WorldWideScience

Sample records for evolutionary design principle

  1. Evolutionary principles and their practical application.

    Science.gov (United States)

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  2. Evolutionary principles and their practical application

    DEFF Research Database (Denmark)

    Hendry, A. P.; Kinnison, M. T.; Heino, M.

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles...... are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design...... of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently...

  3. Core principles of evolutionary medicine

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  4. Core principles of evolutionary medicine: A Delphi study.

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  5. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  6. Achieving sustainable plant disease management through evolutionary principles.

    Science.gov (United States)

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. How evolutionary principles improve the understanding of human health and disease.

    Science.gov (United States)

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  8. Evolutionary multimodal optimization using the principle of locality

    KAUST Repository

    Wong, Kachun; Wu, Chunho; Mok, Ricky; Peng, Chengbin; Zhang, Zhaolei

    2012-01-01

    The principle of locality is one of the most widely used concepts in designing computing systems. To explore the principle in evolutionary computation, crowding differential evolution is incorporated with locality for multimodal optimization. Instead of generating trial vectors randomly, the first method proposed takes advantage of spatial locality to generate trial vectors. Temporal locality is also adopted to help generate offspring in the second method proposed. Temporal and spatial locality are then applied together in the third method proposed. Numerical experiments are conducted to compare the proposed methods with the state-of-the-art methods on benchmark functions. Experimental analysis is undertaken to observe the effect of locality and the synergy between temporal locality and spatial locality. Further experiments are also conducted on two application problems. One is the varied-line-spacing holographic grating design problem, while the other is the protein structure prediction problem. The numerical results demonstrate the effectiveness of the methods proposed. © 2012 Elsevier Inc. All rights reserved.

  9. Evolutionary multimodal optimization using the principle of locality

    KAUST Repository

    Wong, Kachun

    2012-07-01

    The principle of locality is one of the most widely used concepts in designing computing systems. To explore the principle in evolutionary computation, crowding differential evolution is incorporated with locality for multimodal optimization. Instead of generating trial vectors randomly, the first method proposed takes advantage of spatial locality to generate trial vectors. Temporal locality is also adopted to help generate offspring in the second method proposed. Temporal and spatial locality are then applied together in the third method proposed. Numerical experiments are conducted to compare the proposed methods with the state-of-the-art methods on benchmark functions. Experimental analysis is undertaken to observe the effect of locality and the synergy between temporal locality and spatial locality. Further experiments are also conducted on two application problems. One is the varied-line-spacing holographic grating design problem, while the other is the protein structure prediction problem. The numerical results demonstrate the effectiveness of the methods proposed. © 2012 Elsevier Inc. All rights reserved.

  10. Incorporating evolutionary principles into environmental management and policy

    DEFF Research Database (Denmark)

    Lankau, Richard; Jørgensen, Peter Søgaard; Harris, David J.

    2011-01-01

    As policymakers and managers work to mitigate the effects of rapid anthropogenic environmental changes, they need to consider organisms’ responses. In light of recent evidence that evolution can be quite rapid, this now includes evolutionary responses. Evolutionary principles have a long history...... in conservation biology, and the necessary next step for the field is to consider ways in which conservation policy makers and managers can proactively manipulate evolutionary processes to achieve their goals. In this review, we aim to illustrate the potential conservation benefits of an increased understanding...... of evolutionary history and prescriptive manipulation of three basic evolutionary factors: selection, variation, and gene flow. For each, we review and propose ways that policy makers and managers can use evolutionary thinking to preserve threatened species, combat pest species, or reduce undesirable evolutionary...

  11. Can Evolutionary Principles Explain Patterns of Family Violence?

    Science.gov (United States)

    Archer, John

    2013-01-01

    The article's aim is to evaluate the application of the evolutionary principles of kin selection, reproductive value, and resource holding power to the understanding of family violence. The principles are described in relation to specific predictions and the mechanisms underlying these. Predictions are evaluated for physical violence perpetrated…

  12. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design

    International Nuclear Information System (INIS)

    Menges, Achim

    2012-01-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies. (paper)

  13. Evolutionary engineering for industrial microbiology.

    Science.gov (United States)

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  14. The application of evolutionary medicine principles for sustainable malaria control: a scoping study.

    Science.gov (United States)

    Ocampo, Denise; Booth, Mark

    2016-07-22

    Current interventions against malaria have significantly reduced the number of people infected and the number of deaths. Concerns about emerging resistance of both mosquitoes and parasites to intervention have been raised, and questions remain about how best to generate wider knowledge of the underlying evolutionary processes. The pedagogical and research principles of evolutionary medicine may provide an answer to this problem. Eight programme managers and five academic researchers were interviewed by telephone or videoconference to elicit their first-hand views and experiences of malaria control given that evolution is a constant threat to sustainable control. Interviewees were asked about their views on the relationship between practit groups and academics and for their thoughts on whether or not evolutionary medicine may provide a solution to reported tensions. There was broad agreement that evolution of both parasites and vectors presents an obstacle to sustainable control. It was also widely agreed that through more efficient monitoring, evolution could be widely monitored. Interviewees also expressed the view that even well planned interventions may fail if the evolutionary biology of the disease is not considered, potentially making current tools redundant. This scoping study suggests that it is important to make research, including evolutionary principles, available and easily applicable for programme managers and key decision-makers, including donors and politicians. The main conclusion is that sharing knowledge through the educational and research processes embedded within evolutionary medicine has potential to relieve tensions and facilitate sustainable control of malaria and other parasitic infections.

  15. Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2017-06-01

    Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.

  16. Theory of quasi-Chaplygin unstable media and evolutionary principle for selecting spontaneous solutions

    International Nuclear Information System (INIS)

    Zhdanov, S.K.; Trubnikov, B.A.; Institut Atomnoi Energii, Moscow, USSR)

    1986-01-01

    A one-dimensional ideal gas with negative compressibility described by quasi-Chaplygin equations is discussed. Its reduction to a Laplace equation is shown, and an evolutionary principle for selecting spontaneous solutions is summarized. Three extremely simple spontaneous solutions are obtained along with multidimensional self-similar solutions. The Buneman instability in a plasma is considered as an example. 17 references

  17. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  18. Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf

    of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...

  19. Visual Design Principles: An Empirical Study of Design Lore

    Science.gov (United States)

    Kimball, Miles A.

    2013-01-01

    Many books, designers, and design educators talk about visual design principles such as balance, contrast, and alignment, but with little consistency. This study uses empirical methods to explore the lore surrounding design principles. The study took the form of two stages: a quantitative literature review to determine what design principles are…

  20. An Evolutionary Comparison of the Handicap Principle and Hybrid Equilibrium Theories of Signaling

    Science.gov (United States)

    Kane, Patrick; Zollman, Kevin J. S.

    2015-01-01

    The handicap principle has come under significant challenge both from empirical studies and from theoretical work. As a result, a number of alternative explanations for honest signaling have been proposed. This paper compares the evolutionary plausibility of one such alternative, the “hybrid equilibrium,” to the handicap principle. We utilize computer simulations to compare these two theories as they are instantiated in Maynard Smith’s Sir Philip Sidney game. We conclude that, when both types of communication are possible, evolution is unlikely to lead to handicap signaling and is far more likely to result in the partially honest signaling predicted by hybrid equilibrium theory. PMID:26348617

  1. Evolutionary design assistants for architecture

    Directory of Open Access Journals (Sweden)

    N. Onur Sönmez

    2015-04-01

    Full Text Available In its parallel pursuit of an increased competitivity for design offices and more pleasurable and easier workflows for designers, artificial design intelligence is a technical, intellectual, and political challenge. While human-machine cooperation has become commonplace through Computer Aided Design (CAD tools, a more improved collaboration and better support appear possible only through an endeavor into a kind of artificial design intelligence, which is more sensitive to the human perception of affairs. Considered as part of the broader Computational Design studies, the research program of this quest can be called Artificial / Autonomous / Automated Design (AD. The current available level of Artificial Intelligence (AI for design is limited and a viable aim for current AD would be to develop design assistants that are capable of producing drafts for various design tasks. Thus, the overall aim of this thesis is the development of approaches, techniques, and tools towards artificial design assistants that offer a capability for generating drafts for sub-tasks within design processes. The main technology explored for this aim is Evolutionary Computation (EC, and the target design domain is architecture. The two connected research questions of the study concern, first, the investigation of the ways to develop an architectural design assistant, and secondly, the utilization of EC for the development of such assistants. While developing approaches, techniques, and computational tools for such an assistant, the study also carries out a broad theoretical investigation into the main problems, challenges, and requirements towards such assistants on a rather overall level. Therefore, the research is shaped as a parallel investigation of three main threads interwoven along several levels, moving from a more general level to specific applications. The three research threads comprise, first, theoretical discussions and speculations with regard to both

  2. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  3. Justifying Design Decisions with Theory-based Design Principles

    OpenAIRE

    Schermann, Michael;Gehlert, Andreas;Pohl, Klaus;Krcmar, Helmut

    2014-01-01

    Although the role of theories in design research is recognized, we show that little attention has been paid on how to use theories when designing new artifacts. We introduce design principles as a new methodological approach to address this problem. Design principles extend the notion of design rationales that document how a design decision emerged. We extend the concept of design rationales by using theoretical hypotheses to support or object to design decisions. At the example of developing...

  4. Analog Circuit Design Optimization Based on Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Mansour Barari

    2014-01-01

    Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.

  5. Design Principles of Open Innovation Concept – Universal Design Viewpoint

    OpenAIRE

    Mustaquim, Moyen; Nyström, Tobias

    2013-01-01

    The concept of open innovation is becoming an increasingly popular topic of interest and seems to promise a lot in organizational development. However, to date there are no certain design principles that can be followed by organizations on how to use open innovation successfully. In this paper seven design principles of open innovation concept have been proposed. The derived principles are the outcome which is based on the principles of universal design. The open innovation design, based on t...

  6. Materials design principles of ancient fish armour

    Science.gov (United States)

    Bruet, Benjamin J. F.; Song, Juha; Boyce, Mary C.; Ortiz, Christine

    2008-09-01

    Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the `living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.

  7. Evolutionary experience design – the case of Otopia

    DEFF Research Database (Denmark)

    Hansen, Kenneth

    experiences with the case of “Otopia”. “Otopia” is a large scale, new media experiment, which combines the areas of computer games, sports and performance in to a spectator oriented concept; it was premiered in a dome tent at the Roskilde Festival in Denmark the summer 2005. This paper presents and discusses......The design of experiences is a complicated challenge. It might not even be possible to design such a “thing”, but only to design for it. If this is the case it could seem appropriate with an evolutionary approach. This paper introduces such an approach to the design of new public oriented...... used as a means of specifying the basic immaterial design form. This discussion leads to the suggestion of a rule-based evolutionary model for the design of situations as a practical option for designers of new spectator oriented experiences in the future The project of Otopia was supported...

  8. Principles and Criteria for Design

    DEFF Research Database (Denmark)

    Beghin, D.; Cervetto, D.; Hansen, Peter Friis

    1997-01-01

    The mandate of ISSC Committee IV.1 on principles and Criteria for Design is to report on the following:The ongoing concern for quantification of general economic and safety criteria for marine structures and for the development of appropriate principles for rational life cycle design using...

  9. Construction principles and design rules in the case of circular design

    NARCIS (Netherlands)

    Romme, A.G.L.; Endenburg, G.

    2006-01-01

    This paper proposes science-based organization design that uses construction principles and design rules to guide practitioner-academic projects. Organization science implies construction principles for creating and implementing designs. These principles serve to construct design rules that are

  10. Update heat exchanger designing principles

    International Nuclear Information System (INIS)

    Lipets, A.U.; Yampol'skij, A.E.

    1985-01-01

    Update heat exchanger design principles are analysed. Different coolant pattern in a heat exchanger are considered. It is suggested to rationally organize flow rates irregularity in it. Applying on heat exchanger designing measures on using really existing temperature and flow rate irregularities will permit to improve heat exchanger efficiency. It is expedient in some cases to artificially produce irregularities. In this connection some heat exchanger design principles must be reviewed now

  11. Regulatory RNA design through evolutionary computation and strand displacement.

    Science.gov (United States)

    Rostain, William; Landrain, Thomas E; Rodrigo, Guillermo; Jaramillo, Alfonso

    2015-01-01

    The discovery and study of a vast number of regulatory RNAs in all kingdoms of life over the past decades has allowed the design of new synthetic RNAs that can regulate gene expression in vivo. Riboregulators, in particular, have been used to activate or repress gene expression. However, to accelerate and scale up the design process, synthetic biologists require computer-assisted design tools, without which riboregulator engineering will remain a case-by-case design process requiring expert attention. Recently, the design of RNA circuits by evolutionary computation and adapting strand displacement techniques from nanotechnology has proven to be suited to the automated generation of DNA sequences implementing regulatory RNA systems in bacteria. Herein, we present our method to carry out such evolutionary design and how to use it to create various types of riboregulators, allowing the systematic de novo design of genetic control systems in synthetic biology.

  12. Principles for enabling deep secondary design

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Hansen, Magnus Rotvit Perlt

    2017-01-01

    design by analyzing two cases where secondary designers fundamentally change functionality, content and technology complexity level. The first case redesigns a decision model for agile development in an insurance company; the second creates a contingency model for choosing project management tools...... and techniques in a hospital. Our analysis of the two cases leads to the identification of four principles of design implementation that primary designers can apply to enable secondary design and four corresponding design implementation principles that secondary designers themselves need to apply....

  13. Design measures in evolutionary water cooled reactors to optimize for economic viability

    International Nuclear Information System (INIS)

    Oh, S.J.; Yu, S.K.W.; Appell, B.

    1999-01-01

    Since the mid 1980s, there have been various efforts to develop evolutionary water cooled reactors based on the current operating plant experience. To sustain and improve the economic viability, particular attention has been paid to the following aspects in developing evolutionary water cooled reactors: design simplification and increased operating margins, standardization in design as well as construction and operation, integration of operating plant insights, and consideration of safety, operability and constructability during the design stage. This paper reviews each item and discusses several examples from some of the evolutionary water cooled reactors being developed. (author)

  14. An evolutionary reduction principle for mutation rates at multiple Loci.

    Science.gov (United States)

    Altenberg, Lee

    2011-06-01

    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (Evolutionary Biology, vol. 14, pp. 61-204, 1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models.A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface-a generalization of the hyperplane found by Zhivotovsky et al. (Proc. Natl. Acad. Sci. USA 91, 1079-1083, 1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance.Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.

  15. RFID design principles

    CERN Document Server

    Lehpamer, Harvey

    2012-01-01

    This revised edition of the Artech House bestseller, RFID Design Principles, serves as an up-to-date and comprehensive introduction to the subject. The second edition features numerous updates and brand new and expanded material on emerging topics such as the medical applications of RFID and new ethical challenges in the field. This practical book offers you a detailed understanding of RFID design essentials, key applications, and important management issues. The book explores the role of RFID technology in supply chain management, intelligent building design, transportation systems, military

  16. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    Science.gov (United States)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural

  17. Y-12 Sustainable Design Principles for Building Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. G.

    2008-11-01

    B&W Y-12 is committed to modernizing the Y-12 complex to meet future needs with a sustainable and responsive infrastructure and to integrating sustainability principles and practices into Y-12 work (Y72-001, B&W Y-12 Environmental, Safety and Health Policy). This commitment to sustainability and specifically sustainable design of buildings is also incorporated into Presidential Executive Orders (EO), DOE Orders (DOE O), and goals. Sustainable building design is an approach to design, construct, and operate facilities in an efficient and environmentally sound manner that will produce a healthful, resource-efficient and productive working environment that is inherently protective of the environment. The DOE has established the following 5 Guiding Principles for High Performance Sustainable Building (HPSB), and has issued directives that require Y-12 to incorporate the principles and a number of supporting specific practices and techniques into building design, construction and renovation projects: (1) Employ Integrated Design Principles; (2) Optimize Energy Performance; (3) Protect and Conserve Water; (4) Enhance Indoor Environmental Quality; and (5) Reduce Environmental Impact of Materials. The purpose of this document is to present the required sustainable building principles, practices and techniques, summarize the key drivers for incorporating them into Y-12 projects, and present additional recommendations and resources that can be used to support sustainable buildings to enhance the environmental and economic performance of the Y-12 Complex.

  18. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    Science.gov (United States)

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The great opportunity: Evolutionary applications to medicine and public health.

    Science.gov (United States)

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for

  20. Evolutionary Robotics: What, Why, and Where to

    Directory of Open Access Journals (Sweden)

    Stephane eDoncieux

    2015-03-01

    Full Text Available Evolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of evolution based on a new kind of experimentalism. The use of robots as a substrate can help address questions that are difficult, if not impossible, to investigate through computer simulations or biological studies. In this paper we consider the main achievements of evolutionary robotics, focusing particularly on its contributions to both engineering and biology. We briefly elaborate on methodological issues, review some of the most interesting findings, and discuss important open issues and promising avenues for future work.

  1. Design Principles for Closed Loop Supply Chains

    NARCIS (Netherlands)

    H.R. Krikke (Harold); C.P. Pappis (Costas); G.T. Tsoulfas; J.M. Bloemhof-Ruwaard (Jacqueline)

    2001-01-01

    textabstractIn this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the

  2. Optimality principles in the regulation of metabolic networks

    NARCIS (Netherlands)

    Berkhout, J.; Bruggeman, F.J.; Teusink, B.

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks

  3. General design safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide provides the safety principles and the approach that have been used to implement the Code in the Safety Guides. These safety principles and the approach are tied closely to the safety analyses needed to assist the design process, and are used to verify the adequacy of nuclear power plant designs. This Guide also provides a framework for the use of other design Safety Guides. However, although it explains the principles on which the other Safety Guides are based, the requirements for specific applications of these principles are mostly found in the other Guides

  4. Game Design Principles based on Human Error

    Directory of Open Access Journals (Sweden)

    Guilherme Zaffari

    2016-03-01

    Full Text Available This paper displays the result of the authors’ research regarding to the incorporation of Human Error, through design principles, to video game design. In a general way, designers must consider Human Error factors throughout video game interface development; however, when related to its core design, adaptations are in need, since challenge is an important factor for fun and under the perspective of Human Error, challenge can be considered as a flaw in the system. The research utilized Human Error classifications, data triangulation via predictive human error analysis, and the expanded flow theory to allow the design of a set of principles in order to match the design of playful challenges with the principles of Human Error. From the results, it was possible to conclude that the application of Human Error in game design has a positive effect on player experience, allowing it to interact only with errors associated with the intended aesthetics of the game.

  5. Generating minimal living systems from non-living materials and increasing their evolutionary abilities

    DEFF Research Database (Denmark)

    Rasmussen, Steen; Constantinescu, Adi; Svaneborg, Carsten

    2016-01-01

    We review lessons learned about evolutionary transitions from a bottom up construction of minimal life. We use a particular systemic protocell design process as a starting point for exploring two fundamental questions: (1) how may minimal living systems emerge from nonliving materials? - and (2......) how may minimal living systems support increasingly more evolutionary richness? Under (1) we present what has been accomplished so far and discuss the remaining open challenges and their possible solutions. Under (2) we present a design principle we have utilized successfully both for our...

  6. Evolutionary optimization and game strategies for advanced multi-disciplinary design applications to aeronautics and UAV design

    CERN Document Server

    Periaux, Jacques; Lee, Dong Seop Chris

    2015-01-01

    Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...

  7. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  8. A Novel Evolutionary Engineering Design Approach for Mixed-Domain Systems

    DEFF Research Database (Denmark)

    Fan, Zhun; Hu, J.; Seo, K.

    2004-01-01

    This paper presents an approach to engineering design of mixed-domain dynamic systems. The approach aims at system-level design and has two key features: first, it generates engineering designs that satisfy predefined specifications in an automatic manner; second, it can design systems belonging ...... often encountered in evolutionary computation, a HFC (Hierarchical Fair Competition) model is adopted in this work. Examples of an analog filter design and a MEM filter design illustrate the application of the approach....

  9. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  10. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  11. Evolutionary Science as a Method to Facilitate Higher Level Thinking and Reasoning in Medical Training.

    Science.gov (United States)

    Graves, Joseph L; Reiber, Chris; Thanukos, Anna; Hurtado, Magdalena; Wolpaw, Terry

    2016-10-15

    Evolutionary science is indispensable for understanding biological processes. Effective medical treatment must be anchored in sound biology. However, currently the insights available from evolutionary science are not adequately incorporated in either pre-medical or medical school curricula. To illuminate how evolution may be helpful in these areas, examples in which the insights of evolutionary science are already improving medical treatment and ways in which evolutionary reasoning can be practiced in the context of medicine are provided. In order to facilitate the learning of evolutionary principles, concepts derived from evolutionary science that medical students and professionals should understand are outlined. These concepts are designed to be authoritative and at the same time easily accessible for anyone with the general biological knowledge of a first-year medical student. Thus we conclude that medical practice informed by evolutionary principles will be more effective and lead to better patient outcomes.Furthermore, it is argued that evolutionary medicine complements general medical training because it provides an additional means by which medical students can practice the critical thinking skills that will be important in their future practice. We argue that core concepts from evolutionary science have the potential to improve critical thinking and facilitate more effective learning in medical training. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  12. Symbiotic architecture: Redefinition of recycling design principles

    OpenAIRE

    Milan Šijaković; Ana Perić

    2018-01-01

    The study seeks to examine the possibility of implementing the biological concept of symbiosis into the field of architecture for redefining the design principles of architectural recycling. Through an in-depth analysis of the biological concept of symbiosis (i.e., a close and often long-term interaction between two or more different biological species and the criteria that govern the differentiation between symbiotic associations), three redefined design principles of recycling—commensalism,...

  13. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    Science.gov (United States)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  14. Teaching geometrical principles to design students

    Directory of Open Access Journals (Sweden)

    Christoph Bartneck

    2009-12-01

    Full Text Available We propose a new method of teaching the principles of geometry to design students. The students focus on a field of design in which geometry is the design: tessellation. We review different approaches to geometry and the field of tessellation before we discuss the setup of the course. Instead of employing 2D drawing tools, such as Adobe Illustrator, the students define their tessellation in mathematical formulas, using the Mathematica software. This procedure enables them to understand the mathematical principles on which graphical tools, such as Illustrator are built upon. But we do not stop at a digital representation of their tessellation design we continue to cut their tessellations in Perspex. It moves the abstract concepts of math into the real world, so that the students can experience them directly, which provides a tremendous reward to the students.

  15. Teaching geometrical principles to design students

    NARCIS (Netherlands)

    Feijs, L.M.G.; Bartneck, C.

    2009-01-01

    We propose a new method of teaching the principles of geometry to design students. The students focus on a field of design in which geometry is the design: tessellation. We review different approaches to geometry and the field of tessellation before we discuss the setup of the course. Instead of

  16. Analog Group Delay Equalizers Design Based on Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    M. Laipert

    2006-04-01

    Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.

  17. Principles of modern digital design

    CERN Document Server

    Lala, Parag K

    2007-01-01

    A major objective of this book is to fill the gap between traditional logic design principles and logic design/optimization techniques used in practice. Over the last two decades several techniques for computer-aided design and optimization of logic circuits have been developed. However, underlying theories of these techniques are inadequately covered or not covered at all in undergraduate text books. This book covers not only the ""classical"" material found in current text books but also selected materials that modern logic designers need to be familiar with.

  18. Multi-objective evolutionary optimisation for product design and manufacturing

    CERN Document Server

    2011-01-01

    Presents state-of-the-art research in the area of multi-objective evolutionary optimisation for integrated product design and manufacturing Provides a comprehensive review of the literature Gives in-depth descriptions of recently developed innovative and novel methodologies, algorithms and systems in the area of modelling, simulation and optimisation

  19. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Fundamental Principles of Alarm Design

    DEFF Research Database (Denmark)

    Us, Tolga; Jensen, Niels; Lind, Morten

    2011-01-01

    Traditionally alarms are designed on the basis of empirical guidelines rather than on a sound scientific framework rooted in a theoretical foundation for process and control system design. This paper proposes scientific principles and a methodology for design of alarms based on a functional...... be applied to any engineering system which can be modeled by MFM. The methodology provides a set of alarms which can facilitate event interpretation and operator support for abnormal situation management. The proposed design methodology provides the information content of the alarms, but does not deal...

  1. Enhancing the Therapy Experience Using Principles of Video Game Design.

    Science.gov (United States)

    Folkins, John Wm; Brackenbury, Tim; Krause, Miriam; Haviland, Allison

    2016-02-01

    This article considers the potential benefits that applying design principles from contemporary video games may have on enhancing therapy experiences. Six principles of video game design are presented, and their relevance for enriching clinical experiences is discussed. The motivational and learning benefits of each design principle have been discussed in the education literature as having positive impacts on student motivation and learning and are related here to aspects of clinical practice. The essential experience principle suggests connecting all aspects of the experience around a central emotion or cognitive connection. The discovery principle promotes indirect learning in focused environments. The risk-taking principle addresses the uncertainties clients face when attempting newly learned skills in novel situations. The generalization principle encourages multiple opportunities for skill transfer. The reward system principle directly relates to the scaffolding of frequent and varied feedback in treatment. Last, the identity principle can assist clients in using their newly learned communication skills to redefine self-perceptions. These principles highlight areas for research and interventions that may be used to reinforce or advance current practice.

  2. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  3. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    Science.gov (United States)

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  4. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    Science.gov (United States)

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  5. Design Principles for Augmented Reality Learning

    Science.gov (United States)

    Dunleavy, Matt

    2014-01-01

    Augmented reality is an emerging technology that utilizes mobile, context-aware devices (e.g., smartphones, tablets) that enable participants to interact with digital information embedded within the physical environment. This overview of design principles focuses on specific strategies that instructional designers can use to develop AR learning…

  6. Urban Environment Development based on Universal Design Principles

    Science.gov (United States)

    Harsritanto, Bangun Ir

    2018-02-01

    Universal Design is a design which facilitated full range of human diversity. By applying Universal design principles, urban environment can be more functional and more user-friendly for everyone. This study examined five urban streets of South Korea as a country experienced on developing various urban street designs based on universal design. This study aimed to examine and compare the South Korea cases using seven principles of universal design. The research methods of this study are literature study, case study, and site observation. The results of this study are: South Korea cases are good practices, urgency of implementing the direction into local regulations; and change of urban development paradigm.

  7. Robust design principles for reducing variation in functional performance

    DEFF Research Database (Denmark)

    Christensen, Martin Ebro; Howard, Thomas J.

    2016-01-01

    This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability and percei......This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability...... and perceived quality of a product and efforts should be made to minimise it. The design principles are identified by a systematic decomposition of the Taguchi Transfer Function in combination with the use of existing literature and the authors’ experience. The paper presents 15 principles and describes...... their advantages and disadvantages along with example cases. Subsequently, the principles are classified based on their applicability in the various development and production stages. The VRP are to be added to existing robust design methodologies, helping the designer to think beyond robust design tool and method...

  8. Structuring Principles for the Designer

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    1998-01-01

    This paper suggests a list of structuring principles that support the designer in making alternative concepts for product architectures. Different architectures may support different points of diversification in the product life-cycle. The aim is to balance reuse of resources and reduction...

  9. Integrating rock mechanics issues with repository design through design process principles and methodology

    International Nuclear Information System (INIS)

    Bieniawski, Z.T.

    1996-01-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as open-quotes design for manufactureclose quotes or open-quotes concurrent engineeringclose quotes are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of open-quotes Design for Constructibility and Performanceclose quotes is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance

  10. Industrial instrumentation principles and design

    CERN Document Server

    Padmanabhan, Tattamangalam R

    2000-01-01

    Pneumatic, hydraulic and allied instrumentation schemes have given way to electronic schemes in recent years thanks to the rapid strides in electronics and allied areas. Principles, design and applications of such state-of-the-art instrumentation schemes form the subject matter of this book. Through representative examples, the basic building blocks of instrumentation schemes are identified and each of these building blocks discussed in terms of its design and interface characteristics. The common generic schemes synthesized with such building blocks are dealt with subsequently. This forms the scope of Part I. The focus in Part II is on application. Displacement and allied instrumentation, force and allied instrumentation and process instrumentation in terms of temperature, flow, pressure level and other common process variables are dealt with separately and exhaustively. Despite the diversity in the sensor principles and characteristics and the variety in the applications and their environments, it is possib...

  11. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    ... with additional worked problems and new treatment approaches. It covers both the principles and theory of water treatment as well as the practical considerations of plant design and distribution...

  12. EVALUATION OF STREET FURNITURE ACCORDING TO BASIC DESIGN PRINCIPLES

    OpenAIRE

    GHORAB, Peyman; YÜCEL CAYMAZ, Gökçen Firdevs

    2014-01-01

    In the urban context, it is important to create more comfortable and livable environments with proper planning, design and application. Because aesthetic considerations are of more importance today, designing urban furniture to give a more beautiful appearance to cities is of high priority; designers and those working in related disciplines must be careful to observe these principles throughout the design process. This paper describes research conducted to review the aesthetic principles invo...

  13. Expert-guided evolutionary algorithm for layout design of complex space stations

    Science.gov (United States)

    Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu

    2017-08-01

    The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.

  14. Universal Instructional Design Principles for Moodle

    Directory of Open Access Journals (Sweden)

    Tanya Elias

    2010-05-01

    Full Text Available The paper identifies a set of universal instructional design (UID principles appropriate to distance education (DE and tailored to the needs of instructional designers and instructors teaching online. These principles are then used to assess the accessibility level of a sample online course and the availability of options in its LMS platform (Moodle to increase course accessibility. Numerous accessibility-sensitive plug-in modules are found to be available to Moodle users, though relatively few features were included in the sample course analysed. This may be because they have not been made available to instructors at the institutional level. The paper offers a series of recommendations to improve the accessibility of online DE to learners with diverse abilities, disabilities, and needs.

  15. Design principles and developmental mechanisms underlying retinal mosaics.

    Science.gov (United States)

    Reese, Benjamin E; Keeley, Patrick W

    2015-08-01

    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  16. Assessment Of Co60 Industrial Irradiators According To Basic Design Principles

    Directory of Open Access Journals (Sweden)

    El-Sayed Mohamed El Refaie

    2017-04-01

    Full Text Available Ensuring safe and easy operation providing relative uniform dose in the product and maximizing radiation utilization are the basic design principles for each Co60 industrial irradiator to maintain radiation safety. The study shows an assessment for four industrial irradiators to determine which active results were been maintained by using basic design principles. Different designs elements of the chosen irradiators have been illustrated and studied. The study shows that IRASM and ROBO industrial irradiators satisfy all basic design principles. IAEA-NR3772 irradiator maintains only two of the three basic design principles due to rotating door. Brevion irradiator satisfies only the principle of relative uniform radiation dose in product. Without affecting radiation safety this study proposes a new design of the irradiator to maximize energy utilization by adding a new track for low density products and also a static irradiation for cultural heritage beside the main track of high density products.

  17. Temporal Evolution of Design Principles in Engineering Systems: Analogies with Human Evolution

    DEFF Research Database (Denmark)

    Deb, Kalyanmoy; Bandaru, Sunith; Tutum, Cem Celal

    2012-01-01

    constructed later during optimization. Interestingly, there exists a simile between evolution of design principles with that of human evolution. Such information about the hierarchy of key design principles should enable designers to have a deeper understanding of their problems.......Optimization of an engineering system or component makes a series of changes in the initial random solution(s) iteratively to form the final optimal shape. When multiple conflicting objectives are considered, recent studies on innovization revealed the fact that the set of Pareto-optimal solutions...... portray certain common design principles. In this paper, we consider a 14-variable bi-objective design optimization of a MEMS device and identify a number of such common design principles through a recently proposed automated innovization procedure. Although these design principles are found to exist...

  18. Design Principles for Achieving Integrated Healthcare Information Systems

    DEFF Research Database (Denmark)

    Jensen, Tina Blegind

    2013-01-01

    and Lyytinen, to examine the design principles that facilitated this smallscale project to expand and become widespread. As a result of my findings, I outline three lessons learned that emphasize: (i) principles of flexibility, (ii) expansion from the installed base through modular strategies and (iii...

  19. Using Mathematical Modeling and Set-Based Design Principles to Recommend an Existing CVL Design

    Science.gov (United States)

    2017-09-01

    MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES TO RECOMMEND AN EXISTING CVL DESIGN by William H. Ehlies September 2017 Thesis Advisor...Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE...September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE USING MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES

  20. Integrating genomics into evolutionary medicine.

    Science.gov (United States)

    Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi

    2014-12-01

    The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Transformer design principles with applications to core-form power transformers

    CERN Document Server

    Del Vecchio, Robert M; Feeney, Mary-Ellen F

    2001-01-01

    Transformer Design Principles presents the theory of transformer operation and the methods and techniques of designing them. It emphasizes the physical principles and mathematical tools for simulating transformer behavior, including modern computer techniques. The scope of the book includes types of construction, circuit analysis, mechanical aspects of design, high voltage insulation requirements, and cooling design. The authors also address test procedures and reliability methods to assure successful design and discuss the economic analysis of designs. Summarizing material currently scattered

  2. Freud: the first evolutionary psychologist?

    Science.gov (United States)

    LeCroy, D

    2000-04-01

    An evolutionary perspective on attachment theory and psychoanalytic theory brings these two fields together in interesting ways. Application of the evolutionary principle of parent-offspring conflict to attachment theory suggests that attachment styles represent context-sensitive, evolved (adaptive) behaviors. In addition, an emphasis on offspring counter-strategies to adult reproductive strategies leads to consideration of attachment styles as overt manifestations of psychodynamic mediating processes, including the defense mechanisms of repression and reaction formation.

  3. Macro-environmental policy: Principles and design

    International Nuclear Information System (INIS)

    Huppes, G.

    1993-01-01

    The central theme of this book is how macro-environmental policy can be developed, which does not prescribe or suggest specific technologies and products bu realizes the environmental quality desired by changing the general context. The publication is composed of four main parts. The framework for analysis and the normative principles for policy design and evaluation, the first two parts, form the analytic core. The framework for analysis gives a classification of instruments in terms of permutations of a limited number of defining elements. The normative principles guide choices in instrument design and, as the flexible response strategy, guide their application in specific policies. Detailing two main new instruments (the standard method for life cycle analysis and the substance deposit, and applying the instrument strategy as developed to the cases make up the next two parts

  4. Design principles for a large RFP experiment

    International Nuclear Information System (INIS)

    Phillpott, J.; Rostagni, G.; Di Marco, J.

    1981-01-01

    An RFP experiment (RFX) has been designed by an International Design Team, by groups of collaborating physicists and engineers working in their home laboratories. This international collaborative project has been brought to an advanced stage of system and component design by the co-operation of three design teams under the co-ordination of a Design Manager, based at Culham Laboratory. The paper summaries the important design principles for an RFP device, based on the outcome of this collaborative design project

  5. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...

  6. Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment

    Science.gov (United States)

    Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.

