International Nuclear Information System (INIS)
Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud
2012-01-01
Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.
Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.
Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki
2015-05-01
Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.
Evolutionary Computation and Its Applications in Neural and Fuzzy Systems
Directory of Open Access Journals (Sweden)
Biaobiao Zhang
2011-01-01
Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.
DEFF Research Database (Denmark)
Hassan, Saima; Ahmadieh Khanesar, Mojtaba; Hajizadeh, Amin
2017-01-01
Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic...... system in both the hybrid algorithms are tuned using Kalman filter. Whereas the antecedent parameters of the system in the first hybrid algorithm is optimized using the multi-objective particle swarm optimization (MOPSO) and using the multi-objective evolutionary algorithm Based on Decomposition (MOEA...
Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing
Siddique, Nazmul
2013-01-01
Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect
Soft computing integrating evolutionary, neural, and fuzzy systems
Tettamanzi, Andrea
2001-01-01
Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
Keller, James M; Fogel, David B
2016-01-01
This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...
Evolutionary and Ecological Consequences of Interspecific Hybridization in Cladocerans
Schwenk, K.; Spaak, P.
1995-01-01
The evolutionary process of interspecific hybridization in cladocerans is reviewed based on ecological and population genetic data. The evolutionary consequences of hybridization, biogeographic patterns and fitness comparisons are analyzed within the conceptual framework of theories on
Hybrid fuzzy logic control of laser surface heat treatments
International Nuclear Information System (INIS)
Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos
2007-01-01
This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design
Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057
Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads
Energy Technology Data Exchange (ETDEWEB)
Pai, Ping-Feng [Department of Information Management, National Chi Nan University, 1 University Road, Puli, Nantou 545, Taiwan (China)
2006-09-15
Because of the privatization of electricity in many countries, load forecasting has become one of the most crucial issues in the planning and operations of electric utilities. In addition, accurate regional load forecasting can provide the transmission and distribution operators with more information. The hybrid ellipsoidal fuzzy system was originally designed to solve control and pattern recognition problems. The main objective of this investigation is to develop a hybrid ellipsoidal fuzzy system for time series forecasting (HEFST) and apply the proposed model to forecast regional electricity loads in Taiwan. Additionally, a scaled conjugate gradient learning method is employed in the supervised learning phase of the HEFST model. Subsequently, numerical data taken from the existing literature is used to demonstrate the forecasting performance of the HEFST model. Simulation results reveal that the proposed model has better forecasting performance than the artificial neural network model and the regression model. Thus, the HEFST model is a valid and promising alternative for forecasting regional electricity loads. (author)
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms
Lopez, Nicolas
This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.
A Hybrid Fuzzy Model for Lean Product Development Performance Measurement
Osezua Aikhuele, Daniel; Mohd Turan, Faiz
2016-02-01
In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.
Evaluation of models generated via hybrid evolutionary algorithms ...
African Journals Online (AJOL)
2016-04-02
Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.
Prediksi Kelulusan Mata Kuliah Menggunakan Hybrid Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Abidatul Izzah
2016-07-01
Full Text Available AbstrakPerguruan Tinggi merupakan salah satu institusi yang menyimpan data yang sangat informatif jika diolah secara baik. Prediksi kelulusan mahasiswa merupakan kasus di Perguruan Tinggi yang cukup banyak diteliti. Dengan mengetahui prediksi status kelulusan mahasiswa di tengah semester, dosen dapat mengantisipasi atau memberi perhatian khusus pada siswa yang diprediksi tidak lulus. Metode yang digunakan sangat bervariatif termasuk metode Fuzzy Inference System (FIS. Namun dalam implementasinya, proses pembangkitan rule fuzzy sering dilakukan secara random atau berdasarkan pemahaman pakar sehingga tidak merepresentasikan sebaran data. Oleh karena itu, dalam penelitian ini digunakan teknik Decision Tree (DT untuk membangkitkan rule. Dari uraian tersebut, penelitian bertujuan untuk memprediksi kelulusan mata kuliah menggunakan hybrid FIS dan DT. Data yang digunakan dalam penelitian ini adalah data nilai Posttest, Tugas, Kuis, dan UTS dari 106 mahasiswa Politeknik Kediri pengikut mata kuliah Algoritma dan Struktur Data. Penelitian ini diawali dari membangkitkan 5 rule yang selanjutnya digunakan dalam inferensi. Tahap selanjutnya adalah implementasi FIS dengan tahapan fuzzifikasi, inferensi, dan defuzzifikasi. Hasil yang diperoleh adalah akurasi, sensitivitas, dan spesifisitas masing-masing adalah 94.33%, 96.55%, dan 84.21%.Kata kunci: Decision Tree, Educational Data Mining, Fuzzy Inference System, Prediksi. AbstractCollege is an institution that holds very informative data if it mined properly. Prediction about student’s graduation is a common case that many discussed. Having the predictions of student’s graduation in the middle semester, lecturer will anticipate or give some special attention to students who would be not passed. The method used to prediction is very varied including Fuzzy Inference System (FIS. However, fuzzy rule process is often generated randomly or based on knowledge experts that not represent the data distribution
Evolutionary design of discrete controllers for hybrid mechatronic systems
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik
2015-01-01
This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....
Fuzzy control in robot-soccer, evolutionary learning in the first layer of control
Directory of Open Access Journals (Sweden)
Peter J Thomas
2003-02-01
Full Text Available In this paper an evolutionary algorithm is developed to learn a fuzzy knowledge base for the control of a soccer playing micro-robot from any configuration belonging to a grid of initial configurations to hit the ball along the ball to goal line of sight. The knowledge base uses relative co-ordinate system including left and right wheel velocities of the robot. Final path positions allow forward and reverse facing robot to ball and include its physical dimensions.
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case
Hybridizing Evolutionary Algorithms with Opportunistic Local Search
DEFF Research Database (Denmark)
Gießen, Christian
2013-01-01
There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...
Hybrid Type II fuzzy system & data mining approach for surface finish
Directory of Open Access Journals (Sweden)
Tzu-Liang (Bill Tseng
2015-07-01
Full Text Available In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.
Hybrid Engine Powered City Car: Fuzzy Controlled Approach
Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany
2017-03-01
This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.
Directory of Open Access Journals (Sweden)
Animesh Biswas
2016-04-01
Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided.
A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns
Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng
2009-11-01
Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.
Directory of Open Access Journals (Sweden)
H. A. Hashim
2015-01-01
Full Text Available This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO system (TRMS considering most promising evolutionary techniques. These are gravitational search algorithm (GSA, particle swarm optimization (PSO, artificial bee colony (ABC, and differential evolution (DE. In this study, the gains of four fuzzy proportional derivative (PD controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed.
A hybrid fuzzy multi-criteria decision making model for green ...
African Journals Online (AJOL)
A hybrid fuzzy multi-criteria decision making model for green supplier selection. ... Hence,supplier selection is significant factor in supply chain success. ... reduce purchasing cost, lead time and improve quality and environmental issue.
A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics
Directory of Open Access Journals (Sweden)
Shan Li
2014-01-01
Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
Development of an evolutionary fuzzy expert system for estimating future behavior of stock price
Mehmanpazir, Farhad; Asadi, Shahrokh
2017-03-01
The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a "data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for
Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms
Siddique, Nazmul
2014-01-01
Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...
International Nuclear Information System (INIS)
Pai, N-S; Kuo, Y-P
2008-01-01
This paper presents a novel speed control scheme for a 2- mass motor drive system. The speed controller is based on the estimated state feedback compensation. The integrated fuzzy observer can give a fast and accuracy estimation of the unmeasured states. Two kinds of hybrid fuzzy proportional-derivative and proportional-integral (HF PD/PI) are proposed to cope with this speed control problem. The first is the static HF PD/PI controller and the second is the dynamic one. Simulation results show that the developed integrated fuzzy observer provide the better estimation performance than that of the Kalman filter and the proposed control schemes can effectively track the desired speed in the presence of load disturbance
Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks
Directory of Open Access Journals (Sweden)
Abubakar Muhammad Umaru
2014-01-01
Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.
MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION
Directory of Open Access Journals (Sweden)
K. Vidhya
2011-02-01
Full Text Available Medical imaging techniques produce prohibitive amounts of digitized clinical data. Compression of medical images is a must due to large memory space required for transmission and storage. This paper presents an effective algorithm to compress and to reconstruct medical images. The proposed algorithm first extracts edge information of medical images by using fuzzy edge detector. The images are decomposed using Cohen-Daubechies-Feauveau (CDF wavelet. The hybrid technique utilizes the efficient wavelet based compression algorithms such as JPEG2000 and Set Partitioning In Hierarchical Trees (SPIHT. The wavelet coefficients in the approximation sub band are encoded using tier 1 part of JPEG2000. The wavelet coefficients in the detailed sub bands are encoded using SPIHT. Consistent quality images are produced by this method at a lower bit rate compared to other standard compression algorithms. Two main approaches to assess image quality are objective testing and subjective testing. The image quality is evaluated by objective quality measures. Objective measures correlate well with the perceived image quality for the proposed compression algorithm.
Utis Sutisna; Wahyu Diputra Siregar; Siswanto Nurhadiyono
2017-01-01
Dalam penelitian ini dirancang sistem kendali hybrid logika fuzzy-PID untuk mengendalikan navigasi pada robot wall follower. Sistem logika fuzzy dirancang untuk mengatur nilai-nilai parameter kendali PID berdasarkan dua masukan, yaitu error dan perubahan error.Nilai error didapat dari selisih antara set point jarak yang ditetapkan dengan nilai pembacaan sensor jarak, sedangkan nilai perubahan error didapat dari selisih antara error sekarang dengan error sebelumnya saat robot bernavigasi. Kelu...
Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung
2016-01-01
The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…
Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks
Directory of Open Access Journals (Sweden)
Chien-Ho Ko
2013-01-01
Full Text Available Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs, Fuzzy Logic (FL, and Neural Networks (NNs. FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.
Ko, Chien-Ho
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting
2015-09-01
This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.
Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization
Directory of Open Access Journals (Sweden)
MadhuSudana Rao Nalluri
2017-01-01
Full Text Available With the widespread adoption of e-Healthcare and telemedicine applications, accurate, intelligent disease diagnosis systems have been profoundly coveted. In recent years, numerous individual machine learning-based classifiers have been proposed and tested, and the fact that a single classifier cannot effectively classify and diagnose all diseases has been almost accorded with. This has seen a number of recent research attempts to arrive at a consensus using ensemble classification techniques. In this paper, a hybrid system is proposed to diagnose ailments using optimizing individual classifier parameters for two classifier techniques, namely, support vector machine (SVM and multilayer perceptron (MLP technique. We employ three recent evolutionary algorithms to optimize the parameters of the classifiers above, leading to six alternative hybrid disease diagnosis systems, also referred to as hybrid intelligent systems (HISs. Multiple objectives, namely, prediction accuracy, sensitivity, and specificity, have been considered to assess the efficacy of the proposed hybrid systems with existing ones. The proposed model is evaluated on 11 benchmark datasets, and the obtained results demonstrate that our proposed hybrid diagnosis systems perform better in terms of disease prediction accuracy, sensitivity, and specificity. Pertinent statistical tests were carried out to substantiate the efficacy of the obtained results.
National Research Council Canada - National Science Library
Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram
2005-01-01
The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...
Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.
Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad
2016-05-09
In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability.
Zaiwani, B. E.; Zarlis, M.; Efendi, S.
2018-03-01
In this research, the improvement of hybridization algorithm of Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) in selecting the best bank chief inspector based on several qualitative and quantitative criteria with various priorities. To improve the performance of the above research, FAHP algorithm hybridization with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW) algorithm was adopted, which applied FAHP algorithm to the weighting process and SAW for the ranking process to determine the promotion of employee at a government institution. The result of improvement of the average value of Efficiency Rate (ER) is 85.24%, which means that this research has succeeded in improving the previous research that is equal to 77.82%. Keywords: Ranking and Selection, Fuzzy AHP, Fuzzy TOPSIS, FMADM-SAW.
Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft
Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae
2017-06-01
In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.
Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.
2017-02-01
In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.
Directory of Open Access Journals (Sweden)
Jian Guo
2013-01-01
Full Text Available Information system (IS project selection is of critical importance to every organization in dynamic competing environment. The aim of this paper is to develop a hybrid multicriteria group decision making approach based on intuitionistic fuzzy theory for IS project selection. The decision makers’ assessment information can be expressed in the form of real numbers, interval-valued numbers, linguistic variables, and intuitionistic fuzzy numbers (IFNs. All these evaluation pieces of information can be transformed to the form of IFNs. Intuitionistic fuzzy weighted averaging (IFWA operator is utilized to aggregate individual opinions of decision makers into a group opinion. Intuitionistic fuzzy entropy is used to obtain the entropy weights of the criteria. TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate IS project in group decision making environment. Finally, a numerical example for information system projects selection is given to illustrate application of hybrid multi-criteria group decision making (MCGDM method based on intuitionistic fuzzy theory and TOPSIS method.
Fuzzy hybrid MCDM approach for selection of wind turbine service technicians
Directory of Open Access Journals (Sweden)
Goutam Kumar Bose
2016-01-01
Full Text Available This research paper is aimed to present a fuzzy Hybrid Multi-criteria decision making (MCDM methodology for selecting employees. The present study aspires to present the hybrid approach of Fuzzy multiple MCDM techniques with tactical viewpoint to support the recruitment process of wind turbine service technicians. The methodology is based on the application of Fuzzy ARAS (Additive Ratio Assessment and Fuzzy MOORA (Multi-Objective Optimization on basis of Ratio Analysis which are integrated through group decision making (GDM method in the model for selection of wind turbine service technicians’ ranking. Here a group of experts from different fields of expertise are engaged to finalize the decision. Series of tests are conducted regarding physical fitness, technical written test, practical test along with general interview and medical examination to facilitate the final selection using the above techniques. In contrast to single decision making approaches, the proposed group decision making model efficiently supports the wind turbine service technicians ranking process. The effectiveness of the proposed approach manifest from the case study of service technicians required for the maintenance department of wind power plant using Fuzzy ARAS and Fuzzy MOORA. This set of potential technicians is evaluated based on five main criteria.
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets
Porwal, A.; Carranza, J.; Hale, M.
2004-12-01
A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.
HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS
Directory of Open Access Journals (Sweden)
M.K. Tan
2011-07-01
Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.
Hybridizing fuzzy control and timed automata for modeling variable structure fuzzy systems
Acampora, G.; Loia, V.; Vitiello, A.
2010-01-01
During the past several years, fuzzy control has emerged as one of the most suitable and efficient methods for designing and developing complex systems in environments characterized by high level of uncertainty and imprecision. Nowadays, this methodology is used to model systems in several
Directory of Open Access Journals (Sweden)
Wei Yue
2015-01-01
Full Text Available The major issues for mean-variance-skewness models are the errors in estimations that cause corner solutions and low diversity in the portfolio. In this paper, a multiobjective fuzzy portfolio selection model with transaction cost and liquidity is proposed to maintain the diversity of portfolio. In addition, we have designed a multiobjective evolutionary algorithm based on decomposition of the objective space to maintain the diversity of obtained solutions. The algorithm is used to obtain a set of Pareto-optimal portfolios with good diversity and convergence. To demonstrate the effectiveness of the proposed model and algorithm, the performance of the proposed algorithm is compared with the classic MOEA/D and NSGA-II through some numerical examples based on the data of the Shanghai Stock Exchange Market. Simulation results show that our proposed algorithm is able to obtain better diversity and more evenly distributed Pareto front than the other two algorithms and the proposed model can maintain quite well the diversity of portfolio. The purpose of this paper is to deal with portfolio problems in the weighted possibilistic mean-variance-skewness (MVS and possibilistic mean-variance-skewness-entropy (MVS-E frameworks with transaction cost and liquidity and to provide different Pareto-optimal investment strategies as diversified as possible for investors at a time, rather than one strategy for investors at a time.
Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator
Directory of Open Access Journals (Sweden)
Alexander Hošovský
2012-07-01
Full Text Available Pneumatic artificial muscle-based robotic systems usually necessitate the use of various nonlinear control techniques in order to improve their performance. Their robustness to parameter variation, which is generally difficult to predict, should also be tested. Here a fast hybrid adaptive control is proposed, where a conventional PD controller is placed into the feedforward branch and a fuzzy controller is placed into the adaptation branch. The fuzzy controller compensates for the actions of the PD controller under conditions of inertia moment variation. The fuzzy controller of Takagi-Sugeno type is evolved through a genetic algorithm using the dynamic model of a pneumatic muscle actuator. The results confirm the capability of the designed system to provide robust performance under the conditions of varying inertia.
Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem
Directory of Open Access Journals (Sweden)
S. Molla-Alizadeh-Zavardehi
2014-01-01
Full Text Available This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA, variable neighborhood search (VNS, and simulated annealing (SA frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms.
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
A fuzzy hybrid approach for project manager selection
Directory of Open Access Journals (Sweden)
Ahmad Jafarnejad Chaghooshi
2016-09-01
Full Text Available Suitable project manager has a significant impact on successful accomplishment of the project. Managers should possess such skills in order to effectively cope with the competition. In this respect, selecting managers based on their skills can lead to a competitive advantage towards the achievement of organizational goals. selection of the suitable project manager can be viewed as a multi-criteria decision making (MCDM problem and an extensive evaluation of criteria, such as Technical skills, experience skills, Personal qualities and the related criteria must be considered in the selection process of project manager. The fuzzy set theory and MCDM methods appears as an essential tools to provide a decision framework that incorporates imprecise judgments and multi criteria nature of project manager selection process inherent in this process. This paper proposes the joint use of the Fuzzy DEMATEL (FDEMATEL and Fuzzy VIKOR methods for the decision-making process of selecting the most suitable managers for projects. First, with the opinions of the senior managers based on project management competency model (ICB-IPMA, all the criteria required for the selection are gathered. Then the FDEMATEL method is used to prioritize the importance of various criteria and FVIKOR used to rank the alternatives in a preferred order to select the best project managers from a number of alternatives. Next, a real case study used to illustrate the process of the proposed method. Finally, some conclusions are discussed at the end of this study.
Energy Technology Data Exchange (ETDEWEB)
Wichapa, Narong; Khokhajaikiat, Porntep
2017-07-01
Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
International Nuclear Information System (INIS)
Wichapa, Narong; Khokhajaikiat, Porntep
2017-01-01
Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
Evolutionary insights into scleractinian corals using comparative genomic hybridizations.
Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R
2012-09-21
Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this
Evolutionary insights into scleractinian corals using comparative genomic hybridizations
Directory of Open Access Journals (Sweden)
Aranda Manuel
2012-09-01
Full Text Available Abstract Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization. Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than
Directory of Open Access Journals (Sweden)
Krishna Kant Singh
2017-06-01
Full Text Available A novel neuro fuzzy classifier Hybrid Kohonen Fuzzy C-Means-σ (HKFCM-σ is proposed in this paper. The proposed classifier is a hybridization of Kohonen Clustering Network (KCN with FCM-σ clustering algorithm. The network architecture of HKFCM-σ is similar to simple KCN network having only two layers, i.e., input and output layer. However, the selection of winner neuron is done based on FCM-σ algorithm. Thus, embedding the features of both, a neural network and a fuzzy clustering algorithm in the classifier. This hybridization results in a more efficient, less complex and faster classifier for classifying satellite images. HKFCM-σ is used to identify the flooding that occurred in Kashmir area in September 2014. The HKFCM-σ classifier is applied on pre and post flooding Landsat 8 OLI images of Kashmir to detect the areas that were flooded due to the heavy rainfalls of September, 2014. The classifier is trained using the mean values of the various spectral indices like NDVI, NDWI, NDBI and first component of Principal Component Analysis. The error matrix was computed to test the performance of the method. The method yields high producer’s accuracy, consumer’s accuracy and kappa coefficient value indicating that the proposed classifier is highly effective and efficient.
Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid
2016-07-01
Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A hybrid fuzzy MCDM approach to maintenance Quality Function Deployment
Directory of Open Access Journals (Sweden)
Davy George Valavi
2015-01-01
Full Text Available Maintenance Quality Function Deployment (MQFD is a model, which enhances the synergic power of Quality Function Deployment (QFD and Total Productive Maintenance (TPM. One of the crucial and important steps during the implementation of MQFD is the determination of the importance or weightages of the critical factors (CF and sub factors (SF. The CFs and SFs have to be compared precisely for the successful implementation of MQFD. The crisp pair-wise comparison in the conventional Analytical Hierarchy Process (AHP may be insufficient to determine the degree of weightage of CFs and SFs where vagueness and uncetainties are associated. In this paper, a modification of AHP based MQFD by incorporating fuzzy operations is proposed, which can improve the accuracy of determination of the weightages. A case study showing the applicability of this method is illustrated in this paper.
Fuzzy portfolio optimization advances in hybrid multi-criteria methodologies
Gupta, Pankaj; Inuiguchi, Masahiro; Chandra, Suresh
2014-01-01
This monograph presents a comprehensive study of portfolio optimization, an important area of quantitative finance. Considering that the information available in financial markets is incomplete and that the markets are affected by vagueness and ambiguity, the monograph deals with fuzzy portfolio optimization models. At first, the book makes the reader familiar with basic concepts, including the classical mean–variance portfolio analysis. Then, it introduces advanced optimization techniques and applies them for the development of various multi-criteria portfolio optimization models in an uncertain environment. The models are developed considering both the financial and non-financial criteria of investment decision making, and the inputs from the investment experts. The utility of these models in practice is then demonstrated using numerical illustrations based on real-world data, which were collected from one of the premier stock exchanges in India. The book addresses both academics and professionals pursuin...
RazaviToosi, S. L.; Samani, J. M. V.
2016-03-01
Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.
Directory of Open Access Journals (Sweden)
Narong Wichapa
2017-11-01
Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
FUZZY-GENETIC CONTROL OF QUADROTOR UNMANNED AERIAL VEHICLES
Directory of Open Access Journals (Sweden)
Attila Nemes
2016-03-01
Full Text Available This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the equations of motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation results of the proposed new quadrotor dynamic model identification method are promising.
A hybrid multi-objective evolutionary algorithm approach for ...
Indian Academy of Sciences (India)
This paper addresses a fuzzy mixed-integer non-linear programming (FMINLP) model by considering machine-dependent and job-sequence-dependent set-up times that minimize the total completion time,the number of tardy jobs, the total flow time and the machine load variation in the context of unrelated parallel machine ...
Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.
Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao
2015-02-01
This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.
Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method
Directory of Open Access Journals (Sweden)
Majid Shadman Roodposhti
2016-09-01
Full Text Available Assessing Landslide Susceptibility Mapping (LSM contributes to reducing the risk of living with landslides. Handling the vagueness associated with LSM is a challenging task. Here we show the application of hybrid GIS-based LSM. The hybrid approach embraces fuzzy membership functions (FMFs in combination with Shannon entropy, a well-known information theory-based method. Nine landslide-related criteria, along with an inventory of landslides containing 108 recent and historic landslide points, are used to prepare a susceptibility map. A random split into training (≈70% and testing (≈30% samples are used for training and validation of the LSM model. The study area—Izeh—is located in the Khuzestan province of Iran, a highly susceptible landslide zone. The performance of the hybrid method is evaluated using receiver operating characteristics (ROC curves in combination with area under the curve (AUC. The performance of the proposed hybrid method with AUC of 0.934 is superior to multi-criteria evaluation approaches using a subjective scheme in this research in comparison with a previous study using the same dataset through extended fuzzy multi-criteria evaluation with AUC value of 0.894, and was built on the basis of decision makers’ evaluation in the same study area.
Kirk, Heather Erin
2009-01-01
Plant hybridization has been shown to have important ecological and evolutionary consequences in a number of genera, including Senecio. Here, I investigate the possible consequences of natural hybridization between Senecio jacobaea and S. aquaticus. It is shown that many factors are involved in
Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises.
Arnold, M L; Ballerini, E S; Brothers, A N
2012-03-01
Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin's publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotype × environment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a 'model system' for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes.
International Nuclear Information System (INIS)
Berrazouane, S.; Mohammedi, K.
2014-01-01
Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller
Zhang, Wei; Rao, Qiaomeng
2018-01-01
In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.
Energy management strategy based on fuzzy logic for a fuel cell hybrid bus
Gao, Dawei; Jin, Zhenhua; Lu, Qingchun
Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.
DEFF Research Database (Denmark)
Wang, Yong; Cai, Zixing; Zhou, Yuren
2009-01-01
A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
Mate Choice Drives Evolutionary Stability in a Hybrid Complex.
Directory of Open Access Journals (Sweden)
Miguel Morgado-Santos
Full Text Available Previous studies have shown that assortative mating acts as a driver of speciation by countering hybridization between two populations of the same species (pre-zygotic isolation or through mate choice among the hybrids (hybrid speciation. In both speciation types, assortative mating promotes speciation over a transient hybridization stage. We studied mate choice in a hybrid vertebrate complex, the allopolyploid fish Squalius alburnoides. This complex is composed by several genomotypes connected by an intricate reproductive dynamics. We developed a model that predicts the hybrid complex can persist when females exhibit particular mate choice patterns. Our model is able to reproduce the diversity of population dynamic outcomes found in nature, namely the dominance of the triploids and the dominance of the tetraploids, depending on female mate choice patterns and frequency of the parental species. Experimental mate choice trials showed that females exhibit the preferences predicted by the model. Thus, despite the known role of assortative mating in driving speciation, our findings suggest that certain mate choice patterns can instead hinder speciation and support the persistence of hybrids over time without speciation or extinction.
Energy Technology Data Exchange (ETDEWEB)
Derrouazin, A., E-mail: derrsid@gmail.com [University Hassiba BenBouali of Chlef, LGEER,Chlef (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Aillerie, M., E-mail: aillerie@metz.supelec.fr; Charles, J. P. [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Mekkakia-Maaza, N. [Université des sciences et de la Technologie d’Oran, Mohamed Boudiaf-USTO MB,LMSE, Oran Algérie (Algeria)
2016-07-25
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.
International Nuclear Information System (INIS)
Derrouazin, A.; Aillerie, M.; Charles, J. P.; Mekkakia-Maaza, N.
