WorldWideScience

Sample records for evolutionarily conserved proteins

  1. Evolutionarily conserved herpesviral protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Even Fossum

    2009-09-01

    Full Text Available Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV and Kaposi's sarcoma-associated herpesvirus (KSHV. In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1, murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H, and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species.

  2. Localization of an evolutionarily conserved protein proton pyrophosphatase in evolutionarily distant plants oryza sativa and physcomitrella patens

    Science.gov (United States)

    Proton Pyrophosphatase (H+-PPase) is a highly evolutionarily conserved protein that is prevalent in the plant kingdom. One of the salient features of H+-PPase expression pattern, at least in vascular plants like Arabidopsis, is its conspicuous localization in both actively dividing cells and the phl...

  3. An Evolutionarily Conserved Innate Immunity Protein Interaction Network*

    Science.gov (United States)

    De Arras, Lesly; Seng, Amara; Lackford, Brad; Keikhaee, Mohammad R.; Bowerman, Bruce; Freedman, Jonathan H.; Schwartz, David A.; Alper, Scott

    2013-01-01

    The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice. PMID:23209288

  4. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges.

    Science.gov (United States)

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2013-12-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins.

  5. RNA editing in bacteria recodes multiple proteins and regulates an evolutionarily conserved toxin-antitoxin system.

    Science.gov (United States)

    Bar-Yaacov, Dan; Mordret, Ernest; Towers, Ruth; Biniashvili, Tammy; Soyris, Clara; Schwartz, Schraga; Dahan, Orna; Pilpel, Yitzhak

    2017-10-01

    Adenosine (A) to inosine (I) RNA editing is widespread in eukaryotes. In prokaryotes, however, A-to-I RNA editing was only reported to occur in tRNAs but not in protein-coding genes. By comparing DNA and RNA sequences of Escherichia coli, we show for the first time that A-to-I editing occurs also in prokaryotic mRNAs and has the potential to affect the translated proteins and cell physiology. We found 15 novel A-to-I editing events, of which 12 occurred within known protein-coding genes where they always recode a tyrosine (TAC) into a cysteine (TGC) codon. Furthermore, we identified the tRNA-specific adenosine deaminase (tadA) as the editing enzyme of all these editing sites, thus making it the first identified RNA editing enzyme that modifies both tRNAs and mRNAs. Interestingly, several of the editing targets are self-killing toxins that belong to evolutionarily conserved toxin-antitoxin pairs. We focused on hokB, a toxin that confers antibiotic tolerance by growth inhibition, as it demonstrated the highest level of such mRNA editing. We identified a correlated mutation pattern between the edited and a DNA hard-coded Cys residue positions in the toxin and demonstrated that RNA editing occurs in hokB in two additional bacterial species. Thus, not only the toxin is evolutionarily conserved but also the editing itself within the toxin is. Finally, we found that RNA editing in hokB increases as a function of cell density and enhances its toxicity. Our work thus demonstrates the occurrence, regulation, and functional consequences of RNA editing in bacteria. © 2017 Bar-Yaacov et al.; Published by Cold Spring Harbor Laboratory Press.

  6. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins.

    Directory of Open Access Journals (Sweden)

    Marcin Michalik

    Full Text Available An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved 'folding core' that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.

  7. Sperm protein "DE" mediates gamete fusion through an evolutionarily conserved site of the CRISP family.

    Science.gov (United States)

    Ellerman, Diego A; Cohen, Débora J; Da Ros, Vanina G; Morgenfeld, Mauro M; Busso, Dolores; Cuasnicú, Patricia S

    2006-09-01

    The first member of the cysteine-rich secretory protein (CRISP) family was described by our laboratory in the rat epididymis, and it is known as DE or CRISP-1. Since then, numerous CRISPs exhibiting a high amino acid sequence similarity have been identified in animals, plants and fungi, although their functions remain largely unknown. CRISP-1 proteins are candidates to mediate gamete fusion in the rat, mouse and human through their binding to complementary sites on the egg surface. To elucidate the molecular mechanisms underlying CRISP-1 function, in the present work, deletion mutants of protein DE were generated and examined for their ability to bind to the rat egg and interfere with gamete fusion. Results revealed that the egg-binding ability of DE resides within a 45-amino acid N-terminal region containing the two motifs of the CRISP family named Signature 1 and Signature 2. Subsequent assays using synthetic peptides and other CRISPs support that the egg-binding site of DE falls in the 12-amino-acid region corresponding to Signature 2. The interesting finding that the binding site of DE resides in an evolutionarily conserved region of the molecule provides novel information on the molecular mechanisms underlying CRISP-1 function in gamete fusion with important implications on the structure-function relationship of other members of the widely distributed CRISP family.

  8. Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila.

    Science.gov (United States)

    Carl, Sarah H; Russell, Steven

    2015-04-13

    Group B Sox proteins are a highly conserved group of transcription factors that act extensively to coordinate nervous system development in higher metazoans while showing both co-expression and functional redundancy across a broad group of taxa. In Drosophila melanogaster, the two group B Sox proteins Dichaete and SoxNeuro show widespread common binding across the genome. While some instances of functional compensation have been observed in Drosophila, the function of common binding and the extent of its evolutionary conservation is not known. We used DamID-seq to examine the genome-wide binding patterns of Dichaete and SoxNeuro in four species of Drosophila. Through a quantitative comparison of Dichaete binding, we evaluated the rate of binding site turnover across the genome as well as at specific functional sites. We also examined the presence of Sox motifs within binding intervals and the correlation between sequence conservation and binding conservation. To determine whether common binding between Dichaete and SoxNeuro is conserved, we performed a detailed analysis of the binding patterns of both factors in two species. We find that, while the regulatory networks driven by Dichaete and SoxNeuro are largely conserved across the drosophilids studied, binding site turnover is widespread and correlated with phylogenetic distance. Nonetheless, binding is preferentially conserved at known cis-regulatory modules and core, independently verified binding sites. We observed the strongest binding conservation at sites that are commonly bound by Dichaete and SoxNeuro, suggesting that these sites are functionally important. Our analysis provides insights into the evolution of group B Sox function, highlighting the specific conservation of shared binding sites and suggesting alternative sources of neofunctionalisation between paralogous family members.

  9. An Abundant Evolutionarily Conserved CSB-PiggyBac Fusion Protein Expressed in Cockayne Syndrome

    Science.gov (United States)

    Newman, John C.; Bailey, Arnold D.; Fan, Hua-Ying; Pavelitz, Thomas; Weiner, Alan M.

    2008-01-01

    Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein. PMID:18369450

  10. An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome.

    Directory of Open Access Journals (Sweden)

    John C Newman

    2008-03-01

    Full Text Available Cockayne syndrome (CS is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3' terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1-5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein.

  11. Evolutionarily conserved interaction between the phosphoproteins and X proteins of bornaviruses from different vertebrate species.

    Directory of Open Access Journals (Sweden)

    Kan Fujino

    Full Text Available Bornavirus, a non-segmented, negative-strand RNA viruses, is currently classified into several genetically distinct genotypes, such as Borna disease virus (BDV and avian bornaviruses (ABVs. Recent studies revealed that bornavirus genotypes show unique sequence variability in the putative 5' untranslated region (5' UTR of X/P mRNA, a bicistronic mRNA for the X protein and phosphoprotein (P. In this study, to understand the evolutionary relationship among the bornavirus genotypes, we investigated the functional interaction between the X and P proteins of four bornavirus genotypes, BDV, ABV genotype 4 and 5 and reptile bornavirus (RBV, the putative 5' UTRs of which exhibit variation in the length. Immunofluorescence and immunoprecipitation analyses using mammalian and avian cell lines revealed that the X proteins of bornaviruses conserve the ability to facilitate the export of P from the nucleus to the cytoplasm via interaction with P. Furthermore, we showed that inter-genotypic interactions may occur between X and P among the genotypes, except for X of RBV. In addition, a BDV minireplicon assay demonstrated that the X and P proteins of ABVs, but not RBV, can affect the polymerase activity of BDV. This study demonstrates that bornaviruses may have conserved the fundamental function of a regulatory protein during their evolution, whereas RBV has evolved distinctly from the other bornavirus genotypes.

  12. Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems.

    Science.gov (United States)

    Wang, Yi-Chun; Li, Chuan

    2012-03-01

    Protein arginine methylation is catalyzed by members of the protein arginine methyltransferase (PRMT) family. In the present review, nine PRMTs identified in mammals (human) were used as templates to survey homologous PRMTs in 10 animal species with a completed sequence available in non-mammalian vertebrates, invertebrate chordates, echinoderms, arthropods, nematodes and cnidarians. We show the conservation of the most typical type I PRMT1 and type II PRMT5 in all of the species examined, the wide yet different distribution of PRMT3, 4 and 7 in non-mammalian animals, the vertebrate-restricted distribution of PRMT8 and the special reptile/avian-deficient distribution of PRMT2 and 6. We summarize the basic functions of each PRMT and focus on the current investigations of PRMTs in the non-mammalian animal models, including Xenopus, fish (zebrafish, flounder and medaka), Drosophila and Caenorhabditis elegans. Studies in the model systems not only complement the understanding of the functions of PRMTs in mammals, but also provide valuable information about their evolution, as well as their critical roles and interplays. © 2012 The Authors Journal compilation © 2012 FEBS.

  13. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins

    National Research Council Canada - National Science Library

    Michishita, Eriko; Park, Jean Y; Burneskis, Jenna M; Barrett, J Carl; Horikawa, Izumi

    2005-01-01

    .... This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1...

  14. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Cobos Everardo

    2005-01-01

    Full Text Available Abstract Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20 with three members (FAM20A, FAM20B and FAM20C in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating

  15. Evolutionarily conserved sequences on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Kelly A.; Sheehan, John B.; Stokowski, Renee P.; Chen, Xiyin; Hosseini, Roya; Cheng, Jan-Fang; Fodor, Stephen P.A.; Cox, David R.; Patil, Nila

    2001-09-01

    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes.

  16. Structural organization of essential iron-sulfur clusters in the evolutionarily highly conserved ATP-binding cassette protein ABCE1

    NARCIS (Netherlands)

    Barthelme, Dominik; Scheele, Urte; Dinkelaker, Stephanie; Janoschka, Adam; MacMillan, Fraser; Albers, Sonja-Verena; Driessen, Arnold J. M.; Stagni, Marco Salamone; Bill, Eckhard; Meyer-Klaucke, Wolfram; Schuenemann, Volker; Tampe, Robert; Schünemann, Volker

    2007-01-01

    The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular

  17. Positive selection drives rapid evolution of certain amino acid residues in an evolutionarily highly conserved interferon-inducible antiviral protein of fishes.

    Science.gov (United States)

    Padhi, Abinash

    2013-01-01

    Viperin, an evolutionarily highly conserved interferon-inducible multifunctional protein, has previously been reported to exhibit antiviral activity against a wide range of DNA and RNA viruses. Utilizing the complete nucleotide coding sequence data of fish viperin antiviral genes, and employing the maximum likelihood-based codon substitution models, the present study reports the pervasive role of positive selection in the evolution of viperin antiviral protein in fishes. The overall rate of nonsynonymous (dN) to synonymous (dS) substitutions (dN/dS) for the three functional domains of viperin (N-terminal, central domain and C-terminal) were 1.1, 0.12, and 0.24, respectively. Codon-by-codon substitution analyses have revealed that while most of the positively selected sites were located at the N-terminal amphipathic α-helix domain, few amino acid residues at the C-terminal domain were under positive selection. However, none of the sites in the central domain were under positive selection. These results indicate that, although viperin is evolutionarily highly conserved, the three functional domains experienced differential selection pressures. Taken together with the results of previous studies, the present study suggests that the persistent antagonistic nature of surrounding infectious viral pathogens might be the likely cause for such adaptive evolutionary changes of certain amino acids in fish viperin antiviral protein.

  18. An evolutionarily conserved arginine is essential for Tre1 G protein-coupled receptor function during germ cell migration in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Angela R Kamps

    Full Text Available BACKGROUND: G protein-coupled receptors (GPCRs play central roles in mediating cellular responses to environmental signals leading to changes in cell physiology and behaviors, including cell migration. Numerous clinical pathologies including metastasis, an invasive form of cell migration, have been linked to abnormal GPCR signaling. While the structures of some GPCRs have been defined, the in vivo roles of conserved amino acid residues and their relationships to receptor function are not fully understood. Trapped in endoderm 1 (Tre1 is an orphan receptor of the rhodopsin class that is necessary for primordial germ cell migration in Drosophila melanogaster embryos. In this study, we employ molecular genetic approaches to identify residues in Tre1 that are critical to its functions in germ cell migration. METHODOLOGY/PRINCIPAL FINDINGS: First, we show that the previously reported scattershot mutation is an allele of tre1. The scattershot allele results in an in-frame deletion of 8 amino acids at the junction of the third transmembrane domain and the second intracellular loop of Tre1 that dramatically impairs the function of this GPCR in germ cell migration. To further refine the molecular basis for this phenotype, we assayed the effects of single amino acid substitutions in transgenic animals and determined that the arginine within the evolutionarily conserved E/N/DRY motif is critical for receptor function in mediating germ cell migration within an intact developing embryo. CONCLUSIONS/SIGNIFICANCE: These structure-function studies of GPCR signaling in native contexts will inform future studies into the basic biology of this large and clinically important family of receptors.

  19. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein

    DEFF Research Database (Denmark)

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten

    2005-01-01

    -type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development....... In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic...... delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo....

  20. Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen.

    Science.gov (United States)

    Fellenberg, Christin; Vogt, Thomas

    2015-04-01

    The male gametophyte of higher plants appears as a solid box containing the essentials to transmit genetic material to the next generation. These consist of haploid generative cells that are required for reproduction, and an invasive vegetative cell producing the pollen tube, both mechanically protected by a rigid polymer, the pollen wall, and surrounded by a hydrophobic pollen coat. This coat mediates the direct contact to the biotic and abiotic environments. It contains a mixture of compounds required not only for fertilization but also for protection against biotic and abiotic stressors. Among its metabolites, the structural characteristics of two types of phenylpropanoids, hydroxycinnamic acid amides and flavonol glycosides, are highly conserved in Angiosperm pollen. Structural and functional aspects of these compounds will be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An evolutionarily conserved sexual signature in the primate brain.

    Directory of Open Access Journals (Sweden)

    Björn Reinius

    2008-06-01

    Full Text Available The question of a potential biological sexual signature in the human brain is a heavily disputed subject. In order to provide further insight into this issue, we used an evolutionary approach to identify genes with sex differences in brain expression level among primates. We reasoned that expression patterns important to uphold key male and female characteristics may be conserved during evolution. We selected cortex for our studies because this specific brain region is responsible for many higher behavioral functions. We compared gene expression profiles in the occipital cortex of male and female humans (Homo sapiens, a great ape and cynomolgus macaques (Macaca fascicularis, an old world monkey, two catarrhine species that show abundant morphological sexual dimorphism, as well as in common marmosets (Callithrix Jacchus, a new world monkey which are relatively sexually monomorphic. We identified hundreds of genes with sex-biased expression patterns in humans and macaques, while fewer than ten were differentially expressed between the sexes in marmosets. In primates, a general rule is that many of the morphological and behavioral sexual dimorphisms seen in polygamous species, such as macaques, are typically less pronounced in monogamous species such as the marmosets. Our observations suggest that this correlation may also be reflected in the extent of sex-biased gene expression in the brain. We identified 85 genes with common sex-biased expression, in both human and macaque and 2 genes, X inactivation-specific transcript (XIST and Heat shock factor binding protein 1 (HSBP1, that were consistently sex-biased in the female direction in human, macaque, and marmoset. These observations imply a conserved signature of sexual gene expression dimorphism in cortex of primates. Further, we found that the coding region of female-biased genes is more evolutionarily constrained compared to the coding region of both male-biased and non sex-biased brain

  2. Aligning science and policy to achieve evolutionarily enlightened conservation.

    Science.gov (United States)

    Cook, Carly N; Sgrò, Carla M

    2017-06-01

    There is increasing recognition among conservation scientists that long-term conservation outcomes could be improved through better integration of evolutionary theory into management practices. Despite concerns that the importance of key concepts emerging from evolutionary theory (i.e., evolutionary principles and processes) are not being recognized by managers, there has been little effort to determine the level of integration of evolutionary theory into conservation policy and practice. We assessed conservation policy at 3 scales (international, national, and provincial) on 3 continents to quantify the degree to which key evolutionary concepts, such as genetic diversity and gene flow, are being incorporated into conservation practice. We also evaluated the availability of clear guidance within the applied evolutionary biology literature as to how managers can change their management practices to achieve better conservation outcomes. Despite widespread recognition of the importance of maintaining genetic diversity, conservation policies provide little guidance about how this can be achieved in practice and other relevant evolutionary concepts, such as inbreeding depression, are mentioned rarely. In some cases the poor integration of evolutionary concepts into management reflects a lack of decision-support tools in the literature. Where these tools are available, such as risk-assessment frameworks, they are not being adopted by conservation policy makers, suggesting that the availability of a strong evidence base is not the only barrier to evolutionarily enlightened management. We believe there is a clear need for more engagement by evolutionary biologists with policy makers to develop practical guidelines that will help managers make changes to conservation practice. There is also an urgent need for more research to better understand the barriers to and opportunities for incorporating evolutionary theory into conservation practice. © 2016 Society for Conservation

  3. Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans.

    Science.gov (United States)

    Van Sinay, Elien; Mirabeau, Olivier; Depuydt, Geert; Van Hiel, Matthias Boris; Peymen, Katleen; Watteyne, Jan; Zels, Sven; Schoofs, Liliane; Beets, Isabel

    2017-05-16

    In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in Caenorhabditis elegans that belongs to a bilaterian family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, we show that TRH-like neuropeptides, through the activation of their receptor TRHR-1, promote growth in Celegans TRH-like peptides from pharyngeal motor neurons are required for normal body size, and knockdown of their receptor in pharyngeal muscle cells reduces growth. Mutants deficient for TRH signaling have no defects in pharyngeal pumping or isthmus peristalsis rates, but their growth defect depends on the bacterial diet. In addition to the decrease in growth, trh-1 mutants have a reduced number of offspring. Our study suggests that TRH is an evolutionarily ancient neuropeptide, having its origin before the divergence of protostomes and deuterostomes, and may ancestrally have been involved in the control of postembryonic growth and reproduction.

  4. Linkage disequilibrium of evolutionarily conserved regions in the human genome

    Directory of Open Access Journals (Sweden)

    Johnson Todd A

    2006-12-01

    Full Text Available Abstract Background The strong linkage disequilibrium (LD recently found in genic or exonic regions of the human genome demonstrated that LD can be increased by evolutionary mechanisms that select for functionally important loci. This suggests that LD might be stronger in regions conserved among species than in non-conserved regions, since regions exposed to natural selection tend to be conserved. To assess this hypothesis, we used genome-wide polymorphism data from the HapMap project and investigated LD within DNA sequences conserved between the human and mouse genomes. Results Unexpectedly, we observed that LD was significantly weaker in conserved regions than in non-conserved regions. To investigate why, we examined sequence features that may distort the relationship between LD and conserved regions. We found that interspersed repeats, and not other sequence features, were associated with the weak LD tendency in conserved regions. To appropriately understand the relationship between LD and conserved regions, we removed the effect of repetitive elements and found that the high degree of sequence conservation was strongly associated with strong LD in coding regions but not with that in non-coding regions. Conclusion Our work demonstrates that the degree of sequence conservation does not simply increase LD as predicted by the hypothesis. Rather, it implies that purifying selection changes the polymorphic patterns of coding sequences but has little influence on the patterns of functional units such as regulatory elements present in non-coding regions, since the former are generally restricted by the constraint of maintaining a functional protein product across multiple exons while the latter may exist more as individually isolated units.

  5. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis

    DEFF Research Database (Denmark)

    Schneider, Anja; Steinberger, Iris; Herdean, Andrei

    2016-01-01

    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid...

  6. C13C4.5/Spinster, an evolutionarily conserved protein that regulates fertility in C. elegans through a lysosome-mediated lipid metabolism process.

    Science.gov (United States)

    Han, Mei; Chang, Hao; Zhang, Peng; Chen, Tao; Zhao, Yanhua; Zhang, Yongdeng; Liu, Pingsheng; Xu, Tao; Xu, Pingyong

    2013-05-01

    Lipid droplets, which are conserved across almost all species, are cytoplasmic organelles used to store neutral lipids. Identification of lipid droplet regulators will be conducive to resolving obesity and other fat-associated diseases. In this paper, we selected 11 candidates that might be associated with lipid metabolism in Caenorhabditis elegans. Using a BODIPY 493/503-based flow cytometry screen, 6 negative and 3 positive regulators of fat content were identified. We selected one negative regulator of lipid content, C13C4.5, for future study. C13C4.5 was mainly expressed in the worm intestine. We found that this gene was important for maintaining the metabolism of lipid droplets. Biochemical results revealed that 50% of triacylglycerol (TAG) was lost in C13C4.5 knockout worms. Stimulated Raman scattering (SRS) signals in C13C4.5 mutants showed only 49.6% of the fat content in the proximal intestinal region and 86.3% in the distal intestinal region compared with wild type animals. The mean values of lipid droplet size and intensity in C13C4.5 knockout animals were found to be significantly decreased compared with those in wild type worms. The LMP-1-labeled membrane structures in worm intestines were also enlarged in C13C4.5 mutant animals. Finally, fertility defects were found in C13C4.5(ok2087) mutants. Taken together, these results indicate that C13C4.5 may regulate the fertility of C. elegans by changing the size and fat content of lipid droplets by interfering with lysosomal morphology and function.

  7. Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis

    Science.gov (United States)

    Tang, Ming; Wang, Mingjie; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.; Huang, Chuan-Hsiang

    2014-10-01

    Numerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signalling activity is suppressed towards the low side in a gradient or following removal of uniform chemoattractant. Second, signalling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein-independent inhibitor, as stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis.

  8. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes

    DEFF Research Database (Denmark)

    Siepel, Adam; Bejerano, Gill; Pedersen, Jakob Skou

    2005-01-01

    We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three spe...... for RNA secondary structure....

  9. Earthworms and Humans in Vitro: Characterizing Evolutionarily Conserved Stress and Immune Responses to Silver Nanoparticles

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Engelmann, Péter; Foldbjerg, Rasmus

    2012-01-01

    on the conserved biological processes, and provide the first in vitro analysis of molecular and cellular toxicity mechanisms in the earthworm Eisenia fetida exposed to AgNPs (83 ± 22 nm). While we observed a clear difference in cytotoxicity of dissolved silver salt on earthworm coelomocytes and human cells (THP-1...... in the coelomocytes and THP-1 cells. Our findings provide mechanistic clues on cellular innate immunity toward AgNPs that is likely to be evolutionarily conserved across the animal kingdom....

  10. An Evolutionarily Conserved Pathway Essential for Orsay Virus Infection of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Hongbing Jiang

    2017-09-01

    Full Text Available Many fundamental biological discoveries have been made in Caenorhabditis elegans. The discovery of Orsay virus has enabled studies of host-virus interactions in this model organism. To identify host factors critical for Orsay virus infection, we designed a forward genetic screen that utilizes a virally induced green fluorescent protein (GFP reporter. Following chemical mutagenesis, two Viro (virus induced reporter off mutants that failed to express GFP were mapped to sid-3, a nonreceptor tyrosine kinase, and B0280.13 (renamed viro-2, an ortholog of human Wiskott-Aldrich syndrome protein (WASP. Both mutants yielded Orsay virus RNA levels comparable to that of the residual input virus, suggesting that they are not permissive for Orsay virus replication. In addition, we demonstrated that both genes affect an early prereplication stage of Orsay virus infection. Furthermore, it is known that the human ortholog of SID-3, activated CDC42-associated kinase (ACK1/TNK2, is capable of phosphorylating human WASP, suggesting that VIRO-2 may be a substrate for SID-3 in C. elegans. A targeted RNA interference (RNAi knockdown screen further identified the C. elegans gene nck-1, which has a human ortholog that interacts with TNK2 and WASP, as required for Orsay virus infection. Thus, genetic screening in C. elegans identified critical roles in virus infection for evolutionarily conserved genes in a known human pathway.

  11. The evolutionarily conserved E3 ubiquitin ligase AtCHIP contributes to plant immunity

    Directory of Open Access Journals (Sweden)

    Xin eLi

    2016-03-01

    Full Text Available Plants possess a sophisticated immune system to recognize and respond to microbial threats in their environment. The level of immune signaling must be tightly regulated so that immune responses can be quickly activated in the presence of pathogens, while avoiding autoimmunity. HSP90s, along with their diverse array of co-chaperones, forms chaperone complexes that have been shown to play both positive and negative roles in regulating the accumulation of immune receptors and regulators. In this study, we examined the role of AtCHIP, an evolutionarily conserved E3 ligase that was known to interact with chaperones including HSP90s in multicellular organisms including fruit fly, C. elegans, plants and human. Atchip knockout mutants display enhanced disease susceptibility to a virulent oomycete pathogen, and overexpression of AtCHIP causes enhanced disease resistance at low temperature. Although CHIP was reported to target HSP90 for ubiquitination and degradation, accumulation of HSP90.3 was not affected in Atchip plants. In addition, protein accumulation of nucleotide-binding, leucine-rich repeat domain immune receptor (NLR SNC1 is not altered in Atchip mutant. Thus, while AtCHIP plays a role in immunity, it does not seem to regulate the turnover of HSP90 or SNC1. Further investigation is needed in order to determine the exact mechanism behind AtCHIP’s role in regulating plant immune responses.

  12. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.

    Science.gov (United States)

    Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J

    2016-08-19

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    Science.gov (United States)

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  14. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components

    Science.gov (United States)

    El-Shami, Mahmoud; Pontier, Dominique; Lahmy, Sylvie; Braun, Laurence; Picart, Claire; Vega, Danielle; Hakimi, Mohamed-Ali; Jacobsen, Steven E.; Cooke, Richard; Lagrange, Thierry

    2007-01-01

    Two forms of RNA Polymerase IV (PolIVa/PolIVb) have been implicated in RNA-directed DNA methylation (RdDM) in Arabidopsis. Prevailing models imply a distinct function for PolIVb by association of Argonaute4 (AGO4) with the C-terminal domain (CTD) of its largest subunit NRPD1b. Here we show that the extended CTD of NRPD1b-type proteins exhibits conserved Argonaute-binding capacity through a WG/GW-rich region that functionally distinguishes Pol IVb from Pol IVa, and that is essential for RdDM. Site-specific mutagenesis and domain-swapping experiments between AtNRPD1b and the human protein GW182 demonstrated that reiterated WG/GW motifs form evolutionarily and functionally conserved Argonaute-binding platforms in RNA interference (RNAi)-related components. PMID:17938239

  15. [Amphioxus ortholog of ECSIT, an evolutionarily conserved adaptor in the Toll and BMP signaling pathways].

    Science.gov (United States)

    Lin, Y H; Zhang, W; Li, J W; Zhang, H W; Chen, D Y

    2017-01-01

    In vertebrates, evolutionarily conserved signaling intermediate in the Toll pathway (ECSIT) interacts with the TNF-receptor associated factor 6 (TRAF6) to regulate the processing of MEKK1, activate NF-κB, and also control BMP target genes. However, the role of ECSIT in invertebrates remains largely unexplored. We performed comparative investigations of the expression, gene structure, and phylogeny of ECSIT, Toll-like receptor (TLR), and Smad4 in the cephalochordate Branchiostoma belcheri. Phylogenetic analysis indicated that, in amphioxus, ECSIT, TLR, and Smad4 form independent clusters at the base of Chordate   clusters. Interestingly, overall gene structures were comparable to those in vertebrate orthologs. Transcripts of AmphiECSIT were detectable at the mid-neural stage, and continued to be expressed in the epithelium of the pharyngeal region at later stages. In adult animals, strong expression was observed in the nerve cord, endostyle, epithelial cells of the gut and wheel organ, genital membrane of the testis, and coelom and lymphoid cavities, what is highly similar to AmphiTLR and AmphiSmad4 expression patterns during development and in adult organisms. Our data suggests that ECSIT is evolutionarily conserved. Its amphioxus ortholog functions during embryonic development and as part of the innate immune system and may be involved in TLR/BMP signaling.

  16. Evolutionarily Conserved Repulsive Guidance Role of Slit in the Silkworm Bombyx mori

    Science.gov (United States)

    Liu, Chun; Cui, Wei-Zheng; Mu, Zhi-Mei; Zhao, Xiao; Liu, Qing-Xin

    2014-01-01

    Axon guidance molecule Slit is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the function of Slit in the silkworm Bombyx mori was unknown. Here we showed that the structure of Bombyx mori Slit (BmSlit) was different from that in most other species in its C-terminal sequence. BmSlit was localized in the midline glial cell, the neuropil, the tendon cell, the muscle and the silk gland and colocalized with BmRobo1 in the neuropil, the muscle and the silk gland. Knock-down of Bmslit by RNA interference (RNAi) resulted in abnormal development of axons and muscles. Our results suggest that BmSlit has a repulsive role in axon guidance and muscle migration. Moreover, the localization of BmSlit in the silk gland argues for its important function in the development of the silk gland. PMID:25285792

  17. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target

    Science.gov (United States)

    Huang, Xi; He, Ye; Dubuc, Adrian M.; Hashizume, Rintaro; Zhang, Wei; Reimand, Jüri; Yang, Huanghe; Wang, Tongfei A.; Stehbens, Samantha J.; Younger, Susan; Barshow, Suzanne; Zhu, Sijun; Cooper, Michael K.; Peacock, John; Ramaswamy, Vijay; Garzia, Livia; Wu, Xiaochong; Remke, Marc; Forester, Craig M.; Kim, Charles C.; Weiss, William A.; James, C. David; Shuman, Marc A.; Bader, Gary D.; Mueller, Sabine; Taylor, Michael D.; Jan, Yuh Nung; Jan, Lily Yeh

    2015-01-01

    Over 20% of the drugs for treating human diseases target ion channels, however, no cancer drug approved by the U.S. Food and Drug Administration (FDA) is intended to target an ion channel. Here, we demonstrate the evolutionarily conserved function of EAG2 potassium channel in promoting brain tumor growth and metastasis, delineate downstream pathways and uncover a mechanism for different potassium channels to functionally corporate and regulate mitotic cell volume and tumor progression. We show that EAG2 potassium channel is enriched at the trailing edge of migrating MB cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identify the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings thus illustrate the potential of targeting ion channels in cancer treatment. PMID:26258683

  18. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2 predicts novel potential therapeutic epitopes.

    Directory of Open Access Journals (Sweden)

    Xiaohong Deng

    Full Text Available Overexpression of human epidermal growth factor receptor 2 (HER2 is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2 contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available.

  19. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2) predicts novel potential therapeutic epitopes.

    Science.gov (United States)

    Deng, Xiaohong; Zheng, Xuxu; Yang, Huanming; Moreira, José Manuel Afonso; Brünner, Nils; Christensen, Henrik

    2014-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2) contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available.

  20. Ecological interactions are evolutionarily conserved across the entire tree of life.

    Science.gov (United States)

    Gómez, José M; Verdú, Miguel; Perfectti, Francisco

    2010-06-17

    Ecological interactions are crucial to understanding both the ecology and the evolution of organisms. Because the phenotypic traits regulating species interactions are largely a legacy of their ancestors, it is widely assumed that ecological interactions are phylogenetically conserved, with closely related species interacting with similar partners. However, the existing empirical evidence is inadequate to appropriately evaluate the hypothesis of phylogenetic conservatism in ecological interactions, because it is both ecologically and taxonomically biased. In fact, most studies on the evolution of ecological interactions have focused on specialized organisms, such as some parasites or insect herbivores, belonging to a limited subset of the overall tree of life. Here we study the evolution of host use in a large and diverse group of interactions comprising both specialist and generalist acellular, unicellular and multicellular organisms. We show that, as previously found for specialized interactions, generalized interactions can be evolutionarily conserved. Significant phylogenetic conservatism of interaction patterns was equally likely to occur in symbiotic and non-symbiotic interactions, as well as in mutualistic and antagonistic interactions. Host-use differentiation among species was higher in phylogenetically conserved clades, irrespective of their generalization degree and taxonomic position within the tree of life. Our findings strongly suggest a shared pattern in the organization of biological systems through evolutionary time, mediated by marked conservatism of ecological interactions among taxa.

  1. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2β in development.

    Directory of Open Access Journals (Sweden)

    Sushma Grellscheid

    2011-12-01

    Full Text Available Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10 is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10(fl/fl; Nestin-Cre(tg/+. This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein.

  2. Specific expression of LATERAL SUPPRESSOR is controlled by an evolutionarily conserved 3' enhancer.

    Science.gov (United States)

    Raatz, Bodo; Eicker, Andrea; Schmitz, Gregor; Fuss, Elisabeth; Müller, Dörte; Rossmann, Susanne; Theres, Klaus

    2011-11-01

    Aerial plant architecture is largely based on the activity of axillary meristems (AMs), initiated in the axils of leaves. The Arabidopsis gene LATERAL SUPPRESSOR (LAS), which is expressed in well-defined domains at the adaxial boundary of leaf primordia, is a key regulator of AM formation. The precise definition of organ boundaries is an essential step for the formation of new organs in general and for meristem initiation; however, mechanisms leading to these specific patterns are not well understood. To increase understanding of how the highly specific transcript accumulation in organ boundary regions is established, we investigated the LAS promoter. Analysis of deletion constructs revealed that an essential enhancer necessary for complementation is situated about 3.2 kb downstream of the LAS open reading frame. This enhancer is sufficient to confer promoter specificity as upstream sequences in LAS could be replaced by non-specific promoters, such as the 35S minimal promoter. Further promoter swapping experiments using the PISTILLATA or the full 35S promoter demonstrated that the LAS 3' enhancer also has suppressor functions, largely overwriting the activity of different 5' promoters. Phylogenetic analyses suggest that LAS function and regulation are evolutionarily highly conserved. Homologous elements in downstream regulatory sequences were found in all LAS orthologs, including grasses. Transcomplementation experiments demonstrated the functional conservation of non-coding sequences between Solanum lycopersicum (tomato) and Arabidopsis. In summary, our results show that a highly conserved enhancer/suppressor element is the main regulatory module conferring the boundary-specific expression of LAS. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  3. FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells.

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2006-03-01

    WNT, FGF and Hedgehog signaling pathways network together during embryogenesis, tissue regeneration, and carcinogenesis. FGF16, FGF18, and FGF20 genes are targets of WNT-mediated TCF/LEF-beta-catenin-BCL9/BCL9L-PYGO transcriptional complex. SPROUTY (SPRY) and SPRED family genes encode inhibitors for receptor tyrosine kinase signaling cascades, such as those of FGF receptor family members and EGF receptor family members. Here, transcriptional regulation of SPRY1, SPRY2, SPRY3, SPRY4, SPRED1, SPRED2, and SPRED3 genes by WNT/beta-catenin signaling cascade was investigated by using bioinformatics and human intelligence (humint). Because double TCF/LEF-binding sites were identified within the 5'-promoter region of human SPRY4 gene, comparative genomics analyses on SPRY4 orthologs were further performed. SPRY4-FGF1 locus at human chromosome 5q31.3 and FGF2-NUDT6-SPATA5-SPRY1 locus at human chromosome 4q27-q28.1 were paralogous regions within the human genome. Chimpanzee SPRY4 gene was identified within NW_107083.1 genome sequence. Human, chimpanzee, rat and mouse SPRY4 orthologs, consisting of three exons, were well conserved. SPRY4 gene was identified as the evolutionarily conserved target of WNT/beta-catenin signaling pathway based on the conservation of double TCF/LEF-binding sites within 5'-promoter region of mammalian SPRY4 orthologs. Human SPRY4 mRNA was expressed in embryonic stem (ES) cells, brain, pancreatic islet, colon cancer, head and neck tumor, melanoma, and pancreatic cancer. WNT signaling activation in progenitor cells leads to the growth regulation of progenitor cells themselves through SPRY4 induction, and also to the growth stimulation of proliferating cells through FGF secretion. Epigenetic silencing and loss-of-function mutations of SPRY4 gene in progenitor cells could lead to carcinogenesis. SPRY4 is the pharmacogenomics target in the fields of oncology and regenerative medicine.

  4. Evolutionarily conserved prefrontal-amygdalar dysfunction in early-life anxiety.

    Science.gov (United States)

    Birn, R M; Shackman, A J; Oler, J A; Williams, L E; McFarlin, D R; Rogers, G M; Shelton, S E; Alexander, A L; Pine, D S; Slattery, M J; Davidson, R J; Fox, A S; Kalin, N H

    2014-08-01

    Some individuals are endowed with a biology that renders them more reactive to novelty and potential threat. When extreme, this anxious temperament (AT) confers elevated risk for the development of anxiety, depression and substance abuse. These disorders are highly prevalent, debilitating and can be challenging to treat. The high-risk AT phenotype is expressed similarly in children and young monkeys and mechanistic work demonstrates that the central (Ce) nucleus of the amygdala is an important substrate. Although it is widely believed that the flow of information across the structural network connecting the Ce nucleus to other brain regions underlies primates' capacity for flexibly regulating anxiety, the functional architecture of this network has remained poorly understood. Here we used functional magnetic resonance imaging (fMRI) in anesthetized young monkeys and quietly resting children with anxiety disorders to identify an evolutionarily conserved pattern of functional connectivity relevant to early-life anxiety. Across primate species and levels of awareness, reduced functional connectivity between the dorsolateral prefrontal cortex, a region thought to play a central role in the control of cognition and emotion, and the Ce nucleus was associated with increased anxiety assessed outside the scanner. Importantly, high-resolution 18-fluorodeoxyglucose positron emission tomography imaging provided evidence that elevated Ce nucleus metabolism statistically mediates the association between prefrontal-amygdalar connectivity and elevated anxiety. These results provide new clues about the brain network underlying extreme early-life anxiety and set the stage for mechanistic work aimed at developing improved interventions for pediatric anxiety.

  5. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins

    Science.gov (United States)

    Strnad, Pavel; Usachov, Valentyn; Debes, Cedric; Gräter, Frauke; Parry, David A. D.; Omary, M. Bishr

    2011-01-01

    Keratins (Ks) consist of central α-helical rod domains that are flanked by non-α-helical head and tail domains. The cellular abundance of keratins, coupled with their selective cell expression patterns, suggests that they diversified to fulfill tissue-specific functions although the primary structure differences between them have not been comprehensively compared. We analyzed keratin sequences from many species: K1, K2, K5, K9, K10, K14 were studied as representatives of epidermal keratins, and compared with K7, K8, K18, K19, K20 and K31, K35, K81, K85, K86, which represent simple-type (single-layered or glandular) epithelial and hair keratins, respectively. We show that keratin domains have striking differences in their amino acids. There are many cysteines in hair keratins but only a small number in epidermal keratins and rare or none in simple-type keratins. The heads and/or tails of epidermal keratins are glycine and phenylalanine rich but alanine poor, whereas parallel domains of hair keratins are abundant in prolines, and those of simple-type epithelial keratins are enriched in acidic and/or basic residues. The observed differences between simple-type, epidermal and hair keratins are highly conserved throughout evolution. Cysteines and histidines, which are infrequent keratin amino acids, are involved in de novo mutations that are markedly overrepresented in keratins. Hence, keratins have evolutionarily conserved and domain-selectively enriched amino acids including glycine and phenylalanine (epidermal), cysteine and proline (hair), and basic and acidic (simple-type epithelial), which reflect unique functions related to structural flexibility, rigidity and solubility, respectively. Our findings also support the importance of human keratin ‘mutation hotspot’ residues and their wild-type counterparts. PMID:22215855

  6. Unifying the genomics-based classes of cancer fusion gene partners: large cancer fusion genes are evolutionarily conserved.

    Science.gov (United States)

    Pava, Libia M; Morton, Daniel T; Chen, Ren; Blanck, George

    2012-11-01

    Genes that fuse to cause cancer have been studied to determine molecular bases for proliferation, to develop diagnostic tools, and as targets for drugs. To facilitate identification of additional, cancer fusion genes, following observation of a chromosomal translocation, we have characterized the genomic features of the fusion gene partners. Previous work indicated that cancer fusion gene partners, are either large or evolutionarily conserved in comparison to the neighboring genes in the region of a chromosomal translocation. These results raised the question of whether large cancer fusion gene partners were also evolutionarily conserved. We developed two methods for quantifying evolutionary conservation values, allowing the conclusion that both large and small cancer fusion gene partners are more evolutionarily conserved than their neighbors. Additionally, we determined that cancer fusion gene partners have more 3' untranslated region secondary structures than do their neighbors. Coupled with previous algorithms, with or without transcriptome approaches, we expect these results to assist in the rapid and efficient use of chromosomal translocations to identify cancer fusion genes. The above parameters for any gene of interest can be accessed at www.cancerfusiongenes.com.

  7. Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders.

    Science.gov (United States)

    Kelly, Sean P; Sensenig, Andrew; Lorentz, Kimberly A; Blackledge, Todd A

    2011-09-01

    Orb-weaving spiders depend upon their two-dimensional silk traps to stop insects in mid flight. While the silks used to construct orb webs must be extremely tough to absorb the tremendous kinetic energy of insect prey, webs must also minimize the return of that energy to prey to prevent insects from bouncing out of oscillating webs. We therefore predict that the damping capacity of major ampullate spider silk, which forms the supporting frames and radial threads of orb webs, should be evolutionarily conserved among orb-weaving spiders. We test this prediction by comparing silk from six diverse species of orb spiders. Silk was taken directly from the radii of orb webs and a Nano Bionix test system was used either to sequentially extend the silk to 25% strain in 5% increments while relaxing it fully between each cycle, or to pull virgin silk samples to 15% strain. Damping capacity was then calculated as the percent difference in loading and unloading energies. Damping capacity increased after yield for all species and typically ranged from 40 to 50% within each cycle for sequentially pulled silk and from 50 to 70% for virgin samples. Lower damping at smaller strains may allow orb webs to withstand minor perturbations from wind and small prey while still retaining the ability to capture large insects. The similarity in damping capacity of silk from the radii spun by diverse spiders highlights the importance of energy absorption by silk for orb-weaving spiders. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression.

    Science.gov (United States)

    Ucar, Olga; Tykocinski, Lars-Oliver; Dooley, James; Liston, Adrian; Kyewski, Bruno

    2013-07-01

    The establishment and maintenance of central tolerance depends to a large extent on the ability of medullary thymic epithelial cells to express a variety of tissue-restricted antigens, the so-called promiscuous gene expression (pGE). Autoimmune regulator (Aire) is to date the best characterised transcriptional regulator known to at least partially coordinate pGE. There is accruing evidence that the expression of Aire-dependent and -independent genes is modulated by higher order chromatin configuration, epigenetic modifications and post-transcriptional control. Given the involvement of microRNAs (miRNAs) as potent post-transcriptional modulators of gene expression, we investigated their role in the regulation of pGE in purified mouse and human thymic epithelial cells (TECs). Microarray profiling of TEC subpopulations revealed evolutionarily conserved cell type and differentiation-specific miRNA signatures with a subset of miRNAs being significantly upregulated during terminal medullary thymic epithelial cell differentiation. The differential regulation of this subset of miRNAs was correlated with Aire expression and some of these miRNAs were misexpressed in the Aire knockout thymus. In turn, the specific absence of miRNAs in TECs resulted in a progressive reduction of Aire expression and pGE, affecting both Aire-dependent and -independent genes. In contrast, the absence of miR-29a only affected the Aire-dependent gene pool. These findings reveal a mutual interdependence of miRNA and Aire. © 2013 The Authors. European Journal of Immunology published byWiley-VCH Verlag GmbH & Co. KGaA Weinheim.

