Susana; Álvarez-Fernández, Maximiliano

    2017-07-20

    Fluoroquinolone resistance in methicillin-resistant Staphylococcus aureus (MRSA) has increased in recent years. The objective of this study was to characterise two MRSA populations, one susceptible to fluoroquinolones and other resistant identifying the clonal types and the differential characteristics of both MRSA populations. Molecular typing using PFGE, MLST, spa and SSCmec was performed on 192 MRSA strains isolated from 2009 to 2011, 49 only oxacillin-resistant (OX-R) and 143 oxacillin and levofloxacin-resistant (OX-R-LEV-R). Mutations that conferred resistance to fluoroquinolones, hypermutable phenotypes and the presence of eight microbial surface components recognising adhesive matrix molecules (MSCRAMMs) were also studied. A statistically significant increase in the OX-R-LEV-R phenotype was observed (p<0.05). The most common clone of the OX-R isolates was sequence type (ST) 8 (32.6%), followed by ST72 (26.5%) and ST5 (26.5%). In the OX-R-LEV-R phenotype, the ST5 clone was the most common (65.7%), followed by ST72 (15.4%), and ST125 (12.6%). All isolates except the ST398 clone carried the SCCmecIVc. Clones ST5, ST72, ST125, and ST30 had hypermutable phenotypes. The ST72 clone and the ST30 clone in the OX-R phenotype harboured the highest number of MSCRAMMs. ST5 and ST72 clones were the most frequent clones identified in OX-R-LEV-R phenotype. Both clones showed a hypermutable phenotype that favours their selection as the fluoroquinolone resistant clones. The genetic relationships identified indicate that OX-R-LEV-R clones have evolved from OX-R MRSA clones. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  8. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    Directory of Open Access Journals (Sweden)

    Nelson G. M. Gomes

    2015-06-01

    Full Text Available Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i selectivity between normal and cancer cells (ii activity against multidrug-resistant (MDR cancer cells; and (iii a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  9. New chroman-4-one/thiochroman-4-one derivatives as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Seref Demirayak

    2017-11-01

    Full Text Available The synthesis of 3-[3/4-(2-aryl-2-oxoethoxyarylidene]chroman/thiochroman-4-one derivatives (1–34 and evaluation of their anticancer activities were aimed in this work. Final compounds were obtained in multistep synthesis reactions using phenol/thiophenol derivatives as starting materials. For anticancer activity evaluation, all compounds were offered to National Cancer Institute (NCI, USA and selected ones were tested against sixty human tumor cell lines derived from nine neoplastic diseases. The activity results were evaluated according to the drug screening protocol of the institute. Compounds containing thiochromanone skeleton exhibited higher anticancer activity.

  10. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.

    Science.gov (United States)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose-lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    Science.gov (United States)

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  12. Density functionalized [RuII(NO)(Salen)(Cl)] complex: Computational photodynamics and in vitro anticancer facets.

    Science.gov (United States)

    Mir, Jan Mohammad; Jain, N; Jaget, P S; Maurya, R C

    2017-09-01

    Photodynamic therapy (PDT) is a treatment that uses photosensitizing agents to kill cancer cells. Scientific community has been eager for decades to design an efficient PDT drug. Under such purview, the current report deals with the computational photodynamic behavior of ruthenium(II) nitrosyl complex containing N, N'-salicyldehyde-ethylenediimine (SalenH 2 ), the synthesis and X-ray crystallography of which is already known [Ref. 38,39]. Gaussian 09W software package was employed to carry out the density functional (DFT) studies. DFT calculations with Becke-3-Lee-Yang-Parr (B3LYP)/Los Alamos National Laboratory 2 Double Z (LanL2DZ) specified for Ru atom and B3LYP/6-31G(d,p) combination for all other atoms were used using effective core potential method. Both, the ground and excited states of the complex were evolved. Some known photosensitizers were compared with the target complex. Pthalocyanine and porphyrin derivatives were the compounds selected for the respective comparative study. It is suggested that effective photoactivity was found due to the presence of ruthenium core in the model complex. In addition to the evaluation of theoretical aspects in vitro anticancer aspects against COLO-205 human cancer cells have also been carried out with regard to the complex. More emphasis was laid to extrapolate DFT to depict the chemical power of the target compound to release nitric oxide. A promising visible light triggered nitric oxide releasing power of the compound has been inferred. In vitro antiproliferative studies of [RuCl 3 (PPh 3 ) 3 ] and [Ru(NO)(Salen)(Cl)] have revealed the model complex as an excellent anticancer agent. From IC 50 values of 40.031mg/mL in former and of 9.74mg/mL in latter, it is established that latter bears more anticancer potentiality. From overall study the DFT based structural elucidation and the efficiency of NO, Ru and Salen co-ligands has shown promising drug delivery property and a good candidacy for both chemotherapy as well as

  13. Dissecting molecular stress networks: identifying nodes of divergence between life-history phenotypes.

    Science.gov (United States)

    Schwartz, Tonia S; Bronikowski, Anne M

    2013-02-01

    The complex molecular network that underlies physiological stress response is comprised of nodes (proteins, metabolites, mRNAs, etc.) whose connections span cells, tissues and organs. Variable nodes are points in the network upon which natural selection may act. Thus, identifying variable nodes will reveal how this molecular stress network may evolve among populations in different habitats and how it might impact life-history evolution. Here, we use physiological and genetic assays to test whether laboratory-born juveniles from natural populations of garter snakes (Thamnophis elegans), which have diverged in their life-history phenotypes, vary concomitantly at candidate nodes of the stress response network, (i) under unstressed conditions and (ii) in response to an induced stress. We found that two common measures of stress (plasma corticosterone and liver gene expression of heat shock proteins) increased under stress in both life-history phenotypes. In contrast, the phenotypes diverged at four nodes both under unstressed conditions and in response to stress: circulating levels of reactive oxygen species (superoxide, H(2)O(2)); liver gene expression of GPX1 and erythrocyte DNA damage. Additionally, allele frequencies for SOD2 diverge from neutral markers, suggesting diversifying selection on SOD2 alleles. This study supports the hypothesis that these life-history phenotypes have diverged at the molecular level in how they respond to stress, particularly in nodes regulating oxidative stress. Furthermore, the differences between the life-history phenotypes were more pronounced in females. We discuss the responses to stress in the context of the associated life-history phenotype and the evolutionary pressures thought to be responsible for divergence between the phenotypes. © 2012 Blackwell Publishing Ltd.

  14. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.

    Science.gov (United States)

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold

    2018-04-13

    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  15. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    OpenAIRE

    Chi H.J. Kao; Amalini C. Jesuthasan; Karen S. Bishop; Marcus P. Glucina; Lynnette R. Ferguson

    2013-01-01

    ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides bei...

  16. Ganoderma: insights into anticancer effects.

    Science.gov (United States)

    Kladar, Nebojša V; Gavarić, Neda S; Božin, Biljana N

    2016-09-01

    The genus Ganoderma includes about 80 species growing on cut or rotten trees. The most commonly used species is Ganoderma ludicum. Biomolecules responsible for the health benefits of Ganoderma are polysaccharides with an immunostimulative effect and triterpenes with a cytotoxic action. For more than 2000 years, it has been used traditionally in the treatment of various pathological conditions and recently, its immunoregulatory, antiviral, antibacterial, antioxidant, hepatoprotective, and anticancer potential has been confirmed. A wide range of Ganoderma extracts and preparations arrest the cell cycle in different phases and consequently inhibit the growth of various types of cancer cells. Extracts containing polysaccharides stimulate immunological reactions through the production of various cytokines and mobilization of immune system cells. In-vivo studies have confirmed the anticancer potential and the antimetastatic effects of compounds originating from Ganoderma. There is also evidence for the chemopreventive action of Ganoderma extracts in bladder, prostate, liver, and breast cancer. The results of clinical studies suggest the combined use of G. lucidum with conventional chemotherapy/radiotherapy, but the methodology and the results of these studies are being questioned. Therefore, a constant need for new clinical trials exists.

  17. Anticancer and antiproliferative activity of natural brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Malíková, J.; Swaczynová, Jana; Kolář, Z.; Strnad, Miroslav

    2008-01-01

    Roč. 69, č. 2 (2008), s. 418-426 ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassinosteroids * Anticancer activity * Cell cycle Subject RIV: CE - Biochemistry Impact factor: 2.946, year: 2008

  18. Artemisinin–Second Career as Anticancer Drug?

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2015-10-01

    Full Text Available Artemisinin represents a showcase example not only for the activity of medicinal herbs deriving from traditional chinese medicine, but for phytotherapy in general. Its isolation from Sweet Wormwood (qinhao, Artemisia annua L. represents the starting point for an unprecedent success story in the treatment of malaria worldwide. Beyond the therapeutic value against Plasmodium parasites, it turned out in recent years that the bioactivity of artemisinin is not restricted to malaria. We and others found that this sesquiterpenoid also exerts profound anticancer activity in vitro and in vivo. Artemisinin-type drugs exert multi-factorial cellular and molecular actions in cancer cells. Ferrous iron reacts with artemisinin, which leads to the formation of reactive oxygen species and ultimately to a plethora anticancer effects of artemisinins, e.g. expression of antioxidant response genes, cell cycle arrest (G1 as well as G2 phase arrests, DNA damage that is repaird by base excision repair, homogous recombination and non-homologous end-joining, as well as different modes of cell death (intrinsic and extrinsic apoptosis, autophagy, necrosis, necroptosis, oncosis, and ferroptosis. Furthermore, artemisinins inhibit neoangiogenesis in tumors. The signaling of major transcription factors (NF-κB, MYC/MAX, AP-1, CREBP, mTOR etc. and signaling pathways are affected by artemisinins (e.g. Wnt/β-catenin pathway, AMPK pathway, metastatic pathways, nitric oxide signaling, and others. Several case reports on the compassionate use of artemisinins as well as clinical Phase I/II pilot studies indicate the clinical activity of artemisinins in veterinary and human cancer patients. Larger scale of Phase II and III clinical studies are required now to further develop artemisinin-type compounds as novel anticancer drugs.

  19. A functional perspective of nitazoxanide as a potential anticancer drug

    International Nuclear Information System (INIS)

    Di Santo, Nicola; Ehrisman, Jessie

    2014-01-01

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  20. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  1. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties

    Directory of Open Access Journals (Sweden)

    YiingYng Chow

    2015-11-01

    Full Text Available Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition to pink (alkaline condition. The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40, followed by O. diffusa (25, C. citratus (14 and M. koenigii (10. Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL−1 min−1. l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.

  2. Efficacy of multiple anticancer therapies may depend on host immune response

    Directory of Open Access Journals (Sweden)

    Kritika Karri

    2017-06-01

    Full Text Available The host immune system is a key player in anticancer therapy response and resistance. Although the impact of host immune response in the ‘war against cancer’ has been studied and it has been the basis for immunotherapy, understanding of its role in attenuating the action of conventional anticancer therapies is an area that has not been fully explored. In spite of advances in systemic therapy, the 5-year survival rate for adenocarcinoma is still a mere 13% and the primary reason for treatment failure is believed to be due to acquired resistance to therapy. Hence, there is a need for identifying reliable biomarkers for guided treatment of lung and colon adenocarcinoma and to better predict the outcomes of specific anticancer therapies. In this work, gene expression data were analyzed using public resources and this study shows how host immune competence underscores the efficacy of various anticancer therapies. Additionally, the result provides insight on the regulation of certain biochemical pathways relating to the immune system, and suggests that smart chemotherapeutic intervention strategies could be based on a patient’s immune profile.

  3. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    Science.gov (United States)

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    Science.gov (United States)

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Phenotypic Changes in Different Spinach Varieties Grown and Selected under Organic Conditions

    Directory of Open Access Journals (Sweden)

    Nicolas Schermann

    2011-09-01

    Full Text Available Organic and low-input agriculture needs flexible varieties that can buffer environmental stress and adapt to the needs of farmers. We implemented an experiment to investigate the evolutionary capacities of a sample of spinach (Spinacia oleracea L. population varieties for a number of phenotypic traits. Three farmers cultivated, selected and multiplied one or several populations over two years on their farms. The third year, the versions of the varieties cultivated and selected by the different farmers were compared to the original seed lots they had been given. After two cycles of cultivation and on-farm mass selection, all the observed varieties showed significant phenotypic changes (differences between the original version and the version cultivated by farmers for morphological and phenological traits. When the divergence among versions within varieties was studied, the results show that the varieties conserved their identity, except for one variety, which evolved in such a way that it may now be considered two different varieties. The heterogeneity of the population varieties was assessed in comparison with a commercial F1 hybrid used as control, and we found no specific differences in phenotypic diversity between the hybrid and population varieties. The phenotypic changes shown by the population varieties in response to on-farm cultivation and selection could be useful for the development of specific adaptation. These results call into question the current European seed legislation and the requirements of phenotypic stability for conservation varieties.

  6. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    Science.gov (United States)

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  7. Genetic tests for predicting the toxicity and efficacy of anticancer chemotherapy.

    Science.gov (United States)

    Mladosievicova, B; Carter, A; Kristova, V

    2007-01-01

    The standard anticancer therapy based "on one size fits all" modality has been determined to be ineffective or to be the cause of adverse drug reactions in many oncologic patients. Most pharmacogenetic and pharmacogenomic studies so far have been focused on toxicity of anticancer drugs such as 6-mercaptopurine, thioguanine, irinotecan, methotrexate, 5-fluorouracil (5-FU). Variation in genes are known to influence not only toxicity, but also efficacy of chemotherapeutics such as platinum analogues, 5-FU and irinotecan. The majority of current pharmacogenetic studies focus on single enzyme deficiencies as predictors of drug effects; however effects of most anticancer drugs are determined by the interplay of several gene products. These effects are polygenic in nature. This review briefly describes genetic variations that may impact efficacy and toxicity of drugs used in cancer chemotherapy.

  8. Anticancer potential of Hericium erinaceus extracts against particular human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Younis AM

    2017-06-01

    Full Text Available Cancer is a leading cause of death worldwide. Cancer resulted in 8.2 million human deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2013 to 22 million within the next two decades. Mushrooms are extensively used as nutritional supplements in many countries. Moreover, mushrooms have many medicinal properties, including anticancer activity. In this study, the anticancer activity of different polar and non-polar extracts of Hericium erinaceus were evaluated against different human cancer cell lines including human liver carcinoma (Hep G2, the human colonic epithelial carcinoma (HCT 116, the human cervical cancer cells (HeLa and the human breast adenocarcinoma (MCF-7 using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Furthermore, as a control, the cytotoxicity effect of the different extracts were tested against isolated mouse hepatocytes. It was observed that the extracts by water and methanol from fresh and lyophilized fruiting bodies of H. erinaceus had the strongest anticancer effect. In contrast, the extracts by ether and ethyl acetate from mycelia and broth of H. erinaceus showed lower anticancer activity against the tested carcinoma cell lines. The highest anticancer activity was recorded for aqueous extract of lyophilized fruiting bodies with half maximal inhibitory concentration (IC50 values of 6.1±0.2, 5.1±0.1, 5.7±0.2 and 5.8±0.3 µg/ml against Hep G2, HCT 116, HeLa and MCF-7 cells, respectively with non-significant effect on the normal mouse hepatocytes. To summarise, polar extracts of H. erinaceus can be good sources for isolating natural anticancer compounds. I recommend further chemical studies to isolate the active principles of the extract of H. erinaceus evaluated in the present.

  9. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    Science.gov (United States)

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  10. The ecology and evolution of animal medication: genetically fixed response versus phenotypic plasticity.

    Science.gov (United States)

    Choisy, Marc; de Roode, Jacobus C

    2014-08-01

    Animal medication against parasites can occur either as a genetically fixed (constitutive) or phenotypically plastic (induced) behavior. Taking the tritrophic interaction between the monarch butterfly Danaus plexippus, its protozoan parasite Ophryocystis elektroscirrha, and its food plant Asclepias spp. as a test case, we develop a game-theory model to identify the epidemiological (parasite prevalence and virulence) and environmental (plant toxicity and abundance) conditions that predict the evolution of genetically fixed versus phenotypically plastic forms of medication. Our model shows that the relative benefits (the antiparasitic properties of medicinal food) and costs (side effects of medicine, the costs of searching for medicine, and the costs of plasticity itself) crucially determine whether medication is genetically fixed or phenotypically plastic. Our model suggests that animals evolve phenotypic plasticity when parasite risk (a combination of virulence and prevalence and thus a measure of the strength of parasite-mediated selection) is relatively low to moderately high and genetically fixed medication when parasite risk becomes very high. The latter occurs because at high parasite risk, the costs of plasticity are outweighed by the benefits of medication. Our model provides a simple and general framework to study the conditions that drive the evolution of alternative forms of animal medication.

  11. Anticancer effect of (S)-crizotinib on osteosarcoma cells by targeting MTH1 and activating reactive oxygen species.

    Science.gov (United States)

    Qing, Xiangcheng; Shao, Zengwu; Lv, Xiao; Pu, Feifei; Gao, Feng; Liu, Lei; Shi, Deyao

    2018-04-01

    MTH1 has become a new rising star in the field of 'cancer phenotypic lethality' and can be targeted in many kinds of tumors. This study aimed to explore the anticancer effect of MTH1-targeted drug (S)-crizotinib on osteosarcoma (OS) cells. We detected MTH1 expression in OS tissues and cells using immunohistochemistry and western blot. The effects of MTH1 on OS cell viability were explored using the siRNA technique and CCK8. The anticancer effects of the MTH1-targeted drug (S)-crizotinib on OS cells were explored by in-vitro assays. The intracellular 8-oxo-dGTP level and oxygen reactive species (ROS) of OS cells were detected by Cy3-conjugated avidin staining and dichlorofluorescein diacetate staining, respectively. The expression of MTH1 was significantly higher in OS tissues and cell lines than that in the corresponding adjacent tissues and osteoblastic cell line. The proliferation of OS cells was significantly inhibited through knockdown of MTH1 by siRNA technology. (S)-Crizotinib could inhibit the proliferation of OS cells with an increase in the apoptosis levels and causing G0/G1 arrest by targeting MTH1 and activating ROS. In addition, (S)-crizotinib could inhibit the migration of OS cells. (S)-Crizotinib could suppress the proliferation and migration, cause G0/G1 arrest, and increase the apoptosis level of OS cells by targeting MTH1 and activating ROS. This study will provide a promising therapeutic target and the theoretical basis for the clinical application of (S)-crizotinib in OS.

  12. Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study

    Science.gov (United States)

    Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.

    Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.

  13. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    Science.gov (United States)

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  14. The phenotypic plasticity of developmental modules

    Directory of Open Access Journals (Sweden)

    Aabha I. Sharma

    2016-08-01

    Full Text Available Abstract Background Organisms develop and evolve in a modular fashion, but how individual modules interact with the environment remains poorly understood. Phenotypically plastic traits are often under selection, and studies are needed to address how traits respond to the environment in a modular fashion. In this study, tissue-specific plasticity of melanic spots was examined in the large milkweed bug, Oncopeltus fasciatus. Results Although the size of the abdominal melanic bands varied according to rearing temperatures, wing melanic bands were more robust. To explore the regulation of abdominal pigmentation plasticity, candidate genes involved in abdominal melanic spot patterning and biosynthesis of melanin were analyzed. While the knockdown of dopa decarboxylase (Ddc led to lighter pigmentation in both the wings and the abdomen, the shape of the melanic elements remained unaffected. Although the knockdown of Abdominal-B (Abd-B partially phenocopied the low-temperature phenotype, the abdominal bands were still sensitive to temperature shifts. These observations suggest that regulators downstream of Abd-B but upstream of DDC are responsible for the temperature response of the abdomen. Ablation of wings led to the regeneration of a smaller wing with reduced melanic bands that were shifted proximally. In addition, the knockdown of the Wnt signaling nuclear effector genes, armadillo 1 and armadillo 2, altered both the melanic bands and the wing shape. Thus, the pleiotropic effects of Wnt signaling may constrain the amount of plasticity in wing melanic bands. Conclusions We propose that when traits are regulated by distinct pre-patterning mechanisms, they can respond to the environment in a modular fashion, whereas when the environment impacts developmental regulators that are shared between different modules, phenotypic plasticity can manifest as a developmentally integrated system.

  15. Peptide-based proteasome inhibitors in anticancer drug design.

    Science.gov (United States)

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents. © 2014 Wiley Periodicals, Inc.

  16. Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools

    Science.gov (United States)

    El-Said, Waleed A.; Yoon, Jinho; Choi, Jeong-Woo

    2018-04-01

    Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.

  17. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications.

    Science.gov (United States)

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary

    2016-01-01

    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects. © 2016 S. Karger AG, Basel.

  18. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  19. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  20. Randomized anticancer and cytotoxicity activities of Guibourtia ...

    African Journals Online (AJOL)

    Materials and Methods: The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, ...

  1. Isolation and identification of flavonoids from anticancer and ...

    African Journals Online (AJOL)

    Isolation and identification of flavonoids from anticancer and neuroprotective extracts of Trigonella foenum graecum. Shabina Ishtiaq Ahmed, Muhammad Qasim Hayat, Saadia Zahid, Muhammad Tahir, Qaisar Mansoor, Muhammad Ismail, Kristen Keck, Robert Bates ...

  2. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs

    Directory of Open Access Journals (Sweden)

    Tabassum Khan

    2018-02-01

    Full Text Available Natural resources continue to be an invaluable source of new, novel chemical entities of therapeutic utility due to the vast structural diversity observed in them. The quest for new and better drugs has witnessed an upsurge in exploring and harnessing nature especially for discovery of antimicrobial, antidiabetic, and anticancer agents. Nature has historically provide us with potent anticancer agents which include vinca alkaloids [vincristine (VCR, vinblastine, vindesine, vinorelbine], taxanes [paclitaxel (PTX, docetaxel], podophyllotoxin and its derivatives [etoposide (ETP, teniposide], camptothecin (CPT and its derivatives (topotecan, irinotecan, anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin, and others. In fact, half of all the anti-cancer drugs approved internationally are either natural products or their derivatives and were developed on the basis of knowledge gained from small molecules or macromolecules that exist in nature. Three new anti-cancer drugs introduced in 2007, viz. trabectedin, epothilone derivative ixabepilone, and temsirolimus were obtained from microbial sources. Selective drug targeting is the need of the current therapeutic regimens for increased activity on cancer cells and reduced toxicity to normal cells. Nanotechnology driven modified drugs and drug delivery systems are being developed and introduced in the market for better cancer treatment and management with good results. The use of nanoparticulate drug carriers can resolve many challenges in drug delivery to the cancer cells that includes: improving drug solubility and stability, extending drug half-lives in the blood, reducing adverse effects in non-target organs, and concentrating drugs at the disease site. This review discusses the scientific ventures and explorations involving application of nanotechnology to some selected plant derived molecules. It presents a comprehensive review of formulation strategies of phytoconstituents in

  3. Disruption of mitochondrial function as mechanism for anti-cancer activity of a novel mitochondriotropic menadione derivative.

    Science.gov (United States)

    Teixeira, José; Amorim, Ricardo; Santos, Katia; Soares, Pedro; Datta, Sandipan; Cortopassi, Gino A; Serafim, Teresa L; Sardão, Vilma A; Garrido, Jorge; Borges, Fernanda; Oliveira, Paulo J

    2018-01-15

    Menadione, also known as vitamin K 3 , is a 2-methyl-1,4 naphthoquinone with a potent cytotoxic activity mainly resulting from its quinone redox-cycling with production of reactive oxygen species (ROS). Although increased ROS generation is considered a relevant mechanism in cancer cell death, it may not be sufficiently effective to kill cancer cells due to phenotypic adaptations. Therefore, combining ROS-generating agents with other molecules targeting important cancer cell phenotypes can be an effective therapeutic strategy. As mitochondrial dysfunction has been implicated in many human diseases, including cancer, we describe here the discovery of a mitochondrial-directed agent (MitoK 3 ), which was developed by conjugating a TPP cation to the C3 position of the menadione's naphthoquinone ring, increasing its selective accumulation in mitochondria, as well as led to alterations of its redox properties and consequent biological outcome. MitoK 3 disturbed the mitochondrial bioenergetic apparatus, with subsequent loss of mitochondrial ATP production. The combinatory strategy of MitoK 3 with anticancer agent doxorubicin (DOX) resulted in a degree of cytotoxicity higher than those of the individual molecules, as the combination triggered tumour apoptotic cell death evident by caspase 3/9 activities, probably through mitochondrial destabilization or by interference with mitochondrial redox processes. The results of this investigation support the importance of drug discovery process in developing molecules that can be use as adjuvant therapy in patients with specific cancer subtypes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Experimental evolution reveals differences between phenotypic and evolutionary responses to population density.

    Science.gov (United States)

    McNamara, K B; Simmons, L W

    2017-09-01

    Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  5. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    van Leeuwen, R. W. F.; Brundel, D. H. S.; Neef, C.; van Gelder, T.; Mathijssen, R. H. J.; Burger, D. M.; Jansman, F. G. A.

    2013-01-01

    Background: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment. Methods: A

  6. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    R.W.F. van Leeuwen (Roelof); D.H.S. Brundel (D. H S); C. Neef (Cees); T. van Gelder (Teun); A.H.J. Mathijssen (Ron); D.M. Burger (David); F.G.A. Jansman (Frank)

    2013-01-01

    textabstractBackground: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment.

  7. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    Science.gov (United States)

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Unraveling the Anticancer Effect of Curcumin and Resveratrol

    Science.gov (United States)

    Pavan, Aline Renata; da Silva, Gabriel Dalio Bernardes; Jornada, Daniela Hartmann; Chiba, Diego Eidy; Fernandes, Guilherme Felipe dos Santos; Man Chin, Chung; dos Santos, Jean Leandro

    2016-01-01

    Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs. PMID:27834913

  9. Toward understanding of the role of reversibility of phenotypic switching in the evolution of resistance to therapy

    Science.gov (United States)

    Horvath, D.; Brutovsky, B.

    2018-06-01

    Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.

  10. How does cognition evolve? Phylogenetic comparative psychology

    Science.gov (United States)

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  11. How does cognition evolve? Phylogenetic comparative psychology.

    Science.gov (United States)

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  12. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    Science.gov (United States)

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    Science.gov (United States)

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  14. Ethnobotany and ethnopharmacy--their role for anti-cancer drug development.