2016-01-01
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System
Directory of Open Access Journals (Sweden)
S. M. Odeh
2015-01-01
Full Text Available This paper presents a hybrid algorithm that combines Fuzzy Logic Controller (FLC and Genetic Algorithms (GAs and its application on a traffic signal system. FLCs have been widely used in many applications in diverse areas, such as control system, pattern recognition, signal processing, and forecasting. They are, essentially, rule-based systems, in which the definition of these rules and fuzzy membership functions is generally based on verbally formulated rules that overlap through the parameter space. They have a great influence over the performance of the system. On the other hand, the Genetic Algorithm is a metaheuristic that provides a robust search in complex spaces. In this work, it has been used to adapt the decision rules of FLCs that define an intelligent traffic signal system, obtaining a higher performance than a classical FLC-based control. The simulation results yielded by the hybrid algorithm show an improvement of up to 34% in the performance with respect to a standard traffic signal controller, Conventional Traffic Signal Controller (CTC, and up to 31% in the comparison with a traditional logic controller, FLC.
Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana
MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian
2015-01-01
The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359
Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana.
MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian
2015-06-22
The effects of the direct interaction between hybridization and speciation-two major contrasting evolutionary processes--are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within--island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50,000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island--ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm
2009-03-10
xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences
Directory of Open Access Journals (Sweden)
Ozge Cagcag Yolcu
2013-01-01
Full Text Available Particularly in recent years, artificial intelligence optimization techniques have been used to make fuzzy time series approaches more systematic and improve forecasting performance. Besides, some fuzzy clustering methods and artificial neural networks with different structures are used in the fuzzification of observations and determination of fuzzy relationships, respectively. In approaches considering the membership values, the membership values are determined subjectively or fuzzy outputs of the system are obtained by considering that there is a relation between membership values in identification of relation. This necessitates defuzzification step and increases the model error. In this study, membership values were obtained more systematically by using Gustafson-Kessel fuzzy clustering technique. The use of artificial neural network with single multiplicative neuron model in identification of fuzzy relation eliminated the architecture selection problem as well as the necessity for defuzzification step by constituting target values from real observations of time series. The training of artificial neural network with single multiplicative neuron model which is used for identification of fuzzy relation step is carried out with particle swarm optimization. The proposed method is implemented using various time series and the results are compared with those of previous studies to demonstrate the performance of the proposed method.
Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik
2012-01-01
This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...
Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility
Tuba, Zoltán; Bottyán, Zsolt
2018-04-01
Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.
Evolutionary insights into scleractinian corals using comparative genomic hybridizations.
Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R.
2012-01-01
Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).
Evolutionary insights into scleractinian corals using comparative genomic hybridizations.
Aranda, Manuel
2012-09-21
Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).
Energy management strategy based on fuzzy logic for a fuel cell hybrid bus
Energy Technology Data Exchange (ETDEWEB)
Gao, Dawei; Jin, Zhenhua; Lu, Qingchun [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)
2008-10-15
Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus. (author)
Febrian Umbara, Rian; Tarwidi, Dede; Budi Setiawan, Erwin
2018-03-01
The paper discusses the prediction of Jakarta Composite Index (JCI) in Indonesia Stock Exchange. The study is based on JCI historical data for 1286 days to predict the value of JCI one day ahead. This paper proposes predictions done in two stages., The first stage using Fuzzy Time Series (FTS) to predict values of ten technical indicators, and the second stage using Support Vector Regression (SVR) to predict the value of JCI one day ahead, resulting in a hybrid prediction model FTS-SVR. The performance of this combined prediction model is compared with the performance of the single stage prediction model using SVR only. Ten technical indicators are used as input for each model.
A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique
Directory of Open Access Journals (Sweden)
Mohammed Elsayed Lotfy
2017-07-01
Full Text Available A novel polar fuzzy (PF control approach for a hybrid power system is proposed in this research. The proposed control scheme remedies the issues of system frequency and the continuity of demand supply caused by renewable sources’ uncertainties. The hybrid power system consists of a wind turbine generator (WTG, solar photovoltaics (PV, a solar thermal power generator (STPG, a diesel engine generator (DEG, an aqua-electrolyzer (AE, an ultra-capacitor (UC, a fuel-cell (FC, and a flywheel (FW. Furthermore, due to the high cost of the battery energy storage system (BESS, a new idea of vehicle-to-grid (V2G control is applied to use the battery of the electric vehicle (EV as equivalent to large-scale energy storage units instead of small batteries to improve the frequency stability of the system. In addition, EV customers’ convenience is taken into account. A minimal-order observer is used to estimate the supply error. Then, the area control error (ACE signal is calculated in terms of the estimated supply error and the frequency deviation. ACE is considered in the frequency domain. Two PF approaches are utilized in the intended system. The mission of each controller is to mitigate one frequency component of ACE. The responsibility for ACE compensation is shared among all parts of the system according to their speed of response. The performance of the proposed control scheme is compared to the conventional fuzzy logic control (FLC. The effectiveness and robustness of the proposed control technique are verified by numerical simulations under various scenarios.
Directory of Open Access Journals (Sweden)
Jan Prančl
Full Text Available Despite their complex evolutionary histories, aquatic plants are highly underrepresented in contemporary biosystematic studies. Of them, the genus Callitriche is particularly interesting because of such evolutionary features as wide variation in chromosome numbers and pollination systems. However, taxonomic difficulties have prevented broader investigation of this genus. In this study we applied flow cytometry to Callitriche for the first time in order to gain an insight into evolutionary processes and genome size differentiation in the genus. Flow cytometry complemented by confirmation of chromosome counts was applied to an extensive dataset of 1077 Callitriche individuals from 495 localities in 11 European countries and the USA. Genome size was determined for 12 taxa. The results suggest that many important processes have interacted in the evolution of the genus, including polyploidization and hybridization. Incongruence between genome size and ploidy level, intraspecific variation in genome size, formation of autotriploid and hybridization between species with different pollination systems were also detected. Hybridization takes place particularly in the diploid-tetraploid complex C. cophocarpa-C. platycarpa, for which the triploid hybrids were frequently recorded in the area of co-occurrence of its parents. A hitherto unknown hybrid (probably C. hamulata × C. cophocarpa with a unique chromosome number was discovered in the Czech Republic. However, hybridization occurs very rarely among most of the studied species. The main ecological preferences were also compared among the taxa collected. Although Callitriche taxa often grow in mixed populations, the ecological preferences of individual species are distinctly different in some cases. Anyway, flow cytometry is a very efficient method for taxonomic delimitation, determination and investigation of Callitriche species, and is even able to distinguish homoploid taxa and identify introduced
Vijay, S Arul Antran; GaneshKumar, P
2018-02-21
In the growing scenario, microarray data is extensively used since it provides a more comprehensive understanding of genetic variants among diseases. As the gene expression samples have high dimensionality it becomes tedious to analyze the samples manually. Hence an automated system is needed to analyze these samples. The fuzzy expert system offers a clear classification when compared to the machine learning and statistical methodologies. In fuzzy classification, knowledge acquisition would be a major concern. Despite several existing approaches for knowledge acquisition much effort is necessary to enhance the learning process. This paper proposes an innovative Hybrid Stem Cell (HSC) algorithm that utilizes Ant Colony optimization and Stem Cell algorithm for designing fuzzy classification system to extract the informative rules to form the membership functions from the microarray dataset. The HSC algorithm uses a novel Adaptive Stem Cell Optimization (ASCO) to improve the points of membership function and Ant Colony Optimization to produce the near optimum rule set. In order to extract the most informative genes from the large microarray dataset a method called Mutual Information is used. The performance results of the proposed technique evaluated using the five microarray datasets are simulated. These results prove that the proposed Hybrid Stem Cell (HSC) algorithm produces a precise fuzzy system than the existing methodologies.
An Evolutionary Comparison of the Handicap Principle and Hybrid Equilibrium Theories of Signaling
Kane, Patrick; Zollman, Kevin J. S.
2015-01-01
The handicap principle has come under significant challenge both from empirical studies and from theoretical work. As a result, a number of alternative explanations for honest signaling have been proposed. This paper compares the evolutionary plausibility of one such alternative, the “hybrid equilibrium,” to the handicap principle. We utilize computer simulations to compare these two theories as they are instantiated in Maynard Smith’s Sir Philip Sidney game. We conclude that, when both types of communication are possible, evolution is unlikely to lead to handicap signaling and is far more likely to result in the partially honest signaling predicted by hybrid equilibrium theory. PMID:26348617
Directory of Open Access Journals (Sweden)
Rupinder Singh
2017-01-01
Full Text Available In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack. For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.
Type-2 fuzzy neural networks and their applications
Aliev, Rafik Aziz
2014-01-01
This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientis
Energy Technology Data Exchange (ETDEWEB)
Barin, A.; Canha, L.; Abaide, A.; Magnago, K. [Federal University of Santa Maria (UFSM), RS (Brazil)], E-mail: chbarin@gmail.com; Machado, R. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], E-mail: rquadros@sel.eesc.usp.br
2009-07-01
A multicriteria analysis to manage de renewable sources of energy is presented, identifying the most appropriate hybrid system to be used as distributed generation of electric energy using biogas. In this methodology, fuzzy sets and rules are defined simulated in the software MATLAB, where the main characteristics of the operation and application of hybrid systems of electric power generation are considered. The main generation system, that can use the biogas, as micro turbines and fuel cells, are evaluated. Afterwards, the systems of energy storage are analyzed: flywheel, H{sub 2} storage and conventional and redox batteries. For the development of the proposed methodology, it was considered the following criteria: efficiency, costs, technological maturity, environmental impacts, the amplitude of the system action (power range), useful life, co-generation possibility and operation temperature. A classification, by priority order, for the use of the sources and storages associated to the environment and cost scenarios is also presented.
International Nuclear Information System (INIS)
Sarvi, Mohammad; Avanaki, Isa Nasiri
2015-01-01
Highlights: • A new method to improve the performance of renewable power management is proposed. • The proposed method is based on Fuzzy Logic optimized by the Water Cycle Algorithm. • The proposed method characteristics are compared with two other methods. • The comparisons confirm that the proposed method is robust and effectiveness one. - Abstract: This paper aims to improve the power management system of a Stand-alone Hybrid Green Power generation based on the Fuzzy Logic Controller optimized by the Water Cycle Algorithm. The proposed Stand-alone Hybrid Green Power consists of wind energy conversion and photovoltaic systems as primary power sources and a battery, fuel cell, and Electrolyzer as energy storage systems. Hydrogen is produced from surplus power generated by the wind energy conversion and photovoltaic systems of Stand-alone Hybrid Green Power and stored in the hydrogen storage tank for fuel cell later using when the power generated by primary sources is lower than load demand. The proposed optimized Fuzzy Logic Controller based power management system determines the power that is generated by fuel cell or use by Electrolyzer. In a hybrid system, operation and maintenance cost and reliability of the system are the important issues that should be considered in studies. In this regard, Water Cycle Algorithm is used to optimize membership functions in order to simultaneously minimize the Loss of Power Supply Probability and operation and maintenance. The results are compared with the particle swarm optimization and the un-optimized Fuzzy Logic Controller power management system to prove that the proposed method is robust and effective. Reduction in Loss of Power Supply Probability and operation and maintenance, are the most advantages of the proposed method. Moreover the level of the State of Charge of the battery in the proposed method is higher than other mentioned methods which leads to increase battery lifetime.
International Nuclear Information System (INIS)
Andrew Putrayudha, S.; Kang, Eun Chul; Evgueniy, E.; Libing, Y.; Lee, Euy Joon
2015-01-01
Renewable Heat Obligation (RHO) implementation in every country becomes an important issue to utilize more renewable energy sources while reducing the usage of fossil fuel. In 2014, South Korea has a target that every commercial building construction that exceeding 10,000 m 2 has to have on-site new & renewable power generation such as combined heat in the beginning of 2016. Photovoltaic/Thermal (PVT) and Geothermal hybrid systems have been introduced in previous research (E.J. Lee et al.) and it showed a great result from its efficiency and also its power consumption for single and multi-building cases. In this paper, Fuzzy Logic control has been applied to optimize the energy consumption of the system. By comparing it with conventional on–off control, fuzzy logic control system shows a better result in reducing primary energy consumption for both heating and cooling systems annually. Two cases were introduced in this paper, GSHP system and PVT–GSHP system with both on–off and fuzzy logic applied respectively. As a result, it shows that fuzzy logic control consumed 13.3% less energy compared with on–off controller for GSHP system annually and 18.3% less energy compared to on–off controller for PVT–GSHP system annually. - Highlights: • Two renewable systems were designed to produce heating, cooling and electricity. • System optimization by applying Fuzzy Logic in terms of energy saving. • Conventional on–off control system vs advance fuzzy logic control system. • Assumption used based on previous research experience, guidelines.
Li, X C; Barringer, B C; Barbash, D A
2009-01-01
Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a meiotic surveillance system that many organisms use to detect aberrant meiotic products, in order to prevent the production of defective gametes. We suggest that activation of the pachytene checkpoint may be an important mechanism contributing to two types of hybrid sterility. First, the pachytene checkpoint may form the mechanistic basis of some gene-based hybrid sterility phenotypes. Second, the pachytene checkpoint may be an important mechanism that mediates chromosomal-based hybrid sterility phenotypes involving gametes with non-haploid (either non-reduced or aneuploid) chromosome sets. Studies in several species suggest that the strength of the pachytene checkpoint is sexually dimorphic, observations that warrant future investigation into whether such variation may contribute to differences in patterns of sterility between male and female interspecific hybrids. In addition, plants seem to lack the pachytene checkpoint, which correlates with increased production of unreduced gametes and a higher incidence of polyploid species in plants versus animals. Although the pachytene checkpoint occurs in many animals and in fungi, at least some of the genes that execute the pachytene checkpoint are different among organisms. This finding suggests that the penetrance of the pachytene checkpoint, and even its presence or absence can evolve rapidly. The surprising degree of evolutionary flexibility in this meiotic surveillance system may contribute to the observed variation in patterns of hybrid sterility and in rates of polyploidization.
International Nuclear Information System (INIS)
Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J.-P.
2017-01-01
Highlights: • We present a fuzzy smart controller for hybrid renewable and conventional energy system. • The rules are based on human intelligence and implemented in the smart controller. • Efficient tracking capability of the proposed controller is proofed in this paper by an example. • Excess produced renewable energy is converted to hydrogen for household use . • Considerable electric grid energy saving is highlighted in the proposed controller system. - Abstract: This study concerns the conception and development of an efficient multi input-output fuzzy logic smart controller, to manage the energy flux of a sustainable hybrid power system, based on renewable power sources, integrating solar panels and a wind turbine associated with storage, applied to a typical residential habitat. In the suggested topology, the energy surplus is redirected to an electrolysis system to produce hydrogen suitable for household utilities. To assume a constant access to electricity in case of consumption peak, connection to the grid is also considered as an exceptional rescue resource. The objective of the presented controller is to exploit instantaneously the produced renewable electric energy and insure savings of electric grid energy. The proposed multi input-output fuzzy logic smart controller has been achieved and verified, outcome switches command signals are discussed and the renewable energy system integration ratio is highlighted.
Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun
2017-10-01
This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.
Directory of Open Access Journals (Sweden)
Abdullah M. Iliyasu
2017-12-01
Full Text Available A quantum hybrid (QH intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO method with the intuitionistic rationality of traditional fuzzy k-nearest neighbours (Fuzzy k-NN algorithm (known simply as the Q-Fuzzy approach is proposed for efficient feature selection and classification of cells in cervical smeared (CS images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection and another hybrid technique combining the standard PSO algorithm with the Fuzzy k-NN technique (P-Fuzzy approach. In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k-NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.
Faquir, Sanaa; Yahyaouy, Ali; Tairi, Hamid; Sabor, Jalal
2018-05-01
This paper presents the implementation of a fuzzy logic controller to manage the flow of energy in an extended hybrid renewable energy system employed to satisfy the load for a wide isolated site at the city of Essaouira in Morocco. To achieve Efficient energy management, the system is combining two important renewable energies: solar and wind. Lithium Ion batteries were also used as storage devices to store the excess of energy provided by the renewable sources or to supply the system with the required energy when the energy delivered by the input sources is not enough to satisfy the load demand. To manage the energy in the system, a controller based on fuzzy logic was implemented. Real data taken from previous research and meteorological sites was used to test the controller.
International Nuclear Information System (INIS)
Lee, S.
2009-01-01
As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities
Energy Technology Data Exchange (ETDEWEB)
Lee, S. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Energy Policy Research Division; Mogi, G. [Tokyo Univ., (Japan). Dept. of Technology Management for Innovation, Graduate School of Engineering; Kim, J. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of)
2009-07-01
As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities.
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
International Nuclear Information System (INIS)
Aziz, Nur Liyana Afiqah Abdul; Yap, Keem Siah; Bunyamin, Muhammad Afif
2013-01-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of c omputing the word . The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
A fuzzy-based hybrid PLL scheme for abnormal grid conditions
DEFF Research Database (Denmark)
Beheshtaein, Siavash; Savaghebi, Mehdi; Guerrero, Josep M.
2015-01-01
-sequence component of the utility voltage under unbalanced and distorted conditions as well as fast and smooth tracking of phase jump. Furthermore, to achieve the best possible performance, a fuzzy adaptive particle swarm optimization (FAPSO) algorithm is considered to optimize parameters of the fuzzy system...
Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.
Directory of Open Access Journals (Sweden)
Linbin Zhang
2015-03-01
Full Text Available Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.
Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.
Zhang, Linbin; Sun, Tianai; Woldesellassie, Fitsum; Xiao, Hailian; Tao, Yun
2015-03-01
Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.
Directory of Open Access Journals (Sweden)
Chung-Ta Li
2014-01-01
Full Text Available We propose a species-based hybrid of the electromagnetism-like mechanism (EM and back-propagation algorithms (SEMBP for an interval type-2 fuzzy neural system with asymmetric membership functions (AIT2FNS design. The interval type-2 asymmetric fuzzy membership functions (IT2 AFMFs and the TSK-type consequent part are adopted to implement the network structure in AIT2FNS. In addition, the type reduction procedure is integrated into an adaptive network structure to reduce computational complexity. Hence, the AIT2FNS can enhance the approximation accuracy effectively by using less fuzzy rules. The AIT2FNS is trained by the SEMBP algorithm, which contains the steps of uniform initialization, species determination, local search, total force calculation, movement, and evaluation. It combines the advantages of EM and back-propagation (BP algorithms to attain a faster convergence and a lower computational complexity. The proposed SEMBP algorithm adopts the uniform method (which evenly scatters solution agents over the feasible solution region and the species technique to improve the algorithm’s ability to find the global optimum. Finally, two illustrative examples of nonlinear systems control are presented to demonstrate the performance and the effectiveness of the proposed AIT2FNS with the SEMBP algorithm.
Directory of Open Access Journals (Sweden)
Jiekun Song
2016-01-01
Full Text Available Harmonious development of 3Es (economy-energy-environment system is the key to realize regional sustainable development. The structure and components of 3Es system are analyzed. Based on the analysis of causality diagram, GDP and industrial structure are selected as the target parameters of economy subsystem, energy consumption intensity is selected as the target parameter of energy subsystem, and the emissions of COD, ammonia nitrogen, SO2, and NOX and CO2 emission intensity are selected as the target parameters of environment system. Fixed assets investment of three industries, total energy consumption, and investment in environmental pollution control are selected as the decision variables. By regarding the parameters of 3Es system optimization as fuzzy numbers, a fuzzy chance-constrained goal programming (FCCGP model is constructed, and a hybrid intelligent algorithm including fuzzy simulation and genetic algorithm is proposed for solving it. The results of empirical analysis on Shandong province of China show that the FCCGP model can reflect the inherent relationship and evolution law of 3Es system and provide the effective decision-making support for 3Es system optimization.
International Nuclear Information System (INIS)
Thameem Ansari, M.Md.; Velusami, S.
2010-01-01
A design of dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The hybrid genetic algorithm-simulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed controller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.
Directory of Open Access Journals (Sweden)
Yanzi Wang
2016-01-01
Full Text Available Over the last few years; issues regarding the use of hybrid energy storage systems (HESSs in hybrid electric vehicles have been highlighted by the industry and in academic fields. This paper proposes a fuzzy-logic power management strategy based on Markov random prediction for an active parallel battery-UC HESS. The proposed power management strategy; the inputs for which are the vehicle speed; the current electric power demand and the predicted electric power demand; is used to distribute the electrical power between the battery bank and the UC bank. In this way; the battery bank power is limited to a certain range; and the peak and average charge/discharge power of the battery bank and overall loss incurred by the whole HESS are also reduced. Simulations and scaled-down experimental platforms are constructed to verify the proposed power management strategy. The simulations and experimental results demonstrate the advantages; feasibility and effectiveness of the fuzzy-logic power management strategy based on Markov random prediction.
Directory of Open Access Journals (Sweden)
Jaw-Kuen Shiau
2015-04-01
Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.
A Hybrid Multiobjective Evolutionary Approach for Flexible Job-Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Jian Xiong
2012-01-01
Full Text Available This paper addresses multiobjective flexible job-shop scheduling problem (FJSP with three simultaneously considered objectives: minimizing makespan, minimizing total workload, and minimizing maximal workload. A hybrid multiobjective evolutionary approach (H-MOEA is developed to solve the problem. According to the characteristic of FJSP, a modified crowding distance measure is introduced to maintain the diversity of individuals. In the proposed H-MOEA, well-designed chromosome representation and genetic operators are developed for FJSP. Moreover, a local search procedure based on critical path theory is incorporated in H-MOEA to improve the convergence ability of the algorithm. Experiment results on several well-known benchmark instances demonstrate the efficiency and stability of the proposed algorithm. The comparison with other recently published approaches validates that H-MOEA can obtain Pareto-optimal solutions with better quality and/or diversity.
International Nuclear Information System (INIS)
Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang
2013-01-01
Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.
Dehghani Soufi, Mahsa; Samad-Soltani, Taha; Shams Vahdati, Samad; Rezaei-Hachesu, Peyman
2018-06-01
Fast and accurate patient triage for the response process is a critical first step in emergency situations. This process is often performed using a paper-based mode, which intensifies workload and difficulty, wastes time, and is at risk of human errors. This study aims to design and evaluate a decision support system (DSS) to determine the triage level. A combination of the Rule-Based Reasoning (RBR) and Fuzzy Logic Classifier (FLC) approaches were used to predict the triage level of patients according to the triage specialist's opinions and Emergency Severity Index (ESI) guidelines. RBR was applied for modeling the first to fourth decision points of the ESI algorithm. The data relating to vital signs were used as input variables and modeled using fuzzy logic. Narrative knowledge was converted to If-Then rules using XML. The extracted rules were then used to create the rule-based engine and predict the triage levels. Fourteen RBR and 27 fuzzy rules were extracted and used in the rule-based engine. The performance of the system was evaluated using three methods with real triage data. The accuracy of the clinical decision support systems (CDSSs; in the test data) was 99.44%. The evaluation of the error rate revealed that, when using the traditional method, 13.4% of the patients were miss-triaged, which is statically significant. The completeness of the documentation also improved from 76.72% to 98.5%. Designed system was effective in determining the triage level of patients and it proved helpful for nurses as they made decisions, generated nursing diagnoses based on triage guidelines. The hybrid approach can reduce triage misdiagnosis in a highly accurate manner and improve the triage outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Digital Repository Service at National Institute of Oceanography (India)
De, C.; Chakraborty, B.
., vol. 17, Oct. 1992, pp. 351–363. [35] B. T. Prager, D. A. Caughey, and R. H. Poeckert, “Bottom classification: Operational results from QTC view,” in Proc. IEEE Oceans, Sep. 1995, vol. 3, pp. 1827–1835. [36] MATLAB 7.0, Fuzzy Logic Toolbox, Math Works...
Directory of Open Access Journals (Sweden)
Fengqi Zhang
2016-11-01
Full Text Available This paper presents a new energy management system based on equivalent consumption minimization strategy (ECMS for hybrid electric vehicles. The aim is to enhance fuel economy and impose state of charge (SoC charge-sustainability. First, the relationship between the equivalent factor (EF of ECMS and the co-state of pontryagin’s minimum principle (PMP is derived. Second, a new method of implementing the adaptation law using fuzzy proportional plus integral (PI controller is developed to adjust EF for ECMS in real-time. This adaptation law is more robust than one with constant EF due to the variation of EF as well as driving cycle. Finally, simulations for two driving cycles using ECMS are conducted as opposed to the commonly used rule-based (RB control strategy, indicating that the proposed adaptation law can provide a promising blend in terms of fuel economy and charge-sustainability. The results confirm that ECMS with Fuzzy PI adaptation law is more robust than ECMS with constant EF as well as PI adaptation law and it achieves significant improvements compared with RB in terms of fuel economy, which is enhanced by 4.44% and 14.7% for china city bus cycle and economic commission of Europe (ECE cycle, respectively.
Ghasemy Yaghin, R.; Fatemi Ghomi, S. M. T.; Torabi, S. A.
2015-10-01
In most markets, price differentiation mechanisms enable manufacturers to offer different prices for their products or services in different customer segments; however, the perfect price discrimination is usually impossible for manufacturers. The importance of accounting for uncertainty in such environments spurs an interest to develop appropriate decision-making tools to deal with uncertain and ill-defined parameters in joint pricing and lot-sizing problems. This paper proposes a hybrid bi-objective credibility-based fuzzy optimisation model including both quantitative and qualitative objectives to cope with these issues. Taking marketing and lot-sizing decisions into account simultaneously, the model aims to maximise the total profit of manufacturer and to improve service aspects of retailing simultaneously to set different prices with arbitrage consideration. After applying appropriate strategies to defuzzify the original model, the resulting non-linear multi-objective crisp model is then solved by a fuzzy goal programming method. An efficient stochastic search procedure using particle swarm optimisation is also proposed to solve the non-linear crisp model.
A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System
Directory of Open Access Journals (Sweden)
Shivashankar Sukumar
2017-10-01
Full Text Available Solar power generation is intermittent in nature. It is nearly impossible for a photovoltaic (PV system to supply power continuously and consistently to a varying load. Operating a controllable source like a fuel cell in parallel with PV can be a solution to supply power to variable loads. In order to coordinate the power supply from fuel cells and PVs, a power management system needs to be designed for the microgrid system. This paper presents a power management system for a grid-connected PV and solid oxide fuel cell (SOFC, considering variation in the load and solar radiation. The objective of the proposed system is to minimize the power drawn from the grid and operate the SOFC within a specific power range. Since the PV is operated at the maximum power point, the power management involves the control of SOFC active power where a proportional and integral (PI controller is used. The control parameters of the PI controller Kp (proportional constant and Ti (integral time constant are determined by the genetic algorithm (GA and simplex method. In addition, a fuzzy logic controller is also developed to generate appropriate control parameters for the PI controller. The performance of the controllers is evaluated by minimizing the integral of time multiplied by absolute error (ITAE criterion. Simulation results showed that the fuzzy-based PI controller outperforms the PI controller tuned by the GA and simplex method in managing the power from the hybrid source effectively under variations of load and solar radiation.
