Multi-objective mixture-based iterated density estimation evolutionary algorithms
Thierens, D.; Bosman, P.A.N.
2001-01-01
We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability
Economic modeling using evolutionary algorithms : the effect of binary encoding of strategies
Waltman, L.R.; Eck, van N.J.; Dekker, Rommert; Kaymak, U.
2011-01-01
We are concerned with evolutionary algorithms that are employed for economic modeling purposes. We focus in particular on evolutionary algorithms that use a binary encoding of strategies. These algorithms, commonly referred to as genetic algorithms, are popular in agent-based computational economics
Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo
2008-01-01
In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)
Evaluation of models generated via hybrid evolutionary algorithms ...
African Journals Online (AJOL)
2016-04-02
Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.
Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Richard Lamb
2015-09-01
Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.
Directory of Open Access Journals (Sweden)
Dazhi Jiang
2015-01-01
Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.
A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2013-01-01
Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
An evolutionary algorithm for model selection
Energy Technology Data Exchange (ETDEWEB)
Bicker, Karl [CERN, Geneva (Switzerland); Chung, Suh-Urk; Friedrich, Jan; Grube, Boris; Haas, Florian; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan; Ryabchikov, Dimitry [Technische Univ. Muenchen (Germany)
2013-07-01
When performing partial-wave analyses of multi-body final states, the choice of the fit model, i.e. the set of waves to be used in the fit, can significantly alter the results of the partial wave fit. Traditionally, the models were chosen based on physical arguments and by observing the changes in log-likelihood of the fits. To reduce possible bias in the model selection process, an evolutionary algorithm was developed based on a Bayesian goodness-of-fit criterion which takes into account the model complexity. Starting from systematically constructed pools of waves which contain significantly more waves than the typical fit model, the algorithm yields a model with an optimal log-likelihood and with a number of partial waves which is appropriate for the number of events in the data. Partial waves with small contributions to the total intensity are penalized and likely to be dropped during the selection process, as are models were excessive correlations between single waves occur. Due to the automated nature of the model selection, a much larger part of the model space can be explored than would be possible in a manual selection. In addition the method allows to assess the dependence of the fit result on the fit model which is an important contribution to the systematic uncertainty.
An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization
Directory of Open Access Journals (Sweden)
Rafał Dreżewski
2017-08-01
Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Infrastructure system restoration planning using evolutionary algorithms
Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.
2016-01-01
This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.
DEFF Research Database (Denmark)
Li, Wuzhao; Wang, Lei; Cai, Xingjuan
2015-01-01
and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...
Convex hull ranking algorithm for multi-objective evolutionary algorithms
Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.
2012-01-01
Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity
International Nuclear Information System (INIS)
Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.
2012-01-01
Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector
Comparison of evolutionary algorithms in gene regulatory network model inference.
LENUS (Irish Health Repository)
2010-01-01
ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.
Industrial Applications of Evolutionary Algorithms
Sanchez, Ernesto; Tonda, Alberto
2012-01-01
This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the
Evolutionary algorithms for mobile ad hoc networks
Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal
2014-01-01
Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...
DEFF Research Database (Denmark)
Wang, Yong; Cai, Zixing; Zhou, Yuren
2009-01-01
A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...
A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks
Directory of Open Access Journals (Sweden)
Sho Fukuda
2014-12-01
Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks
Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network
Xu, Xiao-Feng
2018-03-01
Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.
Analog Group Delay Equalizers Design Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
M. Laipert
2006-04-01
Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.
THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL
Energy Technology Data Exchange (ETDEWEB)
Werth, D.; O' Steen, L.
2008-02-11
We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.
The wind power prediction research based on mind evolutionary algorithm
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
Algorithmic Mechanism Design of Evolutionary Computation.
Pei, Yan
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based
A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics
Directory of Open Access Journals (Sweden)
Shan Li
2014-01-01
Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
Mitavskiy, Boris; Cannings, Chris
2009-01-01
The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.
Directory of Open Access Journals (Sweden)
P. Fischer
2018-04-01
Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
Diversity-Guided Evolutionary Algorithms
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær
2002-01-01
Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...
Dash, Rajashree
2017-11-01
Forecasting purchasing power of one currency with respect to another currency is always an interesting topic in the field of financial time series prediction. Despite the existence of several traditional and computational models for currency exchange rate forecasting, there is always a need for developing simpler and more efficient model, which will produce better prediction capability. In this paper, an evolutionary framework is proposed by using an improved shuffled frog leaping (ISFL) algorithm with a computationally efficient functional link artificial neural network (CEFLANN) for prediction of currency exchange rate. The model is validated by observing the monthly prediction measures obtained for three currency exchange data sets such as USD/CAD, USD/CHF, and USD/JPY accumulated within same period of time. The model performance is also compared with two other evolutionary learning techniques such as Shuffled frog leaping algorithm and Particle Swarm optimization algorithm. Practical analysis of results suggest that, the proposed model developed using the ISFL algorithm with CEFLANN network is a promising predictor model for currency exchange rate prediction compared to other models included in the study.
Directory of Open Access Journals (Sweden)
Wei Yue
2015-01-01
Full Text Available The major issues for mean-variance-skewness models are the errors in estimations that cause corner solutions and low diversity in the portfolio. In this paper, a multiobjective fuzzy portfolio selection model with transaction cost and liquidity is proposed to maintain the diversity of portfolio. In addition, we have designed a multiobjective evolutionary algorithm based on decomposition of the objective space to maintain the diversity of obtained solutions. The algorithm is used to obtain a set of Pareto-optimal portfolios with good diversity and convergence. To demonstrate the effectiveness of the proposed model and algorithm, the performance of the proposed algorithm is compared with the classic MOEA/D and NSGA-II through some numerical examples based on the data of the Shanghai Stock Exchange Market. Simulation results show that our proposed algorithm is able to obtain better diversity and more evenly distributed Pareto front than the other two algorithms and the proposed model can maintain quite well the diversity of portfolio. The purpose of this paper is to deal with portfolio problems in the weighted possibilistic mean-variance-skewness (MVS and possibilistic mean-variance-skewness-entropy (MVS-E frameworks with transaction cost and liquidity and to provide different Pareto-optimal investment strategies as diversified as possible for investors at a time, rather than one strategy for investors at a time.
Performance comparison of some evolutionary algorithms on job shop scheduling problems
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Modelling Evolutionary Algorithms with Stochastic Differential Equations.
Heredia, Jorge Pérez
2017-11-20
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.
Directory of Open Access Journals (Sweden)
Afnizanfaizal Abdullah
Full Text Available The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
Comparison of evolutionary computation algorithms for solving bi ...
Indian Academy of Sciences (India)
failure probability. Multiobjective Evolutionary Computation algorithms (MOEAs) are well-suited for Multiobjective task scheduling on heterogeneous environment. The two Multi-Objective Evolutionary Algorithms such as Multiobjective Genetic. Algorithm (MOGA) and Multiobjective Evolutionary Programming (MOEP) with.
A chaos-based evolutionary algorithm for general nonlinear programming problems
International Nuclear Information System (INIS)
El-Shorbagy, M.A.; Mousa, A.A.; Nasr, S.M.
2016-01-01
In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.
The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing.
Dimopoulos, Christos; Papageorgis, Panagiotis; Boustras, George; Efstathiades, Christodoulos
2017-04-01
This paper discusses the concept of ageing as this applies to the operation of Evolutionary Algorithms, and examines its relationship to the concept of ageing as this is understood for human beings. Evolutionary Algorithms constitute a family of search algorithms which base their operation on an analogy from the evolution of species in nature. The paper initially provides the necessary knowledge on the operation of Evolutionary Algorithms, focusing on the use of ageing strategies during the implementation of the evolutionary process. Background knowledge on the concept of ageing, as this is defined scientifically for biological systems, is subsequently presented. Based on this information, the paper provides a comparison between the two ageing concepts, and discusses the philosophical inspirations which can be drawn for human ageing based on the operation of Evolutionary Algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Hui Lu
2014-01-01
Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.
Cheng, Liantao; Zhang, Fenghui; Kang, Xiaoyu; Wang, Lang
2018-05-01
In evolutionary population synthesis (EPS) models, we need to convert stellar evolutionary parameters into spectra via interpolation in a stellar spectral library. For theoretical stellar spectral libraries, the spectrum grid is homogeneous on the effective-temperature and gravity plane for a given metallicity. It is relatively easy to derive stellar spectra. For empirical stellar spectral libraries, stellar parameters are irregularly distributed and the interpolation algorithm is relatively complicated. In those EPS models that use empirical stellar spectral libraries, different algorithms are used and the codes are often not released. Moreover, these algorithms are often complicated. In this work, based on a radial basis function (RBF) network, we present a new spectrum interpolation algorithm and its code. Compared with the other interpolation algorithms that are used in EPS models, it can be easily understood and is highly efficient in terms of computation. The code is written in MATLAB scripts and can be used on any computer system. Using it, we can obtain the interpolated spectra from a library or a combination of libraries. We apply this algorithm to several stellar spectral libraries (such as MILES, ELODIE-3.1 and STELIB-3.2) and give the integrated spectral energy distributions (ISEDs) of stellar populations (with ages from 1 Myr to 14 Gyr) by combining them with Yunnan-III isochrones. Our results show that the differences caused by the adoption of different EPS model components are less than 0.2 dex. All data about the stellar population ISEDs in this work and the RBF spectrum interpolation code can be obtained by request from the first author or downloaded from http://www1.ynao.ac.cn/˜zhangfh.
A Note on Evolutionary Algorithms and Its Applications
Bhargava, Shifali
2013-01-01
This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.
National Research Council Canada - National Science Library
Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram
2005-01-01
The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...
Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.
Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard
2012-06-07
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.
Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam
2018-04-01
Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods
Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che
2014-01-16
To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high
Efficient fractal-based mutation in evolutionary algorithms from iterated function systems
Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.
2018-03-01
In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.
Comparing Evolutionary Strategies on a Biobjective Cultural Algorithm
Directory of Open Access Journals (Sweden)
Carolina Lagos
2014-01-01
Full Text Available Evolutionary algorithms have been widely used to solve large and complex optimisation problems. Cultural algorithms (CAs are evolutionary algorithms that have been used to solve both single and, to a less extent, multiobjective optimisation problems. In order to solve these optimisation problems, CAs make use of different strategies such as normative knowledge, historical knowledge, circumstantial knowledge, and among others. In this paper we present a comparison among CAs that make use of different evolutionary strategies; the first one implements a historical knowledge, the second one considers a circumstantial knowledge, and the third one implements a normative knowledge. These CAs are applied on a biobjective uncapacitated facility location problem (BOUFLP, the biobjective version of the well-known uncapacitated facility location problem. To the best of our knowledge, only few articles have applied evolutionary multiobjective algorithms on the BOUFLP and none of those has focused on the impact of the evolutionary strategy on the algorithm performance. Our biobjective cultural algorithm, called BOCA, obtains important improvements when compared to other well-known evolutionary biobjective optimisation algorithms such as PAES and NSGA-II. The conflicting objective functions considered in this study are cost minimisation and coverage maximisation. Solutions obtained by each algorithm are compared using a hypervolume S metric.
International Nuclear Information System (INIS)
Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang
2013-01-01
Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.
Variants of Evolutionary Algorithms for Real-World Applications
Weise, Thomas; Michalewicz, Zbigniew
2012-01-01
Evolutionary Algorithms (EAs) are population-based, stochastic search algorithms that mimic natural evolution. Due to their ability to find excellent solutions for conventionally hard and dynamic problems within acceptable time, EAs have attracted interest from many researchers and practitioners in recent years. This book “Variants of Evolutionary Algorithms for Real-World Applications” aims to promote the practitioner’s view on EAs by providing a comprehensive discussion of how EAs can be adapted to the requirements of various applications in the real-world domains. It comprises 14 chapters, including an introductory chapter re-visiting the fundamental question of what an EA is and other chapters addressing a range of real-world problems such as production process planning, inventory system and supply chain network optimisation, task-based jobs assignment, planning for CNC-based work piece construction, mechanical/ship design tasks that involve runtime-intense simulations, data mining for the predictio...
Evolutionary algorithms applied to Landau-gauge fixing
International Nuclear Information System (INIS)
Markham, J.F.
1998-01-01
Current algorithms used to put a lattice gauge configuration into Landau gauge either suffer from the problem of critical slowing-down or involve an additions computational expense to overcome it. Evolutionary Algorithms (EAs), which have been widely applied to other global optimisation problems, may be of use in gauge fixing. Also, being global, they should not suffer from critical slowing-down as do local gradient based algorithms. We apply EA'S and also a Steepest Descent (SD) based method to the problem of Landau Gauge Fixing and compare their performance. (authors)
An Extensible Component-Based Multi-Objective Evolutionary Algorithm Framework
DEFF Research Database (Denmark)
Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2017-01-01
The ability to easily modify the problem definition is currently missing in Multi-Objective Evolutionary Algorithms (MOEA). Existing MOEA frameworks do not support dynamic addition and extension of the problem formulation. The existing frameworks require a re-specification of the problem definition...
Introduction to Evolutionary Algorithms
Yu, Xinjie
2010-01-01
Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti
International Nuclear Information System (INIS)
Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim
2012-01-01
A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.
Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Lvjiang Yin
2016-12-01
Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.
Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine
2012-12-09
Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a
An Efficient Evolutionary Based Method For Image Segmentation
Aslanzadeh, Roohollah; Qazanfari, Kazem; Rahmati, Mohammad
2017-01-01
The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the t...
Directory of Open Access Journals (Sweden)
Boyang Qu
2017-12-01
Full Text Available The intermittency of wind power and the large-scale integration of electric vehicles (EVs bring new challenges to the reliability and economy of power system dispatching. In this paper, a novel multi-objective dynamic economic emission dispatch (DEED model is proposed considering the EVs and uncertainties of wind power. The total fuel cost and pollutant emission are considered as the optimization objectives, and the vehicle to grid (V2G power and the conventional generator output power are set as the decision variables. The stochastic wind power is derived by Weibull probability distribution function. Under the premise of meeting the system energy and user’s travel demand, the charging and discharging behavior of the EVs are dynamically managed. Moreover, we propose a two-step dynamic constraint processing strategy for decision variables based on penalty function, and, on this basis, the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D algorithm is improved. The proposed model and approach are verified by the 10-generator system. The results demonstrate that the proposed DEED model and the improved MOEA/D algorithm are effective and reasonable.
The (1+λ) evolutionary algorithm with self-adjusting mutation rate
DEFF Research Database (Denmark)
Doerr, Benjamin; Witt, Carsten; Gießen, Christian
2017-01-01
We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then upd......We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate...... is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the (1 + A) evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the (1 + A) EA finds the optimum in an expected optimization...... time (number of fitness evaluations) of O(nA/log A + n log n). This time is asymptotically smaller than the optimization time of the classic (1 + A) EA. Previous work shows that this performance is best-possible among all A-parallel mutation-based unbiased black-box algorithms. This result shows...
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2013-12-01
Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.
The Research of Disease Spots Extraction Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Kangshun Li
2017-01-01
Full Text Available According to the characteristics of maize disease spot performance in the image, this paper designs two-histogram segmentation method based on evolutionary algorithm, which combined with the analysis of image of maize diseases and insect pests, with full consideration of color and texture characteristic of the lesion of pests and diseases, the chroma and gray image, composed of two tuples to build a two-dimensional histogram, solves the problem of one-dimensional histograms that cannot be clearly divided into target and background bimodal distribution and improved the traditional two-dimensional histogram application in pest damage lesion extraction. The chromosome coding suitable for the characteristics of lesion image is designed based on second segmentation of the genetic algorithm Otsu. Determining initial population with analysis results of lesion image, parallel selection, optimal preservation strategy, and adaptive mutation operator are used to improve the search efficiency. Finally, by setting the fluctuation threshold, we continue to search for the best threshold in the range of fluctuations for implementation of global search and local search.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2009-08-15
This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)
An Evolutionary Algorithm to Mine High-Utility Itemsets
Directory of Open Access Journals (Sweden)
Jerry Chun-Wei Lin
2015-01-01
Full Text Available High-utility itemset mining (HUIM is a critical issue in recent years since it can be used to reveal the profitable products by considering both the quantity and profit factors instead of frequent itemset mining (FIM of association rules (ARs. In this paper, an evolutionary algorithm is presented to efficiently mine high-utility itemsets (HUIs based on the binary particle swarm optimization. A maximal pattern (MP-tree strcutrue is further designed to solve the combinational problem in the evolution process. Substantial experiments on real-life datasets show that the proposed binary PSO-based algorithm has better results compared to the state-of-the-art GA-based algorithm.
Directory of Open Access Journals (Sweden)
Fuqing Zhao
2016-01-01
Full Text Available A fixed evolutionary mechanism is usually adopted in the multiobjective evolutionary algorithms and their operators are static during the evolutionary process, which causes the algorithm not to fully exploit the search space and is easy to trap in local optima. In this paper, a SPEA2 algorithm which is based on adaptive selection evolution operators (AOSPEA is proposed. The proposed algorithm can adaptively select simulated binary crossover, polynomial mutation, and differential evolution operator during the evolutionary process according to their contribution to the external archive. Meanwhile, the convergence performance of the proposed algorithm is analyzed with Markov chain. Simulation results on the standard benchmark functions reveal that the performance of the proposed algorithm outperforms the other classical multiobjective evolutionary algorithms.
A Self-adaptive Dynamic Evaluation Model for Diabetes Mellitus, Based on Evolutionary Strategies
Directory of Open Access Journals (Sweden)
An-Jiang Lu
2016-03-01
Full Text Available In order to evaluate diabetes mellitus objectively and accurately, this paper builds a self-adaptive dynamic evaluation model for diabetes mellitus, based on evolutionary strategies. First of all, on the basis of a formalized description of the evolutionary process of diabetes syndromes, using a state transition function, it judges whether a disease is evolutionary, through an excitation parameter. It then, provides evidence for the rebuilding of the evaluation index system. After that, by abstracting and rebuilding the composition of evaluation indexes, it makes use of a heuristic algorithm to determine the composition of the evolved evaluation index set of diabetes mellitus, It then, calculates the weight of each index in the evolved evaluation index set of diabetes mellitus by building a dependency matrix and realizes the self-adaptive dynamic evaluation of diabetes mellitus under an evolutionary environment. Using this evaluation model, it is possible to, quantify all kinds of diagnoses and treatment experiences of diabetes and finally to adopt ideal diagnoses and treatment measures for different patients with diabetics.
A Novel Evolutionary Algorithm for Designing Robust Analog Filters
Directory of Open Access Journals (Sweden)
Shaobo Li
2018-03-01
Full Text Available Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP coupled with bond graph modeling. We applied our GP-based robust design (GPRD algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art real-parameter genetic algorithm (GA, our GPRD algorithm with a fitness criterion rewarding robustness, with respect to parameter perturbations, can evolve more robust filters than what was achieved through parameter tuning alone. We also find that inappropriate GA tuning may mislead the search process and that multiple-simulation and perturbed fitness evaluation methods for evolving robustness have complementary behaviors with no absolute advantage of one over the other.
Françoise Benz
2004-01-01
ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...
A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems
Directory of Open Access Journals (Sweden)
Yu Lei
2014-01-01
Full Text Available A double evolutionary pool memetic algorithm is proposed to solve the examination timetabling problem. To improve the performance of the proposed algorithm, two evolutionary pools, that is, the main evolutionary pool and the secondary evolutionary pool, are employed. The genetic operators have been specially designed to fit the examination timetabling problem. A simplified version of the simulated annealing strategy is designed to speed the convergence of the algorithm. A clonal mechanism is introduced to preserve population diversity. Extensive experiments carried out on 12 benchmark examination timetabling instances show that the proposed algorithm is able to produce promising results for the uncapacitated examination timetabling problem.
Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking
Poluyan, Sergey; Ershov, Nikolay
2018-02-01
In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.
ADAPTIVE SELECTION OF AUXILIARY OBJECTIVES IN MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS
Directory of Open Access Journals (Sweden)
I. A. Petrova
2016-05-01
Full Text Available Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems.
Self-organized modularization in evolutionary algorithms.
Dauscher, Peter; Uthmann, Thomas
2005-01-01
The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).
Evolutionary Algorithms for Boolean Queries Optimization
Czech Academy of Sciences Publication Activity Database
Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.
2006-01-01
Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics
Fast stochastic algorithm for simulating evolutionary population dynamics
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
EvAg: A Scalable Peer-to-Peer Evolutionary Algorithm
Laredo, J.L.J.; Eiben, A.E.; van Steen, M.R.; Merelo, J.J.
2010-01-01
This paper studies the scalability of an Evolutionary Algorithm (EA) whose population is structured by means of a gossiping protocol and where the evolutionary operators act exclusively within the local neighborhoods. This makes the algorithm inherently suited for parallel execution in a
Strength Pareto Evolutionary Algorithm using Self-Organizing Data Analysis Techniques
Directory of Open Access Journals (Sweden)
Ionut Balan
2015-03-01
Full Text Available Multiobjective optimization is widely used in problems solving from a variety of areas. To solve such problems there was developed a set of algorithms, most of them based on evolutionary techniques. One of the algorithms from this class, which gives quite good results is SPEA2, method which is the basis of the proposed algorithm in this paper. Results from this paper are obtained by running these two algorithms on a flow-shop problem.
Synthesis of logic circuits with evolutionary algorithms
Energy Technology Data Exchange (ETDEWEB)
JONES,JAKE S.; DAVIDSON,GEORGE S.
2000-01-26
In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.
Jiang, Shouyong; Yang, Shengxiang
2016-02-01
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær
population and many generations, which essentially turns the problem into a series of related static problems. To our surprise, the control problem could easily be solved when optimized like this. To further examine this, we compared the EA with a particle swarm and a local search approach, which we...... simulate an evolutionary process where the goal is to evolve solutions by means of crossover, mutation, and selection based on their quality (fitness) with respect to the optimization problem at hand. Evolutionary algorithms (EAs) are highly relevant for industrial applications, because they are capable...... of handling problems with non-linear constraints, multiple objectives, and dynamic components – properties that frequently appear in real-world problems. This thesis presents research in three fundamental areas of EC; fitness function design, methods for parameter control, and techniques for multimodal...
Physical Mapping Using Simulated Annealing and Evolutionary Algorithms
DEFF Research Database (Denmark)
Vesterstrøm, Jacob Svaneborg
2003-01-01
optimization method when searching for an ordering of the fragments in PM. In this paper, we applied an evolutionary algorithm to the problem, and compared its performance to that of SA and local search on simulated PM data, in order to determine the important factors in finding a good ordering of the segments....... The analysis highlights the importance of a good PM model, a well-correlated fitness function, and high quality hybridization data. We suggest that future work in PM should focus on design of more reliable fitness functions and on developing error-screening algorithms....
Evolutionary Algorithms Application Analysis in Biometric Systems
Directory of Open Access Journals (Sweden)
N. Goranin
2010-01-01
Full Text Available Wide usage of biometric information for person identity verification purposes, terrorist acts prevention measures and authenticationprocess simplification in computer systems has raised significant attention to reliability and efficiency of biometricsystems. Modern biometric systems still face many reliability and efficiency related issues such as reference databasesearch speed, errors while recognizing of biometric information or automating biometric feature extraction. Current scientificinvestigations show that application of evolutionary algorithms may significantly improve biometric systems. In thisarticle we provide a comprehensive review of main scientific research done in sphere of evolutionary algorithm applicationfor biometric system parameter improvement.
Hidden long evolutionary memory in a model biochemical network
Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2018-04-01
We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.
Hybridizing Evolutionary Algorithms with Opportunistic Local Search
DEFF Research Database (Denmark)
Gießen, Christian
2013-01-01
There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...
Evolutionary modeling-based approach for model errors correction
Directory of Open Access Journals (Sweden)
S. Q. Wan
2012-08-01
Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."
On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.
Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf
of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...
Directory of Open Access Journals (Sweden)
Chandramouli Anandaraman
2012-01-01
Full Text Available A new evolutionary computation algorithm, Superbug algorithm, which simulates evolution of bacteria in a culture, is proposed. The algorithm is developed for solving large scale optimization problems such as scheduling, transportation and assignment problems. In this work, the algorithm optimizes machine schedules in a Flexible Manufacturing System (FMS by minimizing makespan. The FMS comprises of four machines and two identical Automated Guided Vehicles (AGVs. AGVs are used for carrying jobs between the Load/Unload (L/U station and the machines. Experimental results indicate the efficiency of the proposed algorithm in its optimization performance in scheduling is noticeably superior to other evolutionary algorithms when compared to the best results reported in the literature for FMS Scheduling.
System optimization for HVAC energy management using the robust evolutionary algorithm
International Nuclear Information System (INIS)
Fong, K.F.; Hanby, V.I.; Chow, T.T.
2009-01-01
For an installed centralized heating, ventilating and air conditioning (HVAC) system, appropriate energy management measures would achieve energy conservation targets through the optimal control and operation. The performance optimization of conventional HVAC systems may be handled by operation experience, but it may not cover different optimization scenarios and parameters in response to a variety of load and weather conditions. In this regard, it is common to apply the suitable simulation-optimization technique to model the system then determine the required operation parameters. The particular plant simulation models can be built up by either using the available simulation programs or a system of mathematical expressions. To handle the simulation models, iterations would be involved in the numerical solution methods. Since the gradient information is not easily available due to the complex nature of equations, the traditional gradient-based optimization methods are not applicable for this kind of system models. For the heuristic optimization methods, the continual search is commonly necessary, and the system function call is required for each search. The frequency of simulation function calls would then be a time-determining step, and an efficient optimization method is crucial, in order to find the solution through a number of function calls in a reasonable computational period. In this paper, the robust evolutionary algorithm (REA) is presented to tackle this nature of the HVAC simulation models. REA is based on one of the paradigms of evolutionary algorithm, evolution strategy, which is a stochastic population-based searching technique emphasized on mutation. The REA, which incorporates the Cauchy deterministic mutation, tournament selection and arithmetic recombination, would provide a synergetic effect for optimal search. The REA is effective to cope with the complex simulation models, as well as those represented by explicit mathematical expressions of
Evolutionary Algorithm for Optimal Vaccination Scheme
International Nuclear Information System (INIS)
Parousis-Orthodoxou, K J; Vlachos, D S
2014-01-01
The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease
A Clustal Alignment Improver Using Evolutionary Algorithms
DEFF Research Database (Denmark)
Thomsen, Rene; Fogel, Gary B.; Krink, Thimo
2002-01-01
Multiple sequence alignment (MSA) is a crucial task in bioinformatics. In this paper we extended previous work with evolutionary algorithms (EA) by using MSA solutions obtained from the wellknown Clustal V algorithm as a candidate solution seed of the initial EA population. Our results clearly show...
Cash Management Policies By Evolutionary Models: A Comparison Using The MILLER-ORR Model
Directory of Open Access Journals (Sweden)
Marcelo Botelho da Costa Moraes
2013-10-01
Full Text Available This work aims to apply genetic algorithms (GA and particle swarm optimization (PSO to managing cash balance, comparing performance results between computational models and the Miller-Orr model. Thus, the paper proposes the application of computational evolutionary models to minimize the total cost of cash balance maintenance, obtaining the parameters for a cash management policy, using assumptions presented in the literature, considering the cost of maintenance and opportunity for cost of cash. For such, we developed computational experiments from cash flows simulated to implement the algorithms. For a control purpose, an algorithm has been developed that uses the Miller-Orr model defining the lower bound parameter, which is not obtained by the original model. The results indicate that evolutionary algorithms present better results than the Miller-Orr model, with prevalence for PSO algorithm in results.