  9. H3K23me1 is an evolutionarily conserved histone modification associated with CG DNA methylation in Arabidopsis.

    Science.gov (United States)

    Trejo-Arellano, Minerva S; Mahrez, Walid; Nakamura, Miyuki; Moreno-Romero, Jordi; Nanni, Paolo; Köhler, Claudia; Hennig, Lars

    2017-04-01

    Amino-terminal tails of histones are targets for diverse post-translational modifications whose combinatorial action may constitute a code that will be read and interpreted by cellular proteins to define particular transcriptional states. Here, we describe monomethylation of histone H3 lysine 23 (H3K23me1) as a histone modification not previously described in plants. H3K23me1 is an evolutionarily conserved mark in diverse species of flowering plants. Chromatin immunoprecipitation followed by high-throughput sequencing in Arabidopsis thaliana showed that H3K23me1 was highly enriched in pericentromeric regions and depleted from chromosome arms. In transposable elements it co-localized with CG, CHG and CHH DNA methylation as well as with the heterochromatic histone mark H3K9me2. Transposable elements are often rich in H3K23me1 but different families vary in their enrichment: LTR-Gypsy elements are most enriched and RC/Helitron elements are least enriched. The histone methyltransferase KRYPTONITE and normal DNA methylation were required for normal levels of H3K23me1 on transposable elements. Immunostaining experiments confirmed the pericentromeric localization and also showed mild enrichment in less condensed regions. Accordingly, gene bodies of protein-coding genes had intermediate H3K23me1 levels, which coexisted with CG DNA methylation. Enrichment of H3K23me1 along gene bodies did not correlate with transcription levels. Together, this work establishes H3K23me1 as a so far undescribed component of the plant histone code. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Alternative promoter usage generates multiple evolutionarily conserved isoforms of Drosophila DOA kinase.

    Science.gov (United States)

    Kpebe, Arlette; Rabinow, Leonard

    2008-03-01

    The unique LAMMER (or Clk) protein kinase of Drosophila is encoded at the Doa locus. To better understand the pleiotropic effects of Doa mutations, we describe the structure and expression of the multiple RNA and protein products of the locus, as well as their evolutionary conservation among Drosophila. The gene produces at least six different protein isoforms, primarily through alternative promoter usage, generating kinases with virtually identical catalytic domains but variable N-terminal noncatalytic domains. The single known alternative splicing event generates a kinase with the insertion of six additional amino-acids in the catalytic domain. Two independent predicted genes nested within Doa introns actually encode additional alternative N-termini of the locus. An alternative polyadenylation site utilized exclusively during early embryogenesis generates a transcript with a short half-life, apparently to ensure a "burst" of kinase expression at the onset of development. Ecdysone induction of Doa transcripts affects all isoforms during pupariation. Finally, extensive conservation of amino-acid sequences of both the catalytic and N-terminal noncatalytic exons observed in alignments between D. melanogaster exons and the genome sequences of 11 other Drosophila species suggest that the multiple isoforms serve important and nonredundant functions. (c) 2008 Wiley-Liss, Inc.

  11. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation

    Directory of Open Access Journals (Sweden)

    Susanne Cranz-Mileva

    2015-08-01

    Full Text Available Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments.

  12. An anomalous type IV secretion system in Rickettsia is evolutionarily conserved.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    Full Text Available BACKGROUND: Bacterial type IV secretion systems (T4SSs comprise a diverse transporter family functioning in conjugation, competence, and effector molecule (DNA and/or protein translocation. Thirteen genome sequences from Rickettsia, obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the Agrobacterium tumefaciens archetype (vir. However, the Rickettsia T4SS has not been functionally characterized for its role in symbiosis/virulence, and none of its substrates are known. RESULTS: Superimposition of T4SS structural/functional information over previously identified Rickettsia components implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/VirB9 to ComB7/ComB9 proteins of epsilon-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host. Modern modifications of these systems likely reflect diversification with various eukaryotic host cells. CONCLUSION: We present the rvh (Rickettsiales vir homolog T4SS, an evolutionary conserved transporter with an unknown role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also identifies the Legionella lvh T4SS as a suitable genetic model.

  13. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences.

    LENUS (Irish Health Repository)

    Ivanov, Ivaylo P

    2011-05-01

    In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5\\' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5\\' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.

  14. Genes that contribute to cancer fusion genes are large and evolutionarily conserved.

    Science.gov (United States)

    Narsing, Swetha; Jelsovsky, Zhihong; Mbah, Alfred; Blanck, George

    2009-06-01

    Numerous cancer fusion genes have been identified and studied, and in some cases, therapy or diagnostic techniques have been designed that are specific to the fusion protein encoded by the fusion gene. There has been little progress, however, in understanding the general features of cancer fusion genes in a way that could provide the foundation for an algorithm for predicting the occurrence of a fusion gene once the chromosomal translocation points have been identified by karyotype analyses. In this study, we used publicly available data sets to characterize 59 cancer fusion genes. The results indicate that all but 17% of the genes involved in fusion events are either relatively large, compared to neighboring genes, or are highly conserved in evolution. These results support a basis for designing algorithms that could have a high degree of predictive value in identifying fusion genes once conventional microscopic analyses have identified the chromosomal breakpoints.

  15. Most m6A RNA modifications in protein-coding regions are evolutionarily unconserved and likely nonfunctional.

    Science.gov (United States)

    Liu, Zhen; Zhang, Jianzhi

    2017-12-08

    Methylation of the adenosine base at the nitrogen-6 position (m6A) is the most prevalent internal posttranscriptional modification of mRNAs in many eukaryotes. Despite the rapid progress in the transcriptome-wide mapping of m6As, identification of proteins responsible for writing, reading, and erasing m6As, and elucidation of m6A functions in splicing, RNA stability, translation, and other processes, it is unknown whether most observed m6A modifications are functional. To address this question, we respectively analyze the evolutionary conservation of yeast and human m6As in protein-coding regions. Relative to comparable unmethylated As, m6As are overall no more conserved in yeasts and only slightly more conserved in mammals. Furthermore, yeast m6As and comparable unmethylated As have no significant difference in single nucleotide polymorphism (SNP) density or SNP site frequency spectrum. The same is true in human. The methylation status of a gene, not necessarily the specific sites methylated in the gene, is subject to purifying selection for no more than ∼20% of m6A-modified genes. These observations suggest that most m6A modifications in protein-coding regions are nonfunctional and nonadaptive, probably resulting from off-target activities of m6A methyltransferases. In addition, our reanalysis invalidates the recent claim of positive selection for newly acquired m6A modifications in human evolution. Regarding the small number of evolutionarily conserved m6As, evidence suggests that a large proportion of them are likely functional; they should be prioritized in future functional characterizations of m6As. Together, these findings have important implications for understanding the biological significance of m6A and other posttranscriptional modifications. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs

    Directory of Open Access Journals (Sweden)

    Hutchison Clyde A

    2006-01-01

    Full Text Available Abstract Background Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs. We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. Results "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency. We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Conclusion Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  17. An evolutionarily conserved enhancer regulates Bmp4 expression in developing incisor and limb bud.

    Directory of Open Access Journals (Sweden)

    Dolrudee Jumlongras

    Full Text Available To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs. These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium.

  18. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense

    Directory of Open Access Journals (Sweden)

    Mehran Najibi

    2016-05-01

    Full Text Available The mechanisms that tightly control the transcription of host defense genes have not been fully elucidated. We previously identified TFEB as a transcription factor important for host defense, but the mechanisms that regulate TFEB during infection remained unknown. Here, we used C. elegans to discover a pathway that activates TFEB during infection. Gene dkf-1, which encodes a homolog of protein kinase D (PKD, was required for TFEB activation in nematodes infected with Staphylococcus aureus. Conversely, pharmacological activation of PKD was sufficient to activate TFEB. Furthermore, phospholipase C (PLC gene plc-1 was also required for TFEB activation, downstream of Gαq homolog egl-30 and upstream of dkf-1. Using reverse and chemical genetics, we discovered a similar PLC-PKD-TFEB axis in Salmonella-infected mouse macrophages. In addition, PKCα was required in macrophages. These observations reveal a previously unknown host defense signaling pathway, which has been conserved across one billion years of evolution.

  19. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense.

    Science.gov (United States)

    Najibi, Mehran; Labed, Sid Ahmed; Visvikis, Orane; Irazoqui, Javier Elbio

    2016-05-24

    The mechanisms that tightly control the transcription of host defense genes have not been fully elucidated. We previously identified TFEB as a transcription factor important for host defense, but the mechanisms that regulate TFEB during infection remained unknown. Here, we used C. elegans to discover a pathway that activates TFEB during infection. Gene dkf-1, which encodes a homolog of protein kinase D (PKD), was required for TFEB activation in nematodes infected with Staphylococcus aureus. Conversely, pharmacological activation of PKD was sufficient to activate TFEB. Furthermore, phospholipase C (PLC) gene plc-1 was also required for TFEB activation, downstream of Gαq homolog egl-30 and upstream of dkf-1. Using reverse and chemical genetics, we discovered a similar PLC-PKD-TFEB axis in Salmonella-infected mouse macrophages. In addition, PKCα was required in macrophages. These observations reveal a previously unknown host defense signaling pathway, which has been conserved across one billion years of evolution. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

    2006-06-15

    A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

  1. Fourier Analysis of Conservation Patterns in Protein Secondary Structure.

    Science.gov (United States)

    Palaniappan, Ashok; Jakobsson, Eric

    2017-01-01

    Residue conservation is a common observation in alignments of protein families, underscoring positions important in protein structure and function. Though many methods measure the level of conservation of particular residue positions, currently we do not have a way to study spatial oscillations occurring in protein conservation patterns. It is known that hydrophobicity shows spatial oscillations in proteins, which is characterized by computing the hydrophobic moment of the protein domains. Here, we advance the study of moments of conservation of protein families to know whether there might exist spatial asymmetry in the conservation patterns of regular secondary structures. Analogous to the hydrophobic moment, the conservation moment is defined as the modulus of the Fourier transform of the conservation function of an alignment of related protein, where the conservation function is the vector of conservation values at each column of the alignment. The profile of the conservation moment is useful in ascertaining any periodicity of conservation, which might correlate with the period of the secondary structure. To demonstrate the concept, conservation in the family of potassium ion channel proteins was analyzed using moments. It was shown that the pore helix of the potassium channel showed oscillations in the moment of conservation matching the period of the α-helix. This implied that one side of the pore helix was evolutionarily conserved in contrast to its opposite side. In addition, the method of conservation moments correctly identified the disposition of the voltage sensor of voltage-gated potassium channels to form a 310 helix in the membrane.

  2. Evolutionarily conserved transcription factor Apontic controls the G1/S progression by inducing cyclin e during eye development

    KAUST Repository

    Liu, Qingxin

    2014-06-16

    During Drosophila eye development, differentiation initiates in the posterior region of the eye disk and progresses anteriorly as a wave marked by the morphogenetic furrow (MF), which demarcates the boundary between anterior undifferentiated cells and posterior differentiated photoreceptors. However, the mechanism underlying the regulation of gene expression immediately before the onset of differentiation remains unclear. Here, we show that Apontic (Apt), which is an evolutionarily conserved transcription factor, is expressed in the differentiating cells posterior to the MF. Moreover, it directly induces the expression of cyclin E and is also required for the G1-to-S phase transition, which is known to be essential for the initiation of cell differentiation at the MF. These observations identify a pathway crucial for eye development, governed by a mechanism in which Cyclin E promotes the G1-to-S phase transition when regulated by Apt.

  3. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

  4. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    Science.gov (United States)

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.

  5. Evolutionarily conserved mammalian adenine nucleotide translocase 4 is essential for spermatogenesis.

    Science.gov (United States)

    Brower, Jeffrey V; Rodic, Nemanja; Seki, Tsugio; Jorgensen, Marda; Fliess, Naime; Yachnis, Anthony T; McCarrey, John R; Oh, S Paul; Terada, Naohiro

    2007-10-05

    The adenine nucleotide translocases (Ant) facilitate the transport of ADP and ATP by an antiport mechanism across the inner mitochondrial membrane, thus playing an essential role in cellular energy metabolism. We recently identified a novel member of the Ant family in mouse, Ant4, of which gene configuration as well as amino acid homology is well conserved among mammals. The conservation of Ant4 in mammals, along with the absence of Ant4 in nonmammalian species, suggests a unique and indispensable role for this ADP/ATP carrier in mammalian development. Of interest, in contrast to its paralog Ant2, which is encoded by the X chromosome and ubiquitously expressed in somatic cells, Ant4 is encoded by an autosome and selectively expressed in testicular germ cells. Immunohistochemical examination as well as RNA expression analysis using separated spermatogenic cell types revealed that Ant4 expression was particularly high in spermatocytes. When we generated Ant4-deficient mice by targeted disruption, a significant reduction in testicular size was observed without any other distinguishable abnormalities in the mice. Histological examination as well as stage-specific gene expression analysis in adult and neonatal testes revealed a severe reduction of spermatocytes accompanied by increased apoptosis. Subsequently, the Ant4-deficient male mice were infertile. Taken together, these data elucidated the indispensable role of Ant4 in murine spermatogenesis. Considering the unique conservation and chromosomal location of the Ant family genes in mammals, the Ant4 gene may have arisen in mammalian ancestors and been conserved in mammals to serve as the sole and essential mitochondrial ADP/ATP carrier during spermatogenesis where the sex chromosome-linked Ant2 gene is inactivated.

  6. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis

    DEFF Research Database (Denmark)

    Gyrd-Hansen, Mads; Darding, Maurice; Miasari, Maria

    2008-01-01

    in cancer and their expression level is implicated in contributing to tumorigenesis, chemoresistance, disease progression and poor patient-survival. Here, we have identified an evolutionarily conserved ubiquitin-associated (UBA) domain in IAPs, which enables them to bind to Lys 63-linked polyubiquitin. We...

  7. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function.

    Science.gov (United States)

    Liu, Lijun; Zinkgraf, Matthew; Petzold, H Earl; Beers, Eric P; Filkov, Vladimir; Groover, Andrew

    2015-01-01

    The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome. Here, we used chromatin immunoprecipitation sequencing (ChIP-seq) technology to identify ARK1 binding loci genome-wide in Populus. Computational analyses evaluated the distribution of ARK1 binding loci, the function of genes associated with bound loci, the effect of ARK1 binding on transcript levels, and evolutionary conservation of ARK1 binding loci. ARK1 binds to thousands of loci which are highly enriched proximal to the transcriptional start sites of genes of diverse functions. ARK1 target genes are significantly enriched in paralogs derived from the whole-genome salicoid duplication event. Both ARK1 and a maize (Zea mays) homolog, KNOTTED1, preferentially target evolutionarily conserved genes. However, only a small portion of ARK1 target genes are significantly differentially expressed in an ARK1 over-expression mutant. This study describes the functional characteristics and evolution of DNA binding by a transcription factor in an undomesticated tree, revealing complexities similar to those shown for transcription factors in model animal species. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.

  8. An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10

    Directory of Open Access Journals (Sweden)

    Pavan William J

    2008-10-01

    Full Text Available Abstract Background A major challenge lies in understanding the complexities of gene regulation. Mutation of the transcription factor SOX10 is associated with several human diseases. The disease phenotypes reflect the function of SOX10 in diverse tissues including the neural crest, central nervous system and otic vesicle. As expected, the SOX10 expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. SOX10 expression is highly conserved between all vertebrates characterised. Results We have combined in vivo testing of DNA fragments in zebrafish and computational comparative genomics to identify the first regulatory regions of the zebrafish sox10 gene. Both approaches converged on the 3' end of the conserved 1st intron as being critical for spatial patterning of sox10 in the embryo. Importantly, we have defined a minimal region crucial for this function. We show that this region contains numerous binding sites for transcription factors known to be essential in early neural crest induction, including Tcf/Lef, Sox and FoxD3. We show that the identity and relative position of these binding sites are conserved between zebrafish and mammals. A further region, partially required for oligodendrocyte expression, lies in the 5' region of the same intron and contains a putative CSL binding site, consistent with a role for Notch signalling in sox10 regulation. Furthermore, we show that β-catenin, Notch signalling and Sox9 can induce ectopic sox10 expression in early embryos, consistent with regulatory roles predicted from our transgenic and computational results. Conclusion We have thus identified two major sites of sox10 regulation in vertebrates and provided evidence supporting a role for at least three factors in driving sox10 expression in neural crest, otic epithelium and oligodendrocyte domains.

  9. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Directory of Open Access Journals (Sweden)

    Launey Thomas

    2011-06-01

    Full Text Available Abstract Background The interactions between PDZ (PSD-95, Dlg, ZO-1 domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C- terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V or type-II (x-x-V-x-I/V PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode. We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  10. Evolutionarily conserved roles of the dicer helicase domain in regulating RNA interference processing.

    Science.gov (United States)

    Kidwell, Mary Anne; Chan, Jessica M; Doudna, Jennifer A

    2014-10-10

    The enzyme Dicer generates 21-25 nucleotide RNAs that target specific mRNAs for silencing during RNA interference and related pathways. Although their active sites and RNA binding regions are functionally conserved, the helicase domains have distinct activities in the context of different Dicer enzymes. To examine the evolutionary origins of Dicer helicase functions, we investigated two related Dicer enzymes from the thermophilic fungus Sporotrichum thermophile. RNA cleavage assays showed that S. thermophile Dicer-1 (StDicer-1) can process hairpin precursor microRNAs, whereas StDicer-2 can only cleave linear double-stranded RNAs. Furthermore, only StDicer-2 possesses robust ATP hydrolytic activity in the presence of double-stranded RNA. Deletion of the StDicer-2 helicase domain increases both StDicer-2 cleavage activity and affinity for hairpin RNA. Notably, both StDicer-1 and StDicer-2 could complement the distantly related yeast Schizosaccharomyces pombe lacking its endogenous Dicer gene but only in their full-length forms, underscoring the importance of the helicase domain. These results suggest an in vivo regulatory function for the helicase domain that may be conserved from fungi to humans. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation.

    Science.gov (United States)

    Uy, Benjamin R; Simoes-Costa, Marcos; Koo, Daniel E S; Sauka-Spengler, Tatjana; Bronner, Marianne E

    2015-01-15

    Members of the Sox family of transcription factors play a variety of critical developmental roles in both vertebrates and invertebrates. Whereas SoxBs and SoxEs are involved in neural and neural crest development, respectively, far less is known about members of the SoxC subfamily. To address this from an evolutionary perspective, we compare expression and function of SoxC genes in neural crest cells and their derivatives in lamprey (Petromyzon marinus), a basal vertebrate, to frog (Xenopus laevis). Analysis of transcript distribution reveals conservation of lamprey and X. laevis SoxC expression in premigratory neural crest, branchial arches, and cranial ganglia. Moreover, morpholino-mediated loss-of-function of selected SoxC family members demonstrates essential roles in aspects of neural crest development in both organisms. The results suggest important and conserved functions of SoxC genes during vertebrate evolution and a particularly critical, previously unrecognized role in early neural crest specification. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Evolutionarily conserved odorant receptor function questions ecological context of octenol role in mosquitoes

    Science.gov (United States)

    Dekel, Amir; Pitts, Ronald J.; Yakir, Esther; Bohbot, Jonathan D.

    2016-01-01

    Olfaction is a key insect adaptation to a wide range of habitats. In the last thirty years, the detection of octenol by blood-feeding insects has been primarily understood in the context of animal host-seeking. The recent discovery of a conserved octenol receptor gene in the strictly nectar-feeding elephant mosquito Toxorhynchites amboinensis (TaOr8) suggests a different biological role. Here, we show that TaOR8 is a functional ortholog of its counterparts in blood-feeding mosquitoes displaying selectivity towards the (R)-enantiomer of octenol and susceptibility to the insect repellent DEET. These findings suggest that while the function of OR8 has been maintained throughout mosquito evolution, the context in which this receptor is operating has diverged in blood and nectar-feeding mosquitoes. PMID:27849027

  13. An Evolutionarily Conserved Role for Polydom/Svep1 during Lymphatic Vessel Formation

    NARCIS (Netherlands)

    Karpanen, Terhi; Padberg, Yvonne; Van De Pavert, Serge A.; Dierkes, Cathrin; Morooka, Nanami; Peterson-Maduro, Josi; Van De Hoek, Glenn; Adrian, Max; Mochizuki, Naoki; Sekiguchi, Kiyotoshi; Kiefer, Friedemann; Schulte, Dörte; Schulte-Merker, Stefan

    2017-01-01

    Rationale: Lymphatic vessel formation and function constitutes a physiologically and pathophysiologically important process, but its genetic control is not well understood. Objective: Here, we identify the secreted Polydom/Svep1 protein as essential for the formation of the lymphatic vasculature. We

  14. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia

    Science.gov (United States)

    Hudson, Andrew J.; Moore, Ashley N.; Elniski, David; Joseph, Joella; Yee, Janet; Russell, Anthony G.

    2012-01-01

    Non-coding RNAs (ncRNAs) have diverse essential biological functions in all organisms, and in eukaryotes, two such classes of ncRNAs are the small nucleolar (sno) and small nuclear (sn) RNAs. In this study, we have identified and characterized a collection of sno and snRNAs in Giardia lamblia, by exploiting our discovery of a conserved 12 nt RNA processing sequence motif found in the 3′ end regions of a large number of G. lamblia ncRNA genes. RNA end mapping and other experiments indicate the motif serves to mediate ncRNA 3′ end formation from mono- and di-cistronic RNA precursor transcripts. Remarkably, we find the motif is also utilized in the processing pathway of all four previously identified trans-spliced G. lamblia introns, revealing a common RNA processing pathway for ncRNAs and trans-spliced introns in this organism. Motif sequence conservation then allowed for the bioinformatic and experimental identification of additional G. lamblia ncRNAs, including new U1 and U6 spliceosomal snRNA candidates. The U6 snRNA candidate was then used as a tool to identity novel U2 and U4 snRNAs, based on predicted phylogenetically conserved snRNA–snRNA base-pairing interactions, from a set of previously identified G. lamblia ncRNAs without assigned function. The Giardia snRNAs retain the core features of spliceosomal snRNAs but are sufficiently evolutionarily divergent to explain the difficulties in their identification. Most intriguingly, all of these snRNAs show structural features diagnostic of U2-dependent/major and U12-dependent/minor spliceosomal snRNAs. PMID:23019220

  15. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense

    OpenAIRE

    Najibi, Mehran; Labed, Sid Ahmed; Visvikis, Orane; Irazoqui, Javier Elbio

    2016-01-01

    The mechanisms that tightly control the transcription of host defense genes have not been fully elucidated. We previously identified TFEB as a transcription factor important for host defense, but the mechanisms that regulate TFEB during infection remained unknown. We used C. elegans to discover a pathway that activates TFEB during infection. Gene dkf-1, which encodes a homolog of protein kinase D (PKD), was required for TFEB activation in nematodes infected with Staphylococcus aureus. Convers...

  16. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    Science.gov (United States)

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple

  17. Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene

    Science.gov (United States)

    Dale, Rodney M.; Topczewski, Jacek

    2011-01-01

    Zebrafish (Danio rerio) is an excellent model organism for the study of vertebrate development including skeletogenesis. Studies of mammalian cartilage formation were greatly advanced through the use of a cartilage specific regulatory element of the Collagen type II alpha 1 (Col2a1) gene. In an effort to isolate such an element in zebrafish, we compared the expression of two col2a1 homologues and found that expression of col2a1b, a previously uncharacterized zebrafish homologue, only partially overlaps with col2a1a. We focused our analysis on col2a1a, as it is expressed in both the stacked chondrocytes and the perichondrium. By comparing the genomic sequence surrounding the predicted transcriptional start site of col2a1a among several species of teleosts we identified a small highly conserved sequence (R2) located 1.7 kb upstream of the presumptive transcriptional initiation site. Interestingly, neither the sequence nor location of this element is conserved between teleost and mammalian Col2a1. We generated transient and stable transgenic lines with just the R2 element or the entire 1.7 kb fragment 5’ of the transcriptional initiation site. The identified regulatory elements enable the tracking of cellular development in various tissues by driving robust reporter expression in craniofacial cartilage, ear, notochord, floor plate, hypochord and fins in a pattern similar to the expression of endogenous col2a1a. Using a reporter gene driven by the R2 regulatory element, we analyzed the morphogenesis of the notochord sheath cells as they withdraw from the stack of initially uniform cells and encase the inflating vacuolated notochord cells. Finally, we show that like endogenous col2a1a, craniofacial expression of these reporter constructs depends on Sox9a transcription factor activity. At the same time, notochord expression is maintained after Sox9a knockdown, suggesting that other factors can activate expression through the identified regulatory element in this tissue

  18. Neprilysins: an evolutionarily conserved family of metalloproteases that play important roles in reproduction in Drosophila.

    Science.gov (United States)

    Sitnik, Jessica L; Francis, Carmen; Hens, Korneel; Huybrechts, Roger; Wolfner, Mariana F; Callaerts, Patrick

    2014-03-01

    Members of the M13 class of metalloproteases have been implicated in diseases and in reproductive fitness. Nevertheless, their physiological role remains poorly understood. To obtain a tractable model with which to analyze this protein family's function, we characterized the gene family in Drosophila melanogaster and focused on reproductive phenotypes. The D. melanogaster genome contains 24 M13 class protease homologs, some of which are orthologs of human proteases, including neprilysin. Many are expressed in the reproductive tracts of either sex. Using RNAi we individually targeted the five Nep genes most closely related to vertebrate neprilysin, Nep1-5, to investigate their roles in reproduction. A reduction in Nep1, Nep2, or Nep4 expression in females reduced egg laying. Nep1 and Nep2 are required in the CNS and the spermathecae for wild-type fecundity. Females that are null for Nep2 also show defects as hosts of sperm competition as well as an increased rate of depletion for stored sperm. Furthermore, eggs laid by Nep2 mutant females are fertilized normally, but arrest early in embryonic development. In the male, only Nep1 was required to induce normal patterns of female egg laying. Reduction in the expression of Nep2-5 in the male did not cause any dramatic effects on reproductive fitness, which suggests that these genes are either nonessential for male fertility or perform redundant functions. Our results suggest that, consistent with the functions of neprilysins in mammals, these proteins are also required for reproduction in Drosophila, opening up this model system for further functional analysis of this protein class and their substrates.

  19. Evolutionarily conserved Delta(25(27))-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Miller, Matthew B; Haubrich, Brad A; Wang, Qian; Snell, William J; Nes, W David

    2012-08-01

    Ergosterol is the predominant sterol of fungi and green algae. Although the biosynthetic pathway for sterol synthesis in fungi is well established and is known to use C24-methylation-C24 (28)-reduction (Δ(24(28))-olefin pathway) steps, little is known about the sterol pathway in green algae. Previous work has raised the possibility that these algae might use a novel pathway because the green alga Chlamydomonas reinhardtii was shown to possess a mevalonate-independent methylerythritol 4-phosphate not present in fungi. Here, we report that C. reinhardtii synthesizes the protosterol cycloartenol and converts it to ergosterol (C24β-methyl) and 7-dehydroporiferasterol (C24β-ethyl) through a highly conserved sterol C24- methylation-C25-reduction (Δ(25(27))-olefin) pathway that is distinct from the well-described acetate-mevalonate pathway to fungal lanosterol and its conversion to ergosterol by the Δ(24(28))-olefin pathway. We isolated and characterized 23 sterols by a combination of GC-MS and proton nuclear magnetic resonance spectroscopy analysis from a set of mutant, wild-type, and 25-thialanosterol-treated cells. The structure and stereochemistry of the final C24-alkyl sterol side chains possessed different combinations of 24β-methyl/ethyl groups and Δ(22(23))E and Δ(25(27))-double bond constructions. When incubated with [methyl-(2)H(3)]methionine, cells incorporated three (into ergosterol) or five (into 7-dehydroporiferasterol) deuterium atoms into the newly biosynthesized 24β-alkyl sterols, consistent only with a Δ(25(27))-olefin pathway. Thus, our findings demonstrate that two separate isoprenoid-24-alkyl sterol pathways evolved in fungi and green algae, both of which converge to yield a common membrane insert ergosterol.

  20. Post-transcriptional exon shuffling events in humans can be evolutionarily conserved and abundant.

    Science.gov (United States)

    Al-Balool, Haya H; Weber, David; Liu, Yilei; Wade, Mark; Guleria, Kamlesh; Nam, Pitsien Lang Ping; Clayton, Jake; Rowe, William; Coxhead, Jonathan; Irving, Julie; Elliott, David J; Hall, Andrew G; Santibanez-Koref, Mauro; Jackson, Michael S

    2011-11-01

    In silico analyses have established that transcripts from some genes can be processed into RNAs with rearranged exon order relative to genomic structure (post-transcriptional exon shuffling, or PTES). Although known to contribute to transcriptome diversity in some species, to date the structure, distribution, abundance, and functional significance of human PTES transcripts remains largely unknown. Here, using high-throughput transcriptome sequencing, we identify 205 putative human PTES products from 176 genes. We validate 72 out of 112 products analyzed using RT-PCR, and identify additional PTES products structurally related to 61% of validated targets. Sequencing of these additional products reveals GT-AG dinucleotides at >95% of the splice junctions, confirming that they are processed by the spliceosome. We show that most PTES transcripts are expressed in a wide variety of human tissues, that they can be polyadenylated, and that some are conserved in mouse. We also show that they can extend into 5' and 3' UTRs, consistent with formation via trans-splicing of independent pre-mRNA molecules. Finally, we use real-time PCR to compare the abundance of PTES exon junctions relative to canonical exon junctions within the transcripts from seven genes. PTES exon junctions are present at 90% of the levels of canonical junctions, with transcripts from MAN1A2, PHC3, TLE4, and CDK13 exhibiting the highest levels. This is the first systematic experimental analysis of PTES in human, and it suggests both that the phenomenon is much more widespread than previously thought and that some PTES transcripts could be functional.

  1. Drosophila KCNQ channel displays evolutionarily conserved electrophysiology and pharmacology with mammalian KCNQ channels.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available Of the five human KCNQ (Kv7 channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac I(Ks current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50-60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ is a slowly activating and slowly-deactivating K(+ current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine and opener (zinc pyrithione. We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies.

  2. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells

    Directory of Open Access Journals (Sweden)

    Achuth Padmanabhan

    2016-03-01

    Full Text Available Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7 subunit in the position normally occupied by α3 (PSMA4. Assembly of “α4-α4” proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses.

  3. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility.

    Science.gov (United States)

    Fritz-Laylin, Lillian K; Lord, Samuel J; Mullins, R Dyche

    2017-06-05

    Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call "α-motility." Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE-activators of branched actin assembly-make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP's role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin. © 2017 Fritz-Laylin et al.

  4. Peptides derived from evolutionarily conserved domains in Beclin-1 and Beclin-2 enhance the entry of lentiviral vectors into human cells.

    Science.gov (United States)

    Majdoul, Saliha; Cosette, Jeremie; Seye, Ababacar K; Bernard, Eric; Frin, Sophie; Holic, Nathalie; Chazal, Nathalie; Briant, Laurence; Espert, Lucile; Galy, Anne; Fenard, David

    2017-11-10

    Autophagy-related proteins such as Beclin-1 are involved in an array of complex processes, including antiviral responses, and may also modulate the efficiency of gene therapy viral vectors. The Tat-Beclin-1 (TB1) peptide has been reported as an autophagy-inducing factor inhibiting the replication of pathogens such as HIV, type 1 (HIV-1). However, autophagy-related proteins are also essential for the early steps of HIV-1 infection. Therefore, we examined the effects of the Beclin-1 evolutionarily conserved domain in TB1 on viral transduction and autophagy in single-round HIV infection or with nonreplicative HIV-1-derived lentiviral vectors. TB1 enhanced transduction with various pseudotypes but without inducing the autophagy process. TB1 augmented the transduction of human CD34+ hematopoietic stem/progenitor cells while maintaining their capacity to engraft in vivo into humanized mice. TB1 was as effective as other transduction additives and functioned by enhancing the adhesion and fusion of viral particles with target cells but not their aggregation. We also found that the N-terminal L1 loop was critical for TB1 transduction-enhancing activity. Interestingly, the Tat-Beclin-2 (TB2) peptide, derived from the human Beclin-2 protein, was even more potent than TB1 in promoting viral transduction and infection. Taken together, our findings suggest that the TB1 and TB2 peptides enhance the viral entry step. Tat-Beclin peptides therefore represent a new family of viral transduction enhancers for potential use in gene therapy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. CRISPR-based gene replacement reveals evolutionarily conserved axon guidance functions of Drosophila Robo3 and Tribolium Robo2/3.

    Science.gov (United States)

    Evans, Timothy A

    2017-01-01

    Axon guidance receptors of the Roundabout (Robo) family regulate a number of axon guidance outcomes in bilaterian animals in addition to their canonical role in Slit-dependent midline repulsion. In the fruit fly Drosophila melanogaster, three Robo paralogs (Robo1, Robo2, and Robo3) each have specialized roles in regulating midline crossing and the formation of longitudinal axon pathways in the embryonic ventral nerve cord. The number of robo genes differs in other insects, and it is unknown whether the roles and/or signaling mechanisms of Drosophila Robos are shared in other insect species. To directly compare the axon guidance activities of Robo receptors in Drosophila and the flour beetle Tribolium castaneum, I have used a CRISPR/Cas9-based approach to replace Drosophila robo3 with Tribolium robo2/3. I show that when expressed from the robo3 locus in Drosophila embryos, Tribolium Robo2/3 (TcRobo2/3) protein is properly translated and localized to axons, where it reproduces the normal expression pattern of Drosophila Robo3. In embryos expressing TcRobo2/3 in place of robo3, two distinct subsets of longitudinal axons are guided properly to their normal positions in the intermediate neuropile, indicating that TcRobo2/3 can promote Robo3-dependent axon guidance decisions in developing Drosophila neurons. These observations suggest that the mechanism by which Drosophila Robo3 promotes longitudinal pathway formation is evolutionarily conserved in Tribolium, where it is performed by TcRobo2/3. The CRISPR/Cas9-based gene replacement approach described here can be applied to comparative evolutionary developmental studies of other Drosophila genes and their orthologs in other species.

  6. CRISPR-based gene replacement reveals evolutionarily conserved axon guidance functions of Drosophila Robo3 and Tribolium Robo2/3

    Directory of Open Access Journals (Sweden)

    Timothy A. Evans

    2017-06-01

    Full Text Available Abstract Background Axon guidance receptors of the Roundabout (Robo family regulate a number of axon guidance outcomes in bilaterian animals in addition to their canonical role in Slit-dependent midline repulsion. In the fruit fly Drosophila melanogaster, three Robo paralogs (Robo1, Robo2, and Robo3 each have specialized roles in regulating midline crossing and the formation of longitudinal axon pathways in the embryonic ventral nerve cord. The number of robo genes differs in other insects, and it is unknown whether the roles and/or signaling mechanisms of Drosophila Robos are shared in other insect species. To directly compare the axon guidance activities of Robo receptors in Drosophila and the flour beetle Tribolium castaneum, I have used a CRISPR/Cas9-based approach to replace Drosophila robo3 with Tribolium robo2/3. Results I show that when expressed from the robo3 locus in Drosophila embryos, Tribolium Robo2/3 (TcRobo2/3 protein is properly translated and localized to axons, where it reproduces the normal expression pattern of Drosophila Robo3. In embryos expressing TcRobo2/3 in place of robo3, two distinct subsets of longitudinal axons are guided properly to their normal positions in the intermediate neuropile, indicating that TcRobo2/3 can promote Robo3-dependent axon guidance decisions in developing Drosophila neurons. Conclusions These observations suggest that the mechanism by which Drosophila Robo3 promotes longitudinal pathway formation is evolutionarily conserved in Tribolium, where it is performed by TcRobo2/3. The CRISPR/Cas9-based gene replacement approach described here can be applied to comparative evolutionary developmental studies of other Drosophila genes and their orthologs in other species.

  7. Conservation and diversification of Msx protein in metazoan evolution.

    Science.gov (United States)

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family

  8. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae.

    Science.gov (United States)

    Capra, John A; Paeschke, Katrin; Singh, Mona; Zakian, Virginia A

    2010-07-22

    G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs) across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs). Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint.

  9. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    John A Capra

    2010-07-01

    Full Text Available G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs. Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint.

  10. Gene Regulatory Enhancers with Evolutionarily Conserved Activity Are More Pleiotropic than Those with Species-Specific Activity.

    Science.gov (United States)

    Fish, Alexandra; Chen, Ling; Capra, John A

    2017-10-01

    Studies of regulatory activity and gene expression have revealed an intriguing dichotomy: There is substantial turnover in the regulatory activity of orthologous sequences between species; however, the expression level of orthologous genes is largely conserved. Understanding how distal regulatory elements, for example, enhancers, evolve and function is critical, as alterations in gene expression levels can drive the development of both complex disease and functional divergence between species. In this study, we investigated determinants of the conservation of regulatory enhancer activity for orthologous sequences across mammalian evolution. Using liver enhancers identified from genome-wide histone modification profiles in ten diverse mammalian species, we compared orthologous sequences that exhibited regulatory activity in all species (conserved-activity enhancers) to shared sequences active only in a single species (species-specific-activity enhancers). Conserved-activity enhancers have greater regulatory potential than species-specific-activity enhancers, as quantified by both the density and diversity of transcription factor binding motifs. Consistent with their greater regulatory potential, conserved-activity enhancers have greater regulatory activity in humans than species-specific-activity enhancers: They are active across more cellular contexts, and they regulate more genes than species-specific-activity enhancers. Furthermore, the genes regulated by conserved-activity enhancers are expressed in more tissues and are less tolerant of loss-of-function mutations than those targeted by species-specific-activity enhancers. These consistent results across various stages of gene regulation demonstrate that conserved-activity enhancers are more pleiotropic than their species-specific-activity counterparts. This suggests that pleiotropy is associated with the conservation of regulatory across mammalian evolution. © The Author 2017. Published by Oxford University

  11. Identification of evolutionarily invariant sequences in the protein C gene promoter

    NARCIS (Netherlands)

    Spek, C. A.; Bertina, R. M.; Reitsma, P. H.

    1998-01-01

    Recent studies on human protein C gene expression have revealed the presence of three transcription factor binding sites in close proximity to the transcription start site. Binding sites for the liver-enriched hepatocyte nuclear factors 1 and 3 (HNF-1 and HNF-3, respectively) are located immediately

  12. An Evolutionarily Conserved Sweet Clade is Involved in the Detection of Bitter and Sweet Tastants in Insects

    OpenAIRE

    Freeman, Erica

    2017-01-01

    The taste system is essential to determine the palatability of a potential food sources. Insects use gustatory receptors (Gr) to detect both appetitive and aversive compounds. In D. melanogaster, sweet neurons express eight Grs belonging to a highly conserved clade in insects. Currently, it is unknown how these receptors detect sweet tastants. A system that can functionally express single Grs to study ligand recognition is necessary to fill a critical gap in the field. Using the CO2-sensing ...

  13. Production of Bioactive Diterpenoids in the Euphorbiaceae Depends on Evolutionarily Conserved Gene Clusters[C][W][OPEN

    Science.gov (United States)

    King, Andrew J.; Brown, Geoffrey D.; Gilday, Alison D.; Larson, Tony R.; Graham, Ian A.

    2014-01-01

    The Euphorbiaceae produce a diverse range of diterpenoids, many of which have pharmacological activities. These diterpenoids include ingenol mebutate, which is licensed for the treatment of a precancerous skin condition (actinic keratosis), and phorbol derivatives such as resiniferatoxin and prostratin, which are undergoing investigation for the treatment of severe pain and HIV, respectively. Despite the interest in these diterpenoids, their biosynthesis is poorly understood at present, with the only characterized step being the conversion of geranylgeranyl pyrophosphate into casbene. Here, we report a physical cluster of diterpenoid biosynthetic genes from castor (Ricinus communis), including casbene synthases and cytochrome P450s from the CYP726A subfamily. CYP726A14, CYP726A17, and CYP726A18 were able to catalyze 5-oxidation of casbene, a conserved oxidation step in the biosynthesis of this family of medicinally important diterpenoids. CYP726A16 catalyzed 7,8-epoxidation of 5-keto-casbene and CYP726A15 catalyzed 5-oxidation of neocembrene. Evidence of similar gene clustering was also found in two other Euphorbiaceae, including Euphorbia peplus, the source organism of ingenol mebutate. These results demonstrate conservation of gene clusters at the higher taxonomic level of the plant family and that this phenomenon could prove useful in further elucidating diterpenoid biosynthetic pathways. PMID:25172144

  14. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda L; McEwan, Deborah L; Conery, Annie L; Ausubel, Frederick M

    2014-05-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  15. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2014-05-01

    Full Text Available Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  16. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2) predicts novel potential therapeutic epitopes

    DEFF Research Database (Denmark)

    Deng, Xiaohong; Zheng, Xuxu; Yang, Huanming

    2014-01-01

    for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available....

  17. The BAT1 gene in the MHC encodes an evolutionarily conserved putative nuclear RNA helicase of the DEAD family

    Energy Technology Data Exchange (ETDEWEB)

    Peelman, L.J.; Van Zeveren, A.; Coppeiters, W. [State Univ. Ghent, Merelbeke (Belgium)] [and others

    1995-03-20

    The BAT1 gene has previously been identified about 30 kb upstream from the tumor necrosis factor (TNF) locus and close to a NF{sub kb}-related gene of the nuclear factor family in the major histocompatibility complex (MHC) of human, mouse, and pig. We now show that the BAT1 translation product is the homolog of the rat p47 nuclear protein, the WM6 Drosophila gene product, and probably also Ce08102 of Caenorhabditis elegans, all members of the DEAD protein family of ATP-dependent RNA helicases. This family has more than 40 members, including the eukaryotic translation initiation factor-4A (eIF-4A), the human nuclear protein p68, and the Drosophila oocyte polar granule component vasa. BAT1 spans about 10 kb, is split into 10 exons of varying length, and encodes a protein of 428 amino acids ({approximately}48 kDa). Human and pig BAT1 cDNAs display 95.6% identity in the coding region and 80% identity in the 5{prime} and 3{prime} noncoding regions. Several repeat sequences of different types were identified in introns of the porcine BAT1 gene. Three different mRNAs, 4.1,1.7, and 0.9 kb, respectively, were detected in all tissues analyzed upon hybridization with porcine BAT1 cDNA. Transfection and expression of human BAT1 cDNA after tagging with a heterologous antibody recognition epitope revealed a nuclear localization of the hybrid protein. An MspI RFLP was detected in an SLA class I typed family, confirming the localization of the BAT1 gene in the porcine MHC. BAT1 thus encodes a putative nuclear ATP-dependent RNA helicase and is likely to have an indispensable function. 35 refs., 6 figs., 1 tab.