    Science.gov (United States)

    Heinrich, Michael; Bremner, Paul

    2006-03-01

    Local and traditional knowledge has been the starting point for many successful drug development projects over the last decades. Here we discuss some examples of anti-cancer drugs which have had enormous impact as anti-cancer agents (camptothecan, taxol and derivatives) and a few examples of drugs currently under various stages of preclinical development. Ethnobotanists investigate the relationship between humans and plants in all its complexity, and such research is generally based on a detailed observation and study of the use a society makes of plants. The requirements of modern research on natural products as, for example, outlined in the Convention on Biological Diversity (Rio Convention) and the overall approach in ethnobotanical research are also discussed. Selected phytochemical-pharmacological studies based on traditional plant use are used to highlight the potential of ethnobotany driven anti-cancer research. The link between traditionally used plants and targets of the NF-kappaB pathway is discussed using on an EU-funded, multidisciplinary project as an example. Lastly the potential of chemopreventive agents derived from traditional food plants is briefly addressed.

  15. Individual-based models for adaptive diversification in high-dimensional phenotype spaces.

    Science.gov (United States)

    Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael

    2016-02-07

    Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Thermal Tolerance in Widespread and Tropical Drosophila Species: Does Phenotypic Plasticity Increase with Latitude?

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Kristensen, Torsten Nygård; Mitchell, Katherin A

    2011-01-01

    The distribution of insects can often be related to variation in their response to thermal extremes, which in turn may reflect differences in plastic responses or innate variation in resistance. Species with widespread distributions are expected to have evolved higher levels of plasticity than....... The results do not support the hypothesis that widely distributed species have larger phenotypic plasticity for thermal tolerance limits, and Drosophila species distributions are therefore more closely linked to differences in innate thermal tolerance limits....

  17. High-resolution phenotypic profiling of natural products-induced effects on the single-cell level

    KAUST Repository

    Kremb, Stephan Georg

    2017-03-15

    Natural products (NPs) are highly evolved molecules making them a valuable resource for new therapeutics. Here we demonstrate the usefulness of broad-spectrum phenotypic profiling of NP-induced perturbations on single cells with imaging-based High-Content Screening to inform on physiology, mechanisms-of-actions, and multi-level toxicity. Our technology platform aims at broad applicability using a comprehensive marker panel with standardized settings streamlined towards an easy implementation in laboratories dedicated to natural products research.

  18. Actual versus recommended storage temperatures of oral anticancer medicines at patients' homes.

    Science.gov (United States)

    Vlieland, N D; van den Bemt, Bjf; van Riet-Nales, D A; Bouvy, M L; Egberts, Acg; Gardarsdottir, H

    2017-01-01

    Background Substantial quantities of unused medicines are returned by patients to the pharmacy each year. Redispensing these medicines would reduce medicinal waste and health care costs. However, it is not known if medicines are stored by patients as recommended in the product label. Inadequate storage may negatively affect the medicine and reduce clinical efficacy whilst increasing the risk for side effects. Objective To investigate the proportion of patients storing oral anticancer medicines according to the temperature instructions in the product label. Methods Consenting adult patients from six Dutch outpatient hospital pharmacies were included in this study if they used an oral anticancer medicine during February 2014 - January 2015. Home storage temperatures were assessed by inclusion of a temperature logger in the original cancer medicines packaging. The primary outcome was the proportion of patients storing oral anticancer medicines as specified in the Summary of Product Characteristics, either by recalculating the observed temperature fluctuations to a single mean kinetic temperature or by following the temperature instructions taking into account a consecutive 24-h tolerance period. Results Ninety (81.1%) of the 111 included patients (47.8% female, mean age 65.2 (SD: 11.1)) returned their temperature loggers to the pharmacy. None of the patients stored oral anticancer medicines at a mean kinetic temperature above 25℃, one patient stored a medicine requiring storage below 25℃ longer than 24 h above 25℃. None of the patients using medicines requiring storage below 30℃ kept their medicine above 30℃ for a consecutive period of 24 h or longer. Conclusion The majority of patients using oral anticancer medicines store their medicines according to the temperature requirements on the product label claim. Based on our results, most oral anticancer medicines will not be negatively affected by temperature conditions at patients' homes for a maximum of

  19. Plant derived substances with anti-cancer activity: from folklore to practice

    Directory of Open Access Journals (Sweden)

    Marcelo eFridlender

    2015-10-01

    Full Text Available Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early 19th century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next 2 decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.

  20. Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment.

    Science.gov (United States)

    Lande, R

    2014-05-01

    Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade-off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers

    International Nuclear Information System (INIS)

    Karaçalı, Bilge; Vamvakidou, Alexandra P; Tözeren, Aydın

    2007-01-01

    Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development

  2. Starvation induces phenotypic diversification and convergent evolution in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Hwajiun Chen

    Full Text Available Starvation is a common stress experienced by bacteria living in natural environments and the ability to adapt to and survive intense stress is of paramount importance for any bacterial population. A series of starvation experiments were conducted using V. vulnificus 93U204 in phosphate-buffered saline and seawater. The starved population entered the death phase during the first week and approximately 1% of cells survived. After that the population entered a long-term stationary phase, and could survive for years. Starvation-induced diversification (SID of phenotypes was observed in starved populations and phenotypic variants (PVs appeared in less than 8 days. The cell density, rather than the population size, had a major effect on the extent of SID. SID was also observed in strain YJ016, where it evolved at a faster pace. PVs appeared to emerge in a fixed order: PV with reduced motility, PV with reduced proteolytic activity, and PV with reduced hemolytic activity. All of the tested PVs had growth advantages in the stationary phase phenotypes and increased fitness compared with 93U204 cells in co-culture competition experiments, which indicates that they had adapted to starvation. We also found that SID occurred in natural seawater with a salinity of 1%-3%, so this mechanism may facilitate bacterial adaptation in natural environments.

  3. Antithrombotic/anticoagulant and anticancer activities of selected ...

    African Journals Online (AJOL)

    Antithrombotic/anticoagulant and anticancer activities of selected medicinal plants from South Africa. NLA Kee, N Mnonopi, H Davids, RJ Naudé, CL Frost. Abstract. Nine plants available in the Eastern Cape Province of South Africa were tested for antithrombotic and/or anticoagulant activity. Organic (methanol) and aqueous ...

  4. Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties.

    Science.gov (United States)

    Troeira Henriques, Sónia; Lawrence, Nicole; Chaousis, Stephanie; Ravipati, Anjaneya S; Cheneval, Olivier; Benfield, Aurélie H; Elliott, Alysha G; Kavanagh, Angela Maria; Cooper, Matthew A; Chan, Lai Yue; Huang, Yen-Hua; Craik, David J

    2017-09-15

    Gomesin, a disulfide-rich antimicrobial peptide produced by the Brazilian spider Acanthoscurria gomesiana, has been shown to be potent against Gram-negative bacteria and to possess selective anticancer properties against melanoma cells. In a recent study, a backbone cyclized analogue of gomesin was shown to be as active but more stable than its native form. In the current study, we were interested in improving the antimicrobial properties of the cyclic gomesin, understanding its selectivity toward melanoma cells and elucidating its antimicrobial and anticancer mode of action. Rationally designed analogues of cyclic gomesin were examined for their antimicrobial potency, selectivity toward cancer cells, membrane-binding affinity, and ability to disrupt cell and model membranes. We improved the activity of cyclic gomesin by ∼10-fold against tested Gram-negative and Gram-positive bacteria without increasing toxicity to human red blood cells. In addition, we showed that gomesin and its analogues are more toxic toward melanoma and leukemia cells than toward red blood cells and act by selectively targeting and disrupting cancer cell membranes. Preference toward some cancer types is likely dependent on their different cell membrane properties. Our findings highlight the potential of peptides as antimicrobial and anticancer leads and the importance of selectively targeting cancer cell membranes for drug development.

  5. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Antioxidant and Anticancer Activities of Wampee (Clausena lansium (Lour. Skeels Peel

    Directory of Open Access Journals (Sweden)

    K. Nagendra Prasad

    2009-01-01

    Full Text Available Antioxidant activities of wampee peel extracts using five different solvents (ethanol, hexane, ethyl acetate, butanol and water were determined by using in-vitro antioxidant models including total antioxidant capability, 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging activity, reducing power, and superoxide scavenging activity. Ethyl acetate fraction (EAF exhibited the highest antioxidant activity compared to other fractions, even higher than synthetic antioxidant butylated hydroxyl toluene (BHT. In addition, the EAF exhibited strong anticancer activities against human gastric carcinoma (SGC-7901, human hepatocellular liver carcinoma (HepG-2 and human lung adenocarcinoma (A-549 cancer cell lines, higher than cisplatin, a conventional anticancer drug. The total phenolic content of wampee fraction was positively correlated with the antioxidant activity. This is the first report on the antioxidant and anticancer activities of the wampee peel extract. Thus, wampee peel can be used potentially as a readily accessible source of natural antioxidants and a possible pharmaceutical supplement.

  7. Convergent evolution of phenotypic integration and its alignment with morphological diversification in Caribbean Anolis ecomorphs.

    Science.gov (United States)

    Kolbe, Jason J; Revell, Liam J; Szekely, Brian; Brodie, Edmund D; Losos, Jonathan B

    2011-12-01

    The adaptive landscape and the G-matrix are keys concepts for understanding how quantitative characters evolve during adaptive radiation. In particular, whether the adaptive landscape can drive convergence of phenotypic integration (i.e., the pattern of phenotypic variation and covariation summarized in the P-matrix) is not well studied. We estimated and compared P for 19 morphological traits in eight species of Caribbean Anolis lizards, finding that similarity in P among species was not correlated with phylogenetic distance. However, greater similarity in P among ecologically similar Anolis species (i.e., the trunk-ground ecomorph) suggests the role of convergent natural selection. Despite this convergence and relatively deep phylogenetic divergence, a large portion of eigenstructure of P is retained among our eight focal species. We also analyzed P as an approximation of G to test for correspondence with the pattern of phenotypic divergence in 21 Caribbean Anolis species. These patterns of covariation were coincident, suggesting that either genetic constraint has influenced the pattern of among-species divergence or, alternatively, that the adaptive landscape has influenced both G and the pattern of phenotypic divergence among species. We provide evidence for convergent evolution of phenotypic integration for one class of Anolis ecomorph, revealing yet another important dimension of evolutionary convergence in this group. No Claim to original U.S. government works.

  8. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2010-12-01

    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  9. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    International Nuclear Information System (INIS)

    Yang, Danbo; Yu, Lei; Van, Sang

    2010-01-01

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic

  10. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Danbo [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Yu, Lei, E-mail: yu-lei@gg.nitto.co.jp [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States); Van, Sang [Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2010-12-23

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  11. In vitro investigating of anticancer activity of focuxanthin from marine brown seaweed species

    Directory of Open Access Journals (Sweden)

    M. Karkhane Yousefi

    2018-01-01

    Full Text Available Breast cancer is the most common cancer type among women all over the world. Chemotherapy is the use of anticancer medicines for treating cancer but it has many side effects and cells may become resistant to these chemical medicines. Therefore, finding new compounds of natural origin could be a promising solution to this problem. The aim of the current study was to evaluate anticancer activity of fucoxanthin which is the most important carotenoid found in the marine brown seaweeds and diatoms. fucoxanthin has many properties (antioxidant, antibacterial, anticancer, antiobesity, anti-inflammatory and etc. due to its unique structure. Samples with different concentrations (10, 25 and 50 µg/ml and at various incubation times were collected (6, 24 and 48 hours from four different species (Padina tenuis, Colpomenia sinuosa, Iyengaria stellate and Dictyota indica of brown seaweeds from Qeshm Island, Persian Gulf. Moreover, the anticancer activity of fucoxanthin-containing extracts on breast cancer cells line and normal human skin fibroblast cells line was assessed by MTT [3-(4,5-dimethylthiazolyl-2,5-diphenyl-tetrazolium bromide] assay to specify the cytotoxic effects. The results showed that fucoxanthin extract from Dictyota. indica at 24-hour treatment and 50 µg/ml concentration has the most effective anticancer activity on the breast cancer cells line, without toxic effects to the normal cells. According to the obtained results, it seems that Dictyota. Indica is a good candidate for further analysis and can be introduced to the food and pharmaceutical industries.

  12. Synthesis, docking and anticancer activity studies of D-proline ...

    Indian Academy of Sciences (India)

    D-proline-incorporated wainunuamide — a cyclic octapeptide was synthesized and characterized ... Cyclic octapeptide; molecular docking; solution phase synthesis; anticancer activity ..... dynamics and their binding affinities, using free energy.

  13. Phenotypic Covariation and Morphological Diversification in the Ruminant Skull.

    Science.gov (United States)

    Haber, Annat

    2016-05-01

    Differences among clades in their diversification patterns result from a combination of extrinsic and intrinsic factors. In this study, I examined the role of intrinsic factors in the morphological diversification of ruminants, in general, and in the differences between bovids and cervids, in particular. Using skull morphology, which embodies many of the adaptations that distinguish bovids and cervids, I examined 132 of the 200 extant ruminant species. As a proxy for intrinsic constraints, I quantified different aspects of the phenotypic covariation structure within species and compared them with the among-species divergence patterns, using phylogenetic comparative methods. My results show that for most species, divergence is well aligned with their phenotypic covariance matrix and that those that are better aligned have diverged further away from their ancestor. Bovids have dispersed into a wider range of directions in morphospace than cervids, and their overall disparity is higher. This difference is best explained by the lower eccentricity of bovids' within-species covariance matrices. These results are consistent with the role of intrinsic constraints in determining amount, range, and direction of dispersion and demonstrate that intrinsic constraints can influence macroevolutionary patterns even as the covariance structure evolves.

  14. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  15. Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-06-01

    Full Text Available For enhanced anti-cancer performance, human serum albumin fragments (HSAFs nanoparticles (NPs were developed as paclitaxel (PTX carrier in this paper. Human albumins were broken into fragments via degradation and crosslinked by genipin to form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs showed relative smaller particle size, higher drug loading, and improved sustained release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs have shown good anti-cancer performance. And the anticancer results confirmed that NPs with fast cellular internalization showed better tumor inhibition. These findings will not only provide a safe and robust drug delivery NP platform for cancer therapy, but also offer fundamental information for the optimal design of albumin based NPs.

  16. A phenotypic profile of the Candida albicans regulatory network.

    Directory of Open Access Journals (Sweden)

    Oliver R Homann

    2009-12-01

    Full Text Available Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of

  17. A phenotypic profile of the Candida albicans regulatory network.

    Science.gov (United States)

    Homann, Oliver R; Dea, Jeanselle; Noble, Suzanne M; Johnson, Alexander D

    2009-12-01

    Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but

  18. The Low-Renin Hypertension Phenotype: Genetics and the Role of the Mineralocorticoid Receptor

    Directory of Open Access Journals (Sweden)

    Rene Baudrand

    2018-02-01

    Full Text Available A substantial proportion of patients with hypertension have a low or suppressed renin. This phenotype of low-renin hypertension (LRH may be the manifestation of inherited genetic syndromes, acquired somatic mutations, or environmental exposures. Activation of the mineralocorticoid receptor is a common final mechanism for the development of LRH. Classically, the individual causes of LRH have been considered to be rare diseases; however, recent advances suggest that there are milder and “non-classical” variants of many LRH-inducing conditions. In this regard, our understanding of the underlying genetics and mechanisms accounting for LRH, and therefore, potentially the pathogenesis of a large subset of essential hypertension, is evolving. This review will discuss the potential causes of LRH, with a focus on implicated genetic mechanisms, the expanding recognition of non-classical variants of conditions that induce LRH, and the role of the mineralocorticoid receptor in determining this phenotype.

  19. Robust prediction of anti-cancer drug sensitivity and sensitivity-specific biomarker.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis. Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc. and the outliers may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space. Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of our method.

  20. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Directory of Open Access Journals (Sweden)

    Jiaolin Bao

    Full Text Available Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX. The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  1. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    Science.gov (United States)

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Wenqi

    2008-04-01

    Full Text Available Abstract Background It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU loaded block copolymers, with poly(γ-benzyl-L-glutamate (PBLG as the hydrophobic block and poly(ethylene glycol (PEG as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. Methods 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC. To study in vivo effects, LoVo cells (human colon cancer cell line or Tca8113 cells (human oral squamous cell carcinoma cell line were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. Results 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t1/2, 33.3 h vs. 5 min, lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L, and greater distribution volume (VD, 0.114 L vs. 0.069 L. Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p 0.05. Conclusion In our model system, 5-FU/PEG-PBLG nanoparticles

  3. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    Science.gov (United States)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  4. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Environmental change, phenotypic plasticity, and genetic compensation.

    Science.gov (United States)

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  6. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    Science.gov (United States)

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  7. PFGE and antibiotic susceptibility phenotype analysis of Pseudomonas aeruginosa strain chronically infecting Cystic Fibrosis patients

    Directory of Open Access Journals (Sweden)

    Giovanna Pulcrano

    2008-09-01

    Full Text Available Pseudomonas aeruginosa is the leading cause of chronic lung infection and following pulmonary worsening of cystic fibrosis patients. To verify whether bacterial modifications regarding motility, mucoidy, and serum susceptibility proceeded from an adaptation to chronic infection or a replacement with a new strain, sequential P. aeruginosa isolates of known phenotype collected from 5 cystic fibrosis patients were typed by pulsed-field gel electophoresis (PFGE. Antimicrobial susceptibility testing of all isolates was performed by the disc diffusion method. PFGE typing demonstrated that strains dissimilar in colony morphotype and of different antibiotic susceptibility patterns could be of the same genotype. Some patients were colonized with a rather constant P. aeruginosa flora, with strains of different phenotypes but of one genotype. Instead, some patients may be colonized by more than one genotype. Secretion of mucoid exopolysaccharide and acquisition of a new antibiotic susceptibility phenotype in these strain appear to evolve during chronic colonization in cystic fibrosis patients from specific adaptation to infection rather than from acquisition of new bacterial strains.

  8. Trial Watch: Anticancer radioimmunotherapy.

    Science.gov (United States)

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-09-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in

  9. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2016-01-01

    Full Text Available A convenient synthesis of 2′-(2″,4″-dinitrophenyl-5α-cholestano [5,7-c d] pyrazolines 4–6 from cholest-5-en-7-one 1–3 was performed and structural assignment of the products was confirmed on the basis of IR, 1H NMR, 13C NMR, MS and analytical data. The synthesized compounds were screened for in vitro antimicrobial activity against different strains during which compound 6 showed potent antimicrobial behaviour against Corynebacterium xerosis and Staphylococcus epidermidis. The synthesized compounds were also screened for in vitro anticancer activity against human cancer cell lines during which compound 5 exhibited significant anticancer activity.

  10. An Insight into the Anticancer Activities of Ru(II-Based Metallocompounds Using Docking Methods

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2013-09-01

    Full Text Available Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.

  11. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  12. Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and ...

    African Journals Online (AJOL)

    Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and Cell Cycle Arrest in ... of linalool on cell morphology and apoptotic body formation in DU145 cells ... It was observed that 4.36, 11.54, 21.88 and 15.54 % of the cells underwent ...

  13. Oral anticancer agent medication adherence by outpatients.

    Science.gov (United States)

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence.

  14. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Laursen, Janne Marie; Zucker, Daniel

    2017-01-01

    Tumor immune escape is today recognized as an important cancer hallmark and is therefore a major focus area in cancer therapy. Monocytes and dendritic cells (DCs), which are central to creating a robust anti-tumor immune response and establishing an anti-tumorigenic microenvironment, are directly...... targeted by the tumor escape mechanisms to develop immunosuppressive phenotypes. Providing activated monocytes and DCs to the tumor tissue is therefore an attractive way to break the tumor-derived immune suppression and reinstate cancer immune surveillance. To activate monocytes and DCs with high...... as their immune activating potential in blood-derived monocytes, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). Monocytes and mDCs were targeted with high specificity over lymphocytes, and exhibited potent TLR7-specific secretion of the anti-cancer cytokines IL-12p70, IFN-α 2a, and IFN-γ. This delivery system...

  15. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery

    Directory of Open Access Journals (Sweden)

    Yuan-Seng Wu

    2017-10-01

    Full Text Available Surfactin, a cyclic lipopeptide biosurfactant produced by various strains of Bacillus genus, has been shown to induce cytotoxicity against many cancer types, such as Ehrlich ascites, breast and colon cancers, leukemia and hepatoma. Surfactin treatment can inhibit cancer progression by growth inhibition, cell cycle arrest, apoptosis, and metastasis arrest. Owing to the potent effect of surfactin on cancer cells, numerous studies have recently investigated the mechanisms that underlie its anticancer activity. The amphiphilic nature of surfactin allows its easy incorporation nano-formulations, such as polymeric nanoparticles, micelles, microemulsions, liposomes, to name a few. The use of nano-formulations offers the advantage of optimizing surfactin delivery for an improved anticancer therapy. This review focuses on the current knowledge of surfactin properties and biosynthesis; anticancer activity against different cancer models and the underlying mechanisms involved; as well as the potential application of nano-formulations for optimal surfactin delivery.

  16. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    Science.gov (United States)

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  17. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    Science.gov (United States)

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  18. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available Three-dimensional (3D in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening.Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100-300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin and nanoparticle (NLC were done using spheroids.IC(50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro.The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.

  19. Disgust: Evolved function and structure

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.; Kurzban, R.; DeScioli, P.

    2013-01-01

    Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and

  20. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    Science.gov (United States)

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Sphingolipid metabolism enzymes as targets for anticancer therapy

    NARCIS (Netherlands)

    Kok, JW; Sietsma, H

    Treatment with anti-cancer agents in most cases ultimately results in apoptotic cell death of the target tumour cells. Unfortunately, tumour cells can develop multidrug resistance, e.g., by a reduced propensity to engage in apoptosis by which they become insensitive to multiple chemotherapeutics.

  2. Roles of Reactive Oxygen Species in Anticancer Therapy with Salvia miltiorrhiza Bunge

    Directory of Open Access Journals (Sweden)

    Yu-Chiang Hung

    2016-01-01

    Full Text Available Cancer is a leading cause of death worldwide. We aim to provide a systematic review about the roles of reactive oxygen species (ROS in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen. Danshen, including its lipophilic and hydrophilic constituents, is potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending on the specific type of cancer cells involved. Danshen may enhance TNF-α-induced apoptosis, upregulate caspase-3, caspase-8, caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK, mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshen may downregulate human telomerase reverse transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31, NF-κB, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways. Therefore, Danshen may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS generation on tumor progression, tumor promotion, and tumor metastasis. Based on the available evidence regarding its anticancer properties, this review provides new insights for further anticancer research or clinical trials with Danshen.

  3. Monitoring of anti-cancer therapies and chemoresistance

    Czech Academy of Sciences Publication Activity Database

    Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Džubák, P.; Hajdúch, M.; Gadher, S. J.; Kovářová, Hana

    2009-01-01

    Roč. 6, č. 1 (2009), s. 63-63 ISSN 1109-6535. [International Conference of the Hellenic Proteomic Society /3./. 30.03.2009-01.04.2009, Nafplio] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : anti-cancer therapies Subject RIV: CE - Biochemistry

  4. Characterization and in vitro studies on anticancer activity of ...

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... The exopolymer produced by B. thuringiensis S13, showed potent ... Polysaccharides derived from a microorganism have specific broad .... polymer and cisplatin (an anticancer drug as standard) separately in triplicates to ...

  5. Coevolution between human's anticancer activities and functional foods from crop origin center in the world.

    Science.gov (United States)

    Zeng, Ya-Wen; Du, Juan; Pu, Xiao-Ying; Yang, Jia-Zhen; Yang, Tao; Yang, Shu-Ming; Yang, Xiao-Meng

    2015-01-01

    Cancer is the leading cause of death around the world. Anticancer activities from many functional food sources have been reported in years, but correlation between cancer prevalence and types of food with anticancer activities from crop origin center in the world as well as food source with human migration are unclear. Hunger from food shortage is the cause of early human evolution from Africa to Asia and later into Eurasia. The richest functional foods are found in crop origin centers, housing about 70% in the world populations. Crop origin centers have lower cancer incidence and mortality in the world, especially Central Asia, Middle East, Southwest China, India and Ethiopia. Asia and Africa with the richest anticancer crops is not only the most important evolution base of humans and origin center of anticancer functional crop, but also is the lowest mortality and incidence of cancers in the world. Cancer prevention of early human migrations was associated with functional foods from crop origin centers, especially Asia with four centers and one subcenter of crop origin, accounting for 58% of the world population. These results reveal that coevolution between human's anticancer activities associated with functional foods for crop origin centers, especially in Asia and Africa.

  6. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  7. Study of selected phenotype switching strategies in time varying environment

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Denis, E-mail: horvath.denis@gmail.com [Centre of Interdisciplinary Biosciences, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia); Brutovsky, Branislav, E-mail: branislav.brutovsky@upjs.sk [Department of Biophysics, Institute of Physics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia)

    2016-03-22

    Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.

  8. Study of selected phenotype switching strategies in time varying environment

    International Nuclear Information System (INIS)

    Horvath, Denis; Brutovsky, Branislav

    2016-01-01

    Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.

  9. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-11-01

    Full Text Available In addition to its well-known abortifacient effect, mifepristone (MIF has been used as an anticancer drug for various cancers in many studies with an in-depth understanding of the mechanism of action. However, application of MIF is limited by its poor water solubility and low oral bioavailability. In this work, we developed a drug delivery system based on chitosan nanoparticles (CNs to improve its bioavailability and anticancer activity. The MIF-loaded chitosan nanoparticles (MCNs were prepared by convenient ionic gelation techniques between chitosan (Cs and tripolyphosphate (TPP. The preparation conditions, including Cs concentration, TPP concentration, Cs/MIF mass ratio, and pH value of the TPP solution, were optimized to gain better encapsulation efficiency (EE and drug loading capacity (DL. MCNs prepared with the optimum conditions resulted in spherical particles with an average size of 200 nm. FTIR and XRD spectra verified that MIF was successfully encapsulated in CNs. The EE and DL of MCNs determined by HPLC were 86.6% and 43.3%, respectively. The in vitro release kinetics demonstrated that MIF was released from CNs in a sustained-release manner. Compared with free MIF, MCNs demonstrated increased anticancer activity in several cancer cell lines. Pharmacokinetic studies in male rats that were orally administered MCNs showed a 3.2-fold increase in the area under the curve from 0 to 24 h compared with free MIF. These results demonstrated that MCNs could be developed as a potential delivery system for MIF to improve its anticancer activity and bioavailability.