Directory of Open Access Journals (Sweden)
Yueling Wang
2013-01-01
Full Text Available A unique fuzzy self-tuning disturbance decoupling controller (FSDDC is designed for a serial-parallel hybrid humanoid arm (HHA to implement the throwing trajectory-tracking mission. Firstly, the dynamic model of the HHA is established and the input signal of the throwing process is obtained by studying the throwing process of human's arm. Secondly, the FSDDC, incorporating the disturbance decoupling controller (DDC and the fuzzy logic controller (FLC, is designed to ensure trajectory tracking of the HHA in the presence of uncertainties and disturbances. With the FSDDC method, the HHA system can be decoupled by actively estimating and rejecting the effects of both the internal plant dynamics and external disturbances. The self-tuning parameters are adapted online to improve the performance of the FSDDC; thus, it does not require detailed system parameters of the presented FSDDC. Finally, the controller introduced is compared with a PD controller which is commonly used for the robot manipulators control in industry. The effectiveness of the designed FSDDC is illustrated by simulations.
DEFF Research Database (Denmark)
Chen, Shuheng; Hu, Weihao; Su, Chi
2015-01-01
A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... that the proposed method can search a more promising control schedule of all transformers, all capacitors and all distributed generators with less time consumption, compared with other listed artificial intelligent methods....... algorithm is implemented in VC++ 6.0 program language and the corresponding numerical experiments are finished on the modified version of the IEEE 33-node distribution system with two newly installed distributed generators and eight newly installed capacitors banks. The numerical results prove...
Energy Technology Data Exchange (ETDEWEB)
Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)
2010-11-15
There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)
MODELLING AND CONTROL OF POWER-SPLIT HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC METHOD
Mohammadpour, Ebrahim; Khajavi, Mehrdad Nouri
2014-01-01
Nowadays, automotive manufactures increasingly have lead to development of hybrid vehicles due to energy consumption growing and increased emissions. the power-split hybrids due to the simultaneous using of speed and torque couplings has integrated advantage of series and parallel hybrid systems and minimize their disadvantages , however the power-split hybrids control strategy is far more complex than other types. Generally the control strategy tries to use the optimize operating point of HE...
A Hybrid Fuzzy Multi-hop Unequal Clustering Algorithm for Dense Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Shawkat K. Guirguis
2017-01-01
Full Text Available Clustering is carried out to explore and solve power dissipation problem in wireless sensor network (WSN. Hierarchical network architecture, based on clustering, can reduce energy consumption, balance traffic load, improve scalability, and prolong network lifetime. However, clustering faces two main challenges: hotspot problem and searching for effective techniques to perform clustering. This paper introduces a fuzzy unequal clustering technique for heterogeneous dense WSNs to determine both final cluster heads and their radii. Proposed fuzzy system blends three effective parameters together which are: the distance to the base station, the density of the cluster, and the deviation of the noders residual energy from the average network energy. Our objectives are achieving gain for network lifetime, energy distribution, and energy consumption. To evaluate the proposed algorithm, WSN clustering based routing algorithms are analyzed, simulated, and compared with obtained results. These protocols are LEACH, SEP, HEED, EEUC, and MOFCA.
Directory of Open Access Journals (Sweden)
Gilles André
2010-05-01
Full Text Available Abstract Background Cyprinids display the most abundant and widespread species among the European freshwater Teleostei and are known to hybridize quite commonly. Nevertheless, a limited number of markers for conducting comparative differentiation, evolutionary and hybridization dynamics studies are available to date. Findings Five multiplex PCR sets were optimized in order to assay 41 cyprinid-specific polymorphic microsatellite loci (including 10 novel loci isolated from Chondrostoma nasus nasus, Chondrostoma toxostoma toxostoma and Leuciscus leuciscus for 503 individuals (440 purebred specimens and 63 hybrids from 15 European cyprinid species. The level of genetic diversity was assessed in Alburnus alburnus, Alburnoides bipunctatus, C. genei, C. n. nasus, C. soetta, C. t. toxostoma, L. idus, L. leuciscus, Pachychilon pictum, Rutilus rutilus, Squalius cephalus and Telestes souffia. The applicability of the markers was also tested on Abramis brama, Blicca bjoerkna and Scardinius erythrophtalmus specimens. Overall, between 24 and 37 of these markers revealed polymorphic for the investigated species and 23 markers amplified for all the 15 European cyprinid species. Conclusions The developed set of markers demonstrated its performance in discriminating European cyprinid species. Furthermore, it allowed detecting and characterizing hybrid individuals. These microsatellites will therefore be useful to perform comparative evolutionary and population genetics studies dealing with European cyprinids, what is of particular interest in conservation issues and constitutes a tool of choice to conduct hybridization studies.
Directory of Open Access Journals (Sweden)
Weidong Lei
2017-01-01
Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.
Directory of Open Access Journals (Sweden)
Soedibyo
2016-01-01
Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.
Directory of Open Access Journals (Sweden)
Akhtar Hussain
2017-02-01
Full Text Available The resiliency of power systems can be enhanced during emergency situations by using microgrids, due to their capability to supply local loads. However, precise prediction of disturbance events is very difficult rather the occurrence probability can be expressed as, high, medium, or low, etc. Therefore, a fuzzy logic-based battery energy storage system (BESS operation controller is proposed in this study. In addition to BESS state-of-charge and market price signals, event occurrence probability is taken as crisp input for the BESS operation controller. After assessing the membership levels of all the three inputs, BESS operation controller decides the operation mode (subservient or resilient of BESS units. In subservient mode, BESS is fully controlled by an energy management system (EMS while in the case of resilient mode, the EMS follows the commands of the BESS operation controller for scheduling BESS units. Therefore, the proposed hybrid microgrid model can operate in normal, resilient, and emergency modes with the respective objective functions and scheduling horizons. Due to the consideration of resilient mode, load curtailment can be reduced during emergency operation periods. Numerical simulations have demonstrated the effectiveness of the proposed strategy for enhancing the resiliency of hybrid microgrids.
Directory of Open Access Journals (Sweden)
Banjanovic-Mehmedovic Lejla
2016-01-01
Full Text Available Accurate prediction of traffic information is important in many applications in relation to Intelligent Transport systems (ITS, since it reduces the uncertainty of future traffic states and improves traffic mobility. There is a lot of research done in the field of traffic information predictions such as speed, flow and travel time. The most important research was done in the domain of cooperative intelligent transport system (C-ITS. The goal of this paper is to introduce the novel cooperation behaviour profile prediction through the example of flexible Road Trains useful road cooperation parameter, which contributes to the improvement of traffic mobility in Intelligent Transportation Systems. This paper presents an approach towards the control and cooperation behaviour modelling of vehicles in the flexible Road Train based on hybrid automaton and neuro-fuzzy (ANFIS prediction of cooperation profile of the flexible Road Train. Hybrid automaton takes into account complex dynamics of each vehicle as well as discrete cooperation approach. The ANFIS is a particular class of the ANN family with attractive estimation and learning potentials. In order to provide statistical analysis, RMSE (root mean square error, coefficient of determination (R2 and Pearson coefficient (r, were utilized. The study results suggest that ANFIS would be an efficient soft computing methodology, which could offer precise predictions of cooperative interactions between vehicles in Road Train, which is useful for prediction mobility in Intelligent Transport systems.
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
Directory of Open Access Journals (Sweden)
Behnam Tashayo
2017-01-01
Full Text Available Characterizing the spatial variation of traffic-related air pollution has been and is a long-standing challenge in quantitative environmental health impact assessment of urban transportation planning. Advanced approaches are required for modeling complex relationships among traffic, air pollution, and adverse health outcomes by considering uncertainties in the available data. A new hybrid fuzzy model is developed and implemented through hierarchical fuzzy inference system (HFIS. This model is integrated with a dispersion model in order to model the effect of transportation system on the PM2.5 concentration. An improved health metric is developed as well based on a HFIS to model the impact of traffic-related PM2.5 on health. Two solutions are applied to improve the performance of both the models: the topologies of HFISs are selected according to the problem and used variables, membership functions, and rule set are determined through learning in a simultaneous manner. The capabilities of this proposed approach is examined by assessing the impacts of three traffic scenarios involved in air pollution in the city of Isfahan, Iran, and the model accuracy compared to the results of available models from literature. The advantages here are modeling the spatial variation of PM2.5 with high resolution, appropriate processing requirements, and considering the interaction between emissions and meteorological processes. These models are capable of using the available qualitative and uncertain data. These models are of appropriate accuracy, and can provide better understanding of the phenomena in addition to assess the impact of each parameter for the planners.
Directory of Open Access Journals (Sweden)
Bogaraj T.
2015-09-01
Full Text Available Many parts of remote locations in the world are not electrified even in this Advanced Technology Era. To provide electricity in such remote places renewable hybrid energy systems are very much suitable. In this paper PV/Wind/Battery Hybrid Power System (HPS is considered to provide an economical and sustainable power to a remote load. HPS can supply the maximum power to the load at a particular operating point which is generally called as Maximum Power Point (MPP. Fuzzy Logic based MPPT (FLMPPT control method has been implemented for both Solar and Wind Power Systems. FLMPPT control technique is implemented to generate the optimal reference voltage for the first stage of DC-DC Boost converter in both the PV and Wind energy system. The HPS is tested with variable solar irradiation, temperature, and wind speed. The FLMPPT method is compared with P&O MPPT method. The proposed method provides a good maximum power operation of the hybrid system at all operating conditions. In order to combine both sources, the DC bus voltage is made constant by employing PI Controllers for the second stage of DC-DC Buck-Boost converter in both Solar and Wind Power Systems. Battery Bank is used to store excess power from Renewable Energy Sources (RES and to provide continuous power to load when the RES power is less than load power. A SPWM inverter is designed to convert DC power into AC to supply three phase load. An LC filter is also used at the output of inverter to get sinusoidal current from the PWM inverter. The entire system was modeled and simulated in Matlab/Simulink Environment. The results presented show the validation of the HPS design.
Directory of Open Access Journals (Sweden)
Mehdi Neshat
2015-11-01
Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.
Hybrid neuro-fuzzy system for power generation control with environmental constraints
International Nuclear Information System (INIS)
Chaturvedi, Krishna Teerth; Pandit, Manjaree; Srivastava, Laxmi
2008-01-01
The real time controls at the central energy management centre in a power system, continuously track the load changes and endeavor to match the total power demand with total generation in such a manner that the operating cost is least. However due to the strict government regulations on environmental protection, operation at minimum cost is no longer the only criterion for dispatching electrical power. The idea behind the environmentally constrained combined economic dispatch formulation is to estimate the optimal generation allocation to generating units in such a manner that fuel cost and harmful emission levels are both simultaneously minimized for a given load demand. Conventional optimization techniques are cumbersome for such complex optimization tasks and are not suitable for on-line use due to increased computational burden. This paper proposes a neuro-fuzzy power dispatch method where the uncertainty involved with power demand is modeled as a fuzzy variable. Then Levenberg-Marquardt neural network (LMNN) is used to evaluate the optimal generation schedules. This model trains almost hundred times faster that the popular BP neural network. The proposed method has been tested on two test systems and found to be suitable for on-line combined environmental economic dispatch
DiBattista, Joseph; Whitney, Jonathan; Craig, Matthew T.; Hobbs, Jean-Paul A.; Rocha, Luiz A.; Feldheim, Kevin A.; Berumen, Michael L.; Bowen, Brian W.
2016-01-01
Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N = 141) and A. nigricans (N = 412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N = 54) and A. japonicus (N = 49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000 to 2.25 million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr ≈ 0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST = 0.6533, P < 0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mt
DiBattista, Joseph D; Whitney, Jonathan; Craig, Matthew T; Hobbs, Jean-Paul A; Rocha, Luiz A; Feldheim, Kevin A; Berumen, Michael L; Bowen, Brian W
2016-08-01
Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N=141) and A. nigricans (N=412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N=54) and A. japonicus (N=49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000-2.25million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr≈0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST=0.6533, P<0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mtDNA lineage and
DiBattista, Joseph
2016-04-30
Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N = 141) and A. nigricans (N = 412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N = 54) and A. japonicus (N = 49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000 to 2.25 million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr ≈ 0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST = 0.6533, P < 0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mt
Wavelet decomposition and neuro-fuzzy hybrid system applied to short-term wind power
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Jimenez, L.A.; Mendoza-Villena, M. [La Rioja Univ., Logrono (Spain). Dept. of Electrical Engineering; Ramirez-Rosado, I.J.; Abebe, B. [Zaragoza Univ., Zaragoza (Spain). Dept. of Electrical Engineering
2010-03-09
Wind energy has become increasingly popular as a renewable energy source. However, the integration of wind farms in the electrical power systems presents several problems, including the chaotic fluctuation of wind flow which results in highly varied power generation from a wind farm. An accurate forecast of wind power generation has important consequences in the economic operation of the integrated power system. This paper presented a new statistical short-term wind power forecasting model based on wavelet decomposition and neuro-fuzzy systems optimized with a genetic algorithm. The paper discussed wavelet decomposition; the proposed wind power forecasting model; and computer results. The original time series, the mean electric power generated in a wind farm, was decomposing into wavelet coefficients that were utilized as inputs for the forecasting model. The forecasting results obtained with the final models were compared to those obtained with traditional forecasting models showing a better performance for all the forecasting horizons. 13 refs., 1 tab., 4 figs.
FUZZY LOGIC BASED HYBRID RECOMMENDER OF MAXIMUM YIELD CROP USING SOIL, WEATHER AND COST
Directory of Open Access Journals (Sweden)
U Aadithya
2016-07-01
Full Text Available Our system is designed to predict best suitable crops for the region of farmer. It also suggests farming strategies for the crops such as mixed cropping, spacing, irrigation, seed treatment, etc. along with fertilizer and pesticide suggestions. This is done based on the historic soil parameters of the region and by predicting cost of crops and weather. The system is based on fuzzy logic which gets input from an Artificial Neural Network (ANN based weather prediction module. An Agricultural Named Entity Recognition (NER module is developed using Conditional Random Field (CRF to extract crop conditions data. Further, cost prediction is done based on Linear Regression equation to aid in ranking the crops recommended. Using this approach we achieved an F-Score of 54% with a precision of 77% thus accounting for the correctness of crop production.
Portfolio optimization using a hybrid of fuzzy ANP, VIKOR and TOPSIS
Directory of Open Access Journals (Sweden)
Reza Raei
2012-10-01
Full Text Available One of the primary questions in asset management is to find good combinations of different assets and this has been an interesting area of research for over half a century. The proposed model of this paper uses decision makers' feedbacks based on multiple criteria decision making technique to find an appropriate portfolio. We first select some important financial criteria and then using decision makers' opinions and by implementation of some fuzzy network analysis we find appropriate weights of the asset. The proposed model uses two multiple criteria techniques namely TOPSIS and VIKOR and the model is examined for some real-world data from Tehran Stock Exchange. The results of the implementation of the proposed model have been examined against Markowitz traditional model. The preliminary results indicate that the proposed model of this paper performs reasonably well compared with alternative method.
Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system
Mahendran, Venmathi; Ramabadran, Ramaprabha
2016-11-01
Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.
Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao
2018-01-02
In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.
Liu, Shiyong; Triantis, Konstantinos P; Zhao, Li; Wang, Youfa
2018-01-01
In practical research, it was found that most people made health-related decisions not based on numerical data but on perceptions. Examples include the perceptions and their corresponding linguistic values of health risks such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understanding the mechanisms that affect the implementations of health-related interventions, we employ fuzzy variables to quantify linguistic variable in healthcare modeling where we employ an integrated system dynamics and agent-based model. In a nonlinear causal-driven simulation environment driven by feedback loops, we mathematically demonstrate how interventions at an aggregate level affect the dynamics of linguistic variables that are captured by fuzzy agents and how interactions among fuzzy agents, at the same time, affect the formation of different clusters(groups) that are targeted by specific interventions. In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties manifested among interacting heterogeneous agents (individuals) and intervention decisions that affect homogeneous agents (groups of individuals) in a hybrid model that combines an agent-based simulation model (ABM) and a system dynamics models (SDM). Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model, this paper demonstrates how one can obtain the state variable behaviors in the SDM and the corresponding values of linguistic variables in the ABM. This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM model. This research not only enriches the application of fuzzy set theory by capturing the dynamics of variables associated with interacting fuzzy agents that lead to aggregate behaviors but also informs implementation research by enabling the incorporation of linguistic variables at both individual and institutional levels, which makes unstructured linguistic data
Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian
2015-01-01
The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.
Directory of Open Access Journals (Sweden)
Celine Caseys
Full Text Available The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar and P. tremula (European aspen and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS. We detected 41 quantitative trait loci (QTL for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.
Directory of Open Access Journals (Sweden)
Li Ma
2015-01-01
Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.
Bonakdari, Hossein; Zaji, Amir Hossein
2018-03-01
In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization (ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.
Wang, Baijie; Wang, Xin; Chen, Zhangxin
2013-08-01
Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.
FEMAN: Fuzzy-Based Energy Management System for Green Houses Using Hybrid Grid Solar Power
Directory of Open Access Journals (Sweden)
Abdellah Chehri
2013-01-01
Full Text Available The United Nations has designated the year 2012 as the international year of sustainable energy. Today, we are seeing a rise in global awareness of energy consumption and environmental problems. Many nations have launched different programs to reduce the energy consumption in residential and commercial buildings to seek lower-carbon energy solutions. We are talking about the future green and smart houses. The subject of smart/green houses is not one of “why,” but rather “how,” specifically: “how making the future house more energy efficient.” The use of the renewable energy, the technology and the services could help us to answer this question. Intelligent home energy management is an approach to build centralized systems that deliver application functionality as services to end-consumer applications. The objective of this work is to develop a smart and robust controller for house energy consumption with maximizing the use of solar energy and reducing the impact on the power grid while satisfying the energy demand of house appliances. We proposed a fuzzy-based energy management controller in order to reduce the consumed energy of the building while respecting a fixed comfort.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2009-08-15
This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)
Bonissone CIDU Presentation: Design of Local Fuzzy Models
National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...
Directory of Open Access Journals (Sweden)
Ali Selamat
2012-01-01
Full Text Available Sensitivity-based linear learning method (SBLLM has recently been used as a predictive tool due to its unique characteristics and performance, particularly its high stability and consistency during predictions. However, the generalisation capability of SBLLM is sometimes limited depending on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not. Since it made use of sensitivity analysis in relation to the data sets used, it is surely very prone to being affected by the nature of the dataset. In order to reduce the effects of uncertainties in SBLLM prediction and improve its generalisation ability, this paper proposes a hybrid system through the unique combination of type-2 fuzzy logic systems (type-2 FLSs and SBLLM; thereafter the hybrid system was used to model PVT properties of crude oil systems. Type-2 FLS has been choosen in order to better handle uncertainties existing in datasets beyond the capability of type-1 fuzzy logic systems. In the proposed hybrid, the type-2 FLS is used to handle uncertainties in reservoir data so that the cleaned data from type-2 FLS is then passed to the SBLLM for training and then final prediction using testing dataset follows. Comparative studies have been carried out to compare the performance of the newly proposed T2-SBLLM hybrid system with each of the constituent type-2 FLS and SBLLM. Empirical results from simulation show that the proposed T2-SBLLM hybrid system has greatly improved upon the performance of SBLLM, while also maintaining a better performance above that of the type-2 FLS.
Pemodelan Sistem Fuzzy Dengan Menggunakan Matlab
Directory of Open Access Journals (Sweden)
Afan Galih Salman
2010-12-01
Full Text Available Fuzzy logic is a method in soft computing category, a method that could process uncertain, inaccurate, and less cost implemented data. Some methods in soft computing category besides fuzzy logic are artificial network nerve, probabilistic reasoning, and evolutionary computing. Fuzzy logic has the ability to develop fuzzy system that is intelligent system in uncertain environment. Some stages in fuzzy system formation process is input and output analysis, determining input and output variable, defining each fuzzy set member function, determining rules based on experience or knowledge of an expert in his field, and implementing fuzzy system. Overall, fuzzy logic uses simple mathematical concept, understandable, detectable uncertain and accurate data. Fuzzy system could create and apply expert experiences directly without exercise process and effort to decode the knowledge into a computer until becoming a modeling system that could be relied on decision making.
Directory of Open Access Journals (Sweden)
Shailesh Dewangan
2015-09-01
Full Text Available Surface integrity remains one of the major areas of concern in electric discharge machining (EDM. During the current study, grey-fuzzy logic-based hybrid optimization technique is utilized to determine the optimal settings of EDM process parameters with an aim to improve surface integrity aspects after EDM of AISI P20 tool steel. The experiment is designed using response surface methodology (RSM considering discharge current (Ip, pulse-on time (Ton, tool-work time (Tw and tool-lift time (Tup as process parameters. Various surface integrity characteristics such as white layer thickness (WLT, surface crack density (SCD and surface roughness (SR are considered during the current research work. Grey relational analysis (GRA combined with fuzzy-logic is used to determine grey fuzzy reasoning grade (GFRG. The optimal solution based on this analysis is found to be Ip = 1 A, Ton = 10 μs, Tw = 0.2 s, and Tup = 0.0 s. Analysis of variance (ANOVA results clearly indicate that Ton is the most contributing parameter followed by Ip, for multiple performance characteristics of surface integrity.
Díaz-Rodríguez, Natalia; Cadahía, Olmo León; Cuéllar, Manuel Pegalajar; Lilius, Johan; Calvo-Flores, Miguel Delgado
2014-01-01
Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches. PMID:25268914
Directory of Open Access Journals (Sweden)
Natalia Díaz-Rodríguez
2014-09-01
Full Text Available Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset, achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches.
Directory of Open Access Journals (Sweden)
Mahdi Karbasian1
2012-02-01
Full Text Available In today’s organizations, performance measurement comes more to the foreground with the advancement in the high technology. Supplier selection is an important issue in supply chain management. In recent years, determining the best supplier in the supply chain has become a key strategic consideration. However, these decisions usually involve several objectives or criteria, and it is often necessary to compromise among possibly conflicting factors. Thus, the multiple criteria decision making (MCDM becomes a useful approach to solve this kind of problem. In order to use the conceptual framework for measuring performance supplier, a methodology that takes into account both quantitative and qualitative factors and the interrelations between them should be utilized. for leveling an integrated approach of analytic hierarchy process AHP and fuzzy TOPSIS method is proposed to obtain final ranking. The interactions among the criteria are also analyzed before arriving at a decision for the selection of supplier from among six alternatives. Linguistic values are used to assess the ratings and weights for criterion. These linguistic ratings can be expressed in triangular fuzzy numbers. Then, a hierarchy multiple criteria decision-making (MCDM model based on fuzzy-sets theory including FAHP and FTOPSIS are applied. There are two approaches for aggregating values including relative importance of evaluation criteria with respect to the overall objective and rating of alternatives with respect to each criterion in fuzzy group TOPSIS: First aggregation and Last aggregation. In first aggregation approach weight of each criterion and rating of alternatives with respect to each criterion gained from decision makers are aggregated at first and TOPSIS method then apply to these aggregate values. In last aggregation approach weight of each criterion and rating of alternatives with respect to each criterion gained from decision makers are used in TOPSIS method
Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Lvjiang Yin
2016-12-01
Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.
Vokurková, Jana; Petrusková, Tereza; Reifová, Radka; Kozman, Alexandra; Mořkovský, Libor; Kipper, Silke; Weiss, Michael; Reif, Jiří; Dolata, Paweł T.; Petrusek, Adam
2013-01-01
Bird song plays an important role in the establishment and maintenance of prezygotic reproductive barriers. When two closely related species come into secondary contact, song convergence caused by acquisition of heterospecific songs into the birds’ repertoires is often observed. The proximate mechanisms responsible for such mixed singing, and its effect on the speciation process, are poorly understood. We used a combination of genetic and bioacoustic analyses to test whether mixed singing observed in the secondary contact zone of two passerine birds, the Thrush Nightingale (Luscinia luscinia) and the Common Nightingale (L. megarhynchos), is caused by introgressive hybridization. We analysed song recordings of both species from allopatric and sympatric populations together with genotype data from one mitochondrial and seven nuclear loci. Semi-automated comparisons of our recordings with an extensive catalogue of Common Nightingale song types confirmed that most of the analysed sympatric Thrush Nightingale males were ‘mixed singers’ that use heterospecific song types in their repertoires. None of these ‘mixed singers’ possessed any alleles introgressed from the Common Nightingale, suggesting that they were not backcross hybrids. We also analysed songs of five individuals with intermediate phenotype, which were identified as F1 hybrids between the Thrush Nightingale female and the Common Nightingale male by genetic analysis. Songs of three of these hybrids corresponded to the paternal species (Common Nightingale) but the remaining two sung a mixed song. Our results suggest that although hybridization might increase the tendency for learning songs from both parental species, interspecific cultural transmission is the major proximate mechanism explaining the occurrence of mixed singers among the sympatric Thrush Nightingales. We also provide evidence that mixed singing does not substantially increase the rate of interspecific hybridization and discuss the
Directory of Open Access Journals (Sweden)
Ramachandra Nallur B
2003-10-01
Full Text Available Abstract Background Drosophila nasuta nasuta (2n = 8 and Drosophila nasuta albomicans (2n = 6 are a pair of sibling allopatric chromosomal cross-fertile races of the nasuta subgroup of immigrans species group of Drosophila. Interracial hybridization between these two races has given rise to new karyotypic strains called Cytorace 1 and Cytorace 2 (first phase. Further hybridization between Thailand strain of D. n. albomicans and D. n. nasuta of Coorg strain has resulted in the evolution of two more Cytoraces, namely Cytorace 3 and Cytorace 4 (second phase. The third phase Cytoraces (Cytorace 5 to Cytorace 16 have evolved through interracial hybridization among first, second phase Cytoraces along with parental races. Each of these Cytoraces is composed of recombined genomes of the parental races. Here, we have made an attempt to systematically assess the impact of hybridization on karyotypes, morphometric and life history traits in all 16 Cytoraces. Results The results reveal that in most cases, the newly evolved Cytoraces, with different chromosome constitutions, exhibit decreased body size, better fitness and live longer than their parents. Particularly, Cytorace 5, 6 and 8 have evolved with very much higher range values of quantitative traits than the parents and other Cytoraces, which suggests the role of transgressive segregation in the evolution of these Cytoraces. Conclusion Thus, the rapid divergence recorded in the chromosomes, karyotypes, body size and fitness traits of Cytoraces exhibit the early event of recombinational raciation / speciation in the evolution of the Cytoraces under laboratory conditions.