  18. A novel nucleolar G-protein conserved in eukaryotes.

    Science.gov (United States)

    Park, J H; Jensen, B C; Kifer, C T; Parsons, M

    2001-01-01

    We describe here a novel, evolutionarily conserved set of predicted G-proteins. The founding member of this family, TbNOG1, was identified in a two-hybrid screen as a protein that interacts with NOPP44/46, a nucleolar phosphoprotein of Trypanosoma brucei. The biological relevance of the interaction was verified by co-localization and co-immunoprecipitation. TbNOG1 localized to the trypanosome nucleolus and interacted with domains of NOPP44/46 that are found in several other nucleolar proteins. Genes encoding proteins highly related to TbNOG1 are present in yeast and metazoa, and related G domains are found in bacteria. We show that NOG1 proteins in humans and Saccharomyces cerevisae are also nucleolar. The S. cerevisae NOG1 gene is essential for cell viability, and mutations in the predicted G motifs abrogate function. Together these data suggest that NOG1 may play an important role in nucleolar functions. The GTP-binding region of TbNOG1 is similar to those of Obg and DRG proteins, which, together with NOG, form a newly recognized family of G-proteins, herein named ODN. The ODN family differs significantly from other G-protein families, and shows several diagnostic sequence characteristics. All organisms appear to possess an ODN gene, pointing to the biological significance of this family of G-proteins.

  19. Expression analysis of an evolutionarily conserved alternative splicing factor, Sfrs10, in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Devi Krishna Priya Karunakaran

    Full Text Available Age-related macular degeneration (AMD is the most common cause of blindness in the elderly population. Hypoxic stress created in the micro-environment of the photoreceptors is thought to be the underlying cause that results in the pathophysiology of AMD. However, association of AMD with alternative splicing mediated gene regulation is not well explored. Alternative Splicing is one of the primary mechanisms in humans by which fewer protein coding genes are able to generate a vast proteome. Here, we investigated the expression of a known stress response gene and an alternative splicing factor called Serine-Arginine rich splicing factor 10 (Sfrs10. Sfrs10 is a member of the serine-arginine (SR rich protein family and is 100% identical at the amino acid level in most mammals. Immunoblot analysis on retinal extracts from mouse, rat, and chicken showed a single immunoreactive band. Further, immunohistochemistry on adult mouse, rat and chicken retinae showed pan-retinal expression. However, SFRS10 was not detected in normal human retina but was observed as distinct nuclear speckles in AMD retinae. This is in agreement with previous reports that show Sfrs10 to be a stress response gene, which is upregulated under hypoxia. The difference in the expression of Sfrs10 between humans and lower mammals and the upregulation of SFRS10 in AMD is further reflected in the divergence of the promoter sequence between these species. Finally, SFRS10+ speckles were independent of the SC35+ SR protein speckles or the HSF1+ stress granules. In all, our data suggests that SFRS10 is upregulated and forms distinct stress-induced speckles and might be involved in AS of stress response genes in AMD.

  20. A Functional Genomic Screen for Evolutionarily Conserved Genes Required for Lifespan and Immunity in Germline-Deficient C. elegans

    Science.gov (United States)

    Sinha, Amit; Rae, Robbie

    2014-01-01

    The reproductive system regulates lifespan in insects, nematodes and vertebrates. In Caenorhabditis elegans removal of germline increases lifespan by 60% which is dependent upon insulin signaling, nuclear hormone signaling, autophagy and fat metabolism and their microRNA-regulators. Germline-deficient C. elegans are also more resistant to various bacterial pathogens but the underlying molecular mechanisms are largely unknown. Firstly, we demonstrate that previously identified genes that regulate the extended lifespan of germline-deficient C. elegans (daf-2, daf-16, daf-12, tcer-1, mir-7.1 and nhr-80) are also essential for resistance to the pathogenic bacterium Xenorhabdus nematophila. We then use a novel unbiased approach combining laser cell ablation, whole genome microarrays, RNAi screening and exposure to X. nematophila to generate a comprehensive genome-wide catalog of genes potentially required for increased lifespan and innate immunity in germline-deficient C. elegans. We find 3,440 genes to be upregulated in C. elegans germline-deficient animals in a gonad dependent manner, which are significantly enriched for genes involved in insulin signaling, fatty acid desaturation, translation elongation and proteasome complex function. Using RNAi against a subset of 150 candidate genes selected from the microarray results, we show that the upregulated genes such as transcription factor DAF-16/FOXO, the PTEN homolog lipid phosphatase DAF-18 and several components of the proteasome complex (rpn-6.1, rpn-7, rpn-9, rpn-10, rpt-6, pbs-3 and pbs-6) are essential for both lifespan and immunity of germline deficient animals. We also identify a novel role for genes including par-5 and T12G3.6 in both lifespan-extension and increased survival on X. nematophila. From an evolutionary perspective, most of the genes differentially expressed in germline deficient C. elegans also show a conserved expression pattern in germline deficient Pristionchus pacificus, a nematode species

  1. Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans--man and his best friend share more than companionship.

    Science.gov (United States)

    Breen, Matthew; Modiano, Jaime F

    2008-01-01

    The pathophysiological similarities shared by many forms of human and canine disease, combined with the sophisticated genomic resources now available for the dog, have placed 'man's best friend' in a position of high visibility as a model system for a variety of biomedical concerns, including cancer. The importance of nonrandom cytogenetic abnormalities in human leukemia and lymphoma was recognized over 40 years ago, but the mechanisms of genome reorganization remain incompletely understood. The development of molecular cytogenetics, using fluorescence in situ hybridization (FISH) technology, has played a significant role in our understanding of cancer biology by providing a means for 'interrogating' tumor cells for a variety of gross genetic changes in the form of either numerical or structural chromosome aberrations. Here, we have identified cytogenetic abnormalities in naturally occurring canine hematopoietic tumors that are evolutionarily conserved compared with those that are considered characteristic of the corresponding human condition. These data suggest that humans and dogs share an ancestrally retained pathogenetic basis for cancer and that cytogenetic evaluation of canine tumors may provide greater insight into the biology of tumorigenesis.

  2. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif

    Czech Academy of Sciences Publication Activity Database

    Wald, Tomáš; Špoutil, František; Osičková, Adriana; Procházková, Michaela; Benada, Oldřich; Kašpárek, Petr; Bumba, Ladislav; Klein, O. D.; Sedláček, Radislav; Šebo, Peter; Procházka, Jan; Osička, Radim

    2017-01-01

    Roč. 114, č. 9 (2017), s. 1641-1650 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LM2015064; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LM2011032; GA MŠk(CZ) LM2015040; GA MŠk(CZ) LO1509; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk ED2.1.00/19.0395 Grant - others:Ministerstvo pro místní rozvoj(CZ) CZ2.16/3.1.00/24023 Institutional support: RVO:61388971 ; RVO:68378050 Keywords : ameloblastin * amelogenin * biomineralization Subject RIV: EE - Microbiology, Virology; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 9.661, year: 2016

  3. On the relationship between residue structural environment and sequence conservation in proteins.

    Science.gov (United States)

    Liu, Jen-Wei; Lin, Jau-Ji; Cheng, Chih-Wen; Lin, Yu-Feng; Hwang, Jenn-Kang; Huang, Tsun-Tsao

    2017-09-01

    Residues that are crucial to protein function or structure are usually evolutionarily conserved. To identify the important residues in protein, sequence conservation is estimated, and current methods rely upon the unbiased collection of homologous sequences. Surprisingly, our previous studies have shown that the sequence conservation is closely correlated with the weighted contact number (WCN), a measure of packing density for residue's structural environment, calculated only based on the C α positions of a protein structure. Moreover, studies have shown that sequence conservation is correlated with environment-related structural properties calculated based on different protein substructures, such as a protein's all atoms, backbone atoms, side-chain atoms, or side-chain centroid. To know whether the C α atomic positions are adequate to show the relationship between residue environment and sequence conservation or not, here we compared C α atoms with other substructures in their contributions to the sequence conservation. Our results show that C α positions are substantially equivalent to the other substructures in calculations of various measures of residue environment. As a result, the overlapping contributions between C α atoms and the other substructures are high, yielding similar structure-conservation relationship. Take the WCN as an example, the average overlapping contribution to sequence conservation is 87% between C α and all-atom substructures. These results indicate that only C α atoms of a protein structure could reflect sequence conservation at the residue level. © 2017 Wiley Periodicals, Inc.

  4. Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis.

    Science.gov (United States)

    Kaur, Jagdeep; Thokala, Mercy; Robert-Seilaniantz, Alexandre; Zhao, Patrick; Peyret, Hadrien; Berg, Howard; Pandey, Sona; Jones, Jonathan; Shah, Dilip

    2012-12-01

    The Medicago truncatula gene encoding an evolutionarily conserved antifungal defensin MtDef4.2 was cloned and characterized. In silico expression analysis indicated that MtDef4.2 is expressed in many tissues during the normal growth and development of M. truncatula. MtDef4.2 exhibits potent broad-spectrum antifungal activity against various Fusarium spp. Transgenic Arabidopsis thaliana lines in which MtDef4.2 was targeted to three different subcellular compartments were generated. These lines were tested for resistance to the obligate biotrophic oomycete Hyaloperonospora arabidopsidis Noco2 and the hemibiotrophic fungal pathogen Fusarium graminearum PH-1. MtDef4.2 directed to the extracellular space, but not to the vacuole or retained in the endoplasmic reticulum, conferred robust resistance to H. arabidopsidis. Siliques of transgenic Arabidopsis lines expressing either extracellularly or intracellularly targeted MtDef4.2 displayed low levels of resistance to F. graminearum, but accumulated substantially reduced levels of the mycotoxin deoxynivalenol. The data presented here suggest that extracellularly targeted MtDef4.2 is sufficient to provide strong resistance to the biotrophic oomycete, consistent with the extracellular lifestyle of this pathogen. However, the co-expression of extracellular and intracellular MtDef4.2 is probably required to achieve strong resistance to the hemibiotrophic pathogen F. graminearum which grows extracellularly and intracellularly. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  5. Violation of an evolutionarily conserved immunoglobulin diversity gene sequence preference promotes production of dsDNA-specific IgG antibodies.

    Directory of Open Access Journals (Sweden)

    Aaron Silva-Sanchez

    Full Text Available Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3, which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH gene segment sequence content by reading frame (RF is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1, which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies.

  6. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress

    KAUST Repository

    Kinoshita, Natsuko

    2012-09-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. © 2012 American Society of Plant Biologists. All rights reserved.

  7. Identification, chromosomal arrangements and expression analyses of the evolutionarily conserved prmt1 gene in chicken in comparison with its vertebrate paralogue prmt8.

    Directory of Open Access Journals (Sweden)

    Yi-Chun Wang

    Full Text Available Nine protein arginine methyltransferases (PRMTs are conserved in mammals and fish. Among these, PRMT1 is the major type I PRMT for asymmetric dimethylarginine (ADMA formation and is the most conserved and widely distributed one. Two chicken prmt1 splicing variants were assembled and confirmed by RT-PCR experiments. However, only two scaffolds containing single separate prmt1 exon with high GC contents are present in the current chicken genome assembly. Besides, prmt1 exons are scattered in separate small scaffolds in most avian species. Complete prmt1 gene has only been predicted from two falcon species with few neighboring genes. Crocodilians are considered close to the common ancestor shared by crocodilians and birds. The gene arrangements around prmt1 in American alligator are different from that in birds but are largely conserved in human. Orthologues of genes in a large segment of human chromosomal 19 around PRMT1 are missing or not assigned to the current chicken chromosomes. In comparison, prmt8, the prmt1 paralogue, is on chicken chromosome 1 with the gene arrangements downstream of prmt8 highly conserved in birds, crocodilians, and human. However, the ones upstream vary greatly in birds. Biochemically, we found that though prmt1 transcripts were detected, limited or none PRMT1 protein was present in chicken tissues. Moreover, a much higher level of PRMT8 protein was detected in chicken brain than in mouse brain. While PRMT8 is brain specific in other vertebrate species studied, low level of PRMT8 was present in chicken but not mouse liver and muscle. We also showed that the ADMA level in chicken was similar to that in mouse. This study provides the critical information of chicken PRMT1 and PRMT8 for future analyses of the function of protein arginine methyltransferases in birds.

  8. Identification, chromosomal arrangements and expression analyses of the evolutionarily conserved prmt1 gene in chicken in comparison with its vertebrate paralogue prmt8.

    Science.gov (United States)

    Wang, Yi-Chun; Wang, Chien-Wen; Lin, Wen-Chang; Tsai, Yun-Jung; Chang, Chien-Ping; Lee, Yu-Jen; Lin, Min-Jon; Li, Chuan

    2017-01-01

    Nine protein arginine methyltransferases (PRMTs) are conserved in mammals and fish. Among these, PRMT1 is the major type I PRMT for asymmetric dimethylarginine (ADMA) formation and is the most conserved and widely distributed one. Two chicken prmt1 splicing variants were assembled and confirmed by RT-PCR experiments. However, only two scaffolds containing single separate prmt1 exon with high GC contents are present in the current chicken genome assembly. Besides, prmt1 exons are scattered in separate small scaffolds in most avian species. Complete prmt1 gene has only been predicted from two falcon species with few neighboring genes. Crocodilians are considered close to the common ancestor shared by crocodilians and birds. The gene arrangements around prmt1 in American alligator are different from that in birds but are largely conserved in human. Orthologues of genes in a large segment of human chromosomal 19 around PRMT1 are missing or not assigned to the current chicken chromosomes. In comparison, prmt8, the prmt1 paralogue, is on chicken chromosome 1 with the gene arrangements downstream of prmt8 highly conserved in birds, crocodilians, and human. However, the ones upstream vary greatly in birds. Biochemically, we found that though prmt1 transcripts were detected, limited or none PRMT1 protein was present in chicken tissues. Moreover, a much higher level of PRMT8 protein was detected in chicken brain than in mouse brain. While PRMT8 is brain specific in other vertebrate species studied, low level of PRMT8 was present in chicken but not mouse liver and muscle. We also showed that the ADMA level in chicken was similar to that in mouse. This study provides the critical information of chicken PRMT1 and PRMT8 for future analyses of the function of protein arginine methyltransferases in birds.

  9. Evolutionary conservation of protein vibrational dynamics.

    Science.gov (United States)

    Maguid, Sandra; Fernandez-Alberti, Sebastian; Echave, Julian

    2008-10-01

    The aim of the present work is to study the evolutionary divergence of vibrational protein dynamics. To this end, we used the Gaussian Network Model to perform a systematic analysis of normal mode conservation on a large dataset of proteins classified into homologous sets of family pairs and superfamily pairs. We found that the lowest most collective normal modes are the most conserved ones. More precisely, there is, on average, a linear correlation between normal mode conservation and mode collectivity. These results imply that the previously observed conservation of backbone flexibility (B-factor) profiles is due to the conservation of the most collective modes, which contribute the most to such profiles. We discuss the possible roles of normal mode robustness and natural selection in the determination of the observed behavior. Finally, we draw some practical implications for dynamics-based protein alignment and classification and discuss possible caveats of the present approach.

  10. Conservation of AtTZF1, AtTZF2 and AtTZF3 homolog gene regulation by salt stress in evolutionarily distant plant species

    Directory of Open Access Journals (Sweden)

    Fabio eD'Orso

    2015-06-01

    Full Text Available Arginine-rich tandem zinc-finger proteins (RR-TZF participate in a wide range of plant developmental processes and adaptive responses to abiotic stress, such as cold, salt and drought. This study investigates the conservation of the genes AtTZF1-5 at the level of their sequences and expression across plant species. The genomic sequences of the two RR-TZF genes TdTZF1-A and TdTZF1-B were isolated in durum wheat and assigned to chromosomes 3A and 3B, respectively. Sequence comparisons revealed that they encode proteins that are highly homologous to AtTZF1, AtTZF2 and AtTZF3. The expression profiles of these RR-TZF durum wheat and Arabidopsis proteins support a common function in the regulation of seed germination and responses to abiotic stress. In particular, analysis of plants with attenuated and overexpressed AtTZF3 indicate that AtTZF3 is a negative regulator of seed germination under conditions of salt stress. Finally, comparative sequence analyses establish that the RR-TZF genes are encoded by lower plants, including the bryophyte Physcomitrella patens and the alga Chlamydomonas reinhardtii. The regulation of the Physcomitrella AtTZF1-2-3-like genes by salt stress strongly suggests that a subgroup of the RR-TZF proteins has a function that has been conserved throughout evolution.

  11. Conserved intron positions in ancient protein modules

    Directory of Open Access Journals (Sweden)

    de Roos Albert DG

    2007-02-01

    Full Text Available Abstract Background The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt derived from GenBank. Results A set of conserved intron positions was found by matching identical splice sites sequences from distantly-related eukaryotic kingdoms. Most amino acid sequences with conserved introns were homologous to consensus sequences of functional domains from conserved proteins including kinases, phosphatases, small GTPases, transporters and matrix proteins. These included ancient proteins that originated before the eukaryote-prokaryote split, for instance the catalytic domain of protein phosphatase 2A where a total of eleven conserved introns were found. Using an experimental setup in which the relation between a splice site and the ancientness of its surrounding sequence could be studied, it was found that the presence of an intron was positively correlated to the ancientness of its surrounding sequence. Intron phase conservation was linked to the conservation of the gene sequence and not to the splice site sequence itself. However, no apparent differences in phase distribution were found between introns in conserved versus non-conserved sequences. Conclusion The data confirm an origin of introns deep in the eukaryotic branch and is in concordance with the presence of introns in the first functional protein modules in an 'Exon theory of genes' scenario. A model is proposed in which shuffling of primordial short exonic sequences led to the formation of the first functional protein modules, in line with hypotheses that see the formation of introns integral to the origins of genome evolution

  12. Evolutionary conservation of protein backbone flexibility.

    Science.gov (United States)

    Maguid, Sandra; Fernández-Alberti, Sebastián; Parisi, Gustavo; Echave, Julián

    2006-10-01

    Internal protein dynamics is essential for biological function. During evolution, protein divergence is functionally constrained: properties more relevant for function vary more slowly than less important properties. Thus, if protein dynamics is relevant for function, it should be evolutionary conserved. In contrast with the well-studied evolution of protein structure, the evolutionary divergence of protein dynamics has not been addressed systematically before, apart from a few case studies. X-Ray diffraction analysis gives information not only on protein structure but also on B-factors, which characterize the flexibility that results from protein dynamics. Here we study the evolutionary divergence of protein backbone dynamics by comparing the C(alpha) flexibility (B-factor) profiles for a large dataset of homologous proteins classified into families and superfamilies. We show that C(alpha) flexibility profiles diverge slowly, so that they are conserved at family and superfamily levels, even for pairs of proteins with nonsignificant sequence similarity. We also analyze and discuss the correlations among the divergences of flexibility, sequence, and structure.

  13. The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley.

    Science.gov (United States)

    Jordan, Tina; Seeholzer, Sabine; Schwizer, Simon; Töller, Armin; Somssich, Imre E; Keller, Beat

    2011-02-01

    The race-specific barley powdery mildew (Blumeria graminis f. sp. hordei) resistance gene Mla occurs as an allelic series and encodes CC-NB-LRR type resistance proteins. Inter-generic allele mining resulted in the isolation and characterisation of an Mla homologue from diploid wheat, designated TmMla1, which shares 78% identity with barley HvMLA1 at the protein level. TmMla1 was found to be a functional resistance gene against Blumeria graminis f. sp. tritici in wheat, hereby providing an example of R gene orthologs controlling the same disease in two different species. TmMLA1 exhibits race-specific resistance activity and its N-terminal coiled-coil domain interacts with the barley transcription factor HvWRKY1. Interestingly, TmMLA1 was not functional in barley transient assays. Replacement of the TmMLA1 LRR domain with that of HvMLA1 revealed that this fusion protein conferred resistance against B. graminis f. sp. hordei isolate K1 in barley. Thus, TmMLA1 not only confers resistance in wheat but possibly also in barley against an as yet unknown barley powdery mildew race. The conservation of functional R gene orthologs over at least 12 million years is surprising given the observed rapid breakdown of Mla-based resistance against barley mildew in agricultural ecosystems. This suggests a high stability of Mla resistance in the natural environment before domestication. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  14. An androgen receptor NH2-terminal conserved motif interacts with the COOH terminus of the Hsp70-interacting protein (CHIP).

    Science.gov (United States)

    He, Bin; Bai, Suxia; Hnat, Andrew T; Kalman, Rebecca I; Minges, John T; Patterson, Cam; Wilson, Elizabeth M

    2004-07-16

    The NH2-terminal sequence of steroid receptors is highly variable between different receptors and in the same receptor from different species. In this study, a primary sequence homology comparison identified a 14-amino acid NH2-terminal motif of the human androgen receptor (AR) that is common to AR from all species reported, including the lower vertebrates. The evolutionarily conserved motif is unique to AR, with the exception of a partial sequence in the glucocorticoid receptor of higher species. The presence of the conserved motif in AR and the glucocorticoid receptor and its absence in other steroid receptors suggests convergent evolution. The function of the AR NH2-terminal conserved motif was suggested from a yeast two-hybrid screen that identified the COOH terminus of the Hsp70-interacting protein (CHIP) as a binding partner. We found that CHIP functions as a negative regulator of AR transcriptional activity by promoting AR degradation. In support of this, two mutations in the AR NH2-terminal conserved motif previously identified in the transgenic adenocarcinoma of mouse prostate model reduced the interaction between CHIP and AR. Our results suggest that the AR NH2-terminal domain contains an evolutionarily conserved motif that functions to limit AR transcriptional activity. Moreover, we demonstrate that the combination of comparative sequence alignment and yeast two-hybrid screening using short conserved peptides as bait provides an effective strategy to probe the structure-function relationships of steroid receptor NH2-terminal domains and other intrinsically unstructured transcriptional regulatory proteins.

  15. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    National Research Council Canada - National Science Library

    Kristopher J. L. Irizarry; Randall L. Bryden

    2016-01-01

    .... We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation...

  16. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    Science.gov (United States)

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  17. Large-scale nucleotide sequence alignment and sequence variability assessment to identify the evolutionarily highly conserved regions for universal screening PCR assay design: an example of influenza A virus.

    Science.gov (United States)

    Nagy, Alexander; Jiřinec, Tomáš; Černíková, Lenka; Jiřincová, Helena; Havlíčková, Martina

    2015-01-01

    The development of a diagnostic polymerase chain reaction (PCR) or quantitative PCR (qPCR) assay for universal detection of highly variable viral genomes is always a difficult task. The purpose of this chapter is to provide a guideline on how to align, process, and evaluate a huge set of homologous nucleotide sequences in order to reveal the evolutionarily most conserved positions suitable for universal qPCR primer and hybridization probe design. Attention is paid to the quantification and clear graphical visualization of the sequence variability at each position of the alignment. In addition, specific problems related to the processing of the extremely large sequence pool are highlighted. All of these steps are performed using an ordinary desktop computer without the need for extensive mathematical or computational skills.

  18. GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton.

    Science.gov (United States)

    Nakano, Kentaro; Kuwayama, Hidekazu; Kawasaki, Masato; Numata, Osamu; Takaine, Masak

    2010-06-01

    Actin-depolymerizing factor (ADF)/cofilin is widely expressed in eukaryotes and plays a central role in reorganizing the actin cytoskeleton by disassembling actin filaments. The ADF-homologous domain (ADF-H) is conserved in several other actin-modulating proteins such as twinfilin, Abp1/drebrin, and coactosin. Although these proteins interact with actin via ADF-H, their effects on actin are not identical to each other. Here, we report a novel ADF/cofilin-super family protein, Gmf1 (Glia maturation factor-like protein 1), from the fission yeast Schizosaccharomyces pombe. Gmf1 is a component of actin patches, which are located on the cell cortex and required for endocytosis, and may be involved in the control of the disassembly of actin patches since its overexpression diminishes them. We provide evidence that Gmf1 binds weakly if at all to actin, but it associates with actin-related protein (Arp) 2/3 complex and suppresses its functions such as the promotion of actin polymerization and branching filaments. Importantly, Arp2/3 complex-suppressing activity is conserved among GMF-family proteins from other organisms. Given the functional plasticity of ADF-H, GMF-family proteins possibly have changed their target from conventional actin to Arps through molecular evolution.

  19. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  20. Conserved hypothetical protein Rv1977 in Mycobacterium tuberculosis strains contains sequence polymorphisms and might be involved in ongoing immune evasion.

    Science.gov (United States)

    Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin

    2015-01-01

    Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.

  1. Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Albert eWong

    2014-09-01

    Full Text Available The zinc finger transcription factor CONSTANS has a well-established central role in the mechanism for photoperiod sensing in Arabidopsis, integrating light and circadian clock signals to upregulate the florigen gene FT under long-day but not short-day conditions. Although CONSTANS-like (COL genes in other species have also been shown to regulate flowering time, it is not clear how widely this central role in photoperiod sensing is conserved.Legumes are a major plant group and various legume species show significant natural variation for photoperiod responsive flowering. Orthologs of several Arabidopsis genes have been shown to participate in photoperiodic flowering in legumes, but the possible function of COL genes as integrators of the photoperiod response has not yet been examined in detail. Here we characterize the COL family in the temperate long-day legume Medicago truncatula, using expression analyses, reverse genetics, transient activation assays and Arabidopsis transformation. Our results provide several lines of evidence suggesting that COL genes are unlikely to have a central role in the photoperiod response mechanism in this species.

  2. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens

    KAUST Repository

    Decker, Eva L.

    2017-03-06

    In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues.

  3. An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of Brassica juncea and induces male sterility in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Kumar, Pankaj; Vasupalli, Naresh; Srinivasan, R; Bhat, Shripad R

    2012-05-01

    Nuclear-mitochondrial gene interactions governing cytoplasmic male sterility (CMS) in angiosperms have been found to be unique to each system. Fertility restoration of three diverse alloplasmic CMS lines of Brassica juncea by a line carrying the fertility-restorer gene introgressed from Moricandia arvensis prompted this investigation to examine the molecular basis of CMS in these lines. Since previous studies had found altered atpA transcription associated with CMS in these lines, the atpA genes and transcripts of CMS, fertility-restored, and euplasmic lines were cloned and compared. atpA coding and downstream sequences were conserved among CMS and euplasmic lines but major differences were found in the 5' flanking sequences of atpA. A unique open reading frame (ORF), orf108, co-transcribed with atpA, was found in male sterile flowers of CMS lines carrying mitochondrial genomes of Diplotaxis berthautii, D. catholica, or D. erucoides. In presence of the restorer gene, the bicistronic orf108-atpA transcript was cleaved within orf108 to yield a monocistronic atpA transcript. Transgenic expression of orf108 with anther-specific Atprx18 promoter in Arabidopsis thaliana gave 50% pollen sterility, indicating that Orf108 is lethal at the gametophytic stage. Further, lack of transmission of orf108 to the progeny showed for the first time that mitochondrial ORFs could also cause female sterility. orf108 was found to be widely distributed among wild relatives of Brassica, indicating its ancient origin. This is the first report that shows that CMS lines of different origin and morphology could share common molecular basis. The gametic lethality of Orf108 offers a novel opportunity for transgene containment.

  4. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens.

    Science.gov (United States)

    Decker, Eva L; Alder, Adrian; Hunn, Stefan; Ferguson, Jenny; Lehtonen, Mikko T; Scheler, Bjoern; Kerres, Klaus L; Wiedemann, Gertrud; Safavi-Rizi, Vajiheh; Nordzieke, Steffen; Balakrishna, Aparna; Baz, Lina; Avalos, Javier; Valkonen, Jari P T; Reski, Ralf; Al-Babili, Salim

    2017-10-01

    In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Characterization of a functionally important and evolutionarily well-conserved epitope mapped to the short consensus repeats of E-selectin and L-selectin.

    Science.gov (United States)

    Jutila, M A; Watts, G; Walcheck, B; Kansas, G S

    1992-06-01

    Selectins represent a new family of adhesion molecules, expressed by leukocytes and endothelial cells, that are involved in the regulation of leukocyte traffic. Here we have characterized a new monoclonal antibody (mAb) (EL-246) that recognizes both human leukocyte L-selectin (previously called LAM-1, LECAM-1, or gp90MEL-14) and endothelial cell E-selectin (previously called ELAM-1). EL-246 recognized a 110-kD protein expressed on cells transfected with E-selectin cDNA and stained many postcapillary venules in inflamed human tonsil. EL-246 also stained human peripheral blood leukocytes and showed identity with anti-L-selectin mAb in two-color flow cytometric analysis. The expression of the leukocyte EL-246 antigen was regulated in the same manner as L-selectin and EL-246 recognized anti-L-selectin mAb affinity-purified antigen in SDS/PAGE Western blot analysis. Further, L-selectin cDNA transfectants were specifically stained by EL-246. EL-246 blocked greater than 95% of lymphocyte adhesion to peripheral lymph node high endothelial venules and greater than 90% of neutrophil adhesion to E-selectin transfectants. In addition to the EL-246 epitope being expressed on two different human selectins, it was detected on L-selectin from a variety of different animals. Interestingly, domain mapping studies localized the EL-246 epitope to the short consensus repeat (SCR) domains of L-selectin. EL-246 is the first mAb that recognizes two different selectins and potentially defines a functional epitope encoded by the SCR domains. Inhibitors of selectin function targeted to this region would be expected to have the added advantage of simultaneously blocking the activity of two distinct adhesion proteins involved in inflammation.

  6. Evolutionarily conserved IMPACT impairs various stress responses that require GCN1 for activating the eIF2 kinase GCN2

    Energy Technology Data Exchange (ETDEWEB)

    Cambiaghi, Tavane D.; Pereira, Catia M. [Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo (Brazil); Shanmugam, Renuka; Bolech, Michael [Institute of Natural and Mathematical Sciences, Massey University (New Zealand); Wek, Ronald C. [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine (United States); Sattlegger, Evelyn [Institute of Natural and Mathematical Sciences, Massey University (New Zealand); Castilho, Beatriz A., E-mail: bacastilho@unifesp.br [Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo (Brazil)

    2014-01-10

    Highlights: •GCN1 is required for mammalian and yeast GCN2 function in a variety of conditions. •Mammalian IMPACT competes with GCN2 for GCN1 binding. •IMPACT and its yeast counterpart YIH1 downregulate GCN1-dependent GCN2 activation. -- Abstract: In response to a range of environmental stresses, phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) represses general protein synthesis coincident with increased translation of specific mRNAs, such as those encoding the transcription activators GCN4 and ATF4. The eIF2α kinase GCN2 is activated by amino acid starvation by a mechanism involving GCN2 binding to an activator protein GCN1, along with association with uncharged tRNA that accumulates during nutrient deprivation. We previously showed that mammalian IMPACT and its yeast ortholog YIH1 bind to GCN1, thereby preventing GCN1 association with GCN2 and stimulation of this eIF2α kinase during amino acid depletion. GCN2 activity is also enhanced by other stresses, including proteasome inhibition, UV irradiation and lack of glucose. Here, we provide evidence that IMPACT affects directly and specifically the activation of GCN2 under these stress conditions in mammalian cells. We show that activation of mammalian GCN2 requires its interaction with GCN1 and that IMPACT promotes the dissolution of the GCN2–GCN1 complex. To a similar extent as the overexpression of YIH1, overexpression of IMPACT in yeast cells inhibited growth under all stress conditions that require GCN2 and GCN1 for cell survival, including exposure to acetic acid, high levels of NaCl, H{sub 2}O{sub 2} or benomyl. This study extends our understanding of the roles played by GCN1 in GCN2 activation induced by a variety of stress arrangements and suggests that IMPACT and YIH1 use similar mechanisms for regulating this eIF2α kinase.

  7. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize.

    Directory of Open Access Journals (Sweden)

    Matt eGeisler

    2015-06-01

    Full Text Available Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6,004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.

  8. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers.

    Science.gov (United States)

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Duplessis, Sébastien; Ellis, Brian E

    2012-04-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.

  9. The Conserved VPS-50 Protein Functions in Dense-Core Vesicle Maturation and Acidification and Controls Animal Behavior.

    Science.gov (United States)

    Paquin, Nicolas; Murata, Yasunobu; Froehlich, Allan; Omura, Daniel T; Ailion, Michael; Pender, Corinne L; Constantine-Paton, Martha; Horvitz, H Robert

    2016-04-04

    The modification of behavior in response to experience is crucial for animals to adapt to environmental changes. Although factors such as neuropeptides and hormones are known to function in the switch between alternative behavioral states, the mechanisms by which these factors transduce, store, retrieve, and integrate environmental signals to regulate behavior are poorly understood. The rate of locomotion of the nematode Caenorhabditis elegans depends on both current and past food availability. Specifically, C. elegans slows its locomotion when it encounters food, and animals in a food-deprived state slow even more than animals in a well-fed state. The slowing responses of well-fed and food-deprived animals in the presence of food represent distinct behavioral states, as they are controlled by different sets of genes, neurotransmitters, and neurons. Here we describe an evolutionarily conserved C. elegans protein, VPS-50, that is required for animals to assume the well-fed behavioral state. Both VPS-50 and its murine homolog mVPS50 are expressed in neurons, are associated with synaptic and dense-core vesicles, and control vesicle acidification and hence synaptic function, likely through regulation of the assembly of the V-ATPase complex. We propose that dense-core vesicle acidification controlled by the evolutionarily conserved protein VPS-50/mVPS50 affects behavioral state by modulating neuropeptide levels and presynaptic neuronal function in both C. elegans and mammals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thioredoxins in evolutionarily primitive organisms

    Science.gov (United States)

    Buchanan, B. B.

    1986-01-01

    Thioredoxins are low molecular weight redox proteins, alternating between the S-S (oxidized) and SH (reduced) states, that function in a number of biochemical processes, including DNA synthesis, DNA replication, and enzyme regulation. Until recently, reduced ferredoxin was known to serve as the source of reducing power for the reduction of thioredoxins only in oxygenic photosynthetic cells. In all other organisms, the source of hydrogen (electrons) for thioredoxin reduction was considered to be NADPH. It was found that Clostridium pasteurianum, an anaerobic organism normally living in the soil unexposed to light, resembles photosynthetic cells in using ferredoxin for the reduction of thioredoxin. The results reveal the existence of a pathway in which ferredoxin, provides the reducing power for the reduction of thioredoxin via the flavoprotein enzyme, ferredoxinthioredoxin reductase. In related studies, it was found that Chromatium vinosum, an anaerobic photosynthetic purple sulfur bacterium, resembles evolutionarily more advanced micro-organisms in having an NADP-thioredoxin system composed of a single thioredoxin which is reduced by NADPH via NADP-thioredoxin reductase. The adoption of the NADP-thioredoxin system by Chromatium seems appropriate in view of evidence tha the organi sm utilizes ATP-driven reverse electron transport. Finally, results of research directed towards the identification of target enzymes of the ferredoxin/thioredoxin system in a cyanobacterium (Nostoc muscorum), show that thioredoxin-linked photosynthetic enzymes of cyanobateria are similar to those of chloroplasts. It now seems that the ferredoxin/thioredoxin system functions in regulating CO2 assimilation via the reductive pentose phosphate cycle in oxygenic but not anoxygenic photosynthetic cells.

  11. Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels.

    Science.gov (United States)

    Barrantes, Francisco J

    2015-09-01

    Using the crosstalk between the nicotinic acetylcholine receptor (nAChR) and its lipid microenvironment as a paradigm, this short overview analyzes the occurrence of structural motifs which appear not only to be conserved within the nAChR family and contemporary eukaryotic members of the pentameric ligand-gated ion channel (pLGIC) superfamily, but also extend to prokaryotic homologues found in bacteria. The evolutionarily conserved design is manifested in: 1) the concentric three-ring architecture of the transmembrane region, 2) the occurrence in this region of distinct lipid consensus motifs in prokaryotic and eukaryotic pLGIC and 3) the key participation of the outer TM4 ring in conveying the influence of the lipid membrane environment to the middle TM1-TM3 ring and this, in turn, to the inner TM2 channel-lining ring, which determines the ion selectivity of the channel. The preservation of these constant structural-functional features throughout such a long phylogenetic span likely points to the successful gain-of-function conferred by their early acquisition. This article is part of a Special Issue entitled: Lipid-protein interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. An Evolutionarily Informed Education Science

    Science.gov (United States)

    Geary, David C.

    2008-01-01

    Schools are a central interface between evolution and culture. They are the contexts in which children learn the evolutionarily novel abilities and knowledge needed to function as adults in modern societies. Evolutionary educational psychology is the study of how an evolved bias in children's learning and motivational systems influences their…

  13. A conserved mammalian protein interaction network.

    Directory of Open Access Journals (Sweden)

    Åsa Pérez-Bercoff

    Full Text Available Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective constraint, presumably due to their functional roles.

  14. Conserved epitopes on HIV-1, FIV and SIV p24 proteins are recognized by HIV-1 infected subjects.

    Science.gov (United States)

    Roff, Shannon R; Sanou, Missa P; Rathore, Mobeen H; Levy, Jay A; Yamamoto, Janet K

    2015-01-01

    Cross-reactive peptides on HIV-1 and FIV p24 protein sequences were studied using peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected long-term survivors (LTS; >10 y of infection without antiretroviral therapy, ART), short-term HIV-1 infected subjects not on ART, and ART-treated HIV-1 infected subjects. IFNγ-ELISpot and CFSE-proliferation analyses were performed with PBMC using overlapping HIV-1 and FIV p24 peptides. Over half of the HIV-1 infected subjects tested (22/31 or 71%) responded to one or more FIV p24 peptide pools by either IFNγ or T-cell proliferation analysis. PBMC and T cells from infected subjects in all 3 HIV(+) groups predominantly recognized one FIV p24 peptide pool (Fp14) by IFNγ production and one additional FIV p24 peptide pool (Fp9) by T-cell proliferation analysis. Furthermore, evaluation of overlapping SIV p24 peptide sequences identified conserved epitope(s) on the Fp14/Hp15-counterpart of SIV, Sp14, but none on Fp9-counterpart of SIV, Sp9. The responses to these FIV peptide pools were highly reproducible and persisted throughout 2-4 y of monitoring. Intracellular staining analysis for cytotoxins and phenotyping for CD107a determined that peptide epitopes from Fp9 and Fp14 pools induced cytotoxic T lymphocyte-associated molecules including perforin, granzyme B, granzyme A, and/or expression of CD107a. Selected FIV and corresponding SIV epitopes recognized by HIV-1 infected patients indicate that these protein sequences are evolutionarily conserved on both SIV and HIV-1 (e.g., Hp15:Fp14:Sp14). These studies demonstrate that comparative immunogenicity analysis of HIV-1, FIV, and SIV can identify evolutionarily-conserved T cell-associated lentiviral epitopes, which could be used as a vaccine for prophylaxis or immunotherapy.

  15. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  16. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  17. Multiple protein-domain conservation architecture as a non ...

    African Journals Online (AJOL)

    Epitope prediction is a critical step to diagnostic and vaccine discovery. Despite existence of some parameters for epitope discovery, this area remains inconclusive and wanting-for new complementary or stand-alone tools. The phenomenon of multiple protein-domain conservation architecture (MPDCA) as used here refers ...

  18. Mitogen-Activated Protein Kinase Signaling in Plant-Interacting Fungi: Distinct Messages from Conserved Messengers[W

    Science.gov (United States)

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Duplessis, Sébastien; Ellis, Brian E.

    2012-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens. PMID:22517321

  19. Predicting conserved protein motifs with Sub-HMMs

    Directory of Open Access Journals (Sweden)

    Girke Thomas

    2010-04-01

    Full Text Available Abstract Background Profile HMMs (hidden Markov models provide effective methods for modeling the conserved regions of protein families. A limitation of the resulting domain models is the difficulty to pinpoint their much shorter functional sub-features, such as catalytically relevant sequence motifs in enzymes or ligand binding signatures of receptor proteins. Results To identify these conserved motifs efficiently, we propose a method for extracting the most information-rich regions in protein families from their profile HMMs. The method was used here to predict a comprehensive set of sub-HMMs from the Pfam domain database. Cross-validations with the PROSITE and CSA databases confirmed the efficiency of the method in predicting most of the known functionally relevant motifs and residues. At the same time, 46,768 novel conserved regions could be predicted. The data set also allowed us to link at least 461 Pfam domains of known and unknown function by their common sub-HMMs. Finally, the sub-HMM method showed very promising results as an alternative search method for identifying proteins that share only short sequence similarities. Conclusions Sub-HMMs extend the application spectrum of profile HMMs to motif discovery. Their most interesting utility is the identification of the functionally relevant residues in proteins of known and unknown function. Additionally, sub-HMMs can be used for highly localized sequence similarity searches that focus on shorter conserved features rather than entire domains or global similarities. The motif data generated by this study is a valuable knowledge resource for characterizing protein functions in the future.

  20. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available Cytochrome P450 monooxygenases (P450s are heme-thiolate proteins distributed across the biological kingdoms. P450s are catalytically versatile and play key roles in organisms primary and secondary metabolism. Identification of P450s across the biological kingdoms depends largely on the identification of two P450 signature motifs, EXXR and CXG, in the protein sequence. Once a putative protein has been identified as P450, it will be assigned to a family and subfamily based on the criteria that P450s within a family share more than 40% homology and members of subfamilies share more than 55% homology. However, to date, no evidence has been presented that can distinguish members of a P450 family. Here, for the first time we report the identification of EXXR- and CXG-motifs-based amino acid patterns that are characteristic of the P450 family. Analysis of P450 signature motifs in the under-explored fungal P450s from four different phyla, ascomycota, basidiomycota, zygomycota and chytridiomycota, indicated that the EXXR motif is highly variable and the CXG motif is somewhat variable. The amino acids threonine and leucine are preferred as second and third amino acids in the EXXR motif and proline and glycine are preferred as second and third amino acids in the CXG motif in fungal P450s. Analysis of 67 P450 families from biological kingdoms such as plants, animals, bacteria and fungi showed conservation of a set of amino acid patterns characteristic of a particular P450 family in EXXR and CXG motifs. This suggests that during the divergence of P450 families from a common ancestor these amino acids patterns evolve and are retained in each P450 family as a signature of that family. The role of amino acid patterns characteristic of a P450 family in the structural and/or functional aspects of members of the P450 family is a topic for future research.

  1. Expression of evolutionarily novel genes in tumors

    OpenAIRE

    A. P. Kozlov

    2016-01-01

    The evolutionarily novel genes originated through different molecular mechanisms are expressed in tumors. Sometimes the expression of evolutionarily novel genes in tumors is highly specific. Moreover positive selection of many human tumor-related genes in primate lineage suggests their involvement in the origin of new functions beneficial to organisms. It is suggested to consider the expression of evolutionarily young or novel genes in tumors as a new biological phenomenon, a phenomenon of TS...