Parameterless evolutionary algorithm applied to the nuclear reload problem
International Nuclear Information System (INIS)
Caldas, Gustavo Henrique Flores; Schirru, Roberto
2008-01-01
In this work, an evolutionary algorithm with no parameters called FPBIL (parameter free PBIL) is developed based on PBIL (population-based incremental learning). Moreover, the analysis reveals how the parameters from PBIL can be replaced by self-adaptable mechanisms which appear from the radically different form by which the evolution is processed. Despite the advantages, the FPBIL reveals itself compact and relatively modest in the use of computational resources. The FPBIL is then applied to the nuclear reload problem. The experimental results observed are compared to those of other works and corroborate to affirm the superiority of the new algorithm
Energy Technology Data Exchange (ETDEWEB)
Adam Lurka; Peter Swanson [Central Mining Institute, Katowice (Poland)
2009-09-15
Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations. 13 refs., 5 figs., 4 tabs.
Individual-based modeling of ecological and evolutionary processes
DeAngelis, Donald L.; Mooij, Wolf M.
2005-01-01
Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.
International Nuclear Information System (INIS)
Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud
2012-01-01
Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.
EFFICIENT MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR JOB SHOP SCHEDULING
Institute of Scientific and Technical Information of China (English)
Lei Deming; Wu Zhiming
2005-01-01
A new representation method is first presented based on priority rules. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority rule. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed,in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling.
Individual-based modeling of ecological and evolutionary processes
DeAngelis, D.L.; Mooij, W.M.
2005-01-01
Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential and difference equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis
Implementation of an evolutionary algorithm in planning investment in a power distribution system
Directory of Open Access Journals (Sweden)
Carlos Andrés García Montoya
2011-06-01
Full Text Available The definition of an investment plan to implement in a distribution power system, is a task that constantly faced by utilities. This work presents a methodology for determining the investment plan for a distribution power system under a shortterm, using as a criterion for evaluating investment projects, associated costs and customers benefit from its implementation. Given the number of projects carried out annually on the system, the definition of an investment plan requires the use of computational tools to evaluate, a set of possibilities, the one that best suits the needs of the present system and better results. That is why in the job, implementing a multi objective evolutionary algorithm SPEA (Strength Pareto Evolutionary Algorithm, which, based on the principles of Pareto optimality, it deliver to the planning expert, the best solutions found in the optimization process. The performance of the algorithm is tested using a set of projects to determine the best among the possible plans. We analyze also the effect of operators on the performance of evolutionary algorithm and results.
A Dynamic Neighborhood Learning-Based Gravitational Search Algorithm.
Zhang, Aizhu; Sun, Genyun; Ren, Jinchang; Li, Xiaodong; Wang, Zhenjie; Jia, Xiuping
2018-01-01
Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named , which stores those superior agents after fitness sorting in each iteration. Since the global property of remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA.
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
Multi-objective optimization of HVAC system with an evolutionary computation algorithm
International Nuclear Information System (INIS)
Kusiak, Andrew; Tang, Fan; Xu, Guanglin
2011-01-01
A data-mining approach for the optimization of a HVAC (heating, ventilation, and air conditioning) system is presented. A predictive model of the HVAC system is derived by data-mining algorithms, using a dataset collected from an experiment conducted at a research facility. To minimize the energy while maintaining the corresponding IAQ (indoor air quality) within a user-defined range, a multi-objective optimization model is developed. The solutions of this model are set points of the control system derived with an evolutionary computation algorithm. The controllable input variables - supply air temperature and supply air duct static pressure set points - are generated to reduce the energy use. The results produced by the evolutionary computation algorithm show that the control strategy saves energy by optimizing operations of an HVAC system. -- Highlights: → A data-mining approach for the optimization of a heating, ventilation, and air conditioning (HVAC) system is presented. → The data used in the project has been collected from an experiment conducted at an energy research facility. → The approach presented in the paper leads to accomplishing significant energy savings without compromising the indoor air quality. → The energy savings are accomplished by computing set points for the supply air temperature and the supply air duct static pressure.
Low emittance lattice optimization using a multi-objective evolutionary algorithm
International Nuclear Information System (INIS)
Gao Weiwei; Wang Lin; Li Weimin; He Duohui
2011-01-01
A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)
An Endosymbiotic Evolutionary Algorithm for the Hub Location-Routing Problem
Directory of Open Access Journals (Sweden)
Ji Ung Sun
2015-01-01
Full Text Available We consider a capacitated hub location-routing problem (HLRP which combines the hub location problem and multihub vehicle routing decisions. The HLRP not only determines the locations of the capacitated p-hubs within a set of potential hubs but also deals with the routes of the vehicles to meet the demands of customers. This problem is formulated as a 0-1 mixed integer programming model with the objective of the minimum total cost including routing cost, fixed hub cost, and fixed vehicle cost. As the HLRP has impractically demanding for the large sized problems, we develop a solution method based on the endosymbiotic evolutionary algorithm (EEA which solves hub location and vehicle routing problem simultaneously. The performance of the proposed algorithm is examined through a comparative study. The experimental results show that the proposed EEA can be a viable solution method for the supply chain network planning.
Rajesh Kumar; S.C. Kaushik; Raj Kumar; Ranjana Hans
2016-01-01
Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is s...
Exploitation of linkage learning in evolutionary algorithms
Chen, Ying-ping
2010-01-01
The exploitation of linkage learning is enhancing the performance of evolutionary algorithms. This monograph examines recent progress in linkage learning, with a series of focused technical chapters that cover developments and trends in the field.
General upper bounds on the runtime of parallel evolutionary algorithms.
Lässig, Jörg; Sudholt, Dirk
2014-01-01
We present a general method for analyzing the runtime of parallel evolutionary algorithms with spatially structured populations. Based on the fitness-level method, it yields upper bounds on the expected parallel runtime. This allows for a rigorous estimate of the speedup gained by parallelization. Tailored results are given for common migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph. Example applications for pseudo-Boolean optimization show that our method is easy to apply and that it gives powerful results. In our examples the performance guarantees improve with the density of the topology. Surprisingly, even sparse topologies such as ring graphs lead to a significant speedup for many functions while not increasing the total number of function evaluations by more than a constant factor. We also identify which number of processors lead to the best guaranteed speedups, thus giving hints on how to parameterize parallel evolutionary algorithms.
Guardado, J L; Rivas-Davalos, F; Torres, J; Maximov, S; Melgoza, E
2014-01-01
Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD) technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the Nondominated Sorting Genetic Algorithm II (NSGA-II). The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.
When do evolutionary algorithms optimize separable functions in parallel?
DEFF Research Database (Denmark)
Doerr, Benjamin; Sudholt, Dirk; Witt, Carsten
2013-01-01
is that evolutionary algorithms make progress on all subfunctions in parallel, so that optimizing a separable function does not take not much longer than optimizing the hardest subfunction-subfunctions are optimized "in parallel." We show that this is only partially true, already for the simple (1+1) evolutionary...... algorithm ((1+1) EA). For separable functions composed of k Boolean functions indeed the optimization time is the maximum optimization time of these functions times a small O(log k) overhead. More generally, for sums of weighted subfunctions that each attain non-negative integer values less than r = o(log1...
Design of synthetic biological logic circuits based on evolutionary algorithm.
Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei
2013-08-01
The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.
Improved multilayer OLED architecture using evolutionary genetic algorithm
International Nuclear Information System (INIS)
Quirino, W.G.; Teixeira, K.C.; Legnani, C.; Calil, V.L.; Messer, B.; Neto, O.P. Vilela; Pacheco, M.A.C.; Cremona, M.
2009-01-01
Organic light-emitting diodes (OLEDs) constitute a new class of emissive devices, which present high efficiency and low voltage operation, among other advantages over current technology. Multilayer architecture (M-OLED) is generally used to optimize these devices, specially overcoming the suppression of light emission due to the exciton recombination near the metal layers. However, improvement in recombination, transport and charge injection can also be achieved by blending electron and hole transporting layers into the same one. Graded emissive region devices can provide promising results regarding quantum and power efficiency and brightness, as well. The massive number of possible model configurations, however, suggests that a search algorithm would be more suitable for this matter. In this work, multilayer OLEDs were simulated and fabricated using Genetic Algorithms (GAs) as evolutionary strategy to improve their efficiency. Genetic Algorithms are stochastic algorithms based on genetic inheritance and Darwinian strife to survival. In our simulations, it was assumed a 50 nm width graded region, divided into five equally sized layers. The relative concentrations of the materials within each layer were optimized to obtain the lower V/J 0.5 ratio, where V is the applied voltage and J the current density. The best M-OLED architecture obtained by genetic algorithm presented a V/J 0.5 ratio nearly 7% lower than the value reported in the literature. In order to check the experimental validity of the improved results obtained in the simulations, two M-OLEDs with different architectures were fabricated by thermal deposition in high vacuum environment. The results of the comparison between simulation and some experiments are presented and discussed.
Analysis for Performance of Symbiosis Co-evolutionary Algorithm
根路銘, もえ子; 遠藤, 聡志; 山田, 孝治; 宮城, 隼夫; Nerome, Moeko; Endo, Satoshi; Yamada, Koji; Miyagi, Hayao
2000-01-01
In this paper, we analyze the behavior of symbiotic evolution algorithm for the N-Queens problem as benchmark problem for search methods in the field of aritificial intelligence. It is shown that this algorithm improves the ability of evolutionary search method. When the problem is solved by Genetic Algorithms (GAs), an ordinal representation is often used as one of gene conversion methods which convert from phenotype to genotype and reconvert. The representation can hinder occurrence of leth...
International Nuclear Information System (INIS)
Gomes, Alvaro; Antunes, Carlos Henggeler; Martins, Antonio Gomes
2005-01-01
This paper aims at presenting a multiple objective model to evaluate the attractiveness of the use of demand resources (through load management control actions) by different stakeholders and in diverse structure scenarios in electricity systems. For the sake of model flexibility, the multiple (and conflicting) objective functions of technical, economical and quality of service nature are able to capture distinct market scenarios and operating entities that may be interested in promoting load management activities. The computation of compromise solutions is made by resorting to evolutionary algorithms, which are well suited to tackle multiobjective problems of combinatorial nature herein involving the identification and selection of control actions to be applied to groups of loads. (Author)
WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
Directory of Open Access Journals (Sweden)
J. Zambrano
2018-01-01
Full Text Available Current methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a refitting procedure of all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems in a single step is proposed. This approach is based on a customized evolutionary algorithm (WH-EA able to look for the best BLA split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA estimation, the locations of poles and zeros are subtly modified within an adequate search space to allow a fine-tuning of the model. The performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identification benchmark.
Directory of Open Access Journals (Sweden)
Jie Zhang
2013-01-01
Full Text Available In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.
Zhang, Jie; Wang, Yuping; Feng, Junhong
2013-01-01
In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.
Evolutionary algorithm for vehicle driving cycle generation.
Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott
2011-09-01
Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.
Optimization of heat transfer utilizing graph based evolutionary algorithms
International Nuclear Information System (INIS)
Bryden, Kenneth M.; Ashlock, Daniel A.; McCorkle, Douglas S.; Urban, Gregory L.
2003-01-01
This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced
Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm
2009-03-10
xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences
Directory of Open Access Journals (Sweden)
J. L. Guardado
2014-01-01
Full Text Available Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2 and the Nondominated Sorting Genetic Algorithm II (NSGA-II. The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.
A Novel Evolutionary Algorithm Inspired by Beans Dispersal
Directory of Open Access Journals (Sweden)
Xiaoming Zhang
2013-02-01
Full Text Available Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wetsarsquo; research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications.
Sounds unheard of evolutionary algorithms as creative tools for the contemporary composer
DEFF Research Database (Denmark)
Dahlstedt, Palle
2004-01-01
Evolutionary algorithms are studied as tools for generating novel musical material in the form of musical scores and synthesized sounds. The choice of genetic representation defines a space of potential music. This space is explored using evolutionary algorithms, in search of useful musical mater...... composed with the tools described in the thesis are presented....
Food processing optimization using evolutionary algorithms | Enitan ...
African Journals Online (AJOL)
Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...
Virus evolutionary genetic algorithm for task collaboration of logistics distribution
Ning, Fanghua; Chen, Zichen; Xiong, Li
2005-12-01
In order to achieve JIT (Just-In-Time) level and clients' maximum satisfaction in logistics collaboration, a Virus Evolutionary Genetic Algorithm (VEGA) was put forward under double constraints of logistics resource and operation sequence. Based on mathematic description of a multiple objective function, the algorithm was designed to schedule logistics tasks with different due dates and allocate them to network members. By introducing a penalty item, make span and customers' satisfaction were expressed in fitness function. And a dynamic adaptive probability of infection was used to improve performance of local search. Compared to standard Genetic Algorithm (GA), experimental result illustrates the performance superiority of VEGA. So the VEGA can provide a powerful decision-making technique for optimizing resource configuration in logistics network.
Directory of Open Access Journals (Sweden)
B. Y. Qu
2017-01-01
Full Text Available Portfolio optimization problems involve selection of different assets to invest in order to maximize the overall return and minimize the overall risk simultaneously. The complexity of the optimal asset allocation problem increases with an increase in the number of assets available to select from for investing. The optimization problem becomes computationally challenging when there are more than a few hundreds of assets to select from. To reduce the complexity of large-scale portfolio optimization, two asset preselection procedures that consider return and risk of individual asset and pairwise correlation to remove assets that may not potentially be selected into any portfolio are proposed in this paper. With these asset preselection methods, the number of assets considered to be included in a portfolio can be increased to thousands. To test the effectiveness of the proposed methods, a Normalized Multiobjective Evolutionary Algorithm based on Decomposition (NMOEA/D algorithm and several other commonly used multiobjective evolutionary algorithms are applied and compared. Six experiments with different settings are carried out. The experimental results show that with the proposed methods the simulation time is reduced while return-risk trade-off performances are significantly improved. Meanwhile, the NMOEA/D is able to outperform other compared algorithms on all experiments according to the comparative analysis.
Modeling of pedestrian evacuation based on the particle swarm optimization algorithm
Zheng, Yaochen; Chen, Jianqiao; Wei, Junhong; Guo, Xiwei
2012-09-01
By applying the evolutionary algorithm of Particle Swarm Optimization (PSO), we have developed a new pedestrian evacuation model. In the new model, we first introduce the local pedestrian’s density concept which is defined as the number of pedestrians distributed in a certain area divided by the area. Both the maximum velocity and the size of a particle (pedestrian) are supposed to be functions of the local density. An attempt to account for the impact consequence between pedestrians is also made by introducing a threshold of injury into the model. The updating rule of the model possesses heterogeneous spatial and temporal characteristics. Numerical examples demonstrate that the model is capable of simulating the typical features of evacuation captured by CA (Cellular Automata) based models. As contrast to CA-based simulations, in which the velocity (via step size) of a pedestrian in each time step is a constant value and limited in several directions, the new model is more flexible in describing pedestrians’ velocities since they are not limited in discrete values and directions according to the new updating rule.
Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems
DEFF Research Database (Denmark)
Lissovoi, Andrei
the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...
Gorunescu, Florin; Belciug, Smaranda
2014-06-01
The purpose of this paper is twofold: first, to propose an evolutionary-based method for building a decision model and, second, to assess and validate the model's performance using five different real-world medical datasets (breast cancer and liver fibrosis) by comparing it with state-of-the-art machine learning techniques. The evolutionary-inspired approach has been used to develop the learning-based decision model in the following manner: the hybridization of algorithms has been considered as "crossover", while the development of new variants which can be thought of as "mutation". An appropriate hierarchy of the component algorithms was established based on a statistically built fitness measure. A synergetic decision-making process, based on a weighted voting system, involved the collaboration between the selected algorithms in making the final decision. Well-established statistical performance measures and comparison tests have been extensively used to design and implement the model. Finally, the proposed method has been tested on five medical datasets, out of which four publicly available, and contrasted with state-of-the-art techniques, showing its efficiency in supporting the medical decision-making process. Copyright © 2014 Elsevier Inc. All rights reserved.
Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad
2008-04-01
To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology
Aggregate meta-models for evolutionary multiobjective and many-objective optimization
Czech Academy of Sciences Publication Activity Database
Pilát, Martin; Neruda, Roman
Roč. 116, 20 September (2013), s. 392-402 ISSN 0925-2312 R&D Projects: GA ČR GAP202/11/1368 Institutional support: RVO:67985807 Keywords : evolutionary algorithms * multiobjective optimization * many-objective optimization * surrogate models * meta-models * memetic algorithm Subject RIV: IN - Informatics, Computer Science Impact factor: 2.005, year: 2013
Android malware detection based on evolutionary super-network
Yan, Haisheng; Peng, Lingling
2018-04-01
In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.
Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm
Directory of Open Access Journals (Sweden)
O. G. Monahov
2014-01-01
Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously
Prospective Algorithms for Quantum Evolutionary Computation
Sofge, Donald A.
2008-01-01
This effort examines the intersection of the emerging field of quantum computing and the more established field of evolutionary computation. The goal is to understand what benefits quantum computing might offer to computational intelligence and how computational intelligence paradigms might be implemented as quantum programs to be run on a future quantum computer. We critically examine proposed algorithms and methods for implementing computational intelligence paradigms, primarily focused on ...
Directory of Open Access Journals (Sweden)
Rajesh Kumar
2016-06-01
Full Text Available Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is selected using Fuzzy, TOPSIS, LINMAP and Shannon’s entropy decision making methods. Triple objective evolutionary approach applied to the proposed model gives power output, thermal efficiency, ecological function as (53.89 kW, 0.1611, −142 kW which are 29.78%, 25.86% and 21.13% lower in comparison with reversible system. Furthermore, the present study reflects the effect of various heat capacitance rates and component efficiencies on triple objectives in graphical custom. Finally, with the aim of error investigation, average and maximum errors of obtained results are computed.
Directory of Open Access Journals (Sweden)
Yongyi Shou
2014-01-01
Full Text Available A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate project portfolios. Each agent selects its project portfolio independently. The neighborhood competition operator and self-learning operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-constrained project portfolio selection and scheduling problem.
Nash evolutionary algorithms : Testing problem size in reconstruction problems in frame structures
Greiner, D.; Periaux, Jacques; Emperador, J.M.; Galván, B.; Winter, G.
2016-01-01
The use of evolutionary algorithms has been enhanced in recent years for solving real engineering problems, where the requirements of intense computational calculations are needed, especially when computational engineering simulations are involved (use of finite element method, boundary element method, etc). The coupling of game-theory concepts in evolutionary algorithms has been a recent line of research which could enhance the efficiency of the optimum design procedure and th...
Li, Hong; Liu, Mingyong; Zhang, Feihu
2017-01-01
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.
Directory of Open Access Journals (Sweden)
Sergei L Kosakovsky Pond
2009-11-01
Full Text Available Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1 are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5% fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance
An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Yushan Zhang
2015-01-01
Full Text Available Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP. This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.
Françoise Benz
2004-01-01
ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...
XTALOPT: An open-source evolutionary algorithm for crystal structure prediction
Lonie, David C.; Zurek, Eva
2011-02-01
The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely
Synthesis of Steered Flat-top Beam Pattern Using Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
D. Mandal
2016-12-01
Full Text Available In this paper a pattern synthesis method based on Evolutionary Algorithm is presented. A Flat-top beam pattern has been generated from a concentric ring array of isotropic elements by finding out the optimum set of elements amplitudes and phases using Differential Evolution algorithm. The said pattern is generated in three predefined azimuth planes instate of a single phi plane and also verified for a range of azimuth plane for the same optimum excitations. The main beam is steered to an elevation angle of 30 degree with lower peak SLL and ripple. Dynamic range ratio (DRR is also being improved by eliminating the weakly excited array elements, which simplify the design complexity of feed networks.
Dash, Subhransu; Panigrahi, Bijaya
2015-01-01
The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.
Simulation-based algorithms for Markov decision processes
Chang, Hyeong Soo; Fu, Michael C; Marcus, Steven I
2013-01-01
Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel ...
Reinforcement Learning for Online Control of Evolutionary Algorithms
Eiben, A.; Horvath, Mark; Kowalczyk, Wojtek; Schut, Martijn
2007-01-01
The research reported in this paper is concerned with assessing the usefulness of reinforcment learning (RL) for on-line calibration of parameters in evolutionary algorithms (EA). We are running an RL procedure and the EA simultaneously and the RL is changing the EA parameters on-the-fly. We
Use of multiple objective evolutionary algorithms in optimizing surveillance requirements
International Nuclear Information System (INIS)
Martorell, S.; Carlos, S.; Villanueva, J.F.; Sanchez, A.I; Galvan, B.; Salazar, D.; Cepin, M.
2006-01-01
This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability
Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan
2018-03-01
In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.
A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks
Directory of Open Access Journals (Sweden)
Guoqiang Chen
2013-01-01
Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.
O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.
2012-01-01
Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279
Evolutionary Agent-based Models to design distributed water management strategies
Giuliani, M.; Castelletti, A.; Reed, P. M.
2012-12-01
There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a
Directory of Open Access Journals (Sweden)
Nicholas S. Flann
2013-09-01
Full Text Available The Quantitative Trait Loci (QTL mapping problem aims to identify regions in the genome that are linked to phenotypic features of the developed organism that vary in degree. It is a principle step in determining targets for further genetic analysis and is key in decoding the role of specific genes that control quantitative traits within species. Applications include identifying genetic causes of disease, optimization of cross-breeding for desired traits and understanding trait diversity in populations. In this paper a new multi-objective evolutionary algorithm (MOEA method is introduced and is shown to increase the accuracy of QTL mapping identification for both independent and epistatic loci interactions. The MOEA method optimizes over the space of possible partial least squares (PLS regression QTL models and considers the conflicting objectives of model simplicity versus model accuracy. By optimizing for minimal model complexity, MOEA has the advantage of solving the over-fitting problem of conventional PLS models. The effectiveness of the method is confirmed by comparing the new method with Bayesian Interval Mapping approaches over a series of test cases where the optimal solutions are known. This approach can be applied to many problems that arise in analysis of genomic data sets where the number of features far exceeds the number of observations and where features can be highly correlated.
ANTQ evolutionary algorithm applied to nuclear fuel reload problem
International Nuclear Information System (INIS)
Machado, Liana; Schirru, Roberto
2000-01-01
Nuclear fuel reload optimization is a NP-complete combinatorial optimization problem where the aim is to find fuel rods' configuration that maximizes burnup or minimizes the power peak factor. For decades this problem was solved exclusively using an expert's knowledge. From the eighties, however, there have been efforts to automatize fuel reload. The first relevant effort used Simulated Annealing, but more recent publications show Genetic Algorithm's (GA) efficiency on this problem's solution. Following this direction, our aim is to optimize nuclear fuel reload using Ant-Q, a reinforcement learning algorithm based on the Cellular Computing paradigm. Ant-Q's results on the Travelling Salesmen Problem, which is conceptually similar to fuel reload, are better than the GA's ones. Ant-Q was tested on fuel reload by the simulation of the first cycle in-out reload of Bibils, a 193 fuel element PWR. Comparing An-Q's result with the GA's ones, it can b seen that even without a local heuristics, the former evolutionary algorithm can be used to solve the nuclear fuel reload problem. (author)
Reactive power and voltage control based on general quantum genetic algorithms
DEFF Research Database (Denmark)
Vlachogiannis, Ioannis (John); Østergaard, Jacob
2009-01-01
This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....
DEFF Research Database (Denmark)
Neumann, Frank; Witt, Carsten
2015-01-01
combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes. Our results show that randomized local search and a simple evolutionary algorithm are very...
Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.
Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj
2016-01-01
The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.
Wagh, Aditi
Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both
Safety management in NPPs using evolutionary algorithm
International Nuclear Information System (INIS)
Mishra, A.; Patwardhan, A.; Chauhan, A.; Verma, A.K.
2005-01-01
Technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. Accordingly, the risk-based analysis of Technical Specification (RBTS) is being considered in evaluating current TS. The multi objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper a multi objective Evolutionary Algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for Loss of coolant Accident (LOCA) and Main Steam Line Break (MSLB) as initiating events. (authors)
A new evolutionary algorithm with LQV learning for combinatorial problems optimization
International Nuclear Information System (INIS)
Machado, Marcelo Dornellas; Schirru, Roberto
2000-01-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for combinatorial problems optimization. In this work, a new learning mode, to be used by the population-based incremental learning algorithm, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process known as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors, in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problems. Due to the fact that the reload problem is a combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)
Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian
2018-03-01
This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.
Part E: Evolutionary Computation
DEFF Research Database (Denmark)
2015-01-01
of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...
Directory of Open Access Journals (Sweden)
Min-Yin Liu
2017-05-01
Full Text Available Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz measured by electroencephalography (EEG mostly during non-rapid eye movement (NREM stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1 the lack of common benchmark databases, and (2 the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA, the Strength Pareto Evolutionary Algorithm (SPEA2, to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT, and two Hilbert-Huang transform (HHT based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutations
DEFF Research Database (Denmark)
Kratsch, Stefan; Lehre, Per Kristian; Neumann, Frank
2011-01-01
Evolutionary algorithms have been shown to be very successful for a wide range of NP-hard combinatorial optimization problems. We investigate the NP-hard problem of computing a spanning tree that has a maximal number of leaves by evolutionary algorithms in the context of fixed parameter tractabil...... two common mutation operators, we show that an operator related to spanning tree problems leads to an FPT running time in contrast to a general mutation operator that does not have this property....
Models and algorithms for biomolecules and molecular networks
DasGupta, Bhaskar
2016-01-01
By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. * Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms * Sampling techniques for estimating evolutionary rates and generating molecular structures * Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations * End-of-chapter exercises
A Problem-Reduction Evolutionary Algorithm for Solving the Capacitated Vehicle Routing Problem
Directory of Open Access Journals (Sweden)
Wanfeng Liu
2015-01-01
Full Text Available Assessment of the components of a solution helps provide useful information for an optimization problem. This paper presents a new population-based problem-reduction evolutionary algorithm (PREA based on the solution components assessment. An individual solution is regarded as being constructed by basic elements, and the concept of acceptability is introduced to evaluate them. The PREA consists of a searching phase and an evaluation phase. The acceptability of basic elements is calculated in the evaluation phase and passed to the searching phase. In the searching phase, for each individual solution, the original optimization problem is reduced to a new smaller-size problem. With the evolution of the algorithm, the number of common basic elements in the population increases until all individual solutions are exactly the same which is supposed to be the near-optimal solution of the optimization problem. The new algorithm is applied to a large variety of capacitated vehicle routing problems (CVRP with customers up to nearly 500. Experimental results show that the proposed algorithm has the advantages of fast convergence and robustness in solution quality over the comparative algorithms.
International Nuclear Information System (INIS)
Navid, Ali; Khalilarya, Shahram; Taghavifar, Hadi
2016-01-01
Highlights: • NLPQL algorithm with Latin hypercube and multi-objective GA were applied on engine. • NLPQL converge to the best solution at RunID41, MOGA introduces at RunID84. • Deeper, more encircled design gives the lowest NOx, greater radius and deeper bowl the highest IMEP. • The maximum IMEP and minimum ISFC obtained with NLPQL, the lowest NOx with MOGA. - Abstract: This study is concerned with the application of two major kinds of optimization algorithms on the baseline diesel engine in the class of evolutionary and non-evolutionary algorithms. The multi-objective genetic algorithm and non-linear programming by quadratic Lagrangian (NLPQL) method have completely different functions in optimizing and finding the global optimal design. The design variables are injection angle, half spray cone angle, inner distance of the bowl wall, and the bowl radius, while the objectives include NOx emission, spray droplet diameter, indicated mean effective pressure (IMEP), and indicated specific fuel consumption (ISFC). The restrictions were set on the objectives to distinguish between feasible designs and infeasible designs to sort those cases that cannot fulfill the demands of diesel engine designers and emission control measures. It is found that a design with deeper bowl and more encircled shape (higher swirl motion) is more suitable for NO_x emission control, whereas designs with a bigger bowl radius, and closer inner wall distance of the bowl (Di) may lead to higher engine efficiency indices. Moreover, it was revealed that the NLPQL could rapidly search for the best design at Run ID 41 compared to genetic algorithm, which is able to find the global optima at last runs (ID 84). Both techniques introduce almost the same geometrical shape of the combustion chamber with a negligible contrast in the injection system.