    2018-01-01

    Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574

  7. Applying multimedia design principles enhances learning in medical education.

    Science.gov (United States)

    Issa, Nabil; Schuller, Mary; Santacaterina, Susan; Shapiro, Michael; Wang, Edward; Mayer, Richard E; DaRosa, Debra A

    2011-08-01

    The Association of American Medical Colleges' Institute for Improving Medical Education's report entitled 'Effective Use of Educational Technology' called on researchers to study the effectiveness of multimedia design principles. These principles were empirically shown to result in superior learning when used with college students in laboratory studies, but have not been studied with undergraduate medical students as participants. A pre-test/post-test control group design was used, in which the traditional-learning group received a lecture on shock using traditionally designed slides and the modified-design group received the same lecture using slides modified in accord with Mayer's principles of multimedia design. Participants included Year 3 medical students at a private, midwestern medical school progressing through their surgery clerkship during the academic year 2009-2010. The medical school divides students into four groups; each group attends the surgery clerkship during one of the four quarters of the academic year. Students in the second and third quarters served as the modified-design group (n=91) and students in the fourth-quarter clerkship served as the traditional-design group (n=39). Both student cohorts had similar levels of pre-lecture knowledge. Both groups showed significant improvements in retention (paffect transfer of learning. Further research on applying the principles of multimedia design to medical education is needed to verify the impact it has on the long-term learning of medical students, as well as its impact on other forms of multimedia instructional programmes used in the education of medical students. © Blackwell Publishing Ltd 2011.

  8. Safety principles and design criteria for nuclear power stations

    International Nuclear Information System (INIS)

    Gazit, M.

    1982-01-01

    The criteria and safety principles for the design of nuclear power stations are presented from the viewpoint of a nuclear engineer. The design, construction and operation of nuclear power stations should be carried out according to these criteria and safety principles to ensure, to a reasonable degree, that the likelihood of release of radioactivity as a result of component failure or human error should be minimized. (author)

  9. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  10. RFID Malware: Design Principles and Examples

    NARCIS (Netherlands)

    Rieback, M.R.; Simpson, P.N.D.; Crispo, B.; Tanenbaum, A.S.

    2006-01-01

    This paper explores the concept of malware for Radio Frequency Identification (RFID) systems - including RFID exploits, RFID worms, and RFID viruses. We present RFID malware design principles together with concrete examples; the highlight is a fully illustrated example of a self-replicating RFID

  11. Patterns, principles, and practices of domain-driven design

    CERN Document Server

    Millett, Scott

    2015-01-01

    Methods for managing complex software construction following the practices, principles and patterns of Domain-Driven Design with code examples in C# This book presents the philosophy of Domain-Driven Design (DDD) in a down-to-earth and practical manner for experienced developers building applications for complex domains. A focus is placed on the principles and practices of decomposing a complex problem space as well as the implementation patterns and best practices for shaping a maintainable solution space. You will learn how to build effective domain models through the use of tactical pat

  12. Evolutionary design optimization of traffic signals applied to Quito city.

    Science.gov (United States)

    Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi

    2017-01-01

    This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.

  13. Machine learning and evolutionary techniques in interplanetary trajectory design

    OpenAIRE

    Izzo, Dario; Sprague, Christopher; Tailor, Dharmesh

    2018-01-01

    After providing a brief historical overview on the synergies between artificial intelligence research, in the areas of evolutionary computations and machine learning, and the optimal design of interplanetary trajectories, we propose and study the use of deep artificial neural networks to represent, on-board, the optimal guidance profile of an interplanetary mission. The results, limited to the chosen test case of an Earth-Mars orbital transfer, extend the findings made previously for landing ...

  14. Applying Critical Scandinavian ISD research principles in an African Context

    DEFF Research Database (Denmark)

    Mengiste, Shegaw Anagaw; Tjørnehøj, Gitte

    2013-01-01

    these countries have a vast need for the technology to develop their economies and living standards. We investigate opportunities of applying Scandinavian principles for ISD&I in the context of Africa, through analyzing and comparing two action research projects that have applied two classic approaches; The Trade...... Unionist (TU) and the Activity Theory approach. We focus specifically on the principles of participation, empowerment, and evolutionary design and discuss how they can help mitigate the challenges, create opportunities and exploit possibilities of ISD&I in this context. Based on this we argue how and why...

  15. Convex hull ranking algorithm for multi-objective evolutionary algorithms

    NARCIS (Netherlands)

    Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.

    2012-01-01

    Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity

  16. Evolutionary Sound Synthesis Controlled by Gestural Data

    Directory of Open Access Journals (Sweden)

    Jose Fornari

    2011-05-01

    Full Text Available This article focuses on the interdisciplinary research involving Computer Music and Generative Visual Art. We describe the implementation of two interactive artistic systems based on principles of Gestural Data (WILSON, 2002 retrieval and self-organization (MORONI, 2003, to control an Evolutionary Sound Synthesis method (ESSynth. The first implementation uses, as gestural data, image mapping of handmade drawings. The second one uses gestural data from dynamic body movements of dance. The resulting computer output is generated by an interactive system implemented in Pure Data (PD. This system uses principles of Evolutionary Computation (EC, which yields the generation of a synthetic adaptive population of sound objects. Considering that music could be seen as “organized sound” the contribution of our study is to develop a system that aims to generate "self-organized sound" – a method that uses evolutionary computation to bridge between gesture, sound and music.

  17. Design Principles and Concepts for Enhancing Long-Term Cap Performance and Confidence

    International Nuclear Information System (INIS)

    Steven J. Piet; Robert P. Breckenridge; Gregory J. White; Jacob J. Jacobson; Hilary I. Inyang

    2005-01-01

    The siting of new landfills is becoming increasing difficult as the public and stakeholders want more confidence of performance for longer times and landfill owners want to store more waste in the least area while knowing and limiting their long-term liabilities. These changes motivate re-examination of long-term performance mechanisms and their implications for cap and barrier designs. Accordingly, in this paper we first consider design principles from the standpoint of long-term performance and management, including the ability to monitor and repair barriers. We then consider some design concepts that may implement these principles, especially evapo-transpiration (ET) caps. We suggest five design principles based on experience in the cap and barrier field as well as other engineering disciplines. These principles are as follows: (1) Establish a clear and defendable design basis. (2) Design for ease of monitoring and repair. (3) Analyze the barrier as a dynamic system, not static. (4) Work with nature, not against. (5) Recognize that increased complexity can reduce, not enhance, net performance. ET caps are an excellent embodiment of these design principles. We apply the design principles to ET caps, as well as variants such as erosion armor, capillary breaks, bio-intrusion layers, and low permeability material layers

  18. Substantially Evolutionary Theorizing in Designing Software-Intensive Systems

    Directory of Open Access Journals (Sweden)

    Petr Sosnin

    2018-04-01

    Full Text Available Useful inheritances from scientific experience open perspective ways for increasing the degree of success in designing of systems with software. One such way is a search and build applied theory that takes into account the nature of design and the specificity of software engineering. This paper presents a substantially evolutionary approach to creating the project theories, the application of which leads to positive effects that are traditionally expected from theorizing. Any implementation of the approach is based on a reflection by designers of an operational space of designing onto a semantic memory of a question-answer type. One of the results of such reflection is a system of question-answer nets, the nodes of which register facts of interactions of designers with accessible experience. A set of such facts is used by designers for creating and using the theory that belongs to the new subclass of Grounded Theories. This sub-class is oriented on organizationally behavioral features of a project’s work based on design thinking, automated mental imagination, and thought experimenting that facilitate increasing the degree of controlled intellectualization in the design process and, correspondingly, increasing the degree of success in the development of software-intensive systems.

  19. Design principles for data- and change-oriented organisational analysis in workplace health promotion.

    Science.gov (United States)

    Inauen, A; Jenny, G J; Bauer, G F

    2012-06-01

    This article focuses on organizational analysis in workplace health promotion (WHP) projects. It shows how this analysis can be designed such that it provides rational data relevant to the further context-specific and goal-oriented planning of WHP and equally supports individual and organizational change processes implied by WHP. Design principles for organizational analysis were developed on the basis of a narrative review of the guiding principles of WHP interventions and organizational change as well as the scientific principles of data collection. Further, the practical experience of WHP consultants who routinely conduct organizational analysis was considered. This resulted in a framework with data-oriented and change-oriented design principles, addressing the following elements of organizational analysis in WHP: planning the overall procedure, data content, data-collection methods and information processing. Overall, the data-oriented design principles aim to produce valid, reliable and representative data, whereas the change-oriented design principles aim to promote motivation, coherence and a capacity for self-analysis. We expect that the simultaneous consideration of data- and change-oriented design principles for organizational analysis will strongly support the WHP process. We finally illustrate the applicability of the design principles to health promotion within a WHP case study.

  20. Design principles for global commons: Natural resources and emerging technologies

    Directory of Open Access Journals (Sweden)

    Paul C. Stern

    2011-09-01

    Full Text Available Ostrom’s design principles for managing common pool resources were developed largely by examining local commons involving natural resources. This paper enumerates several key characteristics that distinguish such commons from more complex commons involving global resources and the risks of emerging technologies. It considers the degree to which the design principles transfer to those commons and concludes that although they have considerable external validity, the list needs some modification and elaboration to apply to global resources and risk commons. A list of design principles is offered for global resource commons and the risks of emerging technologies. Applying Ostrom’s approach to global resources and emerging technologies can improve understanding and expand the solution set for these problems from international treaties, top-down national regulation, and interventions in market pricing systems to include non-governmental institutions that embody principles of self-governance.

  1. Optimizing a reconfigurable material via evolutionary computation

    Science.gov (United States)

    Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.

    2015-08-01

    Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.

  2. Design principles for precision mechanisms

    CERN Document Server

    Soemers, Herman

    2011-01-01

    The successful design of mechanisms for products, tools and equipment relies on excellent concepts and properly designed details. Both are covered in this book. Many of the examples presented have been realised in practice and properly evaluated, giving the reader/designer a high level of confidence. Every example comes with the considerations underlying the application and the limitations of the particular idea. This book is based on the work started in the 1960s by W. van der Hoek at Philips in Eindhoven, the Netherlands, and subsequently continued by M.P. Koster, culminating in the Dutch-language book “Constructieprincipes” [Design principles for accurate movement and positioning]. The core of their design approach has been preserved, while theory and examples were updated and the English language was adopted to reach a broad audience within the Netherlands as well as abroad. Herman (H.M.J.R.) Soemers is associated with the University of Twente, Enschede, the Netherlands. He also works as a technolog...

  3. Design Principles for the Information Architecture of a SMET Education Digital Library.

    Science.gov (United States)

    Dong, Andy; Agogino, Alice M.

    This implementation paper introduces principles for the information architecture of an educational digital library, principles that address the distinction between designing digital libraries for education and designing digital libraries for information retrieval in general. Design is a key element of any successful product. Good designers and…

  4. Le Chatelier's principle in replicator dynamics

    Science.gov (United States)

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  5. 75 FR 80571 - Core Principles and Other Requirements for Designated Contract Markets

    Science.gov (United States)

    2010-12-22

    ... Part II Commodity Futures Trading Commission 17 CFR Parts 1, 16, and 38 Core Principles and Other... CFR Parts 1, 16, and 38 RIN 3038-AD09 Core Principles and Other Requirements for Designated Contract... Principles 1. Subpart B--Designation as Contract Market 2. Subpart C--Compliance With Rules i. Proposed Sec...

  6. The Value of the Operational Principle in Instructional Design

    Science.gov (United States)

    Gibbons, Andrew S.

    2009-01-01

    Formal design studies are increasing our insight into design processes, including those of instructional design. Lessons are being learned from other design fields, and new techniques and concepts can be imported as they are demonstrated effective. The purpose of this article is to introduce a design concept--the "operational principle"--for…

  7. Emergent features and perceptual objects: re-examining fundamental principles in analogical display design.

    Science.gov (United States)

    Holt, Jerred; Bennett, Kevin B; Flach, John M

    2015-01-01

    Two sets of design principles for analogical visual displays, based on the concepts of emergent features and perceptual objects, are described. An interpretation of previous empirical findings for three displays (bar graph, polar graphic, alphanumeric) is provided from both perspectives. A fourth display (configural coordinate) was designed using principles of ecological interface design (i.e. direct perception). An experiment was conducted to evaluate performance (accuracy and latency of state identification) with these four displays. Numerous significant effects were obtained and a clear rank ordering of performance emerged (from best to worst): configural coordinate, bar graph, alphanumeric and polar graphic. These findings are consistent with principles of design based on emergent features; they are inconsistent with principles based on perceptual objects. Some limitations of the configural coordinate display are discussed and a redesign is provided. Practitioner Summary: Principles of ecological interface design, which emphasise the quality of very specific mappings between domain, display and observer constraints, are described; these principles are applicable to the design of all analogical graphical displays.

  8. Non-Flutter Design Principle for long Span Bridges

    DEFF Research Database (Denmark)

    Johansson, Jens; Andersen, Michael Styrk; Starch Øvre, Michele

    velocity for a thin airfoil shows an asymptotical behavior. In traditional bridge design the torsional-to-vertical frequency ratio is increased to obtain higher flutter wind velocities. In the present study, we investigate, what we will label the non-flutter design principle, in which the torsional...

  9. Designing User-Computer Dialogues: Basic Principles and Guidelines.

    Science.gov (United States)

    Harrell, Thomas H.

    This discussion of the design of computerized psychological assessment or testing instruments stresses the importance of the well-designed computer-user interface. The principles underlying the three main functional elements of computer-user dialogue--data entry, data display, and sequential control--are discussed, and basic guidelines derived…

  10. Developing design principles for a Virtual Hospice: improving access to care.

    Science.gov (United States)

    Taylor, Andrea; French, Tara; Raman, Sneha

    2018-03-01

    Providing access to hospice services will become increasingly difficult due to the pressures of an ageing population and limited resources. To help address this challenge, a small number of services called Virtual Hospice have been established. This paper presents early-stage design work on a Virtual Hospice to improve access to services provided by a hospice (Highland Hospice) serving a largely remote and rural population in Scotland, UK. The study was structured as a series of Experience Labs with Highland Hospice staff, healthcare professionals and patients. Experience Labs employ a participatory design approach where participants are placed at the centre of the design process, helping to ensure that the resultant service meets their needs. Data from the Experience Labs were analysed using qualitative thematic analysis and design analysis. A number of themes and barriers to accessing Highland Hospice services were identified. In response, an initial set of seven design principles was developed. Design principles are high-level guidelines that are used to improve prioritisation and decision making during the design process by ensuring alignment with research insights. The design principles were piloted with a group of stakeholders and gained positive feedback. The design principles are intended to guide the ongoing development of the Highland Hospice Virtual Hospice. However, the challenges faced by Highland Hospice in delivering services in a largely remote and rural setting are not unique. The design principles, encompassing digital and non-digital guidelines, or the design approach could be applied by other hospices in the UK or overseas. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    Science.gov (United States)

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.

  12. Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2012-01-01

    This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...

  13. Optimality principles in the regulation of metabolic networks.

    Science.gov (United States)

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  14. Optimality Principles in the Regulation of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Jan Berkhout

    2012-08-01

    Full Text Available One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  15. Designing the Electronic Classroom: Applying Learning Theory and Ergonomic Design Principles.

    Science.gov (United States)

    Emmons, Mark; Wilkinson, Frances C.

    2001-01-01

    Applies learning theory and ergonomic principles to the design of effective learning environments for library instruction. Discusses features of electronic classroom ergonomics, including the ergonomics of physical space, environmental factors, and workstations; and includes classroom layouts. (Author/LRW)

  16. Principle design of an energy efficient transfemoral prosthesis.

    NARCIS (Netherlands)

    Veltink, P.H.; Ünal, Ramazan; Eberle, W.; Hekman, Edsko E.G.; Carloni, Raffaella; Koopman, Hubertus F.J.M.; Stramigioli, Stefano

    2009-01-01

    In the pursuit of realizing an energy efficient transfemoral prosthetic, in this paper we present a preliminary study on a principle design. In particular, the design is based on the idea that the efficiency of the system can be realized by energetically coupling the knee and the ankle joints. In

  17. A Novel Evolutionary Algorithm for Designing Robust Analog Filters

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP coupled with bond graph modeling. We applied our GP-based robust design (GPRD algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art real-parameter genetic algorithm (GA, our GPRD algorithm with a fitness criterion rewarding robustness, with respect to parameter perturbations, can evolve more robust filters than what was achieved through parameter tuning alone. We also find that inappropriate GA tuning may mislead the search process and that multiple-simulation and perturbed fitness evaluation methods for evolving robustness have complementary behaviors with no absolute advantage of one over the other.

  18. Intelligent computer systems in engineering design principles and applications

    CERN Document Server

    Sunnersjo, Staffan

    2016-01-01

    This introductory book discusses how to plan and build useful, reliable, maintainable and cost efficient computer systems for automated engineering design. The book takes a user perspective and seeks to bridge the gap between texts on principles of computer science and the user manuals for commercial design automation software. The approach taken is top-down, following the path from definition of the design task and clarification of the relevant design knowledge to the development of an operational system well adapted for its purpose. This introductory text for the practicing engineer working in industry covers most vital aspects of planning such a system. Experiences from applications of automated design systems in practice are reviewed based on a large number of real, industrial cases. The principles behind the most popular methods in design automation are presented with sufficient rigour to give the user confidence in applying them on real industrial problems. This book is also suited for a half semester c...

  19. 78 FR 32988 - Core Principles and Other Requirements for Designated Contract Markets; Correction

    Science.gov (United States)

    2013-06-03

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 38 RIN 3038-AD09 Core Principles and Other... regarding Core Principles and Other Requirements for Designated Contract Markets by inserting a missing... regarding Core Principles and Other Requirements for Designated Contract Markets (77 FR 36612, June 19, 2012...

  20. The role of rules in the evolution of the market system: Hayek’s concept of evolutionary epistemology

    Directory of Open Access Journals (Sweden)

    Krstić Miloš

    2012-01-01

    Full Text Available Starting from the concept of the Darwinian paradigm that, by using Darwin’s principles of variation, selection, and retention, all domains from biology to economic systems can be explained, the advocates of modern evolutionary epistemology have analyzed the role of thoughtful institutional design in the process of cultural evolution. In light of the issue of how human intention and evolutionary forces interact in socioeconomic processes, this paper examines the views of F. A. Hayek, the most famous follower of evolutionary epistemology, on the evolution of the market economy system. In this paper special attention will be devoted to Hayek’s concept of rational liberalism and his evolutionary epistemology. [Ministarstva nauke Republike Srbije, br. 179066: Improving the Competitiveness of the Public and Private Sectors by Networking Competences in the European Integration Process of Serbia

  1. Communications receivers principles and design

    CERN Document Server

    Rohde, Ulrich L; Zahnd, Hans

    2017-01-01

    This thoroughly updated guide offers comprehensive explanations of the science behind today’s radio receivers along with practical guidance on designing, constructing, and maintaining real-world communications systems. You will explore system planning, antennas and antenna coupling, amplifiers and gain control, filters, mixers, demodulation, digital communication, and the latest software defined radio (SDR) technology. Written by a team of telecommunication experts, Communications Receivers: Principles and Design, Fourth Edition, features technical illustrations, schematic diagrams, and detailed examples. Coverage includes: • Basic radio considerations • Radio receiver characteristics • Receiver system planning • Receiver implementation considerations • RF and baseband techniques for Software-Defined Radios • Transceiver SDR considerations • Antennas and antenna coupling • Mixers • Frequency sources and control • Ancillary receiver circuits • Performance measurement

  2. Four Principles for User Interface Design of Computerised Clinical Decision Support Systems

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Christiansen, Marion Berg; Nøhr, Christian

    2011-01-01

    emphasises a focus on how users interact with the system, a focus on how information is provided by the system, and four principles of interaction. The four principles for design of user interfaces for CDSS are summarised as four A’s: All in one, At a glance, At hand and Attention. It is recommended that all...... four interaction principles are integrated in the design of user interfaces for CDSS, i.e. the model is an integrated model which we suggest as a guide for interaction design when working with preventing medication errors....

  3. Basic principles governing the design of magnetic switches

    International Nuclear Information System (INIS)

    Birx, D.L.; Lauer, E.J.; Reginato, L.L.; Schmidt, J.; Smith, M.

    1980-01-01

    The idea of using saturable reactors as the basis of high power pulse generators is not a new concept, but there have been few recent applications of this technology. Here the principle of magnetic pulse generation is briefly described and some of the basic guidelines used to design these circuits are discussed. A demonstration of the principles by a small scale pulse amplifier is presented, and finally there is an extrapolation to a large scale system

  4. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-01-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: a problem definition phase that specifies resources and constraints composing the problem boundary values, a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives, a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them, and a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs

  5. Design principles of a web interface for monitoring tools

    International Nuclear Information System (INIS)

    Aiftimiei, C; Pra, S D; Fantinel, S; Andreozzi, S; Fattibene, E; Misurelli, G; Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A

    2008-01-01

    A monitoring tool of a complex Grid system can gather a huge amount of information that have to be presented to the users in the most comprehensive way. Moreover different types of consumers could be interested in inspecting and analyzing different subsets of data. The main goal in designing a Web interface for the presentation of monitoring information is to organize the huge amount of data in a simple, user-friendly and usable structure. One more problem is to consider different approaches, skills and interests that all the possible categories of users have in looking for the desired information. Starting from the Information Architecture guidelines for the Web, it is possible to design Web interfaces towards a closer user experience and to deal with an advanced user interaction through the implementation of many Web standard technologies. In this paper, we will present a number of principles for the design of Web interface for monitoring tools that provide a wider, richer range of possibilities for what concerns the user interaction. These principles are based on an extensive review of the current literature in Web design and on the experience with the development of the GridICE monitoring tool. The described principles can drive the evolution of the Web interface of Grid monitoring tools

  6. Implementation of the non-flutter design principle

    DEFF Research Database (Denmark)

    Andersen, Michael Styrk; Sahin, Emrah; Laustsen, Benjamin

    2014-01-01

    The non-flutter design principle is introduced. Aerodynamically stable section model tests performed by three different research groups indicate, that flutter might be avoided if the torsional-to-vertical frequency ratio is kept below 1. A case study of a suspension bridge spanning 3:7 km...

  7. Applying principles of Design For Assembly to ITER maintenance operations

    International Nuclear Information System (INIS)

    Heemskerk, Cock; de Baar, Marco; Elzendoorn, Ben; Koning, Jarich; Verhoeven, Toon; Vreede, Fred de

    2009-01-01

    In ITER, maintenance operations in the vessel and in the Hot Cell will be largely done by Remote Handling (RH). Remotely performed maintenance actions tend to be more time-costly than actions performed by direct human access. With a human operator in the control loop and adequate situational feedback, a two-armed master slave manipulator system can mimic direct access with dexterous manipulation, tactile feedback and vision. But even then, turnaround times are still very high. Adapting the design for simplified maintenance operations can yield significant time savings. One of the methods known to produce a simpler, more robust design, which is also better suited for handling with robots, is Design For Assembly (DFA). This paper discusses whether and how the principles of DFA can be applied to simplify maintenance operations for ITER. While DFA is normally used with series-production and ITER is a unique product, it is possible to apply the principles of DFA to ITER maintenance operations. Furthermore, DFA's principles can be applied at different abstraction levels. Combining principles of DFA with Virtual Reality leads to new insights and provides additional value.

  8. Two Eyes, 3D: Stereoscopic Design Principles

    Science.gov (United States)

    Price, Aaron; Subbarao, M.; Wyatt, R.

    2013-01-01

    Two Eyes, 3D is a NSF-funded research project about how people perceive highly spatial objects when shown with 2D or stereoscopic ("3D") representations. As part of the project, we produced a short film about SN 2011fe. The high definition film has been rendered in both 2D and stereoscopic formats. It was developed according to a set of stereoscopic design principles we derived from the literature and past experience producing and studying stereoscopic films. Study participants take a pre- and post-test that involves a spatial cognition assessment and scientific knowledge questions about Type-1a supernovae. For the evaluation, participants use iPads in order to record spatial manipulation of the device and look for elements of embodied cognition. We will present early results and also describe the stereoscopic design principles and the rationale behind them. All of our content and software is available under open source licenses. More information is at www.twoeyes3d.org.

  9. Design of a Blended Learning Environment Based on Merrill’s Principles

    Science.gov (United States)

    Simarmata, Janner; Djohar, Asari; Purba, Janulis; Juanda, Enjang A.

    2018-01-01

    Designing blended learning courses requires a systematic approach, in instructional design decisions and implementations, instructional principles help educators not only to specify the elements of the course, but also to provide a solid base from which to build the technology. The blended learning course was designed based on Merrill’s First Principles of Instruction with five phases. This paper helps inform educators about how to develop appropriate learning styles and preferences according to students’ learning needs.

  10. Toward Instructional Design Principles: Inducing Faraday's Law with Contrasting Cases

    Science.gov (United States)

    Kuo, Eric; Wieman, Carl E.

    2016-01-01

    Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory…

  11. Experimental application of design principles in corrosion research

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Pohlman, S.L.

    1977-01-01

    Experimental design criteria for corrosion investigations are based on established principles for systems that have uniform, or nearly uniform, corrosive attack. Scale-up or scale-down may be accomplished by proper use of dimensionless groups that measure the relative importance of interfacial kinetics, solution conductivity, and mass transfer. These principles have been applied to different fields of corrosion which include materials selection testing and protection; and to a specific corrosion problem involving attack of a substrate through holes in a protective overplate

  12. 10 CFR 435.6 - Sustainable principles for siting, design and construction. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sustainable principles for siting, design and construction. [Reserved] 435.6 Section 435.6 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS...-Rise Residential Buildings. § 435.6 Sustainable principles for siting, design and construction...

  13. 10 CFR 433.6 - Sustainable principles for siting, design and construction. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sustainable principles for siting, design and construction. [Reserved] 433.6 Section 433.6 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS... BUILDINGS § 433.6 Sustainable principles for siting, design and construction. [Reserved] ...

  14. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-07-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: (1) a problem definition phase that specifies resources and constraints composing the problem boundary values; (2) a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives; (3) a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them; and (4) a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs. 6 references, 4 figures, 5 tables

  15. Evolutionary optimization methods for accelerator design

    Science.gov (United States)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained

  16. Design Principles for E-Government Architectures

    Science.gov (United States)

    Sandoz, Alain

    The paper introduces a holistic approach for architecting systems which must sustain the entire e-government activity of a public authority. Four principles directly impact the architecture: Legality, Responsibility, Transparency, and Symmetry leading to coherent representations of the architecture for the client, the designer and the builder. The approach enables to deploy multipartite, distributed public services, including legal delegation of roles and outsourcing of non mandatory tasks through PPP.

  17. Using Persuasive Design Principles in Motivational Feeling towards Children Dental Anxiety (CDA)

    Science.gov (United States)

    Salam, Sobihatun Nur-Abdul; Yahaya, Wan Ahmad Jaafar-Wan; Ali, Azillah-Mohd

    This paper is focusing the potential use of persuasive design principles in motivating children's dental anxiety. The main intention of the paper is to emphasize an attempt of how persuasive design principle can be designed into educational material using CD ROM based multimedia learning environment to overcome the CDA. Firstly, we describe a problem domain which discuss about the universal feeling of CDA and secondly the current practices in handling those negative feelings. Thirdly, the conceptual background of PMLE and how the principle has been applied in designing the information interfaces and presentation of a persuasive multimedia learning environment (PMLE) are described. Fourthly, an experimental design was used to validate the effects of prototype which assessed children dental anxiety level before and after the demonstration and utilization of a PMLE. Primary school children age between seven and nine years old are selected as respondents. Fifthly, the result of the study has revealed the feedback from children regarding baseline test and children dental anxiety test. It shows how by using persuasive design principles as an overall strategy in designing PMLE was able to motivate children feelings towards dental anxiety and could let the children behave in a good manner for dental visit in the future.

  18. Safety principles and design management of Chashma Nuclear Power Plant

    International Nuclear Information System (INIS)

    Geng Qirui; Cheng Pingdong

    1997-01-01

    The basic safety consideration and detailed design principles in the design of Chashma Nuclear Power Plant is elaborated. The management within the frame setting up by 'safety culture' and 'quality culture'

  19. The Elements and Principles of Design: A Baseline Study

    Science.gov (United States)

    Adams, Erin

    2013-01-01

    Critical to the discipline, both professionally and academically, are the fundamentals of interior design. These fundamentals include the elements and principles of interior design: the commonly accepted tools and vocabulary used to create and communicate successful interior environments. Research indicates a lack of consistency in both the…

  20. From qualification design to training design using ECVET principles

    International Nuclear Information System (INIS)

    Ceclan, Mihail; Wastin, Franck

    2017-01-01

    The Joint Research Centre of European Commission was designated in 2009 as Operating agent of European Human Resources Observatory - in Nuclear (EHRO@N). EHRO@N identified the nuclear sector's major challenges: to fill@in the 30 % gap between HR demand and supply in decommissioning and to adapt nuclear E and T system to comply more to the labour market demands. The process of nuclear training system adaptation to the labour market needs is based on the design of the flexible qualifications (unit based qualifications) using European Credit system for Vocational Education and Training (ECVET) principles. The process of ECVET implementation in the nuclear energy sector is ongoing since 2011 and is based on the strategy and road map developed by EHRO-N. The current paper presents the latest developments on the designing of training programs based on exit outcomes.

  1. From qualification design to training design using ECVET principles

    Energy Technology Data Exchange (ETDEWEB)

    Ceclan, Mihail; Wastin, Franck [European Commission Joint Research Centre, Petten (Netherlands). Directorate Nuclear Safety and Security

    2017-05-15

    The Joint Research Centre of European Commission was designated in 2009 as Operating agent of European Human Resources Observatory - in Nuclear (EHRO@N). EHRO@N identified the nuclear sector's major challenges: to fill@in the 30 % gap between HR demand and supply in decommissioning and to adapt nuclear E and T system to comply more to the labour market demands. The process of nuclear training system adaptation to the labour market needs is based on the design of the flexible qualifications (unit based qualifications) using European Credit system for Vocational Education and Training (ECVET) principles. The process of ECVET implementation in the nuclear energy sector is ongoing since 2011 and is based on the strategy and road map developed by EHRO-N. The current paper presents the latest developments on the designing of training programs based on exit outcomes.

  2. Research traditions and evolutionary explanations in medicine.

    Science.gov (United States)

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  3. Design principles for simulation games for learning clinical reasoning: A design-based research approach.

    Science.gov (United States)

    Koivisto, J-M; Haavisto, E; Niemi, H; Haho, P; Nylund, S; Multisilta, J

    2018-01-01

    Nurses sometimes lack the competence needed for recognising deterioration in patient conditions and this is often due to poor clinical reasoning. There is a need to develop new possibilities for learning this crucial competence area. In addition, educators need to be future oriented; they need to be able to design and adopt new pedagogical innovations. The purpose of the study is to describe the development process and to generate principles for the design of nursing simulation games. A design-based research methodology is applied in this study. Iterative cycles of analysis, design, development, testing and refinement were conducted via collaboration among researchers, educators, students, and game designers. The study facilitated the generation of reusable design principles for simulation games to guide future designers when designing and developing simulation games for learning clinical reasoning. This study makes a major contribution to research on simulation game development in the field of nursing education. The results of this study provide important insights into the significance of involving nurse educators in the design and development process of educational simulation games for the purpose of nursing education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Design principles and operating principles: the yin and yang of optimal functioning.

    Science.gov (United States)

    Voit, Eberhard O

    2003-03-01

    Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.

  5. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    Science.gov (United States)

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  6. Design principles for achieving integrated healthcare information systems.

    Science.gov (United States)

    Jensen, Tina Blegind

    2013-03-01

    Achieving integrated healthcare information systems has become a common goal for many countries in their pursuit of obtaining coordinated and comprehensive healthcare services. This article focuses on how a small local project termed 'Standardized pull of patient data' expanded and is now used on a large scale providing a majority of hospitals, general practitioners and citizens across Denmark with the possibility of accessing healthcare data from different electronic patient record systems and other systems. I build on design theory for information infrastructures, as presented by Hanseth and Lyytinen, to examine the design principles that facilitated this smallscale project to expand and become widespread. As a result of my findings, I outline three lessons learned that emphasize: (i) principles of flexibility, (ii) expansion from the installed base through modular strategies and (iii) identification of key healthcare actors to provide them with immediate benefits.

  7. How bioethics principles can aid design of electronic health records to accommodate patient granular control.

    Science.gov (United States)

    Meslin, Eric M; Schwartz, Peter H

    2015-01-01

    Ethics should guide the design of electronic health records (EHR), and recognized principles of bioethics can play an important role. This approach was recently adopted by a team of informaticists who are designing and testing a system where patients exert granular control over who views their personal health information. While this method of building ethics in from the start of the design process has significant benefits, questions remain about how useful the application of bioethics principles can be in this process, especially when principles conflict. For instance, while the ethical principle of respect for autonomy supports a robust system of granular control, the principles of beneficence and nonmaleficence counsel restraint due to the danger of patients being harmed by restrictions on provider access to data. Conflict between principles has long been recognized by ethicists and has even motivated attacks on approaches that state and apply principles. In this paper, we show how using ethical principles can help in the design of EHRs by first explaining how ethical principles can and should be used generally, and then by discussing how attention to details in specific cases can show that the tension between principles is not as bad as it initially appeared. We conclude by suggesting ways in which the application of these (and other) principles can add value to the ongoing discussion of patient involvement in their health care. This is a new approach to linking principles to informatics design that we expect will stimulate further interest.

  8. Devising Principles of Design for Numeracy Tasks

    Science.gov (United States)

    Geiger, Vince; Forgasz, Helen; Goos, Merrilyn; Bennison, Anne

    2014-01-01

    Numeracy is a fundamental component of the Australian National Curriculum as a General Capability identified in each F-10 subject. In this paper, we consider the principles of design necessary for the development of numeracy tasks specific to subjects other than mathematics--in this case, the subject of English. We explore the nature of potential…

  9. Reconfigurable manufacturing systems: Principles, design, and future trends

    Science.gov (United States)

    Koren, Yoram; Gu, Xi; Guo, Weihong

    2018-06-01

    Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are costeffective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.

  10. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapter 1, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  11. Bistable responses in bacterial genetic networks: Designs and dynamical consequences

    Science.gov (United States)

    Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.

    2011-01-01

    A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588

  12. Quantum Mechanics predicts evolutionary biology.

    Science.gov (United States)

    Torday, J S

    2018-07-01

    Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Evolutionary foundations for cancer biology.

    Science.gov (United States)

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  14. Design Principles of Next-Generation Digital Gaming for Education.

    Science.gov (United States)

    Squire, Kurt; Jenkins, Henry; Holland, Walter; Miller, Heather; O'Driscoll, Alice; Tan, Katie Philip; Todd, Katie.