  10. Genetic and phenotypic intra-species variation in Candida albicans.

    Science.gov (United States)

    Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha; Anderson, Matthew Z; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M; Greenberg, Joshua M; Berman, Judith; Bennett, Richard J; Cuomo, Christina A

    2015-03-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. © 2015 Hirakawa et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB.

    Science.gov (United States)

    Winkler, James D; Garcia, Carlos; Olson, Michelle; Callaway, Emily; Kao, Katy C

    2014-06-01

    Biocatalyst robustness toward stresses imposed during fermentation is important for efficient bio-based production. Osmotic stress, imposed by high osmolyte concentrations or dense populations, can significantly impact growth and productivity. In order to better understand the osmotic stress tolerance phenotype, we evolved sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under sodium chloride (NaCl) stress. All isolates had significantly improved growth under selection and could grow in up to 0.80 M (47 g/liter) NaCl, a concentration that completely inhibits the growth of the unevolved parental strains. Whole genome resequencing revealed frequent mutations in genes controlling N-acetylglucosamine catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV), and motility (fimA). Possible epistatic interactions between nagC, nagA, fimA, and proV deletions were also detected when reconstructed as defined mutations. Biofilm formation under osmotic stress was found to be decreased in most mutant isolates, coupled with perturbations in indole secretion. Transcriptional analysis also revealed significant changes in ompACGL porin expression and increased transcription of sulfonate uptake systems in the evolved mutants. These findings expand our current knowledge of the osmotic stress phenotype and will be useful for the rational engineering of osmotic tolerance into industrial strains in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Identification of novel anticancer terpenoids from Prosopis juliflora ...

    African Journals Online (AJOL)

    Purpose: To identify a novel source of terpenoid anticancer compounds from P. juliflora (Sw.) DC. (Leguminosae) pods as a medicinal substitute for cancer medicines. Methods: The pods were collected, dried and pulverized. The ethanol extract was prepared by maceration. Various phyto-constituents were detected in the ...

  13. Preclinical and clinical pharmacology of oral anticancer drugs

    NARCIS (Netherlands)

    Oostendorp, R.L.

    2009-01-01

    Nowadays, more than 25% of all anticancer drugs are developed as oral formulations. Oral administration of drugs has several advantages over intravenous (i.v.) administration. It will on average be more convenient for patients, because they can take oral medication themselves, there is no need for

  14. Marine Fungi: A Source of Potential Anticancer Compounds

    Directory of Open Access Journals (Sweden)

    Sunil K. Deshmukh

    2018-01-01

    Full Text Available Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines.

  15. Phenotypic Plasticity, CYP19A1 Pleiotropy, and Maladaptive Selection in Developmental Disorders

    Directory of Open Access Journals (Sweden)

    J. Patrick Malone

    2013-05-01

    Full Text Available The contribution of evolutionary psychology to the study of development and psychopathology depends on adherence to the principles of evolutionary biology. The human brain evolved because selection favored neither size nor complexity but instead the phenotypic plasticity supporting cognitive flexibility. Cell proliferation, migration, elongation, synaptogenesis, synaptic pruning, apoptosis, and myelination occur at varying rates during asynchronous phases of development throughout the brain. Developmentally sensitive periods result from phenotypic plasticity and are vital for adaptation to the environment. The biological systems surrounding the CYP19A1 gene provide mechanisms for neuroprotection and targeted neuronal debridement in response to environmental stress, uniting selection with developmental biology. Updates to Dunbar’s original hypothesis with current primatological data, inclusion of total brain mass, and the introduction of CYP19A1 orthology from nine primate species yields a linear regression, R 2 = .994, adjusted R 2 = .989, F(3, 5 = 143.758, p < .001.

  16. Synthesis of some new heterocyclic compounds bearing a sulfonamide moiety and studying their combined anticancer effect with γ-radiation

    International Nuclear Information System (INIS)

    El-Hossary, E.M.M.

    2010-01-01

    In search for new cytotoxic agents with improved anticancer profile, some new halogen-containing quinoline and pyrimido[4,5-b]quinoline derivatives bearing a free sulfonamide moiety were synthesized. All the newly synthesized target compounds were subjected to in vitro anticancer screening against human breast cancer cell line (MCF7). The most potent compounds, as concluded from the in vitro anticancer screening, were selected to be evaluated again for their in vitro anticancer activity in combination with radiation. Also, the newly synthesized compounds were docked in the active site of the carbonic anhydrase enzyme

  17. Uptake, delivery, and anticancer activity of thymoquinone nanoparticles in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fakhoury, Isabelle [American University of Beirut, Department of Biology (Lebanon); Saad, Walid [American University of Beirut, Department of Chemical and Petroleum Engineering (Lebanon); Bouhadir, Kamal [American University of Beirut, Department of Chemistry (Lebanon); Nygren, Peter [Uppsala University, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology (Sweden); Schneider-Stock, Regine [University of Erlangen-Nuremberg, Experimental Tumor Pathology, Institute for Pathology (Germany); Gali-Muhtasib, Hala, E-mail: amro@aub.edu.lb [American University of Beirut, Department of Biology (Lebanon)

    2016-07-15

    Thymoquinone (TQ) is a promising anticancer molecule but its development is hindered by its limited bioavailability. Drug encapsulation is commonly used to overcome low drug solubility, limited bioavailability, and nonspecific targeting. In this project, TQ nanoparticles (TQ-NP) were synthesized and characterized. The cytotoxicity of the NP was investigated in nontumorigenic MCF-10-A breast cells, while the uptake, distribution, as well as the anticancer potential were investigated in MCF-7 and MDA-MB-231 breast cancer cells. Flash Nanoprecipitation and dynamic light scattering coupled with scanning electron microscopy were used to prepare and characterize TQ-NP prior to measuring their anticancer potential by MTT assay. The uptake and subcellular intake of TQ-NP were evaluated by fluorometry and confocal microscopy. TQ-NP were stable with a hydrodynamic average diameter size around 100 nm. Entrapment efficiency and loading content of TQ-NP were high (around 80 and 50 %, respectively). In vitro, TQ-NP had equal or enhanced anticancer activity effects compared to TQ in MCF-7 and aggressive MDA-MB-231 breast cancer cells, respectively, with no significant cytotoxicity of the blank NP. In addition, TQ and TQ-NP were relatively nontoxic to MCF-10-A normal breast cells. TQ-NP uptake mechanism was both time and concentration dependent. Treatment with inhibitors of endocytosis suggested the involvement of caveolin in TQ-NP uptake. This was further confirmed by subcellular localization findings showing the colocalization of TQ-NP with caveolin and transferrin as well as with the early and late markers of endocytosis. Altogether, the results describe an approach for the enhancement of TQ anticancer activity and uncover the mechanisms behind cell-TQ-NP interaction.Graphical Abstract.

  18. Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy.

    Science.gov (United States)

    Li, Ying-Ying; Feun, Lynn G; Thongkum, Angkana; Tu, Chiao-Hui; Chen, Shu-Mei; Wangpaichitr, Medhi; Wu, Chunjing; Kuo, Macus T; Savaraj, Niramol

    2017-06-19

    Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial. Accumulated studies have demonstrated that triggering autophagy is able to facilitate anticancer immunity due to an increase in immunogenicity, whereas other studies suggested that autophagy is likely to disarm anticancer immunity mediated by cytotoxic T cells and nature killer (NK) cells. Hence, this contradiction needs to be elucidated. In this review, we discuss the role of autophagy in cancer cells per se and in cancer microenvironment as well as its dual regulatory roles in immune surveillance through modulating presentation of tumor antigens, development of immune cells, and expression of immune checkpoints. We further focus on emerging roles of autophagy induced by current treatments and its impact on anticancer immune response, and illustrate the pros and cons of utilizing autophagy in cancer immunotherapy based on preclinical references.

  19. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-08-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  20. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-01-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  1. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    International Nuclear Information System (INIS)

    Li, Su; Wang, Anxun; Jiang, Wenqi; Guan, Zhongzhen

    2008-01-01

    It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(γ-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t 1/2 , 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L), and greater distribution volume (V D , 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05). In our

  2. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.

    Science.gov (United States)

    Binder, Dennis; Drepper, Thomas; Jaeger, Karl-Erich; Delvigne, Frank; Wiechert, Wolfgang; Kohlheyer, Dietrich; Grünberger, Alexander

    2017-07-01

    In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological

  3. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  4. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Esau, Luke E.

    2014-01-01

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  5. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  6. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Mun, Jeong-Geon; Jeong, Mi-Young; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Kim, Hyun-Jung; Um, Jae-Young; Hong, Seung-Heon

    2016-08-27

    Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  7. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes

    Directory of Open Access Journals (Sweden)

    Yo-Han Han

    2016-08-01

    Full Text Available Arctigenin (ARC has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC. In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2 and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  8. Carnosol: a promising anti-cancer and anti-inflammatory agent.

    Science.gov (United States)

    Johnson, Jeremy J

    2011-06-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicinal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Classification of mitocans, anti-cancer drugs acting on mitochondria

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L. F.; Rohlena, Jakub; Truksa, Jaroslav; Ralph, S. J.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 199-208 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * Anti-cancer therapeutics * Classification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.524, year: 2013

  10. Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.

    Science.gov (United States)

    Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J

    2015-06-01

    The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Identification, RNAi knockdown, and functional analysis of an ejaculate protein that mediates a postmating, prezygotic phenotype in a cricket.

    Directory of Open Access Journals (Sweden)

    Jeremy L Marshall

    2009-10-01

    Full Text Available Postmating, prezygotic phenotypes, especially those that underlie reproductive isolation between closely related species, have been a central focus of evolutionary biologists over the past two decades. Such phenotypes are thought to evolve rapidly and be nearly ubiquitous among sexually reproducing eukaryotes where females mate with multiple partners. Because these phenotypes represent interplay between the male ejaculate and female reproductive tract, they are fertile ground for reproductive senescence--as ejaculate composition and female physiology typically change over an individual's life span. Although these phenotypes and their resulting dynamics are important, we have little understanding of the proteins that mediate these phenotypes, particularly for species groups where postmating, prezygotic traits are the primary mechanism of reproductive isolation. Here, we utilize proteomics, RNAi, mating experiments, and the Allonemobius socius complex of crickets, whose members are primarily isolated from one another by postmating, prezygotic phenotypes (including the ability of a male to induce a female to lay eggs, to demonstrate that one of the most abundant ejaculate proteins (a male accessory gland-biased protein similar to a trypsin-like serine protease decreases in abundance over a male's reproductive lifetime and mediates the induction of egg-laying in females. These findings represent one of the first studies to identify a protein that plays a role in mediating both a postmating, prezygotic isolation pathway and reproductive senescence.

  12. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes

    KAUST Repository

    AlShahrani, Mona; Hoehndorf, Robert

    2018-01-01

    In the past years, several methods have been developed to incorporate information about phenotypes into computational disease gene prioritization methods. These methods commonly compute the similarity between a disease's (or patient's) phenotypes and a database of gene-to-phenotype associations to find the phenotypically most similar match. A key limitation of these methods is their reliance on knowledge about phenotypes associated with particular genes which is highly incomplete in humans as well as in many model organisms such as the mouse. Results: We developed SmuDGE, a method that uses feature learning to generate vector-based representations of phenotypes associated with an entity. SmuDGE can be used as a trainable semantic similarity measure to compare two sets of phenotypes (such as between a disease and gene, or a disease and patient). More importantly, SmuDGE can generate phenotype representations for entities that are only indirectly associated with phenotypes through an interaction network; for this purpose, SmuDGE exploits background knowledge in interaction networks comprising of multiple types of interactions. We demonstrate that SmuDGE can match or outperform semantic similarity in phenotype-based disease gene prioritization, and furthermore significantly extends the coverage of phenotype-based methods to all genes in a connected interaction network.

  13. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes

    KAUST Repository

    Alshahrani, Mona

    2018-04-30

    In the past years, several methods have been developed to incorporate information about phenotypes into computational disease gene prioritization methods. These methods commonly compute the similarity between a disease\\'s (or patient\\'s) phenotypes and a database of gene-to-phenotype associations to find the phenotypically most similar match. A key limitation of these methods is their reliance on knowledge about phenotypes associated with particular genes which is highly incomplete in humans as well as in many model organisms such as the mouse. Results: We developed SmuDGE, a method that uses feature learning to generate vector-based representations of phenotypes associated with an entity. SmuDGE can be used as a trainable semantic similarity measure to compare two sets of phenotypes (such as between a disease and gene, or a disease and patient). More importantly, SmuDGE can generate phenotype representations for entities that are only indirectly associated with phenotypes through an interaction network; for this purpose, SmuDGE exploits background knowledge in interaction networks comprising of multiple types of interactions. We demonstrate that SmuDGE can match or outperform semantic similarity in phenotype-based disease gene prioritization, and furthermore significantly extends the coverage of phenotype-based methods to all genes in a connected interaction network.

  14. Transportan 10 improves the anticancer activity of cisplatin.

    Science.gov (United States)

    Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić

    2016-05-01

    The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a

  15. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group

    Directory of Open Access Journals (Sweden)

    Subtel’na I. Yu.

    2011-04-01

    Full Text Available The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anticancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program, among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected.

  16. Classification of mitocans, anti-cancer drugs acting on mitochondria

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L. F.; Rohlena, Jakub; Truksa, Jaroslav; Ralph, S. J.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 199-208 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * Anti-cancer therapeutics * Classification Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 3.524, year: 2013

  17. Screening of potent anticancer drug taxol from Entophytic fungus ...

    African Journals Online (AJOL)

    Muthumary

    2011-02-21

    Feb 21, 2011 ... Isolation and detection of taxol, an anticancer drug produced from ... cancer cell line, taxol produced by the test fungus in MID culture medium was isolated for its .... then plotted on a graph. RESULTS AND ... Wavelength (nm).

  18. Role of Dopamine Receptors in the Anticancer Activity of ONC201.

    Science.gov (United States)

    Kline, Christina Leah B; Ralff, Marie D; Lulla, Amriti R; Wagner, Jessica M; Abbosh, Phillip H; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S

    2018-01-01

    ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201's interaction with DRD2 plays a role in ONC201's anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type-specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201's anticancer effects. Although ONC201's anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201's anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201's ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity. Copyright © 2018 The Authors

  19. Role of Dopamine Receptors in the Anticancer Activity of ONC201

    Directory of Open Access Journals (Sweden)

    Christina Leah B. Kline

    2018-01-01

    Full Text Available ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201’s interaction with DRD2 plays a role in ONC201’s anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type–specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201’s anticancer effects. Although ONC201’s anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201’s anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201’s ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity.

  20. In vitro method determing sensitivity of anticancer agents by incorporation of radioactive precursors

    International Nuclear Information System (INIS)

    Sakakibara, Satoshi

    1983-01-01

    A new sensitivity test of anticancer agents was developed to measure the lethal effects of cancer cells by the incorporation of radioactive precursors. The thousand cancer cells were cultured in a microplate in the presence of anticancer agents. These cells were exposed to radioactive precursors. Two or three days later, the cancer cells were harvested on a glass fiver filter by a multiple automatic cell-harvester and the incorporation of precursors was counted by a liquid scintillation counter. In this study, the in vivo results of drug testing in animal model systems were compared with drug sensitivities. Mice inoculated Ehrlich ascites cells were treated with various kinds of anticancer drugs. The development of the cells was compatible with the result of the sensitivity test. The growths of Lauson and ME-180 cells derived from human cancers implanted subcutaneously to nude mice were also well correlated with this sensitivity test. (author)

  1. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  2. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  3. What role does heritability play in transgenerational phenotypic responses to captivity? Implications for managing captive populations.

    Science.gov (United States)

    Courtney Jones, Stephanie K; Byrne, Phillip G

    2017-12-01

    Animals maintained in captivity exhibit rapid changes in phenotypic traits, which may be maladaptive for natural environments. The phenotype can shift away from the wild phenotype via transgenerational effects, with the environment experienced by parents influencing the phenotype and fitness of offspring. There is emerging evidence that controlling transgenerational effects could help mitigate the effects of captivity, improving the success of captively bred animals post release. However, controlling transgenerational effects requires knowledge of the mechanisms driving transgenerational changes. To better understand the genetic mechanisms that contribute to transgenerational effects in captivity we investigated the heritability of behavioral phenotypes using mid parent- and single parent-offspring regressions in a population of captive-reared house mouse (Mus musculus) that we had previously shown exhibit transgenerational changes in boldness and activity behavioral types. Slopes for boldness and activity were all positive, indicating a low to moderate degree of heritability. Though, none of the heritability estimates were statistically significant due to the large surrounding errors. However, the large error surrounding the heritability estimates may also indicate that there is variability in heritability between behavioral traits within the boldness and activity behavioral types. The implication of this finding is that the potential for heritable genetic changes in captivity varies considerably between traits. We conclude that continued investigation of the potential for traits to evolve in captivity is needed to better inform captive breeding and reintroduction programs. © 2017 Wiley Periodicals, Inc.

  4. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  5. Interpreting phenotypic antibiotic tolerance and persister cells as evolution via epigenetic inheritance.

    Science.gov (United States)

    Day, Troy

    2016-04-01

    Epigenetic inheritance is the transmission of nongenetic material such as gene expression levels, RNA and other biomolecules from parents to offspring. There is a growing realization that such forms of inheritance can play an important role in evolution. Bacteria represent a prime example of epigenetic inheritance because a large array of cellular components is transmitted to offspring, in addition to genetic material. Interestingly, there is an extensive and growing empirical literature showing that many bacteria can form 'persister' cells that are phenotypically resistant or tolerant to antibiotics, but most of these results are not interpreted within the context of epigenetic inheritance. Instead, persister cells are usually viewed as a genetically encoded bet-hedging strategy that has evolved in response to a fluctuating environment. Here I show, using a relatively simple model, that many of these empirical findings can be more simply understood as arising from a combination of epigenetic inheritance and cellular noise. I therefore suggest that phenotypic drug tolerance in bacteria might represent one of the best-studied examples of evolution under epigenetic inheritance. © 2016 John Wiley & Sons Ltd.

  6. Synthesis and biological evaluation of conformationally restricted and nucleobase-modified analogs of the anticancer compound 3'-C-ethynylcytidine (ECyd)

    DEFF Research Database (Denmark)

    Hrdlicka, Patrick J; Jepsen, Jan S; Wengel, Jesper

    2005-01-01

    A series of conformationally restricted and nucleobase-modified analogs of the anticancer compound 3'-C-ethynylcytidine (ECyd) and its uracil analog (EUrd) have been synthesized. While none of the conformationally restricted analogs displayed anticancer activity, 5-iodo-EUrd and 5-bromo-EUrd disp......-EUrd displayed potent anticancer activity with IC50 values of 35 nM and 0. 73 microM....

  7. Synthesis and structure-activity relationship exploration of some potent anti-cancer phenyl amidrazone derivatives.

    Science.gov (United States)

    Habashneh, Almeqdad Y; El-Abadelah, Mustafa M; Bardaweel, Sanaa K; Taha, Mutasem O

    2017-12-04

    Amidrazones have been reported to have significant anti-tumor properties against several cancer cell lines. The current project aims to profile the structure-anticancer activity relationship of phenyl-amidrazons. Fifteen phenyl-amidrazone-piperazine derivatives were prepared and tested against four cancer cell lines (leukemia, prostate, breast and colon cancers). Six compounds illustrated low micromolar anticancer IC50 values, while the remaining compounds were either inactive or of moderate potencies. All compounds were virtually nontoxic against normal fibroblast cells. Docking into the oncogenic kinase bcr/abl illustrated the critical importance of (i) p-halogen substituent on the ligand's phenyl ring and (ii) the presence of positive ionizable moiety at the ligand's piperazine fragment for anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Jakub; Dong, L.-F.; Ralph, S.J.; Neužil, Jiří

    2011-01-01

    Roč. 15, č. 12 (2011), s. 2951-2974 ISSN 1523-0864 R&D Projects: GA AV ČR(CZ) KAN200520703 Institutional research plan: CEZ:AV0Z50520701 Keywords : Targets for anticancer drugs * mitochondrial electron transport chain * mitocans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.456, year: 2011

  9. Synthesis and anticancer evaluation of (-1)- aretigenin derivatives

    International Nuclear Information System (INIS)

    Xu, Y.; Chen, G.

    2014-01-01

    Seven (-)-arctigenin derivatives 1-7 were designed and synthesized by using Mannich and acylation methods to improve the activity and bioavailability of (-)-arctigenin. Structures of compounds 1-7 were elucidated on the basis of spectroscopic analysis and chemical evidence. Anticancer activity of these compounds on SGC7901 was assayed in vitro. (author)

  10. Synthesis and anticancer evaluation of (-1)- aretigenin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Chen, G. [Liaoning Univ. of Traditional Chinese Medicine, Dalian (China)

    2014-10-15

    Seven (-)-arctigenin derivatives 1-7 were designed and synthesized by using Mannich and acylation methods to improve the activity and bioavailability of (-)-arctigenin. Structures of compounds 1-7 were elucidated on the basis of spectroscopic analysis and chemical evidence. Anticancer activity of these compounds on SGC7901 was assayed in vitro. (author)

  11. GC-MS analysis, Antibacterial, Antioxidant and Anticancer activity of essential oil of Pinus roxburghii from Kashmir, India

    Directory of Open Access Journals (Sweden)

    Wajaht A. Shah

    2014-05-01

    Full Text Available This work was carried out to evaluate chemical composition, antibacterial, antioxidant and anticancer activity of Pinus roxburghii essential oil. The oil was extracted by hydro-distillation which was analysed through GC-MS. The antibacterial activity was evaluated by agar well diffusion method and antioxidant activity was evaluated through DPPH assay while as anticancer activity was evaluated through MTT method. Alpha-pinene and beta-pinene were the major constituents present in the oil. This oil showed significant antibacterial and anticancer activity. 

  12. Evolution of Tumor Metabolism might Reflect Carcinogenesis as a Reverse Evolution process (Dismantling of Multicellularity)

    Energy Technology Data Exchange (ETDEWEB)

    Alfarouk, Khalid O., E-mail: Alfarouk@Hala-alfarouk.org [Department of Evolution of Tumor Metabolism and Pharmacology, Hala Alfarouk Cancer Center, Khartoum 11123 (Sudan); Shayoub, Mohammed E.A. [Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111 (Sudan); Muddathir, Abdel Khalig [Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum 11111 (Sudan); Elhassan, Gamal O. [General Directorate of Pharmacy, Federal Ministry of Health, Khartoum 11111 (Sudan); Bashir, Adil H.H. [Department of Evolution of Tumor Metabolism and Pharmacology, Hala Alfarouk Cancer Center, Khartoum 11123 (Sudan); Al Jawda Medical Hospital, Khartoum 11111 (Sudan)

    2011-07-22

    Carcinogenesis occurs through a series of steps from normal into benign and finally malignant phenotype. This cancer evolutionary trajectory has been accompanied by similar metabolic transformation from normal metabolism into Pasteur and/or Crabtree-Effects into Warburg-Effect and finally Cannibalism and/or Lactate-Symbiosis. Due to lactate production as an end-product of glycolysis, tumor colonies acquire new phenotypes that rely on lactate as energetic fuel. Presence of Warburg-Effect indicates that some tumor cells undergo partial (if not complete) de-endosymbiosis and so cancer cells have been become unicellular microorganism (anti-Dollo's Law) specially when they evolve to develop cannibalism as way of metabolism while oxidative types of cells that rely on lactate, as their energetic fuel, might represent extra-endosymbiosis. Thus, at the end, the cancer colony could be considered as integrated metabolic ecosystem. Proper understanding of tumor metabolism will contribute to discover potential anticancer agents besides conventional chemotherapy.

  13. Estonian folk traditional experiences on natural anticancer remedies: from past to the future.

    Science.gov (United States)

    Sak, Katrin; Jürisoo, Kadi; Raal, Ain

    2014-07-01

    Despite diagnostic and therapeutic advancements, the burden of cancer is still increasing worldwide. Toxicity of current chemotherapeutics to normal cells and their resistance to tumor cells highlights the urgent need for new drugs with minimal adverse side effects. The use of natural anticancer agents has entered into the area of cancer research and increased efforts are being made to isolate bioactive products from medicinal plants. To lead the search for plants with potential cytotoxic activity, ethnopharmacological knowledge can give a great contribution. Therefore, the attention of this review is devoted to the natural remedies traditionally used for the cancer treatment by Estonian people over a period of almost 150 years. Two massive databases, the first one stored in the Estonian Folklore Archives and the second one in the electronic database HERBA ( http://herba.folklore.ee/ ), containing altogether more than 30 000 ethnomedicinal texts were systematically reviewed to compile data about the Estonian folk traditional experiences on natural anticancer remedies. As a result, 44 different plants with potential anticancer properties were elicited, 5 of which [Angelica sylvestris L. (Apiaceae), Anthemis tinctoria L. (Asteraceae), Pinus sylvestris L. (Pinaceae), Sorbus aucuparia L. (Rosaceae), and Prunus padus L. (Rosaceae)] have not been previously described with respect to their tumoricidal activities in the scientific literature, suggesting thus the potential herbal materials for further investigations of natural anticancer compounds.

  14. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    Science.gov (United States)

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-04-30

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy.

  15. On the Critical Role of Divergent Selection in Evolvability

    Directory of Open Access Journals (Sweden)

    Joel Lehman

    2016-08-01

    Full Text Available An ambitious goal in evolutionary robotics is to evolve increasingly complex robotic behaviors with minimal human design effort. Reaching this goal requires evolutionary algorithms that can unlock from genetic encodings their latent potential for evolvability. One issue clouding this goal is conceptual confusion about evolvability, which often obscures the aspects of evolvability that are important or desirable. The danger from such confusion is that it may establish unrealistic goals for evolvability that prove unproductive in practice. An important issue separate from conceptual confusion is the common misalignment between selection and evolvability in evolutionary robotics. While more expressive encodings can represent higher-level adaptations (e.g. sexual reproduction or developmental systems that increase long-term evolutionary potential (i.e. evolvability, realizing such potential requires gradients of fitness and evolvability to align. In other words, selection is often a critical factor limiting increasing evolvability. Thus, drawing from a series of recent papers, this article seeks to both (1 clarify and focus the ways in which the term evolvability is used within artificial evolution, and (2 argue for the importance of one type of selection, i.e. divergent selection, for enabling evolvability. The main argument is that there is a fundamental connection between divergent selection and evolvability (on both the individual and population level that does not hold for typical goal-oriented selection. The conclusion is that selection pressure plays a critical role in realizing the potential for evolvability, and that divergent selection in particular provides a principled mechanism for encouraging evolvability in artificial evolution.