Evolutionary Algorithms For Neural Networks Binary And Real Data Classification
Directory of Open Access Journals (Sweden)
Dr. Hanan A.R. Akkar
2015-08-01
Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.
Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization
Directory of Open Access Journals (Sweden)
Weishang Gao
2013-01-01
Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.
Genetic Process Mining: Alignment-based Process Model Mutation
Eck, van M.L.; Buijs, J.C.A.M.; Dongen, van B.F.; Fournier, F.; Mendling, J.
2015-01-01
The Evolutionary Tree Miner (ETM) is a genetic process discovery algorithm that enables the user to guide the discovery process based on preferences with respect to four process model quality dimensions: replay fitness, precision, generalization and simplicity. Traditionally, the ETM algorithm uses
International Nuclear Information System (INIS)
Atashkari, K.; Nariman-Zadeh, N.; Goelcue, M.; Khalkhali, A.; Jamali, A.
2007-01-01
The main reason for the efficiency decrease at part load conditions for four-stroke spark-ignition (SI) engines is the flow restriction at the cross-sectional area of the intake system. Traditionally, valve-timing has been designed to optimize operation at high engine-speed and wide open throttle conditions. Several investigations have demonstrated that improvements at part load conditions in engine performance can be accomplished if the valve-timing is variable. Controlling valve-timing can be used to improve the torque and power curve as well as to reduce fuel consumption and emissions. In this paper, a group method of data handling (GMDH) type neural network and evolutionary algorithms (EAs) are firstly used for modelling the effects of intake valve-timing (V t ) and engine speed (N) of a spark-ignition engine on both developed engine torque (T) and fuel consumption (Fc) using some experimentally obtained training and test data. Using such obtained polynomial neural network models, a multi-objective EA (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism are secondly used for Pareto based optimization of the variable valve-timing engine considering two conflicting objectives such as torque (T) and fuel consumption (Fc). The comparison results demonstrate the superiority of the GMDH type models over feedforward neural network models in terms of the statistical measures in the training data, testing data and the number of hidden neurons. Further, it is shown that some interesting and important relationships, as useful optimal design principles, involved in the performance of the variable valve-timing four-stroke spark-ignition engine can be discovered by the Pareto based multi-objective optimization of the polynomial models. Such important optimal principles would not have been obtained without the use of both the GMDH type neural network modelling and the multi-objective Pareto optimization approach
Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio
2010-05-01
This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.
Directory of Open Access Journals (Sweden)
Qianwang Deng
2017-01-01
Full Text Available Flexible job-shop scheduling problem (FJSP is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II for multiobjective FJSP (MO-FJSP with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.
Yamada, N; Nishikawa, T
2010-06-21
In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.
Ni-MH batteries state-of-charge prediction based on immune evolutionary network
International Nuclear Information System (INIS)
Cheng Bo; Zhou Yanlu; Zhang Jiexin; Wang Junping; Cao Binggang
2009-01-01
Based on clonal selection theory, an improved immune evolutionary strategy is presented. Compared with conventional evolutionary strategy algorithm (CESA) and immune monoclonal strategy algorithm (IMSA), experimental results show that the proposed algorithm is of high efficiency and can effectively prevent premature convergence. A three-layer feed-forward neural network is presented to predict state-of-charge (SOC) of Ni-MH batteries. Initially, partial least square regression (PLSR) is used to select input variables. Then, five variables, battery terminal voltage, voltage derivative, voltage second derivative, discharge current and battery temperature, are selected as the inputs of NN. In order to overcome the weakness of BP algorithm, the new algorithm is adopted to train weights. Finally, under the state of dynamic power cycle, the predicted SOC and the actual SOC are compared to verify the proposed neural network with acceptable accuracy (5%).
Expert-guided evolutionary algorithm for layout design of complex space stations
Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu
2017-08-01
The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.
Evolutionary neural network modeling for software cumulative failure time prediction
International Nuclear Information System (INIS)
Tian Liang; Noore, Afzel
2005-01-01
An evolutionary neural network modeling approach for software cumulative failure time prediction based on multiple-delayed-input single-output architecture is proposed. Genetic algorithm is used to globally optimize the number of the delayed input neurons and the number of neurons in the hidden layer of the neural network architecture. Modification of Levenberg-Marquardt algorithm with Bayesian regularization is used to improve the ability to predict software cumulative failure time. The performance of our proposed approach has been compared using real-time control and flight dynamic application data sets. Numerical results show that both the goodness-of-fit and the next-step-predictability of our proposed approach have greater accuracy in predicting software cumulative failure time compared to existing approaches
Harmonic elimination in diode-clamped multilevel inverter using evolutionary algorithms
Energy Technology Data Exchange (ETDEWEB)
Barkati, Said [Laboratoire d' analyse des Signaux et Systemes (LASS), Universite de M' sila, BP. 166, rue Ichbilia 28000 M' sila (Algeria); Baghli, Lotfi [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN), CNRS UMR 7030, Universite Henri Poincare Nancy 1, BP. 239, 54506 Vandoeuvre-les-Nancy (France); Berkouk, El Madjid; Boucherit, Mohamed-Seghir [Laboratoire de Commande des Processus (LCP), Ecole Nationale Polytechnique, BP. 182, 10 Avenue Hassen Badi, 16200 El Harrach, Alger (Algeria)
2008-10-15
This paper describes two evolutionary algorithms for the optimized harmonic stepped-waveform technique. Genetic algorithms and particle swarm optimization are applied to compute the switching angles in a three-phase seven-level inverter to produce the required fundamental voltage while, at the same time, specified harmonics are eliminated. Furthermore, these algorithms are also used to solve the starting point problem of the Newton-Raphson conventional method. This combination provides a very effective method for the harmonic elimination technique. This strategy is useful for different structures of seven-level inverters. The diode-clamped topology is considered in this study. (author)
A backtracking evolutionary algorithm for power systems
Directory of Open Access Journals (Sweden)
Chiou Ji-Pyng
2017-01-01
Full Text Available This paper presents a backtracking variable scaling hybrid differential evolution, called backtracking VSHDE, for solving the optimal network reconfiguration problems for power loss reduction in distribution systems. The concepts of the backtracking, variable scaling factor, migrating, accelerated, and boundary control mechanism are embedded in the original differential evolution (DE to form the backtracking VSHDE. The concepts of the backtracking and boundary control mechanism can increase the population diversity. And, according to the convergence property of the population, the scaling factor is adjusted based on the 1/5 success rule of the evolution strategies (ESs. A larger population size must be used in the evolutionary algorithms (EAs to maintain the population diversity. To overcome this drawback, two operations, acceleration operation and migrating operation, are embedded into the proposed method. The feeder reconfiguration of distribution systems is modelled as an optimization problem which aims at achieving the minimum loss subject to voltage and current constraints. So, the proper system topology that reduces the power loss according to a load pattern is an important issue. Mathematically, the network reconfiguration system is a nonlinear programming problem with integer variables. One three-feeder network reconfiguration system from the literature is researched by the proposed backtracking VSHDE method and simulated annealing (SA. Numerical results show that the perfrmance of the proposed method outperformed the SA method.
Ahmed, Qasim Zeeshan
2015-02-01
In this paper, a new detector is proposed for an amplify-and-forward (AF) relaying system. The detector is designed to minimize the symbol-error-rate (SER) of the system. The SER surface is non-linear and may have multiple minimas, therefore, designing an SER detector for cooperative communications becomes an optimization problem. Evolutionary based algorithms have the capability to find the global minima, therefore, evolutionary algorithms such as particle swarm optimization (PSO) and differential evolution (DE) are exploited to solve this optimization problem. The performance of proposed detectors is compared with the conventional detectors such as maximum likelihood (ML) and minimum mean square error (MMSE) detector. In the simulation results, it can be observed that the SER performance of the proposed detectors is less than 2 dB away from the ML detector. Significant improvement in SER performance is also observed when comparing with the MMSE detector. The computational complexity of the proposed detector is much less than the ML and MMSE algorithms. Moreover, in contrast to ML and MMSE detectors, the computational complexity of the proposed detectors increases linearly with respect to the number of relays.
Multithreshold Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms
Directory of Open Access Journals (Sweden)
Erik Cuevas
2015-01-01
Full Text Available As an alternative to classical techniques, the problem of image segmentation has also been handled through evolutionary methods. Recently, several algorithms based on evolutionary principles have been successfully applied to image segmentation with interesting performances. However, most of them maintain two important limitations: (1 they frequently obtain suboptimal results (misclassifications as a consequence of an inappropriate balance between exploration and exploitation in their search strategies; (2 the number of classes is fixed and known in advance. This paper presents an algorithm for the automatic selection of pixel classes for image segmentation. The proposed method combines a novel evolutionary method with the definition of a new objective function that appropriately evaluates the segmentation quality with respect to the number of classes. The new evolutionary algorithm, called Locust Search (LS, is based on the behavior of swarms of locusts. Different to the most of existent evolutionary algorithms, it explicitly avoids the concentration of individuals in the best positions, avoiding critical flaws such as the premature convergence to suboptimal solutions and the limited exploration-exploitation balance. Experimental tests over several benchmark functions and images validate the efficiency of the proposed technique with regard to accuracy and robustness.
More efficient evolutionary strategies for model calibration with watershed model for demonstration
Baggett, J. S.; Skahill, B. E.
2008-12-01
Evolutionary strategies allow automatic calibration of more complex models than traditional gradient based approaches, but they are more computationally intensive. We present several efficiency enhancements for evolution strategies, many of which are not new, but when combined have been shown to dramatically decrease the number of model runs required for calibration of synthetic problems. To reduce the number of expensive model runs we employ a surrogate objective function for an adaptively determined fraction of the population at each generation (Kern et al., 2006). We demonstrate improvements to the adaptive ranking strategy that increase its efficiency while sacrificing little reliability and further reduce the number of model runs required in densely sampled parts of parameter space. Furthermore, we include a gradient individual in each generation that is usually not selected when the search is in a global phase or when the derivatives are poorly approximated, but when selected near a smooth local minimum can dramatically increase convergence speed (Tahk et al., 2007). Finally, the selection of the gradient individual is used to adapt the size of the population near local minima. We show, by incorporating these enhancements into the Covariance Matrix Adaption Evolution Strategy (CMAES; Hansen, 2006), that their synergetic effect is greater than their individual parts. This hybrid evolutionary strategy exploits smooth structure when it is present but degrades to an ordinary evolutionary strategy, at worst, if smoothness is not present. Calibration of 2D-3D synthetic models with the modified CMAES requires approximately 10%-25% of the model runs of ordinary CMAES. Preliminary demonstration of this hybrid strategy will be shown for watershed model calibration problems. Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of
International Nuclear Information System (INIS)
Lima, Alan M.M. de; Schirru, Roberto
2000-01-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. The purpose of this work is to introduce a new parallelization method to be applied to the Population-Based Incremental Learning (PBIL) algorithm. PBIL combines standard genetic algorithm mechanisms with simple competitive learning and has ben successfully used in combinatorial optimization problems. The development of this algorithm aims its application to the reload optimization of PWR nuclear reactors. Tests have been performed with combinatorial optimization problems similar to the reload problem. Results are compared to the serial PBIL ones, showing the new method's superiority and its viability as a tool for the nuclear core reload problem solution. (author)
Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms
Lopez, Nicolas
This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.
An evolutionary algorithm for port-of-entry security optimization considering sensor thresholds
International Nuclear Information System (INIS)
Concho, Ana Lisbeth; Ramirez-Marquez, Jose Emmanuel
2010-01-01
According to the US Customs and Border Protection (CBP), the number of offloaded ship cargo containers arriving at US seaports each year amounts to more than 11 million. The costs of locating an undetonated terrorist weapon at one US port, or even worst, the cost caused by a detonated weapon of mass destruction, would amount to billions of dollars. These costs do not yet account for the devastating consequences that it would cause in the ability to keep the supply chain operating and the sociological and psychological effects. As such, this paper is concerned with developing a container inspection strategy that minimizes the total cost of inspection while maintaining a user specified detection rate for 'suspicious' containers. In this respect and based on a general decision-tree model, this paper presents a holistic evolutionary algorithm for finding the following: (1) optimal threshold values for every sensor and (2) the optimal configuration of the inspection strategy. The algorithm is under the assumption that different sensors with different reliability and cost characteristics can be used. Testing and experimentation show the proposed approach consistently finds high quality solutions in a reduced computational time.
A kNN method that uses a non-natural evolutionary algorithm for ...
African Journals Online (AJOL)
We used this algorithm for component selection of a kNN (k Nearest Neighbor) method for breast cancer prognosis. Results with the UCI prognosis data set show that we can find components that help improve the accuracy of kNN by almost 3%, raising it above 79%. Keywords: kNN; classification; evolutionary algorithm; ...
Directory of Open Access Journals (Sweden)
Mengjun Ming
2017-05-01
Full Text Available Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes is maximized. To effectively solve this multi-objective problem (MOP, the multi-objective evolutionary algorithm based on decomposition (MOEA/D using localized penalty-based boundary intersection (LPBI method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified.
Saborido, Rubén; Ruiz, Ana B; Luque, Mariano
2017-01-01
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
Identification of Water Diffusivity of Inorganic Porous Materials Using Evolutionary Algorithms
Czech Academy of Sciences Publication Activity Database
Kočí, J.; Maděra, J.; Jerman, M.; Keppert, M.; Svora, Petr; Černý, R.
2016-01-01
Roč. 113, č. 1 (2016), s. 51-66 ISSN 0169-3913 Institutional support: RVO:61388980 Keywords : Evolutionary algorithms * Water transport * Inorganic porous materials * Inverse analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 2.205, year: 2016
Comparison of some evolutionary algorithms for optimization of the path synthesis problem
Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna
2018-01-01
The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.
A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm
Chae, Han Gil
Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the
PSO-Based Algorithm Applied to Quadcopter Micro Air Vehicle Controller Design
Directory of Open Access Journals (Sweden)
Huu-Khoa Tran
2016-09-01
Full Text Available Due to the rapid development of science and technology in recent times, many effective controllers are designed and applied successfully to complicated systems. The significant task of controller design is to determine optimized control gains in a short period of time. With this purpose in mind, a combination of the particle swarm optimization (PSO-based algorithm and the evolutionary programming (EP algorithm is introduced in this article. The benefit of this integration algorithm is the creation of new best-parameters for control design schemes. The proposed controller designs are then demonstrated to have the best performance for nonlinear micro air vehicle models.
The mixing evolutionary algorithm : indepedent selection and allocation of trials
C.H.M. van Kemenade
1997-01-01
textabstractWhen using an evolutionary algorithm to solve a problem involving building blocks we have to grow the building blocks and then mix these building blocks to obtain the (optimal) solution. Finding a good balance between the growing and the mixing process is a prerequisite to get a reliable
DNA evolutionary algorithm (DNAEA) for source term identification in convection-diffusion equation
International Nuclear Information System (INIS)
Yang, X-H; Hu, X-X; Shen, Z-Y
2008-01-01
The source identification problem is changed into an optimization problem in this paper. This is a complicated nonlinear optimization problem. It is very intractable with traditional optimization methods. So DNA evolutionary algorithm (DNAEA) is presented to solve the discussed problem. In this algorithm, an initial population is generated by a chaos algorithm. With the shrinking of searching range, DNAEA gradually directs to an optimal result with excellent individuals obtained by DNAEA. The position and intensity of pollution source are well found with DNAEA. Compared with Gray-coded genetic algorithm and pure random search algorithm, DNAEA has rapider convergent speed and higher calculation precision
SIMULATING AN EVOLUTIONARY MULTI-AGENT BASED MODEL OF THE STOCK MARKET
Directory of Open Access Journals (Sweden)
Diana MARICA
2015-08-01
Full Text Available The paper focuses on artificial stock market simulations using a multi-agent model incorporating 2,000 heterogeneous agents interacting on the artificial market. The agents interaction is due to trading activity on the market through a call auction trading mechanism. The multi-agent model uses evolutionary techniques such as genetic programming in order to generate an adaptive and evolving population of agents. Each artificial agent is endowed with wealth and a genetic programming induced trading strategy. The trading strategy evolves and adapts to the new market conditions through a process called breeding, which implies that at each simulation step, new agents with better trading strategies are generated by the model, from recombining the best performing trading strategies and replacing the agents which have the worst performing trading strategies. The simulation model was build with the help of the simulation software Altreva Adaptive Modeler which offers a suitable platform for financial market simulations of evolutionary agent based models, the S&P500 composite index being used as a benchmark for the simulation results.
Mochnacki, Bohdan; Majchrzak, Ewa; Paruch, Marek
2018-01-01
In the paper the soft tissue freezing process is considered. The tissue sub-domain is subjected to the action of cylindrical cryoprobe. Thermal processes proceeding in the domain considered are described using the dual-phase lag equation (DPLE) supplemented by the appropriate boundary and initial conditions. DPLE results from the generalization of the Fourier law in which two lag times are introduced (relaxation and thermalization times). The aim of research is the identification of these parameters on the basis of measured cooling curves at the set of points selected from the tissue domain. To solve the problem the evolutionary algorithms are used. The paper contains the mathematical model of the tissue freezing process, the very short information concerning the numerical solution of the basic problem, the description of the inverse problem solution and the results of computations.
Evolutionary algorithms for the Vehicle Routing Problem with Time Windows
Bräysy, Olli; Dullaert, Wout; Gendreau, Michel
2004-01-01
This paper surveys the research on evolutionary algorithms for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW can be described as the problem of designing least cost routes from a single depot to a set of geographically scattered points. The routes must be designed in such a way
An efficient non-dominated sorting method for evolutionary algorithms.
Fang, Hongbing; Wang, Qian; Tu, Yi-Cheng; Horstemeyer, Mark F
2008-01-01
We present a new non-dominated sorting algorithm to generate the non-dominated fronts in multi-objective optimization with evolutionary algorithms, particularly the NSGA-II. The non-dominated sorting algorithm used by NSGA-II has a time complexity of O(MN(2)) in generating non-dominated fronts in one generation (iteration) for a population size N and M objective functions. Since generating non-dominated fronts takes the majority of total computational time (excluding the cost of fitness evaluations) of NSGA-II, making this algorithm faster will significantly improve the overall efficiency of NSGA-II and other genetic algorithms using non-dominated sorting. The new non-dominated sorting algorithm proposed in this study reduces the number of redundant comparisons existing in the algorithm of NSGA-II by recording the dominance information among solutions from their first comparisons. By utilizing a new data structure called the dominance tree and the divide-and-conquer mechanism, the new algorithm is faster than NSGA-II for different numbers of objective functions. Although the number of solution comparisons by the proposed algorithm is close to that of NSGA-II when the number of objectives becomes large, the total computational time shows that the proposed algorithm still has better efficiency because of the adoption of the dominance tree structure and the divide-and-conquer mechanism.
Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...
Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems
2015-01-01
This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field ...
Directory of Open Access Journals (Sweden)
Jingling Zhang
2012-01-01
Full Text Available The multiobjective vehicle routing problem considering customer satisfaction (MVRPCS involves the distribution of orders from several depots to a set of customers over a time window. This paper presents a self-adaptive grid multi-objective quantum evolutionary algorithm (MOQEA for the MVRPCS, which takes into account customer satisfaction as well as travel costs. The degree of customer satisfaction is represented by proposing an improved fuzzy due-time window, and the optimization problem is modeled as a mixed integer linear program. In the MOQEA, nondominated solution set is constructed by the Challenge Cup rules. Moreover, an adaptive grid is designed to achieve the diversity of solution sets; that is, the number of grids in each generation is not fixed but is automatically adjusted based on the distribution of the current generation of nondominated solution set. In the study, the MOQEA is evaluated by applying it to classical benchmark problems. Results of numerical simulation and comparison show that the established model is valid and the MOQEA is effective for MVRPCS.
International Nuclear Information System (INIS)
Vianna Neto, Julio Xavier; Andrade Bernert, Diego Luis de; Santos Coelho, Leandro dos
2011-01-01
The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature.
Energy Technology Data Exchange (ETDEWEB)
Vianna Neto, Julio Xavier, E-mail: julio.neto@onda.com.b [Pontifical Catholic University of Parana, PUCPR, Undergraduate Program at Mechatronics Engineering, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Andrade Bernert, Diego Luis de, E-mail: dbernert@gmail.co [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Santos Coelho, Leandro dos, E-mail: leandro.coelho@pucpr.b [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)
2011-01-15
The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature.
Energy Technology Data Exchange (ETDEWEB)
Neto, Julio Xavier Vianna [Pontifical Catholic University of Parana, PUCPR, Undergraduate Program at Mechatronics Engineering, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Bernert, Diego Luis de Andrade; Coelho, Leandro dos Santos [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)
2011-01-15
The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature. (author)
A Developed Artificial Bee Colony Algorithm Based on Cloud Model
Directory of Open Access Journals (Sweden)
Ye Jin
2018-04-01
Full Text Available The Artificial Bee Colony (ABC algorithm is a bionic intelligent optimization method. The cloud model is a kind of uncertainty conversion model between a qualitative concept T ˜ that is presented by nature language and its quantitative expression, which integrates probability theory and the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’ updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence speed and higher accuracy than the basic ABC and some cloud model based ABC variants.
Directory of Open Access Journals (Sweden)
Nurmaulidar Nurmaulidar
2015-04-01
Full Text Available Travelling Salesman Problem (TSP is one of complex optimization problem that is difficult to be solved, and require quite a long time for a large number of cities. Evolutionary algorithm is a precise algorithm used in solving complex optimization problem as it is part of heuristic method. Evolutionary algorithm, like many other algorithms, also experiences a premature convergence phenomenon, whereby variation is eliminated from a population of fairly fit individuals before a complete solution is achieved. Therefore it requires a method to delay the convergence. A specific method of fitness sharing called phenotype fitness sharing has been used in this research. The aim of this research is to find out whether fitness sharing in evolutionary algorithm is able to optimize TSP. There are two concepts of evolutionary algorithm being used in this research. the first one used single elitism and the other one used federated solution. The two concepts had been tested to the method of fitness sharing by using the threshold of 0.25, 0.50 and 0.75. The result was then compared to a non fitness sharing method. The result in this study indicated that by using single elitism concept, fitness sharing was able to give a more optimum result for the data of 100-1000 cities. On the other hand, by using federation solution concept, fitness sharing can yield a more optimum result for the data above 1000 cities, as well as a better solution of data-spreading compared to the method without fitness sharing.
Multi-Working Modes Product-Color Planning Based on Evolutionary Algorithms and Swarm Intelligence
Directory of Open Access Journals (Sweden)
Man Ding
2010-01-01
Full Text Available In order to assist designer in color planning during product development, a novel synthesized evaluation method is presented to evaluate color-combination schemes of multi-working modes products (MMPs. The proposed evaluation method considers color-combination images in different working modes as evaluating attributes, to which the corresponding weights are assigned for synthesized evaluation. Then a mathematical model is developed to search for optimal color-combination schemes of MMP based on the proposed evaluation method and two powerful search techniques known as Evolution Algorithms (EAs and Swarm Intelligence (SI. In the experiments, we present a comparative study for two EAs, namely, Genetic Algorithm (GA and Difference Evolution (DE, and one SI algorithm, namely, Particle Swarm Optimization (PSO, on searching for color-combination schemes of MMP problem. All of the algorithms are evaluated against a test scenario, namely, an Arm-type aerial work platform, which has two working modes. The results show that the DE obtains the superior solution than the other two algorithms for color-combination scheme searching problem in terms of optimization accuracy and computation robustness. Simulation results demonstrate that the proposed method is feasible and efficient.
Swarm, genetic and evolutionary programming algorithms applied to multiuser detection
Directory of Open Access Journals (Sweden)
Paul Jean Etienne Jeszensky
2005-02-01
Full Text Available In this paper, the particles swarm optimization technique, recently published in the literature, and applied to Direct Sequence/Code Division Multiple Access systems (DS/CDMA with multiuser detection (MuD is analyzed, evaluated and compared. The Swarm algorithm efficiency when applied to the DS-CDMA multiuser detection (Swarm-MuD is compared through the tradeoff performance versus computational complexity, being the complexity expressed in terms of the number of necessary operations in order to reach the performance obtained through the optimum detector or the Maximum Likelihood detector (ML. The comparison is accomplished among the genetic algorithm, evolutionary programming with cloning and Swarm algorithm under the same simulation basis. Additionally, it is proposed an heuristics-MuD complexity analysis through the number of computational operations. Finally, an analysis is carried out for the input parameters of the Swarm algorithm in the attempt to find the optimum parameters (or almost-optimum for the algorithm applied to the MuD problem.
DE and NLP Based QPLS Algorithm
Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo
As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.
Safety management in NPPs using an evolutionary algorithm technique
International Nuclear Information System (INIS)
Mishra, Alok; Patwardhan, Anand; Verma, A.K.
2007-01-01
The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. The technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. Accordingly, the risk-based analysis of technical specification (RBTS) is being considered in evaluating current TS. The multi-objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper, a multi-objective evolutionary algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for loss of coolant accident (LOCA) and main steam line break (MSLB) as initiating events
EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes
Wagh, Aditi; Wilensky, Uri
2018-04-01
Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience with programming. This paper presents a class of programming environments that we call quickstart: Environments with a negligible threshold for entry into programming and a modest ceiling. We posit that such environments can provide benefits of programming for learning without incurring associated costs for novice programmers. To make this claim, we present a design-based research study conducted to compare programming models of evolutionary processes with a quickstart toolkit with exploring pre-built models of the same processes. The study was conducted in six seventh grade science classes in two schools. Students in the programming condition used EvoBuild, a quickstart toolkit for programming agent-based models of evolutionary processes, to build their NetLogo models. Students in the exploration condition used pre-built NetLogo models. We demonstrate that although students came from a range of academic backgrounds without prior programming experience, and all students spent the same number of class periods on the activities including the time students took to learn programming in this environment, EvoBuild students showed greater learning about evolutionary mechanisms. We discuss the implications of this work for design research on programming environments in K-12 science education.
A Comparison of Evolutionary Algorithms for Tracking Time-Varying Recursive Systems
Directory of Open Access Journals (Sweden)
White Michael S
2003-01-01
Full Text Available A comparison is made of the behaviour of some evolutionary algorithms in time-varying adaptive recursive filter systems. Simulations show that an algorithm including random immigrants outperforms a more conventional algorithm using the breeder genetic algorithm as the mutation operator when the time variation is discontinuous, but neither algorithm performs well when the time variation is rapid but smooth. To meet this deficit, a new hybrid algorithm which uses a hill climber as an additional genetic operator, applied for several steps at each generation, is introduced. A comparison is made of the effect of applying the hill climbing operator a few times to all members of the population or a larger number of times solely to the best individual; it is found that applying to the whole population yields the better results, substantially improved compared with those obtained using earlier methods.
Directory of Open Access Journals (Sweden)
Jing Chen
2013-01-01
Full Text Available Due to high efficiency and good scalability, hierarchical hybrid P2P architecture has drawn more and more attention in P2P streaming research and application fields recently. The problem about super peer selection, which is the key problem in hybrid heterogeneous P2P architecture, is becoming highly challenging because super peers must be selected from a huge and dynamically changing network. A distributed super peer selection (SPS algorithm for hybrid heterogeneous P2P streaming system based on evolutionary game is proposed in this paper. The super peer selection procedure is modeled based on evolutionary game framework firstly, and its evolutionarily stable strategies are analyzed. Then a distributed Q-learning algorithm (ESS-SPS according to the mixed strategies by analysis is proposed for the peers to converge to the ESSs based on its own payoff history. Compared to the traditional randomly super peer selection scheme, experiments results show that the proposed ESS-SPS algorithm achieves better performance in terms of social welfare and average upload rate of super peers and keeps the upload capacity of the P2P streaming system increasing steadily with the number of peers increasing.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Directory of Open Access Journals (Sweden)
Leilei Cao
2016-01-01
Full Text Available A Guiding Evolutionary Algorithm (GEA with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
Comparing the Robustness of Evolutionary Algorithms on the Basis of Benchmark Functions
Directory of Open Access Journals (Sweden)
DENIZ ULKER, E.