    2003-01-01

    Discusses the rapid growth of digital games, describes research at MIT that is exploring the potential of digital games for supporting learning, and offers hypotheses about the design of next-generation educational video and computer games. Highlights include simulations and games; and design principles, including context and using information to…

  15. Literary study and evolutionary theory : A review essay.

    Science.gov (United States)

    Carroll, J

    1998-09-01

    Several recent books have claimed to integrate literary study with evolutionary biology. All of the books here considered, except Robert Storey's, adopt conceptions of evolutionary theory that are in some way marginal to the Darwinian adaptationist program. All the works attempt to connect evolutionary study with various other disciplines or methodologies: for example, with cultural anthropology, cognitive psychology, the psychology of emotion, neurobiology, chaos theory, or structuralist linguistics. No empirical paradigm has yet been established for this field, but important steps have been taken, especially by Storey, in formulating basic principles, identifying appropriate disciplinary connections, and marking out lines of inquiry. Reciprocal efforts are needed from biologists and social scientists.

  16. Le Chatelier principle in replicator dynamics

    OpenAIRE

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-01-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nas...

  17. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mechanical design of an electronic control unit using axiomatic principles

    Directory of Open Access Journals (Sweden)

    Cazacu Vlad

    2017-01-01

    Full Text Available If the engine of the car can be considered as the heart, then the E.C.U’s represents the brain of the car. Electronic control units (E.C.U’s are electronic devices which control the way different components of a car (engine, windows, airbags, etc. react in some situations (overheating, button pressed by a passenger, crash, etc.. Axiomatic design is a set of principles that theorizes the act of conceiving a new project. Based on two axiom this method comes into designers help, giving them the option to reach in a short period of time a fully functional and compliant product without supporting the design of the product on chance, past experiences or “try and fail” principle.

  19. Evolution of microbes and viruses: A paradigm shift in evolutionary biology?

    Directory of Open Access Journals (Sweden)

    Eugene V. Koonin

    2012-09-01

    Full Text Available When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain ‘ribosomal Tree of Life’ that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: i pervasive horizontal gene transfer (HGT, in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment of the Tree of Life concept, ii Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and iii evolution of evolvability, i.e. dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary

  20. First principles design of a core bioenergetic transmembrane electron-transfer protein

    Energy Technology Data Exchange (ETDEWEB)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.; Wiedman, Gregory; Moser, Christopher C.; Leslie Dutton, P.; Discher, Bohdana M.

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  1. Computer-based teaching module design: principles derived from learning theories.

    Science.gov (United States)

    Lau, K H Vincent

    2014-03-01

    The computer-based teaching module (CBTM), which has recently gained prominence in medical education, is a teaching format in which a multimedia program serves as a single source for knowledge acquisition rather than playing an adjunctive role as it does in computer-assisted learning (CAL). Despite empirical validation in the past decade, there is limited research into the optimisation of CBTM design. This review aims to summarise research in classic and modern multimedia-specific learning theories applied to computer learning, and to collapse the findings into a set of design principles to guide the development of CBTMs. Scopus was searched for: (i) studies of classic cognitivism, constructivism and behaviourism theories (search terms: 'cognitive theory' OR 'constructivism theory' OR 'behaviourism theory' AND 'e-learning' OR 'web-based learning') and their sub-theories applied to computer learning, and (ii) recent studies of modern learning theories applied to computer learning (search terms: 'learning theory' AND 'e-learning' OR 'web-based learning') for articles published between 1990 and 2012. The first search identified 29 studies, dominated in topic by the cognitive load, elaboration and scaffolding theories. The second search identified 139 studies, with diverse topics in connectivism, discovery and technical scaffolding. Based on their relative representation in the literature, the applications of these theories were collapsed into a list of CBTM design principles. Ten principles were identified and categorised into three levels of design: the global level (managing objectives, framing, minimising technical load); the rhetoric level (optimising modality, making modality explicit, scaffolding, elaboration, spaced repeating), and the detail level (managing text, managing devices). This review examined the literature in the application of learning theories to CAL to develop a set of principles that guide CBTM design. Further research will enable educators to

  2. Design Principles for Natural and Hybrid Ventilation

    OpenAIRE

    Heiselberg, Per

    2000-01-01

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation. The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples.

  3. Design Principles for Serious Video Games in Mathematics Education: From Theory to Practice

    OpenAIRE

    Konstantinos Chorianopoulos; Michail Giannakos

    2014-01-01

    There is growing interest in the employment of serious video games in science education, but there are no clear design principles. After surveying previous work in serious video game design, we highlighted the following design principles: 1) engage the students with narrative (hero, story), 2) employ familiar gameplay mechanics from popular video games, 3) engage students into constructive trial and error game-play and 4) situate collaborative learning. As illustrated examples we designed two...

  4. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapters 2--13, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  5. Representing Clarity: Using Universal Design Principles to Create Effective Hybrid Course Learning Materials

    Science.gov (United States)

    Spiegel, Cheri Lemieux

    2012-01-01

    This article describes how the author applied principles of universal design to hybrid course materials to increase student understanding and, ultimately, success. Pulling the three principles of universal design--consistency, color, and icon representation--into the author's Blackboard course allowed her to change the types of reading skills…

  6. Design for Natural Breast Augmentation: The ICE Principle.

    Science.gov (United States)

    Mallucci, Patrick; Branford, Olivier Alexandre

    2016-06-01

    The authors' published studies have helped define breast beauty in outlining key parameters that contribute to breast attractiveness. The "ICE" principle puts design into practice. It is a simplified formula for inframammary fold incision planning as part of the process for determining implant selection and placement to reproduce the 45:55 ratio previously described as fundamental to natural breast appearance. The formula is as follows: implant dimensions (I) - capacity of the breast (C) = excess tissue required (E). The aim of this study was to test the accuracy of the ICE principle for producing consistent natural beautiful results in breast augmentation. A prospective analysis of 50 consecutive women undergoing primary breast augmentation by means of an inframammary fold incision with anatomical or round implants was performed. The ICE principle was applied to all cases to determine implant selection, placement, and incision position. Changes in parameters between preoperative and postoperative digital clinical photographs were analyzed. The mean upper pole-to-lower pole ratio changed from 52:48 preoperatively to 45:55 postoperatively (p principle for surgical planning in breast augmentation that attractive natural breasts may be achieved consistently and with precision. Therapeutic, IV.

  7. Design criteria and principles for criticality detection and alarm systems

    International Nuclear Information System (INIS)

    Delafield, H.J.; Clifton, J.J.

    1984-10-01

    The report gives design principles and criteria for criticality detection and alarm systems based on earlier work and revised in the light of more recent experience. In particular, account is taken of the developments which have taken place in the field of radiation detection and in the understanding of the different types of criticality excursion. General guidance is given on the principles to apply in deciding upon the need for a criticality system. The characteristics of a criticality incident are described in terms of the minimum incident of concern, and the radiation field. Criteria for the threshold of detection of a criticality incident are then derived and the methods of detection considered. The selection and siting of criticality detectors is discussed, and design principles are given for alarm systems. Finally, testing and post-alarm procedures are outlined, followed by a summary of the principal recommendations. The supporting Appendices include a discussion of reliability and a summary of radiation detector characteristics. (author)

  8. Human Systems Interface Design Methods Using Ecological Interface Design Principles

    International Nuclear Information System (INIS)

    Hong, Seung Kweon; Park, Jung Chul; Kim, Sun Su; Sim, Kwang Pyo; Yuk, Seung Yul; Choi, Jae Hyeon; Yoon, Seung Hyun

    2009-12-01

    The results of this study categorized into two parts. The first part is the guidelines for EID designs. The procedure to observe for EID design is composed of 6 steps; 1) to define a target system, 2) to make an abstraction hierarchy model, 3) to check the link structure among each components included in the layers of abstraction hierarchy model, 4) to transform information requirements to variables, 5) to make the graphs related to each variables, 6) to check the graphs by visual display design principles and heuristic rules. The second part is an EID design alternative for nuclear power plant. The EID for high level function represents the energy balance and energy flow in each loop of nuclear power plant. The EID for middle level function represents the performance indicators of each equipment involved in the all processes of changing from coolants to steam. The EID for low level function represents the values measured in each equipment such as temperature, pressure, water level and so on

  9. Pacific Canada's Rockfish Conservation Areas: using Ostrom's design principles to assess management effectiveness

    Directory of Open Access Journals (Sweden)

    Darienne Lancaster

    2015-09-01

    Full Text Available International declines in marine biodiversity have lead to the creation of marine protected areas and fishery reserve systems. In Canada, 164 Rockfish Conservation Areas (RCAs were implemented between 2003 and 2007 and now cover 4847.2 km² of ocean. These reserves were created in response to widespread concern from fishers and nongovernmental organizations about inshore rockfish (genus Sebastes population declines. We used the design principles for effective common-pool resource management systems, originally developed by Elinor Ostrom, to assess the social and ecological effectiveness of these conservation areas more than 10 years after their initial implementation. We assessed the relative presence or absence of each design principle within current RCA management. We found that 2 of the 11 design principles were moderately present in the recreational fishery. All other design principles were lacking for the recreational sector. We found that 2 design principles were fully present and 5 were moderately present in the commercial sector. Four design principles were lacking in the commercial sector. Based on this analysis, we highlight 4 main areas for management improvement: (1 create an education and outreach campaign to explain RCA rules, regulations, boundaries, and the need for marine conservation; (2 increase monitoring of users and resources to discourage noncompliance and gather the necessary data to create social buy-in for marine conservation; (3 encourage informal nested governance through stakeholder organizations for education and self-regulation (e.g. fisher to fisher; and (4 most importantly, create a formal, decadal RCA review process to gather stakeholder input and make amendments to regulations and RCA boundaries. This information can be used to inform spatial management systems both in Canada and internationally. This analysis also contributes to a growing literature on effectively scaling up small-scale management techniques

  10. Integrating Quality Matters into Hybrid Course Design: A Principles of Marketing Case Study

    Science.gov (United States)

    Young, Mark R.

    2014-01-01

    Previous research supports the idea that the success of hybrid or online delivery modes is more a function of course design than delivery media. This article describes a case study of a hybrid Principles of Marketing course that implemented a comprehensive redesign based on design principles espoused by the Quality Matters Program, a center for…

  11. The roles and uses of design principles for developing the trialogical approach on learning

    Directory of Open Access Journals (Sweden)

    Kari Kosonen

    2011-12-01

    Full Text Available In the present paper, the development and use of a specific set of pedagogical design principles in a large research and development project are analysed. The project (the Knowledge Practices Laboratory developed technology and a pedagogical approach to support certain kinds of collaborative knowledge creation practices related to the ‘trialogical' approach on learning. The design principles for trialogical learning are examined from three main developmental perspectives that were emphasised in the project: theory, pedagogy, and technology. As expected, the design principles had many different roles but not as straightforward or overarching as was planned. In their outer form they were more resistant to big changes than was expected but they were elaborated and specified during the process. How theories change in design-based research is discussed on the basis of the analysis. Design principles are usually seen as providing a bridge between theory and practice, but the present case showed that also complementary, more concrete frameworks are needed for bridging theory to practical pedagogical or technical design solutions.

  12. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  13. Using principles of learning to inform language therapy design for children with specific language impairment.

    Science.gov (United States)

    Alt, Mary; Meyers, Christina; Ancharski, Alexandra

    2012-01-01

    Language treatment for children with specific language impairment (SLI) often takes months to achieve moderate results. Interventions often do not incorporate the principles that are known to affect learning in unimpaired learners. To outline some key findings about learning in typical populations and to suggest a model of how they might be applied to language treatment design as a catalyst for further research and discussion. Three main principles of implicit learning are reviewed: variability, complexity and sleep-dependent consolidation. After explaining these principles, evidence is provided as to how they influence learning tasks in unimpaired learners. Information is reviewed on principles of learning as they apply to impaired populations, current treatment designs are also reviewed that conform to the principles, and ways in which principles of learning might be incorporated into language treatment design are demonstrated. This paper provides an outline for how theoretical knowledge might be applied to clinical practice in an effort to promote discussion. Although the authors look forward to more specific details on how the principles of learning relate to impaired populations, there is ample evidence to suggest that these principles should be considered during treatment design. © 2012 Royal College of Speech and Language Therapists.

  14. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors.

    Science.gov (United States)

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.

  15. Testing inferences in developmental evolution: the forensic evidence principle.

    Science.gov (United States)

    Larsson, Hans C E; Wagner, Günter P

    2012-09-01

    Developmental evolution (DE) examines the influence of developmental mechanisms on biological evolution. Here we consider the question: "what is the evidence that allows us to decide whether a certain developmental scenario for an evolutionary change is in fact "correct" or at least falsifiable?" We argue that the comparative method linked with what we call the "forensic evidence principle" (FEP) is sufficient to conduct rigorous tests of DE scenarios. The FEP states that different genetically mediated developmental causes of an evolutionary transformation will leave different signatures in the development of the derived character. Although similar inference rules have been used in practically every empirical science, we expand this approach here in two ways: (1) we justify the validity of this principle with reference to a well-known result from mathematical physics, known as the symmetry principle, and (2) propose a specific form of the FEP for DE: given two or more developmental explanations for a certain evolutionary event, say an evolutionary novelty, then the evidence discriminating between these hypotheses will be found in the most proximal internal drivers of the derived character. Hence, a detailed description of the ancestral and derived states, and their most proximal developmental drivers are necessary to discriminate between various evolutionary developmental hypotheses. We discuss how this stepwise order of testing is necessary, establishes a formal test, and how skipping this order of examination may violate a more accurate examination of DE. We illustrate the approach with an example from avian digit evolution. © 2012 Wiley Periodicals, Inc.

  16. In search of design principles for developing digital learning & performance support for a student design task

    NARCIS (Netherlands)

    Bollen, Lars; Van der Meij, Hans; Leemkuil, Henny; McKenney, Susan

    2016-01-01

    A digital learning and performance support environment for university student design tasks was developed. This paper describes on the design rationale, process, and the usage results to arrive at a core set of design principles for the construction of such an environment. We present a collection of

  17. In search of design principles for developing digital learning & performance support for a student design task

    NARCIS (Netherlands)

    Bollen, Lars; van der Meij, Hans; Leemkuil, Hendrik H.; McKenney, Susan

    2015-01-01

    A digital learning and performance support environment for university student design tasks was developed. This paper describes on the design rationale, process, and the usage results to arrive at a core set of design principles for the construction of such an environment. We present a collection of

  18. Cryostat design case studies, principles and engineering

    CERN Document Server

    2016-01-01

    This book enables the reader to learn the fundamental and applied aspects of practical cryostat design by examining previous design choices and resulting cryostat performance. Through a series of extended case studies the book presents an overview of existing cryostat design covering a wide range of cryostat types and applications, including the magnet cryostats that comprise the majority of the Large Hadron Collider at CERN, space-borne cryostats containing sensors operating below 1 K, and large cryogenic liquid storage vessels. It starts with an introductory section on the principles of cryostat design including practical data and equations. This section is followed by a series of case studies on existing cryostats, describing the specific requirements of the cryostat, the challenges involved and the design choices made along with the resulting performance of the cryostat. The cryostat examples used in the studies are chosen to cover a broad range of cryostat applications and the authors of each case are ...

  19. Evolutionary public health: introducing the concept.

    Science.gov (United States)

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design was suc...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  1. Design principles of water sensitive in settlement area on the river banks

    Science.gov (United States)

    Ryanti, E.; Hasriyanti, N.; Utami, W. D.

    2018-03-01

    This research will formulate the principle of designing settlement area of Kapuas River Pontianak with the approach of water sensitive concept of urban design (WSUD) the densely populated settlement area. By using a case study the approach that is a dense settlement area located on the banks of the river with literature study techniques to formulate the aspects considered and components that are set in the design, descriptive analysis with the rationalistic paradigm for identification characteristics of the settlement in the river banks areas with consideration of WSUD elements and formulate the principles of designing water-sensitive settlement areas. This research is important to do because the problems related to the water management system in the existing riverside settlement in Pontianak has not been maximal to do. So the primary of this research contains several objectives that will be achieved that is identifying the characteristics of riverside settlement area based on consideration of design aspects of the area that are sensitive to water and the principle of designing the area so that the existing problem structure will be formulated in relation to the community’s need for infrastructure in settlement environment and formulate and develop appropriate technology guidelines for integrated water management systems in riverside settlement areas and design techniques for water-sensitive settlements (WSUD).

  2. Using Green Chemistry and Engineering Principles to Design ...

    Science.gov (United States)

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. In addition, there are several approaches and frameworks focused on demonstrating that improvements were achieved through GC&E technologies. However, the application of these principles is not always straightforward. We propose using systematic frameworks and tools that help practitioners when deciding which principles can be applied, the levels of implementation, prospective of obtaining simultaneous improvements in all sustainability aspects, and ways to deal with multiobjective problems. Therefore, this contribution aims to provide a systematic combination of three different and complementary design tools for assisting designers in evaluating, developing, and improving chemical manufacturing and material management systems under GC&E perspectives. The WAR Algorithm, GREENSCOPE, and SustainPro were employed for this synergistic approach of incorporating sustainability at early stages of process development. In this demonstration, simulated ammonia production is used as a case study to illustrate this advancement. Results show how to identify process design areas for improvements, key factors, multi-criteria decision-making solutions, and optimal tradeoffs. Finally, conclusions were pre

  3. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  4. Applying Evolutionary Anthropology

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  5. Design Principles for Cell Phone Learning in EFL

    Science.gov (United States)

    Wang, Feihong

    2010-01-01

    Cell phone learning (C-learning), as an instructional approach, has been gaining more and more attention in the field of teaching English as a foreign language (EFL) in the last 10 years. While studies have proved C-learning an effective instructional approach in research settings, a review of literature indicates the lack of design principles to…

  6. Elements and Principles of Design Posters. Teacher's Guide.

    Science.gov (United States)

    1996

    This book accompanies a poster series and allows the teacher to pre-plan a lesson or activity for students with the objectives shown for each element or principle of design to be presented. Along with a black-and-white reproduction of each poster, major concepts are discussed. Suggested student activities relating to a particular element or…

  7. Evolutionary computation in zoology and ecology.

    Science.gov (United States)

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  8. AGROECOLOGY: PRINCIPLES AND STRATEGIES FOR THE DESIGN OF SUSTAINABLE AGROECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    João Carlos Canuto

    2017-04-01

    Full Text Available The theme of this paper is the debate on principles and strategies for designing sustainable agricultural systems. The paper builds on a broad approach to principles, moving to the more specific approach to strategies and finalizing with a micro-scale perspective on the practice of drawings and the consequences of each possible option. The objective is first of all to put to the debate the dialectic between conceptual plurality and unity in Agroecology. The problem in focus is to situate more clearly what are sustainable agroecosystems and, as a consequence, how to connect principles and strategies to make them viable. Regarding the theoretical reference, we use the classic authors of Agroecology and some critical articles on the conceptual question. The methodology that gives foundation to the approach is based on the author's theoretical and practical experience, with a qualitative, subjective and intuitive character. The results are only the presentation of ideas in order to contribute to the conceptual debate now in vogue and also to glimpse, on a smaller scale, the practical issue of sustainable agroecosystems designs.

  9. Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

    Science.gov (United States)

    Kowalczuk, Zdzisław; Białaszewski, Tomasz

    2018-01-01

    A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.

  10. A study of usability principles and interface design for mobile e-books.

    Science.gov (United States)

    Wang, Chao-Ming; Huang, Ching-Hua

    2015-01-01

    This study examined usability principles and interface designs in order to understand the relationship between the intentions of mobile e-book interface designs and users' perceptions. First, this study summarised 4 usability principles and 16 interface attributes, in order to conduct usability testing and questionnaire survey by referring to Nielsen (1993), Norman (2002), and Yeh (2010), who proposed the usability principles. Second, this study used the interviews to explore the perceptions and behaviours of user operations through senior users of multi-touch prototype devices. The results of this study are as follows: (1) users' behaviour of operating an interactive interface is related to user prior experience; (2) users' rating of the visibility principle is related to users' subjective perception but not related to user prior experience; however, users' ratings of the ease, efficiency, and enjoyment principles are related to user prior experience; (3) the interview survey reveals that the key attributes affecting users' behaviour of operating an interface include aesthetics, achievement, and friendliness. This study conducts experiments to explore the effects of users’ prior multi-touch experience on users’ behaviour of operating a mobile e-book interface and users’ rating of usability principles. Both qualitative and quantitative data analyses were performed. By applying protocol analysis, key attributes affecting users’ behaviour of operation were determined.

  11. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  12. Client Mobile Software Design Principles for Mobile Learning Systems

    Directory of Open Access Journals (Sweden)

    Qing Tan

    2009-01-01

    Full Text Available In a client-server mobile learning system, client mobile software must run on the mobile phone to acquire, package, and send student’s interaction data via the mobile communications network to the connected mobile application server. The server will receive and process the client data in order to offer appropriate content and learning activities. To develop the mobile learning systems there are a number of very important issues that must be addressed. Mobile phones have scarce computing resources. They consist of heterogeneous devices and use various mobile operating systems, they have limitations with their user/device interaction capabilities, high data communications cost, and must provide for device mobility and portability. In this paper we propose five principles for designing Client mobile learning software. A location-based adaptive mobile learning system is presented as a proof of concept to demonstrate the applicability of these design principles.

  13. Directionality Theory and the Entropic Principle of Natural Selection

    Directory of Open Access Journals (Sweden)

    Lloyd A. Demetrius

    2014-10-01

    Full Text Available Darwinian fitness describes the capacity of an organism to appropriate resources from the environment and to convert these resources into net-offspring production. Studies of competition between related types indicate that fitness is analytically described by entropy, a statistical measure which is positively correlated with population stability, and describes the number of accessible pathways of energy flow between the individuals in the population. Directionality theory is a mathematical model of the evolutionary process based on the concept evolutionary entropy as the measure of fitness. The theory predicts that the changes which occur as a population evolves from one non-equilibrium steady state to another are described by the following directionality principle–fundamental theorem of evolution: (a an increase in evolutionary entropy when resource composition is diverse, and resource abundance constant; (b a decrease in evolutionary entropy when resource composition is singular, and resource abundance variable. Evolutionary entropy characterizes the dynamics of energy flow between the individual elements in various classes of biological networks: (a where the units are individuals parameterized by age, and their age-specific fecundity and mortality; where the units are metabolites, and the transitions are the biochemical reactions that convert substrates to products; (c where the units are social groups, and the forces are the cooperative and competitive interactions between the individual groups. % This article reviews the analytical basis of the evolutionary entropic principle, and describes applications of directionality theory to the study of evolutionary dynamics in two biological systems; (i social networks–the evolution of cooperation; (ii metabolic networks–the evolution of body size. Statistical thermodynamics is a mathematical model of macroscopic behavior in inanimate matter based on entropy, a statistical measure which

  14. Operationalising the Lean principles in maternity service design using 3P methodology.

    Science.gov (United States)

    Smith, Iain

    2016-01-01

    The last half century has seen significant changes to Maternity services in England. Though rates of maternal and infant mortality have fallen to very low levels, this has been achieved largely through hospital admission. It has been argued that maternity services may have become over-medicalised and service users have expressed a preference for more personalised care. NHS England's national strategy sets out a vision for a modern maternity service that continues to deliver safe care whilst also adopting the principles of personalisation. Therefore, there is a need to develop maternity services that balance safety with personal choice. To address this challenge, a maternity unit in North East England considered improving their service through refurbishment or building new facilities. Using a design process known as the production preparation process (or 3P), the Lean principles of understanding user value, mapping value-streams, creating flow, developing pull processes and continuous improvement were applied to the design of a new maternity department. Multiple stakeholders were engaged in the design through participation in a time-out (3P) workshop in which an innovative pathway and facility for maternity services were co-designed. The team created a hybrid model that they described as "wrap around care" in which the Lean concept of pull was applied to create a service and facility design in which expectant mothers were put at the centre of care with clinicians, skills, equipment and supplies drawn towards them in line with acuity changes as needed. Applying the Lean principles using the 3P method helped stakeholders to create an innovative design in line with the aspirations and objectives of the National Maternity Review. The case provides a practical example of stakeholders applying the Lean principles to maternity services and demonstrates the potential applicability of the Lean 3P approach to design healthcare services in line with policy requirements.

  15. Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools

    Science.gov (United States)

    Januszkiewicz, Krystyna; Banachowicz, Marta

    2017-10-01

    The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.

  16. Theory-generating practice. Proposing a principle for learning design

    DEFF Research Database (Denmark)

    Buhl, Mie

    2016-01-01

    This contribution proposes a principle for learning design – Theory-Generating Practice (TGP) – as an alternative to the way university courses are traditionally taught and structured, with a series of theoretical lectures isolated from practical experience and concluding with an exam or a project...... building, and takes tacit knowledge into account. The article introduces TGP, contextualizes it to a Danish tradition of didactics, and discusses it in relation to contemporary conceptual currents of didactic design and learning design. This is followed by a theoretical framing of TGP. Finally, three...

  17. Urban Principle of Water Sensitive Design in Kampung Kamboja at Pontianak City

    Science.gov (United States)

    Hasriyanti, N.; Ryanti, E.

    2017-07-01

    This study will define the design principles of settlement area banks of the Kapuas Pontianak to approach the concept of water sensitive urban design (WSUD) in densely populated residential areas. Using a case study of a region densely located on the banks of the river with engineering literature to formulate the aspects taken into consideration and the components are arranged in the design, analysis descriptive paradigm rationalistic to identify the characteristics of residential areas riverbank with consideration of elements WSUD and formulate design principles residential area that is sensitive to water. This research is important to do because of problems related to the water management system in the settlement bank of the river in the city of Pontianak do not maximize. So that the primacy of this study contains several objectives to be achieved is to identify the characteristics of the settlement area riverbanks under consideration aspects areas design that is sensitive to water and principle areas design that will formulate the structure of the existing problems related to the needs of the community infrastructure facilities infrastructure neighborhoods and formulate and create guidelines for appropriate technology for integrated water management systems in the residential area of the riverbank and engineering design for the settlements are sensitive to water (WSUD). The final aim of the study is expected to achieve water management systems in residential areas by utilizing the abundant rainwater availability by using LID (Low Impact Development) through the concept of urban design that sensitive water

  18. Evolutionary mechanics: new engineering principles for the emergence of flexibility in a dynamic and uncertain world.

    Science.gov (United States)

    Whitacre, James M; Rohlfshagen, Philipp; Bender, Axel; Yao, Xin

    2012-09-01

    Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines and traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy-the existence of multi-functional components with partially overlapping functions-is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this article reports evidence that degeneracy improves the robustness and adaptability of a simulated fleet towards unpredicted changes in task requirements without incurring costs to fleet efficiency. We find that degeneracy supports faster rates of design adaptation and ultimately leads to better fleet designs. In investigating the limitations of degeneracy as a design principle, we consider decision-making difficulties that arise from degeneracy's influence on fleet complexity. While global decision-making becomes more challenging, we also find degeneracy accommodates rapid distributed decision-making leading to (near-optimal) robust system performance. Given the range of conditions where favorable short-term and long-term performance outcomes are observed, we propose that degeneracy may fundamentally alter the propensity for adaptation and is useful within different engineering and planning contexts.

  19. Turning challenges into design principles: Telemonitoring systems for patients with multiple chronic conditions.

    Science.gov (United States)

    Sultan, Mehwish; Kuluski, Kerry; McIsaac, Warren J; Cafazzo, Joseph A; Seto, Emily

    2018-01-01

    People with multiple chronic conditions often struggle with managing their health. The purpose of this research was to identify specific challenges of patients with multiple chronic conditions and to use the findings to form design principles for a telemonitoring system tailored for these patients. Semi-structured interviews with 15 patients with multiple chronic conditions and 10 clinicians were conducted to gain an understanding of their needs and preferences for a smartphone-based telemonitoring system. The interviews were analyzed using a conventional content analysis technique, resulting in six themes. Design principles developed from the themes included that the system must be modular to accommodate various combinations of conditions, reinforce a routine, consolidate record keeping, as well as provide actionable feedback to the patients. Designing an application for multiple chronic conditions is complex due to variability in patient conditions, and therefore, design principles developed in this study can help with future innovations aimed to help manage this population.

  20. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  1. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    Science.gov (United States)

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  2. Computers as components principles of embedded computing system design

    CERN Document Server

    Wolf, Marilyn

    2012-01-01

    Computers as Components: Principles of Embedded Computing System Design, 3e, presents essential knowledge on embedded systems technology and techniques. Updated for today's embedded systems design methods, this edition features new examples including digital signal processing, multimedia, and cyber-physical systems. Author Marilyn Wolf covers the latest processors from Texas Instruments, ARM, and Microchip Technology plus software, operating systems, networks, consumer devices, and more. Like the previous editions, this textbook: Uses real processors to demonstrate both technology and tec

  3. The new international certification and design principles

    International Nuclear Information System (INIS)

    Heijnen, W.H.P.M.; Heineman, H.

    1995-01-01

    ISO/TC 67 deals with standardization of Equipment for the Petroleum and Natural Gas Industries at a global level. The paper will provide the reader with insight in the Certification system as well as its link with Design. It will explain how the total process fits in the business structure of the Petroleum and Natural Gas Industry, with the focus on the emerging concepts such as partnering, turn key contracts, the developments in the EC and the need to reduce costs at a global basis. The paper will also address the topic of Design Principles based on the results of the study performed for ISO/TC 67. The paper will provide a framework that can be used by the industry in how to deal with issues such as, there shall the activity of the Operator be focused on when ordering equipment or services and how the manufacturer or service provider should prepare himself to become an equal partner with regard to the required equipment, service and its associated technology now and in the future. In the changing world with ever increasing focus on Health, Safety and Environment (HSE), the topic efficiency, technology, equipment performance and functionality should not be overlooked or been given less attention. The Certification and Design principles, implemented in standards, aim predominantly at Fitness for Purpose of equipment and/or services to regain the balance. A further aim is to limit consequential costs due to deficiencies in the broadest sense, allowing the Petroleum and Natural Gas Industry to produce oil and gas in a cost effective manner with the highest possible HSE targets

  4. Evolutionary explanations in medical and health profession courses: are you answering your students' "why" questions?

    Directory of Open Access Journals (Sweden)

    Malyango Avelin A

    2005-05-01

    Full Text Available Abstract Background Medical and pre-professional health students ask questions about human health that can be answered in two ways, by giving proximate and evolutionary explanations. Proximate explanations, most common in textbooks and classes, describe the immediate scientifically known biological mechanisms of anatomical characteristics or physiological processes. These explanations are necessary but insufficient. They can be complemented with evolutionary explanations that describe the evolutionary processes and principles that have resulted in human biology we study today. The main goal of the science of Darwinian Medicine is to investigate human disease, disorders, and medical complications from an evolutionary perspective. Discussion This paper contrasts the differences between these two types of explanations by describing principles of natural selection that underlie medical questions. Thus, why is human birth complicated? Why does sickle cell anemia exist? Why do we show symptoms like fever, diarrhea, and coughing when we have infection? Why do we suffer from ubiquitous age-related diseases like arteriosclerosis, Alzheimer's and others? Why are chronic diseases like type II diabetes and obesity so prevalent in modern society? Why hasn't natural selection eliminated the genes that cause common genetic diseases like hemochromatosis, cystic fibrosis, Tay sachs, PKU and others? Summary In giving students evolutionary explanations professors should underscore principles of natural selection, since these can be generalized for the analysis of many medical questions. From a research perspective, natural selection seems central to leading hypotheses of obesity and type II diabetes and might very well explain the occurrence of certain common genetic diseases like cystic fibrosis, hemochromatosis, Tay sachs, Fragile X syndrome, G6PD and others because of their compensating advantages. Furthermore, armed with evolutionary explanations, health care

  5. Evolutionary dynamics of complex communications networks

    CERN Document Server

    Karyotis, Vasileios; Papavassiliou, Symeon

    2013-01-01

    Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to

  6. Sign Redesign: Applying Design Principles to Improve Signage in an Academic Library

    Directory of Open Access Journals (Sweden)

    Sheila Kasperek

    2014-05-01

    Full Text Available When the Mansfield University library’s Special Events and Customer Service Committee created a communications plan for the library, the opportunity presented itself to overhaul the library signs. Applying basic design principles of contrast, alignment, and repetition along with standards from the Americans with Disabilities Act, the library improved the visual communications within the library. Patrons can now read signs from a distance and understand their purpose. Using common design elements, the library began presenting official library information more cohesively. Extending beyond signs, these design principles are now part of the library’s print publications and promotional items. With this consistency, the library brand is more easily recognizable both within the library and across campus. This article describes some basic elements of design and the process of redesigning the signs.

  7. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  8. PRINCIPLES OF DESIGNING THE CENTER FOR ADMINISTRATIVE SERVICES IN DNIPROPETROVS’K

    Directory of Open Access Journals (Sweden)

    PODOLYNNY S. I.

    2016-01-01

    Full Text Available Problem. Nowadays providing administrative services of good quality is considered to be one of the most important conditions for establishing firm and democratic relations between local authorities and population The work for creating municipal institutions using the principle of a "single window" is being fulfilled in Dnipropetrovs’k. Two pilot projects have been done at the Department of Architectural Engineering and Design (Prydniprovs’ka State Academy of Construction and Architecture. Objective. To demonstrate peculiarities of two project proposals for CAS comparing them with the recommendations of State Administration and basic principles formed while designing similar objects in foreign practice. Main part. Basic principles for creating the Center for Administrative Services (CAS were formulated regarding foreign experience and recommendations of State Administration. These principles are organized as three conceptual blocks: city-planning relevancy, functional arrangement, form making and artistic image peculiarities. CAS on the left bank of the river is situated on the territory that is being reconstructed at the moment. It is a functional and compositional landmark of social and administrative subcentre of the left bank. The Centre is designed in a 16-storey building with a build-in and build-on 2-floor block of the front-office. The front-office is designed for 121 working places and the back-office – for 440 ones. The general area of the front-office is 605 sq. m., the area of the back-office is 2130 sq. m. Artistic characteristics are designed according to traditional office planning schemes. CAS of the right bank is planned on a vacant site on Zaporiz’ke highway. Spacious parking lots are also provided on the territory. The building is positioned sideways on to the highway with its long axis. It can serve as a peculiar sign at the entrance to the city. The front-office is situated in a two-floor stylobate of the Center

  9. The principles of design of a shallow disposal site for low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Holmes, R.E.

    1985-01-01

    This paper addresses the principles of design of a shallow disposal site for low and intermediate level radioactive wastes. The objective of the author is to review the need for shallow land disposal facilities in the UK and to propose design principles which will protect the public and operatives from excessive risk. It is not the intent of the author to present a detailed design of facility which will meet the design standards proposed although such a design is feasible and within the scope of currently available technology. The principles and standards proposed in this paper are not necessarily those of PPC Consultant Services Ltd. or NEI Waste Technologies Ltd. (author)

  10. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  11. Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks

    Science.gov (United States)

    Yong, Xi

    2016-01-01

    The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882

  12. Power electronics basics operating principles, design, formulas, and applications

    CERN Document Server

    Rozanov, Yuriy; Chaplygin, Evgeny; Voronin, Pavel

    2015-01-01

    Power Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource:Explains the basic concepts and most important terms of power electronicsDescribes the power assemblies, control, and passive components of semiconductor power switchesCovers the control of power electronic devices, from mathematical modeling to the analysis of the electrical processesAddresses pulse-width modulation, power quality control, and multilevel, modular, and multicell

  13. Digital sonar design in underwater acoustics principles and applications

    CERN Document Server

    Li, Qihu

    2012-01-01

    "Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

  14. Zero Energy Buildings – Design Principles and Built Examples

    DEFF Research Database (Denmark)

    Designing a zero energy building is a complicated task, and in order to achieve good results it is necessary to include knowledge from a range of sources. Therefore, cooperation is required between different professions and between generalists and specialists from the very beginning of the process...... knowledge must be acquired, depending on the project in question. Through a cross-disciplinary approach to architecture and building design, and based on an integrated design process, this publication will: • introduce a number of design strategies and technologies which are particularly important...... for the development of zero energy houses. These strategies and technologies are illustrated through simple design principles and built examples • identify technical and architectural potentials and challenges related to design strategies of crucial importance to the development of zero energy houses • identify...