  16. Comparative investigation of the free radical scavenging potential and anticancer property of Diospyros blancoi (Ebenaceae

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Khan

    2016-05-01

    Conclusions: Our results indicate that Diospyros blancoi stem bark had the significant highest antioxidant and free radical scavenging properties as well as moderate anticancer activity. Hence, we assume that the anticancer activity of this plant can be, at least in part, attributed to its content in phenolic compounds as well as its significant free radical scavenging properties.

  17. The Evolving Classification of Pulmonary Hypertension.

    Science.gov (United States)

    Foshat, Michelle; Boroumand, Nahal

    2017-05-01

    - An explosion of information on pulmonary hypertension has occurred during the past few decades. The perception of this disease has shifted from purely clinical to incorporate new knowledge of the underlying pathology. This transfer has occurred in light of advancements in pathophysiology, histology, and molecular medical diagnostics. - To update readers about the evolving understanding of the etiology and pathogenesis of pulmonary hypertension and to demonstrate how pathology has shaped the current classification. - Information presented at the 5 World Symposia on pulmonary hypertension held since 1973, with the last meeting occurring in 2013, was used in this review. - Pulmonary hypertension represents a heterogeneous group of disorders that are differentiated based on differences in clinical, hemodynamic, and histopathologic features. Early concepts of pulmonary hypertension were largely influenced by pharmacotherapy, hemodynamic function, and clinical presentation of the disease. The initial nomenclature for pulmonary hypertension segregated the clinical classifications from pathologic subtypes. Major restructuring of this disease classification occurred between the first and second symposia, which was the first to unite clinical and pathologic information in the categorization scheme. Additional changes were introduced in subsequent meetings, particularly between the third and fourth World Symposia meetings, when additional pathophysiologic information was gained. Discoveries in molecular diagnostics significantly progressed the understanding of idiopathic pulmonary arterial hypertension. Continued advancements in imaging modalities, mechanistic pathogenicity, and molecular biomarkers will enable physicians to define pulmonary hypertension phenotypes based on the pathobiology and allow for treatment customization.

  18. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  19. Evolved H II regions

    International Nuclear Information System (INIS)

    Churchwell, E.

    1975-01-01

    A probable evolutionary sequence of H II regions based on six distinct types of observed objects is suggested. Two examples which may deviate from this idealized sequence, are discussed. Even though a size-mean density relation of H II regions can be used as a rough indication of whether a nebula is very young or evolved, it is argued that such a relation is not likely to be useful for the quantitative assignment of ages to H II regions. Evolved H II regions appear to fit into one of four structural types: rings, core-halos, smooth structures, and irregular or filamentary structures. Examples of each type are given with their derived physical parameters. The energy balance in these nebulae is considered. The mass of ionized gas in evolved H II regions is in general too large to trace the nebula back to single compact H II regions. Finally, the morphological type of the Galaxy is considered from its H II region content. 2 tables, 2 figs., 29 refs

  20. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate.

    Science.gov (United States)

    Lis, Paweł; Jurkiewicz, Paweł; Cal-Bąkowska, Magdalena; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2016-03-01

    In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP.

  1. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy.

    Science.gov (United States)

    Pol, Jonathan; Vacchelli, Erika; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-04-01

    The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.

  2. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions.

    Science.gov (United States)

    E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2016-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  3. Anticancer system created by acrolein and hydroxyl radical generated in enzymatic oxidation of spermine and other biochemical reactions.

    Science.gov (United States)

    Alarcon, R A

    2012-10-01

    A hypothesis suggesting the existence of a ubiquitous physiological anticancer system created by two highly reactive oxidative stress inducers with anticancer properties, acrolein and hydroxyl radical, is reported in this communication. Both components can originate separately or together in several biochemical interactions, among them, the enzymatic oxidation of the polyamine spermine, which appear to be their main source. The foundations of this hypothesis encompass our initial search for growth-inhibitors or anticancer compounds in biological material leading to the isolation of spermine, a polyamine that became highly cytotoxic through the generation of acrolein, when enzymatically oxidized. Findings complemented with pertinent literature data by other workers and observed anticancer activities by sources capable of producing acrolein and hydroxyl radical. This hypothesis obvious implication: spermine enzymatic oxidations or other biochemical interactions that would co-generate acrolein and hydroxyl radical, the anticancer system components, should be tried as treatments for any given cancer. The biochemical generation of acrolein observed was totally unexpected, since this aldehyde was known; as a very toxic and highly reactive xenobiotic chemical produced in the pyrolysis of fats and other organic material, found as an atmospheric pollutant, in tobacco smoke and car emissions, and mainly used as a pesticide or aquatic herbicide. Numerous studies on acrolein, considered after our work a biological product, as well, followed. In them, acrolein widespread presence, its effects on diverse cellular proteins, such as, growth factors, and its anticancer activities, were additionally reported. Regarding hydroxyl radical, the second component of the proposed anticancer system, and another cytotoxic product in normal cell metabolism, it co-generates with acrolein in several biochemical interactions, occurrences suggesting that these products might jointly fulfill some

  4. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.

    Science.gov (United States)

    Caraglia, M; De Rosa, G; Salzano, G; Santini, D; Lamberti, M; Sperlongano, P; Lombardi, A; Abbruzzese, A; Addeo, R

    2012-03-01

    Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.

  5. Strategies to enhance the anticancer potential of TNF.

    Science.gov (United States)

    Pilati, Pierluigi; Rossi, Carlo Riccardo; Mocellin, Simone

    2008-01-01

    Although tumor necrosis factor (TNF) antitumor activity is evident in several preclinical models and in non-comparative clinical trials, no evidence exists that TNF-based treatments increase patient survival. Furthermore, due to systemic toxicity, TNF can only be administered via sophisticated drug-delivery systems in patients with solid tumors confined to one extremity or organ. The impossibility to administer TNF systemically does not allow to test the effectiveness of this cytokine in other clinical settings for the treatment of a broader spectrum of tumor types. Dissecting the cascade of molecular events underlying tumor sensitivity to TNF researchers will allow to further exploit the anticancer potential of this molecule. The rational for the development of strategies aimed at sensitizing malignant cells to TNF is to modulate tumor-specific molecular derangements in order to maximize the selectivity of TNF cytotoxicity towards cancer. This would enhance the anticancer activity of current TNF-based locoregional regimens and would pave the way to the systemic administration of this cytokine and thus to a much wider clinical experimentation of TNF in the oncology field.

  6. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Florian Rothweiler

    2010-12-01

    Full Text Available The human immunodeficiency virus (HIV protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC transporters P-glycoprotein (P-gp, multidrug resistance-associated protein 1 (MRP1, and breast cancer resistance protein 1 (BCRP1 in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors.

  7. Origins of Allostery and Evolvability in Proteins: A Case Study.

    Science.gov (United States)

    Raman, Arjun S; White, K Ian; Ranganathan, Rama

    2016-07-14

    Proteins display the capacity for adaptation to new functions, a property critical for evolvability. But what structural principles underlie the capacity for adaptation? Here, we show that adaptation to a physiologically distinct class of ligand specificity in a PSD95, DLG1, ZO-1 (PDZ) domain preferentially occurs through class-bridging intermediate mutations located distant from the ligand-binding site. These mutations provide a functional link between ligand classes and demonstrate the principle of "conditional neutrality" in mediating evolutionary adaptation. Structures show that class-bridging mutations work allosterically to open up conformational plasticity at the active site, permitting novel functions while retaining existing function. More generally, the class-bridging phenotype arises from mutations in an evolutionarily conserved network of coevolving amino acids in the PDZ family (the sector) that connects the active site to distant surface sites. These findings introduce the concept that allostery in proteins could have its origins not in protein function but in the capacity to adapt. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    Science.gov (United States)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-08-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.

  9. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs.

    Directory of Open Access Journals (Sweden)

    José A G Agúndez

    2014-08-01

    Full Text Available The development of clinical practice recommendations or guidelines for the clinical use of pharmacogenomics data is an essential issue for improving drug therapy, particularly for drugs with high toxicity and/or narrow therapeutic index such as anticancer drugs. Although pharmacogenomic-based recommendations have been formulated for over 40 anticancer drugs, the number of clinical practice guidelines available is very low. The guidelines already published indicate that pharmacogenomic testing is useful for patient selection, but final dosing adjustment should be carried out on the basis of clinical or analytical parameters rather than on pharmacogenomic information.Patient selection may seem a modest objective, but it constitutes a crucial improvement with regard to the pre-pharmacogenomics situation and it saves patients’ lives. However we should not overstate the current power of pharmacogenomics. At present the pharmacogenomics of anticancer drugs is not sufficiently developed for dose adjustments based on pharmacogenomics only, and no current guidelines recommend such adjustments without considering clinical and/or analytical parameters.

  10. Sheep models of polycystic ovary syndrome phenotype

    Science.gov (United States)

    Veiga-Lopez, Almudena

    2012-01-01

    Polycystic ovary syndrome (PCOS) is a fertility disorder affecting 5–7% of reproductive-aged women. Women with PCOS manifest both reproductive and metabolic defects. Several animal models have evolved, which implicate excess steroid exposure during fetal life in the development of the PCOS phenotype. This review addresses the fetal and adult reproductive and metabolic consequences of prenatal steroid excess in sheep and the translational relevance of these findings to PCOS. By comparing findings in various breeds of sheep, the review targets the role of genetic susceptibility to fetal insults. Disruptions induced by prenatal testosterone excess are evident at both the reproductive and metabolic level with each influencing the other thus creating a self-perpetuating vicious cycle. The review highlights the need for identifying a common mediator of the dysfunctions at the reproductive and metabolic levels and developing prevention and treatment interventions targeting all sites of disruption in unison for achieving optimal success. PMID:23084976

  11. Anti-leishmanial and Anti-cancer Activities of a Pentacyclic ...

    African Journals Online (AJOL)

    Erah

    against promastigotes of Leishmania donovani, and anti-cancer activity on K562 leukaemic cell line. Results: A .... crisis of chronic myeloid leukemia was used for this test. The cells ... containing 1×106 cells/ml, 2 mM L-glutamine and 50 µg/ml ...

  12. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    Science.gov (United States)

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  13. TIPdb: A Database of Anticancer, Antiplatelet, and Antituberculosis Phytochemicals from Indigenous Plants in Taiwan

    Directory of Open Access Journals (Sweden)

    Ying-Chi Lin

    2013-01-01

    Full Text Available The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.

  14. TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan.

    Science.gov (United States)

    Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei

    2013-01-01

    The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.

  15. Anticancer Activity of Toxins from Bee and Snake Venom—An Overview on Ovarian Cancer

    OpenAIRE

    Marius Alexandru Moga; Oana Gabriela Dimienescu; Cristian Andrei Arvătescu; Petru Ifteni; Liana Pleş

    2018-01-01

    Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways are being used as targets for new anticancer treatments. Various venoms and their toxins have shown possible anticancer effects on human cancer cell lines, providing new perspectives in drug development. In ...

  16. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Milind K. Choudhari

    2013-01-01

    Full Text Available Indian stingless bee propolis has a complex chemical nature and is reported to possess various medicinal properties. In the present study, anticancer activity of the ethanolic extract of propolis (EEP was explored by testing the cytotoxic and apoptotic effect in four different cancer cell lines, namely, MCF-7 (human breast cancer, HT-29 (human colon adenocarcinoma, Caco-2 (human epithelial colorectal adenocarcinoma, and B16F1 (murine melanoma, at different concentrations. Cytotoxicity was evaluated by MTT assay and Trypan blue dye exclusion assay. EEP at a concentration of 250 g/mL exhibited ≥50% mortality in all cell lines tested (i.e., IC50 value. EEP revealed a concentration and time dependent cytotoxic effect. Apoptosis was estimated by differential staining (ethidium bromide/acridine orange and TUNEL (deoxynucleotidyl transferase-dUTP nick end labeling assay. Light microscopy and atomic force microscopy demonstrated morphological features of apoptosis in all the cell lines after treatment with 250 g/mL EEP for 24 h. Thus, early onset of apoptosis is the reason for anticancer activity of Indian stingless bee propolis. Further, the antioxidant potential of Indian stingless bee propolis was demonstrated to substantiate its anticancer activity.

  17. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rae-Kwon; Uddin, Nizam [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Hyun, Jin-Won [College of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju-si 690-756 (Korea, Republic of); Kim, Changil [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Suh, Yongjoon, E-mail: hiswork@hanmail.net [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae, E-mail: sj0420@hanyang.ac.kr [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-01

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.

  18. Synthesis and anticancer structure activity relationship investigation of cationic anthraquinone analogs.

    Science.gov (United States)

    Shrestha, Jaya P; Fosso, Marina Y; Bearss, Jeremiah; Chang, Cheng-Wei Tom

    2014-04-22

    We have synthesized a series of novel 4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium salts, which can be viewed as analogs of cationic anthraquinones. Unlike the similar analogs that we have reported previously, these compounds show relatively weak antibacterial activities but exert strong anticancer activities (low μM to nM GI50), in particular, against melanoma, colon cancer, non-small cell lung cancer and central nervous system (CNS) cancer. These compounds are structurally different from their predecessors by having the aromatic group, instead of alkyl chains, directly attached to the cationic anthraquinone scaffold. Further investigation in the structure-activity relationship (SAR) reveals the significant role of electron donating substituents on the aromatic ring in enhancing the anticancer activities via resonance effect. Steric hindrance of these groups is disadvantageous but is less influential than the resonance effect. The difference in the attached groups at N-1 position of the cationic anthraquinone analog is the main structural factor for the switching of biological activity from antibacterial to anticancer. The discovery of these compounds may lead to the development of novel cancer chemotherapeutics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Anticancer activity of a novel small molecule tubulin inhibitor STK899704.

    Directory of Open Access Journals (Sweden)

    Krisada Sakchaisri

    Full Text Available We have identified the small molecule STK899704 as a structurally novel tubulin inhibitor. STK899704 suppressed the proliferation of cancer cell lines from various origins with IC50 values ranging from 0.2 to 1.0 μM. STK899704 prevented the polymerization of purified tubulin in vitro and also depolymerized microtubule in cultured cells leading to mitotic arrest, associated with increased Cdc25C phosphorylation and the accumulation of both cyclin B1 and polo-like kinase 1 (Plk1, and apoptosis. Unlike many anticancer drugs such as Taxol and doxorubicin, STK899704 effectively displayed antiproliferative activity against multidrug-resistant cancer cell lines. The proposed binding mode of STK899704 is at the interface between αβ-tubulin heterodimer overlapping with the colchicine-binding site. Our in vivo carcinogenesis model further showed that STK 899704 is potent in both the prevention and regression of tumors, remarkably reducing the number and volume of skin tumor by STK899704 treatment. Moreover, it was significant to note that the efficacy of STK899704 was surprisingly comparable to 5-fluorouracil, a widely used anticancer therapeutic. Thus, our results demonstrate the potential of STK899704 to be developed as an anticancer chemotherapeutic and an alternative candidate for existing therapies.

  20. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  1. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions

    Directory of Open Access Journals (Sweden)

    Teerasak E-kobon

    2016-01-01

    Full Text Available Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5 showed in vitro cytotoxicity against the breast cancer cell line (MCF-7 and normal epithelium cell line (Vero. According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  2. Anti-cancer and antioxidant properties of phenolics isolated from ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant and anticancer activities of phenolics from the leaf extract of Toona sinensis (TS). Methods: Acetone leaf extract of TS was screened for total phenolic and flavanoid contents, and the flanonoids were subjected to high performance liquid chromatographic (HPLC) analysis. Antioxidant ...

  3. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  4. The anticancer effect of Ocimum tenuiflorum leaves

    Directory of Open Access Journals (Sweden)

    Lam, S.N.

    2017-11-01

    Full Text Available Breast cancer is the leading cause of cancer deaths among females in Malaysia. Ocimum tenuiflorum L., (O. tenuiflorum commonly known as ruku in Malaysia, is usually cultivated as a garden ornamental plant because of its small purplish and some yellowish flower. The specific objective of this research is to investigate the anticancer of O. tenuiflorum against human breast cancer cell lines (MCF-7 and MDA-MB-231 and human fibroblast cell line (HS-27. In addition, another objective is to determine the mineral and heavy metal determination of O. tenuiflorum. O. tenuiflorum exhibited anticancer activity against MCF-7 (a hormone-dependent breast cancer cell line. The viability of MCF-7 cells decreased significantly after treatment with various concentrations of methanolic plant extracts (25 and 100 μg/mL, as shown via 3-(4,5-dimethylthiazol-2-yl2,5-diphenyltetrazolium bromide (MTT assay. The crude extracts show the lower IC50 (less than 100 μg/mL value against the cancer cell lines and show no effect on HS-27. The high content of calcium in the leaves of O. tenuiflorum may play a role in decreasing the risk of certain cancer. The concentrations of heavy metals (Pb and As detected in O. tenuiflorum are safe for consumption.

  5. Anticancer and reversing multidrug resistance activities of natural isoquinoline alkaloids and their structure-activity relationship.

    Science.gov (United States)

    Qing, Zhi-Xing; Huang, Jia-Lu; Yang, Xue-Yi; Liu, Jing-Hong; Cao, Hua-Liang; Xiang, Feng; Cheng, Pi; Zeng, Jian-Guo

    2017-09-20

    The severe anticancer situation as well as the emergence of multidrug-resistant (MDR) cancer cells has created an urgent need for the development of novel anticancer drugs with different mechanisms of action. A large number of natural alkaloids, such as paclitaxel, vinblastine and camptothecin have already been successfully developed into chemotherapy agents. Following the success of these natural products, in this review, twenty-six types of isoquinoline alkaloid (a total of 379 alkaloids), including benzyltetrahydroisoquinoline, aporphine, oxoaporphine, isooxoaporphine, dimeric aporphine, bisbenzylisoquinoline, tetrahydroprotoberberine, protoberberine, protopine, dihydrobenzophenanthridine, benzophenanthridine, benzophenanthridine dimer, ipecac, simple isoquinoline, pavine, montanine, erythrina, chelidonine, tropoloisoquinoline, azafluoranthene, phthalideisoquinoline, naphthylisoquinoline, lycorine, crinane, narciclasine, and phenanthridone, were summarized based on their cytotoxic and MDR reversing activities against various cancer cells. Additionally, the structure-activity relationships of different types of isoquinoline alkaloid were also discussed. Interestingly, some aporphine, oxoaporphine, isooxoaporphine, bisbenzylisoquinoline, and protoberberine alkaloids display more potent anticancer activities or anti-MDR effects than positive control against the tested cancer cells and are regarded as attractive targets for discovery new anticancer drugs or lead compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Telomerase Inhibitors from Natural Products and Their Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-12-01

    Full Text Available Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.

  7. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies.

    Science.gov (United States)

    Panebianco, Concetta; Andriulli, Angelo; Pazienza, Valerio

    2018-05-22

    Cancer is a major health burden worldwide, and despite continuous advances in medical therapies, resistance to standard drugs and adverse effects still represent an important cause of therapeutic failure. There is a growing evidence that gut bacteria can affect the response to chemo- and immunotherapeutic drugs by modulating either efficacy or toxicity. Moreover, intratumor bacteria have been shown to modulate chemotherapy response. At the same time, anticancer treatments themselves significantly affect the microbiota composition, thus disrupting homeostasis and exacerbating discomfort to the patient. Here, we review the existing knowledge concerning the role of the microbiota in mediating chemo- and immunotherapy efficacy and toxicity and the ability of these therapeutic options to trigger dysbiotic condition contributing to the severity of side effects. In addition, we discuss the use of probiotics, prebiotics, synbiotics, postbiotics, and antibiotics as emerging strategies for manipulating the microbiota in order to improve therapeutic outcome or at least ensure patients a better quality of life all along of anticancer treatments.

  8. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.; Bajic, Vladimir B.

    2010-01-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  9. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil

    2010-09-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  10. The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs.

    Science.gov (United States)

    Hrynchak, Ivanna; Sousa, Emília; Pinto, Madalena; Costa, Vera Marisa

    2017-05-01

    Anticancer drugs are presently guarantying more survivors as a result of more powerful drugs or combinations of drugs used in therapy. Thus, it has become more crucial to study and overcome the side effects of these therapies. Cardiotoxicity is one of the most relevant side effects on the long-term cancer survivors, because of its high social and economic impact. Drug metabolism can result in active metabolites or toxic metabolites that can lead to important side effects. The metabolites of anticancer drugs are possible culprits of cardiotoxicity; however, the cardiotoxicity of many of the metabolites in several drug classes was not yet suitably studied so far. On the other hand, the use of prodrugs that are bioactivated through metabolism can be a good alternative to obtain more cardio safe drugs. In this review, the methods to obtain and study metabolites are summarized and their application to the study of a group of anticancer drugs with acknowledged cardiotoxicity is highlighted. In this group of drugs, doxorubicin (DOX, 1), mitoxantrone (MTX, 2), cyclophosphamide (CTX, 3) and 5-fluorouracil (5-FU, 4) are included, as well as the tyrosine kinase inhibitors, such as imatinib (5), sunitinib (6) and sorafenib (7). Only with the synthesis and purification of considerable amounts of the metabolites can reliable studies be performed, either in vitro or in vivo that allow accurate conclusions regarding the cardiotoxicity of anticancer drug metabolites and then pharmacological prevention or treatment of the cardiac side effects can be done.

  11. Evolving Technologies: A View to Tomorrow

    Science.gov (United States)

    Tamarkin, Molly; Rodrigo, Shelley

    2011-01-01

    Technology leaders must participate in strategy creation as well as operational delivery within higher education institutions. The future of higher education--the view to tomorrow--is irrevocably integrated and intertwined with evolving technologies. This article focuses on two specific evolving technologies: (1) alternative IT sourcing; and (2)…

  12. Evaluation de la sécurité du circuit des médicaments anticancéreux ...

    African Journals Online (AJOL)

    Introduction: Nowadays, the circuit of drugs is a plague. This situation may cause serious harm to patients. In this context, we conducted a study with the aim to describe and evaluate the circuit of anticancer drugs in a Tunisian regional hospital. Methods: This is an evaluative study of the risk of anticancer drugs, conducted ...

  13. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects.

    Science.gov (United States)

    Krukiewicz, Katarzyna; Zak, Jerzy K

    2016-05-01

    Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. uPAR as anti-cancer target

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Thurison, Tine

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u...... using mouse monoclonal antibodies (mAbs) against mouse uPA or uPAR. These reagents will target uPA and uPAR in both stromal cells and cancer cells, and their therapeutic potential can now be assessed in syngenic mouse cancer models....

  15. International comparison of the factors influencing reimbursement of targeted anti-cancer drugs.

    Science.gov (United States)

    Lim, Carol Sunghye; Lee, Yun-Gyoo; Koh, Youngil; Heo, Dae Seog

    2014-11-29

    Reimbursement policies for anti-cancer drugs vary among countries even though they rely on the same clinical evidence. We compared the pattern of publicly funded drug programs and analyzed major factors influencing the differences. We investigated reimbursement policies for 19 indications with targeted anti-cancer drugs that are used variably across ten countries. The available incremental cost-effectiveness ratio (ICER) data were retrieved for each indication. Based on the comparison between actual reimbursement decisions and the ICERs, we formulated a reimbursement adequacy index (RAI): calculating the proportion of cost-effective decisions, either reimbursement of cost-effective indications or non-reimbursement of cost-ineffective indications, out of the total number of indications for each country. The relationship between RAI and other indices were analyzed, including governmental dependency on health technology assessment, as well as other parameters for health expenditure. All the data used in this study were gathered from sources publicly available online. Japan and France were the most likely to reimburse indications (16/19), whereas Sweden and the United Kingdom were the least likely to reimburse them (5/19 and 6/19, respectively). Indications with high cost-effectiveness values were more likely to be reimbursed (ρ = -0.68, P = 0.001). The three countries with high RAI scores each had a healthcare system that was financed by general taxation. Although reimbursement policies for anti-cancer drugs vary among countries, we found a strong correlation of reimbursements for those indications with lower ICERs. Countries with healthcare systems financed by general taxation demonstrated greater cost-effectiveness as evidenced by reimbursement decisions of anti-cancer drugs.

  16. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  17. Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications.

    Science.gov (United States)

    Camorani, Simona; Crescenzi, Elvira; Fedele, Monica; Cerchia, Laura

    2018-04-01

    Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic. However, some of these drugs show limited efficacy and give rise to acquired resistance. Emerging highly selective compounds for anticancer therapy are oligonucleotide aptamers that interact with their targets by recognizing a specific three-dimensional structure. Because of their nucleic acid nature, the rational design of advanced strategies to manipulate aptamers for both diagnostic and therapeutic applications is greatly simplified over antibodies. In this manuscript, we will provide a comprehensive overview of oligonucleotide aptamers as next generation strategies to efficiently target RTKs in human cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes.

    Science.gov (United States)

    Machado-Schiaffino, Gonzalo; Henning, Frederico; Meyer, Axel

    2014-07-01

    The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  19. Spacetimes containing slowly evolving horizons

    International Nuclear Information System (INIS)

    Kavanagh, William; Booth, Ivan

    2006-01-01

    Slowly evolving horizons are trapping horizons that are ''almost'' isolated horizons. This paper reviews their definition and discusses several spacetimes containing such structures. These include certain Vaidya and Tolman-Bondi solutions as well as (perturbatively) tidally distorted black holes. Taking into account the mass scales and orders of magnitude that arise in these calculations, we conjecture that slowly evolving horizons are the norm rather than the exception in astrophysical processes that involve stellar-scale black holes

  20. Recent Advances in the Synthesis and Anticancer Activity of Some Molecules Other Than Nitrogen Containing Heterocyclic Moeities.