2013-05-01
Full Text Available In real-world optimization problems, even though the solution quality is of great importance, the robustness of the solution is also an important aspect. This paper investigates how the optimization algorithms are sensitive to the variations of control parameters and to the random initialization of the solution set for fixed control parameters. The comparison is performed of three well-known evolutionary algorithms which are Particle Swarm Optimization (PSO algorithm, Differential Evolution (DE algorithm and the Harmony Search (HS algorithm. Various benchmark functions with different characteristics are used for the evaluation of these algorithms. The experimental results show that the solution quality of the algorithms is not directly related to their robustness. In particular, the algorithm that is highly robust can have a low solution quality, or the algorithm that has a high quality of solution can be quite sensitive to the parameter variations.
Evolutionary Computation and Its Applications in Neural and Fuzzy Systems
Directory of Open Access Journals (Sweden)
Biaobiao Zhang
2011-01-01
Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.
An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints
Directory of Open Access Journals (Sweden)
Jinmo Sung
2014-01-01
Full Text Available Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments.
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...
Optimal Scheduling for Retrieval Jobs in Double-Deep AS/RS by Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Kuo-Yang Wu
2013-01-01
Full Text Available We investigate the optimal scheduling of retrieval jobs for double-deep type Automated Storage and Retrieval Systems (AS/RS in the Flexible Manufacturing System (FMS used in modern industrial production. Three types of evolutionary algorithms, the Genetic Algorithm (GA, the Immune Genetic Algorithm (IGA, and the Particle Swarm Optimization (PSO algorithm, are implemented to obtain the optimal assignments. The objective is to minimize the working distance, that is, the shortest retrieval time travelled by the Storage and Retrieval (S/R machine. Simulation results and comparisons show the advantages and feasibility of the proposed methods.
Nickless, A.; Rayner, P. J.; Erni, B.; Scholes, R. J.
2018-05-01
The design of an optimal network of atmospheric monitoring stations for the observation of carbon dioxide (CO2) concentrations can be obtained by applying an optimisation algorithm to a cost function based on minimising posterior uncertainty in the CO2 fluxes obtained from a Bayesian inverse modelling solution. Two candidate optimisation methods assessed were the evolutionary algorithm: the genetic algorithm (GA), and the deterministic algorithm: the incremental optimisation (IO) routine. This paper assessed the ability of the IO routine in comparison to the more computationally demanding GA routine to optimise the placement of a five-member network of CO2 monitoring sites located in South Africa. The comparison considered the reduction in uncertainty of the overall flux estimate, the spatial similarity of solutions, and computational requirements. Although the IO routine failed to find the solution with the global maximum uncertainty reduction, the resulting solution had only fractionally lower uncertainty reduction compared with the GA, and at only a quarter of the computational resources used by the lowest specified GA algorithm. The GA solution set showed more inconsistency if the number of iterations or population size was small, and more so for a complex prior flux covariance matrix. If the GA completed with a sub-optimal solution, these solutions were similar in fitness to the best available solution. Two additional scenarios were considered, with the objective of creating circumstances where the GA may outperform the IO. The first scenario considered an established network, where the optimisation was required to add an additional five stations to an existing five-member network. In the second scenario the optimisation was based only on the uncertainty reduction within a subregion of the domain. The GA was able to find a better solution than the IO under both scenarios, but with only a marginal improvement in the uncertainty reduction. These results suggest
Lara-Cabrera, Raúl; Cotta, Carlos; Fernández Leiva, Antonio J.
2013-01-01
This work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based ...
Research on compressive sensing reconstruction algorithm based on total variation model
Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin
2017-12-01
Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.
Tydrichova, Magdalena
2017-01-01
In this project, various available multi-objective optimization evolutionary algorithms were compared considering their performance and distribution of solutions. The main goal was to select the most suitable algorithms for applications in cancer hadron therapy planning. For our purposes, a complex testing and analysis software was developed. Also, many conclusions and hypothesis have been done for the further research.
Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana
2016-01-01
With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.
Model based development of engine control algorithms
Dekker, H.J.; Sturm, W.L.
1996-01-01
Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed
Portfolio optimization by using linear programing models based on genetic algorithm
Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.
2018-01-01
In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.
Evolutionary Computation Methods and their applications in Statistics
Directory of Open Access Journals (Sweden)
Francesco Battaglia
2013-05-01
Full Text Available A brief discussion of the genesis of evolutionary computation methods, their relationship to artificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is provided. Then, the main evolutionary computation methods are illustrated: evolution strategies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief description of some evolutionary behavior methods such as ant colony and particle swarm optimization. We also discuss the role of the genetic algorithm for multivariate probability distribution random generation, rather than as a function optimizer. Finally, some relevant applications of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time series model building, outlier identification, cluster analysis, design of experiments.
Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm
International Nuclear Information System (INIS)
Sayyaadi, Hoseyn; Amlashi, Emad Hadaddi; Amidpour, Majid
2009-01-01
Thermodynamic and thermoeconomic optimization of a vertical ground source heat pump system has been studied. A model based on the energy and exergy analysis is presented here. An economic model of the system is developed according to the Total Revenue Requirement (TRR) method. The objective functions based on the thermodynamic and thermoeconomic analysis are developed. The proposed vertical ground source heat pump system including eight decision variables is considered for optimization. An artificial intelligence technique known as evolutionary algorithm (EA) has been utilized as an optimization method. This approach has been applied to minimize either the total levelized cost of the system product or the exergy destruction of the system. Three levels of optimization including thermodynamic single objective, thermoeconomic single objective and multi-objective optimizations are performed. In Multi-objective optimization, both thermodynamic and thermoeconomic objectives are considered, simultaneously. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from available optimal points on Pareto frontier is presented. The results obtained using the various optimization approaches are compared and discussed. Further, the sensitivity of optimized systems to the interest rate, to the annual number of operating hours and to the electricity cost are studied in detail.
Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory
Institute of Scientific and Technical Information of China (English)
Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan
2005-01-01
This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.
A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry
Directory of Open Access Journals (Sweden)
Alexis D. J. Makin
2016-03-01
Full Text Available Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation–symmetry, DS gene and orientation (0° to 90°, orientation, ORI gene. An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference.
Support vector machines and evolutionary algorithms for classification single or together?
Stoean, Catalin
2014-01-01
When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this ‘masked hero’ be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.
Phylogenetic inference with weighted codon evolutionary distances.
Criscuolo, Alexis; Michel, Christian J
2009-04-01
We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.
Programming Non-Trivial Algorithms in the Measurement Based Quantum Computation Model
Energy Technology Data Exchange (ETDEWEB)
Alsing, Paul [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Fanto, Michael [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Lott, Capt. Gordon [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Tison, Christoper C. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base
2014-01-01
We provide a set of prescriptions for implementing a quantum circuit model algorithm as measurement based quantum computing (MBQC) algorithm1, 2 via a large cluster state. As means of illustration we draw upon our numerical modeling experience to describe a large graph state capable of searching a logical 8 element list (a non-trivial version of Grover's algorithm3 with feedforward). We develop several prescriptions based on analytic evaluation of cluster states and graph state equations which can be generalized into any circuit model operations. Such a resulting cluster state will be able to carry out the desired operation with appropriate measurements and feed forward error correction. We also discuss the physical implementation and the analysis of the principal 3-qubit entangling gate (Toffoli) required for a non-trivial feedforward realization of an 8-element Grover search algorithm.
An evolutionary algorithm for tomographic reconstructions in limited data sets problems
International Nuclear Information System (INIS)
Turcanu, Catrinel; Craciunescu, Teddy
2000-01-01
The paper proposes a new method for tomographic reconstructions. Unlike nuclear medicine applications, in physical science problems we are often confronted with limited data sets: constraints in the number of projections or limited angle views. The problem of image reconstruction from projections may be considered as a problem of finding an image (solution) having projections that match the experimental ones. In our approach, we choose a statistical correlation coefficient to evaluate the fitness of any potential solution. The optimization process is carried out by an evolutionary algorithm. Our algorithm has some problem-oriented characteristics. One of them is that a chromosome, representing a potential solution, is not linear but coded as a matrix of pixels corresponding to a two-dimensional image. This kind of internal representation reflects the genuine manifestation and slight differences between two points situated in the original problem space give rise to similar differences once they become coded. Another particular feature is a newly built crossover operator: the grid-based crossover, suitable for high dimension two-dimensional chromosomes. Except for the population size and the dimension of the cutting grid for the grid-based crossover, all the other parameters of the algorithm are independent of the geometry of the tomographic reconstruction. The performances of the method are evaluated in comparison with a traditional tomographic method, based on the maximization of the entropy of the image, that proved to work well with limited data sets. The test phantom is typical for an application with limited data sets: the determination of the neutron energy spectra with time resolution in case of short-pulsed neutron emission. The qualitative judgement and also the quantitative one, based on some figures of merit, point out that the proposed method ensures an improved reconstruction of shapes, sizes and resolution in the image, even in the presence of noise
Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms
Ye, Mengdie
2017-05-01
In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.
Preventive maintenance scheduling by variable dimension evolutionary algorithms
International Nuclear Information System (INIS)
Limbourg, Philipp; Kochs, Hans-Dieter
2006-01-01
Black box optimization strategies have been proven to be useful tools for solving complex maintenance optimization problems. There has been a considerable amount of research on the right choice of optimization strategies for finding optimal preventive maintenance schedules. Much less attention is turned to the representation of the schedule to the algorithm. Either the search space is represented as a binary string leading to highly complex combinatorial problem or maintenance operations are defined by regular intervals which may restrict the search space to suboptimal solutions. An adequate representation however is vitally important for result quality. This work presents several nonstandard input representations and compares them to the standard binary representation. An evolutionary algorithm with extensions to handle variable length genomes is used for the comparison. The results demonstrate that two new representations perform better than the binary representation scheme. A second analysis shows that the performance may be even more increased using modified genetic operators. Thus, the choice of alternative representations leads to better results in the same amount of time and without any loss of accuracy
Directory of Open Access Journals (Sweden)
Weidong Lei
2017-01-01
Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.
Algorithms and procedures in the model based control of accelerators
International Nuclear Information System (INIS)
Bozoki, E.
1987-10-01
The overall design of a Model Based Control system was presented. The system consists of PLUG-IN MODULES, governed by a SUPERVISORY PROGRAM and communicating via SHARED DATA FILES. Models can be ladded or replaced without affecting the oveall system. There can be more then one module (algorithm) to perform the same task. The user can choose the most appropriate algorithm or can compare the results using different algorithms. Calculations, algorithms, file read and write, etc. which are used in more than one module, will be in a subroutine library. This feature will simplify the maintenance of the system. A partial list of modules is presented, specifying the task they perform. 19 refs., 1 fig
International Nuclear Information System (INIS)
Zhao, X; Rosen, D W
2017-01-01
As additive manufacturing is poised for growth and innovations, it faces barriers of lack of in-process metrology and control to advance into wider industry applications. The exposure controlled projection lithography (ECPL) is a layerless mask-projection stereolithographic additive manufacturing process, in which parts are fabricated from photopolymers on a stationary transparent substrate. To improve the process accuracy with closed-loop control for ECPL, this paper develops an interferometric curing monitoring and measuring (ICM and M) method which addresses the sensor modeling and algorithms issues. A physical sensor model for ICM and M is derived based on interference optics utilizing the concept of instantaneous frequency. The associated calibration procedure is outlined for ICM and M measurement accuracy. To solve the sensor model, particularly in real time, an online evolutionary parameter estimation algorithm is developed adopting moving horizon exponentially weighted Fourier curve fitting and numerical integration. As a preliminary validation, simulated real-time measurement by offline analysis of a video of interferograms acquired in the ECPL process is presented. The agreement between the cured height estimated by ICM and M and that measured by microscope indicates that the measurement principle is promising as real-time metrology for global measurement and control of the ECPL process. (paper)
RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.
Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na
2015-09-03
Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.
Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
International Nuclear Information System (INIS)
Sun, Zhe; Wang, Ning; Bi, Yunrui; Srinivasan, Dipti
2015-01-01
In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. - Highlights: • We propose a hybrid adaptive differential evolution algorithm (HADE). • The search efficiency is enhanced in low and high dimension search space. • The effectiveness is confirmed by testing benchmark functions. • The identification of the PEMFC model is conducted by adopting HADE.
Directory of Open Access Journals (Sweden)
Yu Fan
2016-10-01
Full Text Available In order to defend the hypersonic glide vehicle (HGV, a cost-effective single-model tracking algorithm using Cubature Kalman filter (CKF is proposed in this paper based on modified aerodynamic model (MAM as process equation and radar measurement model as measurement equation. In the existing aerodynamic model, the two control variables attack angle and bank angle cannot be measured by the existing radar equipment and their control laws cannot be known by defenders. To establish the process equation, the MAM for HGV tracking is proposed by using additive white noise to model the rates of change of the two control variables. For the ease of comparison several multiple model algorithms based on CKF are presented, including interacting multiple model (IMM algorithm, adaptive grid interacting multiple model (AGIMM algorithm and hybrid grid multiple model (HGMM algorithm. The performances of these algorithms are compared and analyzed according to the simulation results. The simulation results indicate that the proposed tracking algorithm based on modified aerodynamic model has the best tracking performance with the best accuracy and least computational cost among all tracking algorithms in this paper. The proposed algorithm is cost-effective for HGV tracking.
Algorithmic fault tree construction by component-based system modeling
International Nuclear Information System (INIS)
Majdara, Aref; Wakabayashi, Toshio
2008-01-01
Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)
A brief introduction to continuous evolutionary optimization
Kramer, Oliver
2014-01-01
Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel ...
PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems
Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai
2017-09-01
In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.
P.A.N. Bosman (Peter); J.A. La Poutré (Han); D. Thierens (Dirk)
2007-01-01
htmlabstractThe focus of this paper is on how to design evolutionary algorithms (EAs) for solving stochastic dynamic optimization problems online, i.e. as time goes by. For a proper design, the EA must not only be capable of tracking shifting optima, it must also take into account the future
ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection
Directory of Open Access Journals (Sweden)
SARACOGLU, O. G.
2016-08-01
Full Text Available This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE of 0.0013 which are in clearly good agreement with the measurements.
Towards Behavior Control for Evolutionary Robot Based on RL with ENN
Directory of Open Access Journals (Sweden)
Jingan Yang
2012-03-01
Full Text Available This paper proposes a behavior-switching control strategy of anevolutionary robotics based on Artificial NeuralNetwork (ANN and Genetic Algorithms (GA. This method is able not only to construct thereinforcement learning models for autonomous robots and evolutionary robot modules thatcontrol behaviors and reinforcement learning environments, and but also to perform thebehavior-switching control and obstacle avoidance of an evolutionary robotics (ER intime-varying environments with static and moving obstacles by combining ANN and GA.The experimental results on thebasic behaviors and behavior-switching control have demonstrated that ourmethod can perform the decision-making strategy and parameters set opimization ofFNN and GA by learning and can escape successfully from the trap of a localminima and avoid \\emph{"motion deadlock" status} of humanoid soccer robotics agents,and reduce the oscillation of the planned trajectory betweenthe multiple obstacles by crossover and mutation. Some results of the proposed algorithmhave been successfully applied to our simulation humanoid robotics soccer team CIT3Dwhich won \\emph{the 1st prize} of RoboCup Championship and ChinaOpen2010 (July 2010 and \\emph{the $2^{nd}$ place}of the official RoboCup World Championship on 5-11 July, 2011 in Istanbul, Turkey.As compared with the conventional behavior network and the adaptive behavior method,the genetic encoding complexity of our algorithm is simplified, and the networkperformance and the {\\em convergence rate $\\rho$} have been greatlyimproved.
A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road
DEFF Research Database (Denmark)
Cai, Yanguang; Cai, Hao
2012-01-01
As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum...... evolutionary algorithm is employed to solve it. The proposed model has simple structure, and only requires traffic inflow speed and outflow speed are bounded functions with at most finite number of discontinuity points. The condition is very loose and better meets the requirements of the practical real......-time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...
δ-Similar Elimination to Enhance Search Performance of Multiobjective Evolutionary Algorithms
Aguirre, Hernán; Sato, Masahiko; Tanaka, Kiyoshi
In this paper, we propose δ-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.
Synthesizing mixed H2/H-infinity dynamic controller using evolutionary algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf; Langballe, A.S.; Wisniewski, Rafal
2001-01-01
This paper covers the design of an Evolutionary Algorithm (EA), which should be able to synthesize a mixed H2/H-infinity. It will be shown how a system can be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA. The main objective is to examine whether a mixed...... H2/H-infinity controller is feasible, and if so, how the optimal mixed controller might befound....
Application of an Evolutionary Algorithm for Parameter Optimization in a Gully Erosion Model
Energy Technology Data Exchange (ETDEWEB)
Rengers, Francis; Lunacek, Monte; Tucker, Gregory
2016-06-01
Herein we demonstrate how to use model optimization to determine a set of best-fit parameters for a landform model simulating gully incision and headcut retreat. To achieve this result we employed the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), an iterative process in which samples are created based on a distribution of parameter values that evolve over time to better fit an objective function. CMA-ES efficiently finds optimal parameters, even with high-dimensional objective functions that are non-convex, multimodal, and non-separable. We ran model instances in parallel on a high-performance cluster, and from hundreds of model runs we obtained the best parameter choices. This method is far superior to brute-force search algorithms, and has great potential for many applications in earth science modeling. We found that parameters representing boundary conditions tended to converge toward an optimal single value, whereas parameters controlling geomorphic processes are defined by a range of optimal values.
A standard deviation selection in evolutionary algorithm for grouper fish feed formulation
Cai-Juan, Soong; Ramli, Razamin; Rahman, Rosshairy Abdul
2016-10-01
Malaysia is one of the major producer countries for fishery production due to its location in the equatorial environment. Grouper fish is one of the potential markets in contributing to the income of the country due to its desirable taste, high demand and high price. However, the demand of grouper fish is still insufficient from the wild catch. Therefore, there is a need to farm grouper fish to cater to the market demand. In order to farm grouper fish, there is a need to have prior knowledge of the proper nutrients needed because there is no exact data available. Therefore, in this study, primary data and secondary data are collected even though there is a limitation of related papers and 30 samples are investigated by using standard deviation selection in Evolutionary algorithm. Thus, this study would unlock frontiers for an extensive research in respect of grouper fish feed formulation. Results shown that the fitness of standard deviation selection in evolutionary algorithm is applicable. The feasible and low fitness, quick solution can be obtained. These fitness can be further predicted to minimize cost in farming grouper fish.
Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm
Directory of Open Access Journals (Sweden)
Zhehuang Huang
2015-01-01
Full Text Available Artificial fish swarm algorithm (AFSA is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.
Log-linear model based behavior selection method for artificial fish swarm algorithm.
Huang, Zhehuang; Chen, Yidong
2015-01-01
Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.
Self-Organized Criticality and Mass Extinction in Evolutionary Algorithms
DEFF Research Database (Denmark)
Krink, Thiemo; Thomsen, Rene
2001-01-01
The gaps in the fossil record gave rise to the hypothesis that evolution proceeded in long periods of stasis, which alternated with occasional, rapid changes that yielded evolutionary progress. One mechanism that could cause these punctuated bursts is the re-colonbation of changing and deserted...... at a critical state between chaos and order, known as self-organized criticality (SOC). Based on this background, we used SOC to control the size of spatial extinction zones in a diffusion model. The SOC selection process was easy to implement and implied only negligible computational costs. Our results show...
Directory of Open Access Journals (Sweden)
K. Roshangar
2016-09-01
Full Text Available Introduction: Exact prediction of transported sediment rate by rivers in water resources projects is of utmost importance. Basically erosion and sediment transport process is one of the most complexes hydrodynamic. Although different studies have been developed on the application of intelligent models based on neural, they are not widely used because of lacking explicitness and complexity governing on choosing and architecting of proper network. In this study, a Genetic expression programming model (as an important branches of evolutionary algorithems for predicting of sediment load is selected and investigated as an intelligent approach along with other known classical and imperical methods such as Larsen´s equation, Engelund-Hansen´s equation and Bagnold´s equation. Materials and Methods: In this study, in order to improve explicit prediction of sediment load of Gotoorchay, located in Aras catchment, Northwestern Iran latitude: 38°24´33.3˝ and longitude: 44°46´13.2˝, genetic programming (GP and Genetic Algorithm (GA were applied. Moreover, the semi-empirical models for predicting of total sediment load and rating curve have been used. Finally all the methods were compared and the best ones were introduced. Two statistical measures were used to compare the performance of the different models, namely root mean square error (RMSE and determination coefficient (DC. RMSE and DC indicate the discrepancy between the observed and computed values. Results and Discussions: The statistical characteristics results obtained from the analysis of genetic programming method for both selected model groups indicated that the model 4 including the only discharge of the river, relative to other studied models had the highest DC and the least RMSE in the testing stage (DC= 0.907, RMSE= 0.067. Although there were several parameters applied in other models, these models were complicated and had weak results of prediction. Our results showed that the model 9
Cross entropy-based memetic algorithms: An application study over the tool switching problem
Directory of Open Access Journals (Sweden)
Jhon Edgar Amaya
2013-05-01
Full Text Available This paper presents a parameterized schema for building memetic algorithms based on cross-entropy (CE methods. This novel schema is general in nature, and features multiple probability mass functions and Lamarckian learning. The applicability of the approach is assessed by considering the Tool Switching Problem, a complex combinatorial problem in the field of Flexible Manufacturing Systems. An exhaustive evaluation (including techniques ranging from local search and evolutionary algorithms to constructive methods provides evidence of the effectiveness of CE-based memetic algorithms.
Study on solitary word based on HMM model and Baum-Welch algorithm
Directory of Open Access Journals (Sweden)
Junxia CHEN
Full Text Available This paper introduces the principle of Hidden Markov Model, which is used to describe the Markov process with unknown parameters, is a probability model to describe the statistical properties of the random process. On this basis, designed a solitary word detection experiment based on HMM model, by optimizing the experimental model, Using Baum-Welch algorithm for training the problem of solving the HMM model, HMM model to estimate the parameters of the λ value is found, in this view of mathematics equivalent to other linear prediction coefficient. This experiment in reducing unnecessary HMM training at the same time, reduced the algorithm complexity. In order to test the effectiveness of the Baum-Welch algorithm, The simulation of experimental data, the results show that the algorithm is effective.
A Novel Entropy-Based Decoding Algorithm for a Generalized High-Order Discrete Hidden Markov Model
Directory of Open Access Journals (Sweden)
Jason Chin-Tiong Chan
2018-01-01
Full Text Available The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM is tracked from a given observational sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based order-transformation forward algorithm (EOTFA to compute the optimal state sequence of any generalized HHMM. This EOTFA algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on the observational sequence and it requires OTN~2 calculations, where N~ is the number of states in an equivalent first-order model and T is the length of observational sequence.
Cloud computing task scheduling strategy based on improved differential evolution algorithm
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties
International Nuclear Information System (INIS)
Clegg, J; Robinson, M P
2012-01-01
Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole–Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz–10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit. (paper)
Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms
Siddique, Nazmul
2014-01-01
Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...
Nuclear fuel management optimization using adaptive evolutionary algorithms with heuristics
International Nuclear Information System (INIS)
Axmann, J.K.; Van de Velde, A.
1996-01-01
Adaptive Evolutionary Algorithms in combination with expert knowledge encoded in heuristics have proved to be a robust and powerful optimization method for the design of optimized PWR fuel loading pattern. Simple parallel algorithmic structures coupled with a low amount of communications between computer processor units in use makes it possible for workstation clusters to be employed efficiently. The extension of classic evolution strategies not only by new and alternative methods but also by the inclusion of heuristics with effects on the exchange probabilities of the fuel assemblies at specific core positions leads to the RELOPAT optimization code of the Technical University of Braunschweig. In combination with the new, neutron-physical 3D nodal core simulator PRISM developed by SIEMENS the PRIMO loading pattern optimization system has been designed. Highly promising results in the recalculation of known reload plans for German PWR's new lead to a commercially usable program. (author)
Understanding herding based on a co-evolutionary model for strategy and game structure
International Nuclear Information System (INIS)
Wang, Tao; Huang, Keke; Cheng, Yuan; Zheng, Xiaoping
2015-01-01
Highlights: •We model herding effect in emergency from perspective of evolutionary game theory. •Rational subpopulation survives only when the game parameter is significantly large. •Herding effect may arise if the relative rewarding for rational agents is small. •Increasing the relative rewarding for rational agents will prevent herding effect. •The evolution result is unstable if the game parameter approaches critical points. -- Abstract: So far, there has been no conclusion on the mechanism for herding, which is often discussed in the academia. Assuming escaping behavior of individuals in emergency is rational rather than out of panic according to recent findings in social psychology, we investigate the behavioral evolution of large crowds from the perspective of evolutionary game theory. Specifically, evolution of the whole population divided into two subpopulations, namely the co-evolution of strategy and game structure, is numerically simulated based on the game theoretical models built and the evolutionary rule designed, and a series of phenomena including extinction of one subpopulation and herding effect are predicted in the proposed framework. Furthermore, if the rewarding for rational agents becomes significantly larger than that for emotional ones, herding effect will disappear. It is exciting that some phase transition points with interesting properties for the system can be found. In addition, our model framework is able to explain the fact that it is difficult for mavericks to prevail in society. The current results of this work will be helpful in understanding and restraining herding effect in real life
Evolutionary Statistical Procedures
Baragona, Roberto; Poli, Irene
2011-01-01
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem
2018-01-01
In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Directory of Open Access Journals (Sweden)
Azmat Ullah
Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Collaborative filtering recommendation model based on fuzzy clustering algorithm
Yang, Ye; Zhang, Yunhua
2018-05-01
As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.
Energy Technology Data Exchange (ETDEWEB)
Nakhleh, Luay
2014-03-12
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.
An three-dimensional imaging algorithm based on the radiation model of electric dipole
International Nuclear Information System (INIS)
Tian Bo; Zhong Weijun; Tong Chuangming
2011-01-01
A three-dimensional imaging algorithm based on the radiation model of dipole (DBP) is presented. On the foundation of researching the principle of the back projection (BP) algorithm, the relationship between the near field imaging model and far field imaging model is analyzed based on the scattering model. Firstly, the far field sampling data is transferred to the near field sampling data through applying the radiation theory of dipole. Then the dealt sampling data was projected to the imaging region to obtain the images of targets. The capability of the new algorithm to detect targets is verified by using finite-difference time-domain method (FDTD), and the coupling effect for imaging is analyzed. (authors)
Designers' Cognitive Thinking Based on Evolutionary Algorithms
Zhang Shutao; Jianning Su; Chibing Hu; Peng Wang
2013-01-01
The research on cognitive thinking is important to construct the efficient intelligent design systems. But it is difficult to describe the model of cognitive thinking with reasonable mathematical theory. Based on the analysis of design strategy and innovative thinking, we investigated the design cognitive thinking model that included the external guide thinking of "width priority - depth priority" and the internal dominated thinking of "divergent thinking - convergent thinking", built a reaso...
Prediction of stock markets by the evolutionary mix-game model
Chen, Fang; Gou, Chengling; Guo, Xiaoqian; Gao, Jieping
2008-06-01
This paper presents the efforts of using the evolutionary mix-game model, which is a modified form of the agent-based mix-game model, to predict financial time series. Here, we have carried out three methods to improve the original mix-game model by adding the abilities of strategy evolution to agents, and then applying the new model referred to as the evolutionary mix-game model to forecast the Shanghai Stock Exchange Composite Index. The results show that these modifications can improve the accuracy of prediction greatly when proper parameters are chosen.
Markov Networks in Evolutionary Computation
Shakya, Siddhartha
2012-01-01
Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs). EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Directory of Open Access Journals (Sweden)
Zhongyi Hu
2013-01-01
Full Text Available Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA based memetic algorithm (FA-MA to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.