Czech Academy of Sciences Publication Activity Database
Symonová, Radka; Flajšhans, M.; Sember, Alexandr; Havelka, M.; Gela, D.; Kořínková, Tereza; Rodina, M.; Rábová, Marie; Ráb, Petr
2013-01-01
Roč. 141, 2-3 (2013), s. 153-162 ISSN 1424-8581 R&D Projects: GA ČR GA523/08/0824; GA ČR(CZ) GPP506/11/P596 Institutional support: RVO:67985904 Keywords : Acipenser * GISH * Hybridization * Macrochromosomes Subject RIV: EG - Zoology Impact factor: 1.905, year: 2013
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
Directory of Open Access Journals (Sweden)
Raúl A Ortiz-Merino
2017-05-01
Full Text Available Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae.
2018-01-01
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230
Directory of Open Access Journals (Sweden)
Hazlee Azil Illias
Full Text Available Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM with modified evolutionary particle swarm optimisation (EPSO algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO-Time Varying Acceleration Coefficient (TVAC technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.
Illias, Hazlee Azil; Zhao Liang, Wee
2018-01-01
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.
Evolutionary analysis of Pinus densata Masters, a putative Tertiary hybrid : 1. Allozyme variation.
Wang, X R; Szmidt, A E; Lewandowski, A; Wang, Z R
1990-11-01
Allozyme differentiation at 13 loci was studied in populations of Pinus tabulaeformis, P. densata, and P. yunnanensis from China. It was previously suggested that P. densata represents a Tertiary hybrid between P. tabulaeformis and P. yunnanensis. The observed levels of allozyme variation within and among the investigated species were comparable to those of other conifers. P. tabulaeformis differed markedly from P. yunnanensis with respect to allozyme frequencies, while P. densata was intermediate between the two putative parents. There was evidence of homozygote excess in embryos from all investigated species, as compared to Hardy-Weinberg expectations. The observed allozyme composition of P. densata conformed to earlier morphological and molecular evidence indicating hybrid origin of this taxon. It was proposed that fusion of gene pools from P. tabulaeformis and P. yunnanensis has led to adaptive evolution of a new species, P. densata.
Neuro-fuzzy system modeling based on automatic fuzzy clustering
Institute of Scientific and Technical Information of China (English)
Yuangang TANG; Fuchun SUN; Zengqi SUN
2005-01-01
A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.
Jamali, R. M. Jalal Uddin; Hashem, M. M. A.; Hasan, M. Mahfuz; Rahman, Md. Bazlar
2013-01-01
Solving a set of simultaneous linear equations is probably the most important topic in numerical methods. For solving linear equations, iterative methods are preferred over the direct methods especially when the coefficient matrix is sparse. The rate of convergence of iteration method is increased by using Successive Relaxation (SR) technique. But SR technique is very much sensitive to relaxation factor, {\\omega}. Recently, hybridization of classical Gauss-Seidel based successive relaxation t...
Directory of Open Access Journals (Sweden)
S. Ghaffari
2017-12-01
Full Text Available Project management includes the consideration of complex decision modes used in modern decision support techniques. The aim of this paper was to prioritize such factors and evaluate their effects on project management and optimal control. Their effect on management and optimal project control are evaluated in frame of a statistical hypothesis. A new algorithm, "IPICEA-g" is proposed for the assessment. A questionnaire is used for data collection distributed between 56 employees of the CALCIMINE Company. T-test, two-sentence test, ANP method, FUZZY SEAMATEL and the IPICEA-g hybrid algorithm, are employed for data analyzing. Results are further discussed and conclusions are drawn.
Directory of Open Access Journals (Sweden)
Yaojie Yue
2016-12-01
Full Text Available Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS, a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008. Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is
DEFF Research Database (Denmark)
Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee
deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...
Directory of Open Access Journals (Sweden)
Muhammad Adil Khan
2018-05-01
Full Text Available The electric powered wheelchair (EPW is an essential assistive tool for people with serious injuries or disability. This manuscript describes the validation of applied research for reducing the charging time of an electric wheelchair using a hybrid electric system (HES composed of a supercapacitor (SC bank and a lithium-ion battery with a fuzzy logic controller (FLC-based fast charging system for Li-ion batteries and a fuzzy logic-based intelligent energy management system (FLIEMS for controlling the power flow within the HES. The fast charging FLC was designed to drive the voltage difference (Vd among the different cells of a multi-cell battery and the cell voltage (Vc of an individual cell. These parameters (voltage difference and cell voltage were used as input voltages to reduce the charge time and activate a bypass equalization (BPE scheme. BPE was introduced in this paper so that the battery operates within the safe voltage range. For SC/Li-ion HES, the FLIEMS presented in this paper controls the bi-directional power flow to smooth the power extracted from Li-ion batteries. Moreover, a dual active bridge isolated bidirectional DC converter (DAB-IBDC was used for power conversion. The DAB-IBDC presented in this paper has the characteristics of galvanic isolation, and high power conversion efficiency compared to the conventional converter circuits due to the reduced reverse power flow and current stresses.
Designing PID-Fuzzy Controller for Pendubot System
Directory of Open Access Journals (Sweden)
Ho Trong Nguyen
2017-12-01
Full Text Available In the paper, authors analize dynamic equation of a pendubot system. Familiar kinds of controller – PID, fuzzy controllers – are concerned. Then, a structure of PID-FUZZY is presented. The comparison of three kinds of controllers – PID, fuzzy and PID-FUZZY shows the better response of system under PID-FUZZY controller. Then, the experiments on the real model also prove the better stabilization of the hybrid controller which is combined between linear and intelligent controller.
Directory of Open Access Journals (Sweden)
Shahram Mollaiy Berneti
2013-04-01
Full Text Available In this paper, a novel hybrid approach composed of adaptive neuro-fuzzy inference system (ANFIS and imperialist competitive algorithm is proposed. The imperialist competitive algorithm (ICA is used in this methodology to determine the most suitable initial membership functions of the ANFIS. The proposed model combines the global search ability of ICA with local search ability of gradient descent method. To illustrate the suitability and capability of the proposed model, this model is applied to predict oil flow rate of the wells utilizing data set of 31 wells in one of the northern Persian Gulf oil fields of Iran. The data set collected in a three month period for each well from Dec. 2002 to Nov. 2010. For the sake of performance evaluation, the results of the proposed model are compared with the conventional ANFIS model. The results show that the significant improvements are achievable using the proposed model in comparison with the results obtained by conventional ANFIS.
Design of interpretable fuzzy systems
Cpałka, Krzysztof
2017-01-01
This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.
Directory of Open Access Journals (Sweden)
Laxmi A. Bewoor
2017-10-01
Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.
Torshizi, Abolfazl Doostparast; Zarandi, Mohammad Hossein Fazel; Torshizi, Ghazaleh Doostparast; Eghbali, Kamyar
2014-01-01
This paper deals with application of fuzzy intelligent systems in diagnosing severity level and recommending appropriate therapies for patients having Benign Prostatic Hyperplasia. Such an intelligent system can have remarkable impacts on correct diagnosis of the disease and reducing risk of mortality. This system captures various factors from the patients using two modules. The first module determines severity level of the Benign Prostatic Hyperplasia and the second module, which is a decision making unit, obtains output of the first module accompanied by some external knowledge and makes an appropriate treatment decision based on its ontology model and a fuzzy type-1 system. In order to validate efficiency and accuracy of the developed system, a case study is conducted by 44 participants. Then the results are compared with the recommendations of a panel of experts on the experimental data. Then precision and accuracy of the results were investigated based on a statistical analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Mengjun Ming
2017-05-01
Full Text Available Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes is maximized. To effectively solve this multi-objective problem (MOP, the multi-objective evolutionary algorithm based on decomposition (MOEA/D using localized penalty-based boundary intersection (LPBI method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified.
International Nuclear Information System (INIS)
Peng, Fei; Zhao, Yuanzhe; Li, Xiaopeng; Liu, Zhixiang; Chen, Weirong; Liu, Yang; Zhou, Donghua
2017-01-01
Highlights: •A power system model for the PEMFC based commercial hybrid tramway was established. •An energy management strategy based on master FuHSM and slave DPPC was proposed. •The optimal OER operation of PEMFC subsystem was achieved. •The real-time EMS based HCM optimization was achieved. •The influence on system fuel economy and PEMFC performance degradation was verified. -- Abstract: A hybrid power system configuration based on proton exchange membrane fuel cell (PEMFC), lion-lithium battery (LIB) and supercapacitor (SC) was designed without grid connection for the hybrid tramway. To adapt to the rapid load power change and achieve higher fuel efficiency and optimal oxygen excess ratio (OER) operation of the PEMFC power subsystem, a master-slave energy management strategy based on fuzzy logic hysteresis state machine (FuHSM) and differential power processing compensation (DPPC) was proposed for the hybrid tramway, effectively taking into consideration of the dynamic response and optimum OER tracing of the integrated PEMFC subsystem. The master FuHSM controller was utilized to grantee the optimal power coordination of the multiple power sources and the slave DPPC controller was responsible for further compensating the load power demand to enhance the dynamic performance and bus voltage stability. Furthermore, the equivalent H 2 consumption minimization optimization considering characteristics of the proposed energy management strategy was realized by means of EIA-PSO algorithm to further improve the fuel economy of the overall hybrid power system. The results demonstrate that the proposed energy management strategy can guarantee the stability of the hybrid power system throughout the driving cycle. In addition, more efficient power coordination dynamics among the PEMFC, LIB and SC subsystems could be achieved without additional performance degradation of the integrated PEMFC subsystem, and the results of the comparisons with other control strategies
Energy Technology Data Exchange (ETDEWEB)
Caneppele, Fernando de Lima [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Gabriel Filho, Luis Roberto de Almeida [Universidade Estadual Paulista (UNESP), Tupa, SP (Brazil). Campus Experimental
2010-07-01
The work developed a methodology fuzzy and simulated its use in control of a hybrid system of electric power generation, using solar-photovoltaic and wind energy. Using this control system, we get the point of maximum energy generation and transfer all the energy generated from alternative sources, solar-photovoltaic and wind energy to charge and / or batteries. The model uses three input variables, which are: wind (wind speed), sun (solar radiation) and batteries (charge the battery bank). With these variables, the fuzzy system will play, according to the rules to be described, what is the source of power supply system, which will have priority and how the batteries are loaded. For the simulations regarding the use of fuzzy theory to control, we used the scientific computing environment MATLAB. In this environment have been analyzed and simulated all mathematical modeling, rules and other variables described in the fuzzy system. This model can be applied to implement a control system of hybrid power generation, providing the best use of renewable energy, solar and wind, so that we can extract the maximum possible energy of these alternative sources without compromising the environment. (author)
Energy Technology Data Exchange (ETDEWEB)
Alexandrino, Joao; Baird, Stuart J.E.; Lawson, Lucinda; Macey, J. Robert; Moritz, Craig; Wake, David B.
2005-04-22
The analysis of interactions between lineages at varying levels of genetic divergence can provide insights into the process of speciation through the accumulation of incompatible mutations. Ring species, and especially the Ensatina eschscholtzii system exemplify this approach. The plethodontid salamanders Ensatina eschscholtzii xanthoptica and Ensatina eschscholtzii platensis hybridize in the Central Sierran foothills of California. We compared the genetic structure across two transects (southern and northern Calaveras Co.), one of which was re-sampled over 20 years, and examined diagnostic molecular markers (eight allozyme loci and mitochondrial DNA) and a diagnostic quantitative trait (color pattern). Key results across all studies were: (i) cline centers for all markers were coincident and the zones were narrow, with width estimates of 730m to 2000m; (ii) cline centers at the northern Calaveras transect were coincident between 1981 and 2001, demonstrating repeatability over 5 generations; (iii) there are very few if any putative F1's, but a relatively high number of backcrossed individuals (57-86 percent) in the central portion of transects; (iv) we found substantial linkage disequilibrium in all three studies and strong heterozygote deficit both in northern Calaveras, in 2001, and southern Calaveras. Both linkage disequilibrium and heterozygote deficit show maximum values near the center of the zones (R and Fis, approx. equal to 0.5). Using estimates of cline width and dispersal, we infer strong selection against hybrids (s* approx. equal to 46-75 percent). This is sufficient to promote accumulation of differences at loci that are neutral or under divergent selection, but would still allow for introgression of adaptive alleles. The evidence for strong, but incomplete isolation across this centrally located contact is consistent with theory suggesting a gradual increase in postzygotic incompatibility between allopatric populations subject to divergent
Smets, P
1995-01-01
We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.
Rahonis, George
The theory of fuzzy recognizable languages over bounded distributive lattices is presented as a paradigm of recognizable formal power series. Due to the idempotency properties of bounded distributive lattices, the equality of fuzzy recognizable languages is decidable, the determinization of multi-valued automata is effective, and a pumping lemma exists. Fuzzy recognizable languages over finite and infinite words are expressively equivalent to sentences of the multi-valued monadic second-order logic. Fuzzy recognizability over bounded ℓ-monoids and residuated lattices is briefly reported. The chapter concludes with two applications of fuzzy recognizable languages to real world problems in medicine.
Gomaa Haroun, A H; Li, Yin-Ya
2017-11-01
In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by
Directory of Open Access Journals (Sweden)
Mohammed Elsayed Lotfy
2018-03-01
Full Text Available Wind is a clean, abundant, and inexhaustible source of energy. However, wind power is not constant, as windmill output is proportional to the cube of wind speed. As a result, the generated power of wind turbine generators (WTGs fluctuates significantly. Power fluctuation leads to frequency deviation and voltage flicker inside the system. This paper presents a new methodology for controlling system frequency and power. Two decentralized fuzzy logic-based control schemes with a high-penetration non-storage wind–diesel system are studied. First, one is implemented in the governor of conventional generators to damp frequency oscillation, while the other is applied to control the pitch angle system of wind turbines to smooth wind output power fluctuations and enhance the power system performance. A genetic algorithm (GA is employed to tune and optimize the membership function parameters of the fuzzy logic controllers to obtain optimal performance. The effectiveness of the suggested controllers is validated by time domain simulation for the standard IEEE nine-bus three-generator test system, including three wind farms. The robustness of the power system is checked under normal and faulty operating conditions.
Ellipsoidal fuzzy learning for smart car platoons
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Directory of Open Access Journals (Sweden)
Mohammad Hemati
2011-07-01
Full Text Available An increase competition on today's economy has created motivation for many organizations to look for different alternatives on better serving the customers. There are always some budget limitations on any customer relationship method, which leads us to prioritize different alternatives. In this paper, we present an empirical method based on an integrated Kano and fuzzy analytical hierarchy procedure to rank suitable alternatives. The proposed model of this paper uses a questionnaire survey to gather customer's opinions and implements the method for a real-world case study of transportation planning. The questionnaire includes 37 questions distributed among 976 passengers for two trips in Iran. The results indicate that driver's physical and mental health, buss equipments with GPS functionality and familiarity of drivers with road and road's conditions play important role on choosing a transportation company.
International Nuclear Information System (INIS)
Khayat, O.; Ghergherehchi, M.; Afarideh, H.; Durrani, S.A.; Pouyan, Ali A.; Kim, Y.S.
2013-01-01
A computer program named ATMS written in MATLAB and running with a friendly interface has been developed for recognition and parametric measurements of etched tracks in images captured from the surface of Solid State Nuclear Track Detectors. The program, using image analysis tools, counts the number of etched tracks and depending on the current working mode classifies them according to their radii (small object removal) or their axis (non-perpendicular or non-circular etched tracks), their mean intensity value and their orientation through the minor and major axes. Images of the detectors' surfaces are input to the code, which generates text and figure files as output, including the number of counted etched tracks with the associated track parameters, histograms and a figure showing edge and center of detected etched tracks. ATMS code is running hierarchically as calibration, testing and measurement modes to demonstrate the reliability, repeatability and adaptability. Fuzzy Hough Transform is used for the estimation of the number of etched tracks and their parameters, providing results even in cases that overlapping and orientation occur. ATMS code is finally converted to a standalone file which makes it able to run out of MATLAB environment. - Highlights: ► Presenting a novel code named ATMS for nuclear track measurements. ► Execution in three modes for generality, adaptability and reliability. ► Using Fuzzy Hough Transform for overlapping detection and orientation recognition. ► Using DFT as a filter for noise removal process in track images. ► Processing the noisy track images and demonstration of the presented code
Recent Advances on Hybrid Intelligent Systems
Melin, Patricia; Kacprzyk, Janusz
2013-01-01
This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...
Relational Demonic Fuzzy Refinement
Directory of Open Access Journals (Sweden)
Fairouz Tchier
2014-01-01
Full Text Available We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join (⊔fuz, fuzzy demonic meet (⊓fuz, and fuzzy demonic composition (□fuz. Our definitions and properties are illustrated by some examples using mathematica software (fuzzy logic.
Airline Passenger Profiling Based on Fuzzy Deep Machine Learning.
Zheng, Yu-Jun; Sheng, Wei-Guo; Sun, Xing-Ming; Chen, Sheng-Yong
2017-12-01
Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.
Integrating Fuzzy AHP and Fuzzy ARAS for evaluating financial performance
Directory of Open Access Journals (Sweden)
Abdolhamid Safaei Ghadikolaei
2014-09-01
Full Text Available Multi Criteria Decision Making (MCDM is an advanced field of Operation Research; recently MCDM methods are efficient and common tools for performance evaluation in many areas such as finance and economy. The aim of this study is to show one of applications of mathematics in real word. This study with considering value based measures and accounting based measures simultaneously, provided a hybrid approach of MCDM methods in fuzzy environment for financial performance evaluation of automotive and parts manufacturing industry of Tehran stock exchange (TSE.for this purpose Fuzzy analytic hierarchy process (FAHP is applied to determine the relative important of each criterion, then The companies are ranked according their financial performance by using fuzzy additive ratio assessment (Fuzzy ARAS method. The finding of this study showed effective of this approach in evaluating financial performance.
Directory of Open Access Journals (Sweden)
Abdul Hameed Q. A. Al-Tai
2011-01-01
Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.
Juels, Ari
The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.
Directory of Open Access Journals (Sweden)
Dieu Tien Bui
2015-04-01
Full Text Available The main objective of this study is to investigate potential application of an integrated evidential belief function (EBF-based fuzzy logic model for spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam. First, a landslide inventory map was constructed from various sources. Then the landslide inventory map was randomly partitioned as a ratio of 70/30 for training and validation of the models, respectively. Second, six landslide conditioning factors (slope angle, slope aspect, lithology, distance to faults, soil type, land use were prepared and fuzzy membership values for these factors classes were estimated using the EBF. Subsequently, fuzzy operators were used to generate landslide susceptibility maps. Finally, the susceptibility maps were validated and compared using the validation dataset. The results show that the lowest prediction capability is the fuzzy SUM (76.6%. The prediction capability is almost the same for the fuzzy PRODUCT and fuzzy GAMMA models (79.6%. Compared to the frequency-ratio based fuzzy logic models, the EBF-based fuzzy logic models showed better result in both the success rate and prediction rate. The results from this study may be useful for local planner in areas prone to landslides. The modelling approach can be applied for other areas.
Peris, David; Lopes, Christian A.; Arias, Armando; Barrio, Eladio
2012-01-01
In recent years, interspecific hybridization and introgression are increasingly recognized as significant events in the evolution of Saccharomyces yeasts. These mechanisms have probably been involved in the origin of novel yeast genotypes and phenotypes, which in due course were to colonize and predominate in the new fermentative environments created by human manipulation. The particular conditions in which hybrids arose are still unknown, as well as the number of possible hybridization events that generated the whole set of natural hybrids described in the literature during recent years. In this study, we could infer at least six different hybridization events that originated a set of 26 S. cerevisiae x S. kudriavzevii hybrids isolated from both fermentative and non-fermentative environments. Different wine S. cerevisiae strains and European S. kudriavzevii strains were probably involved in the hybridization events according to gene sequence information, as well as from previous data on their genome composition and ploidy. Finally, we postulate that these hybrids may have originated after the introduction of vine growing and winemaking practices by the Romans to the present Northern vine-growing limits and spread during the expansion of improved viticulture and enology practices that occurred during the Late Middle Ages. PMID:23049811
Directory of Open Access Journals (Sweden)
David Peris
Full Text Available In recent years, interspecific hybridization and introgression are increasingly recognized as significant events in the evolution of Saccharomyces yeasts. These mechanisms have probably been involved in the origin of novel yeast genotypes and phenotypes, which in due course were to colonize and predominate in the new fermentative environments created by human manipulation. The particular conditions in which hybrids arose are still unknown, as well as the number of possible hybridization events that generated the whole set of natural hybrids described in the literature during recent years. In this study, we could infer at least six different hybridization events that originated a set of 26 S. cerevisiae x S. kudriavzevii hybrids isolated from both fermentative and non-fermentative environments. Different wine S. cerevisiae strains and European S. kudriavzevii strains were probably involved in the hybridization events according to gene sequence information, as well as from previous data on their genome composition and ploidy. Finally, we postulate that these hybrids may have originated after the introduction of vine growing and winemaking practices by the Romans to the present Northern vine-growing limits and spread during the expansion of improved viticulture and enology practices that occurred during the Late Middle Ages.
International Nuclear Information System (INIS)
Nojavan, Sayyad; Majidi, Majid; Najafi-Ghalelou, Afshin; Ghahramani, Mehrdad; Zare, Kazem
2017-01-01
Highlights: • Cost-emission performance of PV/battery/fuel cell hybrid energy system is studied. • Multi-objective optimization model for cost-emission performance is proposed. • ε-constraint method is proposed to produce Pareto solutions of multi-objective model. • Fuzzy satisfying approach selected the best optimal solution from Pareto solutions. • Demand response program is proposed to reduce both cost and emission. - Abstract: Optimal operation of hybrid energy systems is a big challenge in power systems. Nowadays, in addition to the optimum performance of energy systems, their pollution issue has been a hot topic between researchers. In this paper, a multi-objective model is proposed for economic and environmental operation of a battery/fuel cell/photovoltaic (PV) hybrid energy system in the presence of demand response program (DRP). In the proposed paper, the first objective function is minimization of total cost of hybrid energy system. The second objective function is minimization of total CO_2 emission which is in conflict with the first objective function. So, a multi-objective optimization model is presented to model the hybrid system’s optimal and environmental performance problem with considering DRP. The proposed multi-objective model is solved by ε-constraint method and then fuzzy satisfying technique is employed to select the best possible solution. Also, positive effects of DRP on the economic and environmental performance of hybrid system are analyzed. A mixed-integer linear program is used to simulate the proposed model and the obtained results are compared with weighted sum approach to show the effectiveness of proposed method.
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
DEFF Research Database (Denmark)
Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas
2012-01-01
as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method
Directory of Open Access Journals (Sweden)
Rasim M. Alguliyev
2015-01-01
Full Text Available Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method.
DEFF Research Database (Denmark)
Salonitis, Konstantinos; Chantzis, Dimitrios; Kappatos, Vasileios
2017-01-01
approaches or with the use of topology optimization methodologies. An optimization approach utilizing multipurpose optimization algorithms has not been proposed yet. This paper presents a novel user-friendly method for the design optimization of lattice components towards weight minimization, which combines...... finite element analysis and evolutionary computation. The proposed method utilizes the cell homogenization technique in order to reduce the computational cost of the finite element analysis and a genetic algorithm in order to search for the most lightweight lattice configuration. A bracket consisting...
DEFF Research Database (Denmark)
Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan
2000-01-01
A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...
Directory of Open Access Journals (Sweden)
T. Pathinathan
2015-01-01
Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.
5th International Conference on Fuzzy and Neuro Computing
Panigrahi, Bijaya; Das, Swagatam; Suganthan, Ponnuthurai
2015-01-01
This proceedings bring together contributions from researchers from academia and industry to report the latest cutting edge research made in the areas of Fuzzy Computing, Neuro Computing and hybrid Neuro-Fuzzy Computing in the paradigm of Soft Computing. The FANCCO 2015 conference explored new application areas, design novel hybrid algorithms for solving different real world application problems. After a rigorous review of the 68 submissions from all over the world, the referees panel selected 27 papers to be presented at the Conference. The accepted papers have a good, balanced mix of theory and applications. The techniques ranged from fuzzy neural networks, decision trees, spiking neural networks, self organizing feature map, support vector regression, adaptive neuro fuzzy inference system, extreme learning machine, fuzzy multi criteria decision making, machine learning, web usage mining, Takagi-Sugeno Inference system, extended Kalman filter, Goedel type logic, fuzzy formal concept analysis, biclustering e...
DEFF Research Database (Denmark)
Christensen, Line Hjorth
"Fuzzy stuff". Exploring the displacement of the design sketch. What kind of knowledge can historical sketches reveal when they have outplayed their primary instrumental function in the design process and are moved into a museum collection? What are the rational benefits of ‘archival displacement...
Rebernig, Carolin A.; Weiss-Schneeweiss, Hanna; Blöch, Cordula; Turner, Barbara; Stuessy, Tod F.; Obermayer, Renate; Villaseñor, Jose L.; Schneeweiss, Gerald M.