  2. Conservation of ciliary proteins in plants with no cilia

    Directory of Open Access Journals (Sweden)

    Hodges Matthew E

    2011-12-01

    Full Text Available Abstract Background Eukaryotic cilia are complex, highly conserved microtubule-based organelles with a broad phylogenetic distribution. Cilia were present in the last eukaryotic common ancestor and many proteins involved in cilia function have been conserved through eukaryotic diversification. However, cilia have also been lost multiple times in different lineages, with at least two losses occurring within the land plants. Whereas all non-seed plants produce cilia for motility of male gametes, some gymnosperms and all angiosperms lack cilia. During these evolutionary losses, proteins with ancestral ciliary functions may be lost or co-opted into different functions. Results Here we identify a core set of proteins with an inferred ciliary function that are conserved in ciliated eukaryotic species. We interrogate this genomic dataset to identify proteins with a predicted ancestral ciliary role that have been maintained in non-ciliated land plants. In support of our prediction, we demonstrate that several of these proteins have a flagellar localisation in protozoan trypanosomes. The phylogenetic distribution of these genes within the land plants indicates evolutionary scenarios of either sub- or neo-functionalisation and expression data analysis shows that these genes are highly expressed in Arabidopsis thaliana pollen cells. Conclusions A large number of proteins possess a phylogenetic ciliary profile indicative of ciliary function. Remarkably, many genes with an ancestral ciliary role are maintained in non-ciliated land plants. These proteins have been co-opted to perform novel functions, most likely before the loss of cilia, some of which appear related to the formation of the male gametes.

  3. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  4. Sponge non-metastatic Group I Nme gene/protein - structure and function is conserved from sponges to humans

    Directory of Open Access Journals (Sweden)

    Ćetković Helena

    2011-04-01

    Full Text Available Abstract Background Nucleoside diphosphate kinases NDPK are evolutionarily conserved enzymes present in Bacteria, Archaea and Eukarya, with human Nme1 the most studied representative of the family and the first identified metastasis suppressor. Sponges (Porifera are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestor's genomic features. Recent studies show that sponges have a wide repertoire of genes many of which are involved in diseases in more complex metazoans. The original function of those genes and the way it has evolved in the animal lineage is largely unknown. Here we report new results on the metastasis suppressor gene/protein homolog from the marine sponge Suberites domuncula, NmeGp1Sd. The purpose of this study was to investigate the properties of the sponge Group I Nme gene and protein, and compare it to its human homolog in order to elucidate the evolution of the structure and function of Nme. Results We found that sponge genes coding for Group I Nme protein are intron-rich. Furthermore, we discovered that the sponge NmeGp1Sd protein has a similar level of kinase activity as its human homolog Nme1, does not cleave negatively supercoiled DNA and shows nonspecific DNA-binding activity. The sponge NmeGp1Sd forms a hexamer, like human Nme1, and all other eukaryotic Nme proteins. NmeGp1Sd interacts with human Nme1 in human cells and exhibits the same subcellular localization. Stable clones expressing sponge NmeGp1Sd inhibited the migratory potential of CAL 27 cells, as already reported for human Nme1, which suggests that Nme's function in migratory processes was engaged long before the composition of true tissues. Conclusions This study suggests that the ancestor of all animals possessed a NmeGp1 protein with properties and functions similar to evolutionarily recent versions of the protein, even before the

  5. Sponge non-metastatic Group I Nme gene/protein - structure and function is conserved from sponges to humans

    Science.gov (United States)

    2011-01-01

    Background Nucleoside diphosphate kinases NDPK are evolutionarily conserved enzymes present in Bacteria, Archaea and Eukarya, with human Nme1 the most studied representative of the family and the first identified metastasis suppressor. Sponges (Porifera) are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestor's genomic features. Recent studies show that sponges have a wide repertoire of genes many of which are involved in diseases in more complex metazoans. The original function of those genes and the way it has evolved in the animal lineage is largely unknown. Here we report new results on the metastasis suppressor gene/protein homolog from the marine sponge Suberites domuncula, NmeGp1Sd. The purpose of this study was to investigate the properties of the sponge Group I Nme gene and protein, and compare it to its human homolog in order to elucidate the evolution of the structure and function of Nme. Results We found that sponge genes coding for Group I Nme protein are intron-rich. Furthermore, we discovered that the sponge NmeGp1Sd protein has a similar level of kinase activity as its human homolog Nme1, does not cleave negatively supercoiled DNA and shows nonspecific DNA-binding activity. The sponge NmeGp1Sd forms a hexamer, like human Nme1, and all other eukaryotic Nme proteins. NmeGp1Sd interacts with human Nme1 in human cells and exhibits the same subcellular localization. Stable clones expressing sponge NmeGp1Sd inhibited the migratory potential of CAL 27 cells, as already reported for human Nme1, which suggests that Nme's function in migratory processes was engaged long before the composition of true tissues. Conclusions This study suggests that the ancestor of all animals possessed a NmeGp1 protein with properties and functions similar to evolutionarily recent versions of the protein, even before the appearance of true tissues

  6. Conservation, variability and the modeling of active protein kinases.

    Directory of Open Access Journals (Sweden)

    James D R Knight

    2007-10-01

    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  7. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Conservation and Variability of Synaptonemal Complex Proteins in Phylogenesis of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Tatiana M. Grishaeva

    2014-01-01

    Full Text Available The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants.

  9. Evolutionary Conserved Protein Features From Analysis of Virus Shapes

    CERN Document Server

    Bozic, Anze Losdorfer; Podgornik, Rudolf

    2013-01-01

    From the shape and size analysis of approximately 130 small icosahedral viruses we conclude that there is a typical structural capsid protein, having a mean diameter of 5 nm and a mean thickness of 3 nm, with more than two thirds of the analyzed capsid proteins having thicknesses between 2 nm and 4 nm. To investigate whether, in addition to the conserved geometry, capsid proteins show similarities in the way they interact with one another, we examined the shapes of the capsids in detail. We classified them numerically according to their similarity to sphere and icosahedron and a set of shapes in between, all obtained from the theory of elasticity of shells. In order to make a unique and straightforward connection between an idealized, numerically calculated shape of an elastic shell and a capsid, we devised a special shape fitting procedure, the outcome of which is the idealized elastic shape fitting the capsid best. Using such a procedure we performed statistical analysis of a series of virus shapes and we f...

  10. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    Science.gov (United States)

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  11. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Functionality of system components: Conservation of protein function in protein feature space

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Ussery, David; Brunak, Søren

    2003-01-01

    Many protein features useful for prediction of protein function can be predicted from sequence, including posttranslational modifications, subcellular localization, and physical/chemical properties. We show here that such protein features are more conserved among orthologs than paralogs, indicating...... they are crucial for protein function and thus subject to selective pressure. This means that a function prediction method based on sequence-derived features may be able to discriminate between proteins with different function even when they have highly similar structure. Also, such a method is likely to perform...... well on organisms other than the one on which it was trained. We evaluate the performance of such a method, ProtFun, which relies on protein features as its sole input, and show that the method gives similar performance for most eukaryotes and performs much better than anticipated on archaea...

  13. Identification of proteins that form specific complexes with the highly conserved protein Translin in Schizosaccharomyces pombe.

    Science.gov (United States)

    Eliahoo, Elad; Litovco, Phyana; Ben Yosef, Ron; Bendalak, Keren; Ziv, Tamar; Manor, Haim

    2014-04-01

    Translin is a single-stranded DNA and RNA binding protein that has a high affinity for G-rich sequences. TRAX is a Translin paralog that associates with Translin. Both Translin and TRAX were highly conserved in eukaryotes. The nucleic acid binding form of Translin is a barrel-shaped homo-octamer. A Translin-TRAX hetero-octamer having a similar structure also binds nucleic acids. Previous reports suggested that Translin may be involved in chromosomal translocations, telomere metabolism and the control of mRNA transport and translation. More recent studies have indicated that Translin-TRAX hetero-octamers are involved in RNA silencing. To gain a further insight into the functions of Translin, we have undertaken to systematically search for proteins with which it forms specific complexes in living cells. Here we report the results of such a search conducted in the fission yeast Schizosaccharomyces pombe, a suitable model system. This search was carried out by affinity purification and immuno-precipitation techniques, combined with differential labeling of the intracellular proteins with the stable isotopes ¹⁵N and ¹⁴N. We identified for the first time two proteins containing an RNA Recognition Motif (RRM), which are specifically associated with the yeast Translin: (1) the pre-mRNA-splicing factor srp1 that belongs to the highly conserved SR family of proteins and (2) vip1, a protein conserved in fungi. Our data also support the presence of RNA in these intracellular complexes. Our experimental approach should be generally applicable to studies of weak intracellular protein-protein interactions and provides a clear distinction between false positive vs. truly interacting proteins. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein

    Directory of Open Access Journals (Sweden)

    Gibbons I R

    2002-07-01

    Full Text Available Abstract Background The largest open reading frame in the Saccharomyces genome encodes midasin (MDN1p, YLR106p, an AAA ATPase of 560 kDa that is essential for cell viability. Orthologs of midasin have been identified in the genome projects for Drosophila, Arabidopsis, and Schizosaccharomyces pombe. Results Midasin is present as a single-copy gene encoding a well-conserved protein of ~600 kDa in all eukaryotes for which data are available. In humans, the gene maps to 6q15 and encodes a predicted protein of 5596 residues (632 kDa. Sequence alignments of midasin from humans, yeast, Giardia and Encephalitozoon indicate that its domain structure comprises an N-terminal domain (35 kDa, followed by an AAA domain containing six tandem AAA protomers (~30 kDa each, a linker domain (260 kDa, an acidic domain (~70 kDa containing 35–40% aspartate and glutamate, and a carboxy-terminal M-domain (30 kDa that possesses MIDAS sequence motifs and is homologous to the I-domain of integrins. Expression of hemagglutamin-tagged midasin in yeast demonstrates a polypeptide of the anticipated size that is localized principally in the nucleus. Conclusions The highly conserved structure of midasin in eukaryotes, taken in conjunction with its nuclear localization in yeast, suggests that midasin may function as a nuclear chaperone and be involved in the assembly/disassembly of macromolecular complexes in the nucleus. The AAA domain of midasin is evolutionarily related to that of dynein, but it appears to lack a microtubule-binding site.

  15. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A. (UNL)

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  16. Characterization of chicken octamer-binding proteins demonstrates that POU domain-containing homeobox transcription factors have been highly conserved during vertebrate evolution

    Energy Technology Data Exchange (ETDEWEB)

    Petryniak, B.; Postema, C.E.; McCormack, W.T.; Thompson, C.B. (Univ. of Michigan Medical Center, Ann Arbor (USA)); Staudt, L.M. (National Cancer Institute, Bethesda, MD (USA))

    1990-02-01

    The DNA sequence motif ATTTGCAT (octamer) or its inverse complement has been identified as an evolutionarily conserved element in the promoter region of immunoglobulin genes. Two major DNA-binding proteins that bind in a sequence-specific manner to the octamer DNA sequence have been identified in mammalian species--a ubiquitously expressed protein (Oct-1) and a lymphoid-specific protein (Oct-2). During characterization of the promoter region of the chicken immunoglobulin light chain gene, the authors identified two homologous octamer-binding proteins in chicken B cells. when the cloning of the human gene for Oct-2 revealed it to be a member of a distinct family of homeobox genes, they sought to determine if the human Oct-2 cDNA could be used to identify homologous chicken homeobox genes. Using a human Oct-2 homeobox-specific DNA probe, they were able to identify 6-10 homeobox-containing genes in the chicken genome, demonstrating that the Oct-2-related subfamily of homeobox genes exists in avian species. DNA sequence analysis revealed it to be the chicken homologue of the human Oct-1 gene. Together, the data show that the POU-containing subfamily of homeobox genes have been highly conserved during vertebrate evolution, apparently as a result of selection for their DNA-binding and transcriptional regulatory properties.

  17. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif.

    Directory of Open Access Journals (Sweden)

    Mostafa H Ahmed

    Full Text Available There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region.A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules.The water molecules were found to be involved in: a (bridging interactions with both proteins (21%, b favorable interactions with only one protein (53%, and c no interactions with either protein (26%. This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins' interaction (-0.46 kcal mol(-1, but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol(-1. Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å(2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or "hydrophobic bubbles". Such water molecules may have an important biological purpose in mediating protein-protein interactions.

  18. Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8.

    Directory of Open Access Journals (Sweden)

    Rachel Senturia

    Full Text Available Human DiGeorge Critical Region 8 (DGCR8 is an essential microRNA (miRNA processing factor that is activated via direct interaction with Fe(III heme. In order for DGCR8 to bind heme, it must dimerize using a dimerization domain embedded within its heme-binding domain (HBD. We previously reported a crystal structure of the dimerization domain from human DGCR8, which demonstrated how dimerization results in the formation of a surface important for association with heme. Here, in an attempt to crystallize the HBD, we search for DGCR8 homologues and show that DGCR8 from Patiria miniata (bat star also binds heme. The extinction coefficients (ε of DGCR8-heme complexes are determined; these values are useful for biochemical analyses and allow us to estimate the heme occupancy of DGCR8 proteins. Additionally, we present the crystal structure of the Xenopus laevis dimerization domain. The structure is very similar to that of human DGCR8. Our results indicate that dimerization and heme binding are evolutionarily conserved properties of DGCR8 homologues not only in vertebrates, but also in at least some invertebrates.

  19. Evolutionary placement of Xanthomonadales based on conserved protein signature sequences.

    Science.gov (United States)

    Cutiño-Jiménez, Ania M; Martins-Pinheiro, Marinalva; Lima, Wanessa C; Martín-Tornet, Alexander; Morales, Osleidys G; Menck, Carlos F M

    2010-02-01

    Xanthomonadales comprises one of the largest phytopathogenic bacterial groups, and is currently classified within the gamma-proteobacteria. However, the phylogenetic placement of this group is not clearly resolved, and the results of different studies contradict one another. In this work, the evolutionary position of Xanthomonadales was determined by analyzing the presence of shared insertions and deletions (INDELs) in highly conserved proteins. Several distinctive insertions found in most of the members of the gamma-proteobacteria are absent in Xanthomonadales and groups such as Legionelalles, Chromatiales, Methylococcales, Thiotrichales and Cardiobacteriales. These INDELs were most likely introduced after the branching of Xanthomonadales from most of the gamma-proteobacteria and provide evidence for the phylogenetic placement of the early gamma-proteobacteria. Moreover, other proteins contain insertions exclusive to the Xanthomonadales order, confirming that this is a monophyletic group and provide important specific genetic markers. Thus, the data presented clearly support the Xanthomonadales group as an independent subdivision, and constitute one of the deepest branching lineage within the gamma-proteobacteria clade. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. The topology of the bacterial co-conserved protein network and its implications for predicting protein function

    Directory of Open Access Journals (Sweden)

    Leach Sonia M

    2008-06-01

    Full Text Available Abstract Background Protein-protein interactions networks are most often generated from physical protein-protein interaction data. Co-conservation, also known as phylogenetic profiles, is an alternative source of information for generating protein interaction networks. Co-conservation methods generate interaction networks among proteins that are gained or lost together through evolution. Co-conservation is a particularly useful technique in the compact bacteria genomes. Prior studies in yeast suggest that the topology of protein-protein interaction networks generated from physical interaction assays can offer important insight into protein function. Here, we hypothesize that in bacteria, the topology of protein interaction networks derived via co-conservation information could similarly improve methods for predicting protein function. Since the topology of bacteria co-conservation protein-protein interaction networks has not previously been studied in depth, we first perform such an analysis for co-conservation networks in E. coli K12. Next, we demonstrate one way in which network connectivity measures and global and local function distribution can be exploited to predict protein function for previously uncharacterized proteins. Results Our results showed, like most biological networks, our bacteria co-conserved protein-protein interaction networks had scale-free topologies. Our results indicated that some properties of the physical yeast interaction network hold in our bacteria co-conservation networks, such as high connectivity for essential proteins. However, the high connectivity among protein complexes in the yeast physical network was not seen in the co-conservation network which uses all bacteria as the reference set. We found that the distribution of node connectivity varied by functional category and could be informative for function prediction. By integrating of functional information from different annotation sources and using the

  1. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiahai; Liu, Chuan Yin; Back, Sung Hoon; Clark, Robert L.; Peisach, Daniel; Xu, Zhaohui; Kaufman, Randal J. (Michigan)

    2010-03-08

    The unfolded protein response (UPR) is an evolutionarily conserved mechanism by which all eukaryotic cells adapt to the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Inositol-requiring kinase 1 (IRE1) and PKR-related ER kinase (PERK) are two type I transmembrane ER-localized protein kinase receptors that signal the UPR through a process that involves homodimerization and autophosphorylation. To elucidate the molecular basis of the ER transmembrane signaling event, we determined the x-ray crystal structure of the luminal domain of human IRE1{alpha}. The monomer of the luminal domain comprises a unique fold of a triangular assembly of {beta}-sheet clusters. Structural analysis identified an extensive dimerization interface stabilized by hydrogen bonds and hydrophobic interactions. Dimerization creates an MHC-like groove at the interface. However, because this groove is too narrow for peptide binding and the purified luminal domain forms high-affinity dimers in vitro, peptide binding to this groove is not required for dimerization. Consistent with our structural observations, mutations that disrupt the dimerization interface produced IRE1{alpha} molecules that failed to either dimerize or activate the UPR upon ER stress. In addition, mutations in a structurally homologous region within PERK also prevented dimerization. Our structural, biochemical, and functional studies in vivo altogether demonstrate that IRE1 and PERK have conserved a common molecular interface necessary and sufficient for dimerization and UPR signaling.

  2. Protein-Protein Interactions: Structurally Conserved Residues Distinguish between Binding Sites and Exposed Protein Surfaces

    National Research Council Canada - National Science Library

    Buyong Ma; Tal Elkayam; Haim Wolfson; Ruth Nussinov

    2003-01-01

    Polar residue hot spots have been observed at protein-protein binding sites. Here we show that hot spots occur predominantly at the interfaces of macromolecular complexes, distinguishing binding sites from the remainder of the surface...

  3. Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction.

    Science.gov (United States)

    Jaeger, Samira; Sers, Christine T; Leser, Ulf

    2010-12-20

    While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species. We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (MLH1, PMS2, EPHB4 ) and could confirm more than 73% of them based on evidence in the literature. The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.

  4. Hierarchical partitioning of metazoan protein conservation profiles provides new functional insights.

    Directory of Open Access Journals (Sweden)

    Jonathan Witztum

    Full Text Available The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles. We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO analysis tool, we explore functional enrichment of the "universal proteins", those with homologues in all 17 other species, and of the "non-universal proteins". A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the "tree of life" (TOL consistent, as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the "life style" of the related clades. Most previous approaches for studying function and conservation are "bottom up", studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is "top down". We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life.

  5. Forage Management Effects on Protein and Fiber Fractions, Protein Degradability, and Dry Matter Yield of Red Clover Conserved as Silage

    Science.gov (United States)

    Due to the action of o-quinones formed via polyphenol oxidase, conserved red clover (Trifolium pratense L.) contains abundant rumen undegradable protein (RUP), but inadequate rumen degradable protein (RDP) for dairy cattle. This study examined how forage management influences RDP, RUP, crude protein...

  6. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  7. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  8. Identification of a novel conserved mixed-isoform B56 regulatory subunit and spatiotemporal regulation of protein phosphatase 2A during Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Seeling Joni M

    2007-12-01

    Full Text Available Abstract Background Wnt signaling is a key regulator of development and tumorigenesis. Protein phosphatase 2A (PP2A, which consists of a catalytic C, a structural A, and a regulatory B subunit, plays diverse roles in Wnt signaling through its B56 subunits. B56 is a multigene family encoding for proteins with a conserved core domain and divergent amino- and carboxy-termini. Ectopic B56α and B56γ reduce β-catenin abundance and B56α reduces Wnt-dependent transcription, suggesting that B56α and B56γ inhibit Wnt signaling. In contrast, B56ε is required for Wnt signaling. Knowledge of where and when B56 subunits are expressed during Xenopus development will aid in our understanding of their roles in Wnt signaling. Results We have undertaken expression analyses of B56α and B56γ in Xenopus laevis. We cloned Xenopus B56α; it is 88% identical to human B56α. Xenopus B56γ is 94% identical with human B56γ, however, a novel evolutionarily conserved mixed-isoform transcript was identified that contains a B56δ-like amino-terminal domain and a B56γ core domain. The B56δ-like variable domain exon is located upstream of the B56γ variable domain exon at the human B56γ locus, suggesting that the mixed-isoform transcript is due to alternative splicing. B56γ transcripts with different 3' ends were identified that lack or possess a 35 base pair sequence, resulting in either a transcript similar to human B56γ1, or an uncharacterized evolutionarily conserved sequence. Real time RT-PCR analyses revealed that B56α is expressed at moderate levels before the midblastula transition (MBT, at reduced levels during gastrulation and neurulation, and at high levels during organogenesis, while B56γ is expressed at low levels until organogenesis. B56α is enriched in the ventral hemisphere pre-MBT, while B56γ is ventrally enriched post-MBT. Aα, Aβ, Cα and Cβ are expressed in early Xenopus development, suggesting the presence of a functional heterotrimer

  9. Structure-sequence based analysis for identification of conserved regions in proteins

    Science.gov (United States)

    Zemla, Adam T; Zhou, Carol E; Lam, Marisa W; Smith, Jason R; Pardes, Elizabeth

    2013-05-28

    Disclosed are computational methods, and associated hardware and software products for scoring conservation in a protein structure based on a computationally identified family or cluster of protein structures. A method of computationally identifying a family or cluster of protein structures in also disclosed herein.

  10. Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination.

    Science.gov (United States)

    Bagheri-Fam, Stefan; Sinclair, Andrew H; Koopman, Peter; Harley, Vincent R

    2010-03-01

    While the primary sex determining switch varies between vertebrate species, a key downstream event in testicular development, namely the male-specific up-regulation of Sox9, is conserved. To date, only two sex determining switch genes have been identified, Sry in mammals and the Dmrt1-related gene Dmy (Dmrt1bY) in the medaka fish Oryzias latipes. In mice, Sox9 expression is evidently up-regulated by SRY and maintained by SOX9 both of which directly activate the core 1.3 kb testis-specific enhancer of Sox9 (TESCO). How Sox9 expression is up-regulated and maintained in species without Sry (i.e. non-mammalian species) is not understood. In this study, we have undertaken an in-depth comparative genomics approach and show that TESCO contains an evolutionarily conserved region (ECR) of 180 bp which is present in marsupials, monotremes, birds, reptiles and amphibians. The ECR contains highly conserved modules that predict regulatory roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination/differentiation. Our data suggest that tetrapods share common aspects of Sox9 regulation in the testis, despite having different sex determining switch mechanisms. They also suggest that Sox9 autoregulation is an ancient mechanism shared by all tetrapods, raising the possibility that in mammals, SRY evolved by mimicking this regulation. The validation of ECR regulatory sequences conserved from human to frogs will provide new insights into vertebrate sex determination. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function

    Directory of Open Access Journals (Sweden)

    Ludwig Philip

    2003-12-01

    Full Text Available Abstract Background The WD motif (also known as the Trp-Asp or WD40 motif is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. Results We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. Conclusions Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions.

  12. Identification of conserved surface proteins as novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Chen, Xiabing; Xu, Zhuofei; Li, Lu; Chen, Huanchun; Zhou, Rui

    2012-12-01

    Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing great economic losses worldwide. Identification of conserved surface antigenic proteins is helpful for developing effective vaccines. In this study, a genome-wide strategy combined with bioinformatic and experimental approaches, was applied to discover and characterize surface-associated immunogenic proteins of A. pleuropneumoniae. Thirty nine genes encoding outer membrane proteins (OMPs) and lipoproteins were identified by comparative genomics and gene expression profiling as being-highly conserved and stably transcribed in the different serotypes of A. pleuropneumoniae reference strains. Twelve of these conserved proteins were successfully expressed in Escherichia coli and their immunogenicity was estimated by homologous challenge in the mouse model, and then three of these proteins (APJL_0126, HbpA and OmpW) were further tested in the natural host (swine) by homologous and heterologous challenges. The results showed that these proteins could induce high titers of antibodies, but vaccination with each protein individually elicited low protective immunity against A. pleuropneumoniae. This study gives novel insights into immunogenicity of the conserved OMPs and lipoproteins of A. pleuropneumoniae. Although none of the surface proteins characterized in this study could individually induce effective protective immunity against A. pleuropneumoniae, they are potential candidates for subunit vaccines in combination with Apx toxins.

  13. Conservation of coevolving protein interfaces bridges prokaryote–eukaryote homologies in the twilight zone

    Science.gov (United States)

    Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso

    2016-01-01

    Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach. PMID:27965389

  14. Structural Conservation of the Myoviridae Phage Tail Sheath Protein Fold

    Energy Technology Data Exchange (ETDEWEB)

    Aksyuk, Anastasia A.; Kurochkina, Lidia P.; Fokine, Andrei; Forouhar, Farhad; Mesyanzhinov, Vadim V.; Tong, Liang; Rossmann, Michael G. (SOIBC); (Purdue); (Columbia)

    2012-02-21

    Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 {angstrom} diameter icosahedral head and a 2000 {angstrom}-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 {angstrom} resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 {angstrom} resolution. Despite low sequence identity between these proteins, all of these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.

  15. A belief-based evolutionarily stable strategy.

    Science.gov (United States)

    Deng, Xinyang; Wang, Zhen; Liu, Qi; Deng, Yong; Mahadevan, Sankaran

    2014-11-21

    As an equilibrium refinement of the Nash equilibrium, evolutionarily stable strategy (ESS) is a key concept in evolutionary game theory and has attracted growing interest. An ESS can be either a pure strategy or a mixed strategy. Even though the randomness is allowed in mixed strategy, the selection probability of pure strategy in a mixed strategy may fluctuate due to the impact of many factors. The fluctuation can lead to more uncertainty. In this paper, such uncertainty involved in mixed strategy has been further taken into consideration: a belief strategy is proposed in terms of Dempster-Shafer evidence theory. Furthermore, based on the proposed belief strategy, a belief-based ESS has been developed. The belief strategy and belief-based ESS can reduce to the mixed strategy and mixed ESS, which provide more realistic and powerful tools to describe interactions among agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation.

    Science.gov (United States)

    Hacker, Kathryn E; Fahey, Catherine C; Shinsky, Stephen A; Chiang, Yun-Chen J; DiFiore, Julia V; Jha, Deepak Kumar; Vo, Andy H; Shavit, Jordan A; Davis, Ian J; Strahl, Brian D; Rathmell, W Kimryn

    2016-09-30

    The yeast Set2 histone methyltransferase is a critical enzyme that plays a number of key roles in gene transcription and DNA repair. Recently, the human homologue, SETD2, was found to be recurrently mutated in a significant percentage of renal cell carcinomas, raising the possibility that the activity of SETD2 is tumor-suppressive. Using budding yeast and human cell line model systems, we examined the functional significance of two evolutionarily conserved residues in SETD2 that are recurrently mutated in human cancers. Whereas one of these mutations (R2510H), located in the Set2 Rpb1 interaction domain, did not result in an observable defect in SETD2 enzymatic function, a second mutation in the catalytic domain of this enzyme (R1625C) resulted in a complete loss of histone H3 Lys-36 trimethylation (H3K36me3). This mutant showed unchanged thermal stability as compared with the wild type protein but diminished binding to the histone H3 tail. Surprisingly, mutation of the conserved residue in Set2 (R195C) similarly resulted in a complete loss of H3K36me3 but did not affect dimethylated histone H3 Lys-36 (H3K36me2) or functions associated with H3K36me2 in yeast. Collectively, these data imply a critical role for Arg-1625 in maintaining the protein interaction with H3 and specific H3K36me3 function of this enzyme, which is conserved from yeast to humans. They also may provide a refined biochemical explanation for how H3K36me3 loss leads to genomic instability and cancer. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The lipid transfer protein StarD7: structure, function, and regulation

    OpenAIRE

    Susana Genti-Raimondi; Panzetta-Dutari, Graciela M.; Sofía Angeletti; Viviana Rena; Jésica Flores-Martin

    2017-01-01

    The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. The 15 well-characterized mammalian START domain-containing proteins are grouped into six subfamilies. The START domain containing 7 mRNA encodes StarD7, a member of the StarD2/phosphatidylcholine transfer protein (PCTP) subfamily, which was first i...

  18. Ramachandran analysis of conserved glycyl residues in homologous proteins of known structure.

    Science.gov (United States)

    Lakshmi, Balasubramanian; Sinduja, Chandrasekaran; Archunan, Govind; Srinivasan, Narayanaswamy

    2014-06-01

    High conservation of glycyl residues in homologous proteins is fairly frequent. It is commonly understood that glycine tends to be highly conserved either because of its unique Ramachandran angles or to avoid steric clash that would arise with a larger side chain. Using a database of aligned 3D structures of homologous proteins we identified conserved Gly in 288 alignment positions from 85 families. Ninety-six of these alignment positions correspond to conserved Gly residue with (φ, ψ) values allowed for non-glycyl residues. Reasons for this observation were investigated by in-silico mutation of these glycyl residues to Ala. We found in 94% of the cases a short contact exists between the C(β) atom of the introduced Ala with the atoms which are often distant in the primary structure. This suggests the lack of space even for a short side chain thereby explaining high conservation of glycyl residues even when they adopt (φ, ψ) values allowed for Ala. In 189 alignment positions, the conserved glycyl residues adopt (φ, ψ) values which are disallowed for Ala. In-silico mutation of these Gly residues to Ala almost always results in steric hindrance involving C(β) atom of Ala as one would expect by comparing Ramachandran maps for Ala and Gly. Rare occurrence of the disallowed glycyl conformations even in ultrahigh resolution protein structures are accompanied by short contacts in the crystal structures and such disallowed conformations are not conserved in the homologues. These observations raise the doubt on the accuracy of such glycyl conformations in proteins. © 2014 The Protein Society.

  19. Identification of the conserved hypothetical protein BPSL0317 in Burkholderia pseudomallei K96243

    Science.gov (United States)

    Yusoff, Nur Syamimi; Damiri, Nadzirah; Firdaus-Raih, Mohd

    2014-09-01

    Burkholderia pseudomallei K96243 is the causative agent of melioidosis, a disease which is endemic in Northern Australia and Southeastern Asia. The genome encodes several essential proteins including those currently annotated as hypothetical proteins. We studied the conservation and the essentiality of expressed hypothetical proteins in normal and different stress conditions. Based on the comparative genomics, we identified a hypothetical protein, BPSL0317, a potential essential gene that is being expressed in all normal and stress conditions. BPSL0317 is also phylogenetically conserved in the Burkholderiales order suggesting that this protein is crucial for survival among the order's members. BPSL0317 therefore has a potential to be a candidate antimicrobial drug target for this group of bacteria.

  20. The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein.

    Directory of Open Access Journals (Sweden)

    Bungo Akiyoshi

    Full Text Available The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2 protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.

  1. Inspecting the potential physiological and biomedical value of 44 conserved uncharacterised proteins of Streptococcus pneumoniae.

    Science.gov (United States)

    Martín-Galiano, Antonio J; Yuste, José; Cercenado, María I; de la Campa, Adela G

    2014-08-05

    The major Gram-positive coccoid pathogens cause similar invasive diseases and show high rates of antimicrobial resistance. Uncharacterised proteins shared by these organisms may be involved in virulence or be targets for antimicrobial therapy. Forty four uncharacterised proteins from Streptococcus pneumoniae with homologues in Enterococcus faecalis and/or Staphylococcus aureus were selected for analysis. These proteins showed differences in terms of sequence conservation and number of interacting partners. Twenty eight of these proteins were monodomain proteins and 16 were modular, involving domain combinations and, in many cases, predicted unstructured regions. The genes coding for four of these 44 proteins were essential. Genomic and structural studies showed one of the four essential genes to code for a promising antibacterial target. The strongest impact of gene removal was on monodomain proteins showing high sequence conservation and/or interactions with many other proteins. Eleven out of 40 knockouts (one for each gene) showed growth delay and 10 knockouts presented a chaining phenotype. Five of these chaining mutants showed a lack of putative DNA-binding proteins. This suggest this phenotype results from a loss of overall transcription regulation. Five knockouts showed defective autolysis in response to penicillin and vancomycin, and attenuated virulence in an animal model of sepsis. Uncharacterised proteins make up a reservoir of polypeptides of different physiological importance and biomedical potential. A promising antibacterial target was identified. Five of the 44 examined proteins seemed to be virulence factors.

  2. Screening and expression of selected taxonomically conserved and unique hypothetical proteins in Burkholderia pseudomallei K96243

    Science.gov (United States)

    Akhir, Nor Azurah Mat; Nadzirin, Nurul; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2015-09-01

    Hypothetical proteins of bacterial pathogens represent a large numbers of novel biological mechanisms which could belong to essential pathways in the bacteria. They lack functional characterizations mainly due to the inability of sequence homology based methods to detect functional relationships in the absence of detectable sequence similarity. The dataset derived from this study showed 550 candidates conserved in genomes that has pathogenicity information and only present in the Burkholderiales order. The dataset has been narrowed down to taxonomic clusters. Ten proteins were selected for ORF amplification, seven of them were successfully amplified, and only four proteins were successfully expressed. These proteins will be great candidates in determining the true function via structural biology.

  3. Effect of the conserved oligosaccharides of recombinant monoclonal antibodies on the separation by protein A and protein G chromatography.

    Science.gov (United States)

    Gaza-Bulseco, Georgeen; Hickman, Keith; Sinicropi-Yao, Sara; Hurkmans, Karen; Chumsae, Chris; Liu, Hongcheng

    2009-03-20

    Glycosylation of the conserved asparagine residue in CH2 domains of IgG molecules is an important post-translational modification. The presence of oligosaccharides is critical for structure, stability and biological function of IgG antibodies. Effect of the glycosylation states of recombinant monoclonal antibodies on protein A and protein G chromatography was evaluated. Antibodies lacking oligosaccharides eluted later from protein A and earlier from protein G columns than antibodies with oligosaccharides using a gradient of decreasing pH. Interestingly, different types of oligosaccharides also affected the elution of the antibodies. Antibodies with high mannose type oligosaccharides were enriched in later eluting fractions from protein A and earlier eluting fractions from protein G. While antibodies with more mature oligosaccharides, such as core fucosylated biantennary complex oligosaccharides with zero (Gal 0), one (Gal 1) or two (Gal 2) terminal galactoses, were enriched in earlier eluting fractions from protein A and in the later eluting fractions from protein G. However, analysis by enzyme-linked immunosorbent assay (ELISA) revealed that antibody binding affinity to protein A and protein G was not affected by the absence or presence of oligosaccharides. It was thus concluded that the elution difference of antibodies with or without oligosaccharides and antibodies with different types of oligosaccharides were due to differential structural changes around the CH2-CH3 domain interface under the low pH conditions used for protein A and protein G chromatography.

  4. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  5. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein.

    Science.gov (United States)

    Buffalo, Cosmo Z; Bahn-Suh, Adrian J; Hirakis, Sophia P; Biswas, Tapan; Amaro, Rommie E; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ∼90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant 'reading head' in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M-C4BP interaction, and also inform a path towards vaccine design.

  6. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.

  7. Evolutionary conservation of mammalian sperm proteins associates with overall, not tyrosine, phosphorylation in human spermatozoa.

    Science.gov (United States)

    Schumacher, Julia; Ramljak, Sanja; Asif, Abdul R; Schaffrath, Michael; Zischler, Hans; Herlyn, Holger

    2013-12-06

    We investigated possible associations between sequence evolution of mammalian sperm proteins and their phosphorylation status in humans. As a reference, spermatozoa from three normozoospermic men were analyzed combining two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry. We identified 99 sperm proteins (thereof 42 newly described) and determined the phosphorylation status for most of them. Sequence evolution was studied across six mammalian species using nonsynonymous/synonymous rate ratios (dN/dS) and amino acid distances. Site-specific purifying selection was assessed employing average ratios of evolutionary rates at phosphorylated versus nonphosphorylated amino acids (α). According to our data, mammalian sperm proteins do not show statistically significant sequence conservation difference, no matter if the human ortholog is a phosphoprotein with or without tyrosine (Y) phosphorylation. In contrast, overall phosphorylation of human sperm proteins, i.e., phosphorylation at serine (S), threonine (T), and/or Y residues, associates with above-average conservation of sequences. Complementary investigations suggest that numerous protein-protein interactants constrain sequence evolution of sperm phosphoproteins. Although our findings reject a special relevance of Y phosphorylation for sperm functioning, they still indicate that overall phosphorylation substantially contributes to proper functioning of sperm proteins. Hence, phosphorylated sperm proteins might be considered as prime candidates for diagnosis and treatment of reduced male fertility.

  8. In vivo screen of genetically conserved Streptococcus pneumoniae proteins for protective immunogenicity.

    Science.gov (United States)

    Anderson, Richard J; Guru, Siradanahalli; Weeratna, Risini; Makinen, Shawn; Falconer, Derek J; Sheppard, Neil C; Lang, Susanne; Chang, Bingsheng; Goenaga, Anne-Laure; Green, Bruce A; Merson, James R; Gracheck, Stephen J; Eyles, Jim E

    2016-12-07

    We evaluated 52 different E. coli expressed pneumococcal proteins as immunogens in a BALB/c mouse model of S. pneumoniae lung infection. Proteins were selected based on genetic conservation across disease-causing serotypes and bioinformatic prediction of antibody binding to the target antigen. Seven proteins induced protective responses, in terms of reduced lung burdens of the serotype 3 pneumococci. Three of the protective proteins were histidine triad protein family members (PhtB, PhtD and PhtE). Four other proteins, all bearing LPXTG linkage domains, also had activity in this model (PrtA, NanA, PavB and Eng). PrtA, NanA and Eng were also protective in a CBA/N mouse model of lethal pneumococcal infection. Despite data inferring widespread genomic conservation, flow-cytometer based antisera binding studies confirmed variable levels of antigen expression across a panel of pneumococcal serotypes. Finally, BALB/c mice were immunized and intranasally challenged with a viulent serotype 8 strain, to help understand the breadth of protection. Those mouse studies reaffirmed the effectiveness of the histidine triad protein grouping and a single LPXTG protein, PrtA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    Full Text Available AbstrakLatar belakang: Protein Non Struktural 3 (NS3 virus dengue menginduksi respon antibodi netralisasidan respon sel T CD4+ dan CD8+, serta berperan dalam replikasi virus. Protein NS3 memiliki epitopepitopsel T dan B yang terdapat perbedaan kelestarian pada berbagai strain virus dengue serotipe 4(DENV-4. Penelitian ini bertujuan untuk mengetahui kelestarian epitop sel T dan B pada protein NS3DENV-4 strain-strain dunia dan keempat serotipe virus dengue strain Indonesia.Metode: Penelitian ini dilakukan di Departemen Mikrobiologi Fakultas Kedokteran UI sejak Juni 2013 - April2014. Sekuens asam amino NS3 DENV-4 strain 081 didapatkan setelah produk PCR gen NS3 DENV-4 081disekuensing. Epitop-epitop sel T dan sel B protein NS3 DENV-4 081 dianalisis dan dibandingkan dengansekuens asam amino protein NS3 dari 124 strain DENV-4 di dunia dan keempat serotipe DENV strain Indonesia.Strain-strain dunia merupakan strain yang ada di benua Amerika (Venezuela, Colombia, dll dan Asia (Cina,Singapura, dll. Referensi posisi epitop sel T dan B protein NS3 diperoleh dari laporan penelitian terdahulu.Hasil: Delapan epitop sel T dan 2 epitop sel B dari protein NS3 DENV-4 081 ternyata identik dan lestaripada protein NS3 dari 124 strain DENV-4 dunia. Epitop sel B di posisi asam amino 537-544 pada proteinNS3 DENV-4 081 ternyata identik dan lestari dengan epitop sel B protein NS3 dari keempat serotipeDENV strain Indonesia.Kesimpulan: Kelestarian yang luas dari epitop sel T dan B pada hampir seluruh strain DENV-4 dunia danserotipe-serotipe DENV strain Indonesia. (Health Science Journal of Indonesia 2015;6:126-31Kata kunci: virus dengue, protein NS3, epitop sel T, epitop sel B AbstractBackground: Non Structural 3 (NS3 protein of dengue virus (DENV is known to induce antibody, CD4+and CD8+ T cell responses, and playing role in viral replication. NS3 protein has T and B cell epitopes,which has conservation difference between DENV-4 strains. This study aimed to identify

  10. eBLOCKs: enumerating conserved protein blocks to achieve maximal sensitivity and specificity

    Science.gov (United States)

    Su, Qiaojuan Jane; Lu, Lin; Saxonov, Serge; Brutlag, Douglas L.

    2005-01-01

    Classifying proteins into families and superfamilies allows identification of functionally important conserved domains. The motifs and scoring matrices derived from such conserved regions provide computational tools that recognize similar patterns in novel sequences, and thus enable the prediction of protein function for genomes. The eBLOCKs database enumerates a cascade of protein blocks with varied conservation levels for each functional domain. A biologically important region is most stringently conserved among a smaller family of highly similar proteins. The same region is often found in a larger group of more remotely related proteins with a reduced stringency. Through enumeration, highly specific signatures can be generated from blocks with more columns and fewer family members, while highly sensitive signatures can be derived from blocks with fewer columns and more members as in a superfamily. By applying PSI-BLAST and a modified K-means clustering algorithm, eBLOCKs automatically groups protein sequences according to different levels of similarity. Multiple sequence alignments are made and trimmed into a series of ungapped blocks. Motifs and position-specific scoring matrices were derived from eBLOCKs and made available for sequence search and annotation. The eBLOCKs database provides a tool for high-throughput genome annotation with maximal specificity and sensitivity. The eBLOCKs database is freely available on the World Wide Web at http://motif.stanford.edu/eblocks/ to all users for online usage. Academic and not-for-profit institutions wishing copies of the program may contact Douglas L. Brutlag (brutlag@stanford.edu). Commercial firms wishing copies of the program for internal installation may contact Jacqueline Tay at the Stanford Office of Technology Licensing (jacqueline.tay@stanford.edu; http://otl.stanford.edu/). PMID:15608172

  11. Conservation and divergence of plant LHP1 protein sequences and expression patterns in angiosperms and gymnosperms.

    Science.gov (United States)

    Guan, Hexin; Zheng, Zhengui; Grey, Paris H; Li, Yuhua; Oppenheimer, David G

    2011-05-01

    Floral transition is a critical and strictly regulated developmental process in plants. Mutations in Arabidopsis LIKE HETEROCHROMATIN PROTEIN 1 (AtLHP1)/TERMINAL FLOWER 2 (TFL2) result in early and terminal flowers. Little is known about the gene expression, function and evolution of plant LHP1 homologs, except for Arabidopsis LHP1. In this study, the conservation and divergence of plant LHP1 protein sequences was analyzed by sequence alignments and phylogeny. LHP1 expression patterns were compared among taxa that occupy pivotal phylogenetic positions. Several relatively conserved new motifs/regions were identified among LHP1 homologs. Phylogeny of plant LHP1 proteins agreed with established angiosperm relationships. In situ hybridization unveiled conserved expression of plant LHP1 in the axillary bud/tiller, vascular bundles, developing stamens, and carpels. Unlike AtLHP1, cucumber CsLHP1-2, sugarcane SoLHP1 and maize ZmLHP1, rice OsLHP1 is not expressed in the shoot apical meristem (SAM) and the OsLHP1 transcript level is consistently low in shoots. "Unequal crossover" might have contributed to the divergence in the N-terminal and hinge region lengths of LHP1 homologs. We propose an "insertion-deletion" model for soybean (Glycine max L.) GmLHP1s evolution. Plant LHP1 homologs are more conserved than previously expected, and may favor vegetative meristem identity and primordia formation. OsLHP1 may not function in rice SAM during floral induction.