Synthesizing multi-objective H2/H-infinity dynamic controller using evolutionary algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf; Langballe, A.S.; Wisniewski, Rafal
This paper covers the design of an Evolutionary Algorithm (EA), which should be able to synthesize a mixed H2/H-infinity. It will be shown how a system can be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA. The main objective is to examine whether a mixed...... H2/H-infinity controller is feasible, and if so, how the optimal mixed controller might befound....
Taxon ordering in phylogenetic trees by means of evolutionary algorithms
Directory of Open Access Journals (Sweden)
Cerutti Francesco
2011-07-01
Full Text Available Abstract Background In in a typical "left-to-right" phylogenetic tree, the vertical order of taxa is meaningless, as only the branch path between them reflects their degree of similarity. To make unresolved trees more informative, here we propose an innovative Evolutionary Algorithm (EA method to search the best graphical representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa. Methods Starting from a West Nile virus phylogenetic tree, in a (1 + 1-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the r (radius next taxa. After having set the radius to the best performance, we evolved the trees with (λ + μ-EAs to study the influence of population on the algorithm. Results The (1 + 1-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (λ + μ-EAs performed as well as the (1 + 1, except the larger population (1000 + 1000. Conclusions The trees after the evolution showed an improvement both of the fitness (based on a genetic distance matrix, then close taxa are actually genetically close, and of the biological interpretation. Samples collected in the same state or year moved close each other, making the tree easier to interpret. Biological relationships between samples are also easier to observe.
Evolutionary game theory using agent-based methods.
Adami, Christoph; Schossau, Jory; Hintze, Arend
2016-12-01
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright Â© 2016 Elsevier B.V. All rights reserved.
Modeling of genetic algorithms with a finite population
C.H.M. van Kemenade
1997-01-01
textabstractCross-competition between non-overlapping building blocks can strongly influence the performance of evolutionary algorithms. The choice of the selection scheme can have a strong influence on the performance of a genetic algorithm. This paper describes a number of different genetic
A Novel Algorithm for Intrusion Detection Based on RASL Model Checking
Directory of Open Access Journals (Sweden)
Weijun Zhu
2013-01-01
Full Text Available The interval temporal logic (ITL model checking (MC technique enhances the power of intrusion detection systems (IDSs to detect concurrent attacks due to the strong expressive power of ITL. However, an ITL formula suffers from difficulty in the description of the time constraints between different actions in the same attack. To address this problem, we formalize a novel real-time interval temporal logic—real-time attack signature logic (RASL. Based on such a new logic, we put forward a RASL model checking algorithm. Furthermore, we use RASL formulas to describe attack signatures and employ discrete timed automata to create an audit log. As a result, RASL model checking algorithm can be used to automatically verify whether the automata satisfy the formulas, that is, whether the audit log coincides with the attack signatures. The simulation experiments show that the new approach effectively enhances the detection power of the MC-based intrusion detection methods for a number of telnet attacks, p-trace attacks, and the other sixteen types of attacks. And these experiments indicate that the new algorithm can find several types of real-time attacks, whereas the existing MC-based intrusion detection approaches cannot do that.
Directory of Open Access Journals (Sweden)
M. Frutos
2013-01-01
Full Text Available Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.
Wang, Chun; Ji, Zhicheng; Wang, Yan
2017-07-01
In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.
Face Alignment Using Boosting and Evolutionary Search
Zhang, Hua; Liu, Duanduan; Poel, Mannes; Nijholt, Antinus; Zha, H.; Taniguchi, R.-I.; Maybank, S.
2010-01-01
In this paper, we present a face alignment approach using granular features, boosting, and an evolutionary search algorithm. Active Appearance Models (AAM) integrate a shape-texture-combined morphable face model into an efficient fitting strategy, then Boosting Appearance Models (BAM) consider the
Creating ensembles of oblique decision trees with evolutionary algorithms and sampling
Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA
2006-06-13
A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.
Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm
Craig, Sam; While, Lyndon; Barone, Luigi
We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.
Model-based fault diagnosis techniques design schemes, algorithms, and tools
Ding, Steven
2008-01-01
The objective of this book is to introduce basic model-based FDI schemes, advanced analysis and design algorithms, and the needed mathematical and control theory tools at a level for graduate students and researchers as well as for engineers. This is a textbook with extensive examples and references. Most methods are given in the form of an algorithm that enables a direct implementation in a programme. Comparisons among different methods are included when possible.
Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies
Cantu-Paz, Erick; Kamath, Chandrika
2000-10-01
Decision tress have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis- parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learned is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction wiht deterministic hill-climbing and the use of simulated annealing. In this paper, we use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. We demonstrate our technique on a synthetic data set, and then we apply it to a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology. In addition, we describe our experiences with several split evaluation criteria. Our results suggest that, in some cases, the evolutionary approach is faster and more accurate than existing oblique decision tree algorithms. However, for our astronomical data, the accuracy is not significantly different than the axis-parallel trees.
Directory of Open Access Journals (Sweden)
Juliano Rodrigues Brianeze
2009-12-01
Full Text Available This work presents three of the main evolutionary algorithms: Genetic Algorithm, Evolution Strategy and Evolutionary Programming, applied to microstrip antennas design. Efficiency tests were performed, considering the analysis of key physical and geometrical parameters, evolution type, numerical random generators effects, evolution operators and selection criteria. These algorithms were validated through design of microstrip antennas based on the Resonant Cavity Method, and allow multiobjective optimizations, considering bandwidth, standing wave ratio and relative material permittivity. The optimal results obtained with these optimization processes, were confirmed by CST Microwave Studio commercial package.Este trabajo presenta tres de los principales algoritmos evolutivos: Algoritmo Genético, Estrategia Evolutiva y Programación Evolutiva, aplicados al diseño de antenas de microlíneas (microstrip. Se realizaron pruebas de eficiencia de los algoritmos, considerando el análisis de los parámetros físicos y geométricos, tipo de evolución, efecto de generación de números aleatorios, operadores evolutivos y los criterios de selección. Estos algoritmos fueron validados a través del diseño de antenas de microlíneas basado en el Método de Cavidades Resonantes y permiten optimizaciones multiobjetivo, considerando ancho de banda, razón de onda estacionaria y permitividad relativa del dieléctrico. Los resultados óptimos obtenidos fueron confirmados a través del software comercial CST Microwave Studio.
Energy Technology Data Exchange (ETDEWEB)
Kubota, N. [Osaka Inst. of Technology, Osaka (Japan); Fukuda, T. [Nagoya University, Nagoya (Japan)
1998-05-31
This paper deals with virus evolutionary genetic algorithm. The genetic algorithms (GAs) have been demonstrated its effectiveness in optimization problems in these days. In general, the GAs simulate the survival of fittest by natural selection and the heredity of the Darwin`s theory of evolution. However, some types of evolutionary hypotheses such as neutral theory of molecular evolution, Imanishi`s evolutionary theory, serial symbiosis theory, and virus theory of evolution, have been proposed in addition to the Darwinism. Virus theory of evolution is based on the view that the virus transduction is a key mechanism for transporting segments of DNA across species. This paper proposes genetic algorithm based on the virus theory of evolution (VE-GA), which has two types of populations: host population and virus population. The VE-GA is composed of genetic operators and virus operators such as reverse transcription and incorporation. The reverse transcription operator transcribes virus genes on the chromosome of host individual and the incorporation operator creates new genotype of virus from host individual. These operators by virus population make it possible to transmit segment of DNA between individuals in the host population. Therefore, the VE-GA realizes not only vertical but also horizontal propagation of genetic information. Further, the VE-GA is applied to the traveling salesman problem in order to show the effectiveness. 20 refs., 10 figs., 3 tabs.
Jeong, Chan-Seok; Kim, Dongsup
2016-02-24
Elucidating the cooperative mechanism of interconnected residues is an important component toward understanding the biological function of a protein. Coevolution analysis has been developed to model the coevolutionary information reflecting structural and functional constraints. Recently, several methods have been developed based on a probabilistic graphical model called the Markov random field (MRF), which have led to significant improvements for coevolution analysis; however, thus far, the performance of these models has mainly been assessed by focusing on the aspect of protein structure. In this study, we built an MRF model whose graphical topology is determined by the residue proximity in the protein structure, and derived a novel positional coevolution estimate utilizing the node weight of the MRF model. This structure-based MRF method was evaluated for three data sets, each of which annotates catalytic site, allosteric site, and comprehensively determined functional site information. We demonstrate that the structure-based MRF architecture can encode the evolutionary information associated with biological function. Furthermore, we show that the node weight can more accurately represent positional coevolution information compared to the edge weight. Lastly, we demonstrate that the structure-based MRF model can be reliably built with only a few aligned sequences in linear time. The results show that adoption of a structure-based architecture could be an acceptable approximation for coevolution modeling with efficient computation complexity.
Radhakrishnan, Mohanasundar; Pathirana, Assela; Ghebremichael, Kebreab A.; Amy, Gary L.
2012-01-01
Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.
Radhakrishnan, Mohanasundar
2012-05-01
Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.
Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development
Directory of Open Access Journals (Sweden)
Yuliya Vladimirovna Dubrovskaya
2016-10-01
Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.
Directory of Open Access Journals (Sweden)
sadegh sadeghitabas
2015-12-01
Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.
Practical advantages of evolutionary computation
Fogel, David B.
1997-10-01
Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.
A synthesis/design optimization algorithm for Rankine cycle based energy systems
International Nuclear Information System (INIS)
Toffolo, Andrea
2014-01-01
The algorithm presented in this work has been developed to search for the optimal topology and design parameters of a set of Rankine cycles forming an energy system that absorbs/releases heat at different temperature levels and converts part of the absorbed heat into electricity. This algorithm can deal with several applications in the field of energy engineering: e.g., steam cycles or bottoming cycles in combined/cogenerative plants, steam networks, low temperature organic Rankine cycles. The main purpose of this algorithm is to overcome the limitations of the search space introduced by the traditional mixed-integer programming techniques, which assume that possible solutions are derived from a single superstructure embedding them all. The algorithm presented in this work is a hybrid evolutionary/traditional optimization algorithm organized in two levels. A complex original codification of the topology and the intensive design parameters of the system is managed by the upper level evolutionary algorithm according to the criteria set by the HEATSEP method, which are used for the first time to automatically synthesize a “basic” system configuration from a set of elementary thermodynamic cycles. The lower SQP (sequential quadratic programming) algorithm optimizes the objective function(s) with respect to cycle mass flow rates only, taking into account the heat transfer feasibility constraint within the undefined heat transfer section. A challenging example of application is also presented to show the capabilities of the algorithm. - Highlights: • Energy systems based on Rankine cycles are used in many applications. • A hybrid algorithm is proposed to optimize the synthesis/design of such systems. • The topology of the candidate solutions is not limited by a superstructure. • Topology is managed by the genetic operators of the upper level algorithm. • The effectiveness of the algorithm is proved in a complex test case
Directory of Open Access Journals (Sweden)
Karla Vittori
2008-12-01
Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.
International Nuclear Information System (INIS)
Yousefi, Moslem; Darus, Amer Nordin; Yousefi, Milad; Hooshyar, Danial
2015-01-01
The complicated task of design optimization of compact heat exchangers (CHEs) have been effectively performed by using evolutionary algorithms (EAs) in the recent years. However, mainly due to difficulties of handling extra variables, the design approach has been based on constant rates of heat duty in the available literature. In this paper, a new design strategy is presented where variable operating conditions, which better represent real-world problems, are considered. The proposed strategy is illustrated using a case study for design of a plate-fin heat exchanger though it can be employed for all types of heat exchangers without much change. Learning automata based particle swarm optimization (LAPSO), is employed for handling nine design variables while satisfying various equality and inequality constraints. For handling the constraints, a novel feasibility based ranking strategy (FBRS) is introduced. The numerical results indicate that the design based on variable heat duties yields in more cost savings and superior thermodynamics efficiency comparing to a conventional design approach. Furthermore, the proposed algorithm has shown a superior performance in finding the near-optimum solution for this task when it is compared to the most popular evolutionary algorithms in engineering applications, i.e. genetic algorithm (GA) and particle swarm optimization (PSO). - Highlights: • Multi-stage design of heat exchangers is presented. • Feasibility based ranking strategy is employed for constraint handling. • Learning abilities added to particle swarm optimization
Directory of Open Access Journals (Sweden)
Wiktor HUDY
2013-12-01
Full Text Available In this paper, the impact of regulators set and their types for the characteristic of rotational speed of induction motor was researched.. The evolutionary algorithm was used as optimization tool. Results were verified with using MATLAB/Simulink.
Iris double recognition based on modified evolutionary neural network
Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai
2017-11-01
Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.
A Spherical Model Based Keypoint Descriptor and Matching Algorithm for Omnidirectional Images
Directory of Open Access Journals (Sweden)
Guofeng Tong
2014-04-01
Full Text Available Omnidirectional images generally have nonlinear distortion in radial direction. Unfortunately, traditional algorithms such as scale-invariant feature transform (SIFT and Descriptor-Nets (D-Nets do not work well in matching omnidirectional images just because they are incapable of dealing with the distortion. In order to solve this problem, a new voting algorithm is proposed based on the spherical model and the D-Nets algorithm. Because the spherical-based keypoint descriptor contains the distortion information of omnidirectional images, the proposed matching algorithm is invariant to distortion. Keypoint matching experiments are performed on three pairs of omnidirectional images, and comparison is made among the proposed algorithm, the SIFT and the D-Nets. The result shows that the proposed algorithm is more robust and more precise than the SIFT, and the D-Nets in matching omnidirectional images. Comparing with the SIFT and the D-Nets, the proposed algorithm has two main advantages: (a there are more real matching keypoints; (b the coverage range of the matching keypoints is wider, including the seriously distorted areas.
Schroedinger operators and evolutionary strategies
International Nuclear Information System (INIS)
Asselmeyer, T.
1997-01-01
First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution
Evolutionary Cellular Automata for Image Segmentation and Noise Filtering Using Genetic Algorithms
Directory of Open Access Journals (Sweden)
Sihem SLATNIA
2011-01-01
Full Text Available We use an evolutionary process to seek a specialized set of rules among a wide range of rules to be used by Cellular Automata (CA for a range of tasks,extracting edges in a given gray or colour image, noise filtering applied to black-white image. This is the best set of local rules determine the future state of CA in an asynchronous way. The Genetic Algorithm (GA is applied to search the best CA rules that can realize the best edge detection and noise filtering.
Evolutionary Cellular Automata for Image Segmentation and Noise Filtering Using Genetic Algorithms
Directory of Open Access Journals (Sweden)
Okba Kazar
2011-01-01
Full Text Available We use an evolutionary process to seek a specialized set of rules among a wide range of rules to be used by Cellular Automata (CA for a range of tasks, extracting edges in a given gray or colour image, noise filtering applied to black-white image. This is the best set of local rules determine the future state of CA in an asynchronous way. The Genetic Algorithm (GA is applied to search the best CA rules that can realize the best edge detection and noise filtering.
A Rule-Based Model for Bankruptcy Prediction Based on an Improved Genetic Ant Colony Algorithm
Directory of Open Access Journals (Sweden)
Yudong Zhang
2013-01-01
Full Text Available In this paper, we proposed a hybrid system to predict corporate bankruptcy. The whole procedure consists of the following four stages: first, sequential forward selection was used to extract the most important features; second, a rule-based model was chosen to fit the given dataset since it can present physical meaning; third, a genetic ant colony algorithm (GACA was introduced; the fitness scaling strategy and the chaotic operator were incorporated with GACA, forming a new algorithm—fitness-scaling chaotic GACA (FSCGACA, which was used to seek the optimal parameters of the rule-based model; and finally, the stratified K-fold cross-validation technique was used to enhance the generalization of the model. Simulation experiments of 1000 corporations’ data collected from 2006 to 2009 demonstrated that the proposed model was effective. It selected the 5 most important factors as “net income to stock broker’s equality,” “quick ratio,” “retained earnings to total assets,” “stockholders’ equity to total assets,” and “financial expenses to sales.” The total misclassification error of the proposed FSCGACA was only 7.9%, exceeding the results of genetic algorithm (GA, ant colony algorithm (ACA, and GACA. The average computation time of the model is 2.02 s.
Covariance-Based Measurement Selection Criterion for Gaussian-Based Algorithms
Directory of Open Access Journals (Sweden)
Fernando A. Auat Cheein
2013-01-01
Full Text Available Process modeling by means of Gaussian-based algorithms often suffers from redundant information which usually increases the estimation computational complexity without significantly improving the estimation performance. In this article, a non-arbitrary measurement selection criterion for Gaussian-based algorithms is proposed. The measurement selection criterion is based on the determination of the most significant measurement from both an estimation convergence perspective and the covariance matrix associated with the measurement. The selection criterion is independent from the nature of the measured variable. This criterion is used in conjunction with three Gaussian-based algorithms: the EIF (Extended Information Filter, the EKF (Extended Kalman Filter and the UKF (Unscented Kalman Filter. Nevertheless, the measurement selection criterion shown herein can also be applied to other Gaussian-based algorithms. Although this work is focused on environment modeling, the results shown herein can be applied to other Gaussian-based algorithm implementations. Mathematical descriptions and implementation results that validate the proposal are also included in this work.
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
Kirchner-Bossi, Nicolas; Porté-Agel, Fernando
2017-04-01
Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.
Artificial neural networks and evolutionary algorithms in engineering design
T. Velsker; M. Eerme; J. Majak; M. Pohlak; K. Karjust
2011-01-01
Purpose: Purpose of this paper is investigation of optimization strategies eligible for solving complex engineering design problems. An aim is to develop numerical algorithms for solving optimal design problems which may contain real and integer variables, a number of local extremes, linear- and non-linear constraints and multiple optimality criteria.Design/methodology/approach: The methodology proposed for solving optimal design problems is based on integrated use of meta-modeling techniques...
Optimization model of conventional missile maneuvering route based on improved Floyd algorithm
Wu, Runping; Liu, Weidong
2018-04-01
Missile combat plays a crucial role in the victory of war under high-tech conditions. According to the characteristics of maneuver tasks of conventional missile units in combat operations, the factors influencing road maneuvering are analyzed. Based on road distance, road conflicts, launching device speed, position requirements, launch device deployment, Concealment and so on. The shortest time optimization model was built to discuss the situation of road conflict and the strategy of conflict resolution. The results suggest that in the process of solving road conflict, the effect of node waiting is better than detour to another way. In this study, we analyzed the deficiency of the traditional Floyd algorithm which may limit the optimal way of solving road conflict, and put forward the improved Floyd algorithm, meanwhile, we designed the algorithm flow which would be better than traditional Floyd algorithm. Finally, throgh a numerical example, the model and the algorithm were proved to be reliable and effective.
Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart
2010-01-01
Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Roldan Perez, Javier
2016-01-01
Distributed control methods based on consensus algorithms have become popular in recent years for microgrid (MG) systems. These kinds of algorithms can be applied to share information in order to coordinate multiple distributed generators within a MG. However, stability analysis becomes a challen......Distributed control methods based on consensus algorithms have become popular in recent years for microgrid (MG) systems. These kinds of algorithms can be applied to share information in order to coordinate multiple distributed generators within a MG. However, stability analysis becomes...... in the communication network, continuous-time methods can be inaccurate for this kind of dynamic study. Therefore, this paper aims at modeling a complete DC MG using a discrete-time approach in order to perform a sensitivity analysis taking into account the effects of the consensus algorithm. To this end......, a generalized modeling method is proposed and the influence of key control parameters, the communication topology and the communication speed are studied in detail. The theoretical results obtained with the proposed model are verified by comparing them with the results obtained with a detailed switching...
An Improved Algorithm to Delineate Urban Targets with Model-Based Decomposition of PolSAR Data
Directory of Open Access Journals (Sweden)
Dingfeng Duan
2017-10-01
Full Text Available In model-based decomposition algorithms using polarimetric synthetic aperture radar (PolSAR data, urban targets are typically identified based on the existence of strong double-bounced scattering. However, urban targets with large azimuth orientation angles (AOAs produce strong volumetric scattering that appears similar to scattering characteristics from tree canopies. Due to scattering ambiguity, urban targets can be classified into the vegetation category if the same classification scheme of the model-based PolSAR decomposition algorithms is followed. To resolve the ambiguity and to reduce the misclassification eventually, we introduced a correlation coefficient that characterized scattering mechanisms of urban targets with variable AOAs. Then, an existing volumetric scattering model was modified, and a PolSAR decomposition algorithm developed. The validity and effectiveness of the algorithm were examined using four PolSAR datasets. The algorithm was valid and effective to delineate urban targets with a wide range of AOAs, and applicable to a broad range of ground targets from urban areas, and from upland and flooded forest stands.
Evolutionary model of the growth and size of firms
Kaldasch, Joachim
2012-07-01
The key idea of this model is that firms are the result of an evolutionary process. Based on demand and supply considerations the evolutionary model presented here derives explicitly Gibrat's law of proportionate effects as the result of the competition between products. Applying a preferential attachment mechanism for firms, the theory allows to establish the size distribution of products and firms. Also established are the growth rate and price distribution of consumer goods. Taking into account the characteristic property of human activities to occur in bursts, the model allows also an explanation of the size-variance relationship of the growth rate distribution of products and firms. Further the product life cycle, the learning (experience) curve and the market size in terms of the mean number of firms that can survive in a market are derived. The model also suggests the existence of an invariant of a market as the ratio of total profit to total revenue. The relationship between a neo-classic and an evolutionary view of a market is discussed. The comparison with empirical investigations suggests that the theory is able to describe the main stylized facts concerning the size and growth of firms.
Evolving cell models for systems and synthetic biology.
Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio
2010-03-01
This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.
Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms
Bianchi, E.; Doppelbauer, G.; Filion, L.C.; Dijkstra, M.; Kahl, G.
2012-01-01
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the
International Nuclear Information System (INIS)
Machado, Marcelo Dornellas
1999-04-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. In this work, a new learning mode, to be used by the Population-Based Incremental Learning (PBIL) algorithm, who combines mechanisms of standard genetic algorithm with simple competitive learning, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process know as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors. This problem can be interpreted as search of a load pattern to be used in the nucleus of the reactor in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)
International Nuclear Information System (INIS)
Singh, Sonveer; Agrawal, Sanjay; Gadh, Rajit
2015-01-01
Highlights: • Optimization of SCGPVT array using Evolutionary Algorithm. • The overall exergy gain is maximized with an Evolutionary Algorithm. • Annual Performance has been evaluated for New Delhi (India). • There are improvement in results than the model given in literature. • Carbon credit analysis has been done. - Abstract: In this paper, work is carried out in three steps. In the first step, optimization of single channel glazed photovoltaic thermal (SCGPVT) array has been done with an Evolutionary Algorithm (EA) keeping the overall exergy gain is an objective function of the SCGPVT array. For maximization of overall exergy gain, total seven design variables have been optimized such as length of the channel (L), mass flow rate of flowing fluid (m_F), velocity of flowing fluid (V_F), convective heat transfer coefficient through the tedlar (U_T), overall heat transfer coefficient between solar cell to ambient through glass cover (U_S_C_A_G), overall back loss heat transfer coefficient from flowing fluid to ambient (U_F_A) and convective heat transfer coefficient of tedlar (h_T). It has been observed that the instant overall exergy gain obtained from optimized system is 1.42 kW h, which is 87.86% more than the overall exergy gain of a un-optimized system given in literature. In the second step, overall exergy gain and overall thermal gain of SCGPVT array has been evaluated annually and there are 69.52% and 88.05% improvement in annual overall exergy gain and annual overall thermal gain respectively than the un-optimized system for the same input irradiance and ambient temperature. In the third step, carbon credit earned by the optimized SCGPVT array has also been evaluated as per norms of Kyoto Protocol Bangalore climatic conditions.
Evolutionary computation in zoology and ecology.
Boone, Randall B
2017-12-01
Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.
Gas Emission Prediction Model of Coal Mine Based on CSBP Algorithm
Directory of Open Access Journals (Sweden)
Xiong Yan
2016-01-01
Full Text Available In view of the nonlinear characteristics of gas emission in a coal working face, a prediction method is proposed based on cuckoo search algorithm optimized BP neural network (CSBP. In the CSBP algorithm, the cuckoo search is adopted to optimize weight and threshold parameters of BP network, and obtains the global optimal solutions. Furthermore, the twelve main affecting factors of the gas emission in the coal working face are taken as input vectors of CSBP algorithm, the gas emission is acted as output vector, and then the prediction model of BP neural network with optimal parameters is established. The results show that the CSBP algorithm has batter generalization ability and higher prediction accuracy, and can be utilized effectively in the prediction of coal mine gas emission.
Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.
Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu
2017-01-01
The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this article, we reveal that the (1+1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are, respectively, the number of Steiner nodes, the number of special nodes, and the largest weight among all edges in the input graph. We also show that the (1+1) EA is better than two other heuristics on two GSTP instances, and the (1+1) EA may be inefficient on a constructed GSTP instance.
Directory of Open Access Journals (Sweden)
Ahmed R. Abdelaziz
2015-08-01
Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.
GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE
Directory of Open Access Journals (Sweden)
Ashish Jain
2012-07-01
Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.
Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.
2011-12-01
Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass
Directory of Open Access Journals (Sweden)
Bogna MRÓWCZYŃSKA
2011-01-01
Full Text Available This paper describes an application of an evolutionary algorithm and an artificial immune systems to solve a problem of scheduling an optimal route for waste disposal garbage trucks in its daily operation. Problem of an optimisation is formulated and solved using both methods. The results are presented for an area in one of the Polish cities.
Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok
2013-02-01
The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based
Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid
International Nuclear Information System (INIS)
Padée, Adam; Zaremba, Krzysztof; Kurek, Krzysztof
2013-01-01
Reconstruction of particle tracks from information collected by position-sensitive detectors is an important procedure in HEP experiments. It is usually controlled by a set of numerical parameters which have to be manually optimized. This paper proposes an automatic approach to this task by utilizing evolutionary algorithm (EA) operating on both real-valued and binary representations. Because of computational complexity of the task a special distributed architecture of the algorithm is proposed, designed to be run in grid environment. It is two-level hierarchical hybrid utilizing asynchronous master-slave EA on the level of clusters and island model EA on the level of the grid. The technical aspects of usage of production grid infrastructure are covered, including communication protocols on both levels. The paper deals also with the problem of heterogeneity of the resources, presenting efficiency tests on a benchmark function. These tests confirm that even relatively small islands (clusters) can be beneficial to the optimization process when connected to the larger ones. Finally a real-life usage example is presented, which is an optimization of track reconstruction in Large Angle Spectrometer of NA-58 COMPASS experiment held at CERN, using a sample of Monte Carlo simulated data. The overall reconstruction efficiency gain, achieved by the proposed method, is more than 4%, compared to the manually optimized parameters
SOLVING THE PROBLEM OF VEHICLE ROUTING BY EVOLUTIONARY ALGORITHM
Directory of Open Access Journals (Sweden)
Remigiusz Romuald Iwańkowicz
2016-03-01
Full Text Available In the presented work the vehicle routing problem is formulated, which concerns planning the collection of wastes by one garbage truck from a certain number of collection points. The garbage truck begins its route in the base point, collects the load in subsequent collection points, then drives the wastes to the disposal site (landfill or sorting plant and returns to the another visited collection points. The filled garbage truck each time goes to the disposal site. It returns to the base after driving wastes from all collection points. Optimization model is based on genetic algorithm where individual is the whole garbage collection plan. Permutation is proposed as the code of the individual.
Highway Passenger Transport Based Express Parcel Service Network Design: Model and Algorithm
Directory of Open Access Journals (Sweden)
Yuan Jiang
2017-01-01
Full Text Available Highway passenger transport based express parcel service (HPTB-EPS is an emerging business that uses unutilised room of coach trunk to ship parcels between major cities. While it is reaping more and more express market, the managers are facing difficult decisions to design the service network. This paper investigates the HPTB-EPS network design problem and analyses the time-space characteristics of such network. A mixed-integer programming model is formulated integrating the service decision, frequency, and network flow distribution. To solve the model, a decomposition-based heuristic algorithm is designed by decomposing the problem as three steps: construction of service network, service path selection, and distribution of network flow. Numerical experiment using real data from our partner company demonstrates the effectiveness of our model and algorithm. We found that our solution could reduce the total cost by up to 16.3% compared to the carrier’s solution. The sensitivity analysis demonstrates the robustness and flexibility of the solutions of the model.