    Science.gov (United States)

    Akhtar, Md Jawaid; Yar, M Shahar; Khan, Ahsan Ahmed; Ali, Zulphikar; Haider, Md Rafi

    2017-01-01

    The present review article presented a detailed account of the design strategies and the structure activity relationship of different derivatives apart from the nitrogen containing ring. These scaffolds play an important part in the drug discovery which showed anticancer activity against different human cancer cell lines through apoptosis, cell cycle arrest, inhibiting kinases, angiogenesis, disruption of cell migration, modulation of nuclear receptor responsiveness and others. Naphthalenes amides/amidines, furan, podophyllotoxin, platinum compounds, steroids, and urea, which forms the core part or along with other N-heterocyclic rings are enclosed. Some of these compounds e.g. podophyllotoxin and platinum based drugs displayed anticancer activity at nanomolar range. Various substitutions from the earlier and latest information are prerequisite in the drug synthesis process. The review focused on the recent development of these derivatives, design and anticancer properties, thus providing with the most profound knowledge for the development of targeted based anticancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    Science.gov (United States)

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  2. Pricing appraisal of anti-cancer drugs in the South East Asian, Western Pacific and East Mediterranean Region.

    Science.gov (United States)

    Salmasi, Shahrzad; Lee, Kah Seng; Ming, Long Chiau; Neoh, Chin Fen; Elrggal, Mahmoud E; Babar, Zaheer-Ud- Din; Khan, Tahir Mehmood; Hadi, Muhammad Abdul

    2017-12-28

    Globally, cancer is one of the leading causes of mortality. High treatment cost, partly owing to higher prices of anti-cancer drugs, presents a significant burden on patients and healthcare systems. The aim of the present study was to survey and compare retail prices of anti-cancer drugs between high, middle and low income countries in the South-East Asia, Western Pacific and Eastern Mediterranean regions. Cross-sectional survey design was used for the present study. Pricing data from ten counties including one from South-East Asia, two from Western Pacific and seven from Eastern Mediterranean regions were used in this study. Purchasing power parity (PPP)-adjusted mean unit prices for 26 anti-cancer drug presentations (similar pharmaceutical form, strength, and pack size) were used to compare prices of anti-cancer drugs across three regions. A structured form was used to extract relevant data. Data were entered and analysed using Microsoft Excel®. Overall, Taiwan had the lowest mean unit prices while Oman had the highest prices. Six (23.1%) and nine (34.6%) drug presentations had a mean unit price below US$100 and between US$100 and US$500 respectively. Eight drug presentations (30.7%) had a mean unit price of more than US$1000 including cabazitaxel with a mean unit price of $17,304.9/vial. There was a direct relationship between income category of the countries and their mean unit price; low-income countries had lower mean unit prices. The average PPP-adjusted unit prices for countries based on their income level were as follows: low middle-income countries (LMICs): US$814.07; high middle income countries (HMICs): US$1150.63; and high income countries (HICs): US$1148.19. There is a great variation in pricing of anticancer drugs in selected countires and within their respective regions. These findings will allow policy makers to compare prices of anti-cancer agents with neighbouring countries and develop policies to ensure accessibility and affordability of

  3. Anti-Cancer Efficacy of Silybin Derivatives - A Structure-Activity Relationship

    Czech Academy of Sciences Publication Activity Database

    Agarwal, Ch.; Wadhwa, R.; Deep, G.; Biedermann, David; Gažák, Radek; Křen, Vladimír; Agarwal, R.

    2013-01-01

    Roč. 8, č. 3 (2013), e00074 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) ME10027 Institutional support: RVO:61388971 Keywords : Silybin * silibinin * anti-cancer efficacy Subject RIV: CE - Biochemistry Impact factor: 3.534, year: 2013

  4. Studies of anticancer and antipyretic activity of Bidens pilosa whole ...

    African Journals Online (AJOL)

    . (Asteraceae) has been conducted using the in – vitro comet assay for anticancer and the antipyretic action, which was done with in – vivo models. The extract from whole plant was extracted with n – hexane, chloroform and methanol extract ...

  5. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective.

    Science.gov (United States)

    Hare, Jennifer I; Lammers, Twan; Ashford, Marianne B; Puri, Sanyogitta; Storm, Gert; Barry, Simon T

    2017-01-01

    Successfully translating anti-cancer nanomedicines from pre-clinical proof of concept to demonstration of therapeutic value in the clinic is challenging. Having made significant advances with drug delivery technologies, we must learn from other areas of oncology drug development, where patient stratification and target-driven design have improved patient outcomes. We should evolve our nanomedicine development strategies to build the patient and disease into the line of sight from the outset. The success of small molecule targeted therapies has been significantly improved by employing a specific decision-making framework, such as AstraZeneca's 5R principle: right target/efficacy, right tissue/exposure, right safety, right patient, and right commercial potential. With appropriate investment and collaboration to generate a platform of evidence supporting the end clinical application, a similar framework can be established for enhancing nanomedicine translation and performance. Building informative data packages to answer these questions requires the following: (I) an improved understanding of the heterogeneity of clinical cancers and of the biological factors influencing the behaviour of nanomedicines in patient tumours; (II) a transition from formulation-driven research to disease-driven development; (III) the implementation of more relevant animal models and testing protocols; and (IV) the pre-selection of the patients most likely to respond to nanomedicine therapies. These challenges must be overcome to improve (the cost-effectiveness of) nanomedicine development and translation, and they are key to establishing superior therapies for patients. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells12

    Science.gov (United States)

    Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich

    2010-01-01

    The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266

  7. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  8. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    International Nuclear Information System (INIS)

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A.

    2009-01-01

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereas Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.

  9. Some medicinal plants as natural anticancer agents

    OpenAIRE

    Govind Pandey; S Madhuri

    2009-01-01

    India is the largest producer of medicinal plants and is rightly called the "Botanical garden of the World". The medicinal plants, besides having natural therapeutic values against various diseases, also provide high quality of food and raw materials for livelihood. Considerable works have been done on these plants to treat cancer, and some plant products have been marketed as anticancer drugs, based on the traditional uses and scientific reports. These plants may promote host resistance agai...

  10. Improving evolvability of morphologies and controllers of developmental soft-bodied robots with novelty search

    Directory of Open Access Journals (Sweden)

    Michał eJoachimczak

    2015-12-01

    Full Text Available Novelty search is an evolutionary search algorithm based on the superficially contradictory idea that abandoning goal focused fitness function altogether can lead to the discovery of higher fitness solutions. In the course of our work, we have created a biologically inspired artificial development system with the purpose of automatically designing complex morphologies and controllers of multicellular, soft-bodied robots. Our goal is to harness the creative potential of in silico evolution so that it can provide us with novel and efficient designs that are free of any preconceived notions a human designer would have. In order to do so, we strive to allow for the evolution of arbitrary morphologies. Using a fitness-driven search algorithm, the system has been shown to be capable of evolving complex multicellular solutions consisting of hundreds of cells that can walk, run and swim, yet the large space of possible designs makes the search expensive and prone to getting stuck in local minima. In this work, we investigate how a developmental approach to the evolution of robotic designs benefits from abandoning objective fitness function. We discover that novelty search produced significantly better performing solutions. We then discuss the key factors of the success in terms of the phenotypic representation for the novelty search, the deceptive landscape for co-designing morphology/brain, and the complex development-based phenotypic encoding.

  11. canEvolve: a web portal for integrative oncogenomics.

    Directory of Open Access Journals (Sweden)

    Mehmet Kemal Samur

    Full Text Available BACKGROUND & OBJECTIVE: Genome-wide profiles of tumors obtained using functional genomics platforms are being deposited to the public repositories at an astronomical scale, as a result of focused efforts by individual laboratories and large projects such as the Cancer Genome Atlas (TCGA and the International Cancer Genome Consortium. Consequently, there is an urgent need for reliable tools that integrate and interpret these data in light of current knowledge and disseminate results to biomedical researchers in a user-friendly manner. We have built the canEvolve web portal to meet this need. RESULTS: canEvolve query functionalities are designed to fulfill most frequent analysis needs of cancer researchers with a view to generate novel hypotheses. canEvolve stores gene, microRNA (miRNA and protein expression profiles, copy number alterations for multiple cancer types, and protein-protein interaction information. canEvolve allows querying of results of primary analysis, integrative analysis and network analysis of oncogenomics data. The querying for primary analysis includes differential gene and miRNA expression as well as changes in gene copy number measured with SNP microarrays. canEvolve provides results of integrative analysis of gene expression profiles with copy number alterations and with miRNA profiles as well as generalized integrative analysis using gene set enrichment analysis. The network analysis capability includes storage and visualization of gene co-expression, inferred gene regulatory networks and protein-protein interaction information. Finally, canEvolve provides correlations between gene expression and clinical outcomes in terms of univariate survival analysis. CONCLUSION: At present canEvolve provides different types of information extracted from 90 cancer genomics studies comprising of more than 10,000 patients. The presence of multiple data types, novel integrative analysis for identifying regulators of oncogenesis, network

  12. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.

    Science.gov (United States)

    Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail

    2009-04-21

    The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.

  13. Anticancer Effects of Sinulariolide-Conjugated Hyaluronan Nanoparticles on Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Kuan Yin Hsiao

    2016-03-01

    Full Text Available Lung cancer is one of the most clinically challenging malignant diseases worldwide. Sinulariolide (SNL, extracted from the farmed coral species Sinularia flexibilis, has been used for suppressing malignant cells. For developing anticancer therapeutic agents, we aimed to find an alternative for non-small cell lung cancer treatment by using SNL as the target drug. We investigated the SNL bioactivity on A549 lung cancer cells by conjugating SNL with hyaluronan nanoparticles to form HA/SNL aggregates by using a high-voltage electrostatic field system. SNL was toxic on A549 cells with an IC50 of 75 µg/mL. The anticancer effects of HA/SNL aggregates were assessed through cell viability assay, apoptosis assays, cell cycle analyses, and western blotting. The size of HA/SNL aggregates was approximately 33–77 nm in diameter with a thin continuous layer after aggregating numerous HA nanoparticles. Flow cytometric analysis revealed that the HA/SNL aggregate-induced apoptosis was more effective at a lower SNL dose of 25 µg/mL than pure SNL. Western blotting indicated that caspases-3, -8, and -9 and Bcl-xL and Bax played crucial roles in the apoptotic signal transduction pathway. In summary, HA/SNL aggregates exerted stronger anticancer effects on A549 cells than did pure SNL via mitochondria-related pathways.

  14. Asthma phenotypes in childhood.

    Science.gov (United States)

    Reddy, Monica B; Covar, Ronina A

    2016-04-01

    This review describes the literature over the past 18 months that evaluated childhood asthma phenotypes, highlighting the key aspects of these studies, and comparing these studies to previous ones in this area. Recent studies on asthma phenotypes have identified new phenotypes on the basis of statistical analyses (using cluster analysis and latent class analysis methodology) and have evaluated the outcomes and associated risk factors of previously established early childhood asthma phenotypes that are based on asthma onset and patterns of wheezing illness. There have also been investigations focusing on immunologic, physiologic, and genetic correlates of various phenotypes, as well as identification of subphenotypes of severe childhood asthma. Childhood asthma remains a heterogeneous condition, and investigations into these various presentations, risk factors, and outcomes are important since they can offer therapeutic and prognostic relevance. Further investigation into the immunopathology and genetic basis underlying childhood phenotypes is important so therapy can be tailored accordingly.

  15. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and

  16. The influence of some anticancer preparations on photo induced lipid preoxidation

    International Nuclear Information System (INIS)

    Sargsyan, N.A.

    2004-01-01

    In nowadays it is very important in medicine to investigate mechanisms of actions of different pharmacological preparations including anticancer ones. As it is known during cancer there is the disruption of balance between free radical oxidative processes and amount of antioxidants. That is why it was investigated the possibility of cooperation of some anticancer preparations with membrane structures and the influence of these preparations on photo induced free radical oxidative process. For investigations of the influence of some anticancer preparations - sarkolizin and cyclophosphane - on the intensivity of chemiluminescence as a biological target it were taken homogenates of brains of cows in tris-HCL buffer solution (1:10, pH=7.4). Irradiation was done with UV-light for 1 minute. Also it was used the model-system of oleinic acid for investigation of action studied preparations on lipid peroxidation. All experiments were done at 40 degree C. It was found out that anticancer preparations suppressed lipid peroxidation and that it is expressed by decreasing of level of photo chemiluminescence. By the way it was discovered that maximal inhibition of photo chemiluminescence was at the moment of adding preparation to the biological target. And then level of photo chemiluminescence increased till some point, which was lower than normal one. Also it was found that the inhibition degree for these preparations was different. For example, sarkolizin decreased the level of photo chemiluminescence on 58%, and cyclophosphane - on 52%. Because chemiluminescence of oleinic acid very well imitates the chemiluminescence of different lipid structures, so it was used as a model-system for testing investigated preparations. And in this experiment also it was found that sarkolizin and cyclophosphane decreased the level of induced chemiluminescence. And this action depended on the concentration of preparations. In conclusion it can be said that sarkolizin and cyclophosphane inhibited

  17. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    NARCIS (Netherlands)

    Kohler, S.; Doelken, S.C.; Mungall, C.J.; Bauer, S.; Firth, H.V.; Bailleul-Forestier, I.; Black, G.C.M.; Brown, D.L.; Brudno, M.; Campbell, J.; FitzPatrick, D.R.; Eppig, J.T.; Jackson, A.P.; Freson, K.; Girdea, M.; Helbig, I.; Hurst, J.A.; Jahn, J.; Jackson, L.G.; Kelly, A.M.; Ledbetter, D.H.; Mansour, S.; Martin, C.L.; Moss, C.; Mumford, A.; Ouwehand, W.H.; Park, S.M.; Riggs, E.R.; Scott, R.H.; Sisodiya, S.; Vooren, S. van der; Wapner, R.J.; Wilkie, A.O.; Wright, C.F.; Silfhout, A.T. van; Leeuw, N. de; Vries, B. de; Washingthon, N.L.; Smith, C.L.; Westerfield, M.; Schofield, P.; Ruef, B.J.; Gkoutos, G.V.; Haendel, M.; Smedley, D.; Lewis, S.E.; Robinson, P.N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have

  18. Anticancer Effects of Different Seaweeds on Human Colon and Breast Cancers

    Directory of Open Access Journals (Sweden)

    Ghislain Moussavou

    2014-09-01

    Full Text Available Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.

  19. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    International Nuclear Information System (INIS)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  20. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India); Shivashangari, Kanchi Subramanian, E-mail: shivashangari@gmail.com [Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu (India); Ravikumar, Vilwanathan, E-mail: ravikumarbdu@gmail.com [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  1. Dose critical in-vivo detection of anti-cancer drug levels in blood

    Science.gov (United States)

    Miller, Holly H.; Hirschfeld, deceased, Tomas B.

    1991-01-01

    A method and apparatus are disclosed for the in vivo and in vitro detection and measurement of dose critical levels of DNA-binding anti-cancer drug levels in biological fluids. The apparatus comprises a laser based fiber optic sensor (optrode) which utilizes the secondary interactions between the drug and an intercalating fluorochrome bound to a probe DNA, which in turn is attached to the fiber tip at one end thereof. The other end of the optical fiber is attached to an illumination source, detector and recorder. The fluorescence intensity is measured as a function of the drug concentration and its binding constant to the probe DNA. Anticancer drugs which lend themselves to analysis by the use of the method and the optrode of the present invention include doxorubicin, daunorubicin, carminomycin, aclacinomycin, chlorambucil, cyclophosphamide, methotrexate, 5-uracil, arabinosyl cytosine, mitomycin, cis-platinum 11 diamine dichloride procarbazine, vinblastine vincristine and the like. The present method and device are suitable for the continuous monitoring of the levels of these and other anticancer drugs in biological fluids such as blood, serum, urine and the like. The optrode of the instant invention also enables the measurement of the levels of these drugs from a remote location and from multiple samples.

  2. Phenotypic equilibrium as probabilistic convergence in multi-phenotype cell population dynamics.

    Directory of Open Access Journals (Sweden)

    Da-Quan Jiang

    Full Text Available We consider the cell population dynamics with n different phenotypes. Both the Markovian branching process model (stochastic model and the ordinary differential equation (ODE system model (deterministic model are presented, and exploited to investigate the dynamics of the phenotypic proportions. We will prove that in both models, these proportions will tend to constants regardless of initial population states ("phenotypic equilibrium" under weak conditions, which explains the experimental phenomenon in Gupta et al.'s paper. We also prove that Gupta et al.'s explanation is the ODE model under a special assumption. As an application, we will give sufficient and necessary conditions under which the proportion of one phenotype tends to 0 (die out or 1 (dominate. We also extend our results to non-Markovian cases.

  3. On the Benefits of Divergent Search for Evolved Representations

    DEFF Research Database (Denmark)

    Lehman, Joel; Risi, Sebastian; Stanley, Kenneth O

    2012-01-01

    Evolved representations in evolutionary computation are often fragile, which can impede representation-dependent mechanisms such as self-adaptation. In contrast, evolved representations in nature are robust, evolvable, and creatively exploit available representational features. This paper provide...

  4. Anticancer Activity of Extracts from some Endemic Tanzanian Plants ...

    African Journals Online (AJOL)

    Of the 52 extracts from 26 plants of different families tested, 5 demonstrated potential activity on the cells. Extract X13 had an exceptionally high activity on both cell lines while extract X29 was highly active on HeLa cells. Fractionation and isolation of constituents from the extracts that have shown anticancer activity in these ...

  5. Knowledge-based analysis of phenotypes

    KAUST Repository

    Hoendorf, Robert

    2016-01-27

    Phenotypes are the observable characteristics of an organism, and they are widely recorded in biology and medicine. To facilitate data integration, ontologies that formally describe phenotypes are being developed in several domains. I will describe a formal framework to describe phenotypes. A formalized theory of phenotypes is not only useful for domain analysis, but can also be applied to assist in the diagnosis of rare genetic diseases, and I will show how our results on the ontology of phenotypes is now applied in biomedical research.

  6. A QSAR, Pharmacokinetic and Toxicological Study of New Artemisinin Compounds with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Josinete B. Vieira

    2014-07-01

    Full Text Available The Density Functional Theory (DFT method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with different degrees of cytotoxicity against the human hepatocellular carcinoma HepG2 line. Principal component analysis (PCA and hierarchical cluster analysis (HCA were employed to select the most important descriptors related to anticancer activity. The significant molecular descriptors related to the compounds with anticancer activity were the ALOGPS_log, Mor29m, IC5 and GAP energy. The Pearson correlation between activity and most important descriptors were used for the regression partial least squares (PLS and principal component regression (PCR models built. The regression PLS and PCR were very close, with variation between PLS and PCR of R2 = ±0.0106, R2ajust = ±0.0125, s = ±0.0234, F(4,11 = ±12.7802, Q2 = ±0.0088, SEV = ±0.0132, PRESS = ±0.4808 and SPRESS = ±0.0057. These models were used to predict the anticancer activity of eight new artemisinin compounds (test set with unknown activity, and for these new compounds were predicted pharmacokinetic properties: human intestinal absorption (HIA, cellular permeability (PCaCO2, cell permeability Maden Darby Canine Kidney (PMDCK, skin permeability (PSkin, plasma protein binding (PPB and penetration of the blood-brain barrier (CBrain/Blood, and toxicological: mutagenicity and carcinogenicity. The test set showed for two new artemisinin compounds satisfactory results for anticancer activity and pharmacokinetic and toxicological properties. Consequently, further studies need be done to evaluate the different proposals as well as their actions, toxicity, and potential use for treatment of cancers.

  7. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse

    Science.gov (United States)

    Nowakowski, Adam; Drela, Katarzyna; Rozycka, Justyna; Janowski, Miroslaw

    2016-01-01

    Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials. PMID:27460260

  8. The magnetic graphene-based nanocomposite: An efficient anticancer delivery system

    Science.gov (United States)

    Jafarizad, Abbas; Jaymand, Mehdi; Taghizadehghalehjougi, Ali; Mohammadi-Nasr, Saeed; Jabbari, Amir Mohammad

    2018-01-01

    The aim of this study is the development of an efficient anticancer drug delivery nanosystem using PEGylated graphene oxide/magnetite nanoparticles (PEG-GO/Fe3O4). The nanosystem was loaded with mitoxantrone (MTX) as a universal anticancer drug. The cytotoxicity effect of the MTX-loaded GO-PEG/Fe3O4 nanocomposite was studied against U87 MG cell line using MTT cell viablity assay. The mechanism of action, the genes contributed in apoptosis (Casp 9, and Casp 3) and survival (BcL-2, BAX) have been investigated using quantitative real time-PCR. As the results of biological assays, controlled drug release behavior of the developed nanosystem as well as the inherent physicochemical and biological characteristics of both magnetit nanoparticles and graphene nanomaterials, we envision that the GO-PEG/Fe3O4 nanocomposite may be applied as enhanced drug delivery system for various cancer therapies (e.g., brain cancer) using both chemo- and photothermal therapy methods.

  9. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone; Nitti, Donato

    2008-05-01

    Despite the evidence that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells evade immune surveillance in most cases. Considering that anticancer vaccination has reached a plateau of results and currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed at reverting the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted. In addition, the latest therapeutic strategies devised to overcome tumor immune escape are described, with special regard to those entering clinical phase investigation. Copyright (c) 2007 Wiley-Periodicals, Inc.

  10. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    Science.gov (United States)

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. EVOLVE

    CERN Document Server

    Deutz, André; Schütze, Oliver; Legrand, Pierrick; Tantar, Emilia; Tantar, Alexandru-Adrian

    2017-01-01

    This book comprises nine selected works on numerical and computational methods for solving multiobjective optimization, game theory, and machine learning problems. It provides extended versions of selected papers from various fields of science such as computer science, mathematics and engineering that were presented at EVOLVE 2013 held in July 2013 at Leiden University in the Netherlands. The internationally peer-reviewed papers include original work on important topics in both theory and applications, such as the role of diversity in optimization, statistical approaches to combinatorial optimization, computational game theory, and cell mapping techniques for numerical landscape exploration. Applications focus on aspects including robustness, handling multiple objectives, and complex search spaces in engineering design and computational biology.

  12. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    Science.gov (United States)

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  13. [Anticancer propaganda: myth or reality?].

    Science.gov (United States)

    Demin, E V; Merabishvili, V M

    2014-01-01

    The authors raise a very important problem of anticancer propaganda aimed at the early detection of cancer to be solved nowadays by means of screening and constructive interaction between oncologists and the public. To increase the level of knowledge of the population in this area it is necessary to expand the range of its adequate awareness of tumor diseases. Only joint efforts can limit the destructive effect of cancer on people's minds, so that every person would be responsible for his own health, clearly understanding the advantages of early visit to a doctor. This once again highlights the need of educational work with the public, motivational nature of which allows strengthening the value of screening in the whole complex of measures to fight cancer.

  14. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    Science.gov (United States)

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake

  15. Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system

    Science.gov (United States)

    Oh, Jae-Min; Park, Man; Kim, Sang-Tae; Jung, Jin-Young; Kang, Yong-Gu; Choy, Jin-Ho

    2006-05-01

    We have been successful to intercalate anticancer drug, methotrexate (MTX), into layered double hydroxides (LDHs), Mg2Al(OH)6(NO3)·0.1H2O, through conventional co-precipitation method. Layered double hydroxides (LDHs) are endowed with great potential for delivery vector, since their cationic layers lead to safe reservation of biofunctional molecules such as drug molecules or genes. And their ion exchangeability and solubility in acidic media (pHosteosarcoma cell culture lines (Saos-2 and MG-63) and the normal one (human fibroblast) were used for in vitro test. The anticancer efficacy of MTX intercalated LDHs (MTX-LDH nanohybrids) was also estimated in vitro by the bioassay such as MTT and BrdU (5-bromo-2-deoxyuridine) with the bone cancer cell culture lines (Saos-2 and MG-63). According to the toxicity test results, LDHs do not harm to both the normal and cancer cells upto the concentration of 500 ug/mL. The anticancer efficacy test for the MTX-LDH nanohybrids turn out to be much more effective in cell suppression compared to the MTX itself. According to the cell-line tests, the MTX-LDH shows same drug efficacy to the MTX itself in spite of the low concentration by ˜5000 times. Such a high cancer suppression effect of MTX-LDH hybrid is surely due to the excellent delivery efficiency of inorganic delivery vector, LDHs.

  16. NBM-HD-1: A Novel Histone Deacetylase Inhibitor with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Wei-Jan Huang

    2012-01-01

    Full Text Available HDAC inhibitors (HDACis have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP, and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231 and rat glioma cells (C6, with an IC50 ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1, gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1, p21(Waf1/Cip1 gene expression had markedly increased while cyclin B1 and D1 gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor gene p53 in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activity in vitro and in vivo.

  17. Advanced phenotyping and phenotype data analysis for the plant growth and development study

    Directory of Open Access Journals (Sweden)

    Md. Matiur eRahaman

    2015-08-01

    Full Text Available Due to increase in the consumption of food, feed, fuel and to ensure global food security for rapidly growing human population, there is need to breed high yielding crops that can adapt to future climate. To solve these global issues, novel approaches are required to provide quantitative phenotypes to elucidate the genetic basis of agriculturally import traits and to screen germplasm with super performance in function under resource-limited environment. At present, plant phenomics has offered and integrated suite technologies for understanding the complete set of phenotypes of plants, towards the progression of the full characteristics of plants with whole sequenced genomes. In this aspect, high-throughput phenotyping platforms have been developed that enables to capture extensive and intensive phenotype data from non-destructive imaging over time. These developments advance our view on plant growth and performance with responses to the changing climate and environment. In this paper, we present a brief review on currently developed high-throughput plant phenotyping infrastructures based on imaging techniques and corresponding principles for phenotype data analysis.