  15. Design Principles for Serious Video Games in Mathematics Education: From Theory to Practice

    Directory of Open Access Journals (Sweden)

    Konstantinos Chorianopoulos

    2014-09-01

    Full Text Available There is growing interest in the employment of serious video games in science education, but there are no clear design principles. After surveying previous work in serious video game design, we highlighted the following design principles: 1 engage the students with narrative (hero, story, 2 employ familiar gameplay mechanics from popular video games, 3 engage students into constructive trial and error game-play and 4 situate collaborative learning. As illustrated examples we designed two math video games targeted to primary education students. The gameplay of the math video games embeds addition operations in a seamless way, which has been inspired by that of classic platform games. In this way, the students are adding numbers as part of popular gameplay mechanics and as a means to reach the video game objective, rather than as an end in itself. The employment of well-defined principles in the design of math video games should facilitate the evaluation of learning effectiveness by researchers. Moreover, educators can deploy alternative versions of the games in order to engage students with diverse learning styles. For example, some students might be motived and benefited by narrative, while others by collaboration, because it is unlikely that one type of serious video game might fit all learning styles. The proposed principles are not meant to be an exhaustive list, but a starting point for extending the list and applying them in other cases of serious video games beyond mathematics and learning.

  16. A case study analysis of the application of design for manufacture principles by industrial design students

    OpenAIRE

    Marshall, R; Page, T

    2016-01-01

    This paper describes a case study evaluation of a module that engages students on product and industrial design programmes with the principles of Design for Manufacturing (DFM). The primary element of the module is to expose students to the constraints of a full design to manufacture process. The module explores the design of a small polymer promotional item, together with the means of mass producing that item. This is done through the process of injection moulding and students design an inje...

  17. An evolutionary behaviorist perspective on orgasm

    Science.gov (United States)

    Fleischman, Diana S.

    2016-01-01

    Evolutionary explanations for sexual behavior and orgasm most often posit facilitating reproduction as the primary function (i.e. greater rate of fertilization). Other reproductive benefits of sexual pleasure and orgasm such as improved bonding of parents have also been discussed but not thoroughly. Although sex is known to be highly reinforcing, behaviorist principles are rarely invoked alongside evolutionary psychology in order to account for human sexual and social behavior. In this paper, I will argue that intense sexual pleasure, especially orgasm, can be understood as a primary reinforcer shaped by evolution to reinforce behavior that facilitates reproductive success (i.e. conception through copulation). Next, I will describe an evolutionary account of social shaping. In particular, I will focus on how humans evolved to use orgasm and sexual arousal to shape the social behavior and emotional states of others through both classical and operant conditioning and through both reproductive and non-reproductive forms of sexual behavior. Finally, I will describe how orgasm is a signal of sensitivity to reinforcement that is itself reinforcing. PMID:27799083

  18. An Evolutionary Perspective on Toxic Leadership

    Directory of Open Access Journals (Sweden)

    Lucia Ovidia VREJA

    2016-12-01

    Full Text Available Charles Darwin’s prediction from 1859, that future psychology was going to be built on principles derived from evolutionary theory came at last to be fulfilled. Nowadays, there are at least four disciplines that attempt to explain human behaviours as evolutionary adaptations (or maladaptations to the natural and/or social environment: human sociobiology, human behavioural ecology, evolutionary psychology, memetics and gene–culture coevolution theory (in our view, the most adequate of all. According to gene–culture coevolution theory, articulated language was the singular phenomenon that permitted humans to become a cultural species, and from that moment on culture become itself a selection factor. Culture means transmission of information from one generation to the next and learning from other individuals’ experiences, trough language. So, it is of critical importance to have good criteria for the selection of those individuals from whom we should learn. Yet when humans also choose their leaders from among those role-models, according to the same criteria, this mechanism can become a maladaptation and the result can be toxic leadership.

  19. Seismic design principles for the German fast breeder reactor SNR2

    International Nuclear Information System (INIS)

    Rangette, A.M.; Peters, K.A.

    1988-01-01

    The leading aim of a seismic design is, besides protection against seismic impacts, not to enhance the overall risk in the absence of seismic vibrations and, secondly, to avoid competition between operational needs and a seismic structural design. This approach is supported by avoiding overconservatism in the assumption of seismic loads and in the calculation of the structural response. Accordingly the seismic principles are stated as follows: restriction to German or equivalent low seismicity sites with intensities (SSE) lower VIII at frequency lower than 10 -4 /year; best estimate of seismic input-data without further conservatism; no consideration of OBE. The structural design principles are: 1. The secondary character of the seismic excitation is explicitly accounted for; 2. Energy absorption is allowed for by ductility of materials and construction. Accordingly strain criteria are used for failure predictions instead of stress criteria. (author). 1 fig

  20. Achieving integration in mixed methods designs-principles and practices.

    Science.gov (United States)

    Fetters, Michael D; Curry, Leslie A; Creswell, John W

    2013-12-01

    Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.

  1. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    Science.gov (United States)

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  2. Authentic tasks in higher education: Studying design principles for assessment

    NARCIS (Netherlands)

    van Keulen, H.; van den Berg, I.; Ramaekers, S.

    2006-01-01

    Students may benefit significantly from learning through authentic tasks. But how do we assess their learning outcomes, taking into account the specific characteristics of authentic tasks? In the second presentation of this symposium on design principles for authentic tasks we present and discuss

  3. Subordination principle for fractional evolution equations

    NARCIS (Netherlands)

    Bazhlekova, E.G.

    2000-01-01

    The abstract Cauchy problem for the fractional evolution equation Daa = Au, a > 0, (1) where A is a closed densely de??ned operator in a Banach space, is investigated. The subordination principle, presented earlier in [J. P r ??u s s, Evolutionary In- tegral Equations and Applications. Birkh??auser,

  4. Web Interface Design Principles for Adults' Self-Directed Learning

    Science.gov (United States)

    Firat, Mehmet; Sakar, A. Nurhan; Kabakci Yurdakul, Isil

    2016-01-01

    One of the most important features which e-learning tools and environments must possess within the scope of lifelong learning is self-directed learning, which can be considered as a form of self-learning. The aim of this study was to determine, based on the views and recommendations of experts, interface design principles for the development of…

  5. Development of safety principles for the design of future nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The main purpose of this TECDOC is to propose updates to existing safety principles which could be used as a basis for developing safety principles for the design of future NPPs. Accordingly, this document is intended to be useful to reactor designers, owners, operators, researchers and regulators. It is also expected that this document can contribute to international harmonization of safety approaches, and that it will help ensure that future reactors will be designed worldwide to a high standard of safety. As such, these proposed updates are intended to provide general guidance which, if carefully and properly implemented, will result in reactor designs with enhanced safety characteristics beyond those currently in operation. This enhancement results from the fact that the proposals are derived from the lessons learned from more recent operational experience, R and D, design, testing, and analysis developed over the past decade or so, as well as from attempts to reflect the current trends in reactor design, such as the introduction of new technologies. 8 refs, 3 figs.

  6. Development of safety principles for the design of future nuclear power plants

    International Nuclear Information System (INIS)

    1995-06-01

    The main purpose of this TECDOC is to propose updates to existing safety principles which could be used as a basis for developing safety principles for the design of future NPPs. Accordingly, this document is intended to be useful to reactor designers, owners, operators, researchers and regulators. It is also expected that this document can contribute to international harmonization of safety approaches, and that it will help ensure that future reactors will be designed worldwide to a high standard of safety. As such, these proposed updates are intended to provide general guidance which, if carefully and properly implemented, will result in reactor designs with enhanced safety characteristics beyond those currently in operation. This enhancement results from the fact that the proposals are derived from the lessons learned from more recent operational experience, R and D, design, testing, and analysis developed over the past decade or so, as well as from attempts to reflect the current trends in reactor design, such as the introduction of new technologies. 8 refs, 3 figs

  7. Babinet principle applied to the design of metasurfaces and metamaterials.

    Science.gov (United States)

    Falcone, F; Lopetegi, T; Laso, M A G; Baena, J D; Bonache, J; Beruete, M; Marqués, R; Martín, F; Sorolla, M

    2004-11-05

    The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate.

  8. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  9. Variation and selection: The evolutionary analogy and the convergence of cognitive and behavioral psychology

    OpenAIRE

    Morgan, David L.; Morgan, Robin K.; Toth, James M.

    1992-01-01

    The empirical and theoretical work of both operant and cognitive researchers has increasingly appealed to evolutionary concepts. In particular, both traditional operant studies of extinction-induced behavior and cognitive investigations of creativity and problem solving converge on the fundamental evolutionary principles of variation and selection. These contemporary developments and their implications for the alleged preparadigmatic status of psychology are discussed.

  10. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments.

    Science.gov (United States)

    Baldominos, Alejandro; Saez, Yago; Isasi, Pedro

    2018-04-23

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.

  11. Semiconductor-inspired design principles for superconducting quantum computing.

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  12. A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm

    Science.gov (United States)

    Chae, Han Gil

    Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the

  13. Evolutionary medicine: update on the relevance to family practice.

    Science.gov (United States)

    Naugler, Christopher T

    2008-09-01

    To review the relevance of evolutionary medicine to family practice and family physician training. Articles were located through a MEDLINE search, using the key words evolution, Darwin, and adaptation. Most references presented level III evidence (expert opinion), while a minority provided level II evidence (epidemiologic studies). Evolutionary medicine deals with the interplay of biology and the environment in the understanding of human disease. Yet medical schools have virtually ignored the need for family physicians to have more than a cursory knowledge of this topic. A review of the main trends in this field most relevant to family practice revealed that a basic knowledge of evolutionary medicine might help in explaining the causation of diseases to patients. Evolutionary medicine has also proven key to explaining the reasons for the development of antibiotic resistance and has the potential to explain cancer pathogenesis. As an organizing principle, this field also has potential in the teaching of family medicine. Evolutionary medicine should be studied further and incorporated into medical training and practice. Its practical utility will be proven through the generation of testable hypotheses and their application in relation to disease causation and possible prevention.

  14. Cognitive Adaptations for n-person Exchange: The Evolutionary Roots of Organizational Behavior

    Science.gov (United States)

    Tooby, John; Cosmides, Leda; Price, Michael E.

    2013-01-01

    Organizations are composed of stable, predominantly cooperative interactions or n-person exchanges. Humans have been engaging in n-person exchanges for a great enough period of evolutionary time that we appear to have evolved a distinct constellation of species-typical mechanisms specialized to solve the adaptive problems posed by this form of social interaction. These mechanisms appear to have been evolutionarily elaborated out of the cognitive infrastructure that initially evolved for dyadic exchange. Key adaptive problems that these mechanisms are designed to solve include coordination among individuals, and defense against exploitation by free riders. Multi-individual cooperation could not have been maintained over evolutionary time if free riders reliably benefited more than contributors to collective enterprises, and so outcompeted them. As a result, humans evolved mechanisms that implement an aversion to exploitation by free riding, and a strategy of conditional cooperation, supplemented by punitive sentiment towards free riders. Because of the design of these mechanisms, how free riding is treated is a central determinant of the survival and health of cooperative organizations. The mapping of the evolved psychology of n-party exchange cooperation may contribute to the construction of a principled theoretical foundation for the understanding of human behavior in organizations. PMID:23814325

  15. Design Principles for Improving the Process of Publishing Open data

    NARCIS (Netherlands)

    Zuiderwijk, A.M.G.; Janssen, M.F.W.H.A.; Choenni, R.; Meijer, R.F.

    2014-01-01

    · Purpose: Governments create large amounts of data. However, the publication of open data is often cumbersome and there are no standard procedures and processes for opening data. This blocks the easy publication of government data. The purpose of this paper is to derive design principles for

  16. Design principle and structure of the ANI data centre

    International Nuclear Information System (INIS)

    Akopov, N.Z.; Arutyunyan, S.Kh.; Chilingaryan, A.A.; Galfayan, S.Kh.; Matevosyan, V.Kh.; Zazyan, M.Z.

    1985-01-01

    The design principles and structure of applied statistical programms used for processing the data from the ANI experiments are described. Nonparametric algorithms provide development of high-efficient method for simultaneous analysis of computerized and experimental data, from cosmic ray experiments. Relation data base for unified data storage, protection, renewing and erasuring as well as for fast and convenient information retrieval is considered

  17. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...

  18. Overview of in-vessel retention concept involving level of passivity: with application to evolutionary pressurized water reactor design

    International Nuclear Information System (INIS)

    Ghyym, Seong H.

    1998-01-01

    In this work, one strategy of severe accident management, the applicability of the in-vessel retention (IVR) concept, which has been incorporated in passive type reactor designs, to evolutionary type reactor designs, is examined with emphasis on the method of external reactor vessel cooling (ERVC) to realize the IVR concept in view of two aspects: for the regulatory aspect, it is addressed in the context of the resolution of the issue of corium coolability; for the technical one, the reliance on and the effectiveness of the IVR concept are mentioned. Additionally, for the ERVC method to be better applied to designs of the evolutionary type reactor, the conditions to be met are pointed out in view of the technical aspect. Concerning the issue of corium coolability/quenchability, based on results of the review, plausible alternative strategies are proposed. According to the decision maker's risk behavior, these would help materialize the conceptual design for evolutionary type reactors, especially Korea Next Generation Reactors (KNGRs), which have been developing at the Korea Electric Power Research Institute (KEPRI): (A1) Strategy 1A: strategy based on the global approach using the reliance on the wet cavity method; (A2) Strategy 1B: strategy based on the combined approach using both the reliance on the wet cavity method and the counter-measures for preserving containment integrity; (A3) Strategy 2A: strategy based on the global approach to the reliance on the ERVC method; (A4) Strategy 2B: strategy based on the balanced approach using both the reliance on the ERVC method and the countermeasures for preserving containment integrity. Finally, in application to an advanced pressurized water reactor (PWR) design, several recommendations are made in focusing on both monitoring the status of approaches and preparing countermeasures in regard to the regulatory and the technical aspects

  19. Design of Learning Objects for Concept Learning: Effects of Multimedia Learning Principles and an Instructional Approach

    Science.gov (United States)

    Chiu, Thomas K. F.; Churchill, Daniel

    2016-01-01

    Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…

  20. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  1. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily.

    Science.gov (United States)

    Akiva, Eyal; Copp, Janine N; Tokuriki, Nobuhiko; Babbitt, Patricia C

    2017-11-07

    Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold. Copyright © 2017 the Author(s). Published by PNAS.

  2. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    Science.gov (United States)

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  3. Autonomous Reactivity Control (ARC) — Principles, geometry and design process

    Energy Technology Data Exchange (ETDEWEB)

    Qvist, Staffan A., E-mail: staffan.qvist@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Department of Nuclear Engineering, University of California Berkeley (United States); Hellesen, Carl [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Thiele, Roman [Division of Reactor Technology, Royal Institute of Technology, Stockholm (Sweden); Dubberley, Allen E. [General Electric Advanced Reactor Systems Department (retired), Sunnyvale, CA (United States); Gradecka, Malwina; Greenspan, Ehud [Department of Nuclear Engineering, University of California Berkeley (United States)

    2016-10-15

    Highlights: • Here we define the principles of the operation and design of ARC systems. • ARC systems can provide inherent safety during and following unprotected transients. • A manufacturing and assembly method was developed and presented. - Abstract: The Autonomous Reactivity Control (ARC) system was developed to ensure inherent safety performance of Generation-IV reactors while having a minimal impact on reactor performance and economic viability. Here we present in detail the principles of how the ARC system operates, what materials should be used, what components make up the system and how they are interconnected. The relevant equations regarding how to design the system for a certain response are developed and defined, and the most important aspects determining the speed of actuation of the systems are analyzed. Thus, this study serves as the general reference material for all of the fundamental principles behind the ARC idea. Finally, we present a step-by-step guide to how a fast reactor fuel subassembly with an ARC system installed would be manufactured, using a full 3D-CAD model. For an ARC installation in a 1000 MWth sodium-cooled oxide-fueled fast reactor core, the system constitutes a relatively minor adjustment to a typical fuel assembly, increasing its total axial extent by ∼5–10% and the total primary coolant pressure drop by ∼1%. The main finding of this study is that it is possible to design, manufacture (using existing methods) and implement ARC systems in the fuel assemblies of fast reactor cores to provide inherent safety in all anticipated unprotected transients with only a modest increase in the length of the assembly and the pressure drop across the core.

  4. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    Science.gov (United States)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  5. SPICA/SAFARI Fourier transform spectrometer mechanism evolutionary design

    Science.gov (United States)

    van den Dool, Teun C.; Kruizinga, Bob; Braam, Ben C.; Hamelinck, Roger F. M. M.; Loix, Nicolas; Van Loon, Dennis; Dams, Johan

    2012-09-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI1 Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme2 in 2022. JAXA3 leads the development of the SPICA satellite and SRON is the prime investigator of the Safari instrument. The FTS scanning mechanism (FTSM) has to meet a 35 mm stroke requirement with an Optical Path Difference resolution of less then 15 nm and must fit in a small volume. It consists of two back-to-back roof-top mirrors mounted on a small carriage, which is moved using a magnetic bearing linear guiding system in combination with a magnetic linear motor serving as the OPD actuator. The FTSM will be used at cryogenic temperatures of 4 Kelvin inducing challenging requirements on the thermal power dissipation and heat leak. The magnetic bearing enables movements over a scanning stroke of 35.5 mm in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, with sub-nanometer accuracy. This solution is based on the design of the breadboard ODL (Optical Delay Line) developed for the ESA Darwin mission4 and the MABE mechanism developed by Micromega Dynamics. During the last couple of years the initial design of the SAFARI instrument, as described in an earlier SPIE 2010 paper5, was adapted by the SAFARI team in an evolutionary way to meet the changing requirements of the SPICA payload module. This presentation will focus on the evolution of the FTSM to meet these changing requirements. This work is supported by the Netherlands Space Office (NSO).

  6. Zero Energy Buildings – Design Principles and Built Examples

    DEFF Research Database (Denmark)

    Bejder, Anne Kirkegaard; Knudstrup, Mary-Ann; Jensen, Rasmus Lund

    Designing a zero energy building is a complicated task, and in order to achieve good results it is necessary to include knowledge from a range of sources. Therefore, cooperation is required between different professions and between generalists and specialists from the very beginning of the process...... for the development of zero energy houses. These strategies and technologies are illustrated through simple design principles and built examples • identify technical and architectural potentials and challenges related to design strategies of crucial importance to the development of zero energy houses • identify...... technical and architectural potentials and challenges related to the application of new technologies • make visible engineering and architectural issues and create greater transparency, providing a point of departure for cross-disciplinary cooperation....

  7. Design Principles for Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples.......For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation...

  8. Novel Principles and Techniques to Create a Natural Design in Female Hairline Correction Surgery.

    Science.gov (United States)

    Park, Jae Hyun

    2015-12-01

    Female hairline correction surgery is becoming increasingly popular. However, no guidelines or methods of female hairline design have been introduced to date. The purpose of this study was to create an initial framework based on the novel principles of female hairline design and then use artistic ability and experience to fine tune this framework. An understanding of the concept of 5 areas (frontal area, frontotemporal recess area, temporal peak, infratemple area, and sideburns) and 5 points (C, A, B, T, and S) is required for female hairline correction surgery (the 5A5P principle). The general concepts of female hairline correction surgery and natural design methods are, herein, explained with a focus on the correlations between these 5 areas and 5 points. A natural and aesthetic female hairline can be created with application of the above-mentioned concepts. The 5A5P principle of forming the female hairline is very useful in female hairline correction surgery.

  9. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    Directory of Open Access Journals (Sweden)

    Alejandro Baldominos

    2018-04-01

    Full Text Available Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.

  10. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    Science.gov (United States)

    2018-01-01

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587

  11. Serious game design principles: The impact of game design on learning outcomes

    Science.gov (United States)

    Martin, Michael W.

    This dissertation examines the research question "How do video game design principles affect learning outcomes in serious games?" This research first develops a theoretical foundation concerning the meaning of the terms "game" and "serious game". This conceptual clarification is broken down into analytic propositions, which state that games have participants, rules, goals and challenges, and synthetic propositions, which state that the games should be intrinsically compelling, provide meaningful choices, and be self encapsulated. Based on these synthetic propositions, three hypotheses were developed. The hypotheses are that games with an enhanced aesthetic presentation, more meaningful choices, or provide player competition will elicit higher learning outcomes than identical games without these factors. These hypotheses were tested via a quantitative experiment involving 172 undergraduate students in the Old Dominion University Chemistry Department. The students were asked to play a chemistry-oriented serious game entitled Element Solitaire©, which was created by the research author. The students were randomly given different treatments of the Element Solitaire© game to play, and the difference between their learning outcomes were compared. The experimental results demonstrated that the aesthetic presentation of a game can have a significant impact upon the learning outcome. The experiment was not able to discern significant effects from the choice or competition conditions, but further examination of the experimental data did reveal some insight into these aspects of serious game design. Choices need to provide the player with options that have a sufficient value that they will be considered and the application of competition within games needs to be judiciously implemented to promote a positive affect for all players. The results of the theoretical foundations and empirical evidence were then combined with additional theoretical research to develop a set of

  12. Proof of principle for epitope-focused vaccine design

    Science.gov (United States)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  13. Deep Rationality: The Evolutionary Economics of Decision Making.

    Science.gov (United States)

    Kenrick, Douglas T; Griskevicius, Vladas; Sundie, Jill M; Li, Norman P; Li, Yexin Jessica; Neuberg, Steven L

    2009-10-01

    What is a "rational" decision? Economists traditionally viewed rationality as maximizing expected satisfaction. This view has been useful in modeling basic microeconomic concepts, but falls short in accounting for many everyday human decisions. It leaves unanswered why some things reliably make people more satisfied than others, and why people frequently act to make others happy at a cost to themselves. Drawing on an evolutionary perspective, we propose that people make decisions according to a set of principles that may not appear to make sense at the superficial level, but that demonstrate rationality at a deeper evolutionary level. By this, we mean that people use adaptive domain-specific decision-rules that, on average, would have resulted in fitness benefits. Using this framework, we re-examine several economic principles. We suggest that traditional psychological functions governing risk aversion, discounting of future benefits, and budget allocations to multiple goods, for example, vary in predictable ways as a function of the underlying motive of the decision-maker and individual differences linked to evolved life-history strategies. A deep rationality framework not only helps explain why people make the decisions they do, but also inspires multiple directions for future research.

  14. Design and construction of a basic principle simulator: an experiment

    International Nuclear Information System (INIS)

    Fernandez, O.; Galdoz, E.; Flury, C.; Fontanini, H.; Maciel, F.; Rovere, L.; Carpio, R.

    1992-01-01

    This paper describes activities developed over design and building of a Basic Principle Simulator for nuclear power plants. This simulator has been developed in Process Control Division of Bariloche Atomic Center, Argentina. This project was sponsored jointly by CNEA and Atomic Energy International Organization, through the United Nations Program for Development. The paper specially emphasizes aspects like: architecture design methodology of real time simulators; graphic environment and interfaces design for users and instructor interaction, and for display information; test and validation of the used models; and human resources formation. Finally describes the actual implementation of the simulator to be used in Embalse Nuclear Power Plant. (author)

  15. Multi-stage thermal-economical optimization of compact heat exchangers: A new evolutionary-based design approach for real-world problems

    International Nuclear Information System (INIS)

    Yousefi, Moslem; Darus, Amer Nordin; Yousefi, Milad; Hooshyar, Danial

    2015-01-01

    The complicated task of design optimization of compact heat exchangers (CHEs) have been effectively performed by using evolutionary algorithms (EAs) in the recent years. However, mainly due to difficulties of handling extra variables, the design approach has been based on constant rates of heat duty in the available literature. In this paper, a new design strategy is presented where variable operating conditions, which better represent real-world problems, are considered. The proposed strategy is illustrated using a case study for design of a plate-fin heat exchanger though it can be employed for all types of heat exchangers without much change. Learning automata based particle swarm optimization (LAPSO), is employed for handling nine design variables while satisfying various equality and inequality constraints. For handling the constraints, a novel feasibility based ranking strategy (FBRS) is introduced. The numerical results indicate that the design based on variable heat duties yields in more cost savings and superior thermodynamics efficiency comparing to a conventional design approach. Furthermore, the proposed algorithm has shown a superior performance in finding the near-optimum solution for this task when it is compared to the most popular evolutionary algorithms in engineering applications, i.e. genetic algorithm (GA) and particle swarm optimization (PSO). - Highlights: • Multi-stage design of heat exchangers is presented. • Feasibility based ranking strategy is employed for constraint handling. • Learning abilities added to particle swarm optimization

  16. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design

    International Nuclear Information System (INIS)

    Toffolo, A.; Lazzaretto, A.

    2002-01-01

    Thermoeconomic analyses in thermal system design are always focused on the economic objective. However, knowledge of only the economic minimum may not be sufficient in the decision making process, since solutions with a higher thermodynamic efficiency, in spite of small increases in total costs, may result in much more interesting designs due to changes in energy market prices or in energy policies. This paper suggests how to perform a multi-objective optimization in order to find solutions that simultaneously satisfy exergetic and economic objectives. This corresponds to a search for the set of Pareto optimal solutions with respect to the two competing objectives. The optimization process is carried out by an evolutionary algorithm, that features a new diversity preserving mechanism using as a test case the well-known CGAM problem. (author)

  17. A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2014-01-01

    Full Text Available A double evolutionary pool memetic algorithm is proposed to solve the examination timetabling problem. To improve the performance of the proposed algorithm, two evolutionary pools, that is, the main evolutionary pool and the secondary evolutionary pool, are employed. The genetic operators have been specially designed to fit the examination timetabling problem. A simplified version of the simulated annealing strategy is designed to speed the convergence of the algorithm. A clonal mechanism is introduced to preserve population diversity. Extensive experiments carried out on 12 benchmark examination timetabling instances show that the proposed algorithm is able to produce promising results for the uncapacitated examination timetabling problem.

  18. The Effect of Content Representation Design Principles on Users' Intuitive Beliefs and Use of E-Learning Systems

    Science.gov (United States)

    Al-Samarraie, Hosam; Selim, Hassan; Zaqout, Fahed

    2016-01-01

    A model is proposed to assess the effect of different content representation design principles on learners' intuitive beliefs about using e-learning. We hypothesized that the impact of the representation of course contents is mediated by the design principles of alignment, quantity, clarity, simplicity, and affordance, which influence the…

  19. Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application

    Energy Technology Data Exchange (ETDEWEB)

    Salazar A, Daniel E. [Division de Computacion Evolutiva (CEANI), Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Universidad de Las Palmas de Gran Canaria. Canary Islands (Spain)]. E-mail: danielsalazaraponte@gmail.com; Rocco S, Claudio M. [Universidad Central de Venezuela, Facultad de Ingenieria, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve

    2007-06-15

    This paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue

  20. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  1. Climate-responsive design: A framework for an energy concept design-decision support tool for architects using principles of climate-responsive design

    Directory of Open Access Journals (Sweden)

    Remco Looman

    2017-01-01

    Full Text Available In climate-responsive design the building becomes an intermediary in its own energy housekeeping, forming a link between the harvest of climate resources and low energy provision of comfort. Essential here is the employment of climate-responsive building elements, defined as structural and architectural elements in which the energy infrastructure is far-reaching integrated. This thesis presents the results of research conducted on what knowledge is needed in the early stages of the design process and how to transfer and transform that knowledge to the field of the architect in order for them to successfully implement the principles of climate-responsive design. The derived content, form and functional requirements provide the framework for a design decision support tool. These requirements were incorporated into a concept tool that has been presented to architects in the field, in order to gain their feedback. Climate-responsive design makes the complex task of designing even more complex. Architects are helped when sufficient information on the basics of climate-responsive design and its implications are provided as informative support during decision making in the early design stages of analysis and energy concept development. This informative support on climate-responsive design should address to different design styles in order to be useful to any type of architects. What is defined as comfortable has far-reaching implications for the way buildings are designed and how they operate. This in turn gives an indication of the energy used for maintaining a comfortable indoor environment. Comfort is not a strict situation, but subjective. Diversity is appreciated and comfort is improved when users have the ability to exert influence on their environment. Historically, the provision of comfort has led to the adoption of mechanical climate control systems that operate in many cases indifferent from the building space and mass and its environment

  2. Web Interface Design Principles for Adults’ Self-Directed Learning

    Directory of Open Access Journals (Sweden)

    Mehmet FIRAT

    2016-10-01

    Full Text Available One of the most important features which e-learning tools and environments must possess within the scope of lifelong learning is self-directed learning, which can be considered as a form of self-learning. The aim of this study was to determine, based on the views and recommendations of experts, interface design principles for the development of educational web interfaces that will support the self-directed learning of adults. This descriptive study was conducted with the contribution of 12 academicians specializing in interface design and self-directed learning. Within the scope of the study, new interfaces features were identified based on an evaluation of the literature on interface designs for self-directed learning, and the views of subject experts. Based on the study results, it was determined that interface designs supporting self-directed learning must possess five basic features, which include being user-directed, ensuring variety, being supported by learning analytics, being motivational, and being sharing-oriented.

  3. Theory-Generating Practice: Proposing a principle for learning design

    Directory of Open Access Journals (Sweden)

    Mie Buhl

    2016-06-01

    Full Text Available This contribution proposes a principle for learning design: Theory-Generating Practice (TGP as an alternative to the way university courses often are taught and structured with a series of theoretical lectures separate from practical experience and concluding with an exam or a project. The aim is to contribute to a development of theoretical frameworks for learning designs by suggesting TGP which may lead to new practices and turn the traditional dramaturgy for teaching upside down. TGP focuses on embodied experience prior to text reading and lectures to enhance theoretical knowledge building and takes tacit knowledge into account. The article introduces TGP and contextualizes it to a Danish tradition of didactics as well as discusses it in relation to contemporary conceptual currents of didactic design and learning design. This is followed by a theoretical framing of TGP, and is discussed through three empirical examples from bachelor and master programs involving technology, and showing three ways of practicing it.

  4. Theory-Generating Practice: Proposing a principle for learning design

    Directory of Open Access Journals (Sweden)

    Mie Buhl

    2016-05-01

    Full Text Available This contribution proposes a principle for learning design: Theory-Generating Practice (TGP as an alternative to the way university courses often are taught and structured with a series of theoretical lectures separate from practical experience and concluding with an exam or a project. The aim is to contribute to a development of theoretical frameworks for learning designs by suggesting TGP which may lead to new practices and turn the traditional dramaturgy for teaching upside down. TGP focuses on embodied experience prior to text reading and lectures to enhance theoretical knowledge building and takes tacit knowledge into account. The article introduces TGP and contextualizes it to a Danish tradition of didactics as well as discusses it in relation to contemporary conceptual currents of didactic design and learning design. This is followed by a theoretical framing of TGP, and is discussed through three empirical examples from bachelor and master programs involving technology, and showing three ways of practicing it.

  5. A Learning and Interaction design framework, from a study on formulating principles for the design of engaging music learning games

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke; Ørngreen, Rikke

    2012-01-01

    Based on a preliminary action research study investigating the design of digital music games and years of experiences from interaction design processes of learning resources, this extended abstract presents a framework that mixes designs for learning principles and game design with a process view...... using a simple interaction design lifecycle. Though the first outset was to design engaging music games, the resulting framework has a more generic character....

  6. Principles relating to the digital instrumentation and control design approach 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The design of the instrumentation and control of nuclear facilities uses digital systems that offer increasing computation and interconnection capabilities. They enable advanced functions to be carried out, such as calculation of the critical heat flux ratio, help to detect hardware failures in real time and provide operators with rich, flexible interfaces. However, these evolved functions may be affected by faults that make their logic systematically inadequate in certain cases, which introduces sources of failure other than random hardware failures and raises questions about the informal concept of the increased 'complexity' of instrumentation and control. Appropriate design principles shall therefore be applied so that this logic is as fault-free as possible and can be assessed by an independent body such as IRSN. This document presents the main problems associated with the design of the digital instrumentation and control of a complex facility, as well as the general principles to follow to demonstrate that a satisfactory safety level has been achieved. The doctrine elements presented in this document are the result of the experience acquired during assessments carried out for the French nuclear power plants, enhanced by exchanges with experts from the nuclear sector, and reflect French practice; they apply in other sectors in which a high level of confidence can be attributed to instrumentation and control. The normative texts cited in this document provide detailed requirements that are open to considerable interpretation, as the nature of the problem posed does not enable relevant and measurable criteria to be defined in all cases. This document aims to explain the principles underlying these detailed requirements and to give the means for interpreting them in each situation. (authors)

  7. Optimality and Plausibility in Language Design

    Directory of Open Access Journals (Sweden)

    Michael R. Levot

    2016-12-01

    Full Text Available The Minimalist Program in generative syntax has been the subject of much rancour, a good proportion of it stoked by Noam Chomsky’s suggestion that language may represent “a ‘perfect solution’ to minimal design specifications.” A particular flash point has been the application of Minimalist principles to speculations about how language evolved in the human species. This paper argues that Minimalism is well supported as a plausible approach to language evolution. It is claimed that an assumption of minimal design specifications like that employed in MP syntax satisfies three key desiderata of evolutionary and general scientific plausibility: Physical Optimism, Rational Optimism, and Darwin’s Problem. In support of this claim, the methodologies employed in MP to maximise parsimony are characterised through an analysis of recent theories in Minimalist syntax, and those methodologies are defended with reference to practices and arguments from evolutionary biology and other natural sciences.

  8. Optimal design of a spherical parallel manipulator based on kinetostatic performance using evolutionary techniques

    Energy Technology Data Exchange (ETDEWEB)

    Daneshmand, Morteza [University of Tartu, Tartu (Estonia); Saadatzi, Mohammad Hossein [Colorado School of Mines, Golden (United States); Kaloorazi, Mohammad Hadi [École de Technologie Supérieur, Montréal (Canada); Masouleh, Mehdi Tale [University of Tehran, Tehran (Iran, Islamic Republic of); Anbarjafari, Gholamreza [Hasan Kalyoncu University, Gaziantep (Turkmenistan)

    2016-03-15

    This study aims to provide an optimal design for a Spherical parallel manipulator (SPM), namely, the Agile Eye. This aim is approached by investigating kinetostatic performance and workspace and searching for the most promising design. Previously recommended designs are examined to determine whether they provide acceptable kinetostatic performance and workspace. Optimal designs are provided according to different kinetostatic performance indices, especially kinematic sensitivity. The optimization process is launched based on the concept of the genetic algorithm. A single-objective process is implemented in accordance with the guidelines of an evolutionary algorithm called differential evolution. A multi-objective procedure is then provided following the reasoning of the nondominated sorting genetic algorithm-II. This process results in several sets of Pareto points for reconciliation between kinetostatic performance indices and workspace. The concept of numerous kinetostatic performance indices and the results of optimization algorithms are elaborated. The conclusions provide hints on the provided set of designs and their credibility to provide a well-conditioned workspace and acceptable kinetostatic performance for the SPM under study, which can be well extended to other types of SPMs.