Evolutionary constrained optimization
Deb, Kalyanmoy
2015-01-01
This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...
DEFF Research Database (Denmark)
Vesterstrøm, Jacob Svaneborg; Thomsen, Rene
2004-01-01
Several extensions to evolutionary algorithms (EAs) and particle swarm optimization (PSO) have been suggested during the last decades offering improved performance on selected benchmark problems. Recently, another search heuristic termed differential evolution (DE) has shown superior performance...... in several real-world applications. In this paper, we evaluate the performance of DE, PSO, and EAs regarding their general applicability as numerical optimization techniques. The comparison is performed on a suite of 34 widely used benchmark problems. The results from our study show that DE generally...... outperforms the other algorithms. However, on two noisy functions, both DE and PSO were outperformed by the EA....
Real-time process optimization based on grey-box neural models
Directory of Open Access Journals (Sweden)
F. A. Cubillos
2007-09-01
Full Text Available This paper investigates the feasibility of using grey-box neural models (GNM in Real Time Optimization (RTO. These models are based on a suitable combination of fundamental conservation laws and neural networks, being used in at least two different ways: to complement available phenomenological knowledge with empirical information, or to reduce dimensionality of complex rigorous physical models. We have observed that the benefits of using these simple adaptable models are counteracted by some difficulties associated with the solution of the optimization problem. Nonlinear Programming (NLP algorithms failed in finding the global optimum due to the fact that neural networks can introduce multimodal objective functions. One alternative considered to solve this problem was the use of some kind of evolutionary algorithms, like Genetic Algorithms (GA. Although these algorithms produced better results in terms of finding the appropriate region, they took long periods of time to reach the global optimum. It was found that a combination of genetic and nonlinear programming algorithms can be use to fast obtain the optimum solution. The proposed approach was applied to the Williams-Otto reactor, considering three different GNM models of increasing complexity. Results demonstrated that the use of GNM models and mixed GA/NLP optimization algorithms is a promissory approach for solving dynamic RTO problems.
Langley's CSI evolutionary model: Phase O
Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.
1991-01-01
A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.
International Nuclear Information System (INIS)
Lahanas, M; Baltas, D; Zamboglou, N
2003-01-01
Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives
Dynamic route guidance algorithm based algorithm based on artificial immune system
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To improve the performance of the K-shortest paths search in intelligent traffic guidance systems,this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the memphor mechanism of vertebrate immune systems.This algorithm,applied to the urban traffic network model established by the node-expanding method,can expediently realize K-shortest paths search in the urban traffic guidance systems.Because of the immune memory and global parallel search ability from artificial immune systems,K shortest paths can be found without any repeat,which indicates evidently the superiority of the algorithm to the conventional ones.Not only does it perform a better parallelism,the algorithm also prevents premature phenomenon that often occurs in genetic algorithms.Thus,it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications.A case study verifies the efficiency and the practicability of the algorithm aforementioned.
Directory of Open Access Journals (Sweden)
Laxmi A. Bewoor
2017-10-01
Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.
A solution to the economic dispatch using EP based SA algorithm on large scale power system
Energy Technology Data Exchange (ETDEWEB)
Christober Asir Rajan, C. [Department of EEE, Pondicherry Engineering College, Pondicherry 605 014 (India)
2010-07-15
This paper develops a new approach for solving the Economic Load Dispatch (ELD) using an integrated algorithm based on Evolutionary Programming (EP) and Simulated Annealing (SA) on large scale power system. Classical methods employed for solving Economic Load Dispatch are calculus-based. For generator units having quadratic fuel cost functions, the classical techniques ignore or flatten out the portions of the incremental fuel cost curves and so may be have difficulties in the determination of the global optimum solution for non-differentiable fuel cost functions. To overcome these problems, the intelligent techniques, namely, Evolutionary Programming and Simulated Annealing are employed. The above said optimization techniques are capable of determining the global or near global optimum dispatch solutions. The validity and effectiveness of the proposed integrated algorithm has been tested with 66-bus Indian utility system, IEEE 5-bus, 30-bus, 118-bus system. And the test results are compared with the results obtained from other methods. Numerical results show that the proposed integrated algorithm can provide accurate solutions within reasonable time for any type of fuel cost functions. (author)
Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm
Baskaran, Subbiah; Noever, D.
1999-01-01
Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.
Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows
Srivastav, R. K.; Srinivasan, K.; Sudheer, K.
2009-05-01
bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.
An Adaptive Agent-Based Model of Homing Pigeons: A Genetic Algorithm Approach
Directory of Open Access Journals (Sweden)
Francis Oloo
2017-01-01
Full Text Available Conventionally, agent-based modelling approaches start from a conceptual model capturing the theoretical understanding of the systems of interest. Simulation outcomes are then used “at the end” to validate the conceptual understanding. In today’s data rich era, there are suggestions that models should be data-driven. Data-driven workflows are common in mathematical models. However, their application to agent-based models is still in its infancy. Integration of real-time sensor data into modelling workflows opens up the possibility of comparing simulations against real data during the model run. Calibration and validation procedures thus become automated processes that are iteratively executed during the simulation. We hypothesize that incorporation of real-time sensor data into agent-based models improves the predictive ability of such models. In particular, that such integration results in increasingly well calibrated model parameters and rule sets. In this contribution, we explore this question by implementing a flocking model that evolves in real-time. Specifically, we use genetic algorithms approach to simulate representative parameters to describe flight routes of homing pigeons. The navigation parameters of pigeons are simulated and dynamically evaluated against emulated GPS sensor data streams and optimised based on the fitness of candidate parameters. As a result, the model was able to accurately simulate the relative-turn angles and step-distance of homing pigeons. Further, the optimised parameters could replicate loops, which are common patterns in flight tracks of homing pigeons. Finally, the use of genetic algorithms in this study allowed for a simultaneous data-driven optimization and sensitivity analysis.
Model-based Bayesian signal extraction algorithm for peripheral nerves
Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.
2017-10-01
Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of
Snake Model Based on Improved Genetic Algorithm in Fingerprint Image Segmentation
Directory of Open Access Journals (Sweden)
Mingying Zhang
2016-12-01
Full Text Available Automatic fingerprint identification technology is a quite mature research field in biometric identification technology. As the preprocessing step in fingerprint identification, fingerprint segmentation can improve the accuracy of fingerprint feature extraction, and also reduce the time of fingerprint preprocessing, which has a great significance in improving the performance of the whole system. Based on the analysis of the commonly used methods of fingerprint segmentation, the existing segmentation algorithm is improved in this paper. The snake model is used to segment the fingerprint image. Additionally, it is improved by using the global optimization of the improved genetic algorithm. Experimental results show that the algorithm has obvious advantages both in the speed of image segmentation and in the segmentation effect.
Class hierarchical test case generation algorithm based on expanded EMDPN model
Institute of Scientific and Technical Information of China (English)
LI Jun-yi; GONG Hong-fang; HU Ji-ping; ZOU Bei-ji; SUN Jia-guang
2006-01-01
A new model of event and message driven Petri network(EMDPN) based on the characteristic of class interaction for messages passing between two objects was extended. Using EMDPN interaction graph, a class hierarchical test-case generation algorithm with cooperated paths (copaths) was proposed, which can be used to solve the problems resulting from the class inheritance mechanism encountered in object-oriented software testing such as oracle, message transfer errors, and unreachable statement. Finally, the testing sufficiency was analyzed with the ordered sequence testing criterion(OSC). The results indicate that the test cases stemmed from newly proposed automatic algorithm of copaths generation satisfies synchronization message sequences testing criteria, therefore the proposed new algorithm of copaths generation has a good coverage rate.
The environmental zero-point problem in evolutionary reaction norm modeling.
Ergon, Rolf
2018-04-01
There is a potential problem in present quantitative genetics evolutionary modeling based on reaction norms. Such models are state-space models, where the multivariate breeder's equation in some form is used as the state equation that propagates the population state forward in time. These models use the implicit assumption of a constant reference environment, in many cases set to zero. This zero-point is often the environment a population is adapted to, that is, where the expected geometric mean fitness is maximized. Such environmental reference values follow from the state of the population system, and they are thus population properties. The environment the population is adapted to, is, in other words, an internal population property, independent of the external environment. It is only when the external environment coincides with the internal reference environment, or vice versa, that the population is adapted to the current environment. This is formally a result of state-space modeling theory, which is an important theoretical basis for evolutionary modeling. The potential zero-point problem is present in all types of reaction norm models, parametrized as well as function-valued, and the problem does not disappear when the reference environment is set to zero. As the environmental reference values are population characteristics, they ought to be modeled as such. Whether such characteristics are evolvable is an open question, but considering the complexity of evolutionary processes, such evolvability cannot be excluded without good arguments. As a straightforward solution, I propose to model the reference values as evolvable mean traits in their own right, in addition to other reaction norm traits. However, solutions based on an evolvable G matrix are also possible.
PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta.
Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J
2010-03-01
PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site.
Optimisation of BPMN Business Models via Model Checking
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Sharp, Robin
2013-01-01
We present a framework for the optimisation of business processes modelled in the business process modelling language BPMN, which builds upon earlier work, where we developed a model checking based method for the analysis of BPMN models. We define a structure for expressing optimisation goals...... for synthesized BPMN components, based on probabilistic computation tree logic and real-valued reward structures of the BPMN model, allowing for the specification of complex quantitative goals. We here present a simple algorithm, inspired by concepts from evolutionary algorithms, which iteratively generates...
Genetic evolutionary taboo search for optimal marker placement in infrared patient setup
International Nuclear Information System (INIS)
Riboldi, M; Baroni, G; Spadea, M F; Tagaste, B; Garibaldi, C; Cambria, R; Orecchia, R; Pedotti, A
2007-01-01
In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process
Optimum oil production planning using infeasibility driven evolutionary algorithm.
Singh, Hemant Kumar; Ray, Tapabrata; Sarker, Ruhul
2013-01-01
In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.
Metal artifact reduction algorithm based on model images and spatial information
Energy Technology Data Exchange (ETDEWEB)
Wu, Jay [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Shih, Cheng-Ting [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan (China); Chang, Shu-Jun [Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Huang, Tzung-Chi [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (China); Sun, Jing-Yi [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec. 2, Linong Street, Taipei 112, Taiwan (China)
2011-10-01
Computed tomography (CT) has become one of the most favorable choices for diagnosis of trauma. However, high-density metal implants can induce metal artifacts in CT images, compromising image quality. In this study, we proposed a model-based metal artifact reduction (MAR) algorithm. First, we built a model image using the k-means clustering technique with spatial information and calculated the difference between the original image and the model image. Then, the projection data of these two images were combined using an exponential weighting function. At last, the corrected image was reconstructed using the filter back-projection algorithm. Two metal-artifact contaminated images were studied. For the cylindrical water phantom image, the metal artifact was effectively removed. The mean CT number of water was improved from -28.95{+-}97.97 to -4.76{+-}4.28. For the clinical pelvic CT image, the dark band and the metal line were removed, and the continuity and uniformity of the soft tissue were recovered as well. These results indicate that the proposed MAR algorithm is useful for reducing metal artifact and could improve the diagnostic value of metal-artifact contaminated CT images.
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm
Institute of Scientific and Technical Information of China (English)
Haidong Xu; Mingyan Jiang; Kun Xu
2015-01-01
The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
Evolutionary optimization of production materials workflow processes
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter
2014-01-01
We present an evolutionary optimisation technique for stochastic production processes, which is able to find improved production materials workflow processes with respect to arbitrary combinations of numerical quantities associated with the production process. Working from a core fragment...... of the BPMN language, we employ an evolutionary algorithm where stochastic model checking is used as a fitness function to determine the degree of improvement of candidate processes derived from the original process through mutation and cross-over operations. We illustrate this technique using a case study...
Evolutionary genetics: the Drosophila model
Indian Academy of Sciences (India)
Unknown
Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.
Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms
Zhao, J.; Basto, Fernandes V.; Jiao, L.; Yevseyeva, I.; Asep, Maulana A.; Li, R.; Bäck, T.H.W.; Tang, T.; Michael, Emmerich T. M.
2016-01-01
The receiver operating characteristic (ROC) and detection error tradeoff(DET) curves are frequently used in the machine learning community to analyze the performance of binary classifiers. Recently, the convex-hull-based multiobjective genetic programming algorithm was proposed and successfully
S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr
2014-03-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.
International Nuclear Information System (INIS)
Kyriacou S; Kontoleontos E; Weissenberger S; Mangani L; Casartelli E; Skouteropoulou I; Gattringer M; Gehrer A; Buchmayr M
2014-01-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure
Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.
2016-01-01
1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.
Selfish Gene Algorithm Vs Genetic Algorithm: A Review
Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed
2016-11-01
Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.
Directory of Open Access Journals (Sweden)
Ronghui Zhang
2017-05-01
Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.
Directory of Open Access Journals (Sweden)
V. E. Marley
2015-01-01
Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.
Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.
Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk
2015-01-01
Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system
Chira, Camelia; Horvath, Dragos; Dumitrescu, D
2011-07-30
Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP) model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.
Directory of Open Access Journals (Sweden)
Chira Camelia
2011-07-01
Full Text Available Abstract Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.
Vertex shading of the three-dimensional model based on ray-tracing algorithm
Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan
2016-10-01
Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.
Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.
2017-06-01
In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
International Nuclear Information System (INIS)
Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.
2006-01-01
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
Energy Technology Data Exchange (ETDEWEB)
Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es
2006-09-15
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.
Evolutionary modelling of transitions to sustainable development
International Nuclear Information System (INIS)
Safarzynska, K.
2010-01-01
This thesis has examined how evolutionary economics can contribute to modelling the micromechanisms that underlie transitions towards sustainable development. In general, transitions are fundamental or structural system changes. They involve, or even require, escaping lock-in of dominant, environmentally unsustainable technologies, introducing major technical or social innovations, and changing prevailing social practices and structures. Due to the complexity of socioeconomic interactions, it is not always possible to identify, and thus target with appropriate policy instruments, causes of specific unsustainable patterns of behaviour. Formal modelling exercises can help improve our understanding of the interaction of various transition mechanisms which are otherwise difficult to grasp intuitively. They allow exploring effects of policy interventions in complex systems. However, existing models of transitions focus on social phenomena and seldom address economic problems. As opposed, mainstream (neoclassical) economic models of technological change do not account for social interactions, and changing heterogeneity of users and their perspectives - even though all of these can influence the direction of innovations and patterns of socio-technological development. Evolutionary economics offers an approach that goes beyond neoclassical economics - in the sense of employing more realistic assumptions regarding the behaviour and heterogeneity of consumers, firms and investors. It can complement current transition models by providing them with a better understanding of associated economic dynamics. In this thesis, formal models were proposed to illustrate the usefulness of a range of evolutionary-economic techniques for modelling transitions. Modelling exercises aimed to explain the core properties of socio-economic systems, such as lock-in, path-dependence, coevolution, group selection and recombinant innovation. The studies collected in this dissertation illustrate that
Machine learning based cloud mask algorithm driven by radiative transfer modeling
Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.
2017-12-01
Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.
Portfolio selection using genetic algorithms | Yahaya | International ...
African Journals Online (AJOL)
In this paper, one of the nature-inspired evolutionary algorithms – a Genetic Algorithms (GA) was used in solving the portfolio selection problem (PSP). Based on a real dataset from a popular stock market, the performance of the algorithm in relation to those obtained from one of the popular quadratic programming (QP) ...
PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta
Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J.
2010-01-01
Summary: PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. Availability: PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site. Contact: pyrosetta@graylab.jhu.edu PMID:20061306
Automatic differentiation algorithms in model analysis
Huiskes, M.J.
2002-01-01
Title: Automatic differentiation algorithms in model analysis
Author: M.J. Huiskes
Date: 19 March, 2002
In this thesis automatic differentiation algorithms and derivative-based methods
Phylogenetically Acquired Representations and Evolutionary Algorithms.
Wozniak , Adrianna
2006-01-01
First, we explain why Genetic Algorithms (GAs), inspired by the Modern Synthesis, do not accurately model biological evolution, being rather an artificial version of artificial, rather than natural selection. Being focused on optimisation, we propose two improvements of GAs, with the aim to successfully generate adapted, desired behaviour. The first one concerns phylogenetic grounding of meaning, a way to avoid the Symbol Grounding Problem. We give a definition of Phylogenetically Acquired Re...
Liver Segmentation Based on Snakes Model and Improved GrowCut Algorithm in Abdominal CT Image
Directory of Open Access Journals (Sweden)
Huiyan Jiang
2013-01-01
Full Text Available A novel method based on Snakes Model and GrowCut algorithm is proposed to segment liver region in abdominal CT images. First, according to the traditional GrowCut method, a pretreatment process using K-means algorithm is conducted to reduce the running time. Then, the segmentation result of our improved GrowCut approach is used as an initial contour for the future precise segmentation based on Snakes model. At last, several experiments are carried out to demonstrate the performance of our proposed approach and some comparisons are conducted between the traditional GrowCut algorithm. Experimental results show that the improved approach not only has a better robustness and precision but also is more efficient than the traditional GrowCut method.
Ferentinos, Konstantinos P
2005-09-01
Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.
Basic emotions and adaptation. A computational and evolutionary model.
Directory of Open Access Journals (Sweden)
Daniela Pacella
Full Text Available The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then
Basic emotions and adaptation. A computational and evolutionary model.
Pacella, Daniela; Ponticorvo, Michela; Gigliotta, Onofrio; Miglino, Orazio
2017-01-01
The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior
Radiation, ecology and the invalid LNT model: the evolutionary imperative.
Parsons, Peter A
2006-09-27
Metabolic and energetic efficiency, and hence fitness of organisms to survive, should be maximal in their habitats. This tenet of evolutionary biology invalidates the linear-no threshold (LNT) model for the risk consequences of environmental agents. Hormesis in response to selection for maximum metabolic and energetic efficiency, or minimum metabolic imbalance, to adapt to a stressed world dominated by oxidative stress should therefore be universal. Radiation hormetic zones extending substantially beyond common background levels, can be explained by metabolic interactions among multiple abiotic stresses. Demographic and experimental data are mainly in accord with this expectation. Therefore, non-linearity becomes the primary model for assessing risks from low-dose ionizing radiation. This is the evolutionary imperative upon which risk assessment for radiation should be based.
Evaluating ortholog prediction algorithms in a yeast model clade.
Directory of Open Access Journals (Sweden)
Leonidas Salichos
Full Text Available BACKGROUND: Accurate identification of orthologs is crucial for evolutionary studies and for functional annotation. Several algorithms have been developed for ortholog delineation, but so far, manually curated genome-scale biological databases of orthologous genes for algorithm evaluation have been lacking. We evaluated four popular ortholog prediction algorithms (MultiParanoid; and OrthoMCL; RBH: Reciprocal Best Hit; RSD: Reciprocal Smallest Distance; the last two extended into clustering algorithms cRBH and cRSD, respectively, so that they can predict orthologs across multiple taxa against a set of 2,723 groups of high-quality curated orthologs from 6 Saccharomycete yeasts in the Yeast Gene Order Browser. RESULTS: Examination of sensitivity [TP/(TP+FN], specificity [TN/(TN+FP], and accuracy [(TP+TN/(TP+TN+FP+FN] across a broad parameter range showed that cRBH was the most accurate and specific algorithm, whereas OrthoMCL was the most sensitive. Evaluation of the algorithms across a varying number of species showed that cRBH had the highest accuracy and lowest false discovery rate [FP/(FP+TP], followed by cRSD. Of the six species in our set, three descended from an ancestor that underwent whole genome duplication. Subsequent differential duplicate loss events in the three descendants resulted in distinct classes of gene loss patterns, including cases where the genes retained in the three descendants are paralogs, constituting 'traps' for ortholog prediction algorithms. We found that the false discovery rate of all algorithms dramatically increased in these traps. CONCLUSIONS: These results suggest that simple algorithms, like cRBH, may be better ortholog predictors than more complex ones (e.g., OrthoMCL and MultiParanoid for evolutionary and functional genomics studies where the objective is the accurate inference of single-copy orthologs (e.g., molecular phylogenetics, but that all algorithms fail to accurately predict orthologs when paralogy
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2016-04-01
This contribution presents a framework, which enables the use of an Evolutionary Algorithm (EA) for the calibration and regionalization of the hydrological model COSEROreg. COSEROreg uses an updated version of the HBV-type model COSERO (Kling et al. 2014) for the modelling of hydrological processes and is embedded in a parameter regionalization scheme based on Samaniego et al. (2010). The latter uses subscale-information to estimate model via a-priori chosen transfer functions (often derived from pedotransfer functions). However, the transferability of the regionalization scheme to different model-concepts and the integration of new forms of subscale information is not straightforward. (i) The usefulness of (new) single sub-scale information layers is unknown beforehand. (ii) Additionally, the establishment of functional relationships between these (possibly meaningless) sub-scale information layers and the distributed model parameters remain a central challenge in the implementation of a regionalization procedure. The proposed method theoretically provides a framework to overcome this challenge. The implementation of the EA encompasses the following procedure: First, a formal grammar is specified (Ryan et al., 1998). The construction of the grammar thereby defines the set of possible transfer functions and also allows to incorporate hydrological domain knowledge into the search itself. The EA iterates over the given space by combining parameterized basic functions (e.g. linear- or exponential functions) and sub-scale information layers into transfer functions, which are then used in COSEROreg. However, a pre-selection model is applied beforehand to sort out unfeasible proposals by the EA and to reduce the necessary model runs. A second optimization routine is used to optimize the parameters of the transfer functions proposed by the EA. This concept, namely using two nested optimization loops, is inspired by the idea of Lamarckian Evolution and Baldwin Effect
Directory of Open Access Journals (Sweden)
Gidrol Xavier
2008-02-01
Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.
Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools
Ding, Steven X
2013-01-01
Guaranteeing a high system performance over a wide operating range is an important issue surrounding the design of automatic control systems with successively increasing complexity. As a key technology in the search for a solution, advanced fault detection and identification (FDI) is receiving considerable attention. This book introduces basic model-based FDI schemes, advanced analysis and design algorithms, and mathematical and control-theoretic tools. This second edition of Model-Based Fault Diagnosis Techniques contains: · new material on fault isolation and identification, and fault detection in feedback control loops; · extended and revised treatment of systematic threshold determination for systems with both deterministic unknown inputs and stochastic noises; addition of the continuously-stirred tank heater as a representative process-industrial benchmark; and · enhanced discussion of residual evaluation in stochastic processes. Model-based Fault Diagno...
Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.
2015-12-01
This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or
A network growth model based on the evolutionary ultimatum game
International Nuclear Information System (INIS)
Deng, L L; Zhou, G G; Cai, J H; Wang, C; Tang, W S
2012-01-01
In this paper, we provide a network growth model with incorporation into the ultimatum game dynamics. The network grows on the basis of the payoff-oriented preferential attachment mechanism, where a new node is added into the network and attached preferentially to nodes with higher payoffs. The interplay between the network growth and the game dynamics gives rise to quite interesting dynamical behaviors. Simulation results show the emergence of altruistic behaviors in the ultimatum game, which is affected by the growing network structure. Compared with the static counterpart case, the levels of altruistic behaviors are promoted. The corresponding strategy distributions and wealth distributions are also presented to further demonstrate the strategy evolutionary dynamics. Subsequently, we turn to the topological properties of the evolved network, by virtue of some statistics. The most studied characteristic path length and the clustering coefficient of the network are shown to indicate their small-world effect. Then the degree distributions are analyzed to clarify the interplay of structure and evolutionary dynamics. In particular, the difference between our growth network and the static counterpart is revealed. To explain clearly the evolved networks, the rich-club ordering and the assortative mixing coefficient are exploited to reveal the degree correlation. (paper)
Energy Technology Data Exchange (ETDEWEB)
Daneshmand, Morteza [University of Tartu, Tartu (Estonia); Saadatzi, Mohammad Hossein [Colorado School of Mines, Golden (United States); Kaloorazi, Mohammad Hadi [École de Technologie Supérieur, Montréal (Canada); Masouleh, Mehdi Tale [University of Tehran, Tehran (Iran, Islamic Republic of); Anbarjafari, Gholamreza [Hasan Kalyoncu University, Gaziantep (Turkmenistan)
2016-03-15
This study aims to provide an optimal design for a Spherical parallel manipulator (SPM), namely, the Agile Eye. This aim is approached by investigating kinetostatic performance and workspace and searching for the most promising design. Previously recommended designs are examined to determine whether they provide acceptable kinetostatic performance and workspace. Optimal designs are provided according to different kinetostatic performance indices, especially kinematic sensitivity. The optimization process is launched based on the concept of the genetic algorithm. A single-objective process is implemented in accordance with the guidelines of an evolutionary algorithm called differential evolution. A multi-objective procedure is then provided following the reasoning of the nondominated sorting genetic algorithm-II. This process results in several sets of Pareto points for reconciliation between kinetostatic performance indices and workspace. The concept of numerous kinetostatic performance indices and the results of optimization algorithms are elaborated. The conclusions provide hints on the provided set of designs and their credibility to provide a well-conditioned workspace and acceptable kinetostatic performance for the SPM under study, which can be well extended to other types of SPMs.
A 3D Printing Model Watermarking Algorithm Based on 3D Slicing and Feature Points
Directory of Open Access Journals (Sweden)
Giao N. Pham
2018-02-01
Full Text Available With the increase of three-dimensional (3D printing applications in many areas of life, a large amount of 3D printing data is copied, shared, and used several times without any permission from the original providers. Therefore, copyright protection and ownership identification for 3D printing data in communications or commercial transactions are practical issues. This paper presents a novel watermarking algorithm for 3D printing models based on embedding watermark data into the feature points of a 3D printing model. Feature points are determined and computed by the 3D slicing process along the Z axis of a 3D printing model. The watermark data is embedded into a feature point of a 3D printing model by changing the vector length of the feature point in OXY space based on the reference length. The x and y coordinates of the feature point will be then changed according to the changed vector length that has been embedded with a watermark. Experimental results verified that the proposed algorithm is invisible and robust to geometric attacks, such as rotation, scaling, and translation. The proposed algorithm provides a better method than the conventional works, and the accuracy of the proposed algorithm is much higher than previous methods.
International Nuclear Information System (INIS)
Ahmadi, Mohammad H.; Sayyaadi, Hoseyn; Mohammadi, Amir H.; Barranco-Jimenez, Marco A.
2013-01-01
Highlights: • Thermo-economic multi-objective optimization of solar dish-Stirling engine is studied. • Application of the evolutionary algorithm is investigated. • Error analysis is done to find out the error through investigation. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great number of studies are conducted on Stirling engine and finite time thermo-economic is one of them. In the present study, the dimensionless thermo-economic objective function, thermal efficiency and dimensionless power output are optimized for a dish-Stirling system using finite time thermo-economic analysis and NSGA-II algorithm. Optimized answers are chosen from the results using three decision-making methods. Error analysis is done to find out the error through investigation
Alignment of Custom Standards by Machine Learning Algorithms
Directory of Open Access Journals (Sweden)
Adela Sirbu
2010-09-01
Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.
DEFF Research Database (Denmark)
Mozaffari, Ahmad; Gorji-Bandpy, Mofid; Samadian, Pendar
2013-01-01
Optimizing and controlling of complex engineering systems is a phenomenon that has attracted an incremental interest of numerous scientists. Until now, a variety of intelligent optimizing and controlling techniques such as neural networks, fuzzy logic, game theory, support vector machines...... and stochastic algorithms were proposed to facilitate controlling of the engineering systems. In this study, an extended version of mutable smart bee algorithm (MSBA) called Pareto based mutable smart bee (PBMSB) is inspired to cope with multi-objective problems. Besides, a set of benchmark problems and four...... well-known Pareto based optimizing algorithms i.e. multi-objective bee algorithm (MOBA), multi-objective particle swarm optimization (MOPSO) algorithm, non-dominated sorting genetic algorithm (NSGA-II), and strength Pareto evolutionary algorithm (SPEA 2) are utilized to confirm the acceptable...