  18. In Silico Screening, Synthesis and In Vitro Evaluation of Some Quinazolinone and Pyridine Derivatives as Dihydrofolate Reductase Inhibitors for Anticancer Activity

    Directory of Open Access Journals (Sweden)

    A. G. Nerkar

    2009-01-01

    Full Text Available Dihydrofolate reductase (DHFR is the important target for anticancer drugs belonging to the class of antimetabolites as the enzyme plays important role in the de novo purine synthesis. We here report the in silico screening to obtain best fit molecules as DHFR inhibitors, synthesis of some ʻbest fitʼ quinazolinone from 2-phenyl-3-(substituted-benzilidine-amino quinazolinones (Quinazolinone Shiff's bases QSB1-5 and pyridine-4-carbohydrazide Shiff's bases (ISB1-5 derivatives and their in vitro anticancer assay. Synthesis of the molecules was performed using microwave assisted synthesis. The structures of these molecules were elucidated by IR and 1H-NMR. These compounds were then subjected for in vitro anticancer evaluation against five human cancer cell-lines for anticancer cyto-toxicity assay. Methotrexate (MTX was used as standard for this evaluation to give a comparable inhibition of the cell proliferation by DHFR inhibition. Placlitaxel, adriamycin and 5-fluoro-uracil were also used as standard to give a comparable activity of these compounds with other mechanism of anticancer activity. ISB3 (4-(N, N-dimethyl-amino-phenyl Schiff''s base derivative of pyridine carbohydrazide showed equipotent activity with the standards used in in vitro anticancer assay as per the NCI (National Cancer Institute guidelines.

  19. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells.

    Science.gov (United States)

    Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida

    2018-02-02

    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.

  20. Anticancer Activity from Active Fraction of Sea Cucumber

    Directory of Open Access Journals (Sweden)

    Nurul Mutia Putram

    2017-05-01

    Full Text Available Sea Cucumber Holothuria atra is one of marine organisms has been used as a new source of novel bioactive compounds. Many of them have been used as the lead compounds in discovery of new anticancer drugs. The objective of this study was to determine the active fractions of sea cucumber (H. atra which have anticancer activity. H. atra was macerated using ethanol and the extract was freezedried using a freeze dryer. The crude extract was partitioned using n-hexane, ethyl acetate, and methanol-water (3:1:1:1. Cytotoxicity test was performed using HeLa (cervic cancer cell line and MCF-7 (breast cancer cell line based on the MTT assay. The crude extract of H. atra showed the best cytotoxic activity against HeLa cells (IC50 = 12.48 µg/mL and MCF-7 cells (IC50 = 17.90 µg/mL. The toxicity tests showed the IC50 value of the n-hexane fraction, ethyl acetate fraction, and methanol-water fraction against HeLa cells HeLa (IC50 = 76.45 µg/mL; 77.95 µg/mL;  14.27 µg/mL and MCF-7 cells (IC50 = 58.50 µg/mL; 59.59 µg/mL; 14.33 µg/mL.

  1. Diversity Generation in Evolving Microbial Populations

    DEFF Research Database (Denmark)

    Markussen, Trine

    Pseudomonas aeruginosa infections in the airways of patients with cystic fibrosis (CF) offer opportunities to study bacterial evolution and adaptation in natural environments. Significantly phenotypic and genomic changes of P. aeruginosa have been observed during chronic infection. While P. aeruginosa...... bacterial genome sequencing, phenotypic profiling and unique sampling materials which included clonal bacterial isolates sampled for more than 4 decades from chronically infected CF patients, we were able to investigate the diversity generation of the clinical important and highly successful P. aeruginosa...... DK1 clone type during chronic airway infection in CF patients. We show here that diversification of P. aeruginosa DK1 occurs through the emergence of coexisting subpopulations with distinct phenotypic and genomic features and demonstrate that this diversification was a result of niche specialization...

  2. In Silico Molecular Docking Analysis of Natural Pyridoacridines as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Vikas Sharma

    2016-01-01

    Full Text Available Docking studies are proved to be an essential tool that facilitates the structural diversity of natural products to be harnessed in an organized manner. In this study, pyridoacridines containing natural anticancer pigments were subjected to docking studies using Glide (Schrodinger. Investigations were carried out to find out the potential molecular targets for these selected pigments. The docking was carried out on different cancer macromolecules involved in different cell cycle pathways, that is, CDK-2, CDK-6, Bcl-2, VEGFR-2, IGF-1R kinase, and G-Quadruplexes. CDK-6 was found to be the most suitable anticancer target for the pyridoacridines. In addition, effectiveness of the study was further evaluated by performing docking of known inhibitors against their respective selected macromolecules. However, the results are preliminary and experimental evaluation will be carried out in near future.

  3. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0824-z. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer activity of new Schiff base and its copper complex derived from sulfamethoxazole. I RAMA∗ and R SELVAMEENA. PG and Research Department of Chemistry, Seethalakshmi Ramaswami College,. Tiruchirappalli 620 002 ...

  4. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity.

    Science.gov (United States)

    Xia, Yi; Qu, Fanqi; Peng, Ling

    2010-08-01

    Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.

  5. Synthesis and Evaluation of New Potential Benzo[a]phenoxazinium Photosensitizers for Anticancer Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2018-06-01

    Full Text Available The use of photodynamic therapy (PDT and development of novel photosensitizers (PSs for cancer treatment have received more and more attention nowadays. In the present work, five benzo[a]phenoxazinium derivatives have been prepared and evaluated for their in vitro anticancer photodynamic activity for the first time. They are red light absorbers and show low fluorescence quantum yield. Of these compounds, PS4 exhibited a higher quantum yield for reactive oxygen species (ROS generation. The assays with cells in vitro showed that PS1 and PS4 were not significantly toxic in the dark, but was robustly toxic against the murine breast adenocarcinoma cells 4T1 and normal murine fibroblast cells NIH-3T3 upon photoactivation. More interestingly, PS5 was particularly selective towards 4T1 cancer cells and nearly non-phototoxic to non-cancerous NIH-3T3 cells. The results described in this report suggest that these new benzo[a]phenoxazinium derivatives are potential candidates as PSs for anticancer PDT. Further investigation of benzo[a]phenoxaziniums for anticancer PDT is warranted.

  6. Deep Phenotyping: Deep Learning For Temporal Phenotype/Genotype Classification

    OpenAIRE

    Najafi, Mohammad; Namin, Sarah; Esmaeilzadeh, Mohammad; Brown, Tim; Borevitz, Justin

    2017-01-01

    High resolution and high throughput, genotype to phenotype studies in plants are underway to accelerate breeding of climate ready crops. Complex developmental phenotypes are observed by imaging a variety of accessions in different environment conditions, however extracting the genetically heritable traits is challenging. In the recent years, deep learning techniques and in particular Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and Long-Short Term Memories (LSTMs), h...

  7. The Human Phenotype Ontology in 2017

    International Nuclear Information System (INIS)

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie

    2016-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  8. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent.

    Directory of Open Access Journals (Sweden)

    Masako Yokoo

    Full Text Available 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML, acute lymphoblastic leukemia and chronic myeloid leukemia (CML. HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors, and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.

  9. Curcumin AntiCancer Studies in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2016-07-01

    Full Text Available Pancreatic cancer (PC is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.

  10. Challenges and strategies in anti-cancer nanomedicine development : An industry perspective

    NARCIS (Netherlands)

    Hare, Jennifer I.; Lammers, Twan|info:eu-repo/dai/nl/304824577; Ashford, Marianne B.; Puri, Sanyogitta; Storm, G|info:eu-repo/dai/nl/073356328; Barry, Simon T.

    2017-01-01

    Successfully translating anti-cancer nanomedicines from pre-clinical proof of concept to demonstration of therapeutic value in the clinic is challenging. Having made significant advances with drug delivery technologies, we must learn from other areas of oncology drug development, where patient

  11. Polylactide-based magnetic spheres as efficient carriers for anticancer drug delivery

    CSIR Research Space (South Africa)

    Mhlanga, N

    2015-09-01

    Full Text Available To improve traditional cancer therapies, we synthesized polylactide (PLA) spheres coencapsulating magnetic nanoparticles (MNPs, Fe(sub3)O(sub4)) and an anticancer drug (doxorubicin, DOX). The synthesis process involves the preparation of Fe(sub3)O...

  12. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective

    NARCIS (Netherlands)

    Hare, J.I.; Lammers, Twan Gerardus Gertudis Maria; Ashford, M.B.; Puri, S.; Storm, Gerrit; Barry, S.T.

    2017-01-01

    Successfully translating anti-cancer nanomedicines from pre-clinical proof of concept to demonstration of therapeutic value in the clinic is challenging. Having made significant advances with drug delivery technologies, we must learn from other areas of oncology drug development, where patient

  13. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations

    Directory of Open Access Journals (Sweden)

    Eva Y. G. De Vilder

    2017-01-01

    Full Text Available Gamma-carboxylation, performed by gamma-glutamyl carboxylase (GGCX, is an enzymatic process essential for activating vitamin K-dependent proteins (VKDP with important functions in various biological processes. Mutations in the encoding GGCX gene are associated with multiple phenotypes, amongst which vitamin K-dependent coagulation factor deficiency (VKCFD1 is best known. Other patients have skin, eye, heart or bone manifestations. As genotype–phenotype correlations were never described, literature was systematically reviewed in search of patients with at least one GGCX mutation with a phenotypic description, resulting in a case series of 47 patients. Though this number was too low for statistically valid correlations—a frequent problem in orphan diseases—we demonstrate the crucial role of the horizontally transferred transmembrane domain in developing cardiac and bone manifestations. Moreover, natural history suggests ageing as the principal determinant to develop skin and eye symptoms. VKCFD1 symptoms seemed more severe in patients with both mutations in the same protein domain, though this could not be linked to a more perturbed coagulation factor function. Finally, distinct GGCX functional domains might be dedicated to carboxylation of very specific VKDP. In conclusion, this systematic review suggests that there indeed may be genotype–phenotype correlations for GGCX-related phenotypes, which can guide patient counseling and management.

  14. Optimizing anticancer drug treatment in pregnant cancer patients : pharmacokinetic analysis of gestation-induced changes for doxorubicin, epirubicin, docetaxel and paclitaxel

    NARCIS (Netherlands)

    van Hasselt, J G C; van Calsteren, K; Heyns, L; Han, S; Mhallem Gziri, M; Schellens, J H M; Beijnen, J H; Huitema, A D R; Amant, F

    2014-01-01

    BACKGROUND: Pregnant patients with cancer are increasingly treated with anticancer drugs, although the specific impact of pregnancy-induced physiological changes on the pharmacokinetics (PK) of anticancer drugs and associated implications for optimal dose regimens remains unclear. Our objectives

  15. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  16. Analysis of the Anticancer Phytochemicals in Andrographis paniculata Nees. under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Daryush Talei

    2013-01-01

    Full Text Available Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm−1 on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG, neoandrographolide (NAG, and 14-deoxy-11,12-didehydroandrographolide (DDAG, were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P≤0.01. Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm−1 led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions.

  17. Readability Comparison of Pro- and Anti-Cancer Screening Online Messages in Japan

    Science.gov (United States)

    Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro

    2016-01-01

    Background: Cancer screening rates are lower in Japan than those in western countries. Health professionals publish pro-cancer screening messages on the internet to encourage audiences to undergo cancer screening. However, the information provided is often difficult to read for lay persons. Further, anti-cancer screening activists warn against cancer screening with messages on the Internet. We aimed to assess and compare the readability of pro- and anti-cancer screening online messages in Japan using a measure of readability. Methods: We conducted web searches at the beginning of September 2016 using two major Japanese search engines (Google.jp and Yahoo!.jp). The included websites were classified as “anti”, “pro”, or “neutral” depending on the claims, and “health professional” or “non-health professional” depending on the writers. Readability was determined using a validated measure of Japanese readability. Statistical analysis was conducted using two-way ANOVA. Results: In the total 159 websites analyzed, anti-cancer screening online messages were generally easier to read than pro-cancer screening online messages, Messages written by health professionals were more difficult to read than those written by non-health professionals. Claim × writer interaction was not significant. Conclusion: When health professionals prepare pro-cancer screening materials for publication online, we recommend they check for readability using readability assessment tools and improve text for easy comprehension when necessary. PMID:28125867

  18. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    Science.gov (United States)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  19. Analysis of the Anticancer Phytochemicals in Andrographis paniculata Nees. under Salinity Stress

    Science.gov (United States)

    Valdiani, Alireza; Maziah, Mahmood; Saad, Mohd Said

    2013-01-01

    Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm−1) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P ≤ 0.01). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm−1 led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions. PMID:24371819

  20. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    Science.gov (United States)

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Interoperability between phenotype and anatomy ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  2. Evaluation of anticancer effects of a novel proteasome inhibitor (Velcade), interferon (alpha-interferon) and anti myeloma antibodies on the growth of myeloma cells

    International Nuclear Information System (INIS)

    El shershaby, H.M.M.

    2013-01-01

    Cancer is an abnormal growth of cells caused by multiple changes in gene expression leading to deregulated balance of cell proliferation and cell death and ultimately evolving into a population of cells that can invade tissues and metastasize to distant sites, causing significant morbidity. Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells in the bone marrow leading to impaired hematopoiesis and bone diseases, which includes mainly lytic lesions, pathological fractures, hypercalcaemia and osteoporosis. Chemotherapy is the systemic treatment of cancer with anticancer drugs. Chemotherapy uses powerful drugs that work by slowing or stopping the cancer cells from growing, spreading or multiplying to other parts of the body. Extensive studies were run all over the world during the last years to discovery some new drugs which possess anticancer effect with less toxicity and have the ability to increase the survival time. In the current study Bortezomib was employed as chemotherapeutic drug for the treatment of myeloma cells where a variable dose of Bortezomib (5, 10,20,30,50 and 100 nM/ml) were used for treatment of myeloma cells in vitro. The results obtained indicated that the T.C/ml was decreased by increasing the drug conc. compared to that of control group. These results illustrated the effect of Bortezomib on the growth of myeloma cells, where the myeloma cell division was decreased while the older cells were deteriorated so that the T.C/ml were decreased. Also the viability of myeloma cells were significantly decreased after 72 hours of addition at drug concentration 20, 30, 50 and 100 nM/ml).

  3. Maintaining evolvability.

    Science.gov (United States)

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  4. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    Science.gov (United States)

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  5. Anti-cancer effect of HIV-1 viral protein R on doxorubicin resistant neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Richard Y Zhao

    Full Text Available Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX. To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working.

  6. Preparation of slow release anticancer drug by means of radiation technique and IT's therapeutic effect on sold tumor of mice

    International Nuclear Information System (INIS)

    Li Ximing; Shen Weiming; Liu Chengjie; Hu Xu

    1991-01-01

    In order to minimize the toxic effect of chemotherapy of malignant tumors, the authors use a method of radiation induced cast polymerization of hydrophilic monomer at low temperature for immobilization the anticancer drug, 5-Fluorouracil, into the polymer matrix. The anticancer drug-polymer composite called slow release anticancer drug was used for treatment the transplantable squamous cell carcinoma in mice 615 and the transplantable sarcoma (S180) in Kunming mice. There were marked difference between the treated group and the control group. That is the higher inhibition ratio and lower toxic effect were reported

  7. Acupuncture as anticancer treatment?

    Directory of Open Access Journals (Sweden)

    Paulina Frączek

    2017-01-01

    Full Text Available The mystery of Traditional Chinese Medicine has been attracting people for years. Acupuncture, ranked among the most common services of Complementary and Alternative Medicine, has recently gained a lot of interest in the scientific world. Contemporary researchers have been continuously trying to shed light on its possible mechanism of action in human organism. Numerous studies pertaining to acupuncture’s application in cancer symptoms or treatment-related side effects management have already been published. Moreover, since the modern idea of acupuncture’s immunomodulating effect seems to be promising, scientists have propounded a concept of its potential application as part of direct anti-tumor therapy. In our previous study we summarized possible use of acupuncture in management of cancer symptoms and treatment-related ailments, such as chemotherapy-induced nausea and vomiting, pain, xerostomia, vasomotor symptoms, neutropenia, fatigue, anxiety, insomnia, lymphoedema after mastectomy and peripheral neuropathy. This article reviews the studies concerning acupuncture as a possible tool in modern anticancer treatment.

  8. The anticancer effects of Resina Draconis extract on cholangiocarcinoma.

    Science.gov (United States)

    Wen, Feng; Zhao, Xiangxuan; Zhao, Yun; Lu, Zaiming; Guo, Qiyong

    2016-11-01

    Cholangiocarcinoma (CCA) is a relatively rare, heterogeneous malignant tumor with poor clinical outcomes. Because of high insensitivity to chemotherapy and radiotherapy, there are no effective treatment options. Efforts to identify and develop new agents for prevention and treatment of this deadly disease are urgent. Here, we assessed the apoptotic cytotoxicity of Resina Draconis extract (RDE) using in vitro and in vivo assays and identified the mechanisms underlying antitumor effects of RDE. RDE was obtained via vacuum distillation of Resina Draconis with 75 % ethanol. The ethanol extract could inhibit CCA cell proliferation and trigger apoptotic cell death in both QBC939 and HCCC9810 cell lines in a time- and concentration-dependent manner. RDE treatment resulted in intracellular caspase-8 and poly (ADP-ribose) polymerase protease activation. RDE significantly downregulated antiapoptotic protein survivin expression and upregulated proapoptotic protein Bak expression. RDE also inhibited CCA tumor growth in vivo. We observed that human CCA tissues had much higher survivin expression than did paired adjacent normal tissue. Taken together, the current data suggested that RDE has anticancer effects on CCA, and that RDE could function as a novel anticancer agent to benefit patients with CCA.

  9. [Vitamin D anti-cancer activities: observations, doubts and certainties].

    Science.gov (United States)

    Castronovo, C; Castronovo, V; Nikkels, A; Peulen, O

    2015-10-01

    The importance of vitamin D in bone and phosphocalcic status is well recognized by the scientific and medical communities; however, recently identified properties of this cholesterol derived molecule, such as immunomodulator and anticancer activities, are yet discussed. Actually, the debate is not so much about the new vitamin D properties, but rather about the optimal concentration required to reach these properties. The difficulty in determining the norms is rendered even more complex by the existence of a vitamin D receptor gene polymorphism. The body pool of this vitamin depends essentially on its endogenous synthesis, but also on its dietary intakes. Many epidemiological studies interested in Vitamin D serum level and cancer suggest a relation between low Vitamin D level and cancer risk, especially in breast and colon adenocarcinomas. In vitro, many studies showed, in different human and animal malignant cell lines, that this molecule exerts anticancer activities: it induces apoptosis and cell differentiation as well as it inhibits proliferation and angiogenesis. This review tries to update the current knowledge on vitamin D and, more particularly, the potential interest of this molecule in cancer prevention and management.

  10. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences.

    NARCIS (Netherlands)

    Broxterman, H.J.; Lankelma, J.; Hoekman, K.

    2003-01-01

    Intrinsic resistance to anticancer drugs, or resistance developed during chemotherapy, remains a major obstacle to successful treatment. This is the case both for resistance to cytotoxic agents, directed at malignant cells, and for resistance to anti-angiogenic agents, directed at non-malignant

  11. Evolvability as a Quality Attribute of Software Architectures

    NARCIS (Netherlands)

    Ciraci, S.; van den Broek, P.M.; Duchien, Laurence; D'Hondt, Maja; Mens, Tom

    We review the definition of evolvability as it appears on the literature. In particular, the concept of software evolvability is compared with other system quality attributes, such as adaptability, maintainability and modifiability.

  12. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants.

    Science.gov (United States)

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva'a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner-Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa's expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.

  13. Liposomal delivery systems for anti-cancer analogues of vitamin E

    Czech Academy of Sciences Publication Activity Database

    Koudelka, S.; Knotigova, P.T.; Masek, J.; Prochazka, L.; Lukac, R.; Miller, A.D.; Neužil, Jiří; Turanek, J.

    2015-01-01

    Roč. 207, Jun 10 (2015), s. 59-69 ISSN 0168-3659 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Alpha-tocopheryl succinate * Analogues of vitamin E * Anti-cancer drugs Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.441, year: 2015

  14. Anti-Cancer Properties of Diethylether Extract of Wood from Sukun ...

    African Journals Online (AJOL)

    Purpose: To evaluate the anti-cancer properties of the diethylether extract of Sukun (Artocarpus altilis) wood. Methods: The extract was tested in human T47D breast cancer cells and examined for its effect on cell viability, nuclear morphology and sub-G1 formation. Cell viability was determined by microculture tetrazolium ...

  15. 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective "small molecule" anti-cancer agent taken from labside to bedside: introduction to a special issue.

    Science.gov (United States)

    Pedersen, Peter L

    2012-02-01

    Although the "Warburg effect", i.e., elevated glucose metabolism to lactic acid (glycolysis) even in the presence of oxygen, has been recognized as the most common biochemical phenotype of cancer for over 80 years, its biochemical and genetic basis remained unknown for over 50 years. Work focused on elucidating the underlying mechanism(s) of the "Warburg effect" commenced in the author's laboratory in 1969. By 1985 among the novel findings made two related most directly to the basis of the "Warburg effect", the first that the mitochondrial content of tumors exhibiting this phenotype is markedly decreased relative to the tissue of origin, and the second that such mitochondria have markedly elevated amounts of the enzyme hexokinase-2 (HK2) bound to their outer membrane. HK2 is the first of a number of enzymes in cancer cells involved in metabolizing the sugar glucose to lactic acid. At its mitochondrial location HK2 binds at/near the protein VDAC (voltage dependent anion channel), escapes inhibition by its product glucose-6-phosphate, and gains access to mitochondrial produced ATP. As shown by others, it also helps immortalize cancer cells, i.e., prevents cell death. Based on these studies, the author's laboratory commenced experiments to elucidate the gene basis for the overexpression of HK2 in cancer. These studies led to both the discovery of a unique HK2 promoter region markedly activated by both hypoxic conditions and moderately activated by several metabolites (e.g., glucose), Also discovered was the promoter's regulation by epigenetic events (i.e., methylation, demethylation). Finally, the author's laboratory turned to the most important objective. Could they selectively and completely destroy cancerous tumors in animals? This led to the discovery in an experiment conceived, designed, and conducted by Young Ko that the small molecule 3-bromopyruvate (3BP), the subject of this mini-review series, is an incredibly powerful and swift acting anticancer agent

  16. Insights into the Intramolecular Properties of η6-Arene-Ru-Based Anticancer Complexes Using Quantum Calculations

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-01-01

    Full Text Available The factors that determine the stability and the effects of noncovalent interaction on the η6-arene ruthenium anticancer complexes are determined using DFT method. The intramolecular and intra-atomic properties were computed for two models of these half-sandwich ruthenium anticancer complexes and their respective hydrated forms. The results showed that the stability of these complexes depends largely on the network of hydrogen bonds (HB, strong nature of charge transfer, polarizability, and electrostatic energies that exist within the complexes. The hydrogen bonds strength was found to be related to the reported anticancer activities and the activation of the complexes by hydration. The metal–ligand bonds were found to be closed shell systems that are characterised by high positive Laplacian values of electron density. Two of the complexes are found to be predominantly characterised by LMCT while the other two are predominately characterised by MLCT.

  17. Marketed drugs used for the management of hypercholesterolemia as anticancer armament

    Directory of Open Access Journals (Sweden)

    Papanagnou P

    2017-09-01

    Full Text Available Panagiota Papanagnou,1 Theodora Stivarou,2 Ioannis Papageorgiou,1 Georgios E Papadopoulos,3 Anastasios Pappas1 1Department of Urology, Agios Savvas Cancer Hospital, Athens, Greece; 2Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, Athens, Greece; 3Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece Abstract: The design of novel pharmacologic agents as well as their approval for sale in markets all over the world is a tedious and pricey process. Inevitably, oncologic patients commonly experience unwanted effects of new anticancer drugs, while the acquisition of clinical experience for these drugs is largely based on doctor–patient partnership which is not always effective. The repositioning of marketed non-antineoplastic drugs that hopefully exhibit anticancer properties into the field of oncology is a challenging option that gains ground and attracts preclinical and clinical research in an effort to override all these hindrances and minimize the risk for reduced efficacy and/or personalized toxicity. This review aims to present the anticancer properties of drugs used for the management of hypercholesterolemia. A global view of the antitumorigenicity of all marketed antihypercholesterolemic drugs is of major importance, given that atherosclerosis, which is etiologically linked to hypercholesterolemia, is a leading worldwide cause of morbidity and mortality, while hypercholesterolemia and tumorigenesis are known to be interrelated. In vitro, in vivo and clinical literature data accumulated so far outline the mechanistic basis of the antitumor function of these agents and how they could find application at the clinical setting. Keywords: antihypercholesterolemic agents, cancer, synergism, repurposing

  18. Cdt1 is differentially targeted for degradation by anticancer chemotherapeutic drugs.

    Directory of Open Access Journals (Sweden)

    Athanasia Stathopoulou

    Full Text Available BACKGROUND: Maintenance of genome integrity is crucial for the propagation of the genetic information. Cdt1 is a major component of the pre-replicative complex, which controls once per cell cycle DNA replication. Upon DNA damage, Cdt1 is rapidly targeted for degradation. This targeting has been suggested to safeguard genomic integrity and prevent re-replication while DNA repair is in progress. Cdt1 is deregulated in tumor specimens, while its aberrant expression is linked with aneuploidy and promotes tumorigenesis in animal models. The induction of lesions in DNA is a common mechanism by which many cytotoxic anticancer agents operate, leading to cell cycle arrest and apoptosis. METHODOLOGY/PRINCIPAL FINDING: In the present study we examine the ability of several anticancer drugs to target Cdt1 for degradation. We show that treatment of HeLa and HepG2 cells with MMS, Cisplatin and Doxorubicin lead to rapid proteolysis of Cdt1, whereas treatment with 5-Fluorouracil and Tamoxifen leave Cdt1 expression unaffected. Etoposide affects Cdt1 stability in HepG2 cells and not in HeLa cells. RNAi experiments suggest that Cdt1 proteolysis in response to MMS depends on the presence of the sliding clamp PCNA. CONCLUSION/SIGNIFICANCE: Our data suggest that treatment of tumor cells with commonly used chemotherapeutic agents induces differential responses with respect to Cdt1 proteolysis. Information on specific cellular targets in response to distinct anticancer chemotherapeutic drugs in different cancer cell types may contribute to the optimization of the efficacy of chemotherapy.

  19. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    Science.gov (United States)

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  20. Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells.