  12. SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions.

    Science.gov (United States)

    Davey, Norman E; Cowan, Joanne L; Shields, Denis C; Gibson, Toby J; Coldwell, Mark J; Edwards, Richard J

    2012-11-01

    Large portions of higher eukaryotic proteomes are intrinsically disordered, and abundant evidence suggests that these unstructured regions of proteins are rich in regulatory interaction interfaces. A major class of disordered interaction interfaces are the compact and degenerate modules known as short linear motifs (SLiMs). As a result of the difficulties associated with the experimental identification and validation of SLiMs, our understanding of these modules is limited, advocating the use of computational methods to focus experimental discovery. This article evaluates the use of evolutionary conservation as a discriminatory technique for motif discovery. A statistical framework is introduced to assess the significance of relatively conserved residues, quantifying the likelihood a residue will have a particular level of conservation given the conservation of the surrounding residues. The framework is expanded to assess the significance of groupings of conserved residues, a metric that forms the basis of SLiMPrints (short linear motif fingerprints), a de novo motif discovery tool. SLiMPrints identifies relatively overconstrained proximal groupings of residues within intrinsically disordered regions, indicative of putatively functional motifs. Finally, the human proteome is analysed to create a set of highly conserved putative motif instances, including a novel site on translation initiation factor eIF2A that may regulate translation through binding of eIF4E.

  13. Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins.

    Science.gov (United States)

    Hamel, Josée; Charland, Nathalie; Pineau, Isabelle; Ouellet, Catherine; Rioux, Stéphane; Martin, Denis; Brodeur, Bernard R

    2004-05-01

    The development of a vaccine against Streptococcus pneumoniae has been complicated by the existence of at least 90 antigenically distinct capsular serotypes. Common protein-based vaccines could represent the best strategy to prevent pneumococcal infections, regardless of serotype. In the present study, the immunoscreening of an S. pneumoniae genomic library allowed the identification of a novel immune protein target, BVH-3. We demonstrate that immunization of mice with BVH-3 elicits protective immunity against experimental sepsis and pneumonia. Sequence analysis revealed that the bvh-3 gene is highly conserved within the species. Since the BVH-3 protein shows homology at its amino-terminal end with other pneumococcal proteins, it was of interest to determine if protection was due to the homologous or to the protein-specific regions. Immunoprotection studies using recombinant BVH-3 and BVH-3-related protein fragments as antigens allowed the localization of surface-exposed and protective epitopes at the protein-specific carboxyl termini, thus establishing that BVH-3 is distinct from other previously reported protective protein antigens. Immunization with a chimeric protein comprising the carboxyl-terminal regions of BVH-3 and of a BVH-3-related protein improved the protection by targeting two surface pneumococcal components. Thus, BVH-3 and the chimeric protein hold strong promise as vaccine components to control pneumococcal disease.

  14. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    Science.gov (United States)

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Weak correlation between sequence conservation in promoter regions and in protein-coding regions of human-mouse orthologous gene pairs

    Directory of Open Access Journals (Sweden)

    Nakai Kenta

    2008-04-01

    Full Text Available Abstract Background Interspecies sequence comparison is a powerful tool to extract functional or evolutionary information from the genomes of organisms. A number of studies have compared protein sequences or promoter sequences between mammals, which provided many insights into genomics. However, the correlation between protein conservation and promoter conservation remains controversial. Results We examined promoter conservation as well as protein conservation for 6,901 human and mouse orthologous genes, and observed a very weak correlation between them. We further investigated their relationship by decomposing it based on functional categories, and identified categories with significant tendencies. Remarkably, the 'ribosome' category showed significantly low promoter conservation, despite its high protein conservation, and the 'extracellular matrix' category showed significantly high promoter conservation, in spite of its low protein conservation. Conclusion Our results show the relation of gene function to protein conservation and promoter conservation, and revealed that there seem to be nonparallel components between protein and promoter sequence evolution.

  16. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    Sibley L David

    2005-12-01

    Full Text Available Abstract Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex, and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery. In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.

  17. Comparative Proteomics Reveals a Significant Bias Toward Alternative Protein Isoforms with Conserved Structure and Function

    Science.gov (United States)

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L.

    2012-01-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of “novel” and “putative” protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is

  18. p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families.

    Science.gov (United States)

    Garcia-Ranea, J A; Mirey, Gladys; Camonis, Jacques; Valencia, Alfonso

    2002-10-09

    We identified families of proteins characterized by the presence of a domain similar to human p23 protein, which include proteins such as Sgt1, involved in the yeast kinetochore assembly; melusin, involved in specific interactions with the cytoplasmic integrin beta1 domain; Rar1, related to pathogenic resistance in plants, and to development in animals; B5+B5R flavo-hemo cytochrome NAD(P)H oxidoreductase type B in humans and mice; and NudC, involved in nucleus migration during mitosis. We also found that p23 and the HSP20/alpha-crystallin family of heat shock proteins, which share the same three-dimensional folding, show a pattern of conserved residues that points to a common origin in the evolution of both protein domains. The p23 and HSP20/alpha-crystallin phylogenetic relationship and their similar role in chaperone activity suggest a common function, probably involving protein-protein interaction, for those proteins containing p23-like domains.

  19. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses.

    Science.gov (United States)

    Zamora, Miguel; Méndez-López, Eduardo; Agirrezabala, Xabier; Cuesta, Rebeca; Lavín, José L; Sánchez-Pina, M Amelia; Aranda, Miguel A; Valle, Mikel

    2017-09-01

    Potyviruses constitute the second largest genus of plant viruses and cause important economic losses in a large variety of crops; however, the atomic structure of their particles remains unknown. Infective potyvirus virions are long flexuous filaments where coat protein (CP) subunits assemble in helical mode bound to a monopartite positive-sense single-stranded RNA [(+)ssRNA] genome. We present the cryo-electron microscopy (cryoEM) structure of the potyvirus watermelon mosaic virus at a resolution of 4.0 Å. The atomic model shows a conserved fold for the CPs of flexible filamentous plant viruses, including a universally conserved RNA binding pocket, which is a potential target for antiviral compounds. This conserved fold of the CP is widely distributed in eukaryotic viruses and is also shared by nucleoproteins of enveloped viruses with segmented (-)ssRNA (negative-sense ssRNA) genomes, including influenza viruses.

  20. Properties of Sequence Conservation in Upstream Regulatory and Protein Coding Sequences among Paralogs in Arabidopsis thaliana

    Science.gov (United States)

    Richardson, Dale N.; Wiehe, Thomas

    Whole genome duplication (WGD) has catalyzed the formation of new species, genes with novel functions, altered expression patterns, complexified signaling pathways and has provided organisms a level of genetic robustness. We studied the long-term evolution and interrelationships of 5’ upstream regulatory sequences (URSs), protein coding sequences (CDSs) and expression correlations (EC) of duplicated gene pairs in Arabidopsis. Three distinct methods revealed significant evolutionary conservation between paralogous URSs and were highly correlated with microarray-based expression correlation of the respective gene pairs. Positional information on exact matches between sequences unveiled the contribution of micro-chromosomal rearrangements on expression divergence. A three-way rank analysis of URS similarity, CDS divergence and EC uncovered specific gene functional biases. Transcription factor activity was associated with gene pairs exhibiting conserved URSs and divergent CDSs, whereas a broad array of metabolic enzymes was found to be associated with gene pairs showing diverged URSs but conserved CDSs.

  1. Mining the Giardia genome and proteome for conserved and unique basal body proteins

    Science.gov (United States)

    Lauwaet, Tineke; Smith, Alias J.; Reiner, David S.; Romijn, Edwin P.; Wong, Catherine C. L.; Davids, Barbara J.; Shah, Sheila A.; Yates, John R.; Gillin, Frances D.

    2015-01-01

    Giardia lamblia is a flagellated protozoan parasite and a major cause of diarrhea in humans. Its microtubular cytoskeleton mediates trophozoite motility, attachment and cytokinesis, and is characterized by an attachment disk and eight flagella that are each nucleated in a basal body. To date, only 10 giardial basal body proteins have been identified, including universal signaling proteins that are important for regulating mitosis or differentiation. In this study, we have exploited bioinformatics and proteomic approaches to identify new Giardia basal body proteins and confocal microscopy to confirm their localization in interphase trophozoites. This approach identified 75 homologs of conserved basal body proteins in the genome including 65 not previously known to be associated with Giardia basal bodies. Thirteen proteins were confirmed to co-localize with centrin to the Giardia basal bodies. We also demonstrate that most basal body proteins localize to additional cytoskeletal structures in interphase trophozoites. This might help to explain the roles of the four pairs of flagella and Giardia-specific organelles in motility and differentiation. A deeper understanding of the composition of the Giardia basal bodies will contribute insights into the complex signaling pathways that regulate its unique cytoskeleton and the biological divergence of these conserved organelles. PMID:21723868

  2. Conserved lamin A protein expression in differentiated cells in the earthworm Eudrilus eugeniae.

    Science.gov (United States)

    Kalidas, Ramamoorthy M; Raja, Subramanian Elaiya; Mydeen, Sheik Abdul Kader Nagoor Meeran; Samuel, Selvan Christyraj Johnson Retnaraj; Durairaj, Selvan Christyraj Jackson; Nino, Gopi D; Palanichelvam, Karuppaiah; Vaithi, Arumugaswami; Sudhakar, Sivasubramaniam

    2015-09-01

    Lamin A is an intermediate filament protein found in most of the differentiated vertebrate cells but absent in stem cells. It shapes the skeletal frame structure beneath the inner nuclear membrane of the cell nucleus. As there are few studies of the expression of lamin A in invertebrates, in the present work, we have analyzed the sequence, immunochemical conservation and expression pattern of lamin A protein in the earthworm Eudrilus eugeniae, a model organism for tissue regeneration. The expression of lamin A has been confirmed in E. eugeniae by immunoblot. Its localization in the nuclear membrane has been observed by immunohistochemistry using two different rabbit anti-sera raised against human lamin A peptides, which are located at the C-terminus of the lamin A protein. These two antibodies detected 70 kDa lamin A protein in mice and a single 65 kDa protein in the earthworm. The Oct-4 positive undifferentiated blastemal tissues of regenerating earthworm do not express lamin A, while the Oct-4 negative differentiated cells express lamin A. This pattern was also confirmed in the earthworm prostate gland. The present study is the first evidence for the immunochemical identification of lamin A and Oct-4 in the earthworm. Along with the partial sequence obtained from the earthworm genome, the present results suggest that lamin A protein and its expression pattern is conserved from the earthworm to humans. © 2015 International Federation for Cell Biology.

  3. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants.

    Science.gov (United States)

    Hackenberg, Dieter; McKain, Michael R; Lee, Soon Goo; Roy Choudhury, Swarup; McCann, Tyler; Schreier, Spencer; Harkess, Alex; Pires, J Chris; Wong, Gane Ka-Shu; Jez, Joseph M; Kellogg, Elizabeth A; Pandey, Sona

    2017-10-01

    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  5. Conservation of the deadenylase activity of proteins of the Caf1 family in human.

    Science.gov (United States)

    Bianchin, Claire; Mauxion, Fabienne; Sentis, Stéphanie; Séraphin, Bertrand; Corbo, Laura

    2005-04-01

    The yeast Pop2 protein, belonging to the eukaryotic Caf1 family, is required for mRNA deadenylation in vivo. It also catalyzes poly(A) degradation in vitro, even though this property has been questioned. Caf1 proteins are related to RNase D, a feature supported by the recently published structure of Pop2. Yeast Pop2 contains, however, a divergent active site while its human homologs harbor consensus catalytic residues. Given these differences, we tested whether its deadenylase activity is conserved in the human homologs Caf1 and Pop2. Our data demonstrate that both human factors degrade poly(A) tails indicating their involvement in mRNA metabolism.

  6. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons.

    Science.gov (United States)

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A; Kerr, Genevieve; Wells, Kristen L; Younes, Serena; Mortimer, Nathan T; Olesnicky, Eugenia C; Killian, Darrell J

    2015-02-10

    The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. Copyright © 2015 Antonacci et al.

  7. LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains.

    Directory of Open Access Journals (Sweden)

    Laura Helft

    Full Text Available Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM, a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP receptors, EF-TU RECEPTOR (EFR and FLAGELLIN-SENSING 2 (FLS2. In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area, Consurf, and PAML (positive selection analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains.

  8. Conserved immunogenic region of a major core protein (p24) of human and simian immunodeficiency viruses.

    Science.gov (United States)

    Koito, A; Hattori, T; Matsushita, S; Maeda, Y; Nozaki, C; Sagawa, K; Takatsuki, K

    1988-12-01

    A murine monoclonal antibody (MoAb), VAK 4, has been known to specifically react with a major core protein (p24) as well as with its precursor (p55-57) and intermediate precursor (p40) of human immunodeficiency virus strain IIIB (HTLV-IIIB). Radioimmunoprecipitation assays revealed that VAK 4 MoAb precipitated a major core protein and its precursors from a variety of strains of HIV and also from simian immunodeficiency virus (SIV), although the molecular weights of the precursor proteins in each viral strain were slightly different. A protein synthesized by transfected Escherichia coli containing amino acid sequences corresponding to residues 121-436 of the HTLV-IIIB gag gene was reactive with VAK 4 MoAb, but the protein carrying only residues 121-309 was not reactive, suggesting that the epitope recognized by VAK 4 MoAb resides at the carboxyl terminus of p24 protein. A competitive enzyme-linked immunosorbent assay showed that patient sera containing anticore protein antibody inhibited the binding of VAK 4 to HTLV-IIIB. These findings suggested that VAK 4 MoAb recognized an immunogenic and conserved epitope belonging to a major core protein of HIV-related viruses.

  9. Ser/Thr motifs in transmembrane proteins: conservation patterns and effects on local protein structure and dynamics.

    Science.gov (United States)

    Del Val, Coral; White, Stephen H; Bondar, Ana-Nicoleta

    2012-11-01

    We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide.

  10. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation.

    Science.gov (United States)

    Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M

    2017-08-01

    Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation. IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.

  11. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Deirdre R Ducken

    Full Text Available Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to

  12. Multiple conserved cell adhesion protein interactions mediate neural wiring of a sensory circuit in C. elegans.

    Science.gov (United States)

    Kim, Byunghyuk; Emmons, Scott W

    2017-09-13

    Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans, we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.

  13. Protective activity of the CnaBE3 domain conserved among Staphylococcus aureus Sdr proteins.

    Science.gov (United States)

    Becherelli, Marco; Prachi, Prachi; Viciani, Elisa; Biagini, Massimiliano; Fiaschi, Luigi; Chiarot, Emiliano; Nosari, Sarah; Brettoni, Cecilia; Marchi, Sara; Biancucci, Marco; Fontana, Maria Rita; Montagnani, Francesca; Bagnoli, Fabio; Barocchi, Michèle A; Manetti, Andrea G O

    2013-01-01

    Staphylococcus aureus is an opportunistic pathogen, commensal of the human skin and nares, but also responsible for invasive nosocomial as well as community acquired infections. Staphylococcus aureus adheres to the host tissues by means of surface adhesins, such as SdrC, SdrD, and SdrE proteins. The Sdr family of proteins together with a functional A domain, contain respectively two, three or five repeated sequences called B motifs which comprise the CnaB domains. SdrD and SdrE proteins were reported to be protective in animal models against invasive diseases or lethal challenge with human clinical S. aureus isolates. In this study we identified a 126 amino acid sequence containing a CnaB domain, conserved among the three Sdr proteins. The three fragments defined here as CnaBC2, D5 and E3 domains even though belonging to phylogenetically distinct strains, displayed high sequence similarity. Based on the sequence conservation data, we selected the CnaBE3 domain for further analysis and characterization. Polyclonal antibodies raised against the recombinant CnaBE3 domain recognized SdrE, SdrC and SdrD proteins of different S. aureus lineages. Moreover, we demonstrated that the CnaBE3 domain was expressed in vivo during S. aureus infections, and that immunization of this domain alone significantly reduces the bacterial load in mice challenged with S. aureus. Furthermore, we show that the reduction of bacteria by CnaBE3 vaccination is due to functional antibodies. Finally, we demonstrated that the region of the SdrE protein containing the CnaBE3 domain was resistant to trypsin digestion, a characteristic often associated with the presence of an isopeptide bond.

  14. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  15. Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family

    Energy Technology Data Exchange (ETDEWEB)

    Liban, Tyler J.; Medina, Edgar M.; Tripathi, Sarvind; Sengupta, Satyaki; Henry, R. William; Buchler, Nicolas E.; Rubin, Seth M. (UCSC); (Duke); (MSU)

    2017-04-24

    The retinoblastoma protein (Rb) and the homologous pocket proteins p107 and p130 negatively regulate cell proliferation by binding and inhibiting members of the E2F transcription factor family. The structural features that distinguish Rb from other pocket proteins have been unclear but are critical for understanding their functional diversity and determining why Rb has unique tumor suppressor activities. We describe here important differences in how the Rb and p107 C-terminal domains (CTDs) associate with the coiled-coil and marked-box domains (CMs) of E2Fs. We find that although CTD–CM binding is conserved across protein families, Rb and p107 CTDs show clear preferences for different E2Fs. A crystal structure of the p107 CTD bound to E2F5 and its dimer partner DP1 reveals the molecular basis for pocket protein–E2F binding specificity and how cyclin-dependent kinases differentially regulate pocket proteins through CTD phosphorylation. Our structural and biochemical data together with phylogenetic analyses of Rb and E2F proteins support the conclusion that Rb evolved specific structural motifs that confer its unique capacity to bind with high affinity those E2Fs that are the most potent activators of the cell cycle.

  16. A conserved OmpA-like protein in Legionella pneumophila required for efficient intracellular replication.

    Science.gov (United States)

    Goodwin, Ian P; Kumova, Ogan K; Ninio, Shira

    2016-08-01

    The OmpA-like protein domain has been associated with peptidoglycan-binding proteins, and is often found in virulence factors of bacterial pathogens. The intracellular pathogen Legionella pneumophila encodes for six proteins that contain the OmpA-like domain, among them the highly conserved uncharacterized protein we named CmpA. Here we set out to characterize the CmpA protein and determine its contribution to intracellular survival of L. pneumophila Secondary structure analysis suggests that CmpA is an inner membrane protein with a peptidoglycan-binding domain at the C-teminus. A cmpA mutant was able to replicate normally in broth, but failed to compete with an isogenic wild-type strain in an intracellular growth competition assay. The cmpA mutant also displayed significant intracellular growth defects in both the protozoan host Acanthamoeba castellanii and in primary bone marrow-derived macrophages, where uptake into the cells was also impaired. The cmpA phenotypes were completely restored upon expression of CmpA in trans The data presented here establish CmpA as a novel virulence factor of L. pneumophila that is required for efficient intracellular replication in both mammalian and protozoan hosts. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Two Conserved Cysteine Residues Are Required for the Masculinizing Activity of the Silkworm Masc Protein*

    Science.gov (United States)

    Katsuma, Susumu; Sugano, Yudai; Kiuchi, Takashi; Shimada, Toru

    2015-01-01

    We have recently discovered that the Masculinizer (Masc) gene encodes a CCCH tandem zinc finger protein, which controls both masculinization and dosage compensation in the silkworm Bombyx mori. In this study, we attempted to identify functional regions or residues that are required for the masculinizing activity of the Masc protein. We constructed a series of plasmids that expressed the Masc derivatives and transfected them into a B. mori ovary-derived cell line, BmN-4. To assess the masculinizing activity of the Masc derivatives, we investigated the splicing patterns of B. mori doublesex (Bmdsx) and the expression levels of B. mori IGF-II mRNA-binding protein, a splicing regulator of Bmdsx, in Masc cDNA-transfected BmN-4 cells. We found that two zinc finger domains are not required for the masculinizing activity. We also identified that the C-terminal 288 amino acid residues are sufficient for the masculinizing activity of the Masc protein. Further detailed analyses revealed that two cysteine residues, Cys-301 and Cys-304, in the highly conserved region among lepidopteran Masc proteins are essential for the masculinizing activity in BmN-4 cells. Finally, we showed that Masc is a nuclear protein, but its nuclear localization is not tightly associated with the masculinizing activity. PMID:26342076

  18. Two Conserved Cysteine Residues Are Required for the Masculinizing Activity of the Silkworm Masc Protein.

    Science.gov (United States)

    Katsuma, Susumu; Sugano, Yudai; Kiuchi, Takashi; Shimada, Toru

    2015-10-23

    We have recently discovered that the Masculinizer (Masc) gene encodes a CCCH tandem zinc finger protein, which controls both masculinization and dosage compensation in the silkworm Bombyx mori. In this study, we attempted to identify functional regions or residues that are required for the masculinizing activity of the Masc protein. We constructed a series of plasmids that expressed the Masc derivatives and transfected them into a B. mori ovary-derived cell line, BmN-4. To assess the masculinizing activity of the Masc derivatives, we investigated the splicing patterns of B. mori doublesex (Bmdsx) and the expression levels of B. mori IGF-II mRNA-binding protein, a splicing regulator of Bmdsx, in Masc cDNA-transfected BmN-4 cells. We found that two zinc finger domains are not required for the masculinizing activity. We also identified that the C-terminal 288 amino acid residues are sufficient for the masculinizing activity of the Masc protein. Further detailed analyses revealed that two cysteine residues, Cys-301 and Cys-304, in the highly conserved region among lepidopteran Masc proteins are essential for the masculinizing activity in BmN-4 cells. Finally, we showed that Masc is a nuclear protein, but its nuclear localization is not tightly associated with the masculinizing activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Directory of Open Access Journals (Sweden)

    Stefan M Ivanov

    Full Text Available An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  20. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Science.gov (United States)

    Ivanov, Stefan M; Cawley, Andrew; Huber, Roland G; Bond, Peter J; Warwicker, Jim

    2017-01-01

    An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  1. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  2. Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins.

    Science.gov (United States)

    Tong, Junsen; Yang, Huiseon; Yang, Hongyuan; Eom, Soo Hyun; Im, Young Jun

    2013-07-02

    The oxysterol-binding protein (OSBP)-related proteins (ORPs) are conserved from yeast to humans, and implicated in the regulation of lipid homeostasis and in signaling pathways. Saccharomyces cerevisiae has seven ORPs (Osh1-Osh7) that share one unknown essential function. Here, we report the 1.5-2.3 Å structures of the PH domain and ORD (OSBP-related domain) of yeast Osh3 in apo-form or in complex with phosphatidylinositol 4-phosphate (PI[4]P). Osh3 recognizes PI(4)P by the highly conserved residues in the tunnel of ORD whereas it lacks sterol binding due to the narrow hydrophobic tunnel. Yeast complementation tests suggest that PI(4)P binding to PH and ORD is essential for function. This study suggests that the unifying feature in all ORP homologs is the binding of PI(4)P to ORD and sterol binding is additional to certain homologs. Structural modeling of full-length Osh3 is consistent with the concept that Osh3 is a lipid transfer protein or regulator in membrane contact sites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A conservation and biophysics guided stochastic approach to refining docked multimeric proteins.

    Science.gov (United States)

    Akbal-Delibas, Bahar; Haspel, Nurit

    2013-01-01

    We introduce a protein docking refinement method that accepts complexes consisting of any number of monomeric units. The method uses a scoring function based on a tight coupling between evolutionary conservation, geometry and physico-chemical interactions. Understanding the role of protein complexes in the basic biology of organisms heavily relies on the detection of protein complexes and their structures. Different computational docking methods are developed for this purpose, however, these methods are often not accurate and their results need to be further refined to improve the geometry and the energy of the resulting complexes. Also, despite the fact that complexes in nature often have more than two monomers, most docking methods focus on dimers since the computational complexity increases exponentially due to the addition of monomeric units. Our results show that the refinement scheme can efficiently handle complexes with more than two monomers by biasing the results towards complexes with native interactions, filtering out false positive results. Our refined complexes have better IRMSDs with respect to the known complexes and lower energies than those initial docked structures. Evolutionary conservation information allows us to bias our results towards possible functional interfaces, and the probabilistic selection scheme helps us to escape local energy minima. We aim to incorporate our refinement method in a larger framework which also enables docking of multimeric complexes given only monomeric structures.

  4. Evolutionary Conservation in Biogenesis of β-Barrel Proteins Allows Mitochondria to Assemble a Functional Bacterial Trimeric Autotransporter Protein*

    Science.gov (United States)

    Ulrich, Thomas; Oberhettinger, Philipp; Schütz, Monika; Holzer, Katharina; Ramms, Anne S.; Linke, Dirk; Autenrieth, Ingo B.; Rapaport, Doron

    2014-01-01

    Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal β-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of β-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial β-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp. PMID:25190806

  5. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    Full Text Available Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.

  6. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-08-01

    Full Text Available Cold shock proteins (Csps enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066 exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C, while the fourth (Mpsy_2002 was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066 and TRAM2002 (gene product of Mpsy_2002 displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.

  7. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    Science.gov (United States)

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  8. Nmf9 Encodes a Highly Conserved Protein Important to Neurological Function in Mice and Flies.

    Directory of Open Access Journals (Sweden)

    Shuxiao Zhang

    2015-07-01

    Full Text Available Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes.

  9. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    Science.gov (United States)

    Shi, Tujin; Niepel, Mario; McDermott, Jason E.; Gao, Yuqian; Nicora, Carrie D.; Chrisler, William B.; Markillie, Lye M.; Petyuk, Vladislav A.; Smith, Richard D.; Rodland, Karin D.; Sorger, Peter K.; Qian, Wei-Jun; Wiley, H. Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  10. Nuclear localization and secretion competence are conserved among henipavirus matrix proteins.

    Science.gov (United States)

    McLinton, Elisabeth C; Wagstaff, Kylie M; Lee, Alexander; Moseley, Gregory W; Marsh, Glenn A; Wang, Lin-Fa; Jans, David A; Lieu, Kim G; Netter, Hans J

    2017-04-01

    Viruses of the genus Henipavirus of the family Paramyxoviridae are zoonotic pathogens, which have emerged in Southeast Asia, Australia and Africa. Nipah virus (NiV) and Hendra virus are highly virulent pathogens transmitted from bats to animals and humans, while the henipavirus Cedar virus seems to be non-pathogenic in infection studies. The full replication cycle of the Paramyxoviridae occurs in the host cell's cytoplasm, where viral assembly is orchestrated by the matrix (M) protein. Unexpectedly, the NiV-M protein traffics through the nucleus as an essential step to engage the plasma membrane in preparation for viral budding/release. Comparative studies were performed to assess whether M protein nuclear localization is a common feature of the henipaviruses, including the recently sequenced (although not yet isolated) Ghanaian bat henipavirus (Kumasi virus, GH-M74a virus) and Mojiang virus. Live-cell confocal microscopy revealed that nuclear translocation of GFP-fused M protein is conserved between henipaviruses in both human- and bat-derived cell lines. However, the efficiency of M protein nuclear localization and virus-like particle budding competency varied. Additionally, Cedar virus-, Kumasi virus- and Mojiang virus-M proteins were mutated in a bipartite nuclear localization signal, indicating that a key lysine residue is essential for nuclear import, export and induction of budding events, as previously reported for NiV-M. The results of this study suggest that the M proteins of henipaviruses may utilize a similar nucleocytoplasmic trafficking pathway as an essential step during viral replication in both humans and bats.

  11. Subfamily specific conservation profiles for proteins based on n-gram patterns

    Directory of Open Access Journals (Sweden)

    Liu Xiong

    2008-01-01

    Full Text Available Abstract Background A new algorithm has been developed for generating conservation profiles that reflect the evolutionary history of the subfamily associated with a query sequence. It is based on n-gram patterns (NP{n,m} which are sets of n residues and m wildcards in windows of size n+m. The generation of conservation profiles is treated as a signal-to-noise problem where the signal is the count of n-gram patterns in target sequences that are similar to the query sequence and the noise is the count over all target sequences. The signal is differentiated from the noise by applying singular value decomposition to sets of target sequences rank ordered by similarity with respect to the query. Results The new algorithm was used to construct 4,248 profiles from 120 randomly selected Pfam-A families. These were compared to profiles generated from multiple alignments using the consensus approach. The two profiles were similar whenever the subfamily associated with the query sequence was well represented in the multiple alignment. It was possible to construct subfamily specific conservation profiles using the new algorithm for subfamilies with as few as five members. The speed of the new algorithm was comparable to the multiple alignment approach. Conclusion Subfamily specific conservation profiles can be generated by the new algorithm without aprioi knowledge of family relationships or domain architecture. This is useful when the subfamily contains multiple domains with different levels of representation in protein databases. It may also be applicable when the subfamily sample size is too small for the multiple alignment approach.

  12. Homology and conservation of amino acids in E-protein sequences of dengue serotypes

    Directory of Open Access Journals (Sweden)

    Ramesh Venkatachalam

    2014-09-01

    Full Text Available Objective: To identify the homology and phylogenetic relationship among the four dengue virus (DENV serotypes, and conservation of amino acid in E-proteins and to find out the phylogenetic relationship among the strains of four DENV serotypes. Methods: Clustal W analysis for homology and phylogram, European molecular biology open software suite for pairwise alignment of amino acid sequences and BLAST-P analysis for various strains of four DENV serotypes were carried out. Results: Homology of E-protein sequences of four DENV serotypes indicated a close relationship of DENV-1 with DENV-3. DENV-2 showed close relationship with DENV-1 and -3 forming a single cluster whereas DENV-4 alone formed group with a single serotype. In the multiple sequence alignment, 19 amino acid conserved groups were observed. BLAST-P analysis showed more number of 100% similarity among DENV-1 and -3 strains whereas only few strains showed 100% similarity in DENV-4. However, 100% similarity was absent among the DENV-3 strains. Conclusions: From the present study, phylogenetically all the four DENV serotypes were related but DENV-1, -2 and -3 were very closely related whereas DENV-4 was somewhat distant from the other three serotypes.

  13. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V

    1999-01-01

    In the family of acyl-coenzyme A binding proteins, a subset of 26 sequence sites are identical in all eukaryotes and conserved throughout evolution of the eukaryotic kingdoms. In the context of the bovine protein, the importance of these 26 sequence positions for structure, function, stability, a...

  14. The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis▿

    OpenAIRE

    Volokhina, Elena B.; Beckers, Frank; Tommassen, Jan; Bos, Martine P.

    2009-01-01

    The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the β-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysi...

  15. Identification of a bipartite nuclear localization signal in the silkworm Masc protein.

    Science.gov (United States)

    Sugano, Yudai; Kokusho, Ryuhei; Ueda, Masamichi; Fujimoto, Masaru; Tsutsumi, Nobuhiro; Shimada, Toru; Kiuchi, Takashi; Katsuma, Susumu

    2016-07-01

    The silkworm Masculinizer (Masc) gene encodes a CCCH-tandem zinc finger protein that controls both masculinization and dosage compensation. Masc protein is a nuclear protein, but the mechanism underlying the transport of this protein into the nucleus has not yet been elucidated. Here, we identified a functional bipartite nuclear localization signal (NLS) located between residues 274 and 290 of the Masc protein. Sequence comparison revealed that this bipartite NLS is evolutionarily conserved in Masc proteins from other lepidopteran insects. Furthermore, we showed that the degree of nuclear localization is not associated with the masculinizing activity of the Masc protein. © 2016 Federation of European Biochemical Societies.

  16. Molecular Characterization and Immune Protection of a New Conserved Hypothetical Protein of Eimeria tenella.

    Science.gov (United States)

    Zhai, Qi; Huang, Bing; Dong, Hui; Zhao, Qiping; Zhu, Shunhai; Liang, Siting; Li, Sha; Yang, Sihan; Han, Hongyu

    2016-01-01

    The genome sequences of Eimeria tenella have been sequenced, but >70% of these genes are currently categorized as having an unknown function or annotated as conserved hypothetical proteins, and few of them have been studied. In the present study, a conserved hypothetical protein gene of E. tenella, designated EtCHP559, was cloned using rapid amplification of cDNA 5'-ends (5'RACE) based on the expressed sequence tag (EST). The 1746-bp full-length cDNA of EtCHP559 contained a 1224-bp open reading frame (ORF) that encoded a 407-amino acid polypeptide with the predicted molecular weight of 46.04 kDa. Real-time quantitative PCR analysis revealed that EtCHP559 was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts and second generation merozoites). The ORF was inserted into pCold-TF to produce recombinant EtCHP559. Using western blotting, the recombinant protein was successfully recognized by rabbit serum against E. tenella sporozoites. Immunolocalization by using EtCHP559 antibody showed that EtCHP559 was mainly distributed on the parasite surface in free sporozoites and became concentrated in the anterior region after sporozoites were incubated in complete medium. The EtCHP559 became uniformly dispersed in immature and mature schizonts. Inhibition of EtCHP559 function using anti-rEtCHP559 polyclonal antibody reduced the ability of E. tenella sporozoites to invade host cells by >70%. Animal challenge experiments demonstrated that the recombinant EtCHP559 significantly increased the average body weight gain, reduced the oocyst outputs, alleviated cecal lesions of the infected chickens, and resulted in anticoccidial index >160 against E. tenella. These results suggest that EtCHP559 plays an important role in sporozoite invasion and could be an effective candidate for the development of a new vaccine against E. tenella.

  17. Molecular Characterization and Immune Protection of a New Conserved Hypothetical Protein of Eimeria tenella.

    Directory of Open Access Journals (Sweden)

    Qi Zhai

    Full Text Available The genome sequences of Eimeria tenella have been sequenced, but >70% of these genes are currently categorized as having an unknown function or annotated as conserved hypothetical proteins, and few of them have been studied. In the present study, a conserved hypothetical protein gene of E. tenella, designated EtCHP559, was cloned using rapid amplification of cDNA 5'-ends (5'RACE based on the expressed sequence tag (EST. The 1746-bp full-length cDNA of EtCHP559 contained a 1224-bp open reading frame (ORF that encoded a 407-amino acid polypeptide with the predicted molecular weight of 46.04 kDa. Real-time quantitative PCR analysis revealed that EtCHP559 was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts and second generation merozoites. The ORF was inserted into pCold-TF to produce recombinant EtCHP559. Using western blotting, the recombinant protein was successfully recognized by rabbit serum against E. tenella sporozoites. Immunolocalization by using EtCHP559 antibody showed that EtCHP559 was mainly distributed on the parasite surface in free sporozoites and became concentrated in the anterior region after sporozoites were incubated in complete medium. The EtCHP559 became uniformly dispersed in immature and mature schizonts. Inhibition of EtCHP559 function using anti-rEtCHP559 polyclonal antibody reduced the ability of E. tenella sporozoites to invade host cells by >70%. Animal challenge experiments demonstrated that the recombinant EtCHP559 significantly increased the average body weight gain, reduced the oocyst outputs, alleviated cecal lesions of the infected chickens, and resulted in anticoccidial index >160 against E. tenella. These results suggest that EtCHP559 plays an important role in sporozoite invasion and could be an effective candidate for the development of a new vaccine against E. tenella.

  18. A Highly Conserved Residue in HIV-1 Nef Alpha Helix 2 Modulates Protein Expression.

    Science.gov (United States)

    Johnson, Aaron L; Dirk, Brennan S; Coutu, Mathieu; Haeryfar, S M Mansour; Arts, Eric J; Finzi, Andrés; Dikeakos, Jimmy D

    2016-01-01

    Extensive genetic diversity is a defining characteristic of human immunodeficiency virus type 1 (HIV-1) and poses a significant barrier to the development of an effective vaccine. To better understand the impact of this genetic diversity on the HIV-1 pathogenic factor Nef, we compiled a panel of reference strains from the NIH Los Alamos HIV Database. Initial sequence analysis identified point mutations at Nef residues 13, 84, and 92 in subtype C reference strain C.BR92025 from Brazil. Functional analysis revealed impaired major histocompatibility complex class I and CD4 downregulation of strain C.BR92025 Nef, which corresponded to decreased protein expression. Metabolic labeling demonstrated that strain C.BR92025 Nef has a greater rate of protein turnover than subtype B reference strain B.JRFL that, on the basis of mutational analysis, is related to Nef residue A84. An alanine-to-valine substitution at position 84, located in alpha helix 2 of Nef, was sufficient to alter the rate of turnover of an otherwise highly expressed Nef protein. In conclusion, these findings highlight HIV-1 Nef residue A84 as a major determinant of protein expression that may offer an additional avenue to disrupt or mediate the effects of this key HIV-1 pathogenic factor. IMPORTANCE The HIV-1 Nef protein has been established as a key pathogenic determinant of HIV/AIDS, but there is little knowledge of how the extensive genetic diversity of HIV-1 affects Nef function. Upon compiling a set of subtype-specific reference strains, we identified a subtype C reference strain, C.BR92025, that contained natural polymorphisms at otherwise highly conserved residues 13, 84, and 92. Interestingly, strain C.BR92025 Nef displayed impaired Nef function and had decreased protein expression. We have demonstrated that strain C.BR92025 Nef has a higher rate of protein turnover than highly expressed Nef proteins and that this higher rate of protein turnover is due to an alanine-to-valine substitution at Nef

  19. Evolutionary conservation in biogenesis of β-barrel proteins allows mitochondria to assemble a functional bacterial trimeric autotransporter protein.

    Science.gov (United States)

    Ulrich, Thomas; Oberhettinger, Philipp; Schütz, Monika; Holzer, Katharina; Ramms, Anne S; Linke, Dirk; Autenrieth, Ingo B; Rapaport, Doron

    2014-10-24

    Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal β-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of β-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial β-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Ovule-specific MADS box proteins have conserved protein-protein interactions in monocots and dicot plants

    NARCIS (Netherlands)

    Favaro, R.; Immink, R.G.H.; Ferioli, V.; Bernasconi, B.; Byzova, M.; Angenent, G.C.; Kater, M.; Colombo, L.

    2002-01-01

    OsMADS13 is a rice MADS-box gene that is specifically expressed in developing ovules. The amino acid sequence of OsMADS13 shows 74␜imilarity to those of FLORAL BINDING PROTEIN 7 (FBP7) and FBP11, the products of two MADS-box genes that are necessary and sufficient to determine ovule identity in

  1. Evolutionary conservation of the signaling proteins upstream of cyclic AMP-dependent kinase and protein kinase C in gastropod mollusks.

    Science.gov (United States)

    Sossin, Wayne S; Abrams, Thomas W

    2009-01-01

    The protein kinase C (PKC) and the cAMP-dependent kinase (protein kinase A; PKA) pathways are known to play important roles in behavioral plasticity and learning in the nervous systems of a wide variety of species across phyla. We briefly review the members of the PKC and PKA family and focus on the evolution of the immediate upstream activators of PKC and PKA i.e., phospholipase C (PLC) and adenylyl cyclase (AC), and their conservation in gastropod mollusks, taking advantage of the recent assembly of the Aplysiacalifornica and Lottia gigantea genomes. The diversity of PLC and AC family members present in mollusks suggests a multitude of possible mechanisms to activate PKA and PKC; we briefly discuss the relevance of these pathways to the known physiological activation of these kinases in Aplysia neurons during plasticity and learning. These multiple mechanisms of activation provide the gastropod nervous system with tremendous flexibility for implementing neuromodulatory responses to both neuronal activity and extracellular signals. Copyright 2009 S. Karger AG, Basel.

  2. Novel and conserved protein macoilin is required for diverse neuronal functions in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Akiko Miyara

    2011-05-01

    Full Text Available Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1, plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity.

  3. A conserved function in phosphatidylinositol metabolism for mammalian Vps13 family proteins.

    Directory of Open Access Journals (Sweden)

    Jae-Sook Park

    Full Text Available The Vps13 protein family is highly conserved in eukaryotic cells. In humans, mutations in the gene encoding the family member VPS13A lead to the neurodegenerative disorder chorea-acanthocytosis. In the yeast Saccharomyces cerevisiae, there is just a single version of VPS13, thereby simplifying the task of unraveling its molecular function(s. While VPS13 was originally identified in yeast by its role in vacuolar sorting, recent studies have revealed a completely different function for VPS13 in sporulation, where VPS13 regulates phosphatidylinositol-4-phosphate (PtdIns(4P levels in the prospore membrane. This discovery raises the possibility that the disease phenotype associated with vps13A mutants in humans is due to misregulation of PtdIns(4P in membranes. To determine whether VPS13A affects PtdIns(4P in membranes from mammalian neuronal cells, phosphatidylinositol phosphate pools were compared in PC12 tissue culture cells in the absence or presence of VPS13A. Consistent with the yeast results, the localization of PtdIns(4P is specifically altered in VPS13A knockdown cells while other phosphatidylinositol phosphates appear unaffected. In addition, VPS13A is necessary to prevent the premature degeneration of neurites that develop in response to Nerve Growth Factor. The regulation of PtdIns(4P is therefore a conserved function of the Vps13 family and may play a role in the maintenance of neuronal processes in mammals.

  4. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  5. An evolutionary model for protein-coding regions with conserved RNA structure

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Forsberg, Roald; Meyer, Irmtraud Margret

    2004-01-01

    components of traditional phylogenetic models. We applied this to a data set of full-genome sequences from the hepatitis C virus where five RNA structures are mapped within the coding region. This allowed us to partition the effects of selection on different structural elements and to test various hypotheses...... concerning the relation of these effects. Of particular interest, we found evidence of a functional role of loop and bulge regions, as these were shown to evolve according to a different and more constrained selective regime than the nonpairing regions outside the RNA structures. Other potential applications......Here we present a model of nucleotide substitution in protein-coding regions that also encode the formation of conserved RNA structures. In such regions, apparent evolutionary context dependencies exist, both between nucleotides occupying the same codon and between nucleotides forming a base pair...

  6. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin

    2016-05-01

    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  7. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV.

    Science.gov (United States)

    Shankar, Manoharan; Hossain, Mohammad S; Biswas, Indranil

    2017-04-15

    Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology.IMPORTANCEStreptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical

  8. FeatureMap3D - a tool to map protein features and sequence conservation onto homologous structures in the PDB

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Rapacki, Krzysztof; Stærfeldt, Hans Henrik

    2006-01-01

    FeatureMap3D is a web-based tool that maps protein features onto 3D structures. The user provides sequences annotated with any feature of interest, such as post-translational modifications, protease cleavage sites or exonic structure and FeatureMap3D will then search the Protein Data Bank (PDB......) for structures of homologous proteins. The results are displayed both as an annotated sequence alignment, where the user-provided annotations as well as the sequence conservation between the query and the target sequence are displayed, and also as a publication-quality image of the 3D protein structure...... with the selected features and sequence conservation enhanced. The results are also returned in a readily parsable text format as well as a PyMol (http://pymol.sourceforge.net/) script file, which allows the user to easily modify the protein structure image to suit a specific purpose. FeatureMap3D can also be used...

  9. Structural insights into the interaction of the conserved mammalian proteins GAPR-1 and Beclin 1, a key autophagy protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yue; Zhao, Yuting; Su, Minfei; Glover, Karen; Chakravarthy, Srinivas; Colbert, Christopher L.; Levine, Beth; Sinha, Sangita C.