2014-01-01
Premise of the study Polyploidy plays an important role in race differentiation and eventually speciation. Underlying mechanisms include chromosomal and genomic changes facilitating reproductive isolation and/or stabilization of hybrids. A prerequisite for studying these processes is a sound knowledge on the origin of polyploids. A well-suited group for studying polyploid evolution consists of the three species of Melampodium ser. Leucantha (Asteraceae): M. argophyllum, M. cinereum, and M. leucanthum. Methods The origin of polyploids was inferred using network and tree-based phylogenetic analyses of several plastid and nuclear DNA sequences and of fingerprint data (AFLP). Genome evolution was assessed via genome size measurements, karyotype analysis, and in situ hybridization of ribosomal DNA. Key results Tetraploid cytotypes of the phylogenetically distinct M. cinereum and M. leucanthum had, compared to the diploid cytotypes, doubled genome sizes and no evidence of gross chromosomal rearrangements. Hexaploid M. argophyllum constituted a separate lineage with limited intermixing with the other species, except in analyses from nuclear ITS. Its genome size was lower than expected if M. cinereum and/or M. leucanthum were involved in its origin, and no chromosomal rearrangements were evident. Conclusions Polyploids in M. cinereum and M. leucanthum are of recent autopolyploid origin in line with the lack of significant genomic changes. Hexaploid M. argophyllum also appears to be of autopolyploid origin against the previous hypothesis of an allopolyploid origin involving the other two species, but some gene flow with the other species in early phases of differentiation cannot be excluded. PMID:22645096
Relational Demonic Fuzzy Refinement
Tchier, Fairouz
2014-01-01
We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join $({\\bigsqcup }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , fuzzy demonic meet $({\\sqcap }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , and fuzzy demonic composition $({\\square }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ . Our definitions and properties are illustrated by some examples using ma...
Integrating Fuzzy AHP and Fuzzy ARAS for evaluating financial performance
Abdolhamid Safaei Ghadikolaei; Saber Khalili Esbouei
2014-01-01
Multi Criteria Decision Making (MCDM) is an advanced field of Operation Research; recently MCDM methods are efficient and common tools for performance evaluation in many areas such as finance and economy. The aim of this study is to show one of applications of mathematics in real word. This study with considering value based measures and accounting based measures simultaneously, provided a hybrid approach of MCDM methods in fuzzy environment for financial performance evaluation of automotive ...
Classification of EEG Signals by Radial Neuro-Fuzzy Systems
Czech Academy of Sciences Publication Activity Database
Coufal, David
2006-01-01
Roč. 5, č. 2 (2006), s. 415-423 ISSN 1109-2777 R&D Projects: GA MŠk ME 701 Institutional research plan: CEZ:AV0Z10300504 Keywords : neuro-fuzzy systems * radial fuzzy systems * data mining * hybrid systems Subject RIV: BA - General Mathematics
Kim, Chan Moon; Parnichkun, Manukid
2017-11-01
Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.
International Nuclear Information System (INIS)
Lahanas, M; Baltas, D; Zamboglou, N
2003-01-01
Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives
Directory of Open Access Journals (Sweden)
Panagiotis Petratos
2003-02-01
Full Text Available Heterogeneous research environments, interests and locations do not necessarily coincide, thus hitherto the primary method of communication amongst researchers has been email. In this article a novel unified polythematic, real-time, synergistic, data telecommunication system is proposed with peer-reviewed, bidirectional fuzzy feedback for research scientists, to facilitate scientific information exchange via the extensible markup language (XML on multiple scientific topics, e.g. in mathematics, physics, biology and chemistry.
Directory of Open Access Journals (Sweden)
Huiru Zhao
2016-04-01
Full Text Available Optimal siting of electric vehicle charging stations (EVCSs is crucial to the sustainable development of electric vehicle systems. Considering the defects of previous heuristic optimization models in tackling subjective factors, this paper employs a multi-criteria decision-making (MCDM framework to address the issue of EVCS siting. The initial criteria for optimal EVCS siting are selected from extended sustainability theory, and the vital sub-criteria are further determined by using a fuzzy Delphi method (FDM, which consists of four pillars: economy, society, environment and technology perspectives. To tolerate vagueness and ambiguity of subjective factors and human judgment, a fuzzy Grey relation analysis (GRA-VIKOR method is employed to determine the optimal EVCS site, which also improves the conventional aggregating function of fuzzy Vlsekriterijumska Optimizacijia I Kompromisno Resenje (VIKOR. Moreover, to integrate the subjective opinions as well as objective information, experts’ ratings and Shannon entropy method are employed to determine combination weights. Then, the applicability of proposed framework is demonstrated by an empirical study of five EVCS site alternatives in Tianjin. The results show that A3 is selected as the optimal site for EVCS, and sub-criteria affiliated with environment obtain much more attentions than that of other sub-criteria. Moreover, sensitivity analysis indicates the selection results remains stable no matter how sub-criteria weights are changed, which verifies the robustness and effectiveness of proposed model and evaluation results. This study provides a comprehensive and effective method for optimal siting of EVCS and also innovates the weights determination and distance calculation for conventional fuzzy VIKOR.
Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique
2018-02-01
The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1
Chen, Guanrong
2005-01-01
Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on th
Directory of Open Access Journals (Sweden)
Somaye Yeylaghi
2017-06-01
Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.
Intuitionistic supra fuzzy topological spaces
International Nuclear Information System (INIS)
Abbas, S.E.
2004-01-01
In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space
Xu, Zeshui
2014-01-01
This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
Hybrid intelligent engineering systems
Jain, L C; Adelaide, Australia University of
1997-01-01
This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.
Real coded genetic algorithm for fuzzy time series prediction
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Why fuzzy controllers should be fuzzy
International Nuclear Information System (INIS)
Nowe, A.
1996-01-01
Fuzzy controllers are usually looked at as crisp valued mappings especially when artificial intelligence learning techniques are used to build up the controller. By doing so the semantics of a fuzzy conclusion being a fuzzy restriction on the viable control actions is non-existing. In this paper the authors criticise from an approximation point of view using a fuzzy controller to express a crisp mapping does not seem the right way to go. Secondly it is illustrated that interesting information is contained in a fuzzy conclusion when indeed this conclusion is considered as a fuzzy restriction. This information turns out to be very valuable when viability problems are concerned, i.e. problems where the objective is to keep a system within predefined boundaries
Fuzzy Neuroidal Nets and Recurrent Fuzzy Computations
Czech Academy of Sciences Publication Activity Database
Wiedermann, Jiří
2001-01-01
Roč. 11, č. 6 (2001), s. 675-686 ISSN 1210-0552. [SOFSEM 2001 Workshop on Soft Computing. Piešťany, 29.11.2001-30.11.2001] R&D Projects: GA ČR GA201/00/1489; GA AV ČR KSK1019101 Institutional research plan: AV0Z1030915 Keywords : fuzzy computing * fuzzy neural nets * fuzzy Turing machines * non-uniform computational complexity Subject RIV: BA - General Mathematics
Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion
Directory of Open Access Journals (Sweden)
Didier Kumwimba Seya
2015-11-01
Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.
Evolutionary constrained optimization
Deb, Kalyanmoy
2015-01-01
This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
Czech Academy of Sciences Publication Activity Database
Mesiar, Radko
2005-01-01
Roč. 28, č. 156 (2005), s. 365-370 ISSN 0165-0114 R&D Projects: GA ČR(CZ) GA402/04/1026 Institutional research plan: CEZ:AV0Z10750506 Keywords : fuzzy measures * fuzzy integral * regular fuzzy integral Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2005
Fuzzy Graph Language Recognizability
Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros
2012-01-01
Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.
Intuitionistic Fuzzy Subbialgebras and Duality
Directory of Open Access Journals (Sweden)
Wenjuan Chen
2014-01-01
Full Text Available We investigate connections between bialgebras and Atanassov’s intuitionistic fuzzy sets. Firstly we define an intuitionistic fuzzy subbialgebra of a bialgebra with an intuitionistic fuzzy subalgebra structure and also with an intuitionistic fuzzy subcoalgebra structure. Secondly we investigate the related properties of intuitionistic fuzzy subbialgebras. Finally we prove that the dual of an intuitionistic fuzzy strong subbialgebra is an intuitionistic fuzzy strong subbialgebra.
Chevalier, Robert L
2017-05-01
Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Probabilistic fuzzy systems as additive fuzzy systems
Almeida, R.J.; Verbeek, N.; Kaymak, U.; Costa Sousa, da J.M.; Laurent, A.; Strauss, O.; Bouchon-Meunier, B.; Yager, R.
2014-01-01
Probabilistic fuzzy systems combine a linguistic description of the system behaviour with statistical properties of data. It was originally derived based on Zadeh’s concept of probability of a fuzzy event. Two possible and equivalent additive reasoning schemes were proposed, that lead to the
Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients
Directory of Open Access Journals (Sweden)
Xue-Gang Zhou
2014-01-01
Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.
Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space
Directory of Open Access Journals (Sweden)
Apu Kumar Saha
2015-06-01
Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.
Rustamov, Samir; Mustafayev, Elshan; Clements, Mark A.
2018-04-01
The context analysis of customer requests in a natural language call routing problem is investigated in the paper. One of the most significant problems in natural language call routing is a comprehension of client request. With the aim of finding a solution to this issue, the Hybrid HMM and ANFIS models become a subject to an examination. Combining different types of models (ANFIS and HMM) can prevent misunderstanding by the system for identification of user intention in dialogue system. Based on these models, the hybrid system may be employed in various language and call routing domains due to nonusage of lexical or syntactic analysis in classification process.
Directory of Open Access Journals (Sweden)
Rustamov Samir
2018-04-01
Full Text Available The context analysis of customer requests in a natural language call routing problem is investigated in the paper. One of the most significant problems in natural language call routing is a comprehension of client request. With the aim of finding a solution to this issue, the Hybrid HMM and ANFIS models become a subject to an examination. Combining different types of models (ANFIS and HMM can prevent misunderstanding by the system for identification of user intention in dialogue system. Based on these models, the hybrid system may be employed in various language and call routing domains due to nonusage of lexical or syntactic analysis in classification process.
Recurrent fuzzy ranking methods
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
B Gibilisco, Michael; E Albert, Karen; N Mordeson, John; J Wierman, Mark; D Clark, Terry
2014-01-01
This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem; the Gibbard-Satterthwaite theorem; and the median voter theorem. After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a so...
On fuzzy control of water desalination plants
Energy Technology Data Exchange (ETDEWEB)
Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)
1995-12-31
In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)
On fuzzy control of water desalination plants
Energy Technology Data Exchange (ETDEWEB)
Titli, A [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F [Institute of Technology, Norway (Norway)
1996-12-31
In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
Directory of Open Access Journals (Sweden)
Xiaoyan Liu
2014-01-01
Full Text Available Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov’s soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
On some nonclassical algebraic properties of interval-valued fuzzy soft sets.
Liu, Xiaoyan; Feng, Feng; Zhang, Hui
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964
Directory of Open Access Journals (Sweden)
Robert L. Chevalier
2017-05-01
Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Solving fully fuzzy transportation problem using pentagonal fuzzy numbers
Maheswari, P. Uma; Ganesan, K.
2018-04-01
In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.
Directory of Open Access Journals (Sweden)
Chia–Nan Wang
2018-06-01
Full Text Available In the market economy, competition is typically due to the difficulty in selecting the most suitable supplier, one that is capable to help a business to develop a profit to the highest value threshold and capable to meet sustainable development features. In addition, this research discusses a wide range of consequences from choosing an effective supplier, including reducing production cost, improving product quality, delivering the product on time, and responding flexibly to customer requirements. Therefore, the activities noted above are able to increase an enterprise’s competitiveness. It can be seen that selecting a supplier is complex in that decision-makers must have an understanding of the qualitative and quantitative features for assessing the symmetrical impact of the criteria to reach the most accurate result. In this research, the multi-criteria group decision-making (MCGDM approach was proposed to solve supplier selection problems. The authors collected data from 25 potential suppliers, and the four main criteria within contain 15 sub-criteria to define the most effective supplier, which has viewed factors, including financial efficiency guarantee, quality of materials, ability to deliver on time, and the conditioned response to the environment to improve the efficiency of the industry supply chain. Initially, fuzzy analytic network process (ANP is used to evaluate and rank these criteria, which are able to be utilized to clarify important criteria that directly affect the profitability of the business. Subsequently, data envelopment analysis (DEA models, including the Charnes Cooper Rhodes model (CCR model, Banker Charnes Cooper model (BCC model, and slacks-based measure model (SBM model, were proposed to rank suppliers. The result of the model has proposed 7/25 suppliers, which have a condition response to the enterprises’ supply requirements.
Xu, Yunzhen; Du, Pei; Wang, Jianzhou
2017-04-01
As the atmospheric environment pollution has been becoming more and more serious in China, it is highly desirable to develop a scientific and effective early warning system that plays a great significant role in analyzing and monitoring air quality. However, establishing a robust early warning system for warning the public in advance and ameliorating air quality is not only an extremely challenging task but also a public concerned problem for human health. Most previous studies are focused on improving the prediction accuracy, which usually ignore the significance of uncertainty information and comprehensive evaluation concerning air pollutants. Therefore, in this paper a novel robust early warning system was successfully developed, which consists of three modules: evaluation module, forecasting module and characteristics estimating module. In this system, a new dynamic fuzzy synthetic evaluation is proposed and applied to determine air quality levels and primary pollutants, which can be regarded as the research objectives; Moreover, to further mine and analyze the characteristics of air pollutants, four different distribution functions and interval forecasting method are also employed that can not only provide predictive range, confidence level and the other uncertain information of the pollutants future values, but also assist decision-makers in reducing and controlling the emissions of atmospheric pollutants. Case studies utilizing hourly PM 2.5 , PM 10 and SO 2 data collected from Tianjin and Shanghai in China are applied as illustrative examples to estimate the effectiveness and efficiency of the proposed system. Experimental results obviously indicated that the developed novel early warning system is much suitable for analyzing and monitoring air pollution, which can also add a novel viable option for decision-makers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Introduction to Fuzzy Set Theory
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Hunt, Tam
2014-01-01
Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766
DEFF Research Database (Denmark)
Levitis, Daniel
2015-01-01
of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness......Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...
DEFF Research Database (Denmark)
Camci, Efe; Kripalan, Devesh Raju; Ma, Linlu
2017-01-01
, an autonomous quality inspection over rice farms is proposed by employing quadcopters. Real-time control of these vehicles, however, is still challenging as they exhibit highly nonlinear behavior especially for agile maneuvers. What is more, these vehicles have to operate under uncertain working conditions...... particle swarm optimization-sliding mode control (PSO-SMC) theory-based hybrid algorithm is proposed for the training of T2-FNNs. In particular, continuous version of PSO is adopted for the identification of the antecedent part of T2-FNNs while SMCbased update rules are utilized for online learning...
Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization
International Nuclear Information System (INIS)
Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.
2009-01-01
Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.
International Nuclear Information System (INIS)
Markowski, Adam S.; Mannan, M. Sam
2008-01-01
A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated
DEFF Research Database (Denmark)
Jantzen, Jan
The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...
Lei, Qian
2017-01-01
This book offers a comprehensive and systematic review of the latest research findings in the area of intuitionistic fuzzy calculus. After introducing the intuitionistic fuzzy numbers’ operational laws and their geometrical and algebraic properties, the book defines the concept of intuitionistic fuzzy functions and presents the research on the derivative, differential, indefinite integral and definite integral of intuitionistic fuzzy functions. It also discusses some of the methods that have been successfully used to deal with continuous intuitionistic fuzzy information or data, which are different from the previous aggregation operators focusing on discrete information or data. Mainly intended for engineers and researchers in the fields of fuzzy mathematics, operations research, information science and management science, this book is also a valuable textbook for postgraduate and advanced undergraduate students alike.
FUZZY RINGS AND ITS PROPERTIES
Directory of Open Access Journals (Sweden)
Karyati Karyati
2017-01-01
One of algebraic structure that involves a binary operation is a group that is defined an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level and strong level as well as image and pre-image homomorphism fuzzy ring. Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring
Metamathematics of fuzzy logic
Hájek, Petr
1998-01-01
This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.
DEFF Research Database (Denmark)
Dotoli, M.; Jantzen, Jan
1999-01-01
The tutorial concerns automatic control of an inverted pendulum, especially rule based control by means of fuzzy logic. A ball balancer, implemented in a software simulator in Matlab, is used as a practical case study. The objectives of the tutorial are to teach the basics of fuzzy control......, and to show how to apply fuzzy logic in automatic control. The tutorial is distance learning, where students interact one-to-one with the teacher using e-mail....
T Atanassov, Krassimir
2017-01-01
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
Fuzzy control and identification
Lilly, John H
2010-01-01
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.
Energy Technology Data Exchange (ETDEWEB)
Lagunas M, Javier; Ortega S, Cesar [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Caratozzolo M, Patricia [Instituto Tecnologico de Estudios Superiores de Monterrey, campus Cd. de Mexico (Mexico)
2005-07-01
The development and integration of hybrid systems of electrical generation (SHGE) of small capacity: The intention of these developments is its implementation in isolated or far away communities from conventional electric networks, that contribute in the own productive processes of these towns. As part of these work a system of control for their hybrid system wind-photovoltaic- internal combustion machine was developed that operates nowadays in a system installed in Pachuca, Hidalgo, Mexico. However, in the two past years, the GENC has worked, altogether with the Management of Control and Instrumentation of the Instituto de Investigaciones Electricas (IIE) and the Centro Nacional de Investigacion y Desarrollo Tecnologico (CENIDET) (National Center of Research and Technological Development), to incorporate an intelligent control technique in the regulation of the hybrid systems of wind-photovoltaic-machine of internal combustion type. Lemos de Pereira rises that the main problems of the present technology of the SHGE are related to the control and supervision of the power systems. The system that is in charge of the actions of load control and dispatch is denominated supervisory control. This controller supervises the operation of all the components, regulates the entry or exiting of operation of the generation systems, as well as the loads. [Spanish] El desarrollo e integracion de sistemas hibridos de generacion electrica (SHGE) de pequena capacidad. El proposito de estos desarrollos es su implementacion en comunidades aisladas o alejadas de la red electrica convencional, las cuales contribuyan en los procesos productivos propios de estos poblados. Como parte de dichos trabajos se desarrollo un sistema de control para su sistema hibrido eolico-fotovoltaico-maquina de combustion interna que opera actualmente en un sistema instalado en Pachuca, Hidalgo, Mexico. Ahora bien, en los dos ultimos anos, la GENC ha trabajado, en conjunto con la Gerencia de Control e
Directory of Open Access Journals (Sweden)
Mohammadreza Azimi
2015-03-01
Full Text Available In the current research, the unsteady two dimensional Graphene Oxide water based nanofluid heat transfer between two moving parallel plates is analyzed using an intelligent black-box identifier. The developed intelligent tool is known as evolvable evolutionary fuzzy inference system (EE-FIS which is based on the integration of low-level fuzzy programming and hyper-level evolutionary computing concepts. Here, the authors propose the use of a modified evolutionary algorithm (EA which is called hybrid genetic mutable smart bee algorithm (HGMSBA. The proposed HGMSBA is used to evolve both antecedent and consequent parts of fuzzy rule base. Besides, it tries to prune the rule base of fuzzy inference system (FIS to decrease its computational complexity and increase its interpretability. By considering the prediction error of the fuzzy identifier as the objective function of HGMSBA, an automatic soft interpolation machine is developed which can intuitively increase the robustness and accuracy of the final model. Here, HGMSBA-FIS is used to provide a nonlinear map between inputs, i.e. nanoparticles solid volume fraction (ϕ, Eckert number (Ec and a moving parameter which describes the movements of plates (S, and output, i.e. Nusselt number (Nu. Prior to proceeding with the modeling process, a comprehensive numerical comparative study is performed to investigate the potentials of the proposed model for nonlinear system identification. After demonstrating the efficacy of HGMSBA for training the FIS, the system is applied to the considered problem. Based on the obtained results, it can be inferred that the developed HGMSBA-FIS black-box identifier can be used as a very authentic tool with respect to accuracy and robustness. Besides, as the proposed black-box is not a physics-based identifier, it frees experts from the cumbersome mathematical formulations, and can be used for advanced real-time applications such as model-based control. The simulations
Relations Among Some Fuzzy Entropy Formulae
Institute of Scientific and Technical Information of China (English)
卿铭
2004-01-01
Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.
DEFF Research Database (Denmark)
Nash, Ulrik William
2014-01-01
, they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...
Wjst, M
2013-12-01
Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.
Directory of Open Access Journals (Sweden)
Gregory Gorelik
2014-10-01
Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.
A Method Based on Intuitionistic Fuzzy Dependent Aggregation Operators for Supplier Selection
Directory of Open Access Journals (Sweden)
Fen Wang
2013-01-01
Full Text Available Recently, resolving the decision making problem of evaluation and ranking the potential suppliers have become as a key strategic factor for business firms. In this paper, two new intuitionistic fuzzy aggregation operators are developed: dependent intuitionistic fuzzy ordered weighed averaging (DIFOWA operator and dependent intuitionistic fuzzy hybrid weighed aggregation (DIFHWA operator. Some of their main properties are studied. A method based on the DIFHWA operator for intuitionistic fuzzy multiple attribute decision making is presented. Finally, an illustrative example concerning supplier selection is given.
On Intuitionistic Fuzzy Filters of Intuitionistic Fuzzy Coframes
Directory of Open Access Journals (Sweden)
Rajesh K. Thumbakara
2013-01-01
Full Text Available Frame theory is the study of topology based on its open set lattice, and it was studied extensively by various authors. In this paper, we study quotients of intuitionistic fuzzy filters of an intuitionistic fuzzy coframe. The quotients of intuitionistic fuzzy filters are shown to be filters of the given intuitionistic fuzzy coframe. It is shown that the collection of all intuitionistic fuzzy filters of a coframe and the collection of all intutionistic fuzzy quotient filters of an intuitionistic fuzzy filter are coframes.
Directory of Open Access Journals (Sweden)
Shawkat Alkhazaleh
2011-01-01
Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.
Properties of Bipolar Fuzzy Hypergraphs
Akram, M.; Dudek, W. A.; Sarwar, S.
2013-01-01
In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.
Now comes the time to defuzzify neuro-fuzzy models
International Nuclear Information System (INIS)
Bersini, H.; Bontempi, G.
1996-01-01
Fuzzy models present a singular Janus-faced : on one hand, they are knowledge-based software environments constructed from a collection of linguistic IF-THEN rules, and on the other hand, they realize nonlinear mappings which have interesting mathematical properties like low-order interpolation and universal function approximation. Neuro-fuzzy basically provides fuzzy models with the capacity, based on the available data, to compensate for the missing human knowledge by an automatic self-tuning of the structure and the parameters. A first consequence of this hybridization between the architectural and representational aspect of fuzzy models and the learning mechanisms of neural networks has been to progressively increase and fuzzify the contrast between the two Janus faces: readability or performance
Statistical Methods for Fuzzy Data
Viertl, Reinhard
2011-01-01
Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy m
Indian Academy of Sciences (India)
In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...
Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition
Melin, Patricia
2012-01-01
This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...
Soft sets combined with interval valued intuitionistic fuzzy sets of type-2 and rough sets
Directory of Open Access Journals (Sweden)
Anjan Mukherjee
2015-03-01
Full Text Available Fuzzy set theory, rough set theory and soft set theory are all mathematical tools dealing with uncertainties. The concept of type-2 fuzzy sets was introduced by Zadeh in 1975 which was extended to interval valued intuitionistic fuzzy sets of type-2 by the authors.This paper is devoted to the discussions of the combinations of interval valued intuitionistic sets of type-2, soft sets and rough sets.Three different types of new hybrid models, namely-interval valued intuitionistic fuzzy soft sets of type-2, soft rough interval valued intuitionistic fuzzy sets of type-2 and soft interval valued intuitionistic fuzzy rough sets of type-2 are proposed and their properties are derived.
Guo, Weian; Li, Wuzhao; Zhang, Qun; Wang, Lei; Wu, Qidi; Ren, Hongliang
2014-11-01
In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.
Construction of fuzzy automata by fuzzy experiments
International Nuclear Information System (INIS)
Mironov, A.
1994-01-01
The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven
Construction of fuzzy automata by fuzzy experiments
Energy Technology Data Exchange (ETDEWEB)
Mironov, A [Moscow Univ. (Russian Federation). Dept. of Mathematics and Computer Science
1994-12-31
The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven.
Hybrid soft computing systems for electromyographic signals analysis: a review
2014-01-01
Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979
Hybrid soft computing systems for electromyographic signals analysis: a review.
Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates
2014-02-03
Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.
Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.
de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter
2017-01-01
Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.
Model predictive control using fuzzy decision functions
Kaymak, U.; Costa Sousa, da J.M.
2001-01-01
Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the
Approximations of Fuzzy Systems
Directory of Open Access Journals (Sweden)
Vinai K. Singh
2013-03-01
Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions
International Nuclear Information System (INIS)
Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T
2010-01-01
We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.
Evolutionary institutionalism.
Fürstenberg, Dr Kai
Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.
Active Queue Management in TCP Networks Based on Fuzzy-Pid Controller
Directory of Open Access Journals (Sweden)
Hossein ASHTIANI
2012-01-01
Full Text Available We introduce a novel and robust active queue management (AQM scheme based on a fuzzy controller, called hybrid fuzzy-PID controller. In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In this paper a novel Fuzzy-based proportional-integral derivative (PID controller, which acts as an active queue manager (AQM for Internet routers, is proposed. These controllers are used to reduce packet loss and improve network utilization in TCP/IP networks. A new hybrid controller is proposed and compared with traditional RED based controller. Simulations are carried out to demonstrate the effectiveness of the proposed method and show that, the new hybrid fuzzy PID controller provides better performance than random early detection (RED and PID controllers
Fuzzy Rough Ring and Its Prop erties
Institute of Scientific and Technical Information of China (English)
REN Bi-jun; FU Yan-ling
2013-01-01
This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binary operation of ring was discussed.
Fuzzy logic and information fusion to commemorate the 70th birthday of Professor Gaspar Mayor
Sastre, Joan
2016-01-01
This book offers a timely report on key theories and applications of soft-computing. Written in honour of Professor Gaspar Mayor on his 70th birthday, it primarily focuses on areas related to his research, including fuzzy binary operators, aggregation functions, multi-distances, and fuzzy consensus/decision models. It also discusses a number of interesting applications such as the implementation of fuzzy mathematical morphology based on Mayor-Torrens t-norms. Importantly, the different chapters, authored by leading experts, present novel results and offer new perspectives on different aspects of Mayor’s research. The book also includes an overview of evolutionary fuzzy systems, a topic that is not one of Mayor’s main areas of interest, and a final chapter written by the Spanish pioneer in fuzzy logic, Professor E. Trillas. Computer and decision scientists, knowledge engineers and mathematicians alike will find here an authoritative overview of key soft-computing concepts and techniques.
Bandemer, Hans
1992-01-01
Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.
Fuzzy stochastic multiobjective programming
Sakawa, Masatoshi; Katagiri, Hideki
2011-01-01
With a stress on interactive decision-making, this work breaks new ground by covering both the random nature of events related to environments, and the fuzziness of human judgements. The text runs from mathematical preliminaries to future research directions.