  9. Synthesis of logic circuits with evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    JONES,JAKE S.; DAVIDSON,GEORGE S.

    2000-01-26

    In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.

  10. Computational Evolutionary Methodology for Knowledge Discovery and Forecasting in Epidemiology and Medicine

    International Nuclear Information System (INIS)

    Rao, Dhananjai M.; Chernyakhovsky, Alexander; Rao, Victoria

    2008-01-01

    Humanity is facing an increasing number of highly virulent and communicable diseases such as avian influenza. Researchers believe that avian influenza has potential to evolve into one of the deadliest pandemics. Combating these diseases requires in-depth knowledge of their epidemiology. An effective methodology for discovering epidemiological knowledge is to utilize a descriptive, evolutionary, ecological model and use bio-simulations to study and analyze it. These types of bio-simulations fall under the category of computational evolutionary methods because the individual entities participating in the simulation are permitted to evolve in a natural manner by reacting to changes in the simulated ecosystem. This work describes the application of the aforementioned methodology to discover epidemiological knowledge about avian influenza using a novel eco-modeling and bio-simulation environment called SEARUMS. The mathematical principles underlying SEARUMS, its design, and the procedure for using SEARUMS are discussed. The bio-simulations and multi-faceted case studies conducted using SEARUMS elucidate its ability to pinpoint timelines, epicenters, and socio-economic impacts of avian influenza. This knowledge is invaluable for proactive deployment of countermeasures in order to minimize negative socioeconomic impacts, combat the disease, and avert a pandemic

  11. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity.

    Science.gov (United States)

    Franklin, Oskar; Palmroth, Sari; Näsholm, Torgny

    2014-11-01

    Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity. © The Author 2014. Published by Oxford University Press. All rights reserved

  12. The evolutionary sequence: origin and emergences

    Science.gov (United States)

    Fox, S. W.

    1986-01-01

    The evolutionary sequence is being reexamined experimentally from a "Big Bang"origin to the protocell and from the emergence of protocell and variety of species to Darwin's mental power (mind) and society (The Descent of Man). A most fundamentally revisionary consequence of experiments is an emphasis on endogenous ordering. This principle, seen vividly in ordered copolymerization of amino acids, has had new impact on the theory of Darwinian evolution and has been found to apply to the entire sequence. Herein, I will discuss some problems of dealing with teaching controversial subjects.

  13. The evolutionary sequence: origin and emergences.

    Science.gov (United States)

    Fox, S W

    1986-03-01

    The evolutionary sequence is being reexamined experimentally from a "Big Bang"origin to the protocell and from the emergence of protocell and variety of species to Darwin's mental power (mind) and society (The Descent of Man). A most fundamentally revisionary consequence of experiments is an emphasis on endogenous ordering. This principle, seen vividly in ordered copolymerization of amino acids, has had new impact on the theory of Darwinian evolution and has been found to apply to the entire sequence. Herein, I will discuss some problems of dealing with teaching controversial subjects.

  14. Five Principles for MOOC Design: With a Case Study

    Directory of Open Access Journals (Sweden)

    John R. Drake

    2015-05-01

    Full Text Available New web technologies have enabled online education to take on a massive scale, prompting many universities to create massively open online courses (MOOCs that take advantage of these technologies in a seemingly effortless manner. Designing a MOOC, however, is anything but trivial. It involves developing content, learning activities, and assessments to accommodate both the massiveness and openness of the course. To design an effective MOOC, instructors need to integrate both pedagogical and information systems theory. In this paper, we present a case study of a MOOC grant and a series of decisions made in its development. These decisions, when paired with the theoretical framework, suggest five principles – meaningful, engaging, measurable, accessible, and scalable – may be applicable to future MOOC development projects.

  15. Principles of Protocol Design

    DEFF Research Database (Denmark)

    Sharp, Robin

    This is a new and updated edition of a book first published in 1994. The book introduces the reader to the principles used in the construction of a large range of modern data communication protocols, as used in distributed computer systems of all kinds. The approach taken is rather a formal one...

  16. Picbreeder: a case study in collaborative evolutionary exploration of design space.

    Science.gov (United States)

    Secretan, Jimmy; Beato, Nicholas; D'Ambrosio, David B; Rodriguez, Adelein; Campbell, Adam; Folsom-Kovarik, Jeremiah T; Stanley, Kenneth O

    2011-01-01

    For domains in which fitness is subjective or difficult to express formally, interactive evolutionary computation (IEC) is a natural choice. It is possible that a collaborative process combining feedback from multiple users can improve the quality and quantity of generated artifacts. Picbreeder, a large-scale online experiment in collaborative interactive evolution (CIE), explores this potential. Picbreeder is an online community in which users can evolve and share images, and most importantly, continue evolving others' images. Through this process of branching from other images, and through continually increasing image complexity made possible by the underlying neuroevolution of augmenting topologies (NEAT) algorithm, evolved images proliferate unlike in any other current IEC system. This paper discusses not only the strengths of the Picbreeder approach, but its challenges and shortcomings as well, in the hope that lessons learned will inform the design of future CIE systems.

  17. Why is the correlation between gene importance and gene evolutionary rate so weak?

    Science.gov (United States)

    Wang, Zhi; Zhang, Jianzhi

    2009-01-01

    One of the few commonly believed principles of molecular evolution is that functionally more important genes (or DNA sequences) evolve more slowly than less important ones. This principle is widely used by molecular biologists in daily practice. However, recent genomic analysis of a diverse array of organisms found only weak, negative correlations between the evolutionary rate of a gene and its functional importance, typically measured under a single benign lab condition. A frequently suggested cause of the above finding is that gene importance determined in the lab differs from that in an organism's natural environment. Here, we test this hypothesis in yeast using gene importance values experimentally determined in 418 lab conditions or computationally predicted for 10,000 nutritional conditions. In no single condition or combination of conditions did we find a much stronger negative correlation, which is explainable by our subsequent finding that always-essential (enzyme) genes do not evolve significantly more slowly than sometimes-essential or always-nonessential ones. Furthermore, we verified that functional density, approximated by the fraction of amino acid sites within protein domains, is uncorrelated with gene importance. Thus, neither the lab-nature mismatch nor a potentially biased among-gene distribution of functional density explains the observed weakness of the correlation between gene importance and evolutionary rate. We conclude that the weakness is factual, rather than artifactual. In addition to being weakened by population genetic reasons, the correlation is likely to have been further weakened by the presence of multiple nontrivial rate determinants that are independent from gene importance. These findings notwithstanding, we show that the principle of slower evolution of more important genes does have some predictive power when genes with vastly different evolutionary rates are compared, explaining why the principle can be practically useful

  18. Controller tuning with evolutionary multiobjective optimization a holistic multiobjective optimization design procedure

    CERN Document Server

    Reynoso Meza, Gilberto; Sanchis Saez, Javier; Herrero Durá, Juan Manuel

    2017-01-01

    This book is devoted to Multiobjective Optimization Design (MOOD) procedures for controller tuning applications, by means of Evolutionary Multiobjective Optimization (EMO). It presents developments in tools, procedures and guidelines to facilitate this process, covering the three fundamental steps in the procedure: problem definition, optimization and decision-making. The book is divided into four parts. The first part, Fundamentals, focuses on the necessary theoretical background and provides specific tools for practitioners. The second part, Basics, examines a range of basic examples regarding the MOOD procedure for controller tuning, while the third part, Benchmarking, demonstrates how the MOOD procedure can be employed in several control engineering problems. The fourth part, Applications, is dedicated to implementing the MOOD procedure for controller tuning in real processes.

  19. Can evolutionary design of social networks make it easier to be 'green'?

    Science.gov (United States)

    Dickinson, Janis L; Crain, Rhiannon L; Reeve, H Kern; Schuldt, Jonathon P

    2013-09-01

    The social Web is swiftly becoming a living laboratory for understanding human cooperation on massive scales. It has changed how we organize, socialize, and tackle problems that benefit from the efforts of a large crowd. A new, applied, behavioral ecology has begun to build on theoretical and empirical studies of cooperation, integrating research in the fields of evolutionary biology, social psychology, social networking, and citizen science. Here, we review the ways in which these disciplines inform the design of Internet environments to support collective pro-environmental behavior, tapping into proximate prosocial mechanisms and models of social evolution, as well as generating opportunities for 'field studies' to discover how we can support massive collective action and shift environmental social norms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. High-throughput spectrometer designs in a compact form-factor: principles and applications

    Science.gov (United States)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  1. Designing Social Interfaces Principles, Patterns, and Practices for Improving the User Experience

    CERN Document Server

    Crumlish, Christian

    2009-01-01

    From the creators of Yahoo!'s Design Pattern Library, Designing Social Interfaces provides you with more than 100 patterns, principles, and best practices, along with salient advice for many of the common challenges you'll face when starting a social website. Designing sites that foster user interaction and community-building is a valuable skill for web developers and designers today, but it's not that easy to understand the nuances of the social web. Now you have help. Christian Crumlish and Erin Malone share hard-won insights into what works, what doesn't, and why. You'll learn how to bala

  2. The four cornerstones of Evolutionary Toxicology.

    Science.gov (United States)

    Bickham, John W

    2011-05-01

    Evolutionary Toxicology is the study of the effects of chemical pollutants on the genetics of natural populations. Research in Evolutionary Toxicology uses experimental designs familiar to the ecotoxicologist with matched reference and contaminated sites and the selection of sentinel species. It uses the methods of molecular genetics and population genetics, and is based on the theories and concepts of evolutionary biology and conservation genetics. Although it is a relatively young field, interest is rapidly growing among ecotoxicologists and more and more field studies and even controlled laboratory experiments are appearing in the literature. A number of population genetic impacts have been observed in organisms exposed to pollutants which I refer to here as the four cornerstones of Evolutionary Toxicology. These include (1) genome-wide changes in genetic diversity, (2) changes in allelic or genotypic frequencies caused by contaminant-induced selection acting at survivorship loci, (3) changes in dispersal patterns or gene flow which alter the genetic relationships among populations, and (4) changes in allelic or genotypic frequencies caused by increased mutation rates. It is concluded that population genetic impacts of pollution exposure are emergent effects that are not necessarily predictable from the mode of toxicity of the pollutant. Thus, to attribute an effect to a particular contaminant requires a careful experimental design which includes selection of appropriate reference sites, detailed chemistry analyses of environmental samples and tissues, and the use of appropriate biomarkers to establish exposure and effect. This paper describes the field of Evolutionary Toxicology and discusses relevant field studies and their findings. © Springer Science+Business Media, LLC 2011

  3. Design Principle of A Small Angle Neutron Scattering Spectrometer. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A [Dept. of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt)

    1996-03-01

    The design principle of a small angle neutron scattering (SANS) spectrometer is based on producing monochromatic neutron bursts using two phased rotors. The rotors have a number of slots to achieve the highly available intensity of monoenergetic neutrons at the required resolution. The design principle was applied to improve the performance of the pulsed monochromatic double rotor system at ET-RR-1 to operate as SANS spectrometer. It is shown that for rotors having 19 slots each with radius of curvature 96.8 cm, the intensity gain factor is 13. The proposed SANS spectrometer could cover the neutron wavelength range from 2 A{sup {omicron}} up to 6 A{sup {omicron}} through small angles of scattering from 5 x 10{sup -3} rad. to 0.1 rad. i.e, the scattering wavevector transfer between 0.6 A{sup {omicron}-1} and 0.01 A{sup {omicron}-1}. The maximum neutron flux density on the specimen is 5 x 10{sup 5} n cm{sup -2} s{sup -1}. 8 figs.

  4. Design and evaluation of potentiometric principles for bladder volume monitoring: a preliminary study.

    Science.gov (United States)

    Chen, Shih-Ching; Hsieh, Tsung-Hsun; Fan, Wen-Jia; Lai, Chien-Hung; Chen, Chun-Lung; Wei, Wei-Feng; Peng, Chih-Wei

    2015-06-01

    Recent advances in microelectronics and wireless transmission technology have led to the development of various implantable sensors for real-time monitoring of bladder conditions. Although various sensing approaches for monitoring bladder conditions were reported, most such sensors have remained at the laboratory stage due to the existence of vital drawbacks. In the present study, we explored a new concept for monitoring the bladder capacity on the basis of potentiometric principles. A prototype of a potentiometer module was designed and fabricated and integrated with a commercial wireless transmission module and power unit. A series of in vitro pig bladder experiments was conducted to determine the best design parameters for implementing the prototype potentiometric device and to prove its feasibility. We successfully implemented the potentiometric module in a pig bladder model in vitro, and the error of the accuracy of bladder volume detection was design principles and animal experience gathered from this research can serve as a basis for developing new implantable bladder sensors in the future.

  5. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course.

    Science.gov (United States)

    Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  7. Principles for designing proteins with cavities formed by curved β sheets

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.; Tang, Yuefeng; Oberdorfer, Gustav; Liu, Gaohua; Swapna, G. V. T.; Guan, Rongjin; Silva, Daniel-Adriano; Dou, Jiayi; Pereira, Jose Henrique; Xiao, Rong; Sankaran, Banumathi; Zwart, Peter H.; Montelione, Gaetano T.; Baker, David

    2017-01-12

    Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheet curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.

  8. A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems.

    Science.gov (United States)

    Phansalkar, Shobha; Edworthy, Judy; Hellier, Elizabeth; Seger, Diane L; Schedlbauer, Angela; Avery, Anthony J; Bates, David W

    2010-01-01

    The objective of this review is to describe the implementation of human factors principles for the design of alerts in clinical information systems. First, we conduct a review of alarm systems to identify human factors principles that are employed in the design and implementation of alerts. Second, we review the medical informatics literature to provide examples of the implementation of human factors principles in current clinical information systems using alerts to provide medication decision support. Last, we suggest actionable recommendations for delivering effective clinical decision support using alerts. A review of studies from the medical informatics literature suggests that many basic human factors principles are not followed, possibly contributing to the lack of acceptance of alerts in clinical information systems. We evaluate the limitations of current alerting philosophies and provide recommendations for improving acceptance of alerts by incorporating human factors principles in their design.

  9. Review: Janice M. Morse & Linda Niehaus (2009). Mixed method design: principles and procedures

    OpenAIRE

    Öhlen, Joakim

    2010-01-01

    Mixed-Method-Designs, in denen quantitative und qualitative Methoden Verwendung finden, erfreuen sich zunehmender Beliebtheit für die Untersuchung komplexer Phänomene. Die vorliegende Besprechung beschäftigt sich in diesem Zusammenhang mit dem Buch "Mixed Method Design: Principles and Procedures" von Janice M. MORSE und Linda NIEHAUS, die für solche Designs Kern- und Ergänzungskomponenten zu identifizieren versuchen. Hierzu differenzieren sie zwischen Projekten, die einer eher deduktiven oder...

  10. Principles of human joint replacement design and clinical application

    CERN Document Server

    Buechel, Frederick F

    2015-01-01

    This book is written for the users and designers of joint replacements. In its second extended edition it conveys to the reader the knowledge accumulated by the authors during their forty year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter describes the design methodology now required for joint replacement in the USA and EU countries. The remaining chapters provide a history of joint replacement, an evaluation of earlier and current devices and sample case hist...

  11. Principles of Human Joint Replacement Design and Clinical Application

    CERN Document Server

    Buechel, Frederick F

    2012-01-01

    Drs. Buechel, an orthopaedic surgeon, and Pappas, a professor of Mechanical Engineering, are the designers of several successful joint replacement systems. The most well-known of these is the pioneering LCS knee replacement. They have written this book for the users and designers of joint replacements. It is an attempt to convey to the reader the knowledge accumulated by the authors during their thirty five year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter de...

  12. Virus-inspired design principles of nanoparticle-based bioagents.

    Directory of Open Access Journals (Sweden)

    Hongyan Yuan

    Full Text Available The highly effectiveness and robustness of receptor-mediated viral invasion of living cells shed lights on the biomimetic design of nanoparticle(NP-based therapeutics. Through thermodynamic analysis, we elucidate that the mechanisms governing both the endocytic time of a single NP and the cellular uptake can be unified into a general energy-balance framework of NP-membrane adhesion and membrane deformation. Yet the NP-membrane adhesion strength is a globally variable quantity that effectively regulates the NP uptake rate. Our analysis shows that the uptake rate interrelatedly depends on the particle size and ligand density, in contrast to the widely reported size effect. Our model predicts that the optimal radius of NPs for maximal uptake rate falls in the range of 25-30 nm, and optimally several tens of ligands should be coated onto NPs. These findings are supported by both recent experiments and typical viral structures, and serve as fundamental principles for the rational design of NP-based nanomedicine.

  13. Design principles for solid-state lithium superionic conductors.

    Science.gov (United States)

    Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand

    2015-10-01

    Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

  14. Using Evolutionary Theory to Guide Mental Health Research.

    Science.gov (United States)

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  15. Teaching the Principles of Effective Online Course Design: What Works?

    Directory of Open Access Journals (Sweden)

    Clare Gormley

    2014-06-01

    Full Text Available While much has been written about the pedagogy and challenges of online learning, there is comparatively little research that advises how online course design competencies can be achieved. Certainly a growing range of course design resources is being created and made openly available, but there is a need to evaluate their actual impact on practice. This predominantly qualitative study describes the impact of two learning interventions – open online tutorials and a design and development workshop – aimed at introducing the fundamentals of online course design. Four online course developers at an Irish university were interviewed about their experiences creating multimedia-based online courses. Two of the developers were given access to targeted learning interventions and were subsequently interviewed about their experiences using those interventions. The main findings were that novice online course developers can potentially learn and apply design principles through a dedicated introductory phase, techniques that promote discussion of effective pedagogy, and ongoing collaboration in course design. These strategies could be adapted to specific contexts elsewhere.

  16. Design principles and algorithms for automated air traffic management

    Science.gov (United States)

    Erzberger, Heinz

    1995-01-01

    This paper presents design principles and algorithm for building a real time scheduler. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high altitude airspace far from the airport and low altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time.

  17. A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems

    OpenAIRE

    Phansalkar, Shobha; Edworthy, Judy; Hellier, Elizabeth; Seger, Diane L; Schedlbauer, Angela; Avery, Anthony J; Bates, David W

    2010-01-01

    The objective of this review is to describe the implementation of human factors principles for the design of alerts in clinical information systems. First, we conduct a review of alarm systems to identify human factors principles that are employed in the design and implementation of alerts. Second, we review the medical informatics literature to provide examples of the implementation of human factors principles in current clinical information systems using alerts to provide medication decisio...

  18. The co-evolutionary dynamics of directed network of spin market agents

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin

    2006-09-01

    The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3social networks.

  19. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  20. Evolutionary plant physiology: Charles Darwin's forgotten synthesis.

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin's son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin's work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  1. A surrogate assisted evolutionary optimization method with application to the transonic airfoil design

    Science.gov (United States)

    Shahrokhi, Ava; Jahangirian, Alireza

    2010-06-01

    A multi-layer perceptron neural network (NN) method is used for efficient estimation of the expensive objective functions in the evolutionary optimization with the genetic algorithm (GA). The estimation capability of the NN is improved by dynamic retraining using the data from successive generations. In addition, the normal distribution of the training data variables is used to determine well-trained parts of the design space for the NN approximation. The efficiency of the method is demonstrated by two transonic airfoil design problems considering inviscid and viscous flow solvers. Results are compared with those of the simple GA and an alternative surrogate method. The total number of flow solver calls is reduced by about 40% using this fitness approximation technique, which in turn reduces the total computational time without influencing the convergence rate of the optimization algorithm. The accuracy of the NN estimation is considerably improved using the normal distribution approach compared with the alternative method.

  2. Review: Janice M. Morse & Linda Niehaus (2009). Mixed Method Design: Principles and Procedures

    OpenAIRE

    Öhlen, Joakim

    2010-01-01

    Mixed method design related to the use of a combination of methods, usually quantitative and qualitative, is increasingly used for the investigation of complex phenomena. This review discusses the book, "Mixed Method Design: Principles and Procedures," by Janice M. MORSE and Linda NIEHAUS. A distinctive feature of their approach is the consideration of mixed methods design out of a core and a supplemental component. In order to define these components they emphasize the overall conceptual dir...

  3. Novel Designs for the Audio Mixing Interface Based on Data Visualisation First Principles

    OpenAIRE

    Dewey, Christopher; Wakefield, Jonathan P.

    2016-01-01

    Given the shortcomings of current audio mixing interfaces (AMIs) this study focuses on the development of alternative AMIs based on data visualisation first principles. The elementary perceptual tasks defined by Cleveland informed the design process. Two design ideas were considered for pan: using the elementary perceptual tasks ‘scale’ to display pan on either a single or multiple horizontal lines. Four design ideas were considered for level:\\ud using ‘length’, ‘area’, ‘saturation’ or ‘scala...

  4. Three Principles of Perception for Instructional Interface Design.

    Science.gov (United States)

    Lohr, Linda L.

    2000-01-01

    Discusses graphical user interfaces used for instructional purposes in educational environments, which promote learning goals, and in support environments, which promote performance goals. Explains three key principles of perception and gives guidelines for their use, including the figure/ground principle, the hierarchy principle, and the gestalt…

  5. Synthetic Elucidation of Design Principles for Molecular Qubits

    Science.gov (United States)

    Graham, Michael James

    Quantum information processing (QIP) is an emerging computational paradigm with the potential to enable a vast increase in computational power, fundamentally transforming fields from structural biology to finance. QIP employs qubits, or quantum bits, as its fundamental units of information, which can exist in not just the classical states of 0 or 1, but in a superposition of the two. In order to successfully perform QIP, this superposition state must be sufficiently long-lived. One promising paradigm for the implementation of QIP involves employing unpaired electrons in coordination complexes as qubits. This architecture is highly tunable and scalable, however coordination complexes frequently suffer from short superposition lifetimes, or T2. In order to capitalize on the promise of molecular qubits, it is necessary to develop a set of design principles that allow the rational synthesis of complexes with sufficiently long values of T2. In this dissertation, I report efforts to use the synthesis of series of complexes to elucidate design principles for molecular qubits. Chapter 1 details previous work by our group and others in the field. Chapter 2 details the first efforts of our group to determine the impact of varying spin and spin-orbit coupling on T2. Chapter 3 examines the effect of removing nuclear spins on coherence time, and reports a series of vanadyl bis(dithiolene) complexes which exhibit extremely long coherence lifetimes, in excess of the 100 mus threshold for qubit viability. Chapters 4 and 5 form two complimentary halves of a study to determine the exact relationship between electronic spin-nuclear spin distance and the effect of the nuclear spins on T2. Finally, chapter 6 suggests next directions for the field as a whole, including the potential for work in this field to impact the development of other technologies as diverse as quantum sensors and magnetic resonance imaging contrast agents.

  6. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  7. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    International Nuclear Information System (INIS)

    Laganà, Alessandro; Shasha, Dennis; Croce, Carlo Maria

    2014-01-01

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  8. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    Energy Technology Data Exchange (ETDEWEB)

    Laganà, Alessandro [Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (United States); Shasha, Dennis [Courant Institute of Mathematical Sciences, New York University, New York, NY (United States); Croce, Carlo Maria [Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (United States)

    2014-12-11

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  9. Seeing is believing: good graphic design principles for medical research.

    Science.gov (United States)

    Duke, Susan P; Bancken, Fabrice; Crowe, Brenda; Soukup, Mat; Botsis, Taxiarchis; Forshee, Richard

    2015-09-30

    Have you noticed when you browse a book, journal, study report, or product label how your eye is drawn to figures more than to words and tables? Statistical graphs are powerful ways to transparently and succinctly communicate the key points of medical research. Furthermore, the graphic design itself adds to the clarity of the messages in the data. The goal of this paper is to provide a mechanism for selecting the appropriate graph to thoughtfully construct quality deliverables using good graphic design principles. Examples are motivated by the efforts of a Safety Graphics Working Group that consisted of scientists from the pharmaceutical industry, Food and Drug Administration, and academic institutions. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Toward an evolutionary definition of cheating.

    Science.gov (United States)

    Ghoul, Melanie; Griffin, Ashleigh S; West, Stuart A

    2014-02-01

    The term "cheating" is used in the evolutionary and ecological literature to describe a wide range of exploitative or deceitful traits. Although many find this a useful short hand, others have suggested that it implies cognitive intent in a misleading way, and is used inconsistently. We provide a formal justification of the use of the term "cheat" from the perspective of an individual as a maximizing agent. We provide a definition for cheating that can be applied widely, and show that cheats can be broadly classified on the basis of four distinctions: (i) whether cooperation is an option; (ii) whether deception is involved; (iii) whether members of the same or different species are cheated; and (iv) whether the cheat is facultative or obligate. Our formal definition and classification provide a framework that allow us to resolve and clarify a number of issues, regarding the detection and evolutionary consequences of cheating, as well as illuminating common principles and similarities in the underlying selection pressures. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  12. Basic design principles of colorimetric vision systems

    Science.gov (United States)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  13. Evaluation of Urban Spaces from the Perspective of Universal Design Principles: The Case of Konya/Turkey

    Directory of Open Access Journals (Sweden)

    H. Filiz Alkan Meshur

    2016-08-01

    Full Text Available During the process of accessing services provided within urban interior and outer spaces the elderly and disabled individuals encounter with a myriad of problems due to the limitations posed by structured environments. This limitation hinders elderly and disabled individuals from mobility without assistance, which in turn negatively affects their full participation to urban and social life. Rearrangement of urban spaces to meet the needs of elderly and disabled individuals would correspondingly bolster life quality of the entire range of users. Within the scope of present research, as mandated by universal design principles to stick to plans and designs approaches inclusive for all users, it is aimed to conduct evaluations on the use of urban outer spaces situated within Konya city center. In the hypothetical and theoretical part of this paper, the perception of disability throughout historical process has been examined from a sociological perspective. In addition, concept of universal design, its principles and gravity have also been elaborated. In the part dealing with the case study, outer spaces within Konya city center have been analyzed with respect to universal design principles and a range of suggestions have been developed.

  14. Basic principles of test-negative design in evaluating influenza vaccine effectiveness.

    Science.gov (United States)

    Fukushima, Wakaba; Hirota, Yoshio

    2017-08-24

    Based on the unique characteristics of influenza, the concept of "monitoring" influenza vaccine effectiveness (VE) across the seasons using the same observational study design has been developed. In recent years, there has been a growing number of influenza VE reports using the test-negative design, which can minimize both misclassification of diseases and confounding by health care-seeking behavior. Although the test-negative designs offer considerable advantages, there are some concerns that widespread use of the test-negative design without knowledge of the basic principles of epidemiology could produce invalid findings. In this article, we briefly review the basic concepts of the test-negative design with respect to classic study design such as cohort studies or case-control studies. We also mention selection bias, which may be of concern in some countries where rapid diagnostic testing is frequently used in routine clinical practices, as in Japan. Copyright © 2017. Published by Elsevier Ltd.

  15. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  16. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  17. Studies on design principles and criteria of fuels and graphites for experimental multi-purpose very high temperature reactor

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Sato, Sadao; Tani, Yutaro

    1977-12-01

    Design principles and criteria of fuels and graphites have been studied to determine the main design parameters of a reference core MARK-III of the Experimental Multi-purpose Very High Temperature Reactor. The present status of research and development for HTGR fuels and graphites is reviewed from a standpoint of their integrity and safety aspects, and is compared to the specific design requirements for the VHTR fuels and graphites. Consequently, reasonable materials specifications, safety criteria and design analysis methods are presented for coated fuel particle, fuel compact, graphite sleeve, core support graphite and neutron absorber material. These design principles and criteria will be refined by further experimental investigations. (auth.)

  18. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  19. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  20. Towards Adaptive Evolutionary Architecture

    DEFF Research Database (Denmark)

    Bak, Sebastian HOlt; Rask, Nina; Risi, Sebastian

    2016-01-01

    This paper presents first results from an interdisciplinary project, in which the fields of architecture, philosophy and artificial life are combined to explore possible futures of architecture. Through an interactive evolutionary installation, called EvoCurtain, we investigate aspects of how...... to the development of designs tailored to the individual preferences of inhabitants, changing the roles of architects and designers entirely. Architecture-as-it-could-be is a philosophical approach conducted through artistic methods to anticipate the technological futures of human-centered development within...

  1. Design principles for riboswitch function.

    Directory of Open Access Journals (Sweden)

    Chase L Beisel

    2009-04-01

    Full Text Available Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence-function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands.

  2. IN QUEST OF TOTAL QUALITY MANAGEMENT PRINCIPLES IN ARCHITECTURAL DESIGN SERVICES: EVIDENCE FROM TURKEY

    Directory of Open Access Journals (Sweden)

    Umut Durmus

    2010-12-01

    Full Text Available Proposal: Architectural design companies increasingly recognize that time spent on management is not at the expense of their production and there are always better ways to organize business. Although architects have long placed a traditional emphasis on quality, quality management is still a new concept for the majority of architectural design companies, which have to organize relatively more complicated operations nowadays to meet their clients’ expectations. This study aims to understand how architectural design companies define quality and explores the extent to which Total Quality Management (TQM principles like continual improvement, employee involvement, customer satisfaction and others can be pertinent in these companies. Adopting a qualitative research strategy, the authors interviewed with the owner-managers of 10 widely-recognized architectural design companies of different size in Istanbul. The results from the content analysis of semi-structured interview data suggest that i TQM principles cannot be directly applied in architectural design companies without an appropriate translation; ii special characteristics of design services are important to explain quality-related perceptions of owner-managers; iii the owner-managers feel the pressure from the changing internal and external environmental conditions, however few of them adopt a systematic and documented approach to quality management. Architectural design offices which aim to establish a quality management system can benefit from this study to understand potential problem areas on their road.

  3. Parallel power electronics filters in three-phase four-wire systems principle, control and design

    CERN Document Server

    Wong, Man-Chung; Lam, Chi-Seng

    2016-01-01

    This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems. .

  4. The hybrid K-edge/K-XRF densitometer: Principles - design - performance

    International Nuclear Information System (INIS)

    Ottmar, H.; Eberle, H.

    1991-02-01

    The Euratom Safeguards Directorate (ESD) has recently installed a hybrid K-edge/K-XRF densitometer in a commerical reprocessing plant for the safeguarding of nuclear materials. This instrument, developed at KfK Karlsruhe, offers for the first time analytical measurement capabilities for timely on-site input accountancy verification. Lectures providing informations on measurement principles, instrument design features and performance data have been given to inspectors of ESD to make them familiar with the new instrument. This report summarizes the essential materials presented during these courses. (orig.) [de

  5. Human Factors Principles in Design of Computer-Mediated Visualization for Robot Missions

    Energy Technology Data Exchange (ETDEWEB)

    David I Gertman; David J Bruemmer

    2008-12-01

    With increased use of robots as a resource in missions supporting countermine, improvised explosive devices (IEDs), and chemical, biological, radiological nuclear and conventional explosives (CBRNE), fully understanding the best means by which to complement the human operator’s underlying perceptual and cognitive processes could not be more important. Consistent with control and display integration practices in many other high technology computer-supported applications, current robotic design practices rely highly upon static guidelines and design heuristics that reflect the expertise and experience of the individual designer. In order to use what we know about human factors (HF) to drive human robot interaction (HRI) design, this paper reviews underlying human perception and cognition principles and shows how they were applied to a threat detection domain.

  6. Blockchain to Rule the Waves - Nascent Design Principles for Reducing Risk and Uncertainty in Decentralized Environments

    DEFF Research Database (Denmark)

    Nærland, Kristoffer; Müller-Bloch, Christoph; Beck, Roman

    2017-01-01

    Many decentralized, inter-organizational environments such as supply chains are characterized by high transactional uncertainty and risk. At the same time, blockchain technology promises to mitigate these issues by introducing certainty into economic transactions. This paper discusses the findings...... of a Design Science Research project involving the construction and evaluation of an information technology artifact in collaboration with Maersk, a leading international shipping company, where central documents in shipping, such as the Bill of Lading, are turned into a smart contract on blockchain. Based...... on our insights from the project, we provide first evidence for preliminary design principles for applications that aim to mitigate the transactional risk and uncertainty in decentralized environments using blockchain. Both the artifact and the first evidence for emerging design principles are novel...

  7. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    Science.gov (United States)

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  8. Structured synthesis of MEMS using evolutionary approaches

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Achiche, Sofiane

    2008-01-01

    In this paper, we discuss the hierarchy that is involved in a typical MEMS design and how evolutionary approaches can be used to automate the hierarchical synthesis process for MEMS. The paper first introduces the flow of a structured MEMS design process and emphasizes that system-level lumped...

  9. Personnel Selection Using Fuzzy Axiomatic Design Principles

    Directory of Open Access Journals (Sweden)

    Anant V. Khandekar

    2016-09-01

    Full Text Available Overall competency of the working personnel is often observed to ultimately affect the productivity of an organization. The globalised competitive atmosphere coupled with technological improvements demands for efficient and specialized manpower for the industrial operations. A set of typical technological skills and attitudes is thus demanded for every job profile. Most often, these skills and attitudes are expressed imprecisely and hence, necessitating the support of fuzzy sets for their effective understanding and further processing. In this paper, a method based on fuzzy axiomatic design principles is applied for solving the personnel selection problems. Selecting a middle management staff of a service department for a large scale organization is demonstrated here as a real life example. Five shortlisted candidates are assessed with respect to a set of 18 evaluation criteria, and the selection committee with experts from the related fields also realizes the outcome of the adopted approach to be quite appropriate, befitting and in agreement with their expectations.

  10. Engageability: a new sub-principle of the learnability principle in human-computer interaction

    Directory of Open Access Journals (Sweden)

    B Chimbo

    2011-12-01

    Full Text Available The learnability principle relates to improving the usability of software, as well as users’ performance and productivity. A gap has been identified as the current definition of the principle does not distinguish between users of different ages. To determine the extent of the gap, this article compares the ways in which two user groups, adults and children, learn how to use an unfamiliar software application. In doing this, we bring together the research areas of human-computer interaction (HCI, adult and child learning, learning theories and strategies, usability evaluation and interaction design. A literature survey conducted on learnability and learning processes considered the meaning of learnability of software applications across generations. In an empirical investigation, users aged from 9 to 12 and from 35 to 50 were observed in a usability laboratory while learning to use educational software applications. Insights that emerged from data analysis showed different tactics and approaches that children and adults use when learning unfamiliar software. Eye tracking data was also recorded. Findings indicated that subtle re- interpretation of the learnability principle and its associated sub-principles was required. An additional sub-principle, namely engageability was proposed to incorporate aspects of learnability that are not covered by the existing sub-principles. Our re-interpretation of the learnability principle and the resulting design recommendations should help designers to fulfill the varying needs of different-aged users, and improve the learnability of their designs. Keywords: Child computer interaction, Design principles, Eye tracking, Generational differences, human-computer interaction, Learning theories, Learnability, Engageability, Software applications, Uasability Disciplines: Human-Computer Interaction (HCI Studies, Computer science, Observational Studies

  11. Attribute Index and Uniform Design Based Multiobjective Association Rule Mining with Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.