    2017-08-29

    Mammalian Golgi-associated plant pathogenesis-related protein 1 (GAPR-1) is a negative autophagy regulator that binds Beclin 1, a key component of the autophagosome nucleation complex. Beclin 1 residues 267–284 are required for binding GAPR-1. Here, sequence analyses, structural modeling, mutagenesis combined with pull-down assays, X-ray crystal structure determination and small-angle X-ray scattering were used to investigate the Beclin 1–GAPR-1 interaction. Five conserved residues line an equatorial GAPR-1 surface groove that is large enough to bind a peptide. A model of a peptide comprising Beclin 1 residues 267–284 docked onto GAPR-1, built using theCABS-dockserver, indicates that this peptide binds to this GAPR-1 groove. Mutation of the five conserved residues lining this groove, H54A/E86A/G102K/H103A/N138G, abrogates Beclin 1 binding. The 1.27 Å resolution X-ray crystal structure of this pentad mutant GAPR-1 was determined. Comparison with the wild-type (WT) GAPR-1 structure shows that the equatorial groove of the pentad mutant is shallower and more positively charged, and therefore may not efficiently bind Beclin 1 residues 267–284, which include many hydrophobic residues. Both WT and pentad mutant GAPR-1 crystallize as dimers, and in each case the equatorial groove of one subunit is partially occluded by the other subunit, indicating that dimeric GAPR-1 is unlikely to bind Beclin 1. SAXS analysis of WT and pentad mutant GAPR-1 indicates that in solution the WT forms monomers, while the pentad mutant is primarily dimeric. Thus, changes in the structure of the equatorial groove combined with the improved dimerization of pentad mutant GAPR-1 are likely to abrogate binding to Beclin 1.

  10. The Unique Morgue Ubiquitination Protein Is Conserved in a Diverse but Restricted Set of Invertebrates

    Science.gov (United States)

    Zhou, Ying; Carpenter, Zachary W.; Brennan, Gregory

    2009-01-01

    Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain where the active site cysteine is replaced by a glycine. Morgue also contains a single C4-type zinc finger motif. This architecture suggests potentially novel ubiquitination activities for Morgue. In this study, we address the evolutionary origins of this distinctive protein utilizing a combination of bioinformatics and molecular biology approaches. We find that Morgue exhibits widespread but restricted phylogenetic distribution among metazoans. Morgue proteins were identified in a wide range of Protostome phyla, including Arthropoda, Annelida, Mollusca, Nematoda, and Platyhelminthes. However, with one potential exception, Morgue was not detected in Deuterostomes, including Chordates, Hemichordates, or Echinoderms. Morgue was also not found in Ctenophora, Cnidaria, Placozoa, or Porifera. Characterization of Morgue sequences within specific animal lineages suggests that gene deletion or acquisition has occurred during divergence of nematodes and that at least one arachnid expresses an atypical form of Morgue consisting only of the variant E2 conjugase domain. Analysis of the organization of several morgue genes suggests that exon-shuffling events have contributed to the evolution of the Morgue protein. These results suggest that Morgue mediates conserved and distinctive ubiquitination functions in specific cell death pathways. PMID:19602541

  11. The unique Morgue ubiquitination protein is conserved in a diverse but restricted set of invertebrates.

    Science.gov (United States)

    Zhou, Ying; Carpenter, Zachary W; Brennan, Gregory; Nambu, John R

    2009-10-01

    Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain where the active site cysteine is replaced by a glycine. Morgue also contains a single C4-type zinc finger motif. This architecture suggests potentially novel ubiquitination activities for Morgue. In this study, we address the evolutionary origins of this distinctive protein utilizing a combination of bioinformatics and molecular biology approaches. We find that Morgue exhibits widespread but restricted phylogenetic distribution among metazoans. Morgue proteins were identified in a wide range of Protostome phyla, including Arthropoda, Annelida, Mollusca, Nematoda, and Platyhelminthes. However, with one potential exception, Morgue was not detected in Deuterostomes, including Chordates, Hemichordates, or Echinoderms. Morgue was also not found in Ctenophora, Cnidaria, Placozoa, or Porifera. Characterization of Morgue sequences within specific animal lineages suggests that gene deletion or acquisition has occurred during divergence of nematodes and that at least one arachnid expresses an atypical form of Morgue consisting only of the variant E2 conjugase domain. Analysis of the organization of several morgue genes suggests that exon-shuffling events have contributed to the evolution of the Morgue protein. These results suggest that Morgue mediates conserved and distinctive ubiquitination functions in specific cell death pathways.

  12. Involvement of the conserved adaptor protein Alix in actin cytoskeleton assembly.

    Science.gov (United States)

    Pan, Shujuan; Wang, Ruoning; Zhou, Xi; He, Guangan; Koomen, John; Kobayashi, Ryuji; Sun, Le; Corvera, Joe; Gallick, Gary E; Kuang, Jian

    2006-11-10

    The conserved adaptor protein Alix, also called AIP1 or Hp95, promotes flattening and alignment of cultured mammalian fibroblasts; however, the mechanism by which Alix regulates fibroblast morphology is not understood. Here we demonstrate that Alix in WI38 cells, which require Alix expression for maintaining typical fibroblast morphology, associates with filamentous actin (F-actin) and F-actin-based structures lamellipodia and stress fibers. Reducing Alix expression by small interfering RNA (siRNA) decreases F-actin content and inhibits stress fiber assembly. In cell-free systems, Alix directly interacts with F-actin at both the N-terminal Bro1 domain and the C-terminal proline-rich domain. In Alix immunoprecipitates from WI38 cell lysates, actin is the most abundant partner protein of Alix. In addition, the N-terminal half of the middle region of Alix binds cortactin, an activator of the ARP2/3 complex-mediated initiation of actin polymerization. Alix is required for lamellipodial localization of cortactin. The C-terminal half of the middle region of Alix interacts with alpha-actinin, a key factor that bundles F-actin in stress fibers. Alix knockdown decreases the amount of alpha-actinin that associates with F-actin. These findings establish crucial involvement of Alix in actin cytoskeleton assembly.

  13. A conserved small RNA promotes silencing of the outer membrane protein YbfM

    DEFF Research Database (Denmark)

    Rasmussen, Anders Aamann; Johansen, Jesper; Nielsen, Jesper S

    2009-01-01

    , designated MicM (also known as RybC/SroB). The regulation is strictly dependent on the RNA chaperone Hfq, and mutational analysis indicates that MicM sequesters the ribosome binding site of ybfM mRNA by an antisense mechanism. Furthermore, we provide evidence that Hfq strongly enhances the on-rate of duplex......In the past few years an increasing number of small non-coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post-transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one...... important physiological role of regulatory RNA molecules in Gram-negative bacteria is to modulate the cell surface and/or to prevent accumulation of OMPs in the envelope. Here, we extend the OMP-sRNA network by showing that the expression of the outer membrane protein YbfM is silenced by a conserved sRNA...

  14. Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst).

    Science.gov (United States)

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Lagercrantz, Ulf

    2013-01-01

    From studies of the circadian clock in the plant model species Arabidopsis (Arabidopsis thaliana), a number of important properties and components have emerged. These include the genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB EXPRESSION 1 (TOC1 also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)) that via gene expression feedback loops participate in the circadian clock. Here, we present results from ectopic expression of four Norway spruce (Picea abies) putative homologs (PaCCA1, PaGI, PaZTL and PaPRR1) in Arabidopsis, their flowering time, circadian period length, red light response phenotypes and their effect on endogenous clock genes were assessed. For PaCCA1-ox and PaZTL-ox the results were consistent with Arabidopsis lines overexpressing the corresponding Arabidopsis genes. For PaGI consistent results were obtained when expressed in the gi2 mutant, while PaGI and PaPRR1 expressed in wild type did not display the expected phenotypes. These results suggest that protein function of PaCCA1, PaGI and PaZTL are at least partly conserved compared to Arabidopsis homologs, however further studies are needed to reveal the protein function of PaPRR1. Our data suggest that components of the three-loop network typical of the circadian clock in angiosperms were present before the split of gymnosperms and angiosperms.

  15. Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst.

    Directory of Open Access Journals (Sweden)

    Anna Karlgren

    Full Text Available From studies of the circadian clock in the plant model species Arabidopsis (Arabidopsis thaliana, a number of important properties and components have emerged. These include the genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1, GIGANTEA (GI, ZEITLUPE (ZTL and TIMING OF CAB EXPRESSION 1 (TOC1 also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1 that via gene expression feedback loops participate in the circadian clock. Here, we present results from ectopic expression of four Norway spruce (Picea abies putative homologs (PaCCA1, PaGI, PaZTL and PaPRR1 in Arabidopsis, their flowering time, circadian period length, red light response phenotypes and their effect on endogenous clock genes were assessed. For PaCCA1-ox and PaZTL-ox the results were consistent with Arabidopsis lines overexpressing the corresponding Arabidopsis genes. For PaGI consistent results were obtained when expressed in the gi2 mutant, while PaGI and PaPRR1 expressed in wild type did not display the expected phenotypes. These results suggest that protein function of PaCCA1, PaGI and PaZTL are at least partly conserved compared to Arabidopsis homologs, however further studies are needed to reveal the protein function of PaPRR1. Our data suggest that components of the three-loop network typical of the circadian clock in angiosperms were present before the split of gymnosperms and angiosperms.

  16. Exploring the Conserved Role of MANF in the Unfolded Protein Response in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Riitta Lindström

    Full Text Available Disturbances in the homeostasis of endoplasmic reticulum (ER referred to as ER stress is involved in a variety of human diseases. ER stress activates unfolded protein response (UPR, a cellular mechanism the purpose of which is to restore ER homeostasis. Previous studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF is an important novel component in the regulation of UPR. In vertebrates, MANF is upregulated by ER stress and protects cells against ER stress-induced cell death. Biochemical studies have revealed an interaction between mammalian MANF and GRP78, the major ER chaperone promoting protein folding. In this study we discovered that the upregulation of MANF expression in response to drug-induced ER stress is conserved between Drosophila and mammals. Additionally, by using a genetic in vivo approach we found genetic interactions between Drosophila Manf and genes encoding for Drosophila homologues of GRP78, PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regulation of Drosophila UPR.

  17. A tree-based conservation scoring method for short linear motifs in multiple alignments of protein sequences

    Directory of Open Access Journals (Sweden)

    López Rodrigo

    2008-05-01

    Full Text Available Abstract Background The structure of many eukaryotic cell regulatory proteins is highly modular. They are assembled from globular domains, segments of natively disordered polypeptides and short linear motifs. The latter are involved in protein interactions and formation of regulatory complexes. The function of such proteins, which may be difficult to define, is the aggregate of the subfunctions of the modules. It is therefore desirable to efficiently predict linear motifs with some degree of accuracy, yet sequence database searches return results that are not significant. Results We have developed a method for scoring the conservation of linear motif instances. It requires only primary sequence-derived information (e.g. multiple alignment and sequence tree and takes into account the degenerate nature of linear motif patterns. On our benchmarking, the method accurately scores 86% of the known positive instances, while distinguishing them from random matches in 78% of the cases. The conservation score is implemented as a real time application designed to be integrated into other tools. It is currently accessible via a Web Service or through a graphical interface. Conclusion The conservation score improves the prediction of linear motifs, by discarding those matches that are unlikely to be functional because they have not been conserved during the evolution of the protein sequences. It is especially useful for instances in non-structured regions of the proteins, where a domain masking filtering strategy is not applicable.

  18. Multi-Signal Sedimentation Velocity Analysis with Mass Conservation for Determining the Stoichiometry of Protein Complexes

    Science.gov (United States)

    Brautigam, Chad A.; Padrick, Shae B.; Schuck, Peter

    2013-01-01

    Multi-signal sedimentation velocity analytical ultracentrifugation (MSSV) is a powerful tool for the determination of the number, stoichiometry, and hydrodynamic shape of reversible protein complexes in two- and three-component systems. In this method, the evolution of sedimentation profiles of macromolecular mixtures is recorded simultaneously using multiple absorbance and refractive index signals and globally transformed into both spectrally and diffusion-deconvoluted component sedimentation coefficient distributions. For reactions with complex lifetimes comparable to the time-scale of sedimentation, MSSV reveals the number and stoichiometry of co-existing complexes. For systems with short complex lifetimes, MSSV reveals the composition of the reaction boundary of the coupled reaction/migration process, which we show here may be used to directly determine an association constant. A prerequisite for MSSV is that the interacting components are spectrally distinguishable, which may be a result, for example, of extrinsic chromophores or of different abundances of aromatic amino acids contributing to the UV absorbance. For interacting components that are spectrally poorly resolved, here we introduce a method for additional regularization of the spectral deconvolution by exploiting approximate knowledge of the total loading concentrations. While this novel mass conservation principle does not discriminate contributions to different species, it can be effectively combined with constraints in the sedimentation coefficient range of uncomplexed species. We show in theory, computer simulations, and experiment, how mass conservation MSSV as implemented in SEDPHAT can enhance or even substitute for the spectral discrimination of components. This should broaden the applicability of MSSV to the analysis of the composition of reversible macromolecular complexes. PMID:23696787

  19. WXG100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern.

    Directory of Open Access Journals (Sweden)

    Christian Poulsen

    Full Text Available Members of the WXG100 protein superfamily form homo- or heterodimeric complexes. The most studied proteins among them are the secreted T-cell antigens CFP-10 (10 kDa culture filtrate protein, EsxB and ESAT-6 (6 kDa early secreted antigen target, EsxA from Mycobacterium tuberculosis. They are encoded on an operon within a gene cluster, named as ESX-1, that encodes for the Type VII secretion system (T7SS. WXG100 proteins are secreted in a full-length form and it is known that they adopt a four-helix bundle structure. In the current work we discuss the evolutionary relationship between the homo- and heterodimeric WXG100 proteins, the basis of the oligomeric state and the key structural features of the conserved sequence pattern of WXG100 proteins. We performed an iterative bioinformatics analysis of the WXG100 protein superfamily and correlated this with the atomic structures of the representative WXG100 proteins. We find, firstly, that the WXG100 protein superfamily consists of three subfamilies: CFP-10-, ESAT-6- and sagEsxA-like proteins (EsxA proteins similar to that of Streptococcus agalactiae. Secondly, that the heterodimeric complexes probably evolved from a homodimeric precursor. Thirdly, that the genes of hetero-dimeric WXG100 proteins are always encoded in bi-cistronic operons and finally, by combining the sequence alignments with the X-ray data we identify a conserved C-terminal sequence pattern. The side chains of these conserved residues decorate the same side of the C-terminal α-helix and therefore form a distinct surface. Our results lead to a putatively extended T7SS secretion signal which combines two reported T7SS recognition characteristics: Firstly that the T7SS secretion signal is localized at the C-terminus of T7SS substrates and secondly that the conserved residues YxxxD/E are essential for T7SS activity. Furthermore, we propose that the specific α-helical surface formed by the conserved sequence pattern including Yxxx

  20. WXG100 Protein Superfamily Consists of Three Subfamilies and Exhibits an α-Helical C-Terminal Conserved Residue Pattern

    Science.gov (United States)

    Poulsen, Christian; Panjikar, Santosh; Holton, Simon J.; Wilmanns, Matthias; Song, Young-Hwa

    2014-01-01

    Members of the WXG100 protein superfamily form homo- or heterodimeric complexes. The most studied proteins among them are the secreted T-cell antigens CFP-10 (10 kDa culture filtrate protein, EsxB) and ESAT-6 (6 kDa early secreted antigen target, EsxA) from Mycobacterium tuberculosis. They are encoded on an operon within a gene cluster, named as ESX-1, that encodes for the Type VII secretion system (T7SS). WXG100 proteins are secreted in a full-length form and it is known that they adopt a four-helix bundle structure. In the current work we discuss the evolutionary relationship between the homo- and heterodimeric WXG100 proteins, the basis of the oligomeric state and the key structural features of the conserved sequence pattern of WXG100 proteins. We performed an iterative bioinformatics analysis of the WXG100 protein superfamily and correlated this with the atomic structures of the representative WXG100 proteins. We find, firstly, that the WXG100 protein superfamily consists of three subfamilies: CFP-10-, ESAT-6- and sagEsxA-like proteins (EsxA proteins similar to that of Streptococcus agalactiae). Secondly, that the heterodimeric complexes probably evolved from a homodimeric precursor. Thirdly, that the genes of hetero-dimeric WXG100 proteins are always encoded in bi-cistronic operons and finally, by combining the sequence alignments with the X-ray data we identify a conserved C-terminal sequence pattern. The side chains of these conserved residues decorate the same side of the C-terminal α-helix and therefore form a distinct surface. Our results lead to a putatively extended T7SS secretion signal which combines two reported T7SS recognition characteristics: Firstly that the T7SS secretion signal is localized at the C-terminus of T7SS substrates and secondly that the conserved residues YxxxD/E are essential for T7SS activity. Furthermore, we propose that the specific α-helical surface formed by the conserved sequence pattern including YxxxD/E motif is a key

  1. Cmc1p Is a Conserved Mitochondrial Twin CX9C Protein Involved in Cytochrome c Oxidase Biogenesis▿ †

    OpenAIRE

    Horn, Darryl; Al-Ali, Hassan; Barrientos, Antoni

    2008-01-01

    Copper is an essential cofactor of two mitochondrial enzymes: cytochrome c oxidase (COX) and Cu-Zn superoxide dismutase (Sod1p). Copper incorporation into these enzymes is facilitated by metallochaperone proteins which probably use copper from a mitochondrial matrix-localized pool. Here we describe a novel conserved mitochondrial metallochaperone-like protein, Cmc1p, whose function affects both COX and Sod1p. In Saccharomyces cerevisiae, Cmc1p localizes to the mitochondrial inner membrane fac...

  2. Genome sequence analysis of solanum lycopersicum showing the phylogenetic relationship based on multiple sequence alignment and conserved domain proteins.

    OpenAIRE

    Uma kumari; Ashok kumar choudhary

    2016-01-01

    Phylogenetics analysis has become essential in researching the evolutionary relationship between sequence alignment and conserved domain protein evolutionary relationship are identified from open reading frame rather than from complete sequences.A reading frame is a set of consecutive,nucleotide ,non overlapping triplets of three consecutive nucleotide .The national center for biotechnology information NCBI provide many tools for compairing database- stored nucleotide or protein sequence,i...

  3. Importance of a Conserved Lys/Arg Residue for Ligand/PDZ Domain Interactions as Examined by Protein Semisynthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Moran, Griffin E; Sereikaité, Vita

    2016-01-01

    drug targets for diseases (in the brain in particular), so understanding the molecular details of PDZ domain interactions is of fundamental importance. PDZ domains bind to a protein partner at either a C-terminal peptide or internal peptide motifs. Here, we examined the importance of a conserved Lys...

  4. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    Directory of Open Access Journals (Sweden)

    Apurva Barve

    2013-01-01

    Full Text Available Xeroderma pigmentosum group A (XPA is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1 and replication protein A 70 kDa subunit (RPA70 proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.

  5. Structural and sequence similarities of hydra xeroderma pigmentosum A protein to human homolog suggest early evolution and conservation.

    Science.gov (United States)

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.

  6. Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion.

    Directory of Open Access Journals (Sweden)

    Gonzalo P Solis

    Full Text Available Analyses of cultured cells and transgenic mice expressing prion protein (PrP deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1 the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2 the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP's essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP's ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and

  7. JABAWS 2.2 Distributed Web Services for Bioinformatics: Protein Disorder, Conservation and RNA Secondary Structure.

    Science.gov (United States)

    Troshin, Peter V; Procter, James B; Sherstnev, Alexander; Barton, Daniel L; Madeira, Fábio; Barton, Geoffrey J

    2018-01-30

    JABAWS 2.2 is a computational framework that simplifies the deployment of web services for Bioinformatics. In addition to the five multiple sequence alignment (MSA) algorithms in JABAWS 1.0, JABAWS 2.2 includes three additional MSA programs (Clustal Omega, MSAprobs, GLprobs), four protein disorder prediction methods (DisEMBL, IUPred, Ronn, GlobPlot), 18 measures of protein conservation as implemented in AACon, and RNA secondary structure prediction by the RNAalifold program. JABAWS 2.2 can be deployed on a variety of in-house or hosted systems. JABAWS 2.2 web services may be accessed from the Jalview multiple sequence analysis workbench (Version 2.8 and later), as well as directly via the JABAWS command line interface (CLI) client. JABAWS 2.2 can be deployed on a local virtual server as a Virtual Appliance (VA) or simply as a Web Application Archive (WAR) for private use. Improvements in JABAWS 2.2 also include simplified installation and a range of utility tools for usage statistics collection, and web services querying and monitoring. The JABAWS CLI client has been updated to support all the new services and allow integration of JABAWS 2.2 services into conventional scripts. A public JABAWS 2 server has been in production since December 2011 and served over 800,000 analyses for users worldwide. JABAWS 2.2 is made freely available under the Apache 2 license and can be obtained from: http://www.compbio.dundee.ac.uk/jabaws. g.j.barton@dundee.ac.uk.

  8. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongshan [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom); College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Xiang, Quanju [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000 (China); Zhu, Xiaofeng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Dong, Haohao [Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); He, Chuan [School of Electronics and Information, Wuhan Technical College of Communications, No. 6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065 (China); Wang, Haiyan; Zhang, Yizheng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Wang, Wenjian, E-mail: Wenjian166@gmail.com [Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080 (China); Dong, Changjiang, E-mail: C.Dong@uea.ac.uk [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom)

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  9. Conserved syntenic clusters of protein coding genes are missing in birds.

    Science.gov (United States)

    Lovell, Peter V; Wirthlin, Morgan; Wilhelm, Larry; Minx, Patrick; Lazar, Nathan H; Carbone, Lucia; Warren, Wesley C; Mello, Claudio V

    2014-01-01

    Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.

  10. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    Science.gov (United States)

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  11. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif.

    Science.gov (United States)

    Tesina, Petr; Čermáková, Kateřina; Hořejší, Magdalena; Procházková, Kateřina; Fábry, Milan; Sharma, Subhalakshmi; Christ, Frauke; Demeulemeester, Jonas; Debyser, Zeger; De Rijck, Jan; Veverka, Václav; Řezáčová, Pavlína

    2015-08-06

    Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.

  12. The conserved domain in MORF proteins has distinct affinities to the PPR and E elements in PPR RNA editing factors.

    Science.gov (United States)

    Bayer-Császár, Eszter; Haag, Sascha; Jörg, Anja; Glass, Franziska; Härtel, Barbara; Obata, Toshihiro; Meyer, Etienne H; Brennicke, Axel; Takenaka, Mizuki

    2017-08-01

    In plant organelles specific nucleotide motifs at C to U RNA editing sites are recognized by the PLS-class of pentatricopeptide repeat (PPR) proteins, which are additionally characterized by a C-terminal E domain. The PPR elements bind the nucleotides in the target RNA, while the function of the E domain has remained unknown. At most sites RNA editing also requires multiple organellar RNA editing factor (MORF) proteins. To understand how these two types of proteins are involved in RNA editing complexes, we systematically analyzed their protein-protein interactions. In vivo pull-down and yeast two-hybrid assays show that MORF proteins connect with selected PPR proteins. In a loss of function mutant of MORF1, a single amino acid alteration in the conserved MORF domain abrogates interactions with many PLS-class PPR proteins, implying the requirement of direct interaction to PPR proteins for the RNA editing function of MORF1. Subfragment analyses show that predominantly the N-terminal/central regions of the MORF domain in MORF1 and MORF3 bind the PPR proteins. Within the PPR proteins, the E domains in addition to PPR elements contact MORF proteins. In chimeric PPR proteins, different E domains alter the specificity of the interaction with MORF proteins. The selective interactions between E domain containing PPR and MORF proteins suggest that the E domains and MORF proteins play a key role for specific protein complexes to assemble at different RNA editing sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution

    DEFF Research Database (Denmark)

    Wong, W T; Schumacher, C; Salcini, A E

    1995-01-01

    In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heteroge...... (for Eps15-related). Structural comparison of Eps15 and Eps15r defines a family of signal transducers possessing extensive networking abilities including EH-mediated binding and association with Src homology 3-containing proteins.......In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several...

  14. Roles of Fission Yeast Grc3 Protein in Ribosomal RNA Processing and Heterochromatic Gene Silencing*

    OpenAIRE

    Kitano, Erina; Hayashi, Aki; Kanai, Daigo; Shinmyozu, Kaori; Nakayama, Jun-ichi

    2011-01-01

    Grc3 is an evolutionarily conserved protein. Genome-wide budding yeast studies suggest that Grc3 is involved in rRNA processing. In the fission yeast Schizosaccharomyces pombe, Grc3 was identified as a factor exhibiting distinct nuclear dot localization, yet its exact physiological function remains unknown. Here, we show that S. pombe Grc3 is required for both rRNA processing and heterochromatic gene silencing. Cytological analysis revealed that Grc3 nuclear dots correspond to heterochromatic...

  15. Cryptococcus neoformans Mediator Protein Ssn8 Negatively Regulates Diverse Physiological Processes and Is Required for Virulence

    OpenAIRE

    Lin-Ing Wang; Yu-Sheng Lin; Kung-Hung Liu; Jong, Ambrose Y.; Wei-Chiang Shen

    2011-01-01

    Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed t...

  16. Identification of a conserved non-protein-coding genomic element that plays an essential role in Alphabaculovirus pathogenesis.

    Directory of Open Access Journals (Sweden)

    Irina Kikhno

    Full Text Available Highly homologous sequences 154-157 bp in length grouped under the name of "conserved non-protein-coding element" (CNE were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome.

  17. Conservation of the folding mechanism between designed primordial (βα)8-barrel proteins and their modern descendant.

    Science.gov (United States)

    Carstensen, Linn; Sperl, Josef M; Bocola, Marco; List, Felix; Schmid, Franz X; Sterner, Reinhard

    2012-08-01

    The (βα)(8)-barrel is among the most ancient, frequent, and versatile enzyme structures. It was proposed that modern (βα)(8)-barrel proteins have evolved from an ancestral (βα)(4)-half-barrel by gene duplication and fusion. We explored whether the mechanism of protein folding has remained conserved during this long-lasting evolutionary process. For this purpose, potential primordial (βα)(8)-barrel proteins were constructed by the duplication of a (βα)(4) element of a modern (βα)(8)-barrel protein, imidazole glycerol phosphate synthase (HisF), followed by the optimization of the initial construct. The symmetric variant Sym1 was less stable than HisF and its crystal structure showed disorder in the contact regions between the half-barrels. The next generation variant Sym2 was more stable than HisF, and the contact regions were well resolved. Remarkably, both artificial (βα)(8)-barrels show the same refolding mechanism as HisF and other modern (βα)(8)-barrel proteins. Early in folding, they all equilibrate rapidly with an off-pathway species. On the productive folding path, they form closely related intermediates and reach the folded state with almost identical rates. The high energy barrier that synchronizes folding is thus conserved. The strong differences in stability between these proteins develop only after this barrier and lead to major changes in the unfolding rates. We conclude that the refolding mechanism of (βα)(8)-barrel proteins is robust. It evolved early and, apparently, has remained conserved upon the diversification of sequences and functions that have taken place within this large protein family.

  18. Conserved Molecular Mechanisms Underlying Homeostasis of the Golgi Complex

    Directory of Open Access Journals (Sweden)

    Cathal Wilson

    2010-01-01

    Full Text Available The Golgi complex performs a central function in the secretory pathway in the sorting and sequential processing of a large number of proteins destined for other endomembrane organelles, the plasma membrane, or secretion from the cell, in addition to lipid metabolism and signaling. The Golgi apparatus can be regarded as a self-organizing system that maintains a relatively stable morphofunctional organization in the face of an enormous flux of lipids and proteins. A large number of the molecular players that operate in these processes have been identified, their functions and interactions defined, but there is still debate about many aspects that regulate protein trafficking and, in particular, the maintenance of these highly dynamic structures and processes. Here, we consider how an evolutionarily conserved underlying mechanism based on retrograde trafficking that uses lipids, COPI, SNAREs, and tethers could maintain such a homeodynamic system.

  19. A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii.

    Science.gov (United States)

    Long, Shaojun; Anthony, Bryan; Drewry, Lisa L; Sibley, L David

    2017-12-21

    Apicomplexan parasites are typified by an apical complex that contains a unique microtubule-organizing center (MTOC) that organizes the cytoskeleton. In apicomplexan parasites such as Toxoplasma gondii, the apical complex includes a spiral cap of tubulin-rich fibers called the conoid. Although described ultrastructurally, the composition and functions of the conoid are largely unknown. Here, we localize 11 previously undescribed apical proteins in T. gondii and identify an essential component named conoid protein hub 1 (CPH1), which is conserved in apicomplexan parasites. CPH1 contains ankyrin repeats that are required for structural integrity of the conoid, parasite motility, and host cell invasion. Proximity labeling and protein interaction network analysis reveal that CPH1 functions as a hub linking key motor and structural proteins that contain intrinsically disordered regions and coiled coil domains. Our findings highlight the importance of essential protein hubs in controlling biological networks of MTOCs in early-branching protozoan parasites.

  20. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans.

    Science.gov (United States)

    Lažetić, Vladimir; Fay, David S

    2017-01-01

    Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species. Copyright © 2017 by the Genetics Society of America.

  1. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  2. Conserved patterns hidden within group A Streptococcus M protein hypervariability are responsible for recognition of human C4b-binding protein

    Science.gov (United States)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-01-01

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through structure determination of four sequence-diverse M proteins in complex with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies targeting the M-C4BP interaction, and also inform a path towards vaccine design. PMID:27595425

  3. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abtract Background The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them. Results We show that both host and endosymbiont mitochondrial genomes encode genes for electron transport proteins. We have characterized cytochrome c oxidase 1 (cox1, cytochrome oxidase 2 (cox2, cytochrome oxidase 3 (cox3, cytochrome b (cob, and large subunit of ribosomal RNA (LSUrRNA of endosymbiont mitochondrial ancestry, and cox1 and cob of host mitochondrial ancestry. We show that all genes are transcribed and that those ascribed to the host mitochondrial genome are extensively edited at the RNA level, as expected for a dinoflagellate mitochondrion-encoded gene. We also found evidence for extensive recombination in the host mitochondrial genes and that recombination products are also transcribed, as expected for a dinoflagellate. Conclusion Durinskia baltica and K. foliaceum retain two mitochondria from evolutionarily distinct lineages, and the functions of these organelles are at least partially overlapping, since both express genes for proteins in electron transport.

  4. The conserved Candida albicans CA3427 gene product defines a new family of proteins exhibiting the generic periplasmic binding protein structural fold.

    Directory of Open Access Journals (Sweden)

    Sébastien Santini

    Full Text Available Nosocomial diseases due to Candida albicans infections are in constant rise in hospitals, where they cause serious complications to already fragile intensive care patients. Antifungal drug resistance is fast becoming a serious issue due to the emergence of strains resistant to currently available antifungal agents. Thus the urgency to identify new potential protein targets, the function and structure of which may guide the development of new antifungal drugs. In this context, we initiated a comparative genomics study in search of promising protein coding genes among the most conserved ones in reference fungal genomes. The CA3427 gene was selected on the basis of its presence among pathogenic fungi contrasting with its absence in the non pathogenic Saccharomyces cerevisiae. We report the crystal 3D-structure of the Candida albicans CA3427 protein at 2.1 Å resolution. The combined analysis of its sequence and structure reveals a structural fold originally associated with periplasmic binding proteins. The CA3427 structure highlights a binding site located between the two protein domains, corresponding to a sequence segment conserved among fungi. Two crystal forms of CA3427 were found, suggesting that the presence or absence of a ligand at the proposed binding site might trigger a "Venus flytrap" motion, coupled to the previously described activity of bacterial periplasmic binding proteins. The conserved binding site defines a new subfamily of periplasmic binding proteins also found in many bacteria of the bacteroidetes division, in a choanoflagellate (a free-living unicellular and colonial flagellate eukaryote and in a placozoan (the closest multicellular relative of animals. A phylogenetic analysis suggests that this gene family originated in bacteria before its horizontal transfer to an ancestral eukaryote prior to the radiation of fungi. It was then lost by the Saccharomycetales which include Saccharomyces cerevisiae.

  5. Balancing protein similarity and gene co-expression reveals new links between genetic conservation and developmental diversity in invertebrates.

    Science.gov (United States)

    Lefebvre, Céline; Aude, Jean-Christophe; Glémet, Eric; Néri, Christian

    2005-04-15

    To identify genetic conservation relative to precise aspects of developmental diversity, an essential question in computational biology, we developed a new comparative method that allows conserved modules for the best balance between protein sequence similarity and gene co-expression to be constructed, in invertebrates. Our method, referred to as the best-balance constraint procedure (BBCP), yielded 719 functionally conserved modules (FCMs) comprising 2-23 gene pairs. These modules were consistent with the developmental roles of orthologues as inferred from Gene Ontology, RNAi knockouts, InterPro and process-specific microarray data. New relationships were defined between genetic conservation and developmental diversity. Novel gene associations were indeed found in 94% of the FCMs, 150 modules being completely new. A significant proportion of the FCMs (18%, 132 modules) described cell type-specific mechanisms, comprising neuronal, muscle and germ cell signaling, new associations being found in 125 modules. Also found were gene associations for cell fate specification activities previously not highlighted by computational means, e.g. in FCMs containing homeogenes. These data indicate that highly discriminative description of genetic conservation can be deduced using BBCP, and reveal new correlations between cellular and developmental diversity and gene essentiality in invertebrates. christian.neri@broca.inserm.fr For supplementary information, please refer to Bioinformatics online.

  6. Measuring the Evolutionarily Important Goals of Situations: Situational Affordances for Adaptive Problems

    National Research Council Canada - National Science Library

    Brown, Nicolas A; Neel, Rebecca; Sherman, Ryne A

    2015-01-01

    .... This article introduces the Situational Affordances for Adaptive Problems (SAAP), a measure of situation characteristics that promotes or prevents the achievement of these evolutionarily important goals...

  7. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope.

    Science.gov (United States)

    Tahara, Maino; Ohno, Shinji; Sakai, Kouji; Ito, Yuri; Fukuhara, Hideo; Komase, Katsuhiro; Brindley, Melinda A; Rota, Paul A; Plemper, Richard K; Maenaka, Katsumi; Takeda, Makoto

    2013-03-01

    Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature.

  8. Evolutionarily advanced ant farmers rear polyploid fungal crops

    DEFF Research Database (Denmark)

    Kooij, Pepijn Wilhelmus; Aanen, D.K.; Schiøtt, Morten

    2015-01-01

    Innovative evolutionary developments are often related to gene or genome duplications. The crop fungi of attine fungus-growing ants are suspected to have enhanced genetic variation reminiscent of polyploidy, but this has never been quantified with cytological data and genetic markers. We estimated...... the number of nuclei per fungal cell for 42 symbionts reared by 14 species of Panamanian fungus-growing ants. This showed that domesticated symbionts of higher attine ants are polykaryotic with 7-17 nuclei per cell, whereas nonspecialized crops of lower attines are dikaryotic similar to most free...... of the basal higher attine genera Trachymyrmex and Sericomyrmex was only slightly enhanced, but the evolutionarily derived crop fungi of Atta and Acromyrmex leaf-cutting ants had much higher genetic variation. Our opposite ploidy models indicated that the symbionts of Trachymyrmex and Sericomyrmex are likely...

  9. Stress Responses of Small Heat Shock Protein Genes in Lepidoptera Point to Limited Conservation of Function across Phylogeny.

    Science.gov (United States)

    Zhang, Bo; Zheng, Jincheng; Peng, Yu; Liu, Xiaoxia; Hoffmann, Ary A; Ma, Chun-Sen

    2015-01-01

    The small heat shock protein (sHsp) family is thought to play an important role in protein refolding and signal transduction, and thereby protect organisms from stress. However little is known about sHsp function and conservation across phylogenies. In the current study, we provide a comprehensive assessment of small Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta. Fourteen small heat shock proteins of OFM clustered with related Hsps in other Lepidoptera despite a high level of variability among them, and in contrast to the highly conserved Hsp11.1. The only known lepidopteran sHsp ortholog (Hsp21.3) was consistently unaffected under thermal stress in Lepidoptera where it has been characterized. However the phylogenetic position of the sHsps within the Lepidoptera was not associated with conservation of induction patterns under thermal extremes or diapause. These findings suggest that the sHsps have evolved rapidly to develop new functions within the Lepidoptera.

  10. Stress Responses of Small Heat Shock Protein Genes in Lepidoptera Point to Limited Conservation of Function across Phylogeny.

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    Full Text Available The small heat shock protein (sHsp family is thought to play an important role in protein refolding and signal transduction, and thereby protect organisms from stress. However little is known about sHsp function and conservation across phylogenies. In the current study, we provide a comprehensive assessment of small Hsp genes and their stress responses in the oriental fruit moth (OFM, Grapholita molesta. Fourteen small heat shock proteins of OFM clustered with related Hsps in other Lepidoptera despite a high level of variability among them, and in contrast to the highly conserved Hsp11.1. The only known lepidopteran sHsp ortholog (Hsp21.3 was consistently unaffected under thermal stress in Lepidoptera where it has been characterized. However the phylogenetic position of the sHsps within the Lepidoptera was not associated with conservation of induction patterns under thermal extremes or diapause. These findings suggest that the sHsps have evolved rapidly to develop new functions within the Lepidoptera.

  11. Conservation of spin polarization during triplet-triplet energy transfer in reconstituted peridinin-chlorophyll-protein complexes.

    Science.gov (United States)

    Di Valentin, Marilena; Tait, Claudia; Salvadori, Enrico; Ceola, Stefano; Scheer, Hugo; Hiller, Roger G; Carbonera, Donatella

    2011-11-17

    Peridinin-chlorophyll-protein (PCP) complexes, where the N-terminal domain of native PCP from Amphidinium carterae has been reconstituted with different chlorophyll (Chl) species, have been investigated by time-resolved EPR in order to elucidate the details of the triplet-triplet energy transfer (TTET) mechanism. This spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognizable spin-polarization effects in the observed time-resolved EPR spectra. The spin polarization produced at the acceptor site (peridinin) depends on the initial polarization of the donor (chlorophyll) and on the relative geometric arrangement of the donor-acceptor spin axes. A variation of the donor triplet state properties in terms of population probabilities or triplet spin axis directions, as produced by replacement of chlorophyll a (Chl a) with non-native chlorophyll species (ZnChl a and BacterioChl a) in the reconstituted complexes, is unambiguously reflected in the polarization pattern of the carotenoid triplet state. For the first time, in the present investigation spin-polarization conservation has been shown to occur among natural cofactors in protein complexes during the TTET process. Proving the validity of the assumption of spin conservation adopted in the EPR spectral analysis, the results reinforce the hypothesis that in PCP proteins peridinin 614, according to X-ray nomenclature (Hofmann, E.; et al. Science 1996, 272, 1788-1791), is the carotenoid of election in the photoprotection mechanism based on TTET.

  12. MadR1, a Mycobacterium tuberculosis cell cycle stress response protein that is a member of a widely conserved protein class of prokaryotic, eukaryotic and archeal origin.

    Science.gov (United States)

    Crew, Rebecca; Ramirez, Melissa V; England, Kathleen; Slayden, Richard A

    2015-05-01

    Stress-induced molecular programs designed to stall division progression are nearly ubiquitous in bacteria, with one well-known example being the participation of the SulA septum inhibiting protein in the SOS DNA damage repair response. Mycobacteria similarly demonstrate stress-altered growth kinetics, however no such regulators have been found in these organisms. We therefore set out to identify SulA-like regulatory proteins in Mycobacterium tuberculosis. A bioinformatics modeling-based approach led to the identification of rv2216 as encoding for a protein with weak similarity to SulA, further analysis distinguished this protein as belonging to a group of uncharacterized growth promoting proteins. We have named the mycobacterial protein encoded by rv2216 morphology altering division regulator protein 1, MadR1. Overexpression of madR1 modulated cell length while maintaining growth kinetics similar to wild-type, and increased the proportion of bent or V-form cells in the population. The presence of MadR1-GFP at regions of cellular elongation (poles) and morphological differentiation (V-form) suggests MadR1 involvement in phenotypic heterogeneity and longitudinal cellular growth. Global transcriptional analysis indicated that MadR1 functionality is linked to lipid editing programs required for growth and persistence. This is the first report to differentiate the larger class of these conserved proteins from SulA proteins and characterizes MadR1 effects on the mycobacterial cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Conserved protein YecM from Escherichia coli shows structural homology to metal-binding isomerases and oxygenases.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Duke, N.; Laskowski, R.; Evdokimova, E.; Skarina, T.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Univ. of Toronto; Univ. Health Network; Birbeck Coll.

    2003-01-01

    The crystal structure of protein YecM{sup 1} has been determined at 1.6 {angstrom} resolution as a part of the ongoing structural genomics initiative (http://www.mcsg.anl.gov). The YecM is a conserved, hypothetical Escherichia coli protein with sequence homologs found exclusively in bacteria, including Salmonella typhimunium, Yersinia pestis, Vibrio cholerae, Haemophilus influenza, and Pasteurella multocida. YecM (188 residues) shows also sequence similarity to proteins in COG database (http://www.ncbi.nlm.nih.gov/cgi-bin/COG/palox-?COG3102). YecM (Pfam-B domain 24546) was selected as a structural genomics target it shows no sequence similarity with proteins of known three-dimensional structure and therefore, may contain a previously unobserved field.

  14. Proteome-Wide Discovery of Evolutionary Conserved Sequences in Disordered Regions

    Science.gov (United States)

    Nguyen Ba, Alex N.; Yeh, Brian J.; van Dyk, Dewald; Davidson, Alan R.; Andrews, Brenda J.; Weiss, Eric L.; Moses, Alan M.

    2016-01-01

    At least 30% of human proteins are thought to contain intrinsically disordered regions, which lack stable structural conformation. Despite lacking enzymatic functions and having few protein domains, disordered regions are functionally important for protein regulation and contain short linear motifs (short peptide sequences involved in protein-protein interactions), but in most disordered regions, the functional amino acid residues remain unknown. We searched for evolutionarily conserved sequences within disordered regions according to the hypothesis that conservation would indicate functional residues. Using a phylogenetic hidden Markov model (phylo-HMM), we made accurate, specific predictions of functional elements in disordered regions even when these elements are only two or three amino acids long. Among the conserved sequences that we identified were previously known and newly identified short linear motifs, and we experimentally verified key examples, including a motif that may mediate interaction between protein kinase Cbk1 and its substrates. We also observed that hub proteins, which interact with many partners in a protein interaction network, are highly enriched in these conserved sequences. Our analysis enabled the systematic identification of the functional residues in disordered regions and suggested that at least 5% of amino acids in disordered regions are important for function. PMID:22416277

  15. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, R.L.; Mackenzie, J.M., E-mail: jason.mackenzie@unimelb.edu.au

    2015-07-15

    The West Nile virus strain Kunjin virus (WNV{sub KUN}) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV{sub KUN} replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV{sub KUN} replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein.