A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm
Directory of Open Access Journals (Sweden)
Jiao Shi
2014-01-01
Full Text Available How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems.
Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237
Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization
Zhao, Qiangfu; Liu, Yong
2015-01-01
A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050
Historian: accurate reconstruction of ancestral sequences and evolutionary rates.
Holmes, Ian H
2017-04-15
Reconstruction of ancestral sequence histories, and estimation of parameters like indel rates, are improved by using explicit evolutionary models and summing over uncertain alignments. The previous best tool for this purpose (according to simulation benchmarks) was ProtPal, but this tool was too slow for practical use. Historian combines an efficient reimplementation of the ProtPal algorithm with performance-improving heuristics from other alignment tools. Simulation results on fidelity of rate estimation via ancestral reconstruction, along with evaluations on the structurally informed alignment dataset BAliBase 3.0, recommend Historian over other alignment tools for evolutionary applications. Historian is available at https://github.com/evoldoers/historian under the Creative Commons Attribution 3.0 US license. ihholmes+historian@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
McAvoy, Alex; Hauert, Christoph
2015-01-01
Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326
International Nuclear Information System (INIS)
Allam, Dalia; Yousri, D.A.; Eteiba, M.B.
2016-01-01
Highlights: • More detailed models are proposed to emulate the multi-crystalline solar cell/module. • Moth-Flame Optimizer (MFO) is proposed for the parameter extraction process. • The performance of MFO technique is compared with the recent optimization algorithms. • MFO algorithm converges to the optimal solution more rapidly and more accurately. • MFO algorithm accomplished with three diode model achieves the most accurate model. - Abstract: As a result of the wide prevalence of using the multi-crystalline silicon solar cells, an accurate mathematical model for these cells has become an important issue. Therefore, a three diode model is proposed as a more precise model to meet the relatively complicated physical behavior of the multi-crystalline silicon solar cells. The performance of this model is compared to the performance of both the double diode and the modified double diode models of the same cell/module. Therefore, there is a persistent need to keep searching for a more accurate optimization algorithm to estimate the more complicated models’ parameters. Hence, a proper optimization algorithm which is called Moth-Flame Optimizer (MFO), is proposed as a new optimization algorithm for the parameter extraction process of the three tested models based on data measured at laboratory and other data reported at previous literature. To verify the performance of the suggested technique, its results are compared with the results of the most recent and powerful techniques in the literature such as Hybrid Evolutionary (DEIM) and Flower Pollination (FPA) algorithms. Furthermore, evaluation analysis is performed for the three algorithms of the selected models at different environmental conditions. The results show that, MFO algorithm achieves the least Root Mean Square Error (RMSE), Mean Bias Error (MBE), Absolute Error at the Maximum Power Point (AEMPP) and best Coefficient of Determination. In addition, MFO is reaching to the optimal solution with the
3rd International Conference on Harmony Search Algorithm
2017-01-01
This book presents state-of-the-art technical contributions based around one of the most successful evolutionary optimization algorithms published to date: Harmony Search. Contributions span from novel technical derivations of this algorithm to applications in the broad fields of civil engineering, energy, transportation & mobility and health, among many others and focus not only on its cross-domain applicability, but also on its core evolutionary operators, including elements inspired from other meta-heuristics. The global scientific community is witnessing an upsurge in groundbreaking, new advances in all areas of computational intelligence, with a particular flurry of research focusing on evolutionary computation and bio-inspired optimization. Observed processes in nature and sociology have provided the basis for innovative algorithmic developments aimed at leveraging the inherent capability to adapt characterized by various animals, including ants, fireflies, wolves and humans. However, it is the beha...
An evolutionary model for protein-coding regions with conserved RNA structure
DEFF Research Database (Denmark)
Pedersen, Jakob Skou; Forsberg, Roald; Meyer, Irmtraud Margret
2004-01-01
in the RNA structure. The overlap of these fundamental dependencies is sufficient to cause "contagious" context dependencies which cascade across many nucleotide sites. Such large-scale dependencies challenge the use of traditional phylogenetic models in evolutionary inference because they explicitly assume...... components of traditional phylogenetic models. We applied this to a data set of full-genome sequences from the hepatitis C virus where five RNA structures are mapped within the coding region. This allowed us to partition the effects of selection on different structural elements and to test various hypotheses......Here we present a model of nucleotide substitution in protein-coding regions that also encode the formation of conserved RNA structures. In such regions, apparent evolutionary context dependencies exist, both between nucleotides occupying the same codon and between nucleotides forming a base pair...
Projection pursuit water quality evaluation model based on chicken swam algorithm
Hu, Zhe
2018-03-01
In view of the uncertainty and ambiguity of each index in water quality evaluation, in order to solve the incompatibility of evaluation results of individual water quality indexes, a projection pursuit model based on chicken swam algorithm is proposed. The projection index function which can reflect the water quality condition is constructed, the chicken group algorithm (CSA) is introduced, the projection index function is optimized, the best projection direction of the projection index function is sought, and the best projection value is obtained to realize the water quality evaluation. The comparison between this method and other methods shows that it is reasonable and feasible to provide decision-making basis for water pollution control in the basin.
Efficiently Hiding Sensitive Itemsets with Transaction Deletion Based on Genetic Algorithms
Directory of Open Access Journals (Sweden)
Chun-Wei Lin
2014-01-01
Full Text Available Data mining is used to mine meaningful and useful information or knowledge from a very large database. Some secure or private information can be discovered by data mining techniques, thus resulting in an inherent risk of threats to privacy. Privacy-preserving data mining (PPDM has thus arisen in recent years to sanitize the original database for hiding sensitive information, which can be concerned as an NP-hard problem in sanitization process. In this paper, a compact prelarge GA-based (cpGA2DT algorithm to delete transactions for hiding sensitive itemsets is thus proposed. It solves the limitations of the evolutionary process by adopting both the compact GA-based (cGA mechanism and the prelarge concept. A flexible fitness function with three adjustable weights is thus designed to find the appropriate transactions to be deleted in order to hide sensitive itemsets with minimal side effects of hiding failure, missing cost, and artificial cost. Experiments are conducted to show the performance of the proposed cpGA2DT algorithm compared to the simple GA-based (sGA2DT algorithm and the greedy approach in terms of execution time and three side effects.
Unified C/VHDL Model Generation of FPGA-based LHCb VELO algorithms
Muecke, Manfred
2007-01-01
We show an alternative design approach for signal processing algorithms implemented on FPGAs. Instead of writing VHDL code for implementation and maintaining a C-model for algorithm simulation, we derive both models from one common source, allowing generation of synthesizeable VHDL and cycleand bit-accurate C-Code. We have tested our approach on the LHCb VELO pre-processing algorithms and report on experiences gained during the course of our work.
Development of web-based reliability data analysis algorithm model and its application
International Nuclear Information System (INIS)
Hwang, Seok-Won; Oh, Ji-Yong; Moosung-Jae
2010-01-01
For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.
Development of web-based reliability data analysis algorithm model and its application
Energy Technology Data Exchange (ETDEWEB)
Hwang, Seok-Won, E-mail: swhwang@khnp.co.k [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Oh, Ji-Yong [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Moosung-Jae [Department of Nuclear Engineering Hanyang University 17 Haengdang, Sungdong, Seoul (Korea, Republic of)
2010-02-15
For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.
Directory of Open Access Journals (Sweden)
Leonardo Bottolo
Full Text Available Genome-wide association studies (GWAS yielded significant advances in defining the genetic architecture of complex traits and disease. Still, a major hurdle of GWAS is narrowing down multiple genetic associations to a few causal variants for functional studies. This becomes critical in multi-phenotype GWAS where detection and interpretability of complex SNP(s-trait(s associations are complicated by complex Linkage Disequilibrium patterns between SNPs and correlation between traits. Here we propose a computationally efficient algorithm (GUESS to explore complex genetic-association models and maximize genetic variant detection. We integrated our algorithm with a new Bayesian strategy for multi-phenotype analysis to identify the specific contribution of each SNP to different trait combinations and study genetic regulation of lipid metabolism in the Gutenberg Health Study (GHS. Despite the relatively small size of GHS (n = 3,175, when compared with the largest published meta-GWAS (n > 100,000, GUESS recovered most of the major associations and was better at refining multi-trait associations than alternative methods. Amongst the new findings provided by GUESS, we revealed a strong association of SORT1 with TG-APOB and LIPC with TG-HDL phenotypic groups, which were overlooked in the larger meta-GWAS and not revealed by competing approaches, associations that we replicated in two independent cohorts. Moreover, we demonstrated the increased power of GUESS over alternative multi-phenotype approaches, both Bayesian and non-Bayesian, in a simulation study that mimics real-case scenarios. We showed that our parallel implementation based on Graphics Processing Units outperforms alternative multi-phenotype methods. Beyond multivariate modelling of multi-phenotypes, our Bayesian model employs a flexible hierarchical prior structure for genetic effects that adapts to any correlation structure of the predictors and increases the power to identify
Directory of Open Access Journals (Sweden)
Yongquan Dong
2018-04-01
Full Text Available Providing accurate electric load forecasting results plays a crucial role in daily energy management of the power supply system. Due to superior forecasting performance, the hybridizing support vector regression (SVR model with evolutionary algorithms has received attention and deserves to continue being explored widely. The cuckoo search (CS algorithm has the potential to contribute more satisfactory electric load forecasting results. However, the original CS algorithm suffers from its inherent drawbacks, such as parameters that require accurate setting, loss of population diversity, and easy trapping in local optima (i.e., premature convergence. Therefore, proposing some critical improvement mechanisms and employing an improved CS algorithm to determine suitable parameter combinations for an SVR model is essential. This paper proposes the SVR with chaotic cuckoo search (SVRCCS model based on using a tent chaotic mapping function to enrich the cuckoo search space and diversify the population to avoid trapping in local optima. In addition, to deal with the cyclic nature of electric loads, a seasonal mechanism is combined with the SVRCCS model, namely giving a seasonal SVR with chaotic cuckoo search (SSVRCCS model, to produce more accurate forecasting performances. The numerical results, tested by using the datasets from the National Electricity Market (NEM, Queensland, Australia and the New York Independent System Operator (NYISO, NY, USA, show that the proposed SSVRCCS model outperforms other alternative models.
Parallel Algorithms for Model Checking
van de Pol, Jaco; Mousavi, Mohammad Reza; Sgall, Jiri
2017-01-01
Model checking is an automated verification procedure, which checks that a model of a system satisfies certain properties. These properties are typically expressed in some temporal logic, like LTL and CTL. Algorithms for LTL model checking (linear time logic) are based on automata theory and graph
Directory of Open Access Journals (Sweden)
E. Osaba
2014-01-01
Full Text Available Since their first formulation, genetic algorithms (GAs have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.
Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731
Estimating true evolutionary distances under the DCJ model.
Lin, Yu; Moret, Bernard M E
2008-07-01
Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.
Stimulating Scientific Reasoning with Drawing-Based Modeling
Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank
2018-01-01
We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each…
International Nuclear Information System (INIS)
Coelho, Leandro dos Santos; Mariani, Viviana Cocco
2007-01-01
Global optimization based on evolutionary algorithms can be used as the important component for many engineering optimization problems. Evolutionary algorithms have yielded promising results for solving nonlinear, non-differentiable and multi-modal optimization problems in the power systems area. Differential evolution (DE) is a simple and efficient evolutionary algorithm for function optimization over continuous spaces. It has reportedly outperformed search heuristics when tested over both benchmark and real world problems. This paper proposes improved DE algorithms for solving economic load dispatch problems that take into account nonlinear generator features such as ramp rate limits and prohibited operating zones in the power system operation. The DE algorithms and its variants are validated for two test systems consisting of 6 and 15 thermal units. Various DE approaches outperforms other state of the art algorithms reported in the literature in solving load dispatch problems with generator constraints
Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis
Energy Technology Data Exchange (ETDEWEB)
May Permann
2007-03-01
Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.
Application of evolutionary games to modeling carcinogenesis.
Swierniak, Andrzej; Krzeslak, Michal
2013-06-01
We review a quite large volume of literature concerning mathematical modelling of processes related to carcinogenesis and the growth of cancer cell populations based on the theory of evolutionary games. This review, although partly idiosyncratic, covers such major areas of cancer-related phenomena as production of cytotoxins, avoidance of apoptosis, production of growth factors, motility and invasion, and intra- and extracellular signaling. We discuss the results of other authors and append to them some additional results of our own simulations dealing with the possible dynamics and/or spatial distribution of the processes discussed.
进化作曲研究%Research on evolutionary music composer system
Institute of Scientific and Technical Information of China (English)
汪镭; 郑晓妹; 申林
2014-01-01
Algorithmic composition is the most attractive research area in computer music and genetic algorithm-based evolution-ary music composer system has become a hot spot in the algorithmic composition.This paper gives a structure of evolutionary mu-sic composer system,analyzes different goals of music composer systems,and then discusses two types of evolutionary music com-poser system from the aspect of fitness function design.Finally,several instances of evolutionary music composer system are ana-lyzed.%算法作曲是计算机音乐中最具吸引力的研究领域，而基于遗传算法的进化作曲系统已成为算法作曲中的热点。给出了进化作曲系统的结构，分析了系统不同的作曲目标，从适应度函数的设计讨论了两类作曲系统。最后给出了几个作曲系统实例分析。
Gene finding with a hidden Markov model of genome structure and evolution
DEFF Research Database (Denmark)
Pedersen, Jakob Skou; Hein, Jotun
2003-01-01
-specific evolutionary models based on a phylogenetic tree. All parameters can be estimated by maximum likelihood, including the phylogenetic tree. It can handle any number of aligned genomes, using their phylogenetic tree to model the evolutionary correlations. The time complexity of all algorithms used for handling...
Directory of Open Access Journals (Sweden)
R. Venkata Rao
2014-01-01
Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.
International Nuclear Information System (INIS)
Xu Ruirui; Chen Tianlun; Gao Chengfeng
2006-01-01
Nonlinear time series prediction is studied by using an improved least squares support vector machine (LS-SVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.
XTALOPT version r11: An open-source evolutionary algorithm for crystal structure prediction
Avery, Patrick; Falls, Zackary; Zurek, Eva
2018-01-01
Version 11 of XTALOPT, an evolutionary algorithm for crystal structure prediction, has now been made available for download from the CPC library or the XTALOPT website, http://xtalopt.github.io. Whereas the previous versions of XTALOPT were published under the Gnu Public License (GPL), the current version is made available under the 3-Clause BSD License, which is an open source license that is recognized by the Open Source Initiative. Importantly, the new version can be executed via a command line interface (i.e., it does not require the use of a Graphical User Interface). Moreover, the new version is written as a stand-alone program, rather than an extension to AVOGADRO.
MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming
Directory of Open Access Journals (Sweden)
Yuteng Xiao
2017-01-01
Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.
Multidimensional extended spatial evolutionary games.
Krześlak, Michał; Świerniak, Andrzej
2016-02-01
The goal of this paper is to study the classical hawk-dove model using mixed spatial evolutionary games (MSEG). In these games, played on a lattice, an additional spatial layer is introduced for dependence on more complex parameters and simulation of changes in the environment. Furthermore, diverse polymorphic equilibrium points dependent on cell reproduction, model parameters, and their simulation are discussed. Our analysis demonstrates the sensitivity properties of MSEGs and possibilities for further development. We discuss applications of MSEGs, particularly algorithms for modelling cell interactions during the development of tumours. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng
2009-07-01
Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.
International Nuclear Information System (INIS)
Quan Ji; Wang Xianjia
2013-01-01
Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, the players interact with each other discriminately. Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies. Their model is based on replicator dynamics which assumes an infinite size population. But in reality, the number of individuals in the population is always finite, and there will be some random interference in the individuals' strategy selection process. Therefore, it is more practical to establish the corresponding stochastic evolutionary model in finite populations. In fact, the analysis of evolutionary games in a finite size population is more difficult. Just as Taylor and Nowak said in the outlook section of their paper, ''The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations''. In this paper, we are exactly doing this work. We extend Taylor and Nowak's model from infinite to finite case, especially focusing on the infiuence of non-uniform connection characteristics on the evolutionary stable state of the system. We model the strategy evolutionary process of the population by a continuous ergodic Markov process. Based on the limit distribution of the process, we can give the evolutionary stable state of the system. We make a complete classification of the symmetric 2 × 2 games. For each case game, the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough. In contrast with most literatures in evolutionary games using the simulation method, all our results obtained are analytical. Especially, in the dominant-case game, coexistence of the two strategies may become evolutionary stable states in our model. This result can be
Goolsby, Eric W
2017-04-01
Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non-Brownian models, missing data, and within-species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time-consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000-species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within-species variation, non-Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time-consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation-Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars
Study on Cooperative Mechanism of Prefabricated Producers Based on Evolutionary Game Theory
Directory of Open Access Journals (Sweden)
Tongyao Feng
2017-01-01
Full Text Available Good cooperation mechanism is an important guarantee for the advancement of industrialization construction. To strengthen the partnership between producers, we analyze the behavior evolution trend of both parties using an evolutionary game theory. Based on the original model, the mechanism of coordination and cooperation between prefabricated producers is explained under the condition of punishment and incentive. The results indicate that stable evolutionary strategies exist under both cooperation and noncooperation, and the evolutionary results are influenced by the initial proportion of both decision-making processes. The government can support the production enterprises to establish a solid partnership through effective punishment and incentive mechanisms to reduce the initial cost in the supply chain of prefabricated construction, resulting in a win-win situation.
Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian
2007-07-01
Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the
Genetic Algorithm Based Microscale Vehicle Emissions Modelling
Directory of Open Access Journals (Sweden)
Sicong Zhu
2015-01-01
Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.
An affinity-based evolutionary model of the diffusion of knowledge
Directory of Open Access Journals (Sweden)
Roberto Luiz Souza Monteiro
2015-08-01
Full Text Available In this paper, we present a theoretical model that can simulate the diffusion of knowledge in social networks using an evolutionary approach. We assume that social networks built on processes of collaboration and cooperation among stakeholders (people and companies evolve like living organisms, as described by Charles Darwin in The Origin of Species. We propose an evolutionary model of the diffusion of knowledge, in which stakeholders are knowledge propagators and/or receivers, depending on their customizable attributes. We consider each attribute as a gene that constitutes a chromosome. As in Darwin's theory, the proposed model achieves the processes of crossover and mutation between stakeholders for several generations, until a maximum number of generations is reached. The main contribution of the model is the creation of an environment that is conducive to the study of the dynamics of network cooperation, which uses the stakeholders’ attributes as parameters. Modelo evolutivo de difusión del conocimiento basado en afinidad Resumen En este artículo presentamos un modelo teórico capaz de simular la difusión del conocimiento en redes sociales, usando una aproximación evolutiva. Partimos del presupuesto que redes sociales constituidas por procesos de cooperación entre actores (e.g. personas, empresas, etc. evolucionan de forma semejante a los organismos vivos, como ha sido descrito por Charles Darwin en El Origen de las Especies. Proponemos un modelo evolutivo de difusión del conocimiento, donde los actores son propagadores y/o retenedores de conocimiento, dependiendo de atributos ajustables que cada actor presenta. Consideramos cada atributo un gen que constituye a un cromosoma. Similar a la teoría de Darwin, el modelo propuesto realiza los procesos de crossover y mutación entre los actores por diversas generaciones, hasta que se obtiene un número máximo de generaciones. La principal contribución del modelo es la creación de un
The Complexity of Constructing Evolutionary Trees Using Experiments
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf; Pedersen, Christian Nørgaard Storm
2001-01-01
We present tight upper and lower bounds for the problem of constructing evolutionary trees in the experiment model. We describe an algorithm which constructs an evolutionary tree of n species in time O(nd logd n) using at most n⌈d/2⌉(log2⌈d/2⌉-1 n+O(1)) experiments for d > 2, and at most n(log n......+O(1)) experiments for d = 2, where d is the degree of the tree. This improves the previous best upper bound by a factor θ(log d). For d = 2 the previously best algorithm with running time O(n log n) had a bound of 4n log n on the number of experiments. By an explicit adversary argument, we show an Ω......(nd logd n) lower bound, matching our upper bounds and improving the previous best lower bound by a factor θ(logd n). Central to our algorithm is the construction and maintenance of separator trees of small height, which may be of independent interest....
A controllable sensor management algorithm capable of learning
Osadciw, Lisa A.; Veeramacheneni, Kalyan K.
2005-03-01
Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.
Strengths and Weaknesses of McNamara's Evolutionary Psychological Model of Dreaming
Directory of Open Access Journals (Sweden)
Sandra Olliges
2010-10-01
Full Text Available This article includes a brief overview of McNamara's (2004 evolutionary model of dreaming. The strengths and weaknesses of this model are then evaluated in terms of its consonance with measurable neurological and biological properties of dreaming, its fit within the tenets of evolutionary theories of dreams, and its alignment with evolutionary concepts of cooperation and spirituality. McNamara's model focuses primarily on dreaming that occurs during rapid eye movement (REM sleep; therefore this article also focuses on REM dreaming.
Computationally efficient model predictive control algorithms a neural network approach
Ławryńczuk, Maciej
2014-01-01
This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: · A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. · Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. · The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). · The MPC algorithms with neural approximation with no on-line linearization. · The MPC algorithms with guaranteed stability and robustness. · Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...
Multi-objective evolutionary optimisation for product design and manufacturing
2011-01-01
Presents state-of-the-art research in the area of multi-objective evolutionary optimisation for integrated product design and manufacturing Provides a comprehensive review of the literature Gives in-depth descriptions of recently developed innovative and novel methodologies, algorithms and systems in the area of modelling, simulation and optimisation
Directory of Open Access Journals (Sweden)
Mojtaba Salehi
2013-03-01
Full Text Available In recent years, the explosion of learning materials in the web-based educational systems has caused difficulty of locating appropriate learning materials to learners. A personalized recommendation is an enabling mechanism to overcome information overload occurred in the new learning environments and deliver suitable materials to learners. Since users express their opinions based on some specific attributes of items, this paper proposes a hybrid recommender system for learning materials based on their attributes to improve the accuracy and quality of recommendation. The presented system has two main modules: explicit attribute-based recommender and implicit attribute-based recommender. In the first module, weights of implicit or latent attributes of materials for learner are considered as chromosomes in genetic algorithm then this algorithm optimizes the weights according to historical rating. Then, recommendation is generated by Nearest Neighborhood Algorithm (NNA using the optimized weight vectors implicit attributes that represent the opinions of learners. In the second, preference matrix (PM is introduced that can model the interests of learner based on explicit attributes of learning materials in a multidimensional information model. Then, a new similarity measure between PMs is introduced and recommendations are generated by NNA. The experimental results show that our proposed method outperforms current algorithms on accuracy measures and can alleviate some problems such as cold-start and sparsity.
Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images
Yao, Shoukui; Qin, Xiaojuan
2018-02-01
Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.
A novel algorithm of artificial immune system for high-dimensional function numerical optimization
Institute of Scientific and Technical Information of China (English)
DU Haifeng; GONG Maoguo; JIAO Licheng; LIU Ruochen
2005-01-01
Based on the clonal selection theory and immune memory theory, a novel artificial immune system algorithm, immune memory clonal programming algorithm (IMCPA), is put forward. Using the theorem of Markov chain, it is proved that IMCPA is convergent. Compared with some other evolutionary programming algorithms (like Breeder genetic algorithm), IMCPA is shown to be an evolutionary strategy capable of solving complex machine learning tasks, like high-dimensional function optimization, which maintains the diversity of the population and avoids prematurity to some extent, and has a higher convergence speed.
International Nuclear Information System (INIS)
Chu, Zhengyu; Feng, Xuning; Lu, Languang; Li, Jianqiu; Han, Xuebing; Ouyang, Minggao
2017-01-01
Highlights: •A novel non-destructive fast charging algorithm of lithium-ion batteries is proposed. •A close-loop observer of lithium deposition status is constructed based on the SP2D model. •The charging current is modified online using the feedback of the lithium deposition status. •The algorithm can shorten the charging time and can be used for charging from different initial SOCs. •The post-mortem observation and degradation tests show that no lithium deposition occurs during fast charging. -- Abstract: Fast charging is critical for the application of lithium-ion batteries in electric vehicles. Conventional fast charging algorithms may shorten the cycle life of lithium-ion batteries and induce safety problems, such as internal short circuit caused by lithium deposition at the negative electrode. In this paper, a novel, non-destructive model-based fast charging algorithm is proposed. The fast charging algorithm is composed of two closed loops. The first loop includes an anode over-potential observer that can observe the status of lithium deposition online, whereas the second loop includes a feedback structure that can modify the current based on the observed status of lithium deposition. The charging algorithm enhances the charging current to maintain the observed anode over-potential near the preset threshold potential. Therefore, the fast charging algorithm can decrease the charging time while protecting the health of the battery. The fast charging algorithm is validated on a commercial large-format nickel cobalt manganese/graphite cell. The results showed that 96.8% of the battery capacity can be charged within 52 min. The post-mortem observation of the surface of the negative electrode and degradation tests revealed that the fast charging algorithm proposed here protected the battery from lithium deposition.
Turn-Based War Chess Model and Its Search Algorithm per Turn
Directory of Open Access Journals (Sweden)
Hai Nan
2016-01-01
Full Text Available War chess gaming has so far received insufficient attention but is a significant component of turn-based strategy games (TBS and is studied in this paper. First, a common game model is proposed through various existing war chess types. Based on the model, we propose a theory frame involving combinational optimization on the one hand and game tree search on the other hand. We also discuss a key problem, namely, that the number of the branching factors of each turn in the game tree is huge. Then, we propose two algorithms for searching in one turn to solve the problem: (1 enumeration by order; (2 enumeration by recursion. The main difference between these two is the permutation method used: the former uses the dictionary sequence method, while the latter uses the recursive permutation method. Finally, we prove that both of these algorithms are optimal, and we analyze the difference between their efficiencies. An important factor is the total time taken for the unit to expand until it achieves its reachable position. The factor, which is the total number of expansions that each unit makes in its reachable position, is set. The conclusion proposed is in terms of this factor: Enumeration by recursion is better than enumeration by order in all situations.
Application of random number generators in genetic algorithms to improve rainfall-runoff modelling
Chlumecký, Martin; Buchtele, Josef; Richta, Karel
2017-10-01
The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists. Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algorithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of the optimisation. The GA estimates model parameters using evolutionary principles, which requires a quality number generator. The new HRNG generates random numbers based on hydrological information and it provides better numbers compared to pure software generators. The GA enhances the model calibration very well and the goal is to optimise the calibration of the model with a minimum of user interaction. This article focuses on improving the internal structure of the GA, which is shielded from the user. The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the calibration of the model and offers an improvement of rainfall-runoff modelling.
Dynamic and photometric evolutionary models of tidal tails and ripples
International Nuclear Information System (INIS)
Wallin, J.F.
1989-01-01
An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broad-band photometric evolutionary code. In these models, regions of compression form inside the disk and along the tidal tail and tidal bridge. The effects these density changes have on the colors of the tidal features are examined with a broad-band photometric evolutionary code. A spiral galaxy population is synthesized and the effects of modest changes in the star formation rate are explored. Limits on the density changes needed to make detectable changes in the colors are calculated using a Schmidt (1959) law. These models suggest that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. The Lynds and Toomre (1976) interpretation of ring galaxies as the natural result of a nearly head-on collision between a disk galaxy and a companion galaxy has become widely accepted. Similarly, Quinn's (1984) interpretation of the shells in elliptical galaxies as the aftermath of the cannibalization of a low-mass companion has been quite successful in accounting for the observations. Restricted three-body calculations of high inclination, low impact parameter encounters demonstrate that the shell-like ripples observed in a number of disk galaxies can also be produced as collisional artifacts from internal oscillations much as in ring galaxies
A Novel Clustering Algorithm Inspired by Membrane Computing
Directory of Open Access Journals (Sweden)
Hong Peng
2015-01-01
Full Text Available P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure, the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets. Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several evolutionary clustering algorithms recently reported in the literature.