    Science.gov (United States)

    Cheng, Wan-Li; Huang, Chien-Yu; Tai, Cheng-Jeng; Chang, Yu-Jia; Hung, Chin-Sheng

    2018-02-01

    Androgen deprivation therapy remains the principal treatment for patients with advanced prostate cancer, though, most patients will eventually develop hormone-refractory prostate cancer (HRPC). Androgen ablation mediated maspin-induction has been identified in cancer patients. However, the role of maspin on the anticancer activity of curcumin derived from turmeric (Curcuma longa) in HRPC cells has not been elucidated. The anticancer action of curcumin in hormone-independent prostate cancer cells (DU145, and PC-3) was determined by measures of cell survival rate. The cause of maspin silencing on the anti-tumor abilities of curcumin in PC-3 cells was evaluated by measures of cell survival rate, cell-cycle distribution, and apoptosis signaling analysis. Our present study showed that PC-3 cells (with higher maspin expression) were more sensitive than DU145 cells to curcumin treatment (with lower maspin expression). RNA interference-mediated maspin silencing reduced curcumin sensitivity of PC-3 cells, as evidenced by reduced apoptotic cell death. After exposure to curcumin, maspin-knockdown cells showed lower expression levels of pro-apoptotic proteins, Bad and Bax, as compared with control cells. Maspin can enhance the sensitivity of HRPC cells to curcumin treatment. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Proteomic and metallomic strategies for understanding the mode of action of anticancer metallodrugs.

    Science.gov (United States)

    Gabbiani, Chiara; Magherini, Francesca; Modesti, Alessandra; Messori, Luigi

    2010-05-01

    Since the discovery of cisplatin and its introduction in the clinics, metal compounds have been intensely investigated in view of their possible application in cancer therapy. In this frame, a deeper understanding of their mode of action, still rather obscure, might turn crucial for the design and the obtainment of new and better anticancer agents. Due to the extreme complexity of the biological systems, it is now widely accepted that innovative and information-rich methods are absolutely needed to afford such a goal. Recently, both proteomic and metallomic strategies were successfully implemented for the elucidation of specific mechanistic features of anticancer metallodrugs within an innovative "Systems Biology" perspective. Particular attention was paid to the following issues: i) proteomic studies of the molecular basis of platinum resistance; ii) proteomic analysis of cellular responses to cytotoxic metallodrugs; iii) metallomic studies of the transformation and fate of metallodrugs in cellular systems. Notably, those pioneering studies, that are reviewed here, allowed a significant progress in the understanding of the molecular mechanisms of metal based drugs at the cellular level. A further extension of those studies and a closer integration of proteomic and metallomic strategies and technologies might realistically lead to rapid and significant advancements in the mechanistic knowledge of anticancer metallodrugs.

  2. A new evolutionary system for evolving artificial neural networks.

    Science.gov (United States)

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  3. Sex hormone binding globulin phenotypes

    DEFF Research Database (Denmark)

    Cornelisse, M M; Bennett, Patrick; Christiansen, M

    1994-01-01

    Human sex hormone binding globulin (SHBG) is encoded by a normal and a variant allele. The resulting SHBG phenotypes (the homozygous normal SHBG, the heterozygous SHBG and the homozygous variant SHBG phenotype) can be distinguished by their electrophoretic patterns. We developed a novel detection....... This method of detection was used to determine the distribution of SHBG phenotypes in healthy controls of both sexes and in five different pathological conditions characterized by changes in the SHBG level or endocrine disturbances (malignant and benign ovarian neoplasms, hirsutism, liver cirrhosis...... on the experimental values. Differences in SHBG phenotypes do not appear to have any clinical significance and no sex difference was found in the SHBG phenotype distribution....

  4. Novel fluorinated benzimidazole-based scaffolds and their anticancer activity in vitro

    Czech Academy of Sciences Publication Activity Database

    Bhambra, A.S.; Edgar, M.; Elsegood, M.R.J.; Horsburgh, L.; Kryštof, Vladimír; Lucas, P.D.; Mojally, M.; Teat, S. J.; Warwick, T.G.; Weaver, G.W.; Zeinali, F.

    2016-01-01

    Roč. 188, AUG (2016), s. 99-109 ISSN 0022-1139 R&D Projects: GA ČR(CZ) GA15-15264S Institutional support: RVO:61389030 Keywords : Anticancer activity * Benzimidazole * C-F activation Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.101, year: 2016

  5. Early predictive value of multifunctional skin-infiltrating lymphocytes in anticancer immunotherapy

    NARCIS (Netherlands)

    Wimmers, Florian; Aarntzen, Erik H. J. G.; Schreibelt, Gerty; Jacobs, Joannes F. M.; Punt, Cornelis J. A.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2014-01-01

    Bioassays that predict clinical outcome are essential to optimize cellular anticancer immunotherapy. We have recently developed a robust and simple skin test to evaluate the capacity of tumor-specific T cells to migrate, recognize their targets and exert effector functions. This bioassay detects T

  6. Text-based phenotypic profiles incorporating biochemical phenotypes of inborn errors of metabolism improve phenomics-based diagnosis.

    Science.gov (United States)

    Lee, Jessica J Y; Gottlieb, Michael M; Lever, Jake; Jones, Steven J M; Blau, Nenad; van Karnebeek, Clara D M; Wasserman, Wyeth W

    2018-05-01

    Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contributions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.

  7. EVOLVE 2014 International Conference

    CERN Document Server

    Tantar, Emilia; Sun, Jian-Qiao; Zhang, Wei; Ding, Qian; Schütze, Oliver; Emmerich, Michael; Legrand, Pierrick; Moral, Pierre; Coello, Carlos

    2014-01-01

    This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1–4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitioner’s view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitioner’s perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the confe...

  8. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii.

    Science.gov (United States)

    Bhandari, Jaya; Muhammad, BushraTaj; Thapa, Pratiksha; Shrestha, Bhupal Govinda

    2017-02-08

    There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC 50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC 50 value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.

  9. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications.

    Science.gov (United States)

    Deslouches, Berthony; Di, Y Peter

    2017-07-11

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.

  10. Imidazoles and benzimidazoles as tubulin-modulators for anti-cancer therapy.

    Science.gov (United States)

    Torres, Fernando C; García-Rubiño, M Eugenia; Lozano-López, César; Kawano, Daniel F; Eifler-Lima, Vera L; von Poser, Gilsane L; Campos, Joaquín M

    2015-01-01

    Imidazoles and benzimidazoles are privileged heterocyclic bioactive compounds used with success in the clinical practice of innumerous diseases. Although there are many advancements in cancer therapy, microtubules remain as one of the few macromolecular targets validated for planning active anti-cancer compounds, and the design of drugs that modulate microtubule dynamics in unknown sites of tubulin is one of the goals of the medicinal chemistry. The discussion of the role of new and commercially available imidazole and benzimidazole derivatives as tubulin modulators is scattered throughout scientific literature, and indicates that these compounds have a tubulin modulation mechanism different from that of tubulin modulators clinically available, such as paclitaxel, docetaxel, vincristine and vinblastine. In fact, recent literature indicates that these derivatives inhibit microtubule formation binding to the colchicine site, present good pharmacokinetic properties and are capable of overcoming multidrug resistance in many cell lines. The understanding of the mechanisms involved in the imidazoles/benzimidazoles modulation of microtubule dynamics is very important to develop new strategies to overcome the resistance to anti-cancer drugs and to discover new biomarkers and targets for cancer chemotherapy.

  11. Are community pharmacists equipped to ensure the safe use of oral anticancer therapy in the community setting? Results of a cross-country survey of community pharmacists in Canada.

    Science.gov (United States)

    Abbott, Rick; Edwards, Scott; Whelan, Maria; Edwards, Jonathan; Dranitsaris, George

    2014-02-01

    Oral anticancer agents offer significant benefits over parenteral anticancer therapy in terms of patient convenience and reduced intrusiveness. Oral anticancer agents give many cancer patients freedom from numerous hospital visits, allowing them to obtain their medications from their local community pharmacy. However, a major concern with increased use of oral anticancer agents is shift of responsibility in ensuring the proper use of anticancer agents from the hospital/clinical oncology team to the patient/caregiver and other healthcare providers such as the community pharmacists who may not be appropriately trained for this. This study assessed the readiness of community pharmacists across Canada to play this increased role with respect to oral anticancer agents. Using a structured electronic mailing strategy, a standardized survey was mailed to practicing pharmacists in five provinces where community pharmacists were dispensing the majority of oral anticancer agents. In addition to collecting basic demographic and their practice setting, the survey assessed the pharmacists' knowledge regarding cancer therapy and oral anticancer agents in particular, their education needs and access to resources on oral anticancer agents, the quality of prescriptions for oral anticancer agents received by them in terms of the required elements, their role in patient education, and steps to enhance patient and personal safety. There were 352 responses to the survey. Only 13.6% of respondents felt that they had received adequate oncology education at the undergraduate level and approximately 19% had attended a continuing education event related to oncology in the past 2 years. Only 24% of the pharmacists who responded were familiar with the common doses of oral anticancer agents and only 9% felt comfortable educating patients on these medications. A substantial portion of community pharmacists in Canada lack a solid understanding of oral anticancer agents and thus are poorly

  12. Anticancer Activity of Toxins from Bee and Snake Venom-An Overview on Ovarian Cancer.

    Science.gov (United States)

    Moga, Marius Alexandru; Dimienescu, Oana Gabriela; Arvătescu, Cristian Andrei; Ifteni, Petru; Pleş, Liana

    2018-03-19

    Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways are being used as targets for new anticancer treatments. Various venoms and their toxins have shown possible anticancer effects on human cancer cell lines, providing new perspectives in drug development. In this review, we observed the effects of natural toxins from bee and snake venom and the mechanisms through which they can inhibit the growth and proliferation of cancer cells. We also researched how several types of natural molecules from venom can sensitize ovarian cancer cells to conventional chemotherapy, with many toxins being helpful for developing new anticancer drugs. This approach could improve the efficiency of standard therapies and could allow the administration of decreased doses of chemotherapy. Natural toxins from bee and snake venom could become potential candidates for the future treatment of different types of cancer. It is important to continue these studies concerning therapeutic drugs from natural resource and, more importantly, to investigate their mechanism of action on cancer cells.

  13. Childhood asthma-predictive phenotype.

    Science.gov (United States)

    Guilbert, Theresa W; Mauger, David T; Lemanske, Robert F

    2014-01-01

    Wheezing is a fairly common symptom in early childhood, but only some of these toddlers will experience continued wheezing symptoms in later childhood. The definition of the asthma-predictive phenotype is in children with frequent, recurrent wheezing in early life who have risk factors associated with the continuation of asthma symptoms in later life. Several asthma-predictive phenotypes were developed retrospectively based on large, longitudinal cohort studies; however, it can be difficult to differentiate these phenotypes clinically as the expression of symptoms, and risk factors can change with time. Genetic, environmental, developmental, and host factors and their interactions may contribute to the development, severity, and persistence of the asthma phenotype over time. Key characteristics that distinguish the childhood asthma-predictive phenotype include the following: male sex; a history of wheezing, with lower respiratory tract infections; history of parental asthma; history of atopic dermatitis; eosinophilia; early sensitization to food or aeroallergens; or lower lung function in early life. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  15. Mentoring: An Evolving Relationship.

    Science.gov (United States)

    Block, Michelle; Florczak, Kristine L

    2017-04-01

    The column concerns itself with mentoring as an evolving relationship between mentor and mentee. The collegiate mentoring model, the transformational transcendence model, and the humanbecoming mentoring model are considered in light of a dialogue with mentors at a Midwest university and conclusions are drawn.

  16. Optimization of personalized therapies for anticancer treatment.

    Science.gov (United States)

    Vazquez, Alexei

    2013-04-12

    As today, there are hundreds of targeted therapies for the treatment of cancer, many of which have companion biomarkers that are in use to inform treatment decisions. If we would consider this whole arsenal of targeted therapies as a treatment option for every patient, very soon we will reach a scenario where each patient is positive for several markers suggesting their treatment with several targeted therapies. Given the documented side effects of anticancer drugs, it is clear that such a strategy is unfeasible. Here, we propose a strategy that optimizes the design of combinatorial therapies to achieve the best response rates with the minimal toxicity. In this methodology markers are assigned to drugs such that we achieve a high overall response rate while using personalized combinations of minimal size. We tested this methodology in an in silico cancer patient cohort, constructed from in vitro data for 714 cell lines and 138 drugs reported by the Sanger Institute. Our analysis indicates that, even in the context of personalized medicine, combinations of three or more drugs are required to achieve high response rates. Furthermore, patient-to-patient variations in pharmacokinetics have a significant impact in the overall response rate. A 10 fold increase in the pharmacokinetics variations resulted in a significant drop the overall response rate. The design of optimal combinatorial therapy for anticancer treatment requires a transition from the one-drug/one-biomarker approach to global strategies that simultaneously assign makers to a catalog of drugs. The methodology reported here provides a framework to achieve this transition.

  17. Acute Hyperglycemia Associated with Anti-Cancer Medication

    Directory of Open Access Journals (Sweden)

    Yul Hwangbo

    2017-03-01

    Full Text Available Hyperglycemia during chemotherapy occurs in approximately 10% to 30% of patients. Glucocorticoids and L-asparaginase are well known to cause acute hyperglycemia during chemotherapy. Long-term hyperglycemia is also frequently observed, especially in patients with hematologic malignancies treated with L-asparaginase-based regimens and total body irradiation. Glucocorticoid-induced hyperglycemia often develops because of increased insulin resistance, diminished insulin secretion, and exaggerated hepatic glucose output. Screening strategies for this condition include random glucose testing, hemoglobin A1c testing, oral glucose loading, and fasting plasma glucose screens. The management of hyperglycemia starts with insulin or sulfonylurea, depending on the type, dose, and delivery of the glucocorticoid formulation. Mammalian target of rapamycin (mTOR inhibitors are associated with a high incidence of hyperglycemia, ranging from 13% to 50%. Immunotherapy, such as anti-programmed death 1 (PD-1 antibody treatment, induces hyperglycemia with a prevalence of 0.1%. The proposed mechanism of immunotherapy-induced hyperglycemia is an autoimmune process (insulitis. Withdrawal of the PD-1 inhibitor is the primary treatment for severe hyperglycemia. The efficacy of glucocorticoid therapy is not fully established and the decision to resume PD-1 inhibitor therapy depends on the severity of the hyperglycemia. Diabetic patients should achieve optimized glycemic control before initiating treatment, and glucose levels should be monitored periodically in patients initiating mTOR inhibitor or PD-1 inhibitor therapy. With regard to hyperglycemia caused by anti-cancer therapy, frequent monitoring and proper management are important for promoting the efficacy of anti-cancer therapy and improving patients' quality of life.

  18. Anticancer Properties of Distinct Antimalarial Drug Classes

    Science.gov (United States)

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  19. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  20. Peptides with Dual Antimicrobial and Anticancer Activities

    Science.gov (United States)

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-02-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting towards intracellular targets, which increases their success comparatively to specific one-target drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.

  1. Nonsynonymous substitution rate (Ka is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2011-02-01

    Full Text Available Abstract Background Mammalian genome sequence data are being acquired in large quantities and at enormous speeds. We now have a tremendous opportunity to better understand which genes are the most variable or conserved, and what their particular functions and evolutionary dynamics are, through comparative genomics. Results We chose human and eleven other high-coverage mammalian genome data–as well as an avian genome as an outgroup–to analyze orthologous protein-coding genes using nonsynonymous (Ka and synonymous (Ks substitution rates. After evaluating eight commonly-used methods of Ka and Ks calculation, we observed that these methods yielded a nearly uniform result when estimating Ka, but not Ks (or Ka/Ks. When sorting genes based on Ka, we noticed that fast-evolving and slow-evolving genes often belonged to different functional classes, with respect to species-specificity and lineage-specificity. In particular, we identified two functional classes of genes in the acquired immune system. Fast-evolving genes coded for signal-transducing proteins, such as receptors, ligands, cytokines, and CDs (cluster of differentiation, mostly surface proteins, whereas the slow-evolving genes were for function-modulating proteins, such as kinases and adaptor proteins. In addition, among slow-evolving genes that had functions related to the central nervous system, neurodegenerative disease-related pathways were enriched significantly in most mammalian species. We also confirmed that gene expression was negatively correlated with evolution rate, i.e. slow-evolving genes were expressed at higher levels than fast-evolving genes. Our results indicated that the functional specializations of the three major mammalian clades were: sensory perception and oncogenesis in primates, reproduction and hormone regulation in large mammals, and immunity and angiotensin in rodents. Conclusion Our study suggests that Ka calculation, which is less biased compared to Ks and Ka

  2. HLBT-100: a highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L.

    Science.gov (United States)

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Ayeah, Kenneth N; Bryant, Joseph

    2017-01-01

    The incidence and mortalities from cancers remain on the rise worldwide. Despite significant efforts to discover and develop novel anticancer agents, many cancers remain in the unmet need category. As such, efforts to discover and develop new and more effective and less toxic agents against cancer remain a top global priority. Our drug discovery approach is natural products based with a focus on plants. Tillandsia recurvata (L.) L. is one of the plants selected by our research team for further studies based on previous bioactivity findings on the anticancer activity of this plant. The plant biomass was extracted using supercritical fluid extraction technology with CO 2 as the mobile phase. Bioactivity guided isolation was achieved by use of chromatographic technics combined with anti-proliferative assays to determine the active fraction and subsequently the pure compound. Following in house screening, the identified molecule was submitted to the US National Cancer Institute for screening on the NCI60 cell line panel using standard protocols. Effect of HLBT-100 on apoptosis, caspase 3/7, cell cycle and DNA fragmentation were assessed using standard protocols. Antiangiogenic activity was carried out using the ex vivo rat aortic ring assay. A flavonoid of the flavanone class was isolated from T. recurvata (L.) L. with potent anticancer activity. The molecule was code named as HLBT-100 (also referred to as HLBT-001). The compound inhibited brain cancer (U87 MG), breast cancer (MDA-MB231), leukemia (MV4-11), melanoma (A375), and neuroblastoma (IMR-32) with IC 50 concentrations of 0.054, 0.030, 0.024, 0.003 and 0.05 µM, respectively. The molecule also exhibited broad anticancer activity in the NCI60 panel inhibiting especially hematological, colon, CNS, melanoma, ovarian, breast and prostate cancers. Twenty-three of the NCI60 cell lines were inhibited with GI 50 values <0.100 µM. In terms of potential mechanisms of action, the molecule demonstrated effect on the

  3. Phylogenetic Tree Analysis of the Cold-Hot Nature of Traditional Chinese Marine Medicine for Possible Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Xianjun Fu

    2017-01-01

    Full Text Available Traditional Chinese Marine Medicine (TCMM represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1 Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2 Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3 Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources.

  4. An integrated Drosophila model system reveals unique properties for F14512, a novel polyamine-containing anticancer drug that targets topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Sonia Chelouah

    Full Text Available F14512 is a novel anti-tumor molecule based on an epipodophyllotoxin core coupled to a cancer-cell vectoring spermine moiety. This polyamine linkage is assumed to ensure the preferential uptake of F14512 by cancer cells, strong interaction with DNA and potent inhibition of topoisomerase II (Topo II. The antitumor activity of F14512 in human tumor models is significantly higher than that of other epipodophyllotoxins in spite of a lower induction of DNA breakage. Hence, the demonstrated superiority of F14512 over other Topo II poisons might not result solely from its preferential uptake by cancer cells, but could also be due to unique effects on Topo II interactions with DNA. To further dissect the mechanism of action of F14512, we used Drosophila melanogaster mutants whose genetic background leads to an easily scored phenotype that is sensitive to changes in Topo II activity and/or localization. F14512 has antiproliferative properties in Drosophila cells and stabilizes ternary Topo II/DNA cleavable complexes at unique sites located in moderately repeated sequences, suggesting that the drug specifically targets a select and limited subset of genomic sequences. Feeding F14512 to developing mutant Drosophila larvae led to the recovery of flies expressing a striking phenotype, "Eye wide shut," where one eye is replaced by a first thoracic segment. Other recovered F14512-induced gain- and loss-of-function phenotypes similarly correspond to precise genetic dysfunctions. These complex in vivo results obtained in a whole developing organism can be reconciled with known genetic anomalies and constitute a remarkable instance of specific alterations of gene expression by ingestion of a drug. "Drosophila-based anticancer pharmacology" hence reveals unique properties for F14512, demonstrating the usefulness of an assay system that provides a low-cost, rapid and effective complement to mammalian models and permits the elucidation of fundamental mechanisms of

  5. A “Forward Genomics” Approach Links Genotype to Phenotype using Independent Phenotypic Losses among Related Species

    Directory of Open Access Journals (Sweden)

    Michael Hiller

    2012-10-01

    Full Text Available Genotype-phenotype mapping is hampered by countless genomic changes between species. We introduce a computational “forward genomics” strategy that—given only an independently lost phenotype and whole genomes—matches genomic and phenotypic loss patterns to associate specific genomic regions with this phenotype. We conducted genome-wide screens for two metabolic phenotypes. First, our approach correctly matches the inactivated Gulo gene exactly with the species that lost the ability to synthesize vitamin C. Second, we attribute naturally low biliary phospholipid levels in guinea pigs and horses to the inactivated phospholipid transporter Abcb4. Human ABCB4 mutations also result in low phospholipid levels but lead to severe liver disease, suggesting compensatory mechanisms in guinea pig and horse. Our simulation studies, counts of independent changes in existing phenotype surveys, and the forthcoming availability of many new genomes all suggest that forward genomics can be applied to many phenotypes, including those relevant for human evolution and disease.

  6. Interactively Evolving Compositional Sound Synthesis Networks

    DEFF Research Database (Denmark)

    Jónsson, Björn Þór; Hoover, Amy K.; Risi, Sebastian

    2015-01-01

    the space of potential sounds that can be generated through such compositional sound synthesis networks (CSSNs). To study the effect of evolution on subjective appreciation, participants in a listener study ranked evolved timbres by personal preference, resulting in preferences skewed toward the first......While the success of electronic music often relies on the uniqueness and quality of selected timbres, many musicians struggle with complicated and expensive equipment and techniques to create their desired sounds. Instead, this paper presents a technique for producing novel timbres that are evolved...

  7. High throughput screening of South African plants for anti-cancer properties

    CSIR Research Space (South Africa)

    Fouché, Gerda

    2008-11-01

    Full Text Available Plants have a long history of use in the treatment of cancer and over 60% of currently used anti-cancer agents are derived in one way or another from natural sources. South Africa has a rich plant biodiversity with only a limited number reported...

  8. Mitochondrial complex II, a novel target for anti-cancer agents

    Czech Academy of Sciences Publication Activity Database

    Klučková, Katarína; Bezawork-Geleta, A.; Rohlena, Jakub; Dong, L.; Neužil, Jiří

    2013-01-01

    Roč. 1827, č. 5 (2013), s. 552-564 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GAP301/10/1937; GA ČR GAP301/12/1851 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitochondrion * Complex II * Anti-cancer agent Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.829, year: 2013

  9. A test for pre-adapted phenotypic plasticity in the invasive tree Acer negundo L.

    Science.gov (United States)

    Lamarque, Laurent J; Porté, Annabel J; Eymeric, Camille; Lasnier, Jean-Baptiste; Lortie, Christopher J; Delzon, Sylvain

    2013-01-01

    Phenotypic plasticity is a key mechanism associated with the spread of exotic plants and previous studies have found that invasive species are generally more plastic than co-occurring species. Comparatively, the evolution of phenotypic plasticity in plant invasion has received less attention, and in particular, the genetic basis of plasticity is largely unexamined. Native from North America, Acer negundo L. is aggressively impacting the riparian forests of southern and eastern Europe thanks to higher plasticity relative to co-occurring native species. We therefore tested here whether invasive populations have evolved increased plasticity since introduction. The performance of 1152 seedlings from 8 native and 8 invasive populations was compared in response to nutrient availability. Irrespective of nutrients, invasive populations had higher growth and greater allocation to above-ground biomass relative to their native conspecifics. More importantly, invasive genotypes did not show increased plasticity in any of the 20 traits examined. This result suggests that the high magnitude of plasticity to nutrient variation of invasive seedlings might be pre-adapted in the native range. Invasiveness of A. negundo could be explained by higher mean values of traits due to genetic differentiation rather than by evolution of increased plasticity.

  10. Evolving effective incremental SAT solvers with GP

    OpenAIRE

    Bader, Mohamed; Poli, R.

    2008-01-01

    Hyper-Heuristics could simply be defined as heuristics to choose other heuristics, and it is a way of combining existing heuristics to generate new ones. In a Hyper-Heuristic framework, the framework is used for evolving effective incremental (Inc*) solvers for SAT. We test the evolved heuristics (IncHH) against other known local search heuristics on a variety of benchmark SAT problems.

  11. Research Progress in the Modification of Quercetin Leading to Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Alessandro Massi

    2017-07-01

    Full Text Available The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016.

  12. Phytosterols as a natural anticancer agent: Current status and future perspective.

    Science.gov (United States)

    Shahzad, Naiyer; Khan, Wajahatullah; Md, Shadab; Ali, Asgar; Saluja, Sundeep Singh; Sharma, Sadhana; Al-Allaf, Faisal A; Abduljaleel, Zainularifeen; Ibrahim, Ibrahim Abdel Aziz; Abdel-Wahab, Ali Fathi; Afify, Mohamed Abdelaziz; Al-Ghamdi, Saeed Saeed

    2017-04-01

    Phytosterols are naturally occurring compounds in plants, structurally similar to cholesterol. The human diet is quite abundant in sitosterol and campesterol. Phytosterols are known to have various bioactive properties including reducing intestinal cholesterol absorption which alleviates blood LDL-cholesterol and cardiovascular problems. It is indicated that phytosterol rich diets may reduce cancer risk by 20%. Phytosterols may also affect host systems, enabling antitumor responses by improving immune response recognition of cancer, affecting the hormone dependent endocrine tumor growth, and by sterol biosynthesis modulation. Moreover, phytosterols have also exhibited properties that directly inhibit tumor growth, including reduced cell cycle progression, apoptosis induction, and tumor metastasis inhibition. The objective of this review is to summarize the current knowledge on occurrences, chemistry, pharmacokinetics and potential anticancer properties of phytosterols in vitro and in vivo. In conclusion, anticancer effects of phytosterols have strongly been suggested and support their dietary inclusion to prevent and treat cancers. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Lentinan Properties in Anticancer Therapy: A Review on the Last 12-Year Literature

    Czech Academy of Sciences Publication Activity Database

    Vannucci, Luca; Šíma, Petr; Větvička, V.; Křižan, Jiří

    2017-01-01

    Roč. 13, č. 1 (2017), s. 50-61 ISSN 1553-619X Institutional support: RVO:61388971 Keywords : Lentinan Properties * Anticancer Therapy Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology

  14. Anticancer Efficacy of Cordyceps militaris Ethanol Extract in a Xenografted Leukemia Model

    Directory of Open Access Journals (Sweden)

    Jae Gwang Park

    2017-01-01

    Full Text Available Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3β (p-GSK3β and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3β-related caspase-3-dependent apoptosis.