  12. Attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm.

    Science.gov (United States)

    Zhang, Jie; Wang, Yuping; Feng, Junhong

    2013-01-01

    In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.

  13. Are hotspots of evolutionary potential adequately protected in southern California?

    Science.gov (United States)

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  14. The concept and principles of sustainable architectural design for national parks in Serbia

    OpenAIRE

    Milošević Predrag

    2004-01-01

    The paper elaborates the concept of sustainable architectural design that has come to the forefront in the last 20 years, and in the light of the National Park. This concept recognizes that human civilization is an integral part of the natural world and that nature must be preserved and perpetuated if the human community itself is to survive. Sustainable design articulates this idea through developments that exemplify the principles of conservation and encourage the application of those princ...

  15. Outline of principle of design construction of demolished concrete from electric power plant

    International Nuclear Information System (INIS)

    Takahashi, Tomohiko; Sakagami, Takeharu; Inagaki, Hirokazu; Morozumi, Hironori; Muranaka, Kenji

    2005-01-01

    'The principle of design construction of recycled demolished concrete from electric power plant' (a plan) is going to be published by TSCE Concrete Committee in 2005. The abstract of the above principle is described. A large amount of demolished concrete is generated by decommissioning of atomic power plant. About 450,000 to 500,000t of concrete with small radiation level per an atomic power plant will be generated. This report included decommissioning of Tokai power plant, characteristics of subject of demolished concrete, the recycled demolished concrete, fresh conditions of the recycled demolished concrete, the strength, deformation properties, durability, alkali silica reactivity of them and control measurement. (S.Y.)

  16. Conversion Rate Optimization through Evolutionary Computation

    OpenAIRE

    Miikkulainen, Risto; Iscoe, Neil; Shagrin, Aaron; Cordell, Ron; Nazari, Sam; Schoolland, Cory; Brundage, Myles; Epstein, Jonathan; Dean, Randy; Lamba, Gurmeet

    2017-01-01

    Conversion optimization means designing a web interface so that as many users as possible take a desired action on it, such as register or purchase. Such design is usually done by hand, testing one change at a time through A/B testing, or a limited number of combinations through multivariate testing, making it possible to evaluate only a small fraction of designs in a vast design space. This paper describes Sentient Ascend, an automatic conversion optimization system that uses evolutionary op...

  17. Zebrafish housing systems: a review of basic operating principles and considerations for design and functionality.

    Science.gov (United States)

    Lawrence, Christian; Mason, Timothy

    2012-01-01

    The strategies for housing zebrafish used in biomedical research have evolved considerably over the past three decades. To keep pace with the rapid expansion and development of the zebrafish model system, the field has generally moved from keeping fish at the level of aquarium hobbyist to that of industrialized, recirculating aquaculture. Numerous commercial system vendors now offer increasingly sophisticated housing systems based on design principles that maximize the number of animals that can be housed in a given space footprint, and they are thus able to support large and diverse research programs. This review is designed to provide managers, lab animal veterinarians, investigators, and other parties responsible for care and use of these animals with a comprehensive overview of the basic operating and design principles of zebrafish housing systems. This information can be used to help plan the construction of new facilities and/or the upgrade and maintenance of existing operations.

  18. Perceptions of Pre-Service Teachers on the Design of a Learning Environment Based on the Seven Principles of Good Practice

    Science.gov (United States)

    Al-Furaih, Suad Abdul Aziz

    2017-01-01

    This study explored the perceptions of 88 pre-service teachers on the design of a learning environment using the Seven Principles of Good Practice and its effect on participants' abilities to create their Cloud Learning Environment (CLE). In designing the learning environment, a conceptual model under the name 7 Principles and Integrated Learning…

  19. Design principles and issues of rights expression languages for digital rights management

    Science.gov (United States)

    Wang, Xin

    2005-07-01

    Digital rights management (DRM) provides a unified approach to specifying, interpreting, enforcing and managing digital rights throughout the entire life cycle of digital assets. Using a declarative rights expression language (REL) for specifying rights and conditions in the form of licenses, as opposite to some other approaches (such as data structures and imperative languages), has been considered and adopted as a superior technology for implementing effective, interoperable and scalable DRM systems. This paper discusses some principles and issues for designing RELs, based on the experiences of developing a family of REL"s (DPRL, XrML 1.x, XrML 2.0 and MPEG REL). It starts with an overview of a family tree of the past and current REL"s, and their development history, followed by an analysis of their data models and a comparison with access-control oriented models. It then presents a number of primary design principles such as syntactic and semantic un-ambiguity, system interoperability, expressiveness in supporting business models and future extensibility, and discusses a number of key design issues such as maintaining stateful information, multi-tier issuance of rights, meta rights, identification of individual and aggregate objects, late-binding of to-beidentified entities, as well as some advanced ones on revocation and delegation of rights. The paper concludes with some remarks on REL profiling and extension for specific application domains.

  20. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Science.gov (United States)

    2010-07-01

    ... and Construction Sustainable Development § 102-76.55 What sustainable development principles must... Acquisition,” Federal agencies must apply sustainable development principles to the siting, design, and... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What sustainable...

  1. The concept and principles of sustainable architectural design for national parks in Serbia

    Directory of Open Access Journals (Sweden)

    Milošević Predrag

    2004-01-01

    Full Text Available The paper elaborates the concept of sustainable architectural design that has come to the forefront in the last 20 years, and in the light of the National Park. This concept recognizes that human civilization is an integral part of the natural world and that nature must be preserved and perpetuated if the human community itself is to survive. Sustainable design articulates this idea through developments that exemplify the principles of conservation and encourage the application of those principles in our daily lives. A corollary concept, and one that supports sustainable design, is that of bio-regionalism - the idea that all life is established and maintained on a functional community basis and that all of these distinctive communities (bio-regions have mutually supporting life systems that are generally self-sustaining. The concept of sustainable design holds that future technologies must function primarily within bioregional patterns and scales. They must maintain biological diversity and environmental integrity contribute to the health of air, water, and soils, incorporate design and construction that reflect bio-regional conditions, and reduce the impacts of human use. Sustainable design, sustainable development, design with nature environmentally sensitive design, holistic resource management - regardless of what it's called, "sustainability," the capability of natural and cultural systems being continued over time, is the key. Sustainable design must use an alternative approach to traditional design and the new design approach must recognize the impacts of every design choice on the natural and cultural resources of the local, regional, and global environments. Sustainable park and recreation development will succeed to the degree that it anticipates and manages human experiences. Interpretation provides the best single tool for shaping experiences and sharing values. By providing an awareness of the environment, values are taught that are

  2. Evolutionary origins of mechanosensitive ion channels.

    Science.gov (United States)

    Martinac, Boris; Kloda, Anna

    2003-01-01

    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  3. Evolutionary Agent-based Models to design distributed water management strategies

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Reed, P. M.

    2012-12-01

    There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a

  4. Silver Nanoclusters: From Design Principles to Practical Applications

    KAUST Repository

    Abdulhalim, Lina G.

    2015-12-08

    A strategy based on reticulating metal ions and organic ligands into atomically precise gold and silver nanoclusters (NCs) with high monodispersity has been advanced to a point that allows the design of NCs with strict stoichiometries, functionalities and valence. Of the Ag NCs discovered, Ag44 is the most studied, not only due to its high absorption that transcends the visible spectrum suitable for photovoltaics but also because of its long excited state lifetime, as revealed by nanosecond transient absorption spectroscopy. A major principle discovered in this dissertation is the ability to produce Ag44 in scalable amounts and with high stability in addition to modulation of the functional groups of the organic ligands via a fast and complete ligand exchange process. This new discovery has led to the development of synthetic designs in which new sizes were obtained by varying the reaction parameters (e.g., ligands functionality, reaction temperature and time), namely, Ag29 using dithiols and phosphines. The synthesized NCs possess tetravalent functionalities that facilitate their crystallization and characterization. Furthermore, Ag29 glows red and is therefore a possible candidate for sensing and imaging applications.

  5. Mapping of Affordance and Activity as the Biophilic Design Principle of Blue Lagoon Tourism Area Yogyakarta

    Directory of Open Access Journals (Sweden)

    Saptorini Hastuti

    2018-01-01

    Full Text Available Bathing and playing in the river is not a new phenomenon for some people. But this experience creates a recreational spirit on the Tepusriver which is now better known as the Blue Lagoon. This area is a term for the settlement that is split a piece of the river in the dusun Ndalem Ngemplak Sleman. Its tributaries are clear and blue, surrounded by some springs with natural bamboo groves and old trees that invite local and around communities for recreation. The local community has anticipated it by responding to the communities’ demands as well as the recreation area. Appear sporadically “warungs” and recreational activities follow-up though not yet grown in conceptual. This paper aims to study the map of affordance and activity of previous research findings and could be used to the biophilic design to afford the health, productivity, and wellbeing in the tourism area. The method is by synthesizing the previous research findings in 2016, some relevant urban design theories, and biophilic design principle. The conclusion is paid attention to two main principles. The first principle is maximizing the utilization of existing natural properties and the existing cultural skills into its development to nourish visitors both physically and psychologically. The second principle is the Government, and Non-Government Organizations (i.e., expertise, academics, universities, investors support, both policy and financially, in many sectors: tourism, environment, and infrastructure.

  6. Multi-objective optimization of an arch dam shape under static loads using an evolutionary game method

    Science.gov (United States)

    Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang

    2018-06-01

    This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.

  7. The naturalist view of Universal Darwinism: an application to the evolutionary theory of the firm

    NARCIS (Netherlands)

    Stoelhorst, J.W.; Finch, J.; Orillard, M.

    2005-01-01

    The purpose of this paper is to contribute to recent efforts to ground evolutionary theory in economics in the principles of Universal Darwinism. The paper contrasts two views of evolution, based on the Ultra-Darwinian and Naturalist theory of biological evolution, both of which are consistent with

  8. Evolutionary Computation Methods and their applications in Statistics

    Directory of Open Access Journals (Sweden)

    Francesco Battaglia

    2013-05-01

    Full Text Available A brief discussion of the genesis of evolutionary computation methods, their relationship to artificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is provided. Then, the main evolutionary computation methods are illustrated: evolution strategies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief description of some evolutionary behavior methods such as ant colony and particle swarm optimization. We also discuss the role of the genetic algorithm for multivariate probability distribution random generation, rather than as a function optimizer. Finally, some relevant applications of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time series model building, outlier identification, cluster analysis, design of experiments.

  9. The status of evolutionary medicine education in North American medical schools.

    Science.gov (United States)

    Hidaka, Brandon H; Asghar, Anila; Aktipis, C Athena; Nesse, Randolph M; Wolpaw, Terry M; Skursky, Nicole K; Bennett, Katelyn J; Beyrouty, Matthew W; Schwartz, Mark D

    2015-03-08

    Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education. In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson's chi-square test, Student's t-test, and Spearman's correlation. Open-ended questions sought insight into perceived barriers and benefits. Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care. North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools

  10. Complexity in Evolutionary Processes

    International Nuclear Information System (INIS)

    Schuster, P.

    2010-01-01

    Darwin's principle of evolution by natural selection is readily casted into a mathematical formalism. Molecular biology revealed the mechanism of mutation and provides the basis for a kinetic theory of evolution that models correct reproduction and mutation as parallel chemical reaction channels. A result of the kinetic theory is the existence of a phase transition in evolution occurring at a critical mutation rate, which represents a localization threshold for the population in sequence space. Occurrence and nature of such phase transitions depend critically on fitness landscapes. The fitness landscape being tantamount to a mapping from sequence or genotype space into phenotype space is identified as the true source of complexity in evolution. Modeling evolution as a stochastic process is discussed and neutrality with respect to selection is shown to provide a major challenge for understanding evolutionary processes (author)

  11. Towards automating the discovery of certain innovative design principles through a clustering-based optimization technique

    Science.gov (United States)

    Bandaru, Sunith; Deb, Kalyanmoy

    2011-09-01

    In this article, a methodology is proposed for automatically extracting innovative design principles which make a system or process (subject to conflicting objectives) optimal using its Pareto-optimal dataset. Such 'higher knowledge' would not only help designers to execute the system better, but also enable them to predict how changes in one variable would affect other variables if the system has to retain its optimal behaviour. This in turn would help solve other similar systems with different parameter settings easily without the need to perform a fresh optimization task. The proposed methodology uses a clustering-based optimization technique and is capable of discovering hidden functional relationships between the variables, objective and constraint functions and any other function that the designer wishes to include as a 'basis function'. A number of engineering design problems are considered for which the mathematical structure of these explicit relationships exists and has been revealed by a previous study. A comparison with the multivariate adaptive regression splines (MARS) approach reveals the practicality of the proposed approach due to its ability to find meaningful design principles. The success of this procedure for automated innovization is highly encouraging and indicates its suitability for further development in tackling more complex design scenarios.

  12. Design principles and fundamental trade-offs in biomimetic light harvesting

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Birgitta Whaley, K

    2013-01-01

    Recent developments in synthetic and supramolecular chemistry have created opportunities to design organic systems with tailored nanoscale structure for various technological applications. A key application area is the capture of light energy and its conversion into electrochemical or chemical forms for photovoltaic or sensing applications. In this work we consider cylindrical assemblies of chromophores that model structures produced by several supramolecular techniques. Our study is especially guided by the versatile structures produced by virus-templated assembly. We use a multi-objective optimization framework to determine design principles and limitations in light harvesting performance for such assemblies, both in the presence and absence of disorder. We identify a fundamental trade-off in cylindrical assemblies that is encountered when attempting to maximize both efficiency of energy transfer and absorption bandwidth. We also rationalize the optimal design strategies and provide explanations for why various structures provide optimal performance. Most importantly, we find that the optimal design strategies depend on the amount of energetic and structural disorder in the system. The aim of these studies is to develop a program of quantum-informed rational design for construction of organic assemblies that have the same degree of tailored nanoscale structure as biological photosynthetic light harvesting complexes, and consequently have the potential to reproduce their remarkable light harvesting performance. (paper)

  13. Evolutionary thinking

    Science.gov (United States)

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  14. Evolution of the human brain: design without a designer.

    NARCIS (Netherlands)

    Hofman, M.A.; Kaas, John

    2017-01-01

    The evolutionary expansion of the brain is among the most distinctive morphological features of mammals. During the past decades, considerable progress has been made in explaining brain evolution in terms of physical and adaptive principles. The objective of this chapter is to present current

  15. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training...

  16. SYSTEMATIC PRINCIPLES AND METHODS OF SYMBOLIC APPROACHES IN URBAN DESIGN

    Directory of Open Access Journals (Sweden)

    BULAKH I. V

    2015-12-01

    Full Text Available Formulation of the problem. The low level of expression and personalization of mass architecture of the second half of the twentieth century connected with the spread of industrial technology and even to a greater extent with mechanistic traditionally functional relation to the average person as, abstract consumer architecture. The condition out of the critical situation is focusing on matters aesthetic, artistic understanding and harmonious image creation environment. The problem of increasing architectural and artistic level of architectural and urban planning solutions to overcome the monotony of planning and development, creating aesthetically expressive urban environment does not lose relevance over the past decades. Understanding and acceptance of enigma and dynamic development of cities encourage architects to find new design techniques that are able to provide in the future a reasonable possibility of forming artistic and aesthetic image of the modern city. Purpose. Define and systematize the principles of symbolization architectural and planning images; propose methods symbolism in the architectural planning of image of the urban environment. Conclusion based on analysis of the enhanced concept symbolizing the image of Architecture and Planning, the place, role and symbolization trends at all levels of the urban environment - planning, three-dimensional and improvement of urban areas; first identified the main stages and levels of symbolization (analohyzatsyya, schematization and alehoryzatsiya, their features and characteristics, formulated the basic principles of symbolization architectural and planning of image, namely the principles of communication between figurative analogies, transformation of subsequent circuits, switching allegorical groupings and metamorfizm ultimate goal – symbol birth .

  17. Designation and Implementation of Microcomputer Principle and Interface Technology Virtual Experimental Platform Website

    Science.gov (United States)

    Gao, JinYue; Tang, Yin

    This paper explicitly discusses the designation and implementation thought and method of Microcomputer Principle and Interface Technology virtual experimental platform website construction. The instructional design of this platform mainly follows with the students-oriented constructivism learning theory, and the overall structure is subject to the features of teaching aims, teaching contents and interactive methods. Virtual experiment platform production and development should fully take the characteristics of network operation into consideration and adopt relevant technologies to improve the effect and speed of network software application in internet.

  18. Recommendations for sex/gender neuroimaging research: Key principles and implications for research design, analysis and interpretation

    Directory of Open Access Journals (Sweden)

    Gina eRippon

    2014-08-01

    Full Text Available For over a decade, neuroimaging (NI technologies have had an increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which s/he develops and functions. The study of the relationship between sex and gender could offer a valuable example of such research. We identify here four main principles that should inform NI research. First, the principle of overlap, arising from evidence of significant overlap of female/male distributions on measures of many gendered behaviours. Second, the principle of mosaicism, arising from evidence that for both behaviour and brain, each individual manifests a complex and idiosyncratic combination of feminine and masculine characteristics. Third, the principle of contingency, arising from evidence that female/male behavioural differences are contingent on time, place, social group and context. Fourth, the principle of entanglement, arising from an awareness that the neural phenotypes that NI techniques measure are a function of the interactive and reciprocal influence of biology and environment. These important principles have emerged and become well-established over the past few decades, but their implications are often not reflected in the design and interpretation of NI sex/gender research. We therefore offer a set of guidelines for researchers to ensure that NI sex/gender research is appropriately designed and interpreted. We hope this ‘toolkit’ will also be of use to editorial boards and journal reviewers, as well as those who view, communicate and interpret such research.

  19. Kant and Hegel's Responses to Hume's Skepticism Concerning Causality: An Evolutionary Epistemological Perspective

    Directory of Open Access Journals (Sweden)

    Adam Christian Scarfe

    2012-05-01

    Full Text Available According to Hume, determinations of necessary causal connection are without empirical warrant, but, as he maintains, the concept of causality qua necessary connection is indispensable to human beings, having survival value for them, a claim which points to the biological significance of this concept. In contrast to Hume, Kant argues that the causal principle qua necessary connection belongs to the a priori conceptual framework by which rational beings constitute their experience and render the world intelligible. In “Kant’s Doctrine of the A Priori in Light of Contemporary Biology” (1941 / 1962 evolutionary epistemologist Konrad Lorenz sought to adapt Kant’s philosophy to contemporary biology by arguing that the a priori concepts of the understanding can be interpreted as comprising a biologically inherited framework, yet one that is provisional and in flux. Such an evolutionary interpretation of both Hume and Kant’s perspectives of the lacuna concerning causality brings the ideas of these thinkers closer together. Kant himself used suggestive analogies between the major epistemological positions concerning the origin of the a priori concepts of the understanding and the major biological theories of his time concerning the generation and development of organisms. Nevertheless, Kant would probably be reluctant to embrace such an evolutionarily-oriented conception of the categories, given his descriptions of them as self-thought, a priori first principles having a purely intellectual origin, belonging as a very condition for the possibility of the experience of rational beings in general, and as neither the product of a process of development, nor subject to one. This paper shows how Hegel’s emphasis on the dialectical progression of the logical Concept (Begriff can help to ground Lorenz’s evolutionary neo-Kantianism. Toward the end of the paper, I discuss the evolutionary relevance of skepticism and critical thinking in this

  20. Control room philosophy: Principles of control room design and control room work

    International Nuclear Information System (INIS)

    Skriver, Jan; Ramberg, Jasmine; Allwin, Pernilla

    2006-01-01

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages

  1. Langley's CSI evolutionary model: Phase O

    Science.gov (United States)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  2. Synergistic Coherence of Bifurcation Evolutionary Processes of Mergers and Acquisitions of Enterprises

    Directory of Open Access Journals (Sweden)

    Ivanchenko Hennadii F.

    2016-08-01

    Full Text Available The aim of the article is developing information tools for the economic and mathematical modeling of the dynamics of evolutionary processes concerning trophic relationships of populations of enterprises, which allowed to conduct the phase and bifurcation analysis of possible dynamic regimes of the populations’ evolution, determine the mechanisms of influence of the external environment and the internal structure of the system, identify patterns and limits of stability of M&A processes. In the work the main provisions of the evolutionary concept concerning development of the population of enterprises as an economic system are analyzed, the provisions of the evolutionary concept of population systems’ development are considered, the basis of evolutionary modeling methods allowing to analyze the functioning of populations of enterprises in terms of individual strategies of each enterprise’s behavior is studied. The basic principles of synergy of the life cycle evolution for populations of enterprises are determined. An evolutionary approach to the evaluation of a synergistic effect of M & A is proposed. The evolutionary modeling of the scenario for self-organization of populations of dairy industry enterprises through a combination of statistical and expert data is applied. There also created a model of the population of firms reflecting behavioral and resource and technological characteristics of the studied in the work real population of industrial enterprises, which form the input flows of matter, energy and information to the dairy industry, which allows to combine the reflection of main possible options in terms of the external conditions of the population functioning and its internal structure.

  3. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    Science.gov (United States)

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

  4. Deciphering the evolutionary history of open and closed mitosis.

    Science.gov (United States)

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-11-17

    The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Evolutionary Medicine and Future of Humanity: Will Evolution Have the Final Word?

    Directory of Open Access Journals (Sweden)

    Maciej Henneberg

    2013-06-01

    Full Text Available Evolutionary medicine in its classical form assumes that since cultural evolution is faster than biological evolution, ailments of modern people are a result of mismatch between adaptations to the past environments and current situations. A core principle is that we, humans, having evolved for millions of years in a specific natural environment (environment of evolutionary adaptation EEA are biologically adapted to this past environment and the ancient lifestyle. This adaptation to the past produces major mismatch of our bodies with the present, highly anthropic and thus “artificial” living conditions. This article provides two areas of possible future evolution, diet and physical activity levels which have been dramatically altered in industrialised societies. Consequently, micro-evolution is an on-going process.

  6. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  7. Basic Principles of Industrial Electric Power Network Computer Aided Design and Engineering

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2012-01-01

    Full Text Available A conceptual model for a computer aided design and engineering system has been developed in the paper. The paper presents basic automation process principles including a graphical representation   network and calculation results, convenient user interface, automatic mode calculation, selection of transformer rated power and cross-section area of wires. The developed algorithm and program make it possible to save time and improve quality of project implementation.

  8. PBMR phase 1 study: Seismic and structural design consideration - An overview of principles

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1997-01-01

    This paper briefly reviews the principles involved in the planning and design of the proposed facility to cater for seismic and structural loads. The conceptual layout is discussed, as well as the different load characteristics and scenarios. An outline is given of model used to estimate the seismic loads, whereafter the different analytical models are discussed. (author)

  9. Code of practice and design principles for portable and transportable radiological protection systems

    International Nuclear Information System (INIS)

    Wells, F.H.; Powell, R.G.

    1980-10-01

    The Code of Practice and design principles for portable and transportable radiological protection systems are presented in three parts. Part 1 specifies the requirement for Radiological Protection Instrumentation (RPI) including operational characteristics and the effects of both a radiation and non-radiation environment. Part 2 satisfies the requirement for RPI equipment as regards the overall design, the availability, the reliability, the information display, the human factors, the power supplies, the manufacture and quality assurance, the testing and the cost. Part 3 deals with the supply, location and operation of the RPI equipment. (U.K.)

  10. Using engineering control principles to inform the design of adaptive interventions: a conceptual introduction.

    Science.gov (United States)

    Rivera, Daniel E; Pew, Michael D; Collins, Linda M

    2007-05-01

    The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice.

  11. Usability principles to design mobile workplace learning content

    Directory of Open Access Journals (Sweden)

    Alessia Messuti

    2015-04-01

    Full Text Available The article describes the design of a mobile workplace learning tool for trainers of the International Training Centre of the International Labour Organization. The motivation behind is to provide trainers with a practical tool that will enable them to recall information at the moment of need and continue to learn in context. On this purpose a set of visual augmented reality cards was created, taking into consideration the fundamental mobile learning and usability principles. The nature of the article is empirical as it reports an experiment carried out with trainers which aimed at testing cards usability and learnability. Results show that the integration of both online and offline strategies was perceived as an added value as trainers could choose to retrieve information as they mostly like; finally, it also resulted in high usability scores, an aspect that contributes to their effectiveness at the workplace.

  12. Investigations into the design principles in the chemotactic behavior of Escherichia coli.

    Science.gov (United States)

    Kim, Tae-Hwan; Jung, Sung Hoon; Cho, Kwang-Hyun

    2008-01-01

    Inspired by the recent studies on the analysis of biased random walk behavior of Escherichia coli[Passino, K.M., 2002. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22 (3), 52-67; Passino, K.M., 2005. Biomimicry for Optimization, Control and Automation. Springer-Verlag, pp. 768-798; Liu, Y., Passino, K.M., 2002. Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J. Optim. Theory Appl. 115 (3), 603-628], we have developed a model describing the motile behavior of E. coli by specifying some simple rules on the chemotaxis. Based on this model, we have analyzed the role of some key parameters involved in the chemotactic behavior to unravel the underlying design principles. By investigating the target tracking capability of E. coli in a maze through computer simulations, we found that E. coli clusters can be controlled as target trackers in a complex micro-scale-environment. In addition, we have explored the dynamical characteristics of this target tracking mechanism through perturbation of parameters under noisy environments. It turns out that the E. coli chemotaxis mechanism might be designed such that it is sensitive enough to efficiently track the target and also robust enough to overcome environmental noises.

  13. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  14. On the application of motivation theory to human factors/ergonomics: motivational design principles for human-technology interaction.

    Science.gov (United States)

    Szalma, James L

    2014-12-01

    Motivation is a driving force in human-technology interaction. This paper represents an effort to (a) describe a theoretical model of motivation in human technology interaction, (b) provide design principles and guidelines based on this theory, and (c) describe a sequence of steps for the. evaluation of motivational factors in human-technology interaction. Motivation theory has been relatively neglected in human factors/ergonomics (HF/E). In both research and practice, the (implicit) assumption has been that the operator is already motivated or that motivation is an organizational concern and beyond the purview of HF/E. However, technology can induce task-related boredom (e.g., automation) that can be stressful and also increase system vulnerability to performance failures. A theoretical model of motivation in human-technology interaction is proposed, based on extension of the self-determination theory of motivation to HF/E. This model provides the basis for both future research and for development of practical recommendations for design. General principles and guidelines for motivational design are described as well as a sequence of steps for the design process. Human motivation is an important concern for HF/E research and practice. Procedures in the design of both simple and complex technologies can, and should, include the evaluation of motivational characteristics of the task, interface, or system. In addition, researchers should investigate these factors in specific human-technology domains. The theory, principles, and guidelines described here can be incorporated into existing techniques for task analysis and for interface and system design.

  15. The Roles and Uses of Design Principles for Developing the Trialogical Approach on Learning

    Science.gov (United States)

    Paavola, Sami; Lakkala, Minna; Muukkonen, Hanni; Kosonen, Kari; Karlgren, Klas

    2011-01-01

    In the present paper, the development and use of a specific set of pedagogical design principles in a large research and development project are analysed. The project (the Knowledge Practices Laboratory) developed technology and a pedagogical approach to support certain kinds of collaborative knowledge creation practices related to the…

  16. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  17. Application of Instructional Design Principles in Developing an Online Information Literacy Curriculum.

    Science.gov (United States)

    Mi, Misa

    2016-01-01

    An online information literacy curriculum was developed as an intervention to engage students in independent study and self-assessment of their learning needs and learning outcomes, develop proficiency in information skills, and foster lifelong learning. This column demonstrates how instructional design principles were applied to create the learning experiences integrated into various courses of the medical curriculum to promote active learning of information skills and maximize self-directed learning outcomes for lifelong learning.

  18. Bridging developmental systems theory and evolutionary psychology using dynamic optimization.

    Science.gov (United States)

    Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H

    2013-07-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. © 2013 Blackwell Publishing Ltd.

  19. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    Science.gov (United States)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure

  20. Interior spatial layout with soft objectives using evolutionary computation

    NARCIS (Netherlands)

    Chatzikonstantinou, I.; Bengisu, E.

    2016-01-01

    This paper presents the design problem of furniture arrangement in a residential interior living space, and addresses it by means of evolutionary computation. Interior arrangement is an important and interesting problem that occurs commonly when designing living spaces. It entails determining the

  1. The evolutionary theory of asymmetry by V. Geodakyan

    Science.gov (United States)

    Geodakyan, Sergey V.

    2015-08-01

    For more than 150 years, all biological theories, including those of C. Darwin and Mendel, were based on the idea of synchronous evolution. They fit for unitary monomodal systems (asexual, symmetrical) but do not work for binary (dioecious, asymmetrical) ones. Examples of such binary conjugated differentiations are two sexes, DNA-proteins, autosomes-sex chromosomes, right and left brain hemispheres, and hands. For their understanding, "asynchronous" theories are needed. Such theories were proposed by Russian theoretical biologist Vigen A. Geodakyan for sexual, brain and body, and chromosomal differentiations. All theories are interconnected and are based on the principle of conjugated subsystems. This article covers the basic tenets of the evolutionary theory of asymmetry and answers the following questions: What benefits does lateralization provide? What logic, what principle is it based on? Why do brain hemispheres control the opposite sides of the body? Why laterality is closely related to sex? What are the biological prerequisites of terrorism?

  2. Function Follows Performance in Evolutionary Computational Processing

    DEFF Research Database (Denmark)

    Pasold, Anke; Foged, Isak Worre

    2011-01-01

    As the title ‘Function Follows Performance in Evolutionary Computational Processing’ suggests, this paper explores the potentials of employing multiple design and evaluation criteria within one processing model in order to account for a number of performative parameters desired within varied...

  3. BEAST: Bayesian evolutionary analysis by sampling trees

    Directory of Open Access Journals (Sweden)

    Drummond Alexei J

    2007-11-01

    Full Text Available Abstract Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. Results BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. Conclusion BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.

  4. Using the Principles of SoTL to Redesign an Advanced Evolutionary Biology Course

    Directory of Open Access Journals (Sweden)

    Michael deBraga

    2015-03-01

    Full Text Available A primary goal of university instruction is the students’ demonstration of improved, highly developed critical thinking (CT skills. However, how do faculty encourage CT and its potential concomitant increase in student workload without negatively impacting student perceptions of the course? In this investigation, an advanced biology course is evaluated after structural changes (implemented in 2010 met with a poor student evaluation of the course and the instructor. This analysis first examines the steps used to transform a course to encourage CT and then explains how it can be assessed. To accomplish these goals, the instructor collaborated with an educational developer to redesign the course using a philosophy informed by SoTL. This approach, as we see it, represents a set of principles that demand transparency in the development and application of strategies whose aim is to encourage student learning. However, the SoTL approach would be insufficient to simply promote a set of strategies without some mechanism for evaluating its efficacy. Therefore, we designed a “Graded Response” (GR multiple-choice test to measure CT development and hence to properly evaluate whether the strategies embedded in our SoTL-informed course redesign have adequately met our goals.

  5. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  6. Formulation of engineering design principles for the treatment of irradiated fuel and associated radioactive waste

    International Nuclear Information System (INIS)

    Banford, A.W.; Hanson, B.C.; Scully, P.J.; Taylor, R.

    2007-01-01

    The industrial scale treatment of irradiated fuel in the UK has resulted in BNFL developing extensive experience of the process design, build, commissioning, and operation necessary for successful nuclear processing plant. Much of the design experience now resides in Nexia Solutions (formally BNFL Research and Development Division) who have always defined and undertaken the extensive development programmes necessary to underpin the design at all stages of the project life-cycle. Since the 1990's, Nexia Solutions has built up a large portfolio of plant designs for a range of spent fuel applications, from fuel conditioning to partitioning and transmutation. In addition, by investigation of a large and diverse portfolio of technologies Nexia Solutions has developed innovative concepts for plant design that could present significant economic savings on conventional approaches. Using this experience and the lessons learned, we have developed and refined our own engineering design principles necessary for the successful design of commercial spent fuel and waste treatment plant. Our approach is to advocate an integral concept, with both science and engineering designs working in parallel during development. 4 foundation principles for success have been identified: -) understand the strategic objective, -) adopt a risk driven programme, -) engage in engineering activities early, and -) timely application of appropriate engineering methodologies. 2 Case studies presented in this paper: first, the BNFL segregated effluent treatment plant and secondly, the selection of a pyrochemical process for recycle of fast reactor, demonstrate how this approach has been adopted and the benefits that have been gained

  7. Principles of parametric estimation in modeling language competition.

    Science.gov (United States)

    Zhang, Menghan; Gong, Tao

    2013-06-11

    It is generally difficult to define reasonable parameters and interpret their values in mathematical models of social phenomena. Rather than directly fitting abstract parameters against empirical data, we should define some concrete parameters to denote the sociocultural factors relevant for particular phenomena, and compute the values of these parameters based upon the corresponding empirical data. Taking the example of modeling studies of language competition, we propose a language diffusion principle and two language inheritance principles to compute two critical parameters, namely the impacts and inheritance rates of competing languages, in our language competition model derived from the Lotka-Volterra competition model in evolutionary biology. These principles assign explicit sociolinguistic meanings to those parameters and calculate their values from the relevant data of population censuses and language surveys. Using four examples of language competition, we illustrate that our language competition model with thus-estimated parameter values can reliably replicate and predict the dynamics of language competition, and it is especially useful in cases lacking direct competition data.

  8. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry.

    Science.gov (United States)

    Gilbertson, Leanne M; Zimmerman, Julie B; Plata, Desiree L; Hutchison, James E; Anastas, Paul T

    2015-08-21

    The Twelve Principles of Green Chemistry were first published in 1998 and provide a framework that has been adopted not only by chemists, but also by design practitioners and decision-makers (e.g., materials scientists and regulators). The development of the Principles was initially motivated by the need to address decades of unintended environmental pollution and human health impacts from the production and use of hazardous chemicals. Yet, for over a decade now, the Principles have been applied to the synthesis and production of engineered nanomaterials (ENMs) and the products they enable. While the combined efforts of the global scientific community have led to promising advances in the field of nanotechnology, there remain significant research gaps and the opportunity to leverage the potential global economic, societal and environmental benefits of ENMs safely and sustainably. As such, this tutorial review benchmarks the successes to date and identifies critical research gaps to be considered as future opportunities for the community to address. A sustainable material design framework is proposed that emphasizes the importance of establishing structure-property-function (SPF) and structure-property-hazard (SPH) relationships to guide the rational design of ENMs. The goal is to achieve or exceed the functional performance of current materials and the technologies they enable, while minimizing inherent hazard to avoid risk to human health and the environment at all stages of the life cycle.