Directory of Open Access Journals (Sweden)
Klaus-Dietrich Kramer
2016-05-01
Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
Shapley's value for fuzzy games
Directory of Open Access Journals (Sweden)
Raúl Alvarado Sibaja
2009-02-01
Full Text Available This is the continuation of a previous article titled "Fuzzy Games", where I defined a new type of games based on the Multilinear extensions f, of characteristic functions and most of standard theorems for cooperative games also hold for this new type of games: The fuzzy games. Now we give some other properties and the extension of the definition of Shapley¨s Value for Fuzzy Games Keywords: game theory, fuzzy sets, multiattribute decisions.
Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian
2007-07-01
Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the
Evolutionary global optimization, manifolds and applications
Aguiar e Oliveira Junior, Hime
2016-01-01
This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory....
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Analysis of selected structures for model-based measuring methods using fuzzy logic
Energy Technology Data Exchange (ETDEWEB)
Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S. [Hochschule fuer Technik, Wirtschaft und Sozialwesen Zittau/Goerlitz (FH), Zittau (DE). Inst. fuer Prozesstechnik, Prozessautomatisierung und Messtechnik e.V. (IPM)
2000-07-01
Monitoring and diagnosis of safety-related technical processes in nuclear enginering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)
Analysis of selected structures for model-based measuring methods using fuzzy logic
International Nuclear Information System (INIS)
Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S.
2000-01-01
Monitoring and diagnosis of safety-related technical processes in nuclear engineering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)
CHARACTERIZATIONS OF FUZZY SOFT PRE SEPARATION AXIOMS
El-Latif, Alaa Mohamed Abd
2015-01-01
− The notions of fuzzy pre open soft sets and fuzzy pre closed soft sets were introducedby Abd El-latif et al. [2]. In this paper, we continue the study on fuzzy soft topological spaces andinvestigate the properties of fuzzy pre open soft sets, fuzzy pre closed soft sets and study variousproperties and notions related to these structures. In particular, we study the relationship betweenfuzzy pre soft interior fuzzy pre soft closure. Moreover, we study the properties of fuzzy soft pre regulars...
TRStalker: an efficient heuristic for finding fuzzy tandem repeats.
Pellegrini, Marco; Renda, M Elena; Vecchio, Alessio
2010-06-15
Genomes in higher eukaryotic organisms contain a substantial amount of repeated sequences. Tandem Repeats (TRs) constitute a large class of repetitive sequences that are originated via phenomena such as replication slippage and are characterized by close spatial contiguity. They play an important role in several molecular regulatory mechanisms, and also in several diseases (e.g. in the group of trinucleotide repeat disorders). While for TRs with a low or medium level of divergence the current methods are rather effective, the problem of detecting TRs with higher divergence (fuzzy TRs) is still open. The detection of fuzzy TRs is propaedeutic to enriching our view of their role in regulatory mechanisms and diseases. Fuzzy TRs are also important as tools to shed light on the evolutionary history of the genome, where higher divergence correlates with more remote duplication events. We have developed an algorithm (christened TRStalker) with the aim of detecting efficiently TRs that are hard to detect because of their inherent fuzziness, due to high levels of base substitutions, insertions and deletions. To attain this goal, we developed heuristics to solve a Steiner version of the problem for which the fuzziness is measured with respect to a motif string not necessarily present in the input string. This problem is akin to the 'generalized median string' that is known to be an NP-hard problem. Experiments with both synthetic and biological sequences demonstrate that our method performs better than current state of the art for fuzzy TRs and that the fuzzy TRs of the type we detect are indeed present in important biological sequences. TRStalker will be integrated in the web-based TRs Discovery Service (TReaDS) at bioalgo.iit.cnr.it. Supplementary data are available at Bioinformatics online.
Immune Genetic Learning of Fuzzy Cognitive Map
Institute of Scientific and Technical Information of China (English)
LIN Chun-mei; HE Yue; TANG Bing-yong
2006-01-01
This paper presents a hybrid methodology of automatically constructing fuzzy cognitive map (FCM). The method uses immune genetic algorithm to learn the connection matrix of FCM. In the algorithm, the DNA coding method is used and an immune operator based on immune mechanism is constructed. The characteristics of the system and the experts' knowledge are abstracted as vaccine for restraining the degenerative phenomena during evolution so as to improve the algorithmic efficiency. Finally, an illustrative example is provided, and its results suggest that the method is capable of automatically generating FCM model.
A neural fuzzy controller learning by fuzzy error propagation
Nauck, Detlef; Kruse, Rudolf
1992-01-01
In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.
The foundations of fuzzy control
Lewis, Harold W
1997-01-01
Harold Lewis applied a cross-disciplinary approach in his highly accessible discussion of fuzzy control concepts. With the aid of fifty-seven illustrations, he thoroughly presents a unique mathematical formalism to explain the workings of the fuzzy inference engine and a novel test plant used in the research. Additionally, the text posits a new viewpoint on why fuzzy control is more popular in some countries than in others. A direct and original view of Japanese thinking on fuzzy control methods, based on the author's personal knowledge of - and association with - Japanese fuzzy research, is also included.
Directory of Open Access Journals (Sweden)
Abbas Parchami
2016-09-01
Full Text Available Such as other statistical problems, we may confront with uncertain and fuzzy concepts in quality control. One particular case in process capability analysis is a situation in which specification limits are two fuzzy sets. In such a uncertain and vague environment, the produced product is not qualified with a two-valued Boolean view, but to some degree depending on the decision-maker strictness and the quality level of the produced product. This matter can be cause to a rational decision-making on the quality of the production line. First, a comprehensive approach is presented in this paper for modeling the fuzzy quality concept. Then, motivations and advantages of applying this flexible approach instead of using classical quality are mentioned.
Recognition of Handwritten Arabic words using a neuro-fuzzy network
International Nuclear Information System (INIS)
Boukharouba, Abdelhak; Bennia, Abdelhak
2008-01-01
We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descent learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database
Directory of Open Access Journals (Sweden)
Zhe Zhang
2014-06-01
Full Text Available Purpose: The aim of this paper is to deal with the supply chain management (SCM with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM model is presented to solve the proposed problem.Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO is designed as the solution method.Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1.Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy.Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.
Recent Advances in Interval Type-2 Fuzzy Systems
Castillo, Oscar
2012-01-01
This book reviews current state of the art methods for building intelligent systems using type-2 fuzzy logic and bio-inspired optimization techniques. Combining type-2 fuzzy logic with optimization algorithms, powerful hy-brid intelligent systems have been built using the advantages that each technique offers. This book is intended to be a reference for scientists and engineers interested in applying type-2 fuzzy logic for solving problems in pattern recognition, intelligent control, intelligent manufacturing, robotics and automation. This book can also be used as a reference for graduate courses like the following: soft computing, intelligent pattern recognition, computer vision, applied artificial intelligence, and similar ones. We con-sider that this book can also be used to get novel ideas for new lines of re-search, or to continue the lines of research proposed by the authors.
Fuzzy-like multiple objective multistage decision making
Xu, Jiuping
2014-01-01
Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like un...
Directory of Open Access Journals (Sweden)
Fu-Gui Shi
2010-01-01
Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.
The first order fuzzy predicate logic (I)
International Nuclear Information System (INIS)
Sheng, Y.M.
1986-01-01
Some analysis tools of fuzzy measures, Sugeno's integrals, etc. are introduced into the semantic of the first order predicate logic to explain the concept of fuzzy quantifiers. The truth value of a fuzzy quantification proposition is represented by Sugeno's integral. With this framework, several important notions of formation rules, fuzzy valutions and fuzzy validity are discussed
Selecting the Most Economic Project under Uncertainty Using Bootstrap Technique and Fuzzy Simulation
Directory of Open Access Journals (Sweden)
Kamran Shahanaghi
2012-01-01
Full Text Available This article, by leaving pre-determined membership function of a fuzzy set which is a basic assumption for such subject, will try to propose a hybrid technique to select the most economic project among alternative projects in fuzziness interest rates condition. In this way, net present worth (NPW would be the economic indicator. This article tries to challenge the assumption of large sample sizes availability for membership function determination and shows that some other techniques may have less accuracy. To give a robust solution, bootstrapping and fuzzy simulation is suggested and a numerical example is given and analyzed.
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, B.; Menezes, A.A.A.; Dandapath, S.; Fernandes, W.A.; Karisiddaiah, S.M.; Haris, K.; Gokul, G.S.
density. 2 I. INTRODUCTION Echo-sounding systems, single beam (SBES) and multi-beam (MBES), allow coincident acquisition of high-resolution seafloor backscatter and bathymetric data [1], [2], which enormously sustains the marine exploration..., the SOM can be utilized to formulate a decision regarding the number of data classes during the online data acquisition, that are then used as an input to the fuzzy C-means (FCM) algorithms for data segmentation [12]. The FCM will require initial...
Fuzzy efficiency without convexity
DEFF Research Database (Denmark)
Hougaard, Jens Leth; Balezentis, Tomas
2014-01-01
approach builds directly upon the definition of Farrell's indexes of technical efficiency used in crisp FDH. Therefore we do not require the use of fuzzy programming techniques but only utilize ranking probabilities of intervals as well as a related definition of dominance between pairs of intervals. We...
Structure identification in fuzzy inference using reinforcement learning
Berenji, Hamid R.; Khedkar, Pratap
1993-01-01
In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.
Hierarchical type-2 fuzzy aggregation of fuzzy controllers
Cervantes, Leticia
2016-01-01
This book focuses on the fields of fuzzy logic, granular computing and also considering the control area. These areas can work together to solve various control problems, the idea is that this combination of areas would enable even more complex problem solving and better results. In this book we test the proposed method using two benchmark problems: the total flight control and the problem of water level control for a 3 tank system. When fuzzy logic is used it make it easy to performed the simulations, these fuzzy systems help to model the behavior of a real systems, using the fuzzy systems fuzzy rules are generated and with this can generate the behavior of any variable depending on the inputs and linguistic value. For this reason this work considers the proposed architecture using fuzzy systems and with this improve the behavior of the complex control problems.
Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions
Khoury, Mehdi; Liu, Honghai
This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.
Word Similarity from Dictionaries: Inferring Fuzzy Measures from Fuzzy Graphs
Directory of Open Access Journals (Sweden)
Vicenc Torra
2008-01-01
Full Text Available WORD SIMILARITY FROM DICTIONARIES: INFERRING FUZZY MEASURES FROM FUZZY GRAPHS The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.
A real time fuzzy logic power management strategy for a fuel cell vehicle
International Nuclear Information System (INIS)
Hemi, Hanane; Ghouili, Jamel; Cheriti, Ahmed
2014-01-01
Highlights: • We present a real time fuzzy logic power management strategy. • This strategy is applied to hybrid electric vehicle dynamic model. • Three configurations evaluated during a drive cycle. • The hydrogen consumption is analysed for the three configurations. - Abstract: This paper presents real time fuzzy logic controller (FLC) approach used to design a power management strategy for a hybrid electric vehicle and to protect the battery from overcharging during the repetitive braking energy accumulation. The fuel cell (FC) and battery (B)/supercapacitor (SC) are the primary and secondary power sources, respectively. This paper analyzes and evaluates the performance of the three configurations, FC/B, FC/SC and FC/B/SC during real time driving conditions and unknown driving cycle. The MATLAB/Simulink and SimPowerSystems software packages are used to model the electrical and mechanical elements of hybrid vehicles and implement a fuzzy logic strategy
Fuzzy control. Fundamentals, stability and design of fuzzy controllers
Energy Technology Data Exchange (ETDEWEB)
Michels, K. [Fichtner GmbH und Co. KG, Stuttgart (Germany); Klawonn, F. [Fachhochschule Braunschweig/Wolfenbuettel (Germany). Fachbereich Informatik; Kruse, R. [Magdeburg Univ. (Germany). Fakultaet Informatik, Abt. Wiss.- und Sprachverarbeitung; Nuernberger, A. (eds.) [California Univ., Berkeley, CA (United States). Computer Science Division
2006-07-01
The book provides a critical discussion of fuzzy controllers from the perspective of classical control theory. Special emphases are placed on topics that are of importance for industrial applications, like (self-) tuning of fuzzy controllers, optimisation and stability analysis. The book is written as a textbook for graduate students as well as a comprehensive reference book about fuzzy control for researchers and application engineers. Starting with a detailed introduction to fuzzy systems and control theory the reader is guided to up-to-date research results. (orig.)
Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport
Ebtehaj, Isa; Bonakdari, Hossein
2017-12-01
Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number ( Fr) parameters includes the volumetric sediment concentration ( C V ), ratio of median particle diameter to hydraulic radius ( d/R), ratio of median particle diameter to pipe diameter ( d/D) and overall friction factor of sediment ( λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy ( R 2 = 0.965) than the ANFIS model and regression-based equations.
Fuzzy pharmacology: theory and applications.
Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan
2002-09-01
Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.
Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering
Institute of Scientific and Technical Information of China (English)
FENG Yu-hu
2005-01-01
By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.
Intuitionistic fuzzy aggregation and clustering
Xu, Zeshui
2012-01-01
This book offers a systematic introduction to the clustering algorithms for intuitionistic fuzzy values, the latest research results in intuitionistic fuzzy aggregation techniques, the extended results in interval-valued intuitionistic fuzzy environments, and their applications in multi-attribute decision making, such as supply chain management, military system performance evaluation, project management, venture capital, information system selection, building materials classification, and operational plan assessment, etc.
On the mathematics of fuzziness
Energy Technology Data Exchange (ETDEWEB)
Chulichkov, A.I.; Chulichkova, N.M.; Pyt`ev, Y. P.; Smolnik, L.
1994-12-31
The problem of the minimax linear interpretation of stochastic measurements with fuzzy conditions on values of the object`s parameters is considered. The result of a measurement interpretation is the fuzzy element (u, h, alpha, mu(.,.,.)), where u is the object`s parameter estimation, h is the estimation accuracy and alpha is the reliability of interpretation, mu is the characteristic function of a fuzzy element. Reliability is the characteristic of the agreement between fuzzy a priori information and measuring data. The information on the values of the parameters of an object under investigation is interactively submitted to the computer.
Evolving fuzzy rules for relaxed-criteria negotiation.
Sim, Kwang Mong
2008-12-01
In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.
International Nuclear Information System (INIS)
Baron, Jorge H.; Rivera, S.S.
2000-01-01
The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)
International Nuclear Information System (INIS)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-01-01
We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.
Evolutionary algorithms for mobile ad hoc networks
Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal
2014-01-01
Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...
Czech Academy of Sciences Publication Activity Database
Coufal, David
2017-01-01
Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016
Fuzzy Clustering Methods and their Application to Fuzzy Modeling
DEFF Research Database (Denmark)
Kroszynski, Uri; Zhou, Jianjun
1999-01-01
Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...
Aristotelous, Andreas C; Durrett, Richard
2014-05-01
Inspired by the use of hybrid cellular automata in modeling cancer, we introduce a generalization of evolutionary games in which cells produce and absorb chemicals, and the chemical concentrations dictate the death rates of cells and their fitnesses. Our long term aim is to understand how the details of the interactions in a system with n species and m chemicals translate into the qualitative behavior of the system. Here, we study two simple 2×2 games with two chemicals and revisit the two and three species versions of the one chemical colicin system studied earlier by Durrett and Levin (1997). We find that in the 2×2 examples, the behavior of our new spatial model can be predicted from that of the mean field differential equation using ideas of Durrett and Levin (1994). However, in the three species colicin model, the system with diffusion does not have the coexistence which occurs in the lattices model in which sites interact with only their nearest neighbors. Copyright © 2014 Elsevier Inc. All rights reserved.
A Fuzzy Gravitational Search Algorithm to Design Optimal IIR Filters
Directory of Open Access Journals (Sweden)
Danilo Pelusi
2018-03-01
Full Text Available The goodness of Infinite Impulse Response (IIR digital filters design depends on pass band ripple, stop band ripple and transition band values. The main problem is defining a suitable error fitness function that depends on these parameters. This fitness function can be optimized by search algorithms such as evolutionary algorithms. This paper proposes an intelligent algorithm for the design of optimal 8th order IIR filters. The main contribution is the design of Fuzzy Inference Systems able to tune key parameters of a revisited version of the Gravitational Search Algorithm (GSA. In this way, a Fuzzy Gravitational Search Algorithm (FGSA is designed. The optimization performances of FGSA are compared with those of Differential Evolution (DE and GSA. The results show that FGSA is the algorithm that gives the best compromise between goodness, robustness and convergence rate for the design of 8th order IIR filters. Moreover, FGSA assures a good stability of the designed filters.
Fuzzy linguistic model for interpolation
International Nuclear Information System (INIS)
Abbasbandy, S.; Adabitabar Firozja, M.
2007-01-01
In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method
Fuzzy Logic in Medicine and Bioinformatics
Directory of Open Access Journals (Sweden)
Angela Torres
2006-01-01
Full Text Available The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions and in bioinformatics (comparison of genomes.
Algebraic Aspects of Families of Fuzzy Languages
Asveld, P.R.J.; Heylen, Dirk K.J.; Nijholt, Antinus; Scollo, Giuseppe
2000-01-01
We study operations on fuzzy languages such as union, concatenation,Kleene $\\star$, intersection with regular fuzzy languages, and several kinds of (iterated) fuzzy substitution. Then we consider families of fuzzy languages, closed under a fixed collection of these operations, which results in the
Attractive evolutionary equilibria
Joosten, Reinoud A.M.G.; Roorda, Berend
2011-01-01
We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary
Fuzzy control in environmental engineering
Chmielowski, Wojciech Z
2016-01-01
This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, th...
On Intuitionistic Fuzzy Sets Theory
Atanassov, Krassimir T
2012-01-01
This book aims to be a comprehensive and accurate survey of state-of-art research on intuitionistic fuzzy sets theory and could be considered a continuation and extension of the author´s previous book on Intuitionistic Fuzzy Sets, published by Springer in 1999 (Atanassov, Krassimir T., Intuitionistic Fuzzy Sets, Studies in Fuzziness and soft computing, ISBN 978-3-7908-1228-2, 1999). Since the aforementioned book has appeared, the research activity of the author within the area of intuitionistic fuzzy sets has been expanding into many directions. The results of the author´s most recent work covering the past 12 years as well as the newest general ideas and open problems in this field have been therefore collected in this new book.
Directory of Open Access Journals (Sweden)
Gagandeep Kaur
2018-01-01
Full Text Available Cubic intuitionistic fuzzy (CIF set is the hybrid set which can contain much more information to express an interval-valued intuitionistic fuzzy set and an intuitionistic fuzzy set simultaneously for handling the uncertainties in the data. Unfortunately, there has been no research on the aggregation operators on CIF sets so far. Since an aggregation operator is an important mathematical tool in decision-making problems, the present paper proposes some new Bonferroni mean and weighted Bonferroni mean averaging operators between the cubic intuitionistic fuzzy numbers for aggregating the different preferences of the decision-maker. Then, we develop a decision-making method based on the proposed operators under the cubic intuitionistic fuzzy environment and illustrated with a numerical example. Finally, a comparison analysis between the proposed and the existing approaches have been performed to illustrate the applicability and feasibility of the developed decision-making method.
Safety critical application of fuzzy control
International Nuclear Information System (INIS)
Schildt, G.H.
1995-01-01
After an introduction into safety terms a short description of fuzzy logic will be given. Especially, for safety critical applications of fuzzy controllers a possible controller structure will be described. The following items will be discussed: Configuration of fuzzy controllers, design aspects like fuzzfiication, inference strategies, defuzzification and types of membership functions. As an example a typical fuzzy rule set will be presented. Especially, real-time behaviour a fuzzy controllers is mentioned. An example of fuzzy controlling for temperature control purpose within a nuclear reactor together with membership functions and inference strategy of such a fuzzy controller will be presented. (author). 4 refs, 17 figs
Image matching navigation based on fuzzy information
Institute of Scientific and Technical Information of China (English)
田玉龙; 吴伟仁; 田金文; 柳健
2003-01-01
In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.
Radiation protection and fuzzy set theory
International Nuclear Information System (INIS)
Nishiwaki, Y.
1993-01-01
In radiation protection we encounter a variety of sources of uncertainties which are due to fuzziness in our cognition or perception of objects. For systematic treatment of this type of uncertainty, the concepts of fuzzy sets or fuzzy measures could be applied to construct system models, which may take into consideration both subjective or intrinsic fuzziness and objective or extrinsic fuzziness. The theory of fuzzy sets and fuzzy measures is still in a developing stage, but its concept may be applied to various problems of subjective perception of risk, nuclear safety, radiation protection and also to the problems of man-machine interface and human factor engineering or ergonomic
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.
Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization
International Nuclear Information System (INIS)
Moghadam, Ahmad; Seifi, Ali Reza
2014-01-01
Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function
Fuzzy Expert System for Heart Attack Diagnosis
Hassan, Norlida; Arbaiy, Nureize; Shah, Noor Aziyan Ahmad; Afizah Afif@Afip, Zehan
2017-08-01
Heart attack is one of the serious illnesses and reported as the main killer disease. Early prevention is significant to reduce the risk of having the disease. The prevention efforts can be strengthen through awareness and education about risk factor and healthy lifestyle. Therefore the knowledge dissemination is needed to play role in order to distribute and educate public in health care management and disease prevention. Since the knowledge dissemination in medical is important, there is a need to develop a knowledge based system that can emulate human intelligence to assist decision making process. Thereby, this study utilized hybrid artificial intelligence (AI) techniques to develop a Fuzzy Expert System for Diagnosing Heart Attack Disease (HAD). This system integrates fuzzy logic with expert system, which helps the medical practitioner and people to predict the risk and as well as diagnosing heart attack based on given symptom. The development of HAD is expected not only providing expert knowledge but potentially become one of learning resources to help citizens to develop awareness about heart-healthy lifestyle.
Fuzzy model for Laser Assisted Bending Process
Directory of Open Access Journals (Sweden)
Giannini Oliviero
2016-01-01
Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
Improvement of Fuzzy Image Contrast Enhancement Using Simulated Ergodic Fuzzy Markov Chains
Directory of Open Access Journals (Sweden)
Behrouz Fathi-Vajargah
2014-01-01
Full Text Available This paper presents a novel fuzzy enhancement technique using simulated ergodic fuzzy Markov chains for low contrast brain magnetic resonance imaging (MRI. The fuzzy image contrast enhancement is proposed by weighted fuzzy expected value. The membership values are then modified to enhance the image using ergodic fuzzy Markov chains. The qualitative performance of the proposed method is compared to another method in which ergodic fuzzy Markov chains are not considered. The proposed method produces better quality image.
The World of Combinatorial Fuzzy Problems and the Efficiency of Fuzzy Approximation Algorithms
Yamakami, Tomoyuki
2015-01-01
We re-examine a practical aspect of combinatorial fuzzy problems of various types, including search, counting, optimization, and decision problems. We are focused only on those fuzzy problems that take series of fuzzy input objects and produce fuzzy values. To solve such problems efficiently, we design fast fuzzy algorithms, which are modeled by polynomial-time deterministic fuzzy Turing machines equipped with read-only auxiliary tapes and write-only output tapes and also modeled by polynomia...
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This
Evolutionary molecular medicine.
Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S
2012-05-01
Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.
Sanchez, Mauricio A; Castro, Juan R
2017-01-01
In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.
Fuzzy resource optimization for safeguards
International Nuclear Information System (INIS)
Zardecki, A.; Markin, J.T.
1991-01-01
Authorization, enforcement, and verification -- three key functions of safeguards systems -- form the basis of a hierarchical description of the system risk. When formulated in terms of linguistic rather than numeric attributes, the risk can be computed through an algorithm based on the notion of fuzzy sets. Similarly, this formulation allows one to analyze the optimal resource allocation by maximizing the overall detection probability, regarded as a linguistic variable. After summarizing the necessary elements of the fuzzy sets theory, we outline the basic algorithm. This is followed by a sample computation of the fuzzy optimization. 10 refs., 1 tab
Directory of Open Access Journals (Sweden)
Hudec Miroslav
2011-01-01
Full Text Available Structured Query Language (SQL is used to obtain data from relational databases. Fuzzy improvement of SQL queries has advantages in cases when the user cannot unambiguously define selection criteria or when the user wants to examine data that almost meet the given criteria. In this paper we examine a realization of the fuzzy querying concept. For this purposes the fuzzy generalized logical condition for the WHERE part of the SQL is created. It allows users to create queries by linguistic terms. The proposed model is an extension of the SQL so that no modification inside databases has to be undertaken.
Fuzzy expert systems using CLIPS
Le, Thach C.
1994-01-01
This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.
Implementation of Steiner point of fuzzy set.
Liang, Jiuzhen; Wang, Dejiang
2014-01-01
This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.
Fuzzy histogram for internal and external fuzzy directional relations
Salamat , Nadeem; Zahzah , El-Hadi
2009-01-01
5 Pages; Spatial relations have key point importance in image analysis and computer vision. Numerous technics have been developed to study these relations especially directional relations. Modern digital computers give rise to quantitative methods and among them fuzzy methods have core importance due to handling imprecise knowledge information and vagueness. In most fuzzy methods external directional relations are considered which are useful for small scale space image analysis but in large s...
Solution of Fuzzy Differential Equations Using Fuzzy Sumudu Transforms
Directory of Open Access Journals (Sweden)
Raheleh Jafari
2018-01-01
Full Text Available The uncertain nonlinear systems can be modeled with fuzzy differential equations (FDEs and the solutions of these equations are applied to analyze many engineering problems. However, it is very difficult to obtain solutions of FDEs. In this paper, the solutions of FDEs are approximated by utilizing the fuzzy Sumudu transform (FST method. Significant theorems are suggested in order to explain the properties of FST. The proposed method is validated with three real examples.
A Hybrid Approach to Protect Palmprint Templates
Directory of Open Access Journals (Sweden)
Hailun Liu
2014-01-01
Full Text Available Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.
Theta-Generalized closed sets in fuzzy topological spaces
International Nuclear Information System (INIS)
El-Shafei, M.E.; Zakari, A.
2006-01-01
In this paper we introduce the concepts of theta-generalized closed fuzzy sets and generalized fuzzy sets in topological spaces. Furthermore, generalized fuzzy sets are extended to theta-generalized fuzzy sets. Also, we introduce the concepts of fuzzy theta-generalized continuous and fuzzy theta-generalized irresolute mappings. (author)
A fuzzy logic approach to control anaerobic digestion.