Open critical area model and extraction algorithm based on the net flow-axis
International Nuclear Information System (INIS)
Wang Le; Wang Jun-Ping; Gao Yan-Hong; Xu Dan; Li Bo-Bo; Liu Shi-Gang
2013-01-01
In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area. (interdisciplinary physics and related areas of science and technology)
Multiparty Evolutionary Game Model in Coal Mine Safety Management and Its Application
Directory of Open Access Journals (Sweden)
Rongwu Lu
2018-01-01
Full Text Available Coal mine safety management involves many interested parties and there are complex relationships between them. According to game theory, a multiparty evolutionary game model is established to analyze the selection of strategies. Then, a simplified three-party model is taken as an example to carry out detailed analysis and solution. Based on stability theory of dynamics system and phase diagram analysis, this article studies replicator dynamics of the evolutionary model to make an optimization analysis of the behaviors of those interested parties and the adjustment mechanism of safety management policies and decisions. The results show how the charge of supervision of government department and inspection of coal mine enterprise impact the efficiency of safety management and the effect of constraint measures and incentive and other measures in safety management.
Periaux, Jacques; Lee, Dong Seop Chris
2015-01-01
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...
Directory of Open Access Journals (Sweden)
Xingsheng Gu
2013-03-01
Full Text Available he accurate forecasting of carbon dioxide (CO2 emissions from fossil fuel energy consumption is a key requirement for making energy policy and environmental strategy. In this paper, a novel quantum harmony search (QHS algorithm-based discounted mean square forecast error (DMSFE combination model is proposed. In the DMSFE combination forecasting model, almost all investigations assign the discounting factor (β arbitrarily since β varies between 0 and 1 and adopt one value for all individual models and forecasting periods. The original method doesn’t consider the influences of the individual model and the forecasting period. This work contributes by changing β from one value to a matrix taking the different model and the forecasting period into consideration and presenting a way of searching for the optimal β values by using the QHS algorithm through optimizing the mean absolute percent error (MAPE objective function. The QHS algorithm-based optimization DMSFE combination forecasting model is established and tested by forecasting CO2 emission of the World top‒5 CO2 emitters. The evaluation indexes such as MAPE, root mean squared error (RMSE and mean absolute error (MAE are employed to test the performance of the presented approach. The empirical analyses confirm the validity of the presented method and the forecasting accuracy can be increased in a certain degree.
Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm
Wu, Xiaolan; Grubesic, Tony H.
2010-12-01
Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.
A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network
Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed
This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.
Genetic algorithm based separation cascade optimization
International Nuclear Information System (INIS)
Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.
2008-01-01
The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)
Induction Motor Parameter Identification Using a Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
Omar Avalos
2016-04-01
Full Text Available The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation: They frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This paper presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the proposed method uses a recent evolutionary method called the gravitational search algorithm (GSA. Different from most of the existent evolutionary algorithms, the GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the proposed scheme.
Wu, Jingjing; Wu, Xinming; Li, Pengfei; Li, Nan; Mao, Xiaomei; Chai, Lihe
2017-04-01
Meridian system is not only the basis of traditional Chinese medicine (TCM) method (e.g. acupuncture, massage), but also the core of TCM's basic theory. This paper has introduced a new informational perspective to understand the reality and the holographic field of meridian. Based on maximum information entropy principle (MIEP), a dynamic equation for the holographic field has been deduced, which reflects the evolutionary characteristics of meridian. By using self-organizing artificial neural network as algorithm, the evolutionary dynamic equation of the holographic field can be resolved to assess properties of meridians and clinically diagnose the health characteristics of patients. Finally, through some cases from clinical patients (e.g. a 30-year-old male patient, an apoplectic patient, an epilepsy patient), we use this model to assess the evolutionary properties of meridians. It is proved that this model not only has significant implications in revealing the essence of meridian in TCM, but also may play a guiding role in clinical assessment of patients based on the holographic field of meridians.
Magana-Mora, Arturo
2017-04-29
Machine-learning (ML) techniques have been widely applied to solve different problems in biology. However, biological data are large and complex, which often result in extremely intricate ML models. Frequently, these models may have a poor performance or may be computationally unfeasible. This study presents a set of novel computational methods and focuses on the application of genetic algorithms (GAs) for the simplification and optimization of ML models and their applications to biological problems. The dissertation addresses the following three challenges. The first is to develop a generalizable classification methodology able to systematically derive competitive models despite the complexity and nature of the data. Although several algorithms for the induction of classification models have been proposed, the algorithms are data dependent. Consequently, we developed OmniGA, a novel and generalizable framework that uses different classification models in a treeXlike decision structure, along with a parallel GA for the optimization of the OmniGA structure. Results show that OmniGA consistently outperformed existing commonly used classification models. The second challenge is the prediction of translation initiation sites (TIS) in plants genomic DNA. We performed a statistical analysis of the genomic DNA and proposed a new set of discriminant features for this problem. We developed a wrapper method based on GAs for selecting an optimal feature subset, which, in conjunction with a classification model, produced the most accurate framework for the recognition of TIS in plants. Finally, results demonstrate that despite the evolutionary distance between different plants, our approach successfully identified conserved genomic elements that may serve as the starting point for the development of a generic model for prediction of TIS in eukaryotic organisms. Finally, the third challenge is the accurate prediction of polyadenylation signals in human genomic DNA. To achieve
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2015-01-01
Full Text Available According to the characteristics of grinding process and accuracy requirements of technical indicators, a hybrid multiple soft-sensor modeling method of grinding granularity is proposed based on cuckoo searching (CS algorithm and hysteresis switching (HS strategy. Firstly, a mechanism soft-sensor model of grinding granularity is deduced based on the technique characteristics and a lot of experimental data of grinding process. Meanwhile, the BP neural network soft-sensor model and wavelet neural network (WNN soft-sensor model are set up. Then, the hybrid multiple soft-sensor model based on the hysteresis switching strategy is realized. That is to say, the optimum model is selected as the current predictive model according to the switching performance index at each sampling instant. Finally the cuckoo searching algorithm is adopted to optimize the performance parameters of hysteresis switching strategy. Simulation results show that the proposed model has better generalization results and prediction precision, which can satisfy the real-time control requirements of grinding classification process.
Modeling of biological intelligence for SCM system optimization.
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Modeling of Biological Intelligence for SCM System Optimization
Directory of Open Access Journals (Sweden)
Shengyong Chen
2012-01-01
Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Modeling of Biological Intelligence for SCM System Optimization
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724
A new evolutionary system for evolving artificial neural networks.
Yao, X; Liu, Y
1997-01-01
This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.
A range-based predictive localization algorithm for WSID networks
Liu, Yuan; Chen, Junjie; Li, Gang
2017-11-01
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir
2011-01-01
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353
An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.
Directory of Open Access Journals (Sweden)
P Martin Sander
Full Text Available Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM. This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism". Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.
An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.
Sander, P Martin
2013-01-01
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism"). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.
An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm
Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin
2018-04-01
Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.
Directory of Open Access Journals (Sweden)
Muhammad Asif Zahoor Raja
2011-01-01
Full Text Available A stochastic technique has been developed for the solution of fractional order system represented by Bagley-Torvik equation. The mathematical model of the equation was developed with the help of feed-forward artificial neural networks. The training of the networks was made with evolutionary computational intelligence based on genetic algorithm hybrid with pattern search technique. Designed scheme was successfully applied to different forms of the equation. Results are compared with standard approximate analytic, stochastic numerical solvers and exact solutions.
Electron dose map inversion based on several algorithms
International Nuclear Information System (INIS)
Li Gui; Zheng Huaqing; Wu Yican; Fds Team
2010-01-01
The reconstruction to the electron dose map in radiation therapy was investigated by constructing the inversion model of electron dose map with different algorithms. The inversion model of electron dose map based on nonlinear programming was used, and this model was applied the penetration dose map to invert the total space one. The realization of this inversion model was by several inversion algorithms. The test results with seven samples show that except the NMinimize algorithm, which worked for just one sample, with great error,though,all the inversion algorithms could be realized to our inversion model rapidly and accurately. The Levenberg-Marquardt algorithm, having the greatest accuracy and speed, could be considered as the first choice in electron dose map inversion.Further tests show that more error would be created when the data close to the electron range was used (tail error). The tail error might be caused by the approximation of mean energy spectra, and this should be considered to improve the method. The time-saving and accurate algorithms could be used to achieve real-time dose map inversion. By selecting the best inversion algorithm, the clinical need in real-time dose verification can be satisfied. (authors)
Energy Technology Data Exchange (ETDEWEB)
Asselmeyer, T.
1997-12-22
First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution.
José, Marco V; Morgado, Eberto R; Govezensky, Tzipe
2011-07-01
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
Models and Algorithms for Tracking Target with Coordinated Turn Motion
Directory of Open Access Journals (Sweden)
Xianghui Yuan
2014-01-01
Full Text Available Tracking target with coordinated turn (CT motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT model with known turn rate, augmented coordinated turn (ACT model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM framework, the algorithm based on expectation maximization (EM algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM algorithm, the EM algorithm shows its effectiveness.
Artificial root foraging optimizer algorithm with hybrid strategies
Directory of Open Access Journals (Sweden)
Yang Liu
2017-02-01
Full Text Available In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.
Optimal Management Of Renewable-Based Mgs An Intelligent Approach Through The Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Mehdi Nafar
2015-08-01
Full Text Available Abstract- This article proposes a probabilistic frame built on Scenario fabrication to considerate the uncertainties in the finest action managing of Micro Grids MGs. The MG contains different recoverable energy resources such as Wind Turbine WT Micro Turbine MT Photovoltaic PV Fuel Cell FC and one battery as the storing device. The advised frame is based on scenario generation and Roulette wheel mechanism to produce different circumstances for handling the uncertainties of altered factors. It habits typical spreading role as a probability scattering function of random factors. The uncertainties which are measured in this paper are grid bid alterations cargo request calculating error and PV and WT yield power productions. It is well-intentioned to asset that solving the MG difficult for 24 hours of a day by considering diverse uncertainties and different constraints needs one powerful optimization method that can converge fast when it doesnt fall in local optimal topic. Simultaneously single Group Search Optimization GSO system is presented to vision the total search space globally. The GSO algorithm is instigated from group active of beasts. Also the GSO procedure one change is similarly planned for this algorithm. The planned context and way is applied o one test grid-connected MG as a typical grid.
A genetic algorithm approach to optimization for the radiological worker allocation problem
International Nuclear Information System (INIS)
Yan Chen; Masakuni Narita; Masashi Tsuji; Sangduk Sa
1996-01-01
The worker allocation optimization problem in radiological facilities inevitably involves various types of requirements and constraints relevant to radiological protection and labor management. Some of these goals and constraints are not amenable to a rigorous mathematical formulation. Conventional methods for this problem rely heavily on sophisticated algebraic or numerical algorithms, which cause difficulties in the search for optimal solutions in the search space of worker allocation optimization problems. Genetic algorithms (GAB) are stochastic search algorithms introduced by J. Holland in the 1970s based on ideas and techniques from genetic and evolutionary theories. The most striking characteristic of GAs is the large flexibility allowed in the formulation of the optimal problem and the process of the search for the optimal solution. In the formulation, it is not necessary to define the optimal problem in rigorous mathematical terms, as required in the conventional methods. Furthermore, by designing a model of evolution for the optimal search problem, the optimal solution can be sought efficiently with computational simple manipulations without highly complex mathematical algorithms. We reported a GA approach to the worker allocation problem in radiological facilities in the previous study. In this study, two types of hard constraints were employed to reduce the huge search space, where the optimal solution is sought in such a way as to satisfy as many of soft constraints as possible. It was demonstrated that the proposed evolutionary method could provide the optimal solution efficiently compared with conventional methods. However, although the employed hard constraints could localize the search space into a very small region, it brought some complexities in the designed genetic operators and demanded additional computational burdens. In this paper, we propose a simplified evolutionary model with less restrictive hard constraints and make comparisons between
Evolutionary programming as a platform for in silico metabolic engineering
Directory of Open Access Journals (Sweden)
Förster Jochen
2005-12-01
Full Text Available Abstract Background Through genetic engineering it is possible to introduce targeted genetic changes and hereby engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure and regulation, it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed by using genome-scale metabolic models that enable identification of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding optimal gene deletion strategy is combinatorial and consequently the computational time increases exponentially with the size of the problem, and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters in industrial fermentations, one linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are identified and underlying flux changes for the predicted mutants are discussed. Conclusion We show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span
Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
Directory of Open Access Journals (Sweden)
Feng Lin
2007-11-01
Full Text Available Abstract Background Peptides binding to Major Histocompatibility Complex (MHC class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule – a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1 an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2 quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion We present two MOEA-based algorithms for finding motifs
Energy Technology Data Exchange (ETDEWEB)
Guerra, J.G., E-mail: jglezg2002@gmail.es [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Rubiano, J.G. [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Instituto Universitario de Estudios Ambientales y Recursos Naturales, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Winter, G. [Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en la Ingeniería, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Guerra, A.G.; Alonso, H.; Arnedo, M.A.; Tejera, A.; Martel, P. [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Instituto Universitario de Estudios Ambientales y Recursos Naturales, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Bolivar, J.P. [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain)
2017-06-21
In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs. - Highlights: • A computational method for characterizing HPGe detectors has been generalized. • The new version is usable for a wider range of sample geometries. • It starts from reference FEPEs obtained through a standard calibration procedure. • A model of an HPGe XtRa detector has been
International Nuclear Information System (INIS)
Guerra, J.G.; Rubiano, J.G.; Winter, G.; Guerra, A.G.; Alonso, H.; Arnedo, M.A.; Tejera, A.; Martel, P.; Bolivar, J.P.
2017-01-01
In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs. - Highlights: • A computational method for characterizing HPGe detectors has been generalized. • The new version is usable for a wider range of sample geometries. • It starts from reference FEPEs obtained through a standard calibration procedure. • A model of an HPGe XtRa detector has been
Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model
Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.
2009-04-01
The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.
Zeng, Qingfeng; Oganov, Artem R; Lyakhov, Andriy O; Xie, Congwei; Zhang, Xiaodong; Zhang, Jin; Zhu, Qiang; Wei, Bingqing; Grigorenko, Ilya; Zhang, Litong; Cheng, Laifei
2014-02-01
High-k dielectric materials are important as gate oxides in microelectronics and as potential dielectrics for capacitors. In order to enable computational discovery of novel high-k dielectric materials, we propose a fitness model (energy storage density) that includes the dielectric constant, bandgap, and intrinsic breakdown field. This model, used as a fitness function in conjunction with first-principles calculations and the global optimization evolutionary algorithm USPEX, efficiently leads to practically important results. We found a number of high-fitness structures of SiO2 and HfO2, some of which correspond to known phases and some of which are new. The results allow us to propose characteristics (genes) common to high-fitness structures--these are the coordination polyhedra and their degree of distortion. Our variable-composition searches in the HfO2-SiO2 system uncovered several high-fitness states. This hybrid algorithm opens up a new avenue for discovering novel high-k dielectrics with both fixed and variable compositions, and will speed up the process of materials discovery.
International Nuclear Information System (INIS)
Zare Hosseinzadeh, Ali; Ghodrati Amiri, Gholamreza; Bagheri, Abdollah; Koo, Ki-Young
2014-01-01
In this paper, a novel and effective damage diagnosis algorithm is proposed to localize and quantify structural damage using incomplete modal data, considering the existence of some limitations in the number of attached sensors on structures. The damage detection problem is formulated as an optimization problem by computing static displacements in the reduced model of a structure subjected to a unique static load. The static responses are computed through the flexibility matrix of the damaged structure obtained based on the incomplete modal data of the structure. In the algorithm, an iterated improved reduction system method is applied to prepare an accurate reduced model of a structure. The optimization problem is solved via a new evolutionary optimization algorithm called the cuckoo optimization algorithm. The efficiency and robustness of the presented method are demonstrated through three numerical examples. Moreover, the efficiency of the method is verified by an experimental study of a five-story shear building structure on a shaking table considering only two sensors. The obtained damage identification results for the numerical and experimental studies show the suitable and stable performance of the proposed damage identification method for structures with limited sensors. (paper)
International Nuclear Information System (INIS)
Toffolo, A.; Lazzaretto, A.
2002-01-01
Thermoeconomic analyses in thermal system design are always focused on the economic objective. However, knowledge of only the economic minimum may not be sufficient in the decision making process, since solutions with a higher thermodynamic efficiency, in spite of small increases in total costs, may result in much more interesting designs due to changes in energy market prices or in energy policies. This paper suggests how to perform a multi-objective optimization in order to find solutions that simultaneously satisfy exergetic and economic objectives. This corresponds to a search for the set of Pareto optimal solutions with respect to the two competing objectives. The optimization process is carried out by an evolutionary algorithm, that features a new diversity preserving mechanism using as a test case the well-known CGAM problem. (author)
PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta
Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J.
2010-01-01
Summary: PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactive...
Bio-inspired algorithms applied to molecular docking simulations.
Heberlé, G; de Azevedo, W F
2011-01-01
Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.
Optimization of operating schedule of machines in granite industry using evolutionary algorithms
International Nuclear Information System (INIS)
Loganthurai, P.; Rajasekaran, V.; Gnanambal, K.
2014-01-01
Highlights: • Operating time of machines in granite industries was studied. • Operating time has been optimized using evolutionary algorithms such as PSO, DE. • The maximum demand has been reduced. • Hence the electricity cost of the industry and feeder stress have been reduced. - Abstract: Electrical energy consumption cost plays an important role in the production cost of any industry. The electrical energy consumption cost is calculated as two part tariff, the first part is maximum demand cost and the second part is energy consumption cost or unit cost (kW h). The maximum demand cost can be reduced without affecting the production. This paper focuses on the reduction of maximum demand by proper operating schedule of major equipments. For this analysis, various granite industries are considered. The major equipments in granite industries are cutting machine, polishing machine and compressor. To reduce the maximum demand, the operating time of polishing machine is rescheduled by optimization techniques such as Differential Evolution (DE) and particle swarm optimization (PSO). The maximum demand costs are calculated before and after rescheduling. The results show that if the machines are optimally operated, the cost is reduced. Both DE and PSO algorithms reduce the maximum demand cost at the same rate for all the granite industries. However, the optimum scheduling obtained by DE reduces the feeder power flow than the PSO scheduling
International Nuclear Information System (INIS)
Ahmadigorji, Masoud; Amjady, Nima
2016-01-01
In this paper, a new model for MEPDN (multiyear expansion planning of distribution networks) is proposed. By solving this model, the optimal expansion scheme of primary (i.e. medium voltage) distribution network including the reinforcement pattern of primary feeders as well as location and size of DG (distributed generators) during an ascertained planning period is determined. Furthermore, the time-based feature of proposed model allows it to specify the investments/reinforcements time (i.e. year). Moreover, a minimum load shedding-based analytical approach for optimizing the network's reliability is introduced. The associated objective function of proposed model is minimizing the total investment and operation costs. To solve the formulated MEPDN model as a complex multi-dimensional optimization problem, a new evolutionary algorithm-based solution method called BCSSO (Binary Chaotic Shark Smell Optimization) is presented. The effectiveness of the proposed MEPDN model and solution approach is illustrated by applying them on two widely-used test cases including 12-bus and 33-bus distribution network and comparing the acquired results with the results of other solution methods. - Highlights: • A multiyear expansion planning model for distribution network is presented. • A new evolutionary algorithm-based solution approach is proposed. • A minimum load shedding-based analytical method for EENS minimization is suggested. • The efficacy of the proposed solution approach is broadly investigated.
DEFF Research Database (Denmark)
Hassan, Saima; Ahmadieh Khanesar, Mojtaba; Hajizadeh, Amin
2017-01-01
Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic...... system in both the hybrid algorithms are tuned using Kalman filter. Whereas the antecedent parameters of the system in the first hybrid algorithm is optimized using the multi-objective particle swarm optimization (MOPSO) and using the multi-objective evolutionary algorithm Based on Decomposition (MOEA...
Improving Polyp Detection Algorithms for CT Colonography: Pareto Front Approach.
Huang, Adam; Li, Jiang; Summers, Ronald M; Petrick, Nicholas; Hara, Amy K
2010-03-21
We investigated a Pareto front approach to improving polyp detection algorithms for CT colonography (CTC). A dataset of 56 CTC colon surfaces with 87 proven positive detections of 53 polyps sized 4 to 60 mm was used to evaluate the performance of a one-step and a two-step curvature-based region growing algorithm. The algorithmic performance was statistically evaluated and compared based on the Pareto optimal solutions from 20 experiments by evolutionary algorithms. The false positive rate was lower (pPareto optimization process can effectively help in fine-tuning and redesigning polyp detection algorithms.
Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour
2012-09-01
In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm
Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin
2018-06-01
The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.
An Evolutionary Cascade Model for Sauropod Dinosaur Gigantism - Overview, Update and Tests
Sander, P. Martin
2013-01-01
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades (“Reproduction”, “Feeding”, “Head and neck”, “Avian-style lung”, and “Metabolism”). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait “Very high body mass”. Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size. PMID:24205267
Human resource recommendation algorithm based on ensemble learning and Spark
Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie
2017-08-01
Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.
Yunnan-III models for evolutionary population synthesis
Zhang, F.; Li, L.; Han, Z.; Zhuang, Y.; Kang, X.
2013-02-01
We build the Yunnan-III evolutionary population synthesis (EPS) models by using the mesa stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1 Myr to 15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100 M⊙). This set of tracks is obtained by using the state-of-the-art mesa code. mesa code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars makes the V - K, V - J and V - R colours of SPs redder and the infrared flux larger at ages log(t/yr) ≳ 7.6 [the differences reach the maximum at log(t/yr) ˜ 8.6, ˜0.5-0.2 mag for colours, approximately two times for K-band flux]. We also find that the colour-evolution trends of Model with-TPAGB at intermediate and large ages are similar to those from the starburst99 code, which employs the Padova-AGB stellar library, BaSeL spectral library and the Kroupa IMF. At last, we compare the colours with the other EPS models comprising TP-AGB stars (such as CB07, M05, V10 and POPSTAR), and find that the B - V colour agrees with each other but the V-K colour shows a larger discrepancy among these EPS models [˜1 mag when 8 ≲ log(t/yr) ≲ 9]. The stellar evolutionary tracks, isochrones, colours and ISEDs can be obtained on request from the first author or from our website (http://www1.ynao.ac.cn/~zhangfh/). Using the isochrones, you can build your EPS models. Now the format of stellar evolutionary tracks is the same as that in the starburst99 code; you can put them into the starburst99 code and get the SP's results. Moreover, the colours involving other passbands
Evolutionary model of an anonymous consumer durable market
Kaldasch, Joachim
2011-07-01
An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal
W. Hasan, W. Z.
2018-01-01
The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system’s modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model. PMID:29351554
Sabry, A H; W Hasan, W Z; Ab Kadir, M Z A; Radzi, M A M; Shafie, S
2018-01-01
The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system's modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model.
Directory of Open Access Journals (Sweden)
A H Sabry
Full Text Available The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system's modeling equations based on the Bode plot equations and the vector fitting (VF algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model.
A genetic algorithm-based job scheduling model for big data analytics.
Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei
Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.
Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques
Directory of Open Access Journals (Sweden)
O. P. Bharti
2017-06-01
Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.
Mouse Models as Predictors of Human Responses: Evolutionary Medicine.
Uhl, Elizabeth W; Warner, Natalie J
Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.
Design of SVC Controller Based on Improved Biogeography-Based Optimization Algorithm
Directory of Open Access Journals (Sweden)
Feifei Dong
2014-01-01
Full Text Available Considering that common subsynchronous resonance controllers cannot adapt to the characteristics of the time-varying and nonlinear behavior of a power system, the cosine migration model, the improved migration operator, and the mutative scale of chaos and Cauchy mutation strategy are introduced into an improved biogeography-based optimization (IBBO algorithm in order to design an optimal subsynchronous damping controller based on the mechanism of suppressing SSR by static var compensator (SVC. The effectiveness of the improved controller is verified by eigenvalue analysis and electromagnetic simulations. The simulation results of Jinjie plant indicate that the subsynchronous damping controller optimized by the IBBO algorithm can remarkably improve the damping of torsional modes and thus effectively depress SSR, and ensure the safety and stability of units and power grid operation. Moreover, the IBBO algorithm has the merits of a faster searching speed and higher searching accuracy in seeking the optimal control parameters over traditional algorithms, such as BBO algorithm, PSO algorithm, and GA algorithm.
Making the error-controlling algorithm of observable operator models constructive.
Zhao, Ming-Jie; Jaeger, Herbert; Thon, Michael
2009-12-01
Observable operator models (OOMs) are a class of models for stochastic processes that properly subsumes the class that can be modeled by finite-dimensional hidden Markov models (HMMs). One of the main advantages of OOMs over HMMs is that they admit asymptotically correct learning algorithms. A series of learning algorithms has been developed, with increasing computational and statistical efficiency, whose recent culmination was the error-controlling (EC) algorithm developed by the first author. The EC algorithm is an iterative, asymptotically correct algorithm that yields (and minimizes) an assured upper bound on the modeling error. The run time is faster by at least one order of magnitude than EM-based HMM learning algorithms and yields significantly more accurate models than the latter. Here we present a significant improvement of the EC algorithm: the constructive error-controlling (CEC) algorithm. CEC inherits from EC the main idea of minimizing an upper bound on the modeling error but is constructive where EC needs iterations. As a consequence, we obtain further gains in learning speed without loss in modeling accuracy.
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
Energy-Efficient Train Operation Using Nature-Inspired Algorithms
Directory of Open Access Journals (Sweden)
Kemal Keskin
2017-01-01
Full Text Available A train operation optimization by minimizing its traction energy subject to various constraints is carried out using nature-inspired evolutionary algorithms. The optimization process results in switching points that initiate cruising and coasting phases of the driving. Due to nonlinear optimization formulation of the problem, nature-inspired evolutionary search methods, Genetic Simulated Annealing, Firefly, and Big Bang-Big Crunch algorithms were employed in this study. As a case study a real-like train and test track from a part of Eskisehir light rail network were modeled. Speed limitations, various track alignments, maximum allowable trip time, and changes in train mass were considered, and punctuality was put into objective function as a penalty factor. Results have shown that all three evolutionary methods generated effective and consistent solutions. However, it has also been shown that each one has different accuracy and convergence characteristics.
A review of ocean chlorophyll algorithms and primary production models
Li, Jingwen; Zhou, Song; Lv, Nan
2015-12-01
This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.
Stochastic cluster algorithms for discrete Gaussian (SOS) models
International Nuclear Information System (INIS)
Evertz, H.G.; Hamburg Univ.; Hasenbusch, M.; Marcu, M.; Tel Aviv Univ.; Pinn, K.; Muenster Univ.; Solomon, S.
1990-10-01
We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. In this letter we focus on the two-dimensional discrete Gaussian model. The algorithms are based on reflecting the integer valued spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when combined with a Metropolis algorithm. (orig.)
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2015-12-01
Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.
A Study on Standard Competition with Network Effect Based on Evolutionary Game Model
Wang, Ye; Wang, Bingdong; Li, Kangning
Owing to networks widespread in modern society, standard competition with network effect is now endowed with new connotation. This paper aims to study the impact of network effect on standard competition; it is organized in the mode of "introduction-model setup-equilibrium analysis-conclusion". Starting from a well-structured model of evolutionary game, it is then extended to a dynamic analysis. This article proves both theoretically and empirically that whether or not a standard can lead the market trends depends on the utility it would bring, and the author also discusses some advisable strategies revolving around the two factors of initial position and border break.