  16. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  17. BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals

    Science.gov (United States)

    Jette, CA; Flanagan, AM; Ryan, J; Pyati, UJ; Carbonneau, S; Stewart, RA; Langenau, DM; Look, AT; Letai, A

    2011-01-01

    Here we investigate the function of zebrafish Bcl-2 family proteins and demonstrate important conservation of function across zebrafish and mammalian systems. We have isolated a zebrafish ortholog of mammalian BIM and show that it is the most toxic of the zebrafish BH3-only genes examined, sharing this characteristic with the mammalian BIM gene. The zebrafish bad gene shows a complete lack of embryonic lethality, but like mammalian BAD, its pro-apoptotic activity is regulated through phosphorylation of critical serines. We also found that the pattern of mitochondrial dysfunction observed by zebrafish BH3 domain peptides in a mammalian cytochrome c release assay recapitulates the pattern of embryonic lethality induced by the respective mRNA injections in vivo. In contrast to zebrafish Bim, Bid exhibited only weak binding to zebrafish Bcl-2 and moderate-to-weak overall lethality in zebrafish embryos and isolated mitochondria. Given that zebrafish Bcl-2 binds strongly to mammalian BID and BIM peptides and proteins, the protein identified as the zebrafish Bid ortholog has different properties than mammalian BID. Overall, our results demonstrate the high degree of functional conservation between zebrafish and mammalian Bcl-2 family proteins, thus validating the zebrafish as a model system to further dissect the molecular mechanisms that regulate apoptosis in future forward genetic and chemical modifier screens. PMID:18404156

  18. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission.

    Science.gov (United States)

    Ukken, Fiona P; Bruckner, Joseph J; Weir, Kurt L; Hope, Sarah J; Sison, Samantha L; Birschbach, Ryan M; Hicks, Lawrence; Taylor, Kendra L; Dent, Erik W; Gonsalvez, Graydon B; O'Connor-Giles, Kate M

    2016-01-01

    Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function. © 2016. Published by The Company of Biologists Ltd.

  19. Arabidopsis thaliana PGR7 encodes a conserved chloroplast protein that is necessary for efficient photosynthetic electron transport.

    Directory of Open Access Journals (Sweden)

    Hou-Sung Jung

    Full Text Available A significant fraction of a plant's nuclear genome encodes chloroplast-targeted proteins, many of which are devoted to the assembly and function of the photosynthetic apparatus. Using digital video imaging of chlorophyll fluorescence, we isolated proton gradient regulation 7 (pgr7 as an Arabidopsis thaliana mutant with low nonphotochemical quenching of chlorophyll fluorescence (NPQ. In pgr7, the xanthophyll cycle and the PSBS gene product, previously identified NPQ factors, were still functional, but the efficiency of photosynthetic electron transport was lower than in the wild type. The pgr7 mutant was also smaller in size and had lower chlorophyll content than the wild type in optimal growth conditions. Positional cloning located the pgr7 mutation in the At3g21200 (PGR7 gene, which was predicted to encode a chloroplast protein of unknown function. Chloroplast targeting of PGR7 was confirmed by transient expression of a GFP fusion protein and by stable expression and subcellular localization of an epitope-tagged version of PGR7. Bioinformatic analyses revealed that the PGR7 protein has two domains that are conserved in plants, algae, and bacteria, and the N-terminal domain is predicted to bind a cofactor such as FMN. Thus, we identified PGR7 as a novel, conserved nuclear gene that is necessary for efficient photosynthetic electron transport in chloroplasts of Arabidopsis.

  20. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control

    OpenAIRE

    Han, Sumin; Lone, Museer A.; Schneiter, Roger; CHANG, Amy

    2010-01-01

    Yeast members of the ORMDL family of endoplasmic reticulum (ER) membrane proteins play a central role in lipid homeostasis and protein quality control. In the absence of yeast Orm1 and Orm2, accumulation of long chain base, a sphingolipid precursor, suggests dysregulation of sphingolipid synthesis. Physical interaction between Orm1 and Orm2 and serine palmitoyltransferase, responsible for the first committed step in sphingolipid synthesis, further supports a role for the Orm proteins in regul...

  1. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, T.; Chance, M; Palczewski, K

    2009-01-01

    G protein-coupled receptors with seven transmembrane {alpha}-helices (GPCRs) comprise the largest receptor superfamily and are involved in detecting a wide variety of extracellular stimuli. The availability of high-resolution crystal structures of five prototypical GPCRs, bovine and squid rhodopsin, engineered A2A-adenosine, {beta}1- and {beta}2-adrenergic receptors, permits comparative analysis of features common to these and likely all GPCRs. We provide an analysis of the distribution of water molecules in the transmembrane region of these GPCR structures and find conserved contacts with microdomains demonstrated to be involved in receptor activation. Colocalization of water molecules associating with highly conserved and functionally important residues in several of these GPCR crystal structures supports the notion that these waters are likely to be as important to proper receptor function as the conserved residues. Moreover, in the absence of large conformational changes in rhodopsin after photoactivation, we propose that ordered waters contribute to the functional plasticity needed to transmit activation signals from the retinal-binding pocket to the cytoplasmic face of rhodopsin and that fundamental features of the mechanism of activation, involving these conserved waters, are shared by many if not all family A receptors.

  2. Why is the GMN motif conserved in the CorA/Mrs2/Alr1 superfamily of magnesium transport proteins?

    Science.gov (United States)

    Palombo, Isolde; Daley, Daniel O; Rapp, Mikaela

    2013-07-16

    Members of the CorA/Mrs2/Alr1 superfamily of transport proteins mediate magnesium uptake in all kingdoms of life. Family members have a low degree of sequence conservation but are characterized by a conserved extracellular loop. While the degree of sequence conservation in the loop deviates to some extent between family members, the GMN family signature motif is always present. Structural and functional data imply that the loop plays a central role in magnesium selectivity, and recent biochemical data suggest it is crucial for stabilizing the pentamer in the magnesium-free (putative open) conformation. In this study, we present a detailed structure-function analysis of the extracellular loop of CorA from Thermotoga maritima, which provides molecular insight into how the loop mediates these two functions. The data show that loop residues outside of the GMN motif can be substituted if they support the pentameric state, but the residues of the GMN motif are intolerant to substitution. We conclude that G(312) is absolutely required for magnesium uptake, M(313) is absolutely required for pentamer integrity in the putative open conformation, and N(314) plays a role in both of these functions. These observations suggest a molecular reason why the GMN motif is conserved throughout the CorA/Mrs2/Alr1 superfamily.

  3. Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History

    Science.gov (United States)

    Risso, Valeria A.; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A.; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2015-01-01

    Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  4. Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins.

    Directory of Open Access Journals (Sweden)

    David Karlin

    Full Text Available Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11-16aa, several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains that could be detected simply by comparing orthologous proteins.

  5. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.

    Directory of Open Access Journals (Sweden)

    Zhiheng Wang

    Full Text Available The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database.The DisoMCS is available at http://cal.tongji.edu.cn/disorder/.

  6. Identification of a conserved linear B-cell epitope in the M protein of porcine epidemic diarrhea virus

    Directory of Open Access Journals (Sweden)

    Zhang Zhibang

    2012-10-01

    Full Text Available Abstract Background The major structural protein of coronaviruses, the membrane (M protein, can elicit the formation of protective antibodies, but little information is available about the M protein of porcine epidemic diarrhea virus (PEDV. Identification of epitopes on the PEDV M protein will be helpful in the elucidation of the antigenic properties of this protein. Results One hybridoma cell line secreting anti-M protein monoclonal antibody (McAb was generated and designated 4D4. To map the epitopes on the PEDV M protein, a total of 17 partially overlapping fragments covering the C-terminus of M protein were expressed as fusion proteins with a 6×His tag or a GST tag. A linear motif, 193TGWAFYVR200, was identified by enzyme-linked immunosorbent assay (ELISA and western blot (WB analysis using McAb 4D4. The motif 195WAFYVR200 was the minimal requirement for reactivity, as demonstrated by removing amino acids individually from both ends of the motif 193TGWAFYVR200. The result of WB analysis showed that the 4D4-defined epitope could be recognized by PEDV-positive serum, but not transmissible gastroenteritis virus (TGEV-positive serum. Furthermore, this epitope was highly conserved among different PEDV strains, as shown by alignment and comparison of sequences. Conclusion A McAb, 4D4, directed against the M protein of PEDV, was obtained, and the 4D4-defined minimal epitope sequence was 195WAFYVR200. The McAb could serve as a candidate for development of a McAb-based antigen capture ELISA for detection of PEDV. The epitope identified provides a basis for the development of epitope-based differential diagnostic techniques and may be useful in the design of epitope-based vaccines.

  7. A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies.

    Directory of Open Access Journals (Sweden)

    Cécile Fourrage

    Full Text Available Poc1 (Protein of Centriole 1 proteins are highly conserved WD40 domain-containing centriole components, well characterized in the alga Chlamydomonas, the ciliated protazoan Tetrahymena, the insect Drosophila and in vertebrate cells including Xenopus and zebrafish embryos. Functions and localizations related to the centriole and ciliary axoneme have been demonstrated for Poc1 in a range of species. The vertebrate Poc1 protein has also been reported to show an additional association with mitochondria, including enrichment in the specialized "germ plasm" region of Xenopus oocytes. We have identified and characterized a highly conserved Poc1 protein in the cnidarian Clytia hemisphaerica. Clytia Poc1 mRNA was found to be strongly expressed in eggs and early embryos, showing a punctate perinuclear localization in young oocytes. Fluorescence-tagged Poc1 proteins expressed in developing embryos showed strong localization to centrioles, including basal bodies. Anti-human Poc1 antibodies decorated mitochondria in Clytia, as reported in human cells, but failed to recognise endogenous or fluorescent-tagged Clytia Poc1. Injection of specific morpholino oligonucleotides into Clytia eggs prior to fertilization to repress Poc1 mRNA translation interfered with cell division from the blastula stage, likely corresponding to when neosynthesis normally takes over from maternally supplied protein. Cell cycle lengthening and arrest were observed, phenotypes consistent with an impaired centriolar biogenesis or function. The specificity of the defects could be demonstrated by injection of synthetic Poc1 mRNA, which restored normal development. We conclude that in Clytia embryos, Poc1 has an essentially centriolar localization and function.

  8. Structural basis for the conserved binding mechanism of MDM2-inhibiting peptides and anti-apoptotic Bcl-2 family proteins.

    Science.gov (United States)

    Lee, Min-Sung; Ha, Ji-Hyang; Yoon, Ho Sup; Lee, Chong-Kil; Chi, Seung-Wook

    2014-02-28

    The interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins serves a critical role in the transcription-independent apoptosis mechanism of p53. Our previous studies showed that an MDM2-inhibiting motif (residues 15-29) in the p53 transactivation domain (p53TAD) mediates the interaction with anti-apoptotic Bcl-2 family proteins. In this study, we provided structural models of the complexes between the MDM2-inhibiting p53TAD peptide and Mcl-1, Bcl-w, and Kaposi sarcoma-associated herpes virus (KSHV) Bcl-2 using NMR chemical shift perturbation data. The binding mode of the MDM2-inhibiting p53TAD peptide is highly conserved among the anti-apoptotic Bcl-2 family proteins despite their distinct specificities for pro-apoptotic Bcl-2 family proteins. We also identified the binding of a phage-display-derived MDM2-inhibiting peptide 12-1 to anti-apoptotic Bcl-XL protein by using NMR spectroscopy. The structural model of the Bcl-XL/12-1 peptide complex revealed that the conserved residues Phe4, Trp8, and Leu11 in the MDM2-inhibiting peptide fit into a hydrophobic cleft of Bcl-XL in a manner similar to that of pro-apoptotic Bcl-2 homology 3 (BH3) peptides. Our results shed light on the mechanism underlying dual-targeting of the FxxxWxxL-based α-helical motif to MDM2 and anti-apoptotic Bcl-2 family proteins for anticancer therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation.

    Science.gov (United States)

    Lott, Kaylen; Li, Jun; Fisk, John C; Wang, Hao; Aletta, John M; Qu, Jun; Read, Laurie K

    2013-10-08

    Arginine methylation is a common posttranslational modification with reported functions in transcription, RNA processing and translation, and DNA repair. Trypanosomes encode five protein arginine methyltransferases, suggesting that arginine methylation exerts widespread impacts on the biology of these organisms. Here, we performed a global proteomic analysis of Trypanosoma brucei to identify arginine methylated proteins and their sites of modification. Using an approach entailing two-dimensional chromatographic separation and alternating electron transfer dissociation and collision induced dissociation, we identified 1332 methylarginines in 676 proteins. The resulting data set represents the largest compilation of arginine methylated proteins in any organism to date. Functional classification revealed numerous arginine methylated proteins involved in flagellar function, RNA metabolism, DNA replication and repair, and intracellular protein trafficking. Thus, arginine methylation has the potential to impact aspects of T. brucei gene expression, cell biology, and pathogenesis. Interestingly, pathways with known methylated proteins in higher eukaryotes were identified in this study, but often different components of the pathway were methylated in trypanosomes. Methylarginines were often identified in glycine rich contexts, although exceptions to this rule were detected. Collectively, these data inform on a multitude of aspects of trypanosome biology and serve as a guide for the identification of homologous arginine methylated proteins in higher eukaryotes. T. brucei is a protozoan parasite that causes lethal African sleeping sickness in humans and nagana in livestock, thereby imposing a significant medical and economic burden on sub-Saharan Africa. The parasite encounters very different environments as it cycles between mammalian and insect hosts, and must exert cellular responses to these varying milieus. One mechanism by which all cells respond to changing

  10. Mutational analysis of Rift Valley fever phlebovirus nucleocapsid protein indicates novel conserved, functional amino acids.

    Science.gov (United States)

    Mottram, Timothy J; Li, Ping; Dietrich, Isabelle; Shi, Xiaohong; Brennan, Benjamin; Varjak, Margus; Kohl, Alain

    2017-12-21

    Rift Valley fever phlebovirus (RVFV; Phenuiviridae, Phlebovirus) is an important mosquito-borne pathogen of both humans and ruminants. The RVFV genome is composed of tripartite, single stranded, negative or ambisense RNAs. The small (S) segment encodes both the nucleocapsid protein (N) and the non-structural protein (NSs). The N protein is responsible for the formation of the viral ribonucleoprotein (RNP) complexes, which are essential in the virus life cycle and for the transcription and replication of the viral genome. There is currently limited knowledge surrounding the roles of the RVFV nucleocapsid protein in viral infection other than its key functions: N protein multimerisation, encapsidation of the RNA genome and interactions with the RNA-dependent RNA polymerase, L. By bioinformatic comparison of the N sequences of fourteen phleboviruses, mutational analysis, minigenome assays and packaging assays, we have further characterised the RVFV N protein. Amino acids P11 and F149 in RVFV N play an essential role in the function of RNPs and are neither associated with N protein multimerisation nor known nucleocapsid protein functions and may have additional roles in the virus life cycle. Amino acid Y30 exhibited increased minigenome activity despite reduced RNA binding capacity. Additionally, we have determined that the N-terminal arm of N protein is not involved in N-L interactions. Elucidating the fundamental processes that involve the nucleocapsid protein will add to our understanding of this important viral protein and may influence future studies in the development of novel antiviral strategies.

  11. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    Science.gov (United States)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  12. S18 family of mitochondrial ribosomal proteins: evolutionary history and Gly132 polymorphism in colon carcinoma.

    Science.gov (United States)

    Mushtaq, Muhammad; Ali, Raja Hashim; Kashuba, Vladimir; Klein, George; Kashuba, Elena

    2016-08-23

    S18 family of mitochondrial ribosomal proteins (MRPS18, S18) consists of three members, S18-1 to -3. Earlier, we found that overexpression of S18-2 protein resulted in immortalization and eventual transformation of primary rat fibroblasts. The S18-1 and -3 have not exhibited such abilities. To understand the differences in protein properties, the evolutionary history of S18 family was analyzed. The S18-3, followed by S18-1 and S18-2 emerged as a result of ancient gene duplication in the root of eukaryotic species tree, followed by two metazoan-specific gene duplications. However, the most conserved metazoan S18 homolog is the S18-1; it shares the most sequence similarity with S18 proteins of bacteria and of other eukaryotic clades. Evolutionarily conserved residues of S18 proteins were analyzed in various cancers. S18-2 is mutated at a higher rate, compared with S18-1 and -3 proteins. Moreover, the evolutionarily conserved residue, Gly132 of S18-2, shows genetic polymorphism in colon adenocarcinomas that was confirmed by direct DNA sequencing.Concluding, S18 family represents the yet unexplored important mitochondrial ribosomal proteins.

  13. A unique Babesia bovis spherical body protein is conserved among geographic isolates and localizes to the infected erythrocyte membrane.

    Science.gov (United States)

    Ruef, B J; Dowling, S C; Conley, P G; Perryman, L E; Brown, W C; Jasmer, D P; Rice-Ficht, A C

    2000-01-05

    Using monoclonal antibody (mAb) 70/52.9, generated from a Babesia bovis fraction enriched for spherical body organelles, we have identified a 135-kDa protein containing an epitope conserved in B. bovis strains from Texas, Mexico, and Australia. The protein was localized to the spherical bodies of the babesial apical complex and was designated spherical body protein 3 (SBP3), according to the established nomenclature. Immunofluorescence studies showed binding of the 70/52.9 mAb to the infected-erythrocyte membrane region but not to their uninfected counterparts, demonstrating a host-cell association shared with the previously isolated B. bovis spherical body proteins, SBP1 and SBP2. Using mAb 70/52.9, the full-length cDNA encoding SBP3 was isolated from an expression library, sequenced, and oligonucleotide primers synthesized to amplify the genomic copy by polymerase chain reaction. The genomic copy contained no introns and was identical to the cDNA sequence with each containing a single, large open reading frame encoding a protein of 1089 residues. Analysis of the SBP3 amino acid sequence revealed no significant amino acid identity to SBP1 and SBP2 and a lack of repeated epitopes, a notable feature of the other two spherical body proteins. Labeled probes derived from the coding region of SBP3 hybridized to single fragments on Southern blots containing B. bovis genomic DNA indicating a single copy gene. With the identification of this third spherical body protein, which associates with the cytoplasmic face of the infected-erythrocyte membrane, a complement of distinct B. bovis proteins have been identified that are likely to contribute to intracellular survival, growth, and development for this parasite. The encoded protein should be valuable for functional investigations and evaluation of potential targets for host immunity.

  14. Evolutionarily conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii

    OpenAIRE

    Miller, Matthew B.; Haubrich, Brad A; Wang, Qian; Snell, William J.; Nes, W. David

    2012-01-01

    Ergosterol is the predominant sterol of fungi and green algae. Although the biosynthetic pathway for sterol synthesis in fungi is well established and is known to use C24-methylation-C24 (28)-reduction (Δ24(28)-olefin pathway) steps, little is known about the sterol pathway in green algae. Previous work has raised the possibility that these algae might use a novel pathway because the green alga Chlamydomonas reinhardtii was shown to possess a mevalonate-independent methylerythritol 4-phosphat...

  15. Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior.

    Science.gov (United States)

    Hindle, Samantha J; Munji, Roeben N; Dolghih, Elena; Gaskins, Garrett; Orng, Souvinh; Ishimoto, Hiroshi; Soung, Allison; DeSalvo, Michael; Kitamoto, Toshihiro; Keiser, Michael J; Jacobson, Matthew P; Daneman, Richard; Bainton, Roland J

    2017-10-31

    Central nervous system (CNS) chemical protection depends upon discrete control of small-molecule access by the blood-brain barrier (BBB). Curiously, some drugs cause CNS side-effects despite negligible transit past the BBB. To investigate this phenomenon, we asked whether the highly BBB-enriched drug efflux transporter MDR1 has dual functions in controlling drug and endogenous molecule CNS homeostasis. If this is true, then brain-impermeable drugs could induce behavioral changes by affecting brain levels of endogenous molecules. Using computational, genetic, and pharmacologic approaches across diverse organisms, we demonstrate that BBB-localized efflux transporters are critical for regulating brain levels of endogenous steroids and steroid-regulated behaviors (sleep in Drosophila and anxiety in mice). Furthermore, we show that MDR1-interacting drugs are associated with anxiety-related behaviors in humans. We propose a general mechanism for common behavioral side effects of prescription drugs: pharmacologically challenging BBB efflux transporters disrupts brain levels of endogenous substrates and implicates the BBB in behavioral regulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Tryptophan as an evolutionarily conserved signal to brain serotonin : Molecular evidence and psychiatric implications

    NARCIS (Netherlands)

    Russo, Sascha; Kema, Ido P.; Bosker, Fokko; Haavik, Jan; Korf, Jakob

    2009-01-01

    The role of serotonin (5-HT) in psychopathology has been investigated for decades. Among others, symptoms of depression, panic, aggression and suicidality have been associated with serotonergic dysfunction. Here we summarize the evidence that low brain 5-HT signals a metabolic imbalance that is

  17. An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development

    Science.gov (United States)

    Pratt, Kara G.; Hiramoto, Masaki; Cline, Hollis T.

    2016-01-01

    Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells (RGCs) by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review, we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds and mammals) could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish), do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus (SC) and the lateral geniculate nucleus. PMID:27818623

  18. An Evolutionarily Conserved Mechanism for Activity-dependent Visual Circuit Development

    Directory of Open Access Journals (Sweden)

    Kara Geo Pratt

    2016-10-01

    Full Text Available Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds, mammals could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish, do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus and the lateral geniculate nucleus.

  19. Post-transcriptional exon shuffling events in humans can be evolutionarily conserved and abundant

    OpenAIRE

    Al-Balool, Haya H.; Weber, David; Liu, Yilei; Wade, Mark; Guleria, Kamlesh; Nam, Pitsien Lang Ping; Clayton, Jake; Rowe, William; Coxhead, Jonathan; Irving, Julie; Elliott, David J.; Hall, Andrew G.; Santibanez-Koref, Mauro; Jackson, Michael S.

    2011-01-01

    In silico analyses have established that transcripts from some genes can be processed into RNAs with rearranged exon order relative to genomic structure (post-transcriptional exon shuffling, or PTES). Although known to contribute to transcriptome diversity in some species, to date the structure, distribution, abundance, and functional significance of human PTES transcripts remains largely unknown. Here, using high-throughput transcriptome sequencing, we identify 205 putative human PTES produc...

  20. Latency transition of plasminogen activator inhibitor type 1 is evolutionarily conserved

    DEFF Research Database (Denmark)

    Jendroszek, Agnieszka; Sønnichsen, Malene; Chana Munoz, Andres

    2017-01-01

    latency transition must have been a specific selection criterion for the evolution of PAI-1. It appears that all PAI-1 molecules must harbour latency transition to fulfil their physiological function, stressing the importance to further pursue a complete understanding of this molecular phenomenon......Plasminogen activator inhibitor type 1 (PAI-1) is a central regulator of fibrinolysis and tissue remodelling. PAI-1 belongs to the serpin superfamily and unlike other inhibitory serpins undergoes a spontaneous inactivation process under physiological conditions, termed latency transition. During...... latency transition the solvent exposed reactive centre loop is inserted into the central β-sheet A of the molecule, and is no longer accessible to reaction with the protease. More than three decades of research on mammalian PAI-1 has not been able to clarify the evolutionary advantage and physiological...

  1. Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.

    Science.gov (United States)

    Zhang, Pengwei; Dai, Wei; Hahn, Juergen; Gilbert, Susan P

    2015-05-19

    Drosophila melanogaster kinesin-14 Ncd cross-links parallel microtubules at the spindle poles and antiparallel microtubules within the spindle midzone to play roles in bipolar spindle assembly and proper chromosome distribution. As observed for Saccharomyces cerevisiae kinesin-14 Kar3Vik1 and Kar3Cik1, Ncd binds adjacent microtubule protofilaments in a novel microtubule binding configuration and uses an ATP-promoted powerstroke mechanism. The hypothesis tested here is that Kar3Vik1 and Kar3Cik1, as well as Ncd, use a common ATPase mechanism for force generation even though the microtubule interactions for both Ncd heads are modulated by nucleotide state. The presteady-state kinetics and computational modeling establish an ATPase mechanism for a powerstroke model of Ncd that is very similar to those determined for Kar3Vik1 and Kar3Cik1, although these heterodimers have one Kar3 catalytic motor domain and a Vik1/Cik1 partner motor homology domain whose interactions with microtubules are not modulated by nucleotide state but by strain. The results indicate that both Ncd motor heads bind the microtubule lattice; two ATP binding and hydrolysis events are required for each powerstroke; and a slow step occurs after microtubule collision and before the ATP-promoted powerstroke. Note that unlike conventional myosin-II or other processive molecular motors, Ncd requires two ATP turnovers rather than one for a single powerstroke-driven displacement or step. These results are significant because all metazoan kinesin-14s are homodimers, and the results presented show that despite their structural and functional differences, the heterodimeric and homodimeric kinesin-14s share a common evolutionary structural and mechanochemical mechanism for force generation.

  2. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection

    Science.gov (United States)

    Staphylococcus aureus is a Gram-positive pathogen relevant for both human and animal health. With multi-drug resistant S. aureus strains becoming increasingly prevalent, alternative therapeutics are urgently needed. Bacteriophage endolysins (peptidoglycan hydrolases, PGH) are capable of killing Gra...

  3. An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression

    OpenAIRE

    Ucar, Olga; Tykocinski, Lars-Oliver; Dooley, James; Liston, Adrian; Kyewski, Bruno

    2013-01-01

    The establishment and maintenance of central tolerance depends to a large extent on the ability of medullary thymic epithelial cells to express a variety of tissue-restricted antigens, the so-called promiscuous gene expression (pGE). Autoimmune regulator (Aire) is to date the best characterised transcriptional regulator known to at least partially coordinate pGE. There is accruing evidence that the expression of Aire-dependent and -independent genes is modulated by higher order chromatin conf...

  4. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility

    OpenAIRE

    Fritz-Laylin, Lillian K.; Lord, Samuel J.; Mullins, R Dyche

    2017-01-01

    Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call ??-motility.? Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE?activators of branched a...

  5. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed.

    Directory of Open Access Journals (Sweden)

    Xuezhong Cai

    2006-03-01

    Full Text Available The pathogenic lymphocryptovirus Epstein-Barr virus (EBV is shown to express at least 17 distinct microRNAs (miRNAs in latently infected cells. These are arranged in two clusters: 14 miRNAs are located in the introns of the viral BART gene while three are located adjacent to BHRF1. The BART miRNAs are expressed at high levels in latently infected epithelial cells and at lower, albeit detectable, levels in B cells. In contrast to the tissue-specific expression pattern of the BART miRNAs, the BHRF1 miRNAs are found at high levels in B cells undergoing stage III latency but are essentially undetectable in B cells or epithelial cells undergoing stage I or II latency. Induction of lytic EBV replication was found to enhance the expression of many, but not all, of these viral miRNAs. Rhesus lymphocryptovirus, which is separated from EBV by > or =13 million years of evolution, expresses at least 16 distinct miRNAs, seven of which are closely related to EBV miRNAs. Thus, lymphocryptovirus miRNAs are under positive selection and are likely to play important roles in the viral life cycle. Moreover, the differential regulation of EBV miRNA expression implies distinct roles during infection of different human tissues.

  6. The conserved fission complex on peroxisomes and mitochondria.

    Science.gov (United States)

    Pan, Ronghui; Hu, Jianping

    2011-06-01

    Peroxisomes are eukaryotic organelles highly versatile and dynamic in content and abundance. Plant peroxisomes mediate various metabolic pathways, a number of which are completed sequentially in peroxisomes and other subcellular organelles, including mitochondria and chloroplasts. To understand how peroxisomal dynamics contribute to changes in plant physiology and adaptation, the multiplication pathways of peroxisomes are being dissected. Research in Arabidopsis thaliana has identified several evolutionarily conserved families of proteins in peroxisome division. These include five PEROXIN11 proteins (PEX11a to -e) that induce peroxisome elongation, and the fission machinery, which is composed of three dynamin-related proteins (DRP3A, -3B, and -5B) and DRP's membrane receptor, FISSION1 (FIS1A and -1B). While the function of PEX11 is restricted to peroxisomes, the fission factors are more promiscuous. DRP3 and FIS1 proteins are shared between peroxisomes and mitochondria, and DRP5B plays a dual role in the division of chloroplasts and peroxisomes. Analysis of the Arabidopsis genome suggests that higher plants may also contain functional homologs of the yeast Mdv1/Caf4 proteins, adaptor proteins that link DRPs to FIS1 on the membrane of both peroxisomes and mitochondria. Sharing a conserved fission machine between these metabolically linked subcellular compartments throughout evolution may have some biological significance. 

  7. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control

    Science.gov (United States)

    Han, Sumin; Lone, Museer A.; Schneiter, Roger; Chang, Amy

    2010-01-01

    Yeast members of the ORMDL family of endoplasmic reticulum (ER) membrane proteins play a central role in lipid homeostasis and protein quality control. In the absence of yeast Orm1 and Orm2, accumulation of long chain base, a sphingolipid precursor, suggests dysregulation of sphingolipid synthesis. Physical interaction between Orm1 and Orm2 and serine palmitoyltransferase, responsible for the first committed step in sphingolipid synthesis, further supports a role for the Orm proteins in regulating sphingolipid synthesis. Phospholipid homeostasis is also affected in orm1Δ orm2Δ cells: the cells are inositol auxotrophs with impaired transcriptional regulation of genes encoding phospholipid biosynthesis enzymes. Strikingly, impaired growth of orm1Δ orm2Δ cells is associated with constitutive unfolded protein response, sensitivity to stress, and slow ER-to-Golgi transport. Inhibition of sphingolipid synthesis suppresses orm1Δ orm2Δ phenotypes, including ER stress, suggesting that disrupted sphingolipid homeostasis accounts for pleiotropic phenotypes. Thus, the yeast Orm proteins control membrane biogenesis by coordinating lipid homeostasis with protein quality control. PMID:20212121

  8. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    OpenAIRE

    Shi, Tujin; Niepel, Mario; McDermott, Jason E.; Gao, Yuqian; Nicora, Carrie D.; Chrisler, William B.; Markillie, Lye M.; Petyuk, Vladislav A.; Smith, Richard D; Rodland, Karin D.; Sorger, Peter K.; Qian, Wei-Jun; Wiley, H. Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then q...

  9. Phylogeny and molecular signatures (conserved proteins and indels that are specific for the Bacteroidetes and Chlorobi species

    Directory of Open Access Journals (Sweden)

    Lorenzini Emily

    2007-05-01

    Full Text Available Abstract Background The Bacteroidetes and Chlorobi species constitute two main groups of the Bacteria that are closely related in phylogenetic trees. The Bacteroidetes species are widely distributed and include many important periodontal pathogens. In contrast, all Chlorobi are anoxygenic obligate photoautotrophs. Very few (or no biochemical or molecular characteristics are known that are distinctive characteristics of these bacteria, or are commonly shared by them. Results Systematic blast searches were performed on each open reading frame in the genomes of Porphyromonas gingivalis W83, Bacteroides fragilis YCH46, B. thetaiotaomicron VPI-5482, Gramella forsetii KT0803, Chlorobium luteolum (formerly Pelodictyon luteolum DSM 273 and Chlorobaculum tepidum (formerly Chlorobium tepidum TLS to search for proteins that are uniquely present in either all or certain subgroups of Bacteroidetes and Chlorobi. These studies have identified > 600 proteins for which homologues are not found in other organisms. This includes 27 and 51 proteins that are specific for most of the sequenced Bacteroidetes and Chlorobi genomes, respectively; 52 and 38 proteins that are limited to species from the Bacteroidales and Flavobacteriales orders, respectively, and 5 proteins that are common to species from these two orders; 185 proteins that are specific for the Bacteroides genus. Additionally, 6 proteins that are uniquely shared by species from the Bacteroidetes and Chlorobi phyla (one of them also present in the Fibrobacteres have also been identified. This work also describes two large conserved inserts in DNA polymerase III (DnaE and alanyl-tRNA synthetase that are distinctive characteristics of the Chlorobi species and a 3 aa deletion in ClpB chaperone that is mainly found in various Bacteroidales, Flavobacteriales and Flexebacteraceae, but generally not found in the homologs from other organisms. Phylogenetic analyses of the Bacteroidetes and Chlorobi species is also

  10. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.

    2015-01-01

    Background: Computational methods for T cell-based vaccine target discovery focus on selection of highly conserved peptides identified across pathogen variants, followed by prediction of their binding of human leukocyte antigen molecules. However, experimental studies have shown that T cells often...... the number of potential vaccine targets compared to the number of targets discovered using the traditional approach where low-frequency peptides are excluded. Conclusions: We developed a webserver with an intuitive visualization scheme for summarizing the T cell-based antigenic potential of any given protein...

  11. Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins).

    Science.gov (United States)

    Tumlirsch, Tony; Jendrossek, Dieter

    2017-04-01

    On the basis of bioinformatic evidence, we suspected that proteins with a CYTH (CyaB thiamine triphosphatase) domain and/or a CHAD (conserved histidine α-helical domain) motif might represent polyphosphate (polyP) granule-associated proteins. We found no evidence of polyP targeting by proteins with CYTH domains. In contrast, two CHAD motif-containing proteins from Ralstonia eutropha H16 (A0104 and B1017) that were expressed as fusions with enhanced yellow fluorescent protein (eYFP) colocalized with polyP granules. While the expression of B1017 was not detectable, the A0104 protein was specifically identified in an isolated polyP granule fraction by proteome analysis. Moreover, eYFP fusions with the CHAD motif-containing proteins MGMSRV2-1987 from Magnetospirillum gryphiswaldense and PP2307 from Pseudomonas putida also colocalized with polyP granules in a transspecies-specific manner. These data indicated that CHAD-containing proteins are generally attached to polyP granules. Together with the findings from four previously polyP-attached proteins (polyP kinases), the results of this study raised the number of polyP-associated proteins in R. eutropha to six. We suggest designating polyP granule-bound proteins with CHAD motifs as phosins (phosphate), analogous to phasins and oleosins that are specifically bound to the surface of polyhydroxyalkanoate (PHA) granules in PHA-accumulating bacteria and to oil droplets in oil seed plants, respectively.IMPORTANCE The importance of polyphosphate (polyP) for life is evident from the ubiquitous presence of polyP in all species on earth. In unicellular eukaryotic microorganisms, polyP is located in specific membrane-enclosed organelles, called acidocalcisomes. However, in most prokaryotes, polyP is present as insoluble granules that have been designated previously as volutin granules. Almost nothing is known regarding the macromolecular composition of polyP granules. Particularly, the absence or presence of cellular compounds on

  12. Phylogeny, Function and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins

    NARCIS (Netherlands)

    Khuri, S.; Bakker, F.T.; Dunwell, J.M.

    2001-01-01

    The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length.

  13. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants

    Directory of Open Access Journals (Sweden)

    Salojärvi Jarkko

    2010-03-01

    Full Text Available Abstract Background The SROs (SIMILAR TO RCD-ONE are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose polymerase (PARP domain and a C-terminal RST (RCD-SRO-TAF4 domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. Results SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918 but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11. We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose polymerase (PS51059 domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. Conclusions The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation.

  14. Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein.

    Science.gov (United States)

    Elliott, Candace; Müller, Judith; Miklis, Marco; Bhat, Riyaz A; Schulze-Lefert, Paul; Panstruga, Ralph

    2005-01-01

    We performed a structure-function analysis of the plasma membrane-localized plant-specific barley (Hordeum vulgare) MLO (powdery-mildew-resistance gene o) protein. Invariant cysteine and proline residues, located either in extracellular loops or transmembrane domains that have been conserved in MLO proteins for more than 400 million years, were found to be essential for MLO functionality and/or stability. Similarly to many metazoan G-protein-coupled receptors known to function as homo- and hetero-oligomers, FRET (fluorescence resonance energy transfer) analysis revealed evidence for in planta MLO dimerization/oligomerization. Domain-swap experiments with closely related wheat and rice as well as diverged Arabidopsis MLO isoforms demonstrated that the identity of the C-terminal cytoplasmic tail contributes to MLO activity. Likewise, analysis of a progressive deletion series revealed that integrity of the C-terminus determines both MLO accumulation and functionality. A series of domain swaps of cytoplasmic loops with the wheat (Triticum aestivum) orthologue, TaMLO-B1, provided strong evidence for co-operative loop-loop interplay either within the protein or between MLO molecules. Our data indicate extensive intramolecular co-evolution of cytoplasmic domains in the evolutionary history of the MLO protein family.

  15. Conserved extracellular cysteine residues and cytoplasmic loop–loop interplay are required for functionality of the heptahelical MLO protein

    Science.gov (United States)

    Elliott, Candace; Müller, Judith; Miklis, Marco; Bhat, Riyaz A.; Schulze-Lefert, Paul; Panstruga, Ralph

    2004-01-01

    We performed a structure–function analysis of the plasma membrane-localized plant-specific barley (Hordeum vulgare) MLO (powdery-mildew-resistance gene o) protein. Invariant cysteine and proline residues, located either in extracellular loops or transmembrane domains that have been conserved in MLO proteins for more than 400 million years, were found to be essential for MLO functionality and/or stability. Similarly to many metazoan G-protein-coupled receptors known to function as homo- and hetero-oligomers, FRET (fluorescence resonance energy transfer) analysis revealed evidence for in planta MLO dimerization/oligomerization. Domain-swap experiments with closely related wheat and rice as well as diverged Arabidopsis MLO isoforms demonstrated that the identity of the C-terminal cytoplasmic tail contributes to MLO activity. Likewise, analysis of a progressive deletion series revealed that integrity of the C-terminus determines both MLO accumulation and functionality. A series of domain swaps of cytoplasmic loops with the wheat (Triticum aestivum) orthologue, TaMLO-B1, provided strong evidence for co-operative loop–loop interplay either within the protein or between MLO molecules. Our data indicate extensive intramolecular co-evolution of cytoplasmic domains in the evolutionary history of the MLO protein family. PMID:15352871

  16. ELISA: Structure-Function Inferences based on statistically significant and evolutionarily inspired observations

    Directory of Open Access Journals (Sweden)

    DeLisi Charles

    2003-09-01

    Full Text Available Abstract The problem of functional annotation based on homology modeling is primary to current bioinformatics research. Researchers have noted regularities in sequence, structure and even chromosome organization that allow valid functional cross-annotation. However, these methods provide a lot of false negatives due to limited specificity inherent in the system. We want to create an evolutionarily inspired organization of data that would approach the issue of structure-function correlation from a new, probabilistic perspective. Such organization has possible applications in phylogeny, modeling of functional evolution and structural determination. ELISA (Evolutionary Lineage Inferred from Structural Analysis, http://romi.bu.edu/elisa is an online database that combines functional annotation with structure and sequence homology modeling to place proteins into sequence-structure-function "neighborhoods". The atomic unit of the database is a set of sequences and structural templates that those sequences encode. A graph that is built from the structural comparison of these templates is called PDUG (protein domain universe graph. We introduce a method of functional inference through a probabilistic calculation done on an arbitrary set of PDUG nodes. Further, all PDUG structures are mapped onto all fully sequenced proteomes allowing an easy interface for evolutionary analysis and research into comparative proteomics. ELISA is the first database with applicability to evolutionary structural genomics explicitly in mind. Availability: The database is available at http://romi.bu.edu/elisa.

  17. Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis.

    Science.gov (United States)

    Karlowski, Wojciech M; Zielezinski, Andrzej; Carrère, Julie; Pontier, Dominique; Lagrange, Thierry; Cooke, Richard

    2010-07-01

    Domains in Arabidopsis proteins NRPE1 and SPT5-like, composed almost exclusively of repeated motifs in which only WG or GW sequences and an overall amino-acid preference are conserved, have been experimentally shown to bind multiple molecules of Argonaute (AGO) protein(s). Domain swapping between the WG/GW domains of NRPE1 and the human protein GW182 showed a conserved function. As classical sequence alignment methods are poorly-adapted to detect such weakly-conserved motifs, we have developed a tool to carry out a systematic analysis to identify genes potentially encoding AGO-binding GW/WG proteins. Here, we describe exhaustive analysis of the Arabidopsis genome for all regions potentially encoding proteins bearing WG/GW motifs and consider the possible role of some of them in AGO-dependent mechanisms. We identified 20 different candidate WG/GW genes, encoding proteins in which the predicted domains range from 92aa to 654aa. These mostly correspond to a limited number of families: RNA-binding proteins, transcription factors, glycine-rich proteins, translation initiation factors and known silencing-associated proteins such as SDE3. Recent studies have argued that the interaction between WG/GW-rich domains and AGO proteins is evolutionarily conserved. Here, we demonstrate by an in silico domain-swapping simulation between plant and mammalian WG/GW proteins that the biased amino-acid composition of the AGO-binding sites is conserved.

  18. Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches.

    Directory of Open Access Journals (Sweden)

    Andrés Romanowski

    Full Text Available Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.

  19. Potential Conservation of Circadian Clock Proteins in the phylum Nematoda as Revealed by Bioinformatic Searches

    Science.gov (United States)

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system. PMID:25396739

  20. Focal adhesion protein FAP52 self-associates through a sequence conserved among the members of the PCH family proteins.

    Science.gov (United States)

    Nikki, Marko; Meriläinen, Jari; Lehto, Veli-Pekka

    2002-05-21

    FAP52 is a recently described focal adhesion-associated protein. It is a member of an emerging PCH (pombe Cdc15 homology) family of proteins characterized by a common domain organization and involvement in actin cytoskeleton organization, cytokinesis, and vesicular trafficking. Using gel filtration, surface plasmon resonance, and native polyacrylamide gel electrophoresis analysis, combined with chemical cross-linking of both native and recombinant protein, we show that FAP52 self-associates in vitro and suggest that it occurs predominantly as a trimer also in vivo. Analysis of the various domains of FAP52 by surface plasmon resonance showed that the highly alpha-helical region in the N-terminal half of the protein provides the self-association interface. Overexpression of the oligomerization domain in cultured cells was accompanied by major alterations in cellular morphology, actin organization, and the structure of focal adhesions, suggesting that an orderly coming together of FAP52 molecules is crucial for a proper actin filament organization and cytoskeletal structure. Comparison of the primary structures shows that all of the members of the PCH family have, in their N-terminal halves, a similar, highly alpha-helical region, suggesting that they all have a capacity to self-associate.