Domnanovich, A M; Strik, D P; Zani, L; Pfeiffer, B; Karlovits, M; Braun, R; Holubar, P
2003-01-01
One of the goals of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Process Behaviour towards Biogas Usage in Fuel Cells) is to create a control tool for the anaerobic digestion process, which predicts the volumetric organic loading rate (Bv) for the next day, to obtain a high biogas quality and production. The biogas should contain a high methane concentration (over 50%) and a low concentration of components toxic for fuel cells, e.g. hydrogen sulphide, siloxanes, ammonia and mercaptanes. For producing data to test the control tool, four 20 l anaerobic Continuously Stirred Tank Reactors (CSTR) are operated. For controlling two systems were investigated: a pure fuzzy logic system and a hybrid-system which contains a fuzzy based reactor condition calculation and a hierachial neural net in a cascade of optimisation algorithms.
Directory of Open Access Journals (Sweden)
Basem Mohamed Elomda
2013-07-01
Full Text Available This paper presents a new extension to Fuzzy Decision Maps (FDMs by allowing use of fuzzy linguistic values to represent relative importance among criteria in the preference matrix as well as representing relative influence among criteria for computing the steady-state matrix in the stage of Fuzzy Cognitive Map (FCM. The proposed model is called the Linguistic Fuzzy Decision Networks (LFDNs. The proposed LFDN provides considerable flexibility to decision makers when solving real world Multi-Criteria Decision-Making (MCDM problems. The performance of the proposed LFDN model is compared with the original FDM using a previously published case study. The result of comparison ensures the ability to draw the same decisions with a more realistic decision environment.
FUZZY LOGIC IN LEGAL EDUCATION
Directory of Open Access Journals (Sweden)
Z. Gonul BALKIR
2011-04-01
Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal
On the mathematics of fuzziness
Energy Technology Data Exchange (ETDEWEB)
Kerre, E. [Ghent Univ. (Belgium)
1994-12-31
During the past twenty-five years, the scientific community has been working very extensively on the development of reliable models for the representation and manipulation of impreciseness and uncertainty that pervade the real world. Fuzzy set theory is one of the most popular theories able to treat incomplete information. In this paper, the basic mathematical principles underlying fuzzy set theory are outlined. Special attention is paid to the way that set theory has influenced the development of mathematics in a positive way.
On the mathematics of fuzziness
International Nuclear Information System (INIS)
Kerre, E.
1994-01-01
During the past twenty-five years, the scientific community has been working very extensively on the development of reliable models for the representation and manipulation of impreciseness and uncertainty that pervade the real world. Fuzzy set theory is one of the most popular theories able to treat incomplete information. In this paper, the basic mathematical principles underlying fuzzy set theory are outlined. Special attention is paid to the way that set theory has influenced the development of mathematics in a positive way
International Nuclear Information System (INIS)
Liu, X.; Fang, K.
1986-01-01
A theoretical study in fuzzy reasoning on Horn Set is presented in this paper. The authors first introduce the concepts of λ-Horn Set of clauses and λ-Input Half Lock deduction. They then use the λ-resolution method to discuss fuzzy reasoning on λ-Horn set of clauses. It is proved that the proposed λ-Input Half Lock resolution method is complete with the rules in certain format
A Fuzzy Query Mechanism for Human Resource Websites
Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih
Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.
Hybridization affects life-history traits and host specificity in Diorhabda spp
Hybridization is an influential evolutionary process that has been viewed alternatively as an evolutionary dead-end or as an important creative evolutionary force. In colonizing species, such as introduced biological control agents, hybridization can negate the effects of bottlenecks and genetic dri...
Remembering the evolutionary Freud.
Young, Allan
2006-03-01
Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.
Fault Diagnosis of Beam-Like Structure Using Modified Fuzzy Technique
Directory of Open Access Journals (Sweden)
Dhirendranath Thatoi
2014-01-01
Full Text Available This paper presents a novel hybrid fuzzy logic based artificial intelligence (AI technique applicable to diagnosis of the crack parameters in a fixed-fixed beam by using the vibration signatures as input. The presence of damage in engineering structures leads to changes in vibration signatures like natural frequency and mode shapes. In the first part of this work, a structure with a failure crack has been analyzed using finite element method (FEM and retrospective changes in the vibration signatures have been recorded. In the second part of the research work, these deviations in the vibration signatures for the first three mode shapes have been taken as input parameters for a fuzzy logic based controller for calculation of crack location and its severity as output parameters. In the proposed fuzzy controller, hybrid membership functions have been taken. Several fuzzy rules have been identified for prediction of crack depth and location and the results have been compared with finite element analysis. A database of experimental results has also been considered to check the robustness of the fuzzy controller. The results show that predictions for the nondimensional crack location, α, deviate ~2.4% from experimental values and for the nondimensional crack depth, δ, are less than ~−2%.
A Temporal Fuzzy Logic Formalism for Knowledge Based Systems
Directory of Open Access Journals (Sweden)
Vasile MAZILESCU
2012-11-01
Full Text Available This paper shows that the influence of knowledge on new forms of work organisation can be described as mutual relationships. Different changes in work organisation also have a strong influence on the increasing importance of knowledge of different individual and collective actors in working situations. After that, we characterize a piece of basic formal system, an Extended Fuzzy Logic System (EFLS with temporal attributes, to conceptualize future DKMSs based on human imprecise for distributed just in time decisions. The approximate reasoning is perceived as a derivation of new formulas with the corresponding temporal attributes, within a fuzzy theory defined by the fuzzy set of special axioms. In a management application, the reasoning is evolutionary because of unexpected events which may change the state of the DKMS. In this kind of situations it is necessary to elaborate certain mechanisms in order to maintain the coherence of the obtained conclusions, to figure out their degree of reliability and the time domain for which these are true. These last aspects stand as possible further directions of development at a basic logic level for future technologies that must automate knowledge organizational processes.
International Nuclear Information System (INIS)
Piasecki, E.
2009-01-01
Heavy-ion collisions often produce a fusion barrier distribution with structures displaying a fingerprint of couplings to highly collective excitations [1]. Basically the same distribution can be obtained from large-angle quasi-elastic scattering, though here the role of the many weak direct-reaction channels is unclear. For 2 0N e + 9 0Z r we have observed the barrier structures expected for the highly deformed neon projectile, but for 2 0N e + 9 2Z r we find completely smooth distribution (see Fig.1). We find that transfer channels in these systems are of similar strength but single particle excitations are significantly stronger in the latter case. They apparently reduce the 'resolving power' of the quasi-elastic channel, what leads to smeared out, or 'fuzzy' barrier distribution. This is the first case when such a phenomenon has been observed.(author)
On Fuzzy β-I-open sets and Fuzzy β-I-continuous functions
International Nuclear Information System (INIS)
Keskin, Aynur
2009-01-01
In this paper, first of all we obtain some properties and characterizations of fuzzy β-I-open sets. After that, we also define the notion of β-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy β-I-continuity with the help of fuzzy β-I-open sets to obtain decomposition of fuzzy continuity.
On Fuzzy {beta}-I-open sets and Fuzzy {beta}-I-continuous functions
Energy Technology Data Exchange (ETDEWEB)
Keskin, Aynur [Department of Mathematics, Faculty of Science and Arts, Selcuk University, Campus, 42075 Konya (Turkey)], E-mail: akeskin@selcuk.edu.tr
2009-11-15
In this paper, first of all we obtain some properties and characterizations of fuzzy {beta}-I-open sets. After that, we also define the notion of {beta}-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy {beta}-I-continuity with the help of fuzzy {beta}-I-open sets to obtain decomposition of fuzzy continuity.
A method for minimum risk portfolio optimization under hybrid uncertainty
Egorova, Yu E.; Yazenin, A. V.
2018-03-01
In this paper, we investigate a minimum risk portfolio model under hybrid uncertainty when the profitability of financial assets is described by fuzzy random variables. According to Feng, the variance of a portfolio is defined as a crisp value. To aggregate fuzzy information the weakest (drastic) t-norm is used. We construct an equivalent stochastic problem of the minimum risk portfolio model and specify the stochastic penalty method for solving it.
Supply chain management under fuzziness recent developments and techniques
Öztayşi, Başar
2014-01-01
Supply Chain Management Under Fuzziness presents recently developed fuzzy models and techniques for supply chain management. These include: fuzzy PROMETHEE, fuzzy AHP, fuzzy ANP, fuzzy VIKOR, fuzzy DEMATEL, fuzzy clustering, fuzzy linear programming, and fuzzy inference systems. The book covers both practical applications and new developments concerning these methods. This book offers an excellent resource for researchers and practitioners in supply chain management and logistics, and will provide them with new suggestions and directions for future research. Moreover, it will support graduate students in their university courses, such as specialized courses on supply chains and logistics, as well as related courses in the fields of industrial engineering, engineering management and business administration.
Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method
Directory of Open Access Journals (Sweden)
Ken Yeh
2010-01-01
Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.
Numerical and Evolutionary Optimization Workshop
Trujillo, Leonardo; Legrand, Pierrick; Maldonado, Yazmin
2017-01-01
This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Throu...
Fuzzy relational calculus theory, applications and software
Peeva, Ketty
2004-01-01
This book examines fuzzy relational calculus theory with applications in various engineering subjects. The scope of the text covers unified and exact methods with algorithms for direct and inverse problem resolution in fuzzy relational calculus. Extensive engineering applications of fuzzy relation compositions and fuzzy linear systems (linear, relational and intuitionistic) are discussed. Some examples of such applications include solutions of equivalence, reduction and minimization problems in fuzzy machines, pattern recognition in fuzzy languages, optimization and inference engines in textile and chemical engineering, etc. A comprehensive overview of the authors' original work in fuzzy relational calculus is also provided in each chapter. The attached CD-Rom contains a toolbox with many functions for fuzzy calculations, together with an original algorithm for inverse problem resolution in MATLAB. This book is also suitable for use as a textbook in related courses at advanced undergraduate and graduate level...
Compound Option Pricing under Fuzzy Environment
Directory of Open Access Journals (Sweden)
Xiandong Wang
2014-01-01
Full Text Available Considering the uncertainty of a financial market includes two aspects: risk and vagueness; in this paper, fuzzy sets theory is applied to model the imprecise input parameters (interest rate and volatility. We present the fuzzy price of compound option by fuzzing the interest and volatility in Geske’s compound option pricing formula. For each α, the α-level set of fuzzy prices is obtained according to the fuzzy arithmetics and the definition of fuzzy-valued function. We apply a defuzzification method based on crisp possibilistic mean values of the fuzzy interest rate and fuzzy volatility to obtain the crisp possibilistic mean value of compound option price. Finally, we present a numerical analysis to illustrate the compound option pricing under fuzzy environment.
Fuzzy Arden Syntax: A fuzzy programming language for medicine.
Vetterlein, Thomas; Mandl, Harald; Adlassnig, Klaus-Peter
2010-05-01
The programming language Arden Syntax has been optimised for use in clinical decision support systems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced in S. Tiffe's dissertation on "Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified Arden Syntax" (Vienna University of Technology, 2003). The primary aim is to provide an easy means of processing vague or uncertain data, which frequently appears in medicine. For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth); fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally aggregated subsequently. Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs) based on the principle of a continuously graded applicability of statements. Furthermore, ad hoc decisions about sharp value boundaries can be avoided. As an illustrative example shows, an MLM making use of the features of Fuzzy Arden Syntax is not significantly more complex than its Arden Syntax equivalent; in the ideal case, a programme handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the output data, which can be a set of weighted alternatives, typically depends continuously from the input data. In typical applications an Arden Syntax MLM can produce a different output after only slight changes of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a discrete set of possibilities
Attractive evolutionary equilibria
Roorda, Berend; Joosten, Reinoud
2011-01-01
We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.
Dhruba Das; Hemanta K. Baruah
2015-01-01
In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM...
Fuzzy upper bounds and their applications
Energy Technology Data Exchange (ETDEWEB)
Soleimani-damaneh, M. [Department of Mathematics, Faculty of Mathematical Science and Computer Engineering, Teacher Training University, 599 Taleghani Avenue, Tehran 15618 (Iran, Islamic Republic of)], E-mail: soleimani_d@yahoo.com
2008-04-15
This paper considers the concept of fuzzy upper bounds and provides some relevant applications. Considering a fuzzy DEA model, the existence of a fuzzy upper bound for the objective function of the model is shown and an effective approach to solve that model is introduced. Some dual interpretations are provided, which are useful for practical purposes. Applications of the concept of fuzzy upper bounds in two physical problems are pointed out.
Neuro-fuzzy Control of Integrating Processes
Directory of Open Access Journals (Sweden)
Anna Vasičkaninová
2011-11-01
Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.
FFLP problem with symmetric trapezoidal fuzzy numbers
Directory of Open Access Journals (Sweden)
Reza Daneshrad
2015-04-01
Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.
Polymorphic Evolutionary Games.
Fishman, Michael A
2016-06-07
In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Daldaban, Ferhat; Ustkoyuncu, Nurettin; Guney, Kerim
2006-01-01
A new method based on an adaptive neuro-fuzzy inference system (ANFIS) for estimating the phase inductance of switched reluctance motors (SRMs) is presented. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the ANFIS. The rotor position and the phase current of the 6/4 pole SRM are used to predict the phase inductance. The phase inductance results predicted by the ANFIS are in excellent agreement with the results of the finite element method
Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model
Yaseen, Zaher Mundher; Ebtehaj, Isa; Bonakdari, Hossein; Deo, Ravinesh C.; Danandeh Mehr, Ali; Mohtar, Wan Hanna Melini Wan; Diop, Lamine; El-shafie, Ahmed; Singh, Vijay P.
2017-11-01
The present study proposes a new hybrid evolutionary Adaptive Neuro-Fuzzy Inference Systems (ANFIS) approach for monthly streamflow forecasting. The proposed method is a novel combination of the ANFIS model with the firefly algorithm as an optimizer tool to construct a hybrid ANFIS-FFA model. The results of the ANFIS-FFA model is compared with the classical ANFIS model, which utilizes the fuzzy c-means (FCM) clustering method in the Fuzzy Inference Systems (FIS) generation. The historical monthly streamflow data for Pahang River, which is a major river system in Malaysia that characterized by highly stochastic hydrological patterns, is used in the study. Sixteen different input combinations with one to five time-lagged input variables are incorporated into the ANFIS-FFA and ANFIS models to consider the antecedent seasonal variations in historical streamflow data. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) are used to evaluate the forecasting performance of ANFIS-FFA model. In conjunction with these metrics, the refined Willmott's Index (Drefined), Nash-Sutcliffe coefficient (ENS) and Legates and McCabes Index (ELM) are also utilized as the normalized goodness-of-fit metrics. Comparison of the results reveals that the FFA is able to improve the forecasting accuracy of the hybrid ANFIS-FFA model (r = 1; RMSE = 0.984; MAE = 0.364; ENS = 1; ELM = 0.988; Drefined = 0.994) applied for the monthly streamflow forecasting in comparison with the traditional ANFIS model (r = 0.998; RMSE = 3.276; MAE = 1.553; ENS = 0.995; ELM = 0.950; Drefined = 0.975). The results also show that the ANFIS-FFA is not only superior to the ANFIS model but also exhibits a parsimonious modelling framework for streamflow forecasting by incorporating a smaller number of input variables required to yield the comparatively better performance. It is construed that the FFA optimizer can thus surpass the accuracy of the traditional ANFIS model in general
Energy Technology Data Exchange (ETDEWEB)
Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
2015-08-15
The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.
A SELF-ORGANISING FUZZY LOGIC CONTROLLER
African Journals Online (AJOL)
ES Obe
One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a rule- base ... The greatest limitation of fuzzy logic control is the lack ..... c(kT)= e(kT)-e((k-1)T). (16) .... with the aid of fuzzy models”, It in Industrial.
Forecasting Enrollments with Fuzzy Time Series.
Song, Qiang; Chissom, Brad S.
The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…
On the intuitionistic fuzzy inner product spaces
International Nuclear Information System (INIS)
Goudarzi, M.; Vaezpour, S.M.; Saadati, R.
2009-01-01
In this paper, the definition of intuitionistic fuzzy inner product is given. By virtue of this definition, some convergence theorems, Schwarts inequality and the orthogonal concept for intuitionistic fuzzy inner product spaces are established and introduced. Moreover the relationship between this kind of spaces and intuitionistic fuzzy normed spaces is considered.
Fuzzy control of pressurizer dynamic process
International Nuclear Information System (INIS)
Ming Zhedong; Zhao Fuyu
2006-01-01
Considering the characteristics of pressurizer dynamic process, the fuzzy control system that takes the advantages of both fuzzy controller and PID controller is designed for the dynamic process in pressurizer. The simulation results illustrate this type of composite control system is with better qualities than those of single fuzzy controller and single PID controller. (authors)
Possible use of fuzzy logic in database
Directory of Open Access Journals (Sweden)
Vaclav Bezdek
2011-04-01
Full Text Available The article deals with fuzzy logic and its possible use in database systems. At first fuzzy thinking style is shown on a simple example. Next the advantages of the fuzzy approach to database searching are considered on the database of used cars in the Czech Republic.
Effectiveness of Securities with Fuzzy Probabilistic Return
Directory of Open Access Journals (Sweden)
Krzysztof Piasecki
2011-01-01
Full Text Available The generalized fuzzy present value of a security is defined here as fuzzy valued utility of cash flow. The generalized fuzzy present value cannot depend on the value of future cash flow. There exists such a generalized fuzzy present value which is not a fuzzy present value in the sense given by some authors. If the present value is a fuzzy number and the future value is a random one, then the return rate is given as a probabilistic fuzzy subset on a real line. This kind of return rate is called a fuzzy probabilistic return. The main goal of this paper is to derive the family of effective securities with fuzzy probabilistic return. Achieving this goal requires the study of the basic parameters characterizing fuzzy probabilistic return. Therefore, fuzzy expected value and variance are determined for this case of return. These results are a starting point for constructing a three-dimensional image. The set of effective securities is introduced as the Pareto optimal set determined by the maximization of the expected return rate and minimization of the variance. Finally, the set of effective securities is distinguished as a fuzzy set. These results are obtained without the assumption that the distribution of future values is Gaussian. (original abstract
The majority rule in a fuzzy environment.
Montero, Javier
1986-01-01
In this paper, an axiomatic approach to rational decision making in a fuzzy environment is studied. In particular, the majority rule is proposed as a rational way for aggregating fuzzy opinions in a group, when such agroup is defined as a fuzzy set.
The fuzzy approach to statistical analysis
Coppi, Renato; Gil, Maria A.; Kiers, Henk A. L.
2006-01-01
For the last decades, research studies have been developed in which a coalition of Fuzzy Sets Theory and Statistics has been established with different purposes. These namely are: (i) to introduce new data analysis problems in which the objective involves either fuzzy relationships or fuzzy terms;
Fuzzy commutative algebra and its application in mechanical engineering
International Nuclear Information System (INIS)
Han, J.; Song, H.
1996-01-01
Based on literature data, this paper discusses the whole mathematical structure about point-fuzzy number set F(R). By introducing some new operations about addition, subtraction, multiplication, division and scalar multiplication, we prove that F(R) can form fuzzy linear space, fuzzy commutative ring, fuzzy commutative algebra in order. Furthermore, we get that A is fuzzy commutative algebra for any fuzzy subset. At last, we give an application of point-fuzzy number to mechanical engineering
Feedforward Tracking Control of Flat Recurrent Fuzzy Systems
International Nuclear Information System (INIS)
Gering, Stefan; Adamy, Jürgen
2014-01-01
Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis
Feedforward Tracking Control of Flat Recurrent Fuzzy Systems
Gering, Stefan; Adamy, Jürgen
2014-12-01
Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.
Fuzzy logic of Aristotelian forms
Energy Technology Data Exchange (ETDEWEB)
Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.
Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR
Directory of Open Access Journals (Sweden)
Maria Cristina Floreno
1996-05-01
Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.
Directory of Open Access Journals (Sweden)
Anish Pandey
2017-02-01
Full Text Available This article introduces a singleton type-1 fuzzy logic system (T1-SFLS controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. The WDO (Wind Driven Optimization algorithm is used to optimize and tune the input/output membership function parameters of the fuzzy controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels navigates over an N-dimensional search domain. The performance of this proposed technique has compared through many computer simulations and real-time experiments by using Khepera-III mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good agreement for mobile robot navigation.
A Hybrid System for Subjectivity Analysis
Directory of Open Access Journals (Sweden)
Samir Rustamov
2018-01-01
Full Text Available We suggested different structured hybrid systems for the sentence-level subjectivity analysis based on three supervised machine learning algorithms, namely, Hidden Markov Model, Fuzzy Control System, and Adaptive Neuro-Fuzzy Inference System. The suggested feature extraction algorithm in our experiment computes a feature vector using statistical textual terms frequencies in a training dataset not having the use of any lexical knowledge except tokenization. Taking into consideration this fact, the above-mentioned methods may be employed in other languages as these methods do not utilize the morphological, syntactical, and lexical analysis in the classification problems.
Quick fuzzy backpropagation algorithm.
Nikov, A; Stoeva, S
2001-03-01
A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.
On Intuitionistic Fuzzy Context-Free Languages
Directory of Open Access Journals (Sweden)
Jianhua Jin
2013-01-01
automata theory. Additionally, we introduce the concepts of Chomsky normal form grammar (IFCNF and Greibach normal form grammar (IFGNF based on intuitionistic fuzzy sets. The results of our study indicate that intuitionistic fuzzy context-free languages generated by IFCFGs are equivalent to those generated by IFGNFs and IFCNFs, respectively, and they are also equivalent to intuitionistic fuzzy recognizable step functions. Then some operations on the family of intuitionistic fuzzy context-free languages are discussed. Finally, pumping lemma for intuitionistic fuzzy context-free languages is investigated.
Collaborative filtering recommendation model based on fuzzy clustering algorithm
Yang, Ye; Zhang, Yunhua
2018-05-01
As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.
Implementation of a fuzzy logic/neural network multivariable controller
International Nuclear Information System (INIS)
Cordes, G.A.; Clark, D.E.; Johnson, J.A.; Smartt, H.B.; Wickham, K.L.; Larson, T.K.
1992-01-01
This paper describes a multivariable controller developed at the Idaho National Engineering Laboratory (INEL) that incorporates both fuzzy logic rules and a neural network. The controller was implemented in a laboratory demonstration and was robust, producing smooth temperature and water level response curves with short time constants. In the future, intelligent control systems will be a necessity for optimal operation of autonomous reactor systems located on earth or in space. Even today, there is a need for control systems that adapt to the changing environment and process. Hybrid intelligent control systems promise to provide this adaptive capability. Fuzzy logic implements our imprecise, qualitative human reasoning. The values of system variables (controller inputs) and control variables (controller outputs) are described in linguistic terms and subdivided into fully overlapping value ranges. The fuzzy rule base describes how combinations of input parameter ranges determine the output control values. Neural networks implement our human learning. In this controller, neural networks were embedded in the software to explore their potential for adding adaptability
Fuzzy C-means method for clustering microarray data.
Dembélé, Doulaye; Kastner, Philippe
2003-05-22
Clustering analysis of data from DNA microarray hybridization studies is essential for identifying biologically relevant groups of genes. Partitional clustering methods such as K-means or self-organizing maps assign each gene to a single cluster. However, these methods do not provide information about the influence of a given gene for the overall shape of clusters. Here we apply a fuzzy partitioning method, Fuzzy C-means (FCM), to attribute cluster membership values to genes. A major problem in applying the FCM method for clustering microarray data is the choice of the fuzziness parameter m. We show that the commonly used value m = 2 is not appropriate for some data sets, and that optimal values for m vary widely from one data set to another. We propose an empirical method, based on the distribution of distances between genes in a given data set, to determine an adequate value for m. By setting threshold levels for the membership values, genes which are tigthly associated to a given cluster can be selected. Using a yeast cell cycle data set as an example, we show that this selection increases the overall biological significance of the genes within the cluster. Supplementary text and Matlab functions are available at http://www-igbmc.u-strasbg.fr/fcm/
International Nuclear Information System (INIS)
Schildt, G.H.
1997-01-01
A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs
International Nuclear Information System (INIS)
Schildt, G.H.
1996-01-01
After an introduction into safety terms a fuzzy controller for safety related process control will be presented, especially for applications in the field of NPPs. One can show that the size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage due to real-time behaviour, because program execution time can be much more planned than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principle, and quiescent current principle
Energy Technology Data Exchange (ETDEWEB)
Schildt, G H [Technische Univ., Vienna (Austria)
1997-07-01
A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs.
Combining fuzzy mathematics with fuzzy logic to solve business management problems
Vrba, Joseph A.
1993-12-01
Fuzzy logic technology has been applied to control problems with great success. Because of this, many observers fell that fuzzy logic is applicable only in the control arena. However, business management problems almost never deal with crisp values. Fuzzy systems technology--a combination of fuzzy logic, fuzzy mathematics and a graphical user interface--is a natural fit for developing software to assist in typical business activities such as planning, modeling and estimating. This presentation discusses how fuzzy logic systems can be extended through the application of fuzzy mathematics and the use of a graphical user interface to make the information contained in fuzzy numbers accessible to business managers. As demonstrated through examples from actual deployed systems, this fuzzy systems technology has been employed successfully to provide solutions to the complex real-world problems found in the business environment.
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
Frechet differentiation of nonlinear operators between fuzzy normed spaces
International Nuclear Information System (INIS)
Yilmaz, Yilmaz
2009-01-01
By the rapid advances in linear theory of fuzzy normed spaces and fuzzy bounded linear operators it is natural idea to set and improve its nonlinear peer. We aimed in this work to realize this idea by introducing fuzzy Frechet derivative based on the fuzzy norm definition in Bag and Samanta [Bag T, Samanta SK. Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003;11(3):687-705]. The definition is divided into two part as strong and weak fuzzy Frechet derivative so that it is compatible with strong and weak fuzzy continuity of operators. Also we restate fuzzy compact operator definition of Lael and Nouroizi [Lael F, Nouroizi K. Fuzzy compact linear operators. Chaos, Solitons and Fractals 2007;34(5):1584-89] as strongly and weakly fuzzy compact by taking into account the compatibility. We prove also that weak Frechet derivative of a nonlinear weakly fuzzy compact operator is also weakly fuzzy compact.
Fuzzy Entropy： Axiomatic Definition and Neural Networks Model
Institute of Scientific and Technical Information of China (English)
QINGMing; CAOYue; HUANGTian-min
2004-01-01
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.