  9. An evolutionary theory of human motivation.

    Science.gov (United States)

    Bernard, Larry C; Mills, Michael; Swenson, Leland; Walsh, R Patricia

    2005-05-01

    The authors review psychology's historical, competing perspectives on human motivation and propose a new comprehensive theory. The new theory is based on evolutionary principles as proposed by C. Darwin (1859) and modified by W. D. Hamilton (1964, 1996), R. L. Trivers (1971, 1972), and R. Dawkins (1989). The theory unifies biological, behavioral, and cognitive approaches to motivation. The theory is neuropsychological and addresses conscious and nonconscious processes that underlie motivation, emotion, and self-control. The theory predicts a hierarchical structure of motives that are measurable as individual differences in human behavior. These motives are related to social problem domains (D. B. Bugental, 2000; D. T. Kenrick, N. P. Li, & J. Butner, 2003), and each is hypothesized to solve a particular problem of human inclusive fitness.

  10. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Lipeng; Zhao, Zhenghang; Xia, Zhenhai

    2017-05-01

    Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Towards Synergistic Electrode-Electrolyte Design Principles for Nonaqueous Li-O[Formula: see text] batteries.

    Science.gov (United States)

    Khetan, Abhishek; Krishnamurthy, Dilip; Viswanathan, Venkatasubramanian

    2018-03-20

    One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium-oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium-oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode-electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li[Formula: see text]O[Formula: see text], and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte-electrode formulations is needed to realize a practical Li-O[Formula: see text] battery.

  12. Charles Darwin and the origins of plant evolutionary developmental biology.

    Science.gov (United States)

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  13. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS APPLIED TO MICROSTRIP ANTENNAS DESIGN ALGORITMOS EVOLUTIVOS MULTIOBJETIVO APLICADOS A LOS PROYECTOS DE ANTENAS MICROSTRIP

    Directory of Open Access Journals (Sweden)

    Juliano Rodrigues Brianeze

    2009-12-01

    Full Text Available This work presents three of the main evolutionary algorithms: Genetic Algorithm, Evolution Strategy and Evolutionary Programming, applied to microstrip antennas design. Efficiency tests were performed, considering the analysis of key physical and geometrical parameters, evolution type, numerical random generators effects, evolution operators and selection criteria. These algorithms were validated through design of microstrip antennas based on the Resonant Cavity Method, and allow multiobjective optimizations, considering bandwidth, standing wave ratio and relative material permittivity. The optimal results obtained with these optimization processes, were confirmed by CST Microwave Studio commercial package.Este trabajo presenta tres de los principales algoritmos evolutivos: Algoritmo Genético, Estrategia Evolutiva y Programación Evolutiva, aplicados al diseño de antenas de microlíneas (microstrip. Se realizaron pruebas de eficiencia de los algoritmos, considerando el análisis de los parámetros físicos y geométricos, tipo de evolución, efecto de generación de números aleatorios, operadores evolutivos y los criterios de selección. Estos algoritmos fueron validados a través del diseño de antenas de microlíneas basado en el Método de Cavidades Resonantes y permiten optimizaciones multiobjetivo, considerando ancho de banda, razón de onda estacionaria y permitividad relativa del dieléctrico. Los resultados óptimos obtenidos fueron confirmados a través del software comercial CST Microwave Studio.

  14. Opportunity recognition in entrepreneurship education, design principles on fostering competent entrepreneurs in the science domain

    NARCIS (Netherlands)

    Nab, J.; Beugels, J.; van Keulen, H.; Oost, H.; Pilot, A.

    2008-01-01

    This paper is part of a research project focusing on educational design principles that should help students with a background in Science to become competent with respect to opportunity recognition in business. The recognition of business opportunities is one of the basic competencies of

  15. Design principles and requirements for the ICT of future smart energy systems; Designprinzipien und Anforderungen an die IKT fuer intelligente Energiesysteme der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Eger, Kolja [Siemens AG, Muenchen (Germany). Corporate Technology; Mohr, Werner [Nokia Siemens Networks Management International GmbH, Muenchen (Germany)

    2012-07-01

    The information and communication technology (ICT) is a key enabling technology for Smart Grids. With respect to very short innovation cycles for ICT compared to longer innovation cycles for the transition of the energy system there is a huge challenge to develop and exploit the potential of future ICT and their application in a future intelligent energy system. Different ICT technologies, such as Internet of Things or Cloud Computing are intensively being discussed. They can be summarized under the term ''Future Internet''. The EU project FINSENY is investigating the potential of Future Internet concepts and technologies in particular for Smart Energy systems. A series of design principles and the necessary ICT are developed, which are described in this paper. These design principles such as open interfaces, security-by-design, simplicity, maintenance, auto-configuration and modularity are of general nature. They will remain despite technology developments. Furthermore, several design principles are not only applicable to ICT but they are also related to design principles of intelligent energy systems like decentralized energy generation systems. (orig.)

  16. Seismic design principles for the German fast breeder reactor SNR 2

    International Nuclear Information System (INIS)

    Busch, K.A.; Peters, K.A.; Rosenhauer, W.

    1987-01-01

    The safety issue of an adequate and optimized external event protection is of course that unnecessary hardware precautions might promote internal disturbances or hamper their control. It has up to now not satisfactorily been realized that the only serious context for seismic impacts on a fast reactor is their attributed potential of overriding core disruptive accident prevention, see e.g. GRS 1982. General and exaggerated antiseismic design features not focussed upon this point may as well turn out to be non-negligible initators in the absence of seismic vibrations. Unexpected snubber difficulties requiring additional reactor scrams and decay heat removal phases may be named as a simple example. The presented seismic design principles reflect the progress made in the concerned fields of analysis and do serve on the other hand as guidelines for research and development efforts under work. (orig./GL)

  17. Urban Space Innovation - “10+” Principles through Designing the New Image of the Existing Shopping Mall in Csepel, Hungary

    Science.gov (United States)

    Gyergyak, Janos

    2017-10-01

    The first part of the paper is about to introduce the principles of “placemaking” as an innovation and important tool of the cities in the 21st century. The process helps designers to transform the spaces of “nobody” to a community-based space for supporting the connection among humans. The second part of the paper shows the process of the used principles by the author for designing the new image of the existing shopping mall in Csepel, Hungary. This work was selected as one of the best design ideas for renewing the existing underutilized space.

  18. From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raul F.; Crooks, Richard M.; Mavrikakis, Manos

    2014-04-08

    “Catalysis by design” has been a dream for decades. To specify the composition and structure of matter to effect a desired catalytic transformation with desired and predicted rate and selectivity remains a monumental challenge, especially in heterogeneous catalysis. Our research thrusts have been chosen not only for their practical and scientific relevance, e.g. for more efficient and sustainable chemicals and fuels production, but also because they provide a foundation for developing and exploring broadly applicable principles and strategies for catalyst design.

  19. Self-organized modularization in evolutionary algorithms.

    Science.gov (United States)

    Dauscher, Peter; Uthmann, Thomas

    2005-01-01

    The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).

  20. Darwin in Mind: New Opportunities for Evolutionary Psychology

    Science.gov (United States)

    Bolhuis, Johan J.; Brown, Gillian R.; Richardson, Robert C.; Laland, Kevin N.

    2011-01-01

    Evolutionary Psychology (EP) views the human mind as organized into many modules, each underpinned by psychological adaptations designed to solve problems faced by our Pleistocene ancestors. We argue that the key tenets of the established EP paradigm require modification in the light of recent findings from a number of disciplines, including human genetics, evolutionary biology, cognitive neuroscience, developmental psychology, and paleoecology. For instance, many human genes have been subject to recent selective sweeps; humans play an active, constructive role in co-directing their own development and evolution; and experimental evidence often favours a general process, rather than a modular account, of cognition. A redefined EP could use the theoretical insights of modern evolutionary biology as a rich source of hypotheses concerning the human mind, and could exploit novel methods from a variety of adjacent research fields. PMID:21811401

  1. Polymorphic Evolutionary Games.

    Science.gov (United States)

    Fishman, Michael A

    2016-06-07

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Implementation of an evolutionary algorithm in planning investment in a power distribution system

    Directory of Open Access Journals (Sweden)

    Carlos Andrés García Montoya

    2011-06-01

    Full Text Available The definition of an investment plan to implement in a distribution power system, is a task that constantly faced by utilities. This work presents a methodology for determining the investment plan for a distribution power system under a shortterm, using as a criterion for evaluating investment projects, associated costs and customers benefit from its implementation. Given the number of projects carried out annually on the system, the definition of an investment plan requires the use of computational tools to evaluate, a set of possibilities, the one that best suits the needs of the present system and better results. That is why in the job, implementing a multi objective evolutionary algorithm SPEA (Strength Pareto Evolutionary Algorithm, which, based on the principles of Pareto optimality, it deliver to the planning expert, the best solutions found in the optimization process. The performance of the algorithm is tested using a set of projects to determine the best among the possible plans. We analyze also the effect of operators on the performance of evolutionary algorithm and results.

  3. Can evolutionary theory explain the slow development of knowledge about the level of safety built into roads?

    Science.gov (United States)

    Elvik, Rune

    2017-09-01

    In several papers, Hauer (1988, 1989, 2000a, 2000b, 2016) has argued that the level of safety built into roads is unpremeditated, i.e. not the result of decisions based on knowledge of the safety impacts of design standards. Hauer has pointed out that the development of knowledge about the level of safety built into roads has been slow and remains incomplete even today. Based on these observations, this paper asks whether evolutionary theory can contribute to explaining the slow development of knowledge. A key proposition of evolutionary theory is that knowledge is discovered through a process of learning-by-doing; it is not necessarily produced intentionally by means of research or development. An unintentional discovery of knowledge is treacherous as far as road safety is concerned, since an apparently effective safety treatment may simply be the result of regression-to-the-mean. The importance of regression-to-the-mean was not fully understood until about 1980, and a substantial part of what was regarded as known at that time may have been based on studies not controlling for regression-to-the-mean. An attempt to provide an axiomatic foundation for designing a safe road system was made by Gunnarsson and Lindström (1970). This had the ambition of providing universal guidelines that would facilitate a preventive approach, rather than the reactive approach based on accident history (i.e. designing a system known to be safe, rather than reacting to events in a system of unknown safety). Three facts are notable about these principles. First, they are stated in very general terms and do not address many of the details of road design or traffic control. Second, they are not based on experience showing their effectiveness. Third, they are partial and do not address the interaction between elements of the road traffic system, in particular road user adaptation to system design. Another notable fact consistent with evolutionary theory, is that the safety margins built

  4. Remembering the evolutionary Freud.

    Science.gov (United States)

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  5. Is the Strong Anthropic Principle too weak?

    International Nuclear Information System (INIS)

    Feoli, A.; Rampone, S.

    1999-01-01

    The authors discuss Carter's formula about the mankind evolution probability following the derivation proposed by Barrow and Tipler. The authors stress the relation between the existence of billions galaxies and the evolution of at least one intelligent life, whose living time is not trivial, all over the Universe. The authors show that the existence probability and the lifetime of a civilization depend not only on the evolutionary critical steps, but also on the number of places where the life can arise. In the light of these results, are proposed a stronger version of Anthropic Principle

  6. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  7. Database principles programming performance

    CERN Document Server

    O'Neil, Patrick

    2014-01-01

    Database: Principles Programming Performance provides an introduction to the fundamental principles of database systems. This book focuses on database programming and the relationships between principles, programming, and performance.Organized into 10 chapters, this book begins with an overview of database design principles and presents a comprehensive introduction to the concepts used by a DBA. This text then provides grounding in many abstract concepts of the relational model. Other chapters introduce SQL, describing its capabilities and covering the statements and functions of the programmi

  8. Economic chances and problems of the peaceful uses of nuclear energy in an evolutionary context

    International Nuclear Information System (INIS)

    Hohn, B.

    1992-01-01

    To organize and ensure energy supply is of pivotal importance for social development. Therefore, the paper focuses on the issue of nuclear energy within the stress field of society, technology, energy and evolution. Nuclear energy use is studied with regard to its evolutionary fit, on the basis of an integrating analysis overriding economic considerations. So the criterion of customary economics is expanded by the evaluation criterion of evolutionary principles. After considering the theoretical structure of environment and resource economy and its limits, the evolutionary background of energy and energy use is examined. Evolution strategies are outlined to show how structures and orders are formed in the course of evolution and how energy resources are exploited. In view of the global ecological crisis, solution strategies require a solid concept of an evolutionary fitting energy system the requirement profile of which can be obtained, by means of fitting criteria, from a synthesis of economic theory and the outlined evolution strategies. In order to sound the evolutionary fit of nuclear energy use on the basis of the theoretical foundations of economics and evolution and of the fitting criteria obtained from their synthesis, the status of the problem and its multifacetted interconnections are structured. Critical analysis of the peaceful use of nuclear energy is performed by means of a systematics which is to ensure that the mental order gradually approaches the evaluation of the evolutionary fit of nuclear power. (orig./HSCH) [de

  9. Cognition and Culture in Evolutionary Context.

    Science.gov (United States)

    Colmenares, Fernando; Hernández-Lloreda, María Victoria

    2017-01-09

    In humans and other animals, the individuals' ability to adapt efficiently and effectively to the niches they have actively contributed to construct relies heavily on an evolved psychology which has been shaped by biological, social, and cultural processes over evolutionary time. As expected, although many of the behavioral and cognitive components of this evolved psychology are widely shared across species, many others are species-unique. Although many animal species are known to acquire group-specific traditions (or cultures) via social learning, human culture is unique in terms of its contents and characteristics (observable and unobservable products, cumulative effects, norm conformity, and norm enforcement) and of its cognitive underpinnings (imitation, instructed teaching, and language). Here we provide a brief overview of some of the issues that are currently tackled in the field. We also highlight some of the strengths of a biological, comparative, non-anthropocentric and evolutionarily grounded approach to the study of culture. The main contributions of this approach to the science of culture are its emphasis (a) on the integration of information on mechanisms, function, and evolution, and on mechanistic factors located at different levels of the biological hierarchy, and (b) on the search for general principles that account for commonalities and differences between species, both in the cultural products and in the processes of innovation, dissemination, and accumulation involved that operate during developmental and evolutionary timespans.

  10. PRINCIPLE "EARLY MATCHING" AERODYNAMIC DESIGN AIRCRAFT WITH LANDING GEAR HOVERCRAFT

    Directory of Open Access Journals (Sweden)

    V. P. Morozov

    2015-01-01

    Full Text Available The principle of "early matching" aircraft aerohydrodynamic layouts with air cushion landing gear is suggested. Application of this principle is considered as an example of adaptation to the ball screw base circuit of light transport aircraft. The principle, other than weight, aerodynamic, technological and operational requirements includes additional project activities related to the installation of ball screws.

  11. Evolutionary computing in Nuclear Engineering Institute/CNEN-Brazil

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Lapa, Celso M.F.; Lapa, Nelbia da Silva; Mol, Antonio C.

    2000-01-01

    This paper aims to discuss the importance of evolutionary computation (CE) for nuclear engineering and the development of this area in the Instituto de Engenharia Nuclear (IEN) at the last years. Are describe, briefly, the applications realized in this institute by the technical group of CE. For example: nuclear reactor core design optimization, preventive maintenance scheduling optimizing and nuclear reactor transient identifications. It is also shown a novel computational tool to implementation of genetic algorithm that was development in this institute and applied in those works. Some results were presents and the gains obtained with the evolutionary computation were discussing. (author)

  12. Organisms as natural purposes: the contemporary evolutionary perspective.

    Science.gov (United States)

    Walsh, D M

    2006-12-01

    Kant's conception of organisms as natural purposes raises a challenge to the adequacy of mechanistic explanation in biology. Certain features of organisms appear to be inexplicable by appeal to mechanical law alone. Some biological phenomena, it seems, can only be accounted for teleologically. Contemporary evolutionary biology has by and large ignored this challenge. It is widely held that Darwin's theory of natural selection gives us an adequate, wholly mechanical account of the nature of organisms. In contemporary biology, the category of the organism plays virtually no explanatory role. Contemporary evolutionary biology is a science of sub-organismal entities-replicators. I argue that recent advances in developmental biology demonstrate the inadequacy of sub-organismal mechanism. The category of the organism, construed as a 'natural purpose' should play an ineliminable role in explaining ontogenetic development and adaptive evolution. According to Kant the natural purposiveness of organisms cannot be demonstrated to be an objective principle in nature, nor can purposiveness figure in genuine explain. I attempt to argue, by appeal to recent work on self-organization, that the purposiveness of organisms is a natural phenomenon, and, by appeal to the apparatus of invariance explanation, that biological purposiveness provides genuine, ineliminable biological explanations.

  13. Unified reduction principle for the evolution of mutation, migration, and recombination

    Science.gov (United States)

    Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.

    2017-01-01

    Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103

  14. [Evolutionary medicine].

    Science.gov (United States)

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  15. A game plan: Gamification design principles in mHealth applications for chronic disease management.

    Science.gov (United States)

    Miller, Aaron S; Cafazzo, Joseph A; Seto, Emily

    2016-06-01

    Effective chronic disease management is essential to improve positive health outcomes, and incentive strategies are useful in promoting self-care with longevity. Gamification, applied with mHealth (mobile health) applications, has the potential to better facilitate patient self-management. This review article addresses a knowledge gap around the effective use of gamification design principles, or mechanics, in developing mHealth applications. Badges, leaderboards, points and levels, challenges and quests, social engagement loops, and onboarding are mechanics that comprise gamification. These mechanics are defined and explained from a design and development perspective. Health and fitness applications with gamification mechanics include: bant which uses points, levels, and social engagement, mySugr which uses challenges and quests, RunKeeper which uses leaderboards as well as social engagement loops and onboarding, Fitocracy which uses badges, and Mango Health, which uses points and levels. Specific design considerations are explored, an example of the efficacy of a gamified mHealth implementation in facilitating improved self-management is provided, limitations to this work are discussed, a link between the principles of gaming and gamification in health and wellness technologies is provided, and suggestions for future work are made. We conclude that gamification could be leveraged in developing applications with the potential to better facilitate self-management in persons with chronic conditions. © The Author(s) 2014.

  16. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology.

    Science.gov (United States)

    Van Sciver, Robert E; Lee, Michael P; Lee, Caroline Dasom; Lafever, Alex C; Svyatova, Elizaveta; Kanda, Kevin; Colliver, Amber L; Siewertsz van Reesema, Lauren L; Tang-Tan, Angela M; Zheleva, Vasilena; Bwayi, Monicah N; Bian, Minglei; Schmidt, Rebecca L; Matrisian, Lynn M; Petersen, Gloria M; Tang, Amy H

    2018-05-14

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.

  17. Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study

    Directory of Open Access Journals (Sweden)

    H. A. Hashim

    2015-01-01

    Full Text Available This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO system (TRMS considering most promising evolutionary techniques. These are gravitational search algorithm (GSA, particle swarm optimization (PSO, artificial bee colony (ABC, and differential evolution (DE. In this study, the gains of four fuzzy proportional derivative (PD controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed.

  18. Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction.

    Science.gov (United States)

    Chira, Camelia; Horvath, Dragos; Dumitrescu, D

    2011-07-30

    Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP) model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.

  19. Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction

    Directory of Open Access Journals (Sweden)

    Chira Camelia

    2011-07-01

    Full Text Available Abstract Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.

  20. The pit ventilation features and the design principle of ventilation system in trackless mining uranium mine

    International Nuclear Information System (INIS)

    Deng Wenhui; Zhou Xinghuo; Li Xianjie

    2001-01-01

    According to the pit arrangement features of trackless mining uranium mine, based on the fundamental of radon permeation and control, and analysis of radon pollution characteristics and radon education, the design principle of ventilation system in trackless mining uranium mine has been raised

  1. Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation.

    Science.gov (United States)

    Berger, Robert F

    2018-02-09

    In the current decade, perovskite solar cell research has emerged as a remarkably active, promising, and rapidly developing field. Alongside breakthroughs in synthesis and device engineering, halide perovskite photovoltaic materials have been the subject of predictive and explanatory computational work. In this Minireview, we focus on a subset of this computation: density functional theory (DFT)-based work highlighting the ways in which the electronic structure and band gap of this class of materials can be tuned via changes in atomic structure. We distill this body of computational literature into a set of underlying design principles for the band gap engineering of these materials, and rationalize these principles from the viewpoint of band-edge orbital character. We hope that this perspective provides guidance and insight toward the rational design and continued improvement of perovskite photovoltaics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    Science.gov (United States)

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  3. An Evolutionary Perspective on the Crabtree Effect

    Directory of Open Access Journals (Sweden)

    Thomas ePfeiffer

    2014-10-01

    Full Text Available The capability to ferment sugars into ethanol is a key metabolic trait of yeasts. Crabtree-positive yeasts use fermentation even in the presence of oxygen, where they could, in principle, rely on the respiration pathway. This is surprising because fermentation has a much lower ATP yield than respiration (2 ATP vs. approximately 18 ATP per glucose. While genetic events in the evolution of the Crabtree effect have been identified, the selective advantages provided by this trait remain controversial. In this review we analyse explanations for the emergence of the Crabtree effect from an evolutionary and game-theoretical perspective. We argue that an increased rate of ATP production is likely the most important factor behind the emergence of the Crabtree effect.

  4. Strategies for measuring evolutionary conservation of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2008-02-01

    Full Text Available Abstract Background Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential. Results We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons. Conclusion Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.

  5. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    Science.gov (United States)

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  6. Designing an Interactive OER Course Development at Athabasca University Based on ODL Principles

    Directory of Open Access Journals (Sweden)

    Hongxin Yan

    2013-11-01

    Full Text Available Failure rates in first year calculus courses are high in most post-secondary institutions across North America and other parts of the world. This Inukshuk-funded open education project involved the development of five stand-alone pre-calculus learning modules. The design and revision phases of this project occurred between the fall of 2007 and late spring of 2009. These modules were designed to support learners enrolled in first year calculus by providing just-in-time instruction in five areas: algebraic operations, factorization, polynomials and rational expressions, radical expressions, linear and quadratic equations. One of the major challenges of the project was developing dynamic activities that could support the display of a variety of mathematical formulas. To this end an open source Flash-based authoring tool was developed called the Athabasca University Tutor Authoring Tool (AUTAT. This paper explores the design and development of the AUTAT based on the needs assessment and design principles discussed.

  7. Evolutionary Expectations

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    , they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...

  8. Evolutionary Awareness

    Directory of Open Access Journals (Sweden)

    Gregory Gorelik

    2014-10-01

    Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  9. Exercising older people´s brains in Costa Rica: Design principles for using information and communication technologies for cognitive activity and social interaction

    DEFF Research Database (Denmark)

    Castro Rojas, Maria Dolores; Bygholm, Ann; Hansen, Tia Gitte Bondesen

    2018-01-01

    This study is part of a design-based research project aimed at designing a learning intervention for enabling Costa Rican older people to use information and communication technologies for cognitive activity and social interaction. Data from relevant literature, a focus group with older adults......-sensitive design principles that include wider topics that influence the learning process, such as emotions and stereotypes related to learning about and using information and communication technologies, as well as the social support to that learning. The resulting eight design principles argue for respectful...

  10. A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network

    Science.gov (United States)

    Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed

    This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.

  11. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, Daniel C [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  12. Attractive evolutionary equilibria

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary

  13. The avian egg exhibits general allometric invariances in mechanical design.

    Science.gov (United States)

    Juang, Jia-Yang; Chen, Pin-Yi; Yang, Da-Chang; Wu, Shang-Ping; Yen, An; Hsieh, Hsin-I

    2017-10-27

    The avian egg exhibits extraordinary diversity in size, shape and color, and has a key role in avian adaptive radiations. Despite extensive work, our understanding of the underlying principles that guide the "design" of the egg as a load-bearing structure remains incomplete, especially over broad taxonomic scales. Here we define a dimensionless number C, a function of egg weight, stiffness and dimensions, to quantify how stiff an egg is with respect to its weight after removing geometry-induced rigidity. We analyze eggs of 463 bird species in 36 orders across five orders of magnitude in body mass, and find that C number is nearly invariant for most species, including tiny hummingbirds and giant elephant birds. This invariance or "design guideline" dictates that evolutionary changes in shell thickness and Young's modulus, both contributing to shell stiffness, are constrained by changes in egg weight. Our analysis illuminates unique reproductive strategies of brood parasites, kiwis, and megapodes, and quantifies the loss of safety margin for contact incubation due to artificial selection and environmental toxins. Our approach provides a mechanistic framework for a better understanding of the mechanical design of the avian egg, and may provide clues to the evolutionary origin of contact incubation of amniote eggs.

  14. From evolutionary computation to the evolution of things

    NARCIS (Netherlands)

    Eiben, A.E.; Smith, J.E.

    2015-01-01

    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as

  15. Limitations of Evolutionary Theory in Explaining Marital Satisfaction and Stability of Couple Relationships

    Directory of Open Access Journals (Sweden)

    Victoria Cabrera García

    2014-01-01

    Full Text Available The explanation of marital satisfaction and stability in trajectories of couple relationships has been the central interest in different studies (Karney, Bradbury. & Johnson, 1999; Sabatelli & Ripoll, 2004; Schoebi, Karney & Bradbury, 2012. However, there are still several questions and unknown aspects surrounding the topic. Within this context, the present reflection seeks to analyze whether the principles of Evolutionary Theory suffice to explain three marital trajectories in terms of satisfaction and stability. With this in mind, we have included other explanations proposed by the Psychosocial Theory that Evolutionary Theory does not refer to in order to better understand mating behavior. Moreover, other factors that could account for satisfied and stable relationships were analyzed. Suggestions for future investigations include the analysis of other marital trajectories that may or may not end in separation or divorce but are not included in this article.

  16. Evolutionary Game Model Study of Construction Green Supply Chain Management under the Government Intervention

    Science.gov (United States)

    Xing, Yuanzhi; Deng, Xiaoyi

    2017-11-01

    The paper first has defined the concepts of green supply chain management and evolution game theory, and pointed out the characteristics of green supply chain management in construction. The main participants and key links of the construction green supply chain management are determined by constructing the organization framework. This paper established the evolutionary game model between construction enterprises and recycling enterprises for the green supply chain closed-loop structure. The waste recycling evolutionary stability equilibrium solution is obtained to explore the principle and effective scope of government policy intervention. This paper put forward the relevant countermeasures to the green supply chain management in construction recycling stage from the government point of view. The conclusion has reference value and guidance to the final product construction enterprises, recycling enterprises and the government during green supply chain.

  17. Evolutionary computation techniques a comparative perspective

    CERN Document Server

    Cuevas, Erik; Oliva, Diego

    2017-01-01

    This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.

  18. An evolutionary approach to financial history.

    Science.gov (United States)

    Ferguson, N

    2009-01-01

    Financial history is not conventionally thought of in evolutionary terms, but it should be. Traditional ways of thinking about finance, dating back to Hilferding, emphasize the importance of concentration and economies of scale. But these approaches overlook the rich "biodiversity" that characterizes the financial world. They also overlook the role of natural selection. To be sure, natural selection in the financial world is not exactly analogous to the processes first described by Darwin and elaborated on by modern biologists. There is conscious adaptation as well as random mutation. Moreover, there is something resembling "intelligent design" in finance, whereby regulators and legislators act in a quasidivine capacity, putting dinosaurs on life support. The danger is that such interventions in the natural processes of the market may ultimately distort the evolutionary process, by getting in the way of Schumpeter's "creative destruction."

  19. Safety philosophy and design principles for systems and components of nuclear power plant: external event

    International Nuclear Information System (INIS)

    Lopes, J.P.G.

    1986-01-01

    In nuclear power plants, some systems and components are designed to withstand external impacts. Such systems and components are those which have to perform their functions even during and after the occurrences of an earthquake, for example, fulfilling the safety objectives and avoiding the release of radioactive material to the environment. The aim of this report is to introduce the safety philosophy and design principles for systems/components to perform their functions during and after the occurrence of an earthquake, as applied by NUCLEN for Angra 2 and 3. (Author) [pt

  20. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  1. Evolutionary algorithms for the Vehicle Routing Problem with Time Windows

    NARCIS (Netherlands)

    Bräysy, Olli; Dullaert, Wout; Gendreau, Michel

    2004-01-01

    This paper surveys the research on evolutionary algorithms for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW can be described as the problem of designing least cost routes from a single depot to a set of geographically scattered points. The routes must be designed in such a way

  2. Fluid dynamics of packed columns principles of the fluid dynamic design of columns for gas/liquid and liquid/liquid systems

    CERN Document Server

    Mackowiak, Jerzy

    2010-01-01

    This book describes the basic design principles of columns equipped with modern lattice packings and structured packed beds, as generally used in industry. It provides support to engineers as well as graduate students in their daily design work.

  3. Algorithmic Principles of Mathematical Programming

    NARCIS (Netherlands)

    Faigle, Ulrich; Kern, Walter; Still, Georg

    2002-01-01

    Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

  4. Steps towards an evolutionary physics

    CERN Document Server

    Tiezzi, E

    2006-01-01

    If thermodynamics is to physics as logic is to philosophy, recent theoretical advancements lend new coherence to the marvel and dynamism of life on Earth. Enzo Tiezzi's "Steps Towards an Evolutionary Physics" is a primer and guide, to those who would to stand on the shoulders of giants to attain this view: Heisenberg, Planck, Bateson, Varela, and Prigogine as well as notable contemporary scientists. The adventure of such a free and enquiring spirit thrives not so much on answers as on new questions. The book offers a new gestalt on the uncertainty principle and concept of probability. A wide range of examples, enigmas, and paradoxes lead one's imagination on an exquisite dance. Among the applications are: songs and shapes of nature, oscillatory reactions, orientors, goal functions and configurations of processes, and "dissipative structures and the city". Ecodynamics is a new science, which proposes a cross-fertilization between Charles Darwin and Ilya Prigogine. As an enigma in thermodynamics, Entropy forms ...

  5. Design of a digital PAD based on I/Q demodulation principle

    International Nuclear Information System (INIS)

    Geng Zheqiao; Cui Yanyan; Hou Mi; Pei Guoxi

    2005-01-01

    Conventional analog I/Q demodulator suffers from phase and amplitude imbalance and DC offset, which cause big error into the measurement. A digital PAD is designed. Based on I/Q demodulation principle, using digital algorithms, such as digital filter and Hilbert transform, the conventional measurement error can basically be removed. Measuremental results show that the digital PAD has a maximum phase error of ±0.5 degree and a resolution of 0.2 degree. Its temperature coefficient is -0.1 degree/degree C. Its dynamic ranges for phase-measurement and amplitude-measurement are -1825 dBm and -2020 dBm, respectively. The digital PAD can meet the need of the BEPC II phasing system. (authors)

  6. A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strut diameter

    DEFF Research Database (Denmark)

    Salonitis, Konstantinos; Chantzis, Dimitrios; Kappatos, Vasileios

    2017-01-01

    approaches or with the use of topology optimization methodologies. An optimization approach utilizing multipurpose optimization algorithms has not been proposed yet. This paper presents a novel user-friendly method for the design optimization of lattice components towards weight minimization, which combines...... finite element analysis and evolutionary computation. The proposed method utilizes the cell homogenization technique in order to reduce the computational cost of the finite element analysis and a genetic algorithm in order to search for the most lightweight lattice configuration. A bracket consisting...

  7. Human Factors Principles in Information Dashboard Design

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques V.; St. Germain, Shawn

    2016-06-01

    strategic modernization program at a nuclear power plant where legacy systems are upgraded to advanced digital technologies through a systematic process that links human factors principles to the systems engineering process. This approach will help to create an integrated control room architecture beyond what is possible for individual subsystem upgrades alone. In addition, several human factors design and evaluation methods were used to develop the end-state concept, including interactive sessions with operators in INL’s Human System Simulation Laboratory, three-dimensional modeling to visualize control board changes.

  8. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    Science.gov (United States)

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  9. Applications of Context-Aware Computing in Hospital Work - Examples and Design Principles

    DEFF Research Database (Denmark)

    Bardram, Jacob Eyvind

    2004-01-01

    Context-awareness is a key concept in ubiquitous computing, which sometimes seems to be a technology looking for a purpose. In this paper we report on the application of context-aware computing for medical work in hospitals, which has appeared to be a strong case for applying context-aware comput...... of designing, developing, and evaluating context-aware clinical applications, the paper outlines some key design principles for a context-awareness framework, supporting the development and deployment of context-aware clinical computer applications.......Context-awareness is a key concept in ubiquitous computing, which sometimes seems to be a technology looking for a purpose. In this paper we report on the application of context-aware computing for medical work in hospitals, which has appeared to be a strong case for applying context......-aware computing. We present the design of a context-aware pill container and a context-aware hospital bed, both of which reacts and adapts according to what is happening in their context. The applications have been evaluated in a number of workshop with clinicians and patients. Based on this empirical work...

  10. Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    Science.gov (United States)

    Zaslansky, Paul; Currey, John D; Fleck, Claudia

    2016-09-12

    The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing.

  11. Logical database design principles

    CERN Document Server

    Garmany, John; Clark, Terry

    2005-01-01

    INTRODUCTION TO LOGICAL DATABASE DESIGNUnderstanding a Database Database Architectures Relational Databases Creating the Database System Development Life Cycle (SDLC)Systems Planning: Assessment and Feasibility System Analysis: RequirementsSystem Analysis: Requirements Checklist Models Tracking and Schedules Design Modeling Functional Decomposition DiagramData Flow Diagrams Data Dictionary Logical Structures and Decision Trees System Design: LogicalSYSTEM DESIGN AND IMPLEMENTATION The ER ApproachEntities and Entity Types Attribute Domains AttributesSet-Valued AttributesWeak Entities Constraint

  12. To Design and Evaluate a 12th Grade Course in the Principles of Economics; Final Report.

    Science.gov (United States)

    Wiggins, Suzanne E.; Sperling, John G.