  15. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent.

    Science.gov (United States)

    Arjunan, Nithya; Kumari, Henry Linda Jeeva; Singaravelu, Chandra Mohan; Kandasamy, Ruckmani; Kandasamy, Jothivenkatachalam

    2016-11-01

    Chitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed. The optical, structural, spectral, morphological and elemental studies of the biosynthesized chitosan-silver (CS-Ag) nanocomposites were characterized by several techniques. The synthesized CS-Ag nanocomposites exhibit particle size around 20nm and were further exploited for potent biological applications in nanomedicine due to their nanometric sizes and biocompatibility of chitosan. The antimicrobial activity of the biosynthesized CS-Ag nanocomposites exhibits zone of inhibition ranged between 09.666±0.577 and 19.000±1.000 (mm). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were from 8 to 128μgmL -1 and 16 to 256μgmL -1 respectively, with the highest antimicrobial activity shown against Gram-negative Salmonella sp. The synergistic effect of chitosan and silver as a composite in nanometric size revealed significant IC 50 value of 29.35μgmL -1 and a maximum of 95.56% inhibition at 100μgmL -1 against A549 lung cancer cell line, resulting in potent anticancer effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Investigation of anticancer potential of hypophyllanthin and phyllanthin against breast cancer by in vitro and in vivo methods

    Directory of Open Access Journals (Sweden)

    Madhukiran Parvathaneni

    2014-02-01

    Full Text Available Objective: To investigate the in vitro and in vivo anticancer activities of hypophyllanthin and phyllanthin isolated from Phyllanthus amarus Schum & Thonn against breast cancer. Methods: In vitro anticancer activity was evaluated against two cell lines (MCF-7 and MDAMB-231 using MTT assay. In vivo anticancer activity was tested using Sprague-Dawley rats with N-methyl-N-nitrosourea induced mammary cancer. Results: In vitro studies demonstrated a dose-dependent inhibitory effect on cell growth with IC50 values of (35.18依1.48 µg/mL (hypophyllanthin and (32.51依0.95 µg/mL (phyllanthin for MCF-7; (38.74 依1.24 (hypophyllanthin and (32.2依1.17 (phyllanthin for MDA-MB-231 breast cancer cell lines. Tumor weights per group at doses of 5 and 10 mg/kg/day for hypophyllanthin (12.82 and 12.06 g and phyllanthin (11.95 and 8.87 g treated groups were significantly (P<0.001 lower than untreated N-methyl-N-nitrosourea group (35.85. Conclusions: Results of the present research work indicated that the isolated lignan compounds, hypophyllanthin and phyllanthin showed significant anticancer activities against breast cancer, in vitro and in vivo.

  17. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.

    Science.gov (United States)

    Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S

    2014-07-21

    Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for

  18. GC-MS analysis, Antibacterial, Antioxidant and Anticancer activity of essential oil of Pinus roxburghii from Kashmir, India

    OpenAIRE

    Wajaht A. Shah; Mahpara Qadir; Javid A. Banday

    2014-01-01

    This work was carried out to evaluate chemical composition, antibacterial, antioxidant and anticancer activity of Pinus roxburghii essential oil. The oil was extracted by hydro-distillation which was analysed through GC-MS. The antibacterial activity was evaluated by agar well diffusion method and antioxidant activity was evaluated through DPPH assay while as anticancer activity was evaluated through MTT method. Alpha-pinene and beta-pinene were the major constituents present in the oil. This...

  19. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    Science.gov (United States)

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  20. Phenotypic changes contributing to Enterobacter gergoviae biocide resistance.

    Science.gov (United States)

    Périamé, M; Philippe, N; Condell, O; Fanning, S; Pagès, J-M; Davin-Regli, A

    2015-08-01

    Enterobacter gergoviae is a recurrent contaminant of cosmetic and hygiene products. To understand how this bacterium adapts to biocides, we studied Ent. gergoviae CIP 76.01 and its triclosan and Methylisothiazolinone-chloromethylisothiazolinone (MIT-CMIT) tolerant isogenic mutants. They were compared with others also isolated from contaminated cosmetics. Phenotypic differences were noted and these included changes in the bacterial envelope and flagella along with differences in motility, and biofilm growth rates. Triclosan and MIT-CMIT derivatives expressed flagella and other MIT-CMIT derivatives exhibited some external appendages. Those bacteria expressing a high-level minimal inhibitory concentration to MIT-CMIT, expressed a strong biofilm formation. No differential phenotypes were noted for carbon source utilisation. Enterobacter gergoviae demonstrated a diverse response to both of these preservatives contained in cosmetic preparations, depending on their concentrations. Interestingly, this adaptive response is associated with modifications of filament structure-related proteins contributing to increase the organism motility and the production of biofilm. Recurrent contaminations of cosmetics products by Ent. gergoviae, needed a better understanding concerning the bacterial adaptation to preservative agents, with particular concern to triclosan and MIT-CMIT. We demonstrated that bacteria response is associated to various mechanisms represented by expression of external appendages (pili or fimbriae) that control cell motility and biofilm formation and evolving as the concentration of biocides adaptation increased. Such mechanisms which are not chemical specific can also promote a cross-resistance to other biocidal agents. The characterization of Ent. gergoviae adaptability to biocides allows industry to adjust the ranges of concentrations and composition of preservatives in formula. © 2015 The Society for Applied Microbiology.

  1. Non-canonical programmed cell death mechanisms triggered by natural compounds.

    Science.gov (United States)

    Diederich, Marc; Cerella, Claudia

    2016-10-01

    Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

    Directory of Open Access Journals (Sweden)

    Jonathan D Mosley

    Full Text Available A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1 non-synonymous SNPs (nsSNPs associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1 thrombosis, evaluated in a population of 1,655 African Americans; and (2 four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs, and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03, driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10-5, FDR p = 0.03 (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L while the additive model showed enrichment related to chromatid segregation (p = 4×10-6, FDR p = 0.005 (KIF25, PINX1. We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.

  3. Evolving Intelligent Systems Methodology and Applications

    CERN Document Server

    Angelov, Plamen; Kasabov, Nik

    2010-01-01

    From theory to techniques, the first all-in-one resource for EIS. There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on th

  4. Bioanalysis and metabolite identification of anticancer drugs in mass balance studies

    NARCIS (Netherlands)

    Dubbelman, A.C.

    2012-01-01

    Anticancer drugs are valuable assets in the treatment of cancer. However, before a new drug is admitted to the market and available for patients, it has to survive a lengthy path of pre-clinical and clinical studies to demonstrate its efficacy and safety. Critical information required to understand

  5. Water extract of Ashwagandha leaves has anticancer activity: identification of an active component and its mechanism of action.

    Directory of Open Access Journals (Sweden)

    Renu Wadhwa

    Full Text Available BACKGROUND: Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX. METHODOLOGY/PRINCIPAL FINDINGS: Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX was detected by in vitro and in vivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s. Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression in vivo. Its active anticancer component was identified as triethylene glycol (TEG. Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest, normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression. We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. CONCLUSION: We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine.

  6. The spatial patterns of directional phenotypic selection.

    Science.gov (United States)

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  7. The spatial patterns of directional phenotypic selection

    KAUST Repository

    Siepielski, Adam M.

    2013-09-12

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Methods Evolved by Observation

    Science.gov (United States)

    Montessori, Maria

    2016-01-01

    Montessori's idea of the child's nature and the teacher's perceptiveness begins with amazing simplicity, and when she speaks of "methods evolved," she is unveiling a methodological system for observation. She begins with the early childhood explosion into writing, which is a familiar child phenomenon that Montessori has written about…

  9. Genetic Interactions of STAT3 and Anticancer Drug Development

    International Nuclear Information System (INIS)

    Fang, Bingliang

    2014-01-01

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors

  10. Anticancer activity and apoptosis inducing effect of methanolic extract of Cordia dichotoma against human cancer cell line

    Directory of Open Access Journals (Sweden)

    Md. Azizur Rahman

    2015-03-01

    Full Text Available MTT assay and DAPI staining test were performed to evaluate anticancer potential and to assess apoptosis inducing effect of methanolic extract of Cordia dichotoma leaves (MECD against human cervical cancer cell line (HeLa. Changes in MMP and intracellular ROS level were also assessed by JC-1 and DCFH-DA staining. Total phenolic contents were determined by colorimetric principle. Levels of statistical significance were determined by one-way analysis of variance followed by Dunnett’s posttest. Results showed that MECD with obtained IC50 of 202 µg/mL inhibited in vitro proliferation of human cervical cancer cells and induced apoptosis indicating its promising anticancer activity as compared to the standard tamoxifen with obtained IC50 of 48 µg/mL. Total phenolic contents was found to be 176.5 mg GAE/g dried extract. It was concluded that MECD possess promising anticancer activity and induce apoptosis.

  11. Evolving artificial metalloenzymes via random mutagenesis

    Science.gov (United States)

    Yang, Hao; Swartz, Alan M.; Park, Hyun June; Srivastava, Poonam; Ellis-Guardiola, Ken; Upp, David M.; Lee, Gihoon; Belsare, Ketaki; Gu, Yifan; Zhang, Chen; Moellering, Raymond E.; Lewis, Jared C.

    2018-03-01

    Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.

  12. In Vitro Anticancer Activity of Ethanolic Extract of Euphorbia hirta (L ...

    African Journals Online (AJOL)

    In the present study, In vitro anticancer effects of Euphorbia hirta were investigated. The objectives of this study are to find the presence of secondary metabolites by preliminary phytochemical investigation and FTIR analysis in the Euphorbia hirta. Ethanolic leaf extract of Euphorbia hirta was tested for its cytotoxicity against ...

  13. The chemistry and biology of the anticancer agent, taxol: A review ...

    African Journals Online (AJOL)

    Taxol, is conceivably the single most essential anticancer drug, today. It was first isolated in exceptionally low yield from the bark of the Western Yew, Taxus brevifolia. The clinical effectiveness of Taxol has impelled an incredible endeavor to obtain this intricate molecule synthetically. Owing to the chemical complication of ...

  14. Novel α, β-Unsaturated Sophoridinic Derivatives: Design, Synthesis, Molecular Docking and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Yiming Xu

    2017-11-01

    Full Text Available Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound.

  15. Synthesis and in vitro anti-cancer evaluation of luteinizing hormone-releasing hormone-conjugated peptide.

    Science.gov (United States)

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Huang, Wenlong; Qian, Hai

    2015-11-01

    Luteinizing hormone-releasing hormone (LHRH) is a decapeptide hormone released from the hypothalamus and shows high affinity binding to the LHRH receptors. It is reported that several cancer cells also express LHRH receptors such as breast, ovarian, prostatic, bladder and others. In this study, we linked B1, an anti-cancer peptide, to LHRH and its analogs to improve the activity against cancer cells with LHRH receptor. Biological evaluation revealed that TB1, the peptide contains triptorelin sequence, present favorable anti-cancer activity as well as plasma stability. Further investigations disclosed that TB1 trigger apoptosis by activating the mitochondria-cytochrome c-caspase apoptotic pathway, it also exhibited the anti-migratory effect on cancer cells.

  16. The evolution of resource adaptation: how generalist and specialist consumers evolve.

    Science.gov (United States)

    Ma, Junling; Levin, Simon A

    2006-07-01

    Why and how specialist and generalist strategies evolve are important questions in evolutionary ecology. In this paper, with the method of adaptive dynamics and evolutionary branching, we identify conditions that select for specialist and generalist strategies. Generally, generalist strategies evolve if there is a switching benefit; specialists evolve if there is a switching cost. If the switching cost is large, specialists always evolve. If the switching cost is small, even though the consumer will first evolve toward a generalist strategy, it will eventually branch into two specialists.

  17. Ranking in evolving complex networks

    Science.gov (United States)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  18. Impedimetric toxicity assay in microfluidics using free and liposome-encapsulated anticancer drugs

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Zor, Kinga; Montini, Lucia

    2015-01-01

    In this work, we have developed a microfluidic cytotoxicity assay for a cell culture and detection platform, which enables both fluid handling and electrochemical/optical detection. The cytotoxic effect of anticancer drugs doxorubicin (DOX), oxaliplatin (OX) as well as OX-loaded liposomes, develo...

  19. Clinical phenotypes of asthma

    NARCIS (Netherlands)

    Bel, Elisabeth H.

    2004-01-01

    PURPOSE OF REVIEW: Asthma is a phenotypically heterogeneous disorder and, over the years, many different clinical subtypes of asthma have been described. A precise definition of asthma phenotypes is now becoming more and more important, not only for a better understanding of pathophysiologic

  20. Synthesis, characterization and anticancer studies of new steroidal oxadiazole, pyrrole and pyrazole derivatives

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2015-07-01

    Full Text Available In the present study steroidal derivatives, 3β-[5′-mercapto-1′,3′,4′-oxadiazole-2-yl]methoxy cholest-5-ene 2, 3β-[2′,5′-dimethylpyrrole-1-yl]aminocarbonylmethoxycholest-5-ene 3 and 3β-[3′,5′-dimethyl pyrazole-1-yl]carbonylmethoxycholest-5-ene 4 have been synthesized from cholest-5-en-3β-O-acetyl hydrazide 1 using CS2/KOH, acetonyl acetone and acetyl acetone, respectively as reagents and are characterized by IR, 1H NMR,13C NMR, MS and elemental analysis. Compounds 2–4 were also evaluated for anticancer activity against human leukemia cell line (HL-60 by MTT assay and compound 4 displayed the promising behavior by showing better anticancer activity.

  1. Anticancer Principles from Medicinal Piper (胡椒 Hú Jiāo Plants

    Directory of Open Access Journals (Sweden)

    Yue-Hu Wang

    2014-01-01

    Full Text Available The ethnomedical uses of Piper (胡椒 Hú Jiāo plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles.

  2. Adaptation of Escherichia coli to glucose promotes evolvability in lactose.

    Science.gov (United States)

    Phillips, Kelly N; Castillo, Gerardo; Wünsche, Andrea; Cooper, Tim F

    2016-02-01

    The selective history of a population can influence its subsequent evolution, an effect known as historical contingency. We previously observed that five of six replicate populations that were evolved in a glucose-limited environment for 2000 generations, then switched to lactose for 1000 generations, had higher fitness increases in lactose than populations started directly from the ancestor. To test if selection in glucose systematically increased lactose evolvability, we started 12 replay populations--six from a population subsample and six from a single randomly selected clone--from each of the six glucose-evolved founder populations. These replay populations and 18 ancestral populations were evolved for 1000 generations in a lactose-limited environment. We found that replay populations were initially slightly less fit in lactose than the ancestor, but were more evolvable, in that they increased in fitness at a faster rate and to higher levels. This result indicates that evolution in the glucose environment resulted in genetic changes that increased the potential of genotypes to adapt to lactose. Genome sequencing identified four genes--iclR, nadR, spoT, and rbs--that were mutated in most glucose-evolved clones and are candidates for mediating increased evolvability. Our results demonstrate that short-term selective costs during selection in one environment can lead to changes in evolvability that confer longer term benefits. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  3. Evolving fuzzy rules for relaxed-criteria negotiation.

    Science.gov (United States)

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  4. DrawCompileEvolve: Sparking interactive evolutionary art with human creations

    DEFF Research Database (Denmark)

    Zhang, Jinhong; Taarnby, Rasmus; Liapis, Antonios

    2015-01-01

    This paper presents DrawCompileEvolve, a web-based drawing tool which allows users to draw simple primitive shapes, group them together or define patterns in their groupings (e.g. symmetry, repetition). The user’s vector drawing is then compiled into an indirectly encoded genetic representation......, which can be evolved interactively, allowing the user to change the image’s colors, patterns and ultimately transform it. The human artist has direct control while drawing the initial seed of an evolutionary run and indirect control while interactively evolving it, thus making DrawCompileEvolve a mixed...

  5. PRESCRIPTION PATTERN OF ANTICANCER DRUGS IN A TERTIARY CARE HOSPITAL

    Directory of Open Access Journals (Sweden)

    Mary Rohini

    2015-05-01

    Full Text Available Carcinoma is one of the most common cause of morbidity and mortality all over the world . Chemotherapy is main stay of treatment with other modalities in the management. Present study had been conducted to evaluate prescribing pattern of anticancer drugs. An observational, retrospective study was conducted in the oncology department of ESI hos pital over a period of one year. Data of patients greater than 19 years and diagnosed as carcinoma were included in the study. Out of 197 enrolled patients, majority were female (134, 68% and in the age group of 41 - 60 years (147, 74.61% patients. Carcino ma of breast (58, 29.44% was most commonly reported followed by carcinoma head and neck (46, 23.35%, and carcinoma cervix (34, 17.25%. Chemotherapy was commonly used as combination regimens (160, 81.21%. 5 - Fluoro Uracil (5 - FU and platinum based combin ation were most frequently prescribed (60, 30.45% especially in head and neck carcinoma (46, 23.35%. Platinum based combinations were also used in management of lung carcinoma. Dexamethasone, Ranitidine, Ondansetron, were used as palliative therapy eithe r to prevent or manage adverse reactions of anticancer drugs

  6. Thiolated pectin-doxorubicin conjugates: Synthesis, characterization and anticancer activity studies.

    Science.gov (United States)

    Cheewatanakornkool, Kamonrak; Niratisai, Sathit; Manchun, Somkamol; Dass, Crispin R; Sriamornsak, Pornsak

    2017-10-15

    In this paper, pectin was cross-linked by a coupling reaction with either thioglycolic acid or cystamine dihydrochloride to form thiolated pectins. The thiolated pectins were then coupled with doxorubicin (DOX) derivative to obtain thiolated pectin-DOX conjugates by two different methods, disulfide bond formation and disulfide bond exchange. The disulfide bond exchange method provided a simple, fast, and efficient approach for synthesis of thiolated pectin-DOX conjugates, compared to the disulfide bond formation. Characteristics, physicochemical properties, and morphology of thiolated pectins and thiolated pectin-DOX conjugates were determined. DOX content in thiolated pectin-DOX conjugates using low methoxy pectin was found to be higher than that using high methoxy pectin. The in vitro anticancer activity of thiolated pectin-DOX conjugates was significantly higher than that of free DOX, in mouse colon carcinoma and human bone osteosarcoma cells, but insignificantly different from that of free DOX, in human prostate cancer cells. Due to their promising anticancer activity in mouse colon carcinoma cells, the thiolated pectin-DOX conjugates might be suitable for building drug platform for colorectal cancer-targeted delivery of DOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    Science.gov (United States)

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention. PMID:25050366

  8. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Urszula Gawlik-Dziki

    2014-01-01

    Full Text Available This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities; however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention.

  9. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    Science.gov (United States)

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  10. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture

    Directory of Open Access Journals (Sweden)

    Tatsuya Usui

    2018-04-01

    Full Text Available Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61 decreases the cell viability of organoids compared with Notch (YO-01027, DAPT and Wnt (WAV939, Wnt-C59 signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.

  11. Genotype-phenotype associations in obesity dependent on definition of the obesity phenotype.

    Science.gov (United States)

    Kring, Sofia Inez Iqbal; Larsen, Lesli Hingstrup; Holst, Claus; Toubro, Søren; Hansen, Torben; Astrup, Arne; Pedersen, Oluf; Sørensen, Thorkild I A

    2008-01-01

    In previous studies of associations of variants in the genes UCP2, UCP3, PPARG2, CART, GRL, MC4R, MKKS, SHP, GHRL, and MCHR1 with obesity, we have used a case-control approach with cases defined by a threshold for BMI. In the present study, we assess the association of seven abdominal, peripheral, and overall obesity phenotypes, which were analyzed quantitatively, and thirteen candidate gene polymorphisms in these ten genes in the same cohort. Obese Caucasian men (n = 234, BMI >or= 31.0 kg/m(2)) and a randomly sampled non-obese group (n = 323), originally identified at the draft board examinations, were re-examined at median ages of 47.0 or 49.0 years by anthropometry and DEXA scanning. Obesity phenotypes included BMI, fat body mass index, waist circumference, waist for given BMI, intra-abdominal adipose tissue, hip circumference and lower body fat mass (%). Using logistic regression models, we estimated the odds for defined genotypes (dominant or recessive genetic transmission) in relation to z-scores of the phenotypes. The minor (rare) allele for SHP 512G>C (rs6659176) was associated with increased hip circumference. The minor allele for UCP2 Ins45bp was associated with increased BMI, increased abdominal obesity, and increased hip circumference. The minor allele for UCP2 -866G>A (rs6593669) was associated with borderline increased fat body mass index. The minor allele for MCHR1 100213G>A (rs133072) was associated with reduced abdominal obesity. None of the other genotype-phenotype combinations showed appreciable associations. If replicated in independent studies with focus on the specific phenotypes, our explorative studies suggest significant associations between some candidate gene polymorphisms and distinct obesity phenotypes, predicting beneficial and detrimental effects, depending on compartments for body fat accumulation. Copyright 2008 S. Karger AG, Basel.

  12. A new anticancer agent--131I BGTP

    International Nuclear Information System (INIS)

    He Jiaheng; Jiang Shubin; Wang Guanquan

    2007-12-01

    A new anticancer precursor, di-peptide[p-Boc-Gly-Tyr-NH(CH 2 ) 2 NH-PO (ONH 4 )-O-PhI*], was synthesized and labelled with 131 I using enveloped-tube technique, the labelling yield could reach 85%. Using cell coalescent method, the biological activity in vitro of the labelled compounds was evaluated, showing that the primary appetency was kept and not damaged obviously during labelling. Results on judgement of their stability, lipophilicity and toxicity demonstrated lower toxicity, higher lipophilicity and lower iodium disassociation percentage (<12% after 72 h); furthermore, a tumour-bearing animal model, was establishd successfully, on which, the biological properties of the labelled agent was studied. (authors)

  13. Synthesis and anticancer evaluation of spermatinamine analogues

    KAUST Repository

    Moosa, Basem

    2016-02-04

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcystiene carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines i.e. cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5 - 10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines.

  14. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.

    Science.gov (United States)

    Akhtar, Jawaid; Khan, Ahsan Ahmed; Ali, Zulphikar; Haider, Rafi; Shahar Yar, M

    2017-01-05

    The present review article offers a detailed account of the design strategies employed for the synthesis of nitrogen-containing anticancer agents. The results of different studies describe the N-heterocyclic ring system is a core structure in many synthetic compounds exhibiting a broad range of biological activities. Benzimidazole, benzothiazole, indole, acridine, oxadiazole, imidazole, isoxazole, pyrazole, triazoles, quinolines and quinazolines including others drugs containing pyridazine, pyridine and pyrimidines are covered. The following studies of these compounds suggested that these compounds showed their antitumor activities through multiple mechanisms including inhibiting protein kinase (CDK, MK-2, PLK1, kinesin-like protein Eg5 and IKK), topoisomerase I and II, microtubule inhibition, and many others. Our concise representation exploits the design and anticancer potency of these compounds. The direct comparison of anticancer activities with the standard enables a systematic analysis of the structure-activity relationship among the series. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. “Click” Synthesis of Dextran Macrostructures for Combinatorial-Designed Self-Assembled Nanoparticles Encapsulating Diverse Anticancer Therapeutics

    Science.gov (United States)

    Abeylath, Sampath C.; Amiji, Mansoor

    2011-01-01

    With the non-specific toxicity of anticancer drugs to healthy tissues upon systemic administration, formulations capable of enhanced selectivity in delivery to the tumor mass and cells are highly desirable. Based on the diversity of the drug payloads, we have investigated a combinatorial-designed strategy where the nano-sized formulations are tailored based on the physicochemical properties of the drug and the delivery needs. Individually functionalized C2 to C12 lipid-, thiol-, and poly(ethylene glycol) (PEG)-modified dextran derivatives were synthesized via “click” chemistry from O-pentynyl dextran and relevant azides. These functionalized dextrans in combination with anticancer drugs form nanoparticles by self-assembling in aqueous medium having PEG surface functionalization and intermolecular disulfide bonds. Using anticancer drugs with logP values ranging from −0.5 to 3.0, the optimized nanoparticles formulations were evaluated for preliminary cellular delivery and cytotoxic effects in SKOV3 human ovarian adenocarcinoma cells. The results show that with the appropriate selection of lipid-modified dextran, one can effectively tailor the self-assembled nano-formulation for intended therapeutic payload. PMID:21978947

  16. Obesity Paradox in Lung Cancer Prognosis: Evolving Biological Insights and Clinical Implications.

    Science.gov (United States)

    Zhang, Xueli; Liu, Yamin; Shao, Hua; Zheng, Xiao

    2017-10-01

    The survival rate of lung cancer remains low despite the progress of surgery and chemotherapy. With the increasing comorbidity of obesity in patients with lung cancer, new challenges are emerging in the management of this patient population. A key issue of interest is the prognostic effect of obesity on surgical and chemotherapeutic outcomes in patients with lung cancer, which is fueled by the growing observation of survival benefits in overweight or obese patients. This unexpected inverse relationship between obesity and lung cancer mortality, called the obesity paradox, remains poorly understood. The evolving insights into the heterogeneity of obesity phenotypes and associated biological connections with lung cancer progression in recent years may help explain some of the seemingly paradoxical relationship, and well-designed clinical studies looking at the causal role of obesity-associated molecules are expected. Here, we examine potential biological mechanisms behind the protective effects of obesity in lung cancer. We highlight the need to clarify the clinical implications of this relationship toward an updated intervention strategy in the clinical care of patients with lung cancer and obesity. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  17. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    International Nuclear Information System (INIS)

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.; Chiou, Robin Y.; Kan, L.-S.; Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y.; Lin, S.-B.

    2008-01-01

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo IIα activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC 50 of 0.9 μM, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC 50 of 9.6 μM, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 μM. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC 50 about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design

  18. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  19. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp

    2015-05-15

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.

  20. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    International Nuclear Information System (INIS)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya

    2015-01-01

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action