Application of fuzzy logic to social choice theory
Mordeson, John N; Clark, Terry D
2015-01-01
Fuzzy social choice theory is useful for modeling the uncertainty and imprecision prevalent in social life yet it has been scarcely applied and studied in the social sciences. Filling this gap, Application of Fuzzy Logic to Social Choice Theory provides a comprehensive study of fuzzy social choice theory.The book explains the concept of a fuzzy maximal subset of a set of alternatives, fuzzy choice functions, the factorization of a fuzzy preference relation into the ""union"" (conorm) of a strict fuzzy relation and an indifference operator, fuzzy non-Arrowian results, fuzzy versions of Arrow's
Fuzzy Stochastic Optimization Theory, Models and Applications
Wang, Shuming
2012-01-01
Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...
Fuzzy logic controller using different inference methods
International Nuclear Information System (INIS)
Liu, Z.; De Keyser, R.
1994-01-01
In this paper the design of fuzzy controllers by using different inference methods is introduced. Configuration of the fuzzy controllers includes a general rule-base which is a collection of fuzzy PI or PD rules, the triangular fuzzy data model and a centre of gravity defuzzification algorithm. The generalized modus ponens (GMP) is used with the minimum operator of the triangular norm. Under the sup-min inference rule, six fuzzy implication operators are employed to calculate the fuzzy look-up tables for each rule base. The performance is tested in simulated systems with MATLAB/SIMULINK. Results show the effects of using the fuzzy controllers with different inference methods and applied to different test processes
Introduction to fuzzy logic using Matlab
Sivanandam, SN; Deepa, S N
2006-01-01
Fuzzy Logic, at present is a hot topic, among academicians as well various programmers. This book is provided to give a broad, in-depth overview of the field of Fuzzy Logic. The basic principles of Fuzzy Logic are discussed in detail with various solved examples. The different approaches and solutions to the problems given in the book are well balanced and pertinent to the Fuzzy Logic research projects. The applications of Fuzzy Logic are also dealt to make the readers understand the concept of Fuzzy Logic. The solutions to the problems are programmed using MATLAB 6.0 and the simulated results are given. The MATLAB Fuzzy Logic toolbox is provided for easy reference.
Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems
Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen
Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.
Origins of evolutionary transitions
Indian Academy of Sciences (India)
2014-03-15
Mar 15, 2014 ... ... of events: 'Entities that were capable of independent replication ... There have been many major evolutionary events that this definition of .... selection at level x to exclusive selection at x – will probably require a multiplicity ...
Evolutionary relationships among Astroviridae
Lukashov, Vladimir V.; Goudsmit, Jaap
2002-01-01
To study the evolutionary relationships among astroviruses, all available sequences for members of the family Astroviridae were collected. Phylogenetic analysis distinguished two deep-rooted groups: one comprising mammalian astroviruses, with ovine astrovirus being an outlier, and the other
Evolutionary Multiplayer Games
Gokhale, Chaitanya S.; Traulsen, Arne
2014-01-01
Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\\ increase less than linear wi...
Outdoor altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID
Wicaksono, H.; Yusuf, Y. G.; Kristanto, C.; Haryanto, L.
2017-11-01
This paper presents a design of altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID. This practical design is implemented outdoor. Barometric and sonar sensor were used in this experiment as an input for the controller YoHe. The throttle signal as a control input was provided by the controller to leveling QuadRotor in particular altitude and known well as altitude stabilization. The parameter of type-2 fuzzy and fuzzy PID was tuned in several heights to get the best control parameter for any height. Type-2 fuzzy produced better result than fuzzy PID but had a slow response in the beginning.
Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties
Ma, Shengquan; Li, Shenggang
2014-01-01
Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
Directory of Open Access Journals (Sweden)
Bajat Branislav
2007-01-01
Full Text Available A period of fifty years has been reached since the introduction of the first applications based upon geographical information systems (GIS. GIS has not only influenced the development of methods, collection techniques, processing, manipulation and visualization of spatial data. It influenced also the expansion of scientific research in geosciences, as well as the technical disciplines that are engaged in spatial analysis. Nowadays, GIS is becoming the tool for verification and practical implementation of models and algorithms that have been developed within the frame of basic scientific disciplines. The meaning of the GIS acronym is becoming more and more related to term of Geographical or Geo Information Sciences. Scientific concepts that are increasingly applied in GIS are more emphasized in that way. GIS computational techniques, required also the development of geographical data models that should effectively support GIS operations. These models represent formal equivalents of conceptual models used by people in observing geographic phenomena. Spatial phenomena used to be mapped as clearly defined points with known coordinates, or as lines which connect the very same points, or as polygons with exactly defined borders. They were mapped previously in analog form and nowadays in digital format. This approach of perceiving a space, data analyses and visualization of spatial quires is limited on the application of basic rules of Boolean algebra and binary logic, with final results presented as classical thematic maps. The need for a mathematical model that would describe uncertainty of spatial data, resulted in the introduction of the theory of fuzzy sets in spatial analysis. Moreover, this model will provide a solution for visualization and grouping up of spatial phenomena in classes which do not have clearly defined borders.
Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System
A. Hajizadeh; F. Hassanzadeh
2013-01-01
This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...
Directory of Open Access Journals (Sweden)
JuanM. Medina
2012-08-01
Full Text Available This paper proposes a parameterized definition for fuzzy comparators on complex fuzzy datatypes like fuzzy collections with conjunctive semantics and fuzzy objects. This definition and its implementation on a Fuzzy Object-Relational Database Management System (FORDBMS provides the designer with a powerful tool to adapt the behavior of these operators to the semantics of the considered application.
Czech Academy of Sciences Publication Activity Database
Kroupa, Tomáš
2008-01-01
Roč. 159, č. 14 (2008), s. 1773-1787 ISSN 0165-0114 R&D Projects: GA MŠk 1M0572; GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10750506 Keywords : filter * prime filter * fuzzy class theory Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
Structural Completeness in Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Metcalfe, G.
2009-01-01
Roč. 50, č. 2 (2009), s. 153-183 ISSN 0029-4527 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : structral logics * fuzzy logics * structural completeness * admissible rules * primitive variety * residuated lattices Subject RIV: BA - General Mathematics
Fuzzy Querying: Issues and Perspectives..
Czech Academy of Sciences Publication Activity Database
Kacprzyk, J.; Pasi, G.; Vojtáš, Peter; Zadrozny, S.
2000-01-01
Roč. 36, č. 6 (2000), s. 605-616 ISSN 0023-5954 Institutional research plan: AV0Z1030915 Keywords : flexible querying * information retrieval * fuzzy databases Subject RIV: BA - General Mathematics http://dml.cz/handle/10338.dmlcz/135376
International Nuclear Information System (INIS)
Pilotto, F.; Vasconcellos, C.A.Z.; Coelho, H.T.
2001-01-01
In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)
Energy Technology Data Exchange (ETDEWEB)
Pilotto, F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Coelho, H.T. [Pernambuco Univ., Recife, PE (Brazil). Inst. de Fisica
2001-07-01
In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)
Fuzzy audit risk modeling algorithm
Directory of Open Access Journals (Sweden)
Zohreh Hajihaa
2011-07-01
Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.
Comparing clustering models in bank customers: Based on Fuzzy relational clustering approach
Directory of Open Access Journals (Sweden)
Ayad Hendalianpour
2016-11-01
Full Text Available Clustering is absolutely useful information to explore data structures and has been employed in many places. It organizes a set of objects into similar groups called clusters, and the objects within one cluster are both highly similar and dissimilar with the objects in other clusters. The K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms are the most popular clustering algorithms for their easy implementation and fast work, but in some cases we cannot use these algorithms. Regarding this, in this paper, a hybrid model for customer clustering is presented that is applicable in five banks of Fars Province, Shiraz, Iran. In this way, the fuzzy relation among customers is defined by using their features described in linguistic and quantitative variables. As follows, the customers of banks are grouped according to K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms and the proposed Fuzzy Relation Clustering (FRC algorithm. The aim of this paper is to show how to choose the best clustering algorithms based on density-based clustering and present a new clustering algorithm for both crisp and fuzzy variables. Finally, we apply the proposed approach to five datasets of customer's segmentation in banks. The result of the FCR shows the accuracy and high performance of FRC compared other clustering methods.
A location-routing problem model with multiple periods and fuzzy demands
Directory of Open Access Journals (Sweden)
Ali Nadizadeh
2014-08-01
Full Text Available This paper puts forward a dynamic capacitated location-routing problem with fuzzy demands (DCLRP-FD. It is given on input a set of identical vehicles (each having a capacity, a fixed cost and availability level, a set of depots with restricted capacities and opening costs, a set of customers with fuzzy demands, and a planning horizon with multiple periods. The problem consists of determining the depots to be opened only in the first period of the planning horizon, the customers and the vehicles to be assigned to each opened depot, and performing the routes that may be changed in each time period due to fuzzy demands. A fuzzy chance-constrained programming (FCCP model has been designed using credibility theory and a hybrid heuristic algorithm with four phases is presented in order to solve the problem. To obtain the best value of the fuzzy parameters of the model and show the influence of the availability level of vehicles on final solution, some computational experiments are carried out. The validity of the model is then evaluated in contrast with CLRP-FD's models in the literature. The results indicate that the model and the proposed algorithm are robust and could be used in real world problems.
From hybrid swarms to swarms of hybrids
Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber
2014-01-01
Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.
Fuzzy logic applied to prospecting for areas for installation of wood panel industries.
Dos Santos, Alexandre Rosa; Paterlini, Ewerthon Mattos; Fiedler, Nilton Cesar; Ribeiro, Carlos Antonio Alvares Soares; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Juvanhol, Ronie Silva; Branco, Elvis Ricardo Figueira; Mota, Pedro Henrique Santos; da Silva, Lilianne Gomes; Pirovani, Daiani Bernardo; de Jesus, Waldir Cintra; Santos, Ana Carolina de Albuquerque; Leite, Helio Garcia; Iwakiri, Setsuo
2017-05-15
Prospecting for suitable areas for forestry operations, where the objective is a reduction in production and transportation costs, as well as the maximization of profits and available resources, constitutes an optimization problem. However, fuzzy logic is an alternative method for solving this problem. In the context of prospecting for suitable areas for the installation of wood panel industries, we propose applying fuzzy logic analysis for simulating the planting of different species and eucalyptus hybrids in Espírito Santo State, Brazil. The necessary methodological steps for this study are as follows: a) agriclimatological zoning of different species and eucalyptus hybrids; b) the selection of the vector variables; c) the application of the Euclidean distance to the vector variables; d) the application of fuzzy logic to matrix variables of the Euclidean distance; and e) the application of overlap fuzzy logic to locate areas for installation of wood panel industries. Among all the species and hybrids, Corymbia citriodora showed the highest percentage values for the combined very good and good classes, with 8.60%, followed by Eucalyptus grandis with 8.52%, Eucalyptus urophylla with 8.35% and Urograndis with 8.34%. The fuzzy logic analysis afforded flexibility in prospecting for suitable areas for the installation of wood panel industries in the Espírito Santo State can bring great economic and social benefits to the local population with the generation of jobs, income, tax revenues and GDP increase for the State and municipalities involved. The proposed methodology can be adapted to other areas and agricultural crops. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fuzzy Evidence in Identification, Forecasting and Diagnosis
Rotshtein, Alexander P
2012-01-01
The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...
Fuzzy tree automata and syntactic pattern recognition.
Lee, E T
1982-04-01
An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Design of Multiregional Supervisory Fuzzy PID Control of pH Reactors
Directory of Open Access Journals (Sweden)
Shebel AlSabbah
2015-01-01
Full Text Available This work concerns designing multiregional supervisory fuzzy PID (Proportional-Integral-Derivative control for pH reactors. The proposed work focuses, mainly, on two themes. The first one is to propose a multiregional supervisory fuzzy-based cascade control structure. It would enable modifying dynamics and enhance system’s stability. The fuzzy system (master loop has been chosen as a tuner for PID controller (slave loop. It takes into consideration parameters uncertainties and reference tracking. The second theme concerns designing a hybrid neural network-based pH estimator. The proposed estimator would overcome the industrial drawbacks, that is, cost and size, found with conventional methods for pH measurement. The final end-user-interface (EUI front panel and the results that evaluate the performance of the supervisory fuzzy PID-based control system and hybrid NN-based estimator have been presented using the compatibility found between LabView and MatLab. They lead to conclude that the proposed algorithms are appropriate to systems nonlinearities encountered with pH reactors.
A brief introduction to continuous evolutionary optimization
Kramer, Oliver
2014-01-01
Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel ...
A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network
Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed
This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.
On fuzzy quasi continuity and an application of fuzzy set theory
Mahmoud, R A
2003-01-01
Where as classical topology has been developed closely connected with classical analysis describing topological phenomena in analysis, fuzzy topology with its important application in quantum gravity indicated by Witten and Elnaschie, has only been introduced as an analogue of the classical topology. The development of fuzzy topology without close relations to analytical problems did not give the possibility of testing successfully the applicability of the new notions and results. Till now this situation did not change, essentially. Although, many types of fuzzy sets and fuzzy functions having the quasi-property in both of weak and strong than openness and continuity, respectively, have been studied in detail. Many properties on fuzzy topological spaces such as compactness are discussed via fuzzy notion. While others are far from being completely devoted in its foundation. So, this paper is devoted to present a new class of fuzzy quasi-continuous functions via fuzzy compactness has been defined. Some characte...
Influence of fuzzy norms and other heuristics on "Mixed fuzzy rule formation" - [Corrigendum
Gabriel, Thomas R.; Berthold, Michael R.
2008-01-01
We hereby correct an error in Ref. [2], in which we studied the influence of various parameters that affect the generalization performance of fuzzy models constructed using the mixed fuzzy rule formation method [1].
Proteomics in evolutionary ecology.
Baer, B; Millar, A H
2016-03-01
Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein
Applying evolutionary anthropology.
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.
Applying Evolutionary Anthropology
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561
Rapid evolution in contemporary time can result when related species, brought together through human-aided introduction, hybridize. The evolutionary consequences of post introduction hybridization range from allopolyploid speciation to extinction of species through genetic amalg...
Widespread hybridization and bidirectional introgression in sympatric species of coral reef fish
Harrison, Hugo B.; Berumen, Michael L.; Saenz-Agudelo, Pablo; Salas, Eva; Williamson, David H.; Jones, Geoffrey P.
2017-01-01
interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary
Transgressive Hybrids as Hopeful Monsters.
Dittrich-Reed, Dylan R; Fitzpatrick, Benjamin M
2013-06-01
The origin of novelty is a critical subject for evolutionary biologists. Early geneticists speculated about the sudden appearance of new species via special macromutations, epitomized by Goldschmidt's infamous "hopeful monster". Although these ideas were easily dismissed by the insights of the Modern Synthesis, a lingering fascination with the possibility of sudden, dramatic change has persisted. Recent work on hybridization and gene exchange suggests an underappreciated mechanism for the sudden appearance of evolutionary novelty that is entirely consistent with the principles of modern population genetics. Genetic recombination in hybrids can produce transgressive phenotypes, "monstrous" phenotypes beyond the range of parental populations. Transgressive phenotypes can be products of epistatic interactions or additive effects of multiple recombined loci. We compare several epistatic and additive models of transgressive segregation in hybrids and find that they are special cases of a general, classic quantitative genetic model. The Dobzhansky-Muller model predicts "hopeless" monsters, sterile and inviable transgressive phenotypes. The Bateson model predicts "hopeful" monsters with fitness greater than either parental population. The complementation model predicts both. Transgressive segregation after hybridization can rapidly produce novel phenotypes by recombining multiple loci simultaneously. Admixed populations will also produce many similar recombinant phenotypes at the same time, increasing the probability that recombinant "hopeful monsters" will establish true-breeding evolutionary lineages. Recombination is not the only (or even most common) process generating evolutionary novelty, but might be the most credible mechanism for sudden appearance of new forms.
Minimal solution for inconsistent singular fuzzy matrix equations
Directory of Open Access Journals (Sweden)
M. Nikuie
2013-10-01
Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.
Nature-inspired design of hybrid intelligent systems
Castillo, Oscar; Kacprzyk, Janusz
2017-01-01
This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as...
Archaeogenetics in evolutionary medicine.
Bouwman, Abigail; Rühli, Frank
2016-09-01
Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.
Part E: Evolutionary Computation
DEFF Research Database (Denmark)
2015-01-01
of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...
Fuzzy systems for process identification and control
International Nuclear Information System (INIS)
Gorrini, V.; Bersini, H.
1994-01-01
Various issues related to the automatic construction and on-line adaptation of fuzzy controllers are addressed. A Direct Adaptive Fuzzy Control (this is an adaptive control methodology requiring a minimal knowledge of the processes to be coupled with) derived in a way reminiscent of neurocontrol methods, is presented. A classical fuzzy controller and a fuzzy realization of a PID controller is discussed. These systems implement a highly non-linear control law, and provide to be quite robust, even in the case of noisy inputs. In order to identify dynamic processes of order superior to one, we introduce a more complex architecture, called Recurrent Fuzzy System, that use some fuzzy internal variables to perform an inferential chaining.I
Walendziak, Andrzej
2015-01-01
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050
Analysis of inventory difference using fuzzy controllers
International Nuclear Information System (INIS)
Zardecki, A.
1994-01-01
The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented
Fuzzy associative memories for instrument fault detection
International Nuclear Information System (INIS)
Heger, A.S.
1996-01-01
A fuzzy logic instrument fault detection scheme is developed for systems having two or three redundant sensors. In the fuzzy logic approach the deviation between each signal pairing is computed and classified into three fuzzy sets. A rule base is created allowing the human perception of the situation to be represented mathematically. Fuzzy associative memories are then applied. Finally, a defuzzification scheme is used to find the centroid location, and hence the signal status. Real-time analyses are carried out to evaluate the instantaneous signal status as well as the long-term results for the sensor set. Instantaneous signal validation results are used to compute a best estimate for the measured state variable. The long-term sensor validation method uses a frequency fuzzy variable to determine the signal condition over a specific period. To corroborate the methodology synthetic data representing various anomalies are analyzed with both the fuzzy logic technique and the parity space approach. (Author)
Optical Generation of Fuzzy-Based Rules
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-01
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
Logika Fuzzy untuk Audit Sistem Informasi
Directory of Open Access Journals (Sweden)
Hari Setiabudi Husni
2013-06-01
Full Text Available The aim of this research is to study and introduce fuzzy logic into audit information system. Fuzzy logic is already adopted in other field of study. It helps decision process that incorporates subjective information and transforms it to scientific objective information which is more accepted. This research implements simulation scenario to see how fuzzy logic concept should be used in audit information process. The result shows that there is a possible concept of fuzzy logic that can be used for helping auditor in making objective decision in audit information system process. More researches needed to further explore the fuzzy logic concept such as creating the system of fuzzy logic and build application that can be used for daily information system audit process.
On Algebraic Study of Type-2 Fuzzy Finite State Automata
Directory of Open Access Journals (Sweden)
Anupam K. Singh
2017-08-01
Full Text Available Theories of fuzzy sets and type-2 fuzzy sets are powerful mathematical tools for modeling various types of uncertainty. In this paper we introduce the concept of type-2 fuzzy finite state automata and discuss the algebraic study of type-2 fuzzy finite state automata, i.e., to introduce the concept of homomorphisms between two type-2 fuzzy finite state automata, to associate a type-2 fuzzy transformation semigroup with a type-2 fuzzy finite state automata. Finally, we discuss several product of type-2 fuzzy finite state automata and shown that these product is a categorical product.
Fuzzy weakly preopen (preclosed) function in Kubiak-Sostak fuzzy topological spaces
International Nuclear Information System (INIS)
Zahran, A.M.; Abd-Allah, M. Azab.; Abd El-Rahman, Abd El-Nasser G.
2009-01-01
In this paper, we introduce and characterize fuzzy weakly preopen and fuzzy weakly preclosed functions between L-fuzzy topological spaces in Kubiak-Sostak sense and also study these functions in relation to some other types of already known functions.
Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions
Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi
2015-01-01
In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452
Evolutionary Statistical Procedures
Baragona, Roberto; Poli, Irene
2011-01-01
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a
New Definition and Properties of Fuzzy Entropy
Institute of Scientific and Technical Information of China (English)
Qing Ming; Qin Yingbing
2006-01-01
Let X = (x1,x2 ,…,xn ) and F(X) be a fuzzy set on a universal set X. A new definition of fuzzy entropy about a fuzzy set A on F(X), e*, is defined based on the order relation "≤" on [0,1/2] n. It is proved that e* is a σ-entropy under an additional requirement. Besides, some entropy formulas are presented and related properties are discussed.
Simulasi Kecepatan Kendaraan dengan Menggunakan Logika Fuzzy
Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta
2008-01-01
Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road. The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...
Simulasi Kecepatan Kendaraan Dengan Menggunakan Logika Fuzzy
Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta
2009-01-01
Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road. The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...
Fuzzy multiple linear regression: A computational approach
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
Statistical convergence on intuitionistic fuzzy normed spaces
International Nuclear Information System (INIS)
Karakus, S.; Demirci, K.; Duman, O.
2008-01-01
Saadati and Park [Saadati R, Park JH, Chaos, Solitons and Fractals 2006;27:331-44] has recently introduced the notion of intuitionistic fuzzy normed space. In this paper, we study the concept of statistical convergence on intuitionistic fuzzy normed spaces. Then we give a useful characterization for statistically convergent sequences. Furthermore, we display an example such that our method of convergence is stronger than the usual convergence on intuitionistic fuzzy normed spaces
Recent advances in fuzzy preference modelling
International Nuclear Information System (INIS)
Van de Walle, B.; De Baets, B.; Kerre, E.
1996-01-01
Preference structures are well-known mathematical concepts having numerous applications in a variety of disciplines, such as economics, sociology and psychology. The generalization of preference structures to the fuzzy case has received considerable attention over the past years. Fuzzy preference structures allow a decision maker to express degrees of preference instead of the rigid classical yes-or-no preference assignment. This paper reports on the recent insights gained into the existence, construction and characterization of these fuzzy preference structures
Fuzzy Law and the Boundaries of Secularism
Directory of Open Access Journals (Sweden)
W Menski
2010-12-01
Full Text Available The author delivered a speech at a Religare Conference. Showing his distaste for fuzzy law, he argues that "moderate secularism" is not merely another fuzzy concept, but it is "super-fuzzy", and that lawyers claiming to love certainty "have a tendency to sit in judgment over matters and even pre-judge things they know little about, including legal pluralism" leading to much irritation.
Robust Power Management Control for Stand-Alone Hybrid Power Generation System
International Nuclear Information System (INIS)
Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa
2017-01-01
This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method. (paper)
Word Similarity From Dictionaries: Inferring Fuzzy Measures From Fuzzy Graphs
Directory of Open Access Journals (Sweden)
Torra
2008-01-01
Full Text Available The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.
International Nuclear Information System (INIS)
Na, Man Gyun; Kim, Jin Weon; Lim, Dong Hyuk
2007-01-01
A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones
Meau, Yeong Pong; Ibrahim, Fatimah; Narainasamy, Selvanathan A L; Omar, Razali
2006-05-01
This study presents the development of a hybrid system consisting of an ensemble of Extended Kalman Filter (EKF) based Multi Layer Perceptron Network (MLPN) and a one-pass learning Fuzzy Inference System using Look-up Table Scheme for the recognition of electrocardiogram (ECG) signals. This system can distinguish various types of abnormal ECG signals such as Ventricular Premature Cycle (VPC), T wave inversion (TINV), ST segment depression (STDP), and Supraventricular Tachycardia (SVT) from normal sinus rhythm (NSR) ECG signal.
Fuzzy logic control for camera tracking system
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
Fuzzy sets, rough sets, multisets and clustering
Dahlbom, Anders; Narukawa, Yasuo
2017-01-01
This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making.
Equipment Selection by using Fuzzy TOPSIS Method
Yavuz, Mahmut
2016-10-01
In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.
A computationally efficient fuzzy control s
Directory of Open Access Journals (Sweden)
Abdel Badie Sharkawy
2013-12-01
Full Text Available This paper develops a decentralized fuzzy control scheme for MIMO nonlinear second order systems with application to robot manipulators via a combination of genetic algorithms (GAs and fuzzy systems. The controller for each degree of freedom (DOF consists of a feedforward fuzzy torque computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line using GAs, whereas not only the parameters but also the structure of the fuzzy system is optimized. The feedback fuzzy PD system, on the other hand, is used to keep the closed-loop stable. The rule base consists of only four rules per each DOF. Furthermore, the fuzzy feedback system is decentralized and simplified leading to a computationally efficient control scheme. The proposed control scheme has the following advantages: (1 it needs no exact dynamics of the system and the computation is time-saving because of the simple structure of the fuzzy systems and (2 the controller is robust against various parameters and payload uncertainties. The computational complexity of the proposed control scheme has been analyzed and compared with previous works. Computer simulations show that this controller is effective in achieving the control goals.
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Fuzzy logic control of nuclear power plant
International Nuclear Information System (INIS)
Yao Liangzhong; Guo Renjun; Ma Changwen
1996-01-01
The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Fuzzy set classifier for waste classification tracking
International Nuclear Information System (INIS)
Gavel, D.T.
1992-01-01
We have developed an expert system based on fuzzy logic theory to fuse the data from multiple sensors and make classification decisions for objects in a waste reprocessing stream. Fuzzy set theory has been applied in decision and control applications with some success, particularly by the Japanese. We have found that the fuzzy logic system is rather easy to design and train, a feature that can cut development costs considerably. With proper training, the classification accuracy is quite high. We performed several tests sorting radioactive test samples using a gamma spectrometer to compare fuzzy logic to more conventional sorting schemes
Application of fuzzy logic control in industry
International Nuclear Information System (INIS)
Van der Wal, A.J.
1994-01-01
An overview is given of the various ways fuzzy logic can be used to improve industrial control. The application of fuzzy logic in control is illustrated by two case studies. The first example shows how fuzzy logic, incorporated in the hardware of an industrial controller, helps to finetune a PID controller, without the operator having any a priori knowledge of the system to be controlled. The second example is from process industry. Here, fuzzy logic supervisory control is implemented in software and enhances the operation of a sintering oven through a subtle combination of priority management and deviation-controlled timing
Fuzzy control of small servo motors
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE
Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.
2015-01-01
Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168