    Reported is the design, development, and evaluation of a one-semester course on the principles of economics for twelfth grade students. The course is intended to develop students' capacity for economic reasoning through economic theory and empirical research. To do this, teaching materials and innovative techniques for teacher training were…

  13. The Handicap Principle for Trust in Computer Security, the Semantic Web and Social Networking

    Science.gov (United States)

    Ma, Zhanshan (Sam); Krings, Axel W.; Hung, Chih-Cheng

    Communication is a fundamental function of life, and it exists in almost all living things: from single-cell bacteria to human beings. Communication, together with competition and cooperation,arethree fundamental processes in nature. Computer scientists are familiar with the study of competition or 'struggle for life' through Darwin's evolutionary theory, or even evolutionary computing. They may be equally familiar with the study of cooperation or altruism through the Prisoner's Dilemma (PD) game. However, they are likely to be less familiar with the theory of animal communication. The objective of this article is three-fold: (i) To suggest that the study of animal communication, especially the honesty (reliability) of animal communication, in which some significant advances in behavioral biology have been achieved in the last three decades, should be on the verge to spawn important cross-disciplinary research similar to that generated by the study of cooperation with the PD game. One of the far-reaching advances in the field is marked by the publication of "The Handicap Principle: a Missing Piece of Darwin's Puzzle" by Zahavi (1997). The 'Handicap' principle [34][35], which states that communication signals must be costly in some proper way to be reliable (honest), is best elucidated with evolutionary games, e.g., Sir Philip Sidney (SPS) game [23]. Accordingly, we suggest that the Handicap principle may serve as a fundamental paradigm for trust research in computer science. (ii) To suggest to computer scientists that their expertise in modeling computer networks may help behavioral biologists in their study of the reliability of animal communication networks. This is largely due to the historical reason that, until the last decade, animal communication was studied with the dyadic paradigm (sender-receiver) rather than with the network paradigm. (iii) To pose several open questions, the answers to which may bear some refreshing insights to trust research in

  14. Design principles for engaging and retaining virtual citizen scientists.

    Science.gov (United States)

    Wald, Dara M; Longo, Justin; Dobell, A R

    2016-06-01

    Citizen science initiatives encourage volunteer participants to collect and interpret data and contribute to formal scientific projects. The growth of virtual citizen science (VCS), facilitated through websites and mobile applications since the mid-2000s, has been driven by a combination of software innovations and mobile technologies, growing scientific data flows without commensurate increases in resources to handle them, and the desire of internet-connected participants to contribute to collective outputs. However, the increasing availability of internet-based activities requires individual VCS projects to compete for the attention of volunteers and promote their long-term retention. We examined program and platform design principles that might allow VCS initiatives to compete more effectively for volunteers, increase productivity of project participants, and retain contributors over time. We surveyed key personnel engaged in managing a sample of VCS projects to identify the principles and practices they pursued for these purposes and led a team in a heuristic evaluation of volunteer engagement, website or application usability, and participant retention. We received 40 completed survey responses (33% response rate) and completed a heuristic evaluation of 20 VCS program sites. The majority of the VCS programs focused on scientific outcomes, whereas the educational and social benefits of program participation, variables that are consistently ranked as important for volunteer engagement and retention, were incidental. Evaluators indicated usability, across most of the VCS program sites, was higher and less variable than the ratings for participant engagement and retention. In the context of growing competition for the attention of internet volunteers, increased attention to the motivations of virtual citizen scientists may help VCS programs sustain the necessary engagement and retention of their volunteers. © 2016 Society for Conservation Biology.

  15. Regulatory principles, criteria and guidelines for site selection, design, construction and operation of uranium tailings retention systems

    International Nuclear Information System (INIS)

    Coady, J.R.; Henry, L.C.

    1978-01-01

    Principles, criteria and guidelines developed by the Atomic Energy Control Board for the management of uranium mill tailings are discussed. The application of these concepts is considered in relation to site selection, design and construction, operation and decommissioning of tailings retention facilities

  16. Canadian nuclear power principles for beyond design basis events - supporting rationale

    International Nuclear Information System (INIS)

    Elliott, M.; Newman, G.; Bhaloo, A.

    2014-01-01

    The development of the following principles and their rationale began during a special Chief Nuclear Engineers forum held on March 25th, 2013 in Toronto. These principles are intended to provide guidance to the Canadian Nuclear Power Industry in developing responses to the lessons learned from the Fukushima event of March 2011. These principles were accepted and signed off by the Chief Nuclear Officers of each of the three utilities in August 2013 and were presented to the CNSC at a public hearing on August 21, 2013. This document provides the underlying rationale for the principles. (author)

  17. Canadian nuclear power principles for beyond design basis events - supporting rationale

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, M. [OPG Nuclear, Ontario (Canada); Newman, G. [Bruce Power, Ontario (Canada); Bhaloo, A. [New Brunswick Power, New Brunswick (Canada)

    2014-09-15

    The development of the following principles and their rationale began during a special Chief Nuclear Engineers forum held on March 25th, 2013 in Toronto. These principles are intended to provide guidance to the Canadian Nuclear Power Industry in developing responses to the lessons learned from the Fukushima event of March 2011. These principles were accepted and signed off by the Chief Nuclear Officers of each of the three utilities in August 2013 and were presented to the CNSC at a public hearing on August 21, 2013. This document provides the underlying rationale for the principles. (author)

  18. Canadian nuclear power principles for beyond design basis events - supporting rationale

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, M. [Ontario Power Generation Nuclear, Pickering, ON (Canada); Newman, G. [Bruce Power, Tiverton, ON (Canada); Bhaloo, A. [New Brunswick Power, Fredericton, NB (Canada)

    2014-07-01

    The development of the following principles and their rationale began during a special Chief Nuclear Engineers forum held on March 25th, 2013 in Toronto. These principles are intended to provide guidance to the Canadian Nuclear Power Industry in developing responses to the lessons learned from the Fukushima event of March 2011. These principles were accepted and signed off by the Chief Nuclear Officers of each of the three utilities in August 2013 and were presented to the CNSC at a public hearing on August 21, 2013. This document provides the underlying rationale for the principles. (author)

  19. Nash evolutionary algorithms : Testing problem size in reconstruction problems in frame structures

    OpenAIRE

    Greiner, D.; Periaux, Jacques; Emperador, J.M.; Galván, B.; Winter, G.

    2016-01-01

    The use of evolutionary algorithms has been enhanced in recent years for solving real engineering problems, where the requirements of intense computational calculations are needed, especially when computational engineering simulations are involved (use of finite element method, boundary element method, etc). The coupling of game-theory concepts in evolutionary algorithms has been a recent line of research which could enhance the efficiency of the optimum design procedure and th...

  20. Adapting to Population Growth: The Evolutionary Alternative to Malthus

    Directory of Open Access Journals (Sweden)

    Axel Kristinsson

    2016-06-01

    Full Text Available A long-standing debate on the dynamics of population growth in human history has become polarized between a Malthusian stance and a Boserupian one. The former tends to view population growth as limited by carrying capacity, dependent on environment and technology, whereas the latter sees population growth itself as a major inducement to social, economic and technological developments. In this paper the authors experiment with approaching this debate by using recent developments in evolutionary theory. According to these, evolutionary principles, as expounded by Charles Darwin and subsequent evolutionary scientists, apply not only to biological evolution but also to social or cultural evolution. Here, the role of genes is taken over by culture and, since culture is much more pliable than our DNA, evolution speeds up. As the only organisms on Earth whose evolution relies as heavily on culture as on genes, humans have become extremely adaptable. Their hyper-adaptability suggest that humans, through their cultural evolution, have managed increasingly to adapt to their own growing population, thus succeeding in accommodating ever-growing numbers. This hypothesis fits the Boserupian approach to population very well but less so the Malthusian one, perhaps indicating a gradual shift from a Malthusian regime to a Boserupian one in human history. The hypothesis is discussed and examined through four case studies: The beginning of farming around Göbekli Tepe in southeast Turkey, the productive farming systems of Tiwanaku in South America, the population crisis of late medieval and early modern Iceland, and the ‘collapse’ of Rapa Nui (Easter Island.

  1. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time

    KAUST Repository

    Pinsky, Malin L.

    2016-12-15

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.

  2. Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin

    2015-01-01

    The use of nanoparticles in solar cells has created many controversies. In this paper, different mechanisms of nanoparticles with different materials with diameters varying from 50 to 200 nm, surface coverage at 5, 20, and 60 %, and different locations are analyzed systematically for efficient light trapping in a thin-film c-Si solar cell. Mie theory and the finite difference time domain method are used for analysis to give a design principle with nanoparticles for the solar cell application. Metals exhibit plasmonic resonances and angular scattering, while dielectrics show anti-reflection and scattering in the incident direction. A table is given to summarize the advantages and disadvantages in different conditions. The silicon absorption enhancement with nanoparticles on top is mainly in the shorter wavelengths below 700 nm, and both Al and SiO 2 nanoparticles with diameter around 100 nm show the most significant enhancement. The silicon absorption enhancement with embedded nanoparticles takes place in the longer wavelengths over 700 nm, and Ag and SiO 2 nanoparticles with larger diameter around 200 nm perform better. However, the light absorbed by Ag nanoparticles will be converted to heat and will lead to decrease in cell efficiency; hence, the choice of metallic nanoparticles in applications to solar cells should be carefully considered. The design principle proposed in this work gives a guideline by choosing reasonable parameters for the different requirements in the application of thin-film solar cells

  3. Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes

    Directory of Open Access Journals (Sweden)

    Podder Soumita

    2012-01-01

    Full Text Available Abstract Background One of the main issues of molecular evolution is to divulge the principles in dictating the evolutionary rate differences among various gene classes. Immunological genes have received considerable attention in evolutionary biology as candidates for local adaptation and for studying functionally important polymorphisms. The normal structure and function of immunological genes will be distorted when they experience mutations leading to immunological dysfunctions. Results Here, we examined the fundamental differences between the genes which on mutation give rise to autoimmune or other immune system related diseases and the immunological genes that do not cause any disease phenotypes. Although the disease genes examined are analogous to non-disease genes in product, expression, function, and pathway affiliation, a statistically significant decrease in evolutionary rate has been found in autoimmune disease genes relative to all other immune related diseases and non-disease genes. Possible ways of accumulation of mutation in the three steps of the central dogma (DNA-mRNA-Protein have been studied to trace the mutational effects predisposed to disease consequence and acquiring higher selection pressure. Principal Component Analysis and Multivariate Regression Analysis have established the predominant role of single nucleotide polymorphisms in guiding the evolutionary rate of immunological disease and non-disease genes followed by m-RNA abundance, paralogs number, fraction of phosphorylation residue, alternatively spliced exon, protein residue burial and protein disorder. Conclusions Our study provides an empirical insight into the etiology of autoimmune disease genes and other immunological diseases. The immediate utility of our study is to help in disease gene identification and may also help in medicinal improvement of immune related disease.

  4. Design principles for CANDU control centres in response to evolving utility business needs

    International Nuclear Information System (INIS)

    Davey, E.

    2002-01-01

    Nuclear generation operators are facing a challenging business environment at the beginning of the new millennium. Evolving changes in business context, competitive commercial pressures, and changes in technology have dictated recurring evaluation of operational practices and the adequacy of supporting tools, and the pursuit of opportunities for operational improvement. A key area of utility operations that has been impacted by these changes is the nuclear plant control centre. Changes to workspace layout, equipment provisions, staffing, and work organization are examples of some of the adjustments being introduced to improve operational and safety effectiveness. This paper discusses some of the key factors influencing these changes and identifies additional design principles for CANDU control centres that will enable new control centre designs and retrofits of existing control centres to remain relevant and responsive to utility needs. (author)

  5. Ab initio identified design principles of solid-solution strengthening in Al

    International Nuclear Information System (INIS)

    Ma Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2013-01-01

    Solid-solution strengthening in six Al–X binary systems is investigated using first-principle methods. The volumetric mismatch parameter and the solubility enthalpy per solute were calculated. We derive three rules for designing solid-solution strengthened alloys: (i) the solubility enthalpy per solute is related to the volumetric mismatch by a power law; (ii) for each annealing temperature, there exists an optimal solute–volume mismatch to achieve maximum strength; and (iii) the strengthening potential of high volumetric mismatch solutes is severely limited by their low solubility. Our results thus show that the thermodynamic properties of the system (here Al–X alloys) set clear upper bounds to the achievable strengthening effects owing to the reduced solubility with increasing volume mismatch. (paper)

  6. Evolutionary Demography

    DEFF Research Database (Denmark)

    Levitis, Daniel

    2015-01-01

    of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness......Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...

  7. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  8. The licensing process of the design modifications of Cernavoda 2 NPP resulting from the operating experience of CANDU plants

    International Nuclear Information System (INIS)

    Goicea, L.

    2005-01-01

    The CANDU 6 plant now under construction in Cernavoda include over two hundred significant improvements made in order to comply with current codes and standards and licensing requirements relative to the operating CANDU 6 in Romania. These evolutionary improvements are incorporated in CANDU 6 design taking advance of CANDU operating experience, of the designer company research and development and technical advances worldwide in order to further enhance safety, reliability and economics. This paper gives a general idea of the evaluation of the modifications of the Cernavoda 2 nuclear power plant against the design of Cernavoda 1 and states the safety principles and requirements which are the basis for this evaluation. (author)

  9. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    Science.gov (United States)

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

  10. Is capitalism in our genes? Competition, cooperation and the idea of homo oeconomicus from an evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Portera Mariagrazia

    2016-01-01

    Full Text Available In the last few years a growing number of academic disciplines in the Humanities and Social Sciences have turned to the evolutionary approach: Evolutionary Economics, among these disciplines, is a thriving subfield of Economics, which adopts Darwin’s evolutionary ideas and concepts for the understanding of economic system and modes of production. Evolutionary hypotheses such as the „selfish gene“ idea, the ideas of „inclusive fitness“, „struggle for life“ and „survival of the fittest“ may suggest - and have indeed suggested - that humans are rational self-interest individuals, doing what they can to increase their own reproductive chances or at least the chances of their close relatives („inclusive fitness“. To put it differently, evolutionary theory seems to suggest that capitalism (in a broad sense is a system that has co-evolved with humans and best fits our evolved psychology. Is this the whole story? Is capitalism „in our genes“? In this paper I argue that conclusions such as „we are born to be rational self-interested agents“ or „capitalism is encoded in our genome“ are the result of a misleading application of Darwin’s evolutionary theory to human socio-economic processes, mainly to justify a (Western society based on selfish principles, but which is not naturally selfish in itself. Evolution seems to be the result of cooperative, not only (or not mainly competitive processes, and the model of Homo oeconomicus, that is the idea that humans are rational self-interested agents always trying to maximize profit, is, also from an bio-evolutionary perspective, nothing more than a fictional exercise.

  11. Defining DSL design principles for enhancing the requirements elicitation process

    Directory of Open Access Journals (Sweden)

    Gustavo Arroyo

    2012-03-01

    Full Text Available La Elicitación de Requisitos propicia el entendimiento de las necesidades de los usuarios con respecto a un desarrollo de software. Los métodos que se emplean provienen de las ciencias sociales por lo que se carece de una retroalimentación ejecutable. Consecuentemente, la primera versión del software podría no cumplir con las expectativas. El uso de DSLs como herramientas para el descubrimiento de requisitos es una idea aceptada, desafortunadamente, muy pocos trabajos en la literatura se enfocan en la definición de principios de diseño de DSLs. En este trabajo planteamos principios de diseño de DSLs orientados a la elicitación de requisitos, enseguida, generamos casos de prueba en ANTLR, Ruby y Curry. También, enunciamos el perfil que debe tener el nuevo analista de software. Con ello, se incrementa la retroalimentación entre los involucrados en el desarrollo de software y se mejora el producto.Requirements elicitation is concerned with learning and understanding the needs of users w.r.t. a new software development. Frequently the methods employed for requirements elicitation are adapted from areas like social sciences that do not include executable (prototype based on feedback. As a consequence, it is relatively common to discover that the first release does not fit the requirements defined at the beginning of the project. Using domain-specific languages (DSLs as an auxiliary tool for requirements elicitation is a commonly well accepted idea. Unfortunately, there are few works in the literature devoted to the definition of design principles for DSLs to be experienced in the frameworks for DSL developing such as ANTLR, Ruby, and Curry. We propose design principles for the DSL development (regardless of paradigm which are sufficient to model the domain in a requirements phase. Further more we enunciate a new profile for the requirements analyst and a set of elicitation steps. The use of DSLs not only giveus an immediate feedback with

  12. Designing for Discovery Learning of Complexity Principles of Congestion by Driving Together in the TrafficJams Simulation

    Science.gov (United States)

    Levy, Sharona T.; Peleg, Ran; Ofeck, Eyal; Tabor, Naamit; Dubovi, Ilana; Bluestein, Shiri; Ben-Zur, Hadar

    2018-01-01

    We propose and evaluate a framework supporting collaborative discovery learning of complex systems. The framework blends five design principles: (1) individual action: amidst (2) social interactions; challenged with (3) multiple tasks; set in (4) a constrained interactive learning environment that draws attention to (5) highlighted target…

  13. An alternative policy evaluation of the British Columbia carbon tax: broadening the application of Elinor Ostrom's design principles for managing common-pool resources

    Directory of Open Access Journals (Sweden)

    Karine Lacroix

    2015-06-01

    Full Text Available Climate change is putting infrastructure, food supply, water resources, ecosystems, and human health at risk. These risks will be exacerbated depending on the degree of additional greenhouse gas emissions. Urgent action is needed to limit the severity of impacts associated with further warming. British Columbia (BC has taken action to reduce greenhouse gas emissions from carbon-based fuels by introducing a carbon tax in 2008. As an innovative approach to climate change mitigation, especially in North America, studies evaluating its effectiveness are valuable. We assessed the long-term viability potential of the BC carbon tax using common pool resource design principles, a novel application of the design principles to environmental policy. We found that the design principles can be applied productively to environmental policy and larger scale air pollution problems. With regard to the BC carbon tax, our findings suggest that closer monitoring of user behavior, further increases of the tax over time, and pursuing efforts for a more elaborate system of nested enterprises and interjurisdictional cooperation could increase the long-term success of the BC carbon tax. We also found that the design principles allowed us to more comprehensively reach conclusions regarding the broader effectiveness of the tax when compared to existing policy analysis. Traditionally, climate policy evaluation has focused on the end goal without considering broader constraints and issues of resource allocation. We suggest that common pool resource theory, which is based on strong theoretical principles and encourages reflexivity, will be able to address those limitations.

  14. Plant cell walls throughout evolution: towards a molecular understanding of their design principles.

    Science.gov (United States)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-01-01

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  15. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  16. Hamilton's principle for beginners

    International Nuclear Information System (INIS)

    Brun, J L

    2007-01-01

    I find that students have difficulty with Hamilton's principle, at least the first time they come into contact with it, and therefore it is worth designing some examples to help students grasp its complex meaning. This paper supplies the simplest example to consolidate the learning of the quoted principle: that of a free particle moving along a line. Next, students are challenged to add gravity to reinforce the argument and, finally, a two-dimensional motion in a vertical plane is considered. Furthermore these examples force us to be very clear about such an abstract principle

  17. Community Water Governance on Mount Kenya: An Assessment Based on Ostrom’s Design Principles of Natural Resource Management

    Directory of Open Access Journals (Sweden)

    Jampel Dell’Angelo

    2016-02-01

    Full Text Available Kenyan river basin governance underwent a pioneering reform in the Water Act of 2002, which established new community water-management institutions. This article focuses on community water projects in the Likii Water Resource Users Association in the Upper Ewaso Ng’iro River basin on Mount Kenya, and the extent to which their features are consistent with Ostrom’s design principles of natural resource management. Although the projects have developed solid institutional structures, pressures such as hydroclimatic change, population growth, and water inequality challenge their ability to manage their water resources. Institutional homogeneity across the different water projects and congruence with the design principles is not necessarily a positive factor. Strong differences in household water flows within and among the projects point to the disconnection between apparently successful institutions and their objectives, such as fair and equitable water allocation.

  18. Gender and Evolutionary Theory in Workplace Health Promotion

    Science.gov (United States)

    Björklund, Erika; Wright, Jan

    2017-01-01

    Objective: Ideas from evolutionary theories are increasingly taken up in health promotion. This article seeks to demonstrate how such a trend has the potential to embed essentialist and limiting stereotypes of women and men in health promotion practice. Design: We draw on material gathered for a larger ethnographic study that examined how…

  19. Applications of Evolutionary Algorithms to Electromagnetic Materials Characterization and Design Problems

    Science.gov (United States)

    Frasch, Jonathan Lemoine

    Determining the electrical permittivity and magnetic permeability of materials is an important task in electromagnetics research. The method using reflection and transmission scattering parameters to determine these constants has been widely employed for many years, ever since the work of Nicolson, Ross, and Weir in the 1970's. For general materials that are homogeneous, linear, and isotropic, the method they developed (the NRW method) works very well and provides an analytical solution. For materials which possess a metal backing or are applied as a coating to a metal surface, it can be difficult or even impossible to obtain a transmission measurement, especially when the coating is thin. In such a circumstance, it is common to resort to a method which uses two reflection type measurements. There are several such methods for free-space measurements, using multiple angles or polarizations for example. For waveguide measurements, obtaining two independent sources of information from which to extract two complex parameters can be a challenge. This dissertation covers three different topics. Two of these involve different techniques to characterize conductor-backed materials, and the third proposes a method for designing synthetic validation standards for use with standard NRW measurements. All three of these topics utilize modal expansions of electric and magnetic fields to analyze propagation in stepped rectangular waveguides. Two of the projects utilize evolutionary algorithms (EA) to design waveguide structures. These algorithms were developed specifically for these projects and utilize fairly recent innovations within the optimization community. The first characterization technique uses two different versions of a single vertical step in the waveguide. Samples to be tested lie inside the steps with the conductor reflection plane behind them. If the two reflection measurements are truly independent it should be possible to recover the values of two complex

  20. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm

    Science.gov (United States)

    Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand

    2018-06-01

    The atomistic modeling of amorphous materials requires structure sizes and sampling statistics that are challenging to achieve with first-principles methods. Here, we propose a methodology to speed up the sampling of amorphous and disordered materials using a combination of a genetic algorithm and a specialized machine-learning potential based on artificial neural networks (ANNs). We show for the example of the amorphous LiSi alloy that around 1000 first-principles calculations are sufficient for the ANN-potential assisted sampling of low-energy atomic configurations in the entire amorphous LixSi phase space. The obtained phase diagram is validated by comparison with the results from an extensive sampling of LixSi configurations using molecular dynamics simulations and a general ANN potential trained to ˜45 000 first-principles calculations. This demonstrates the utility of the approach for the first-principles modeling of amorphous materials.

  1. EPR by AREVA. An evolutionary reactor

    International Nuclear Information System (INIS)

    Horstmann, Marion

    2010-01-01

    The EPR development goals are as follows: 1. Evolutionary design to fully capitalize on the design, construction and operating experience based on the 86 AREVA's PWR operating worldwide; 2. Enhanced Safety compared to operating PWRs: reduce core damage frequency (CDF), accommodate severe accidents with no long-term population effect, Withstand large airplane crash (APC); 3. High availability; 4. Simplified operation and maintenance; and 5. Generation cost at least 10 % lower than 1500 MWe series in operation.The design builds on the achievements of the N4 and Konvoi reactors. The main plant data are tabulated. The PWR structure is shown as an example of the stepwise improvement. Focus of the presentation is on the construction techniques, supply chain, and project delivery. (P.A.)

  2. Safety of evolutionary and innovative nuclear reactors: IAEA activities and world efforts

    International Nuclear Information System (INIS)

    Saito, T.; Gasparini, M.

    2004-01-01

    'Defence in Depth' approach constitutes the basis of the IAEA safety standards for nuclear power plants. Lessons learned from the current generation of reactors suggest that, for the next generation of reactor designs, the Defence in Depth philosophy should be retained, and that its implementation should be guided by the probabilistic insights. Recent developments in the area of general safety requirements based on Defence in Depth approach are examined and summarized. Global efforts to harmonize safety requirements for evolutionary nuclear power plants have involved many countries and organizations such as IAEA, US EPRI and European Utility EUR Organization. In recent years, developments of innovative nuclear power plants are also being discussed. The IAEA is currently developing a safety approach specifically for innovative nuclear reactors. This approach will eventually lead to a proposal of safety requirements for innovative reactors. Such activities related to safety requirements of evolutionary and innovative reactors are introduced. Various evolutionary and innovative reactor designs are reported in the world. The safety design features of evolutionary large LWRs, innovative LWRs, Modular High Temperature Gas Reactors and Small Liquid Metal Cooled LMRs are also introduced. Enhanced safety features proposed in such reactors are discussed and summarized according to the levels of Defence in Depth. For future nuclear plants, international cooperation and harmonization, especially in the area of safety, appear to be inevitable. Based on the past experience with many member states, the IAEA believes itself to be the uniquely positioned international organization to play this key role. (authors)

  3. 49 CFR 236.786 - Principle, closed circuit.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Principle, closed circuit. 236.786 Section 236.786 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Principle, closed circuit. The principle of circuit design where a normally energized electric circuit which...

  4. Design principles of natural light-harvesting as revealed by single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krüger, T.P.J., E-mail: tjaart.kruger@up.ac.za [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Grondelle, R. van [Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    2016-01-01

    Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfer the excitation energy to the photochemical reaction centre. The amount of harvested light is also delicately tuned to the level of solar radiation to maintain a constant energy throughput at the reaction centre and avoid the accumulation of the products of charge separation. In this Review, recent developments in the understanding of light-harvesting by plants will be discussed, based on results obtained from single molecule spectroscopy studies. Three design principles of the main light-harvesting antenna of plants will be highlighted: (a) fine, photoactive control over the intrinsic protein disorder to efficiently use intrinsically available thermal energy dissipation mechanisms; (b) the design of the protein microenvironment of a low-energy chromophore dimer to control the amount of shade absorption; (c) the design of the exciton manifold to ensure efficient funneling of the harvested light to the terminal emitter cluster.

  5. A new computing principle

    International Nuclear Information System (INIS)

    Fatmi, H.A.; Resconi, G.

    1988-01-01

    In 1954 while reviewing the theory of communication and cybernetics the late Professor Dennis Gabor presented a new mathematical principle for the design of advanced computers. During our work on these computers it was found that the Gabor formulation can be further advanced to include more recent developments in Lie algebras and geometric probability, giving rise to a new computing principle

  6. Fundamental principles of heat transfer

    CERN Document Server

    Whitaker, Stephen

    1977-01-01

    Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int

  7. Principles of designing cyber-physical system of producing mechanical assembly components at Industry 4.0 enterprise

    Science.gov (United States)

    Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-03-01

    The task of developing principles of cyber-physical system constitution at the Industry 4.0 company of the item designing components of mechanical assembly production is being studied. The task has been solved by analyzing the components and technologies, which have some practical application in the digital production organization. The list of components has been defined and the authors proposed the scheme of the components and technologies interconnection in the Industry 4.0 of mechanical assembly production to make an uninterrupted manufacturing route of the item designing components with application of some cyber-physical systems.

  8. COEVOLUTIONARY SEMANTICS OF TECHNOLOGICAL CIVILIZATION GENESIS AND EVOLUTIONARY RISK (BETWEEN THE BIOAESTHETICS AND BIOPOLITICS

    Directory of Open Access Journals (Sweden)

    V. T. Cheshko

    2016-12-01

    Full Text Available Purpose (metatask of the present work is to attempt to give a glance at the problem of existential and anthropological risk caused by the contemporary man-made civilization from the perspective of comparison and confrontation of aesthetics, the substrate of which is emotional and metaphorical interpretation of individual subjective values and politics feeding by objectively rational interests of social groups. In both cases there is some semantic gap present between the represented social reality and its representation in perception of works of art and in the political doctrines as well. Methodology of the research is evolutionary anthropologicalcomparativistics. Originality of the conducted analysis comes to the following: As the antithesis to biological and social reductionism in interpretation of the phenomenon of bio-power it is proposed a co-evolutionary semantic model in accordance with which the described semantic gap is of the substantial nature related to the complex module organization of a consistent and adaptive human strategy consisting of three associated but independently functional modules (genetic, cultural and techno-rational. Evolutionary trajectory of all anthropogenesis components including civilization cultural and social-political evolution is identified by the proportion between two macro variables – evolutionary effectiveness and evolutionary stability (sameness, i.e. preservation in the context of consequential transformations of some invariants of Homo sapiens species specificity organization. It should be noted that inasmuch as in respect to human, some modules of the evolutionary (adaptive strategy assume self-reflection attributes, it would be more correctly to state about evolutionary correctness, i.e. correspondence to some perfection. As a result, the future of human nature depends not only on the rationalist principles of ethics of Homo species (the archaism of Jurgen Habermas, but also on the holistic and

  9. A multilevel evolutionary framework for sustainability analysis

    Directory of Open Access Journals (Sweden)

    Timothy M. Waring

    2015-06-01

    Full Text Available Sustainability theory can help achieve desirable social-ecological states by generalizing lessons across contexts and improving the design of sustainability interventions. To accomplish these goals, we argue that theory in sustainability science must (1 explain the emergence and persistence of social-ecological states, (2 account for endogenous cultural change, (3 incorporate cooperation dynamics, and (4 address the complexities of multilevel social-ecological interactions. We suggest that cultural evolutionary theory broadly, and cultural multilevel selection in particular, can improve on these fronts. We outline a multilevel evolutionary framework for describing social-ecological change and detail how multilevel cooperative dynamics can determine outcomes in environmental dilemmas. We show how this framework complements existing sustainability frameworks with a description of the emergence and persistence of sustainable institutions and behavior, a means to generalize causal patterns across social-ecological contexts, and a heuristic for designing and evaluating effective sustainability interventions. We support these assertions with case examples from developed and developing countries in which we track cooperative change at multiple levels of social organization as they impact social-ecological outcomes. Finally, we make suggestions for further theoretical development, empirical testing, and application.

  10. Towards mesoscience the principle of compromise in competition

    CERN Document Server

    Li, Jinghai

    2014-01-01

    This brief is devoted to providing a complete outline of meso-science by briefing the relevant contents from the published book and by updating evidences and concepts of meso-science. The importance of meso-science in solving various problems in energy, resource, and the environment is introduced.  The whole evolutionary development of the EMMS principle is reviewed to show how a simple idea on the customized modeling of particle clustering in gas-solid systems was developed, verified, extended, and finally generalized into the common principle of compromise in competition between dominant mechanisms for all mesoscale phenomena in science and engineering, leading to the proposition of meso-science. More importantly, updates on the concept of meso-science and perspectives are presented, along with new insights and findings from after the publication of the original book. In this way, we hope to help readers more easily familiarize themselves with meso-science, and to trigger interest and attention to this int...

  11. From the "Modern Synthesis" to cybernetics: Ivan Ivanovich Schmalhausen (1884-1963) and his research program for a synthesis of evolutionary and developmental biology.

    Science.gov (United States)

    Levit, Georgy S; Hossfeld, Uwe; Olsson, Lennart

    2006-03-15

    Ivan I. Schmalhausen was one of the central figures in the Russian development of the "Modern Synthesis" in evolutionary biology. He is widely cited internationally even today. Schmalhausen developed the main principles of his theory facing the danger of death in the totalitarian Soviet Union. His great services to evolutionary and theoretical biology are indisputable. However, the received view of Schmalhausen's contributions to evolutionary biology makes an unbiased reading of his texts difficult. Here we show that taking all of his works into consideration (including those only available in Russian) paints a much more dynamic and exciting picture of what he tried to achieve. Schmalhausen pioneered the integration of a developmental perspective into evolutionary thinking. A main tool for achieving this was his approach to living objects as complex multi-level self-regulating systems. Schmalhausen put enormous effort into bringing this idea into fruition during the final stages of his career by combining evolutionary theory with cybernetics. His results and ideas remain thought-provoking, and his texts are of more than just historical interest. Copyright 2006 Wiley-Liss, Inc.

  12. Theory and principled methods for the design of metaheuristics

    CERN Document Server

    Borenstein, Yossi

    2013-01-01

    Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex.  In this book the editors establish a bridge between theo

  13. Attractive evolutionary equilibria

    OpenAIRE

    Roorda, Berend; Joosten, Reinoud

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.

  14. Principles of expert fuzzy controller design: AI mobile wall climbing robots for decontamination of nuclear power-station

    International Nuclear Information System (INIS)

    Gradetsky, V.G.; Ul'yanov, S.; Slesarev, Y.V.; Pospelov, D.A.

    1994-01-01

    The arrangement principles for a complex control framework of artificial intelligence control systems are introduced. The notions of intelligence levels with the top boundary (intelligence in large) and the bottom boundary (intelligence in small) are defined. A special methodology for the design of an artificial intelligence control system design for the decontamination of a nuclear power plant using a wall climbing robot with different intelligence levels is presented. The application of WARP (Weight Associative Rule Processor) to the design of an automatic fuzzy controller for the fuzzy correction of the motion of the manipulator and WCR is examined

  15. Improving the Quality of Online Discussion: The Effects of Strategies Designed Based on Cognitive Load Theory Principles

    Science.gov (United States)

    Darabi, Aubteen; Jin, Li

    2013-01-01

    This article focuses on heavy cognitive load as the reason for the lack of quality associated with conventional online discussion. Using the principles of cognitive load theory, four online discussion strategies were designed specifically aiming at reducing the discussants' cognitive load and thus enhancing the quality of their online discussion.…

  16. Exploring the miRNA regulatory network using evolutionary correlations.

    Directory of Open Access Journals (Sweden)

    Benedikt Obermayer

    2014-10-01

    Full Text Available Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA regulatory network exerts its function less through any individual link and more via collective effects that lead to a functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way. By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective.

  17. Economic principles in communication: an experimental study.

    Science.gov (United States)

    De Jaegher, Kris; Rosenkranz, Stephanie; Weitzel, Utz

    2014-12-21

    This paper experimentally investigates how economic principles affect communication. In a simple sender-receiver game with common interests over payoffs, the sender can send a signal without a pre-given meaning in an infrequent or frequent state of the world. When the signal is costly, several theories (focal point theory, the intuitive criterion, evolutionary game theory) predict an efficient separating equilibrium, where the signal is sent in the infrequent state of the world (also referred to as Horn׳s rule). To analyze whether Horn׳s rule applies, and if so, which theory best explains it, we develop and test variants of the sender-receiver game where the theories generate discriminatory hypotheses. In costly signaling variants, our participants follow Horn׳s rule most of the time, in a manner that is best explained by focal point theory. In costless signaling variants, evolutionary game theory best explains our results. Here participants coordinate significantly more (less) often on a separating equilibrium where the signal is sent in the frequent state if they are primed to associate the absence of a signal with the infrequent (frequent) state of the world. We also find indications that a similar priming effect applies to costly signals. Thus, while the frequency with which participants follow Horn׳s rule in costly signaling variants is best explained by Horn׳s rule, the priming effect shows that some of our participants׳ behavior is best explained by evolutionary game theory even when signals are costly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Design principles, targets and criterions for a Multipurpose Advanced Reactor Inherently Safe (MARS). Evaluation of the total production cost of electric energy

    International Nuclear Information System (INIS)

    Cumo, M.

    2001-01-01

    To be accepted and to be, sooner or later, extensively utilized, a new technology must respect the nature and its equilibria. For a nuclear power plant, the full respect of nature and of its equilibria means: for normal operation of the plant, guaranteeing a radiological impact comparable to the standard deviation of the radioactive natural background; for worst design plant accidents, guaranteeing an external impact only with the same probability as that of ultra-catastrophic natural events, such as bolide impacts to the earth. In compliance with Prof. A. Weinberg's suggestions, the design of the MARS nuclear plant was conceived according to this philosophy. The main factors which have affected the design development process of the MARS nuclear plant are introduced in the following. They include design principles, design targets and design criteria. These factors will be presented in two groups: the first group refers to the most relevant ones, regarding project fundamentals, as design principles, targets and main criteria (paragraph 1). The second group refers to detailed design criteria adopted for systems, structures and components relevant to safety (paragraph 2). (author)

  19. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  20. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Science.gov (United States)

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-01

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations. PMID:28117683