  1. On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture.

    Science.gov (United States)

    Worth, Catherine L; Blundell, Tom L

    2010-05-31

    The hydrogen bond patterns between mainchain atoms in protein structures not only give rise to regular secondary structures but also satisfy mainchain hydrogen bond potential. However, not all mainchain atoms can be satisfied through hydrogen bond interactions that arise in regular secondary structures; in some locations sidechain-to-mainchain hydrogen bonds are required to provide polar group satisfaction. Buried polar residues that are hydrogen-bonded to mainchain amide atoms tend to be highly conserved within protein families, confirming that mainchain architecture is a critical restraint on the evolution of proteins. We have investigated the stabilizing roles of buried polar sidechains on the backbones of protein structures by performing an analysis of solvent inaccessible residues that are entirely conserved within protein families and superfamilies and hydrogen bonded to an equivalent mainchain atom in each family member. We show that polar and sometimes charged sidechains form hydrogen bonds to mainchain atoms in the cores of proteins in a manner that has been conserved in evolution. Although particular motifs have previously been identified where buried polar residues have conserved roles in stabilizing protein structure, for example in helix capping, we demonstrate that such interactions occur in a range of architectures and highlight those polar amino acid types that fulfil these roles. We show that these buried polar residues often span elements of secondary structure and provide stabilizing interactions of the overall protein architecture. Conservation of buried polar residues and the hydrogen-bond interactions that they form implies an important role for maintaining protein structure, contributing strong restraints on amino acid substitutions during divergent protein evolution. Our analysis sheds light on the important stabilizing roles of these residues in protein architecture and provides further insight into factors influencing the evolution of

  2. On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture

    Directory of Open Access Journals (Sweden)

    Worth Catherine L

    2010-05-01

    Full Text Available Abstract Background The hydrogen bond patterns between mainchain atoms in protein structures not only give rise to regular secondary structures but also satisfy mainchain hydrogen bond potential. However, not all mainchain atoms can be satisfied through hydrogen bond interactions that arise in regular secondary structures; in some locations sidechain-to-mainchain hydrogen bonds are required to provide polar group satisfaction. Buried polar residues that are hydrogen-bonded to mainchain amide atoms tend to be highly conserved within protein families, confirming that mainchain architecture is a critical restraint on the evolution of proteins. We have investigated the stabilizing roles of buried polar sidechains on the backbones of protein structures by performing an analysis of solvent inaccessible residues that are entirely conserved within protein families and superfamilies and hydrogen bonded to an equivalent mainchain atom in each family member. Results We show that polar and sometimes charged sidechains form hydrogen bonds to mainchain atoms in the cores of proteins in a manner that has been conserved in evolution. Although particular motifs have previously been identified where buried polar residues have conserved roles in stabilizing protein structure, for example in helix capping, we demonstrate that such interactions occur in a range of architectures and highlight those polar amino acid types that fulfil these roles. We show that these buried polar residues often span elements of secondary structure and provide stabilizing interactions of the overall protein architecture. Conclusions Conservation of buried polar residues and the hydrogen-bond interactions that they form implies an important role for maintaining protein structure, contributing strong restraints on amino acid substitutions during divergent protein evolution. Our analysis sheds light on the important stabilizing roles of these residues in protein architecture and provides

  3. Prevention of Pneumococcal Disease in Mice Immunized with Conserved Surface-Accessible Proteins

    OpenAIRE

    Hamel, Josée; Charland, Nathalie; Pineau, Isabelle; Ouellet, Catherine; Rioux, Stéphane; Martin, Denis; Brodeur, Bernard R.

    2004-01-01

    The development of a vaccine against Streptococcus pneumoniae has been complicated by the existence of at least 90 antigenically distinct capsular serotypes. Common protein-based vaccines could represent the best strategy to prevent pneumococcal infections, regardless of serotype. In the present study, the immunoscreening of an S. pneumoniae genomic library allowed the identification of a novel immune protein target, BVH-3. We demonstrate that immunization of mice with BVH-3 elicits protectiv...

  4. A novel zinc finger-containing RNA-binding protein conserved from fruitflies to humans

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, F.R. [Tufts Univ. School of Medicine, Boston, MA (United States)]|[Worcester Foundation for Biomedical Research, Shrewbury, MA (United States); Banfi, S.; Guffanti, A. [Telethon Institute of Genetics and Medicine (TIGEM), Milan (Italy)] [and others

    1997-05-01

    The Drosophila lark gene encodes an essential RNA-binding protein of the RNA recognition motif (RRM) class that is required during embryonic development. Genetic analysis demonstrates that it also functions as a molecular element of a circadian clock output pathway, mediating the temporal regulation of adult emergence in the fruitfly. We now report the molecular characterization of a human gene with significant similarity to lark. Based on fluorescence in situ hybridization and radiation hybrid mapping, the human gene has been localized to chromosome region 11q13; it is closely linked to several identified genes including the locus of Bardet-Biedl syndrome type 1. The lark-homologous human gene expresses a single 1.8-kb size class of mRNA in most or all tissues including brain. Additional database searches have identified a mouse counterpart that is virtually identical to the human protein. Similar to lark protein, both mammalian proteins contain two copies of the RRM-type consensus RNA-binding motif. Unlike most RRM family members, however, the Drosophila and mammalian proteins also contain a retroviral-type (RT) zinc finger that is situated 43 residues C-terminal to the second RRM element. Within a 184-residue segment spanning the RRM elements and the RT zinc finger, the human and mouse proteins are 61% similar to the Drosophila lark sequence. These common sequence features and comparisons among a large collection of RRM proteins suggest that the human and mouse proteins represent homologues of Drosophila lark. 44 refs., 5 figs.

  5. Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome

    KAUST Repository

    Skinner, John J.

    2017-12-05

    Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or “theft” mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein–coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein–Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change.

  6. The ZP domain is a conserved module for polymerization of extracellular proteins.

    Science.gov (United States)

    Jovine, Luca; Qi, Huayu; Williams, Zev; Litscher, Eveline; Wassarman, Paul M

    2002-06-01

    Many eukaryotic extracellular proteins share a sequence of unknown function, called the zona pellucida (ZP) domain. Among these proteins are the mammalian sperm receptors ZP2 and ZP3, non-mammalian egg coat proteins, Tamm-Horsfall protein (THP), glycoprotein-2 (GP-2), alpha- and beta-tectorins, transforming growth factor (TGF)-beta receptor III and endoglin, DMBT-1 (deleted in malignant brain tumour-1), NompA (no-mechanoreceptor-potential-A), Dumpy and cuticlin-1 (refs 1,2). Here, we report that the ZP domain of ZP2, ZP3 and THP is responsible for polymerization of these proteins into filaments of similar supramolecular structure. Most ZP domain proteins are synthesized as precursors with carboxy-terminal transmembrane domains or glycosyl phosphatidylinositol (GPI) anchors. Our results demonstrate that the C-terminal transmembrane domain and short cytoplasmic tail of ZP2 and ZP3 are not required for secretion, but are essential for assembly. Finally, we suggest a molecular basis for dominant human hearing disorders caused by point mutations within the ZP domain of alpha-tectorin.

  7. The disequilibrium of nucleosomes distribution along chromosomes plays a functional and evolutionarily role in regulating gene expression

    KAUST Repository

    Cui, Peng

    2011-08-19

    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues-cerebrum, testis, and ESCs-and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types. © 2011 Cui et al.

  8. The disequilibrium of nucleosomes distribution along chromosomes plays a functional and evolutionarily role in regulating gene expression.

    Directory of Open Access Journals (Sweden)

    Peng Cui

    Full Text Available To further understand the relationship between nucleosome-space occupancy (NO and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues--cerebrum, testis, and ESCs--and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK genes and tissue-specific (TS genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types.

  9. Resonance Raman spectra of plastocyanin and pseudoazurin: evidence for conserved cysteine ligand conformations in cupredoxins (blue copper proteins).

    Science.gov (United States)

    Han, J; Adman, E T; Beppu, T; Codd, R; Freeman, H C; Huq, L L; Loehr, T M; Sanders-Loehr, J

    1991-11-12

    New resonance Raman (RR) spectra at 15 K are reported for poplar (Populus nigra) and oleander (Oleander nerium) plastocyanins and for Alcaligenes faecalis pseudoazurin. The spectra are compared with those of other blue copper proteins (cupredoxins). In all cases, nine or more vibrational modes between 330 and 460 cm-1 can be assigned to a coupling of the Cu-S(Cys) stretch with Cys ligand deformations. The fact that these vibrations occur at a relatively constant set of frequencies is testimony to the highly conserved ground-state structure of the Cu-Cys moiety. Shifts of the vibrational modes by 1-3 cm-1 upon deuterium exchange can be correlated with N-H...S hydrogen bonds from the protein backbone to the sulfur of the Cys ligand. There is marked variability in the intensities of these Cys-related vibrations, such that each class of cupredoxin has its own pattern of RR intensities. For example, plastocyanins from poplar, oleander, French bean, and spinach have their most intense feature at approximately 425 cm-1; azurins show greatest intensity at approximately 410 cm-1, stellacyanin and ascorbate oxidase at approximately 385 cm-1, and nitrite reductase at approximately 360 cm-1. These variable intensity patterns are related to differences in the electronic excited-state structures. We propose that they have a basis in the protein environment of the copper-cysteinate chromophore. A further insight into the vibrational spectra is provided by the structures of the six cupredoxins for which crystallographic refinements at high resolution are available (plastocyanins from P. nigra, O. nerium, and Enteromorpha prolifera, pseudoazurin from A. faecalis, azurin from Alcaligenes denitrificans, and cucumber basic blue protein). The average of the Cu-S(Cys) bond lengths is 2.12 +/- 0.05 A. Since the observed range of bond lengths falls within the precision of the determinations, this variation is considered insignificant. The Cys ligand dihedral angles are also highly

  10. Specific detection of dengue and Zika virus antibodies using envelope proteins with mutations in the conserved fusion loop.

    Science.gov (United States)

    Rockstroh, Alexandra; Moges, Beyene; Barzon, Luisa; Sinigaglia, Alessandro; Palù, Giorgio; Kumbukgolla, Widuranga; Schmidt-Chanasit, Jonas; Sarno, Manoel; Brites, Carlos; Moreira-Soto, Andres; Drexler, Jan Felix; Ferreira, Orlando C; Ulbert, Sebastian

    2017-11-08

    Detection of antibodies is widely used for the diagnosis of infections with arthropod-borne flaviviruses including dengue (DENV) and Zika virus (ZIKV). Due to the emergence of ZIKV in areas endemic for DENV, massive co-circulation is observed and methods to specifically diagnose these infections and differentiate them from each other are mandatory. However, serological assays for flaviviruses in general, and for DENV and ZIKV in particular, are compromised by the high degree of similarities in their proteins which can lead to cross-reacting antibodies and false-positive test results. Cross-reacting flavivirus antibodies mainly target the highly conserved fusion loop (FL) domain in the viral envelope (E-) protein, and we and others have shown previously that recombinant E-proteins bearing FL-mutations strongly reduce cross-reactivity. Here we investigate whether such mutant E-proteins can be used to specifically detect antibodies against DENV and ZIKV in an ELISA-format. IgM antibodies against DENV and ZIKV virus were detected with 100% and 94.2% specificity and 90.7% and 87.5% sensitivity, respectively. For IgG the mutant E-proteins showed cross-reactivity, which was overcome by pre-incubation of the sera with the heterologous antigen. This resulted in specificities of 97.1% and 97.9% and in sensitivities of 100% and 100% for the DENV and ZIKV antigens, respectively. Our results suggest that E-proteins bearing mutations in the FL-domain have a high potential for the development of serological DENV and ZIKV tests with high specificity.

  11. Conservation of the deadenylase activity of proteins of the Caf1 family in human

    OpenAIRE

    BIANCHIN, CLAIRE; MAUXION, FABIENNE; Sentis, Stéphanie; Séraphin, Bertrand; Corbo, Laura

    2005-01-01

    The yeast Pop2 protein, belonging to the eukaryotic Caf1 family, is required for mRNA deadenylation in vivo. It also catalyzes poly(A) degradation in vitro, even though this property has been questioned. Caf1 proteins are related to RNase D, a feature supported by the recently published structure of Pop2. Yeast Pop2 contains, however, a divergent active site while its human homologs harbor consensus catalytic residues. Given these differences, we tested whether its deadenylase activity is con...

  12. Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein.

    Science.gov (United States)

    Qin, Zhao-Ling; Zheng, Yan; Kielian, Margaret

    2009-05-01

    A wide variety of enveloped viruses infects cells by taking advantage of the low pH in the endocytic pathway to trigger virus-membrane fusion. For alphaviruses such as Semliki Forest virus (SFV), acidic pH initiates a series of conformational changes in the heterodimeric virus envelope proteins E1 and E2. Low pH dissociates the E2/E1 dimer, releasing the membrane fusion protein E1. E1 inserts into the target membrane and refolds to a trimeric hairpin conformation, thus driving the fusion reaction. The means by which E1 senses and responds to low pH is unclear, and protonation of conserved E1 histidine residues has been proposed as a possible mechanism. We tested the role of four conserved histidines by mutagenesis of the wild-type (wt) SFV infectious clone to create virus mutants with E1 H3A, H125A, H331A, and H331A/H333A mutations. The H125A, H331A, and H331A/H333A mutants had growth properties similar to those of wt SFV and showed modest change or no change in the pH dependence of virus-membrane fusion. By contrast, the E1 H3A mutation produced impaired virus growth and a markedly more acidic pH requirement for virus-membrane fusion. The dissociation of the H3A heterodimer and the membrane insertion of the mutant E1 protein were comparable to those of the wt in efficiency and pH dependence. However, the formation of the H3A homotrimer required a much lower pH and showed reduced efficiency. Together, these results and the location of H3 suggest that this residue acts to regulate the low-pH-dependent refolding of E1 during membrane fusion.

  13. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shi, T.; Niepel, M.; McDermott, J. E.; Gao, Y.; Nicora, C. D.; Chrisler, W. B.; Markillie, L. M.; Petyuk, V. A.; Smith, R. D.; Rodland, K. D.; Sorger, P. K.; Qian, W. -J.; Wiley, H. S.

    2016-07-12

    It is not known whether cancer cells generally show quantitative differences in the expression of signaling pathway proteins that could dysregulate signal transduction. To explore this issue, we first defined the primary components of the EGF-MAPK pathway in normal human mammary epithelial cells, identifying 16 core proteins and 10 feedback regulators. We then quantified their absolute abundance across a panel of normal and cancer cell lines. We found that core pathway proteins were expressed at very similar levels across all cell types. In contrast, the EGFR and transcriptionally controlled feedback regulators were expressed at highly variable levels. The absolute abundance of most core pathway proteins was between 50,000- 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower levels (2,000-5,000 per cell). MAPK signaling showed saturation in all cells between 3,000-10,000 occupied EGFR, consistent with the idea that low adaptor levels limit signaling. Our results suggest that the core MAPK pathway is essentially invariant across different cell types, with cell- specific differences in signaling likely due to variable levels of feedback regulators. The low abundance of adaptors relative to the EGFR could be responsible for previous observation of saturable signaling, endocytosis, and high affinity EGFR.

  14. Evolution of a domain conserved in microtubule-associated proteins of eukaryotes

    Directory of Open Access Journals (Sweden)

    Alex S Rajangam

    2008-09-01

    Full Text Available Alex S Rajangam1, Hongqian Yang2, Tuula T Teeri1, Lars Arvestad21KTH Biotechnology, Swedish Center for Biomimetic Fiber Engineering, AlbaNova, Stockholm, Sweden; 2Stockholm Bioinformatics Center and School of Computer Science and Communication, Royal Institute of Technology, AlbaNova, Stockholm, SwedenAbstract: The microtubule network, the major organelle of the eukaryotic cytoskeleton, is involved in cell division and differentiation but also with many other cellular functions. In plants, microtubules seem to be involved in the ordered deposition of cellulose microfibrils by a so far unknown mechanism. Microtubule-associated proteins (MAP typically contain various domains targeting or binding proteins with different functions to microtubules. Here we have investigated a proposed microtubule-targeting domain, TPX2, first identified in the Kinesin-like protein 2 in Xenopus. A TPX2 containing microtubule binding protein, PttMAP20, has been recently identified in poplar tissues undergoing xylogenesis. Furthermore, the herbicide 2,6-dichlorobenzonitrile (DCB, which is a known inhibitor of cellulose synthesis, was shown to bind specifically to PttMAP20. It is thus possible that PttMAP20 may have a role in coupling cellulose biosynthesis and the microtubular networks in poplar secondary cell walls. In order to get more insight into the occurrence, evolution and potential functions of TPX2-containing proteins we have carried out bioinformatic analysis for all genes so far found to encode TPX2 domains with special reference to poplar PttMAP20 and its putative orthologs in other plants.Keywords: TPX2 domain, MAP20, evolution, microtubule, cellulose, bioinformatics

  15. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids

    Directory of Open Access Journals (Sweden)

    Chen Brian Y

    2008-01-01

    Full Text Available Abstract Background Structural genomics projects such as the Protein Structure Initiative (PSI yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates. Results Based on evolutionary information and heuristics, an Evolutionary Trace Annotation (ETA pipeline built templates for 98 enzymes, half taken from the PSI, and sought matches in a non-redundant structure database. On average each template matched 2.7 distinct proteins, of which 2.0 share the first three Enzyme Commission digits as the template's enzyme of origin. In many cases (61% a single most likely function could be predicted as the annotation with the most matches, and in these cases such a plurality vote identified the correct function with 87% accuracy. ETA was also found to be complementary to sequence homology-based annotations. When matches are required to both geometrically match the 3D template and to be sequence homologs found by BLAST or PSI-BLAST, the annotation accuracy is greater than either method alone, especially in the region of lower sequence identity where homology-based annotations are least reliable. Conclusion These data suggest that knowledge of evolutionarily important residues improves functional annotation among distant enzyme homologs. Since, unlike other 3D template approaches, the ETA method bypasses the need for experimental knowledge of the catalytic mechanism, it should prove a useful, large scale, and general adjunct to combine with other methods to decipher protein function in the structural proteome.

  16. Autophagy, a conserved mechanism for protein degradation, responds to heat and other abiotic stresses in Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Yufei eZhai

    2016-02-01

    Full Text Available Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L. tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses.

  17. Identification and characterization of RED120: a conserved PWI domain protein with links to splicing and 3'-end formation.

    Science.gov (United States)

    Fortes, Puri; Longman, Dasa; McCracken, Susan; Ip, Joanna Y; Poot, Raymond; Mattaj, Iain W; Cáceres, Javier F; Blencowe, Benjamin J

    2007-06-26

    Precursor (pre)-mRNA splicing can impact the efficiency of coupled steps in gene expression. SRm160 (SR-related nuclear matrix protein of 160 kDa), is a splicing coactivator that also functions as a 3'-end cleavage-stimulatory factor. Here, we have identified an evolutionary-conserved SRm160-interacting protein, referred to as hRED120 (for human Arg/Glu/Asp-rich protein of 120 kDa). hRED120 contains a conventional RNA recognition motif and, like SRm160, a PWI nucleic acid binding domain, suggesting that it has the potential to bridge different RNP complexes. Also, similar to SRm160, hRED120 associates with snRNP components, and remains associated with mRNA after splicing. Simultaneous suppression in Caenorhabditis elegans of the ortholog of hRED120 with the orthologs of splicing and 3'-end processing factors results in aberrant growth or developmental defects. These results suggest that RED120 may function to couple splicing with mRNA 3'-end formation.

  18. The Unique Morgue Ubiquitination Protein Is Conserved in a Diverse but Restricted Set of Invertebrates

    OpenAIRE

    Zhou, Ying; Carpenter, Zachary W.; Brennan, Gregory; Nambu, John R.

    2009-01-01

    Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain w...

  19. Quantitation of Human Metallothionein Isoforms: A Family of Small, Highly Conserved, Cysteine-rich Proteins*

    Science.gov (United States)

    Mehus, Aaron A.; Muhonen, Wallace W.; Garrett, Scott H.; Somji, Seema; Sens, Donald A.; Shabb, John B.

    2014-01-01

    Human metallothioneins (MTs) are important regulators of metal homeostasis and protectors against oxidative damage. Their altered mRNA expression has been correlated with metal toxicity and a variety of cancers. Current immunodetection methods lack the specificity to distinguish all 12 human isoforms. Each, however, can be distinguished by the mass of its acetylated, cysteine-rich, hydrophilic N-terminal tryptic peptides. These properties were exploited to develop a bottom-up MALDI-TOF/TOF-MS-based method for their simultaneous quantitation. Key features included enrichment of N-terminal acetylated peptides by strong cation exchange chromatography, optimization of C18 reversed-phase chromatography, and control of methionine oxidation. Combinations of nine isoforms were identified in seven cell lines and two tissues. Relative quantitation was accomplished by comparing peak intensities of peptides generated from pooled cytosolic proteins alkylated with 14N- or 15N-iodoacetamide. Absolute quantitation was achieved using 15N-iodoacetamide-labeled synthetic peptides as internal standards. The method was applied to the cadmium induction of MTs in human kidney HK-2 epithelial cells expressing recombinant MT-3. Seven isoforms were detected with abundances spanning almost 2 orders of magnitude and inductions up to 12-fold. The protein-to-mRNA ratio for MT-1E was one-tenth that of other MTs, suggesting isoform-specific differences in protein expression efficiency. Differential expression of MT-1G1 and MT-1G2 suggested tissue- and cell-specific alternative splicing for the MT-1G isoform. Protein expression of MT isoforms was also evaluated in human breast epithelial cancer cell lines. Estrogen-receptor-positive cell lines expressed only MT-2 and MT-1X, whereas estrogen-receptor-negative cell lines additionally expressed MT-1E. The combined expression of MT isoforms was 38-fold greater in estrogen-receptor-negative cell lines than in estrogen-receptor-positive cells. These

  20. Quantitation of human metallothionein isoforms: a family of small, highly conserved, cysteine-rich proteins.

    Science.gov (United States)

    Mehus, Aaron A; Muhonen, Wallace W; Garrett, Scott H; Somji, Seema; Sens, Donald A; Shabb, John B

    2014-04-01

    Human metallothioneins (MTs) are important regulators of metal homeostasis and protectors against oxidative damage. Their altered mRNA expression has been correlated with metal toxicity and a variety of cancers. Current immunodetection methods lack the specificity to distinguish all 12 human isoforms. Each, however, can be distinguished by the mass of its acetylated, cysteine-rich, hydrophilic N-terminal tryptic peptides. These properties were exploited to develop a bottom-up MALDI-TOF/TOF-MS-based method for their simultaneous quantitation. Key features included enrichment of N-terminal acetylated peptides by strong cation exchange chromatography, optimization of C18 reversed-phase chromatography, and control of methionine oxidation. Combinations of nine isoforms were identified in seven cell lines and two tissues. Relative quantitation was accomplished by comparing peak intensities of peptides generated from pooled cytosolic proteins alkylated with ¹⁴N- or ¹⁵N-iodoacetamide. Absolute quantitation was achieved using ¹⁵N-iodoacetamide-labeled synthetic peptides as internal standards. The method was applied to the cadmium induction of MTs in human kidney HK-2 epithelial cells expressing recombinant MT-3. Seven isoforms were detected with abundances spanning almost 2 orders of magnitude and inductions up to 12-fold. The protein-to-mRNA ratio for MT-1E was one-tenth that of other MTs, suggesting isoform-specific differences in protein expression efficiency. Differential expression of MT-1G1 and MT-1G2 suggested tissue- and cell-specific alternative splicing for the MT-1G isoform. Protein expression of MT isoforms was also evaluated in human breast epithelial cancer cell lines. Estrogen-receptor-positive cell lines expressed only MT-2 and MT-1X, whereas estrogen-receptor-negative cell lines additionally expressed MT-1E. The combined expression of MT isoforms was 38-fold greater in estrogen-receptor-negative cell lines than in estrogen-receptor-positive cells

  1. Production of mouse monoclonal antibody against Streptococcus dysgalactiae GapC protein and mapping its conserved B-cell epitope.

    Science.gov (United States)

    Zhang, Limeng; Zhang, Hua; Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Zhu, Zhanbo; Cui, Yudong

    2015-02-01

    Streptococcus dysgalactiae (S. dysgalactiae) GapC protein is a protective antigen that induces partial immunity against S. dysgalactiae infection in animals. To identify the conserved B-cell epitope of S. dysgalactiae GapC, a mouse monoclonal antibody 1E11 (mAb1E11) against GapC was generated and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12). Eleven positive clones recognized by mAb1E11 were identified, most of which matched the consensus motif TGFFAKK. Sequence of the motif exactly matched amino acids 97-103 of the S. dysgalactiae GapC. In addition, the epitope (97)TGFFAKK(103) showed high homology among different streptococcus species. Site-directed mutagenic analysis further confirmed that residues G98, F99, F100 and K103 formed the core of (97)TGFFAKK(103), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1E11. Collectively, the identification of conserved B-cell epitope within S. dysgalactiae GapC highlights the possibility of developing the epitope-based vaccine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Polyadenylation site selection: linking transcription and RNA processing via a conserved carboxy-terminal domain (CTD)-interacting protein.

    Science.gov (United States)

    Larochelle, Marc; Hunyadkürti, Judit; Bachand, François

    2017-05-01

    Despite the fact that the process of mRNA polyadenylation has been known for more than 40 years, a detailed understating of the mechanism underlying polyadenylation site selection is still far from complete. As 3' end processing is intimately associated with RNA polymerase II (RNAPII) transcription, factors that can successively interact with the transcription machinery and recognize cis-acting sequences on the nascent pre-mRNA would be well suited to contribute to poly(A) site selection. Studies using the fission yeast Schizosaccharomyces pombe have recently identified Seb1, a protein that shares homology with Saccharomyces cerevisiae Nrd1 and human SCAF4/8, and that is critical for poly(A) site selection. Seb1 binds to the C-terminal domain (CTD) of RNAPII via a conserved CTD-interaction domain and recognizes specific sequence motifs clustered downstream of the polyadenylation site on the uncleaved pre-mRNA. In this short review, we summarize insights into Seb1-dependent poly(A) site selection and discuss some unanswered questions regarding its molecular mechanism and conservation.

  3. Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians.

    Science.gov (United States)

    Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus

    2016-08-09

    In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans.

  4. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Eraso, Jesus M.; Markillie, Lye Meng; Mitchell, Hugh D.; Taylor, Ronald C.; Orr, Galya; Margolin, William

    2014-05-05

    The mraZ and mraW genes are highly conserved in bacteria, both in sequence and location at the head of the division and cell wall (dcw) gene cluster. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin, and MraW is known to methylate ribosomal RNA, mraZ and mraW null mutants have no detectable growth phenotype in any species tested to date, hampering progress in understanding their physiological role. Here we show that overproduction of Escherichia coli MraZ perturbs cell division and the cell envelope, is more lethal at high levels or in minimal growth medium, and that MraW antagonizes these effects. MraZGFP localizes to the nucleoid, suggesting that it binds DNA. Indeed, purified MraZ directly binds a region upstream from its own promoter containing three direct repeats to regulate its own expression and that of downstream cell division and cell wall genes. MraZ-LacZ fusions are repressed by excess MraZ but not when DNA binding by MraZ is inhibited. RNAseq analysis indicates that MraZ is a global transcriptional regulator with numerous targets in addition to dcw genes. One of these targets, mioC, is directly bound by MraZ in a region with three direct repeats.

  5. Feature-Based Classification of Amino Acid Substitutions outside Conserved Functional Protein Domains

    Directory of Open Access Journals (Sweden)

    Branislava Gemovic

    2013-01-01

    Full Text Available There are more than 500 amino acid substitutions in each human genome, and bioinformatics tools irreplaceably contribute to determination of their functional effects. We have developed feature-based algorithm for the detection of mutations outside conserved functional domains (CFDs and compared its classification efficacy with the most commonly used phylogeny-based tools, PolyPhen-2 and SIFT. The new algorithm is based on the informational spectrum method (ISM, a feature-based technique, and statistical analysis. Our dataset contained neutral polymorphisms and mutations associated with myeloid malignancies from epigenetic regulators ASXL1, DNMT3A, EZH2, and TET2. PolyPhen-2 and SIFT had significantly lower accuracies in predicting the effects of amino acid substitutions outside CFDs than expected, with especially low sensitivity. On the other hand, only ISM algorithm showed statistically significant classification of these sequences. It outperformed PolyPhen-2 and SIFT by 15% and 13%, respectively. These results suggest that feature-based methods, like ISM, are more suitable for the classification of amino acid substitutions outside CFDs than phylogeny-based tools.

  6. UPF1, a conserved nonsense-mediated mRNA decay factor, regulates cyst wall protein transcripts in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Yi-Hsiu Chen

    Full Text Available The Giardia lamblia cyst wall is required for survival outside the host and infection. Three cyst wall protein (cwp genes identified to date are highly up-regulated during encystation. However, little is known of the molecular mechanisms governing their gene regulation. Messenger RNAs containing premature stop codons are rapidly degraded by a nonsense-mediated mRNA decay (NMD system to avoid production of non-functional proteins. In addition to RNA surveillance, NMD also regulates thousands of naturally occurring transcripts through a variety of mechanisms. It is interesting to know the NMD pathway in the primitive eukaryotes. Previously, we have found that the giardial homologue of a conserved NMD factor, UPF1, may be functionally conserved and involved in NMD and in preventing nonsense suppression. In this study, we tested the hypothesis that NMD factors can regulate some naturally occurring transcripts in G. lamblia. We found that overexpression of UPF1 resulted in a significant decrease of the levels of CWP1 and cyst formation and of the endogenous cwp1-3, and myb2 mRNA levels and stability. This indicates that NMD could contribute to the regulation of the cwp1-3 and myb2 transcripts, which are key to G. lamblia differentiation into cyst. Interestingly, we also found that UPF1 may be involved in regulation of eight other endogenous genes, including up-regulation of the translation elongation factor gene, whose product increases translation which is required for NMD. Our results indicate that NMD factor could contribute to the regulation of not only nonsense containing mRNAs, but also mRNAs of the key encystation-induced genes and other endogenous genes in the early-diverging eukaryote, G. lamblia.

  7. The highly conserved HA2 protein of the influenza A virus induces a cross protective immune response.

    Science.gov (United States)

    Lee, Jong-Soo; Chowdhury, Mohammed Y E; Moon, Ho-Jin; Choi, Young-Ki; Talactac, Melbourne R; Kim, Jae-Hoon; Park, Min-Eun; Son, Hwa-Young; Shin, Kwang-Soon; Kim, Chul-Joong

    2013-12-01

    Existing influenza vaccines protect mostly homologous subtypes and acted most effectively only when well matched to the circulating strain. Immunization with an updated vaccine is therefore necessary to maintain long-term protection and the development of a broadly protective influenza vaccine against the threat of pandemic outbreak. The highly conserved HA2 glyco-polypeptide (HA2 gp) is a promising new candidate for such an influenza vaccine. Helical domain and the fusion peptide (residues 15-137) of surface antigen from influenza A subtype A/EM/Korea/W149/06 (H5N1) was used to assess the potentiality of HA2 vaccination against multiple subtypes of the influenza viruses. The construct, named H5HA2 was expressed in Escherichia coli and allowed to refold from inclusion bodies. Purified proteins were used to investigate the immunogenicity of H5HA2 and its potential for cross protection. The immunization of mice with H5HA2 induced HA2 antibodies, HA2 specific T-cell responses, and protection against homologous A/EM/Korea/W149/06 (H5N1) influenza. Immunized mice were also protected from two distinct heterosubtypes of influenza: A/Puerto Rico/1/34(H1N1) and bird/Korea/w81/2005(H5N2). Results suggest that recombinant proteins based on the highly conserved residues within HA2 are candidates for the development of vaccines against pandemic outbreaks of emergent influenza variants. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Covalent protein modification with ISG15 via a conserved cysteine in the hinge region.

    Directory of Open Access Journals (Sweden)

    Veronika N Bade

    Full Text Available The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls, ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation. ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no

  9. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    Science.gov (United States)

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  10. Systematic differences in signal emitting and receiving revealed by PageRank analysis of a human protein interactome.

    Science.gov (United States)

    Du, Donglei; Lee, Connie F; Li, Xiu-Qing

    2012-01-01

    Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A) What is the general difference between signal emitting and receiving in a protein interactome? B) Which proteins are among the top ranked in directional ranking? C) Are high ranked proteins more evolutionarily conserved than low ranked ones? D) Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell.

  11. Systematic differences in signal emitting and receiving revealed by PageRank analysis of a human protein interactome.

    Directory of Open Access Journals (Sweden)

    Donglei Du

    Full Text Available Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A What is the general difference between signal emitting and receiving in a protein interactome? B Which proteins are among the top ranked in directional ranking? C Are high ranked proteins more evolutionarily conserved than low ranked ones? D Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell.

  12. Systematic Differences in Signal Emitting and Receiving Revealed by PageRank Analysis of a Human Protein Interactome

    Science.gov (United States)

    Li, Xiu-Qing

    2012-01-01

    Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A) What is the general difference between signal emitting and receiving in a protein interactome? B) Which proteins are among the top ranked in directional ranking? C) Are high ranked proteins more evolutionarily conserved than low ranked ones? D) Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell. PMID:23028653

  13. Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins.

    Science.gov (United States)

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Lin, Xianzhi; Chan, Tak-Ming; Wang, Rena; Xiao, Xinshu

    2016-04-01

    Identification of functional genetic variants and elucidation of their regulatory mechanisms represent significant challenges of the post-genomic era. A poorly understood topic is the involvement of genetic variants in mediating post-transcriptional RNA processing, including alternative splicing. Thus far, little is known about the genomic, evolutionary, and regulatory features of genetically modulated alternative splicing (GMAS). Here, we systematically identified intronic tag variants for genetic modulation of alternative splicing using RNA-seq data specific to cellular compartments. Combined with our previous method that identifies exonic tags for GMAS, this study yielded 622 GMAS exons. We observed that GMAS events are highly cell type independent, indicating that splicing-altering genetic variants could have widespread function across cell types. Interestingly, GMAS genes, exons, and single-nucleotide variants (SNVs) all demonstrated positive selection or accelerated evolution in primates. We predicted that GMAS SNVs often alter binding of splicing factors, with SRSF1 affecting the most GMAS events and demonstrating global allelic binding bias. However, in contrast to their GMAS targets, the predicted splicing factors are more conserved than expected, suggesting that cis-regulatory variation is the major driving force of splicing evolution. Moreover, GMAS-related splicing factors had stronger consensus motifs than expected, consistent with their susceptibility to SNV disruption. Intriguingly, GMAS SNVs in general do not alter the strongest consensus position of the splicing factor motif, except the more than 100 GMAS SNVs in linkage disequilibrium with polymorphisms reported by genome-wide association studies. Our study reports many GMAS events and enables a better understanding of the evolutionary and regulatory features of this phenomenon. © 2016 Hsiao et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Identification of a conserved B-cell epitope on duck hepatitis A type 1 virus VP1 protein.

    Science.gov (United States)

    Wu, Xiaoying; Li, Xiaojun; Zhang, Qingshan; Wulin, Shaozhou; Bai, Xiaofei; Zhang, Tingting; Wang, Yue; Liu, Ming; Zhang, Yun

    2015-01-01

    The VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized. To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1-positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope. We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.

  15. Seminal-type ribonuclease genes in ruminants, sequence conservation without protein expression?

    Science.gov (United States)

    Kleineidam, R G; Jekel, P A; Beintema, J J; Situmorang, P

    1999-04-29

    Bovine seminal ribonuclease (BS-RNase) is an interesting enzyme both for functional and structural reasons. The enzyme is the product of a gene duplication that occurred in an ancestral ruminant. It is possible to demonstrate the presence of seminal-type genes in all other investigated ruminant species, but they are not expressed and show features of pseudogenes. In this paper we report the determination of two pancreatic and one seminal-type ribonuclease gene sequences of swamp-type water buffalo (Bubalus bubalis). The two pancreatic sequences encode proteins with identical amino acid sequences as previously determined for the enzymes isolated from swamp-type and river-type water buffalo, respectively. The seminal-type sequence has no pseudogene features and codes for an enzyme with no unusual features compared with the active bovine enzyme, except for the replacement of one of the cysteines which takes part in the two intersubunit disulfide bridges. However, Western blotting demonstrates the presence of only small amounts of the pancreatic enzymes in water buffalo semen, suggesting that also in this species the seminal-type sequence is not expressed. But it is still possible that the gene is expressed somewhere else in the body or during development. Reconstruction of seminal-type ribonuclease sequences in ancestors of Bovinae and Bovidae indicates no serious abnormalities in the encoded proteins and leads us to the hypothesis that the ruminant seminal-type ribonuclease gene has not come to expression during most of its evolutionary history, but did not exhibit a high evolutionary rate that is generally observed in pseudogenes.

  16. Purifying Selection in Deeply Conserved Human Enhancers Is More Consistent than in Coding Sequences

    Science.gov (United States)

    De Silva, Dilrini R.; Nichols, Richard; Elgar, Greg

    2014-01-01

    Comparison of polymorphism at synonymous and non-synonymous sites in protein-coding DNA can provide evidence for selective constraint. Non-coding DNA that forms part of the regulatory landscape presents more of a challenge since there is not such a clear-cut distinction between sites under stronger and weaker selective constraint. Here, we consider putative regulatory elements termed Conserved Non-coding Elements (CNEs) defined by their high level of sequence identity across all vertebrates. Some mutations in these regions have been implicated in developmental disorders; we analyse CNE polymorphism data to investigate whether such deleterious effects are widespread in humans. Single nucleotide variants from the HapMap and 1000 Genomes Projects were mapped across nearly 2000 CNEs. In the 1000 Genomes data we find a significant excess of rare derived alleles in CNEs relative to coding sequences; this pattern is absent in HapMap data, apparently obscured by ascertainment bias. The distribution of polymorphism within CNEs is not uniform; we could identify two categories of sites by exploiting deep vertebrate alignments: stretches that are non-variant, and those that have at least one substitution. The conserved category has fewer polymorphic sites and a greater excess of rare derived alleles, which can be explained by a large proportion of sites under strong purifying selection within humans – higher than that for non-synonymous sites in most protein coding regions, and comparable to that at the strongly conserved trans-dev genes. Conversely, the more evolutionarily labile CNE sites have an allele frequency distribution not significantly different from non-synonymous sites. Future studies should exploit genome-wide re-sequencing to obtain better coverage in selected non-coding regions, given the likelihood that mutations in evolutionarily conserved enhancer sequences are deleterious. Discovery pipelines should validate non-coding variants to aid in identifying causal

  17. An epitope conserved in orthopoxvirus A13 envelope protein is the target of neutralizing and protective antibodies.

    Science.gov (United States)

    Xu, Chungui; Meng, Xiangzhi; Yan, Bo; Crotty, Shane; Deng, Junpeng; Xiang, Yan

    2011-09-15

    Primary immunization of humans with smallpox vaccine (live vaccinia virus (VACV)) consistently elicits antibody responses to six VACV virion membrane proteins, including A13. However, whether anti-A13 antibody contributes to immune protection against orthopoxviruses was unknown. Here, we isolated a murine monoclonal antibody (mAb) against A13 from a mouse that had been infected with VACV. The anti-A13 mAb bound to recombinant A13 protein with an affinity of 3.4nM and neutralized VACV mature virions. Passive immunization of mice with the anti-A13 mAb protected against intranasal VACV infection. The epitope of the anti-A13 mAb was mapped to a 10-amino acid sequence conserved in all orthopoxviruses, including viriola virus and monkeypox virus, suggesting that anti-A13 antibodies elicited by smallpox vaccine might contribute to immune protection against orthopoxviruses. In addition, our data demonstrates that anti-A13 mAbs are effective for treating orthopoxvirus infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Recombinant Envelope-Proteins with Mutations in the Conserved Fusion Loop Allow Specific Serological Diagnosis of Dengue-Infections.

    Directory of Open Access Journals (Sweden)

    Alexandra Rockstroh

    2015-11-01

    Full Text Available Dengue virus (DENV is a mosquito-borne flavivirus and a major international public health concern in many tropical and sub-tropical areas worldwide. DENV is divided into four major serotypes, and infection with one serotype leads to immunity against the same, but not the other serotypes. The specific diagnosis of DENV-infections via antibody-detection is problematic due to the high degree of cross-reactivity displayed by antibodies against related flaviviruses, such as West Nile virus (WNV, Yellow Fever virus (YFV or Tick-borne encephalitis virus (TBEV. Especially in areas where several flaviviruses co-circulate or in the context of vaccination e.g. against YFV or TBEV, this severely complicates diagnosis and surveillance. Most flavivirus cross-reactive antibodies are produced against the highly conserved fusion loop (FL domain in the viral envelope (E protein. We generated insect-cell derived recombinant E-proteins of the four DENV-serotypes which contain point mutations in the FL domain. By using specific mixtures of these mutant antigens, cross-reactivity against heterologous flaviviruses was strongly reduced, enabling sensitive and specific diagnosis of the DENV-infected serum samples in IgG and IgM-measurements. These results have indications for the development of serological DENV-tests with improved specificity.

  19. Structural conservation of prion strain specificities in recombinant prion protein fibrils in real-time quaking-induced conversion.

    Science.gov (United States)

    Sano, Kazunori; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    A major unsolved issue of prion biology is the existence of multiple strains with distinct phenotypes and this strain phenomenon is postulated to be associated with the conformational diversity of the abnormal prion protein (PrP(Sc)). Real-time quaking-induced conversion (RT-QUIC) assay that uses Escherichia coli-derived recombinant prion protein (rPrP) for the sensitive detection of PrP(Sc) results in the formation of rPrP-fibrils seeded with various strains. We demonstrated that there are differences in the secondary structures, especially in the β-sheets, and conformational stability between 2 rPrP-fibrils seeded with either Chandler or 22L strains in the first round of RT-QUIC. In particular, the differences in conformational properties of these 2 rPrP-fibrils were common to those of the original PrP(Sc). However, the strain specificities of rPrP-fibrils seen in the first round were lost in subsequent rounds. Instead, our findings suggest that nonspecific fibrils became the major species, probable owing to their selective growth advantage in the RT-QUIC. This study shows that at least some strain-specific conformational properties of the original PrP(Sc) can be transmitted to rPrP-fibrils in vitro, but further conservation appears to require unknown cofactors or environmental conditions or both.

  20. Detection of Aichi virus with antibody targeting of conserved viral protein 1 epitope.

    Science.gov (United States)

    Chen, Yao-Shen; Chen, Bao-Chen; Lin, You-Sheng; Chang, Jenn-Tzong; Huang, Tsi-Shu; Chen, Jih-Jung; Chang, Tsung-Hsien

    2013-10-01

    Aichi virus (AiV) is an emerging single-stranded, positive-sense, non-enveloped RNA virus in the Picornaviridae that causes acute gastroenteritis in humans. The first case of AiV infection in Taiwan was diagnosed in a human neonate with enterovirus-associated symptoms; the virus was successfully isolated and propagated. To establish a method to detect AiV, we analyzed the antigen epitope and generated a polyclonal antibody against AiV viral protein 1 (VP1). This peptide-purified anti-AiV VP1 antibody showed high specificity against AiV VP1 without cross-reaction to nine other tested strains of Picornaviruses. The anti-AiV VP1 antibody was used in immunofluorescence analysis, immunoblotting, and enzyme-linked immunosorbent assay to elucidate the cell tropism and replication kinetics of AiV. Use of the anti-AiV VP1 antibody also revealed AiV infection restriction with interferon type I and polyI/C antiviral treatment. The AiV infection and detection system may provide an in vitro platform for AiV virology study.

  1. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate.

    Science.gov (United States)

    Ntege, Edward H; Arisue, Nobuko; Ito, Daisuke; Hasegawa, Tomoyuki; Palacpac, Nirianne M Q; Egwang, Thomas G; Horii, Toshihiro; Takashima, Eizo; Tsuboi, Takafumi

    2016-11-04

    Genetic variability in Plasmodium falciparum malaria parasites hampers current malaria vaccine development efforts. Here, we hypothesize that to address the impact of genetic variability on vaccine efficacy in clinical trials, conserved antigen targets should be selected to achieve robust host immunity across multiple falciparum strains. Therefore, suitable vaccine antigens should be assessed for levels of polymorphism and genetic diversity. Using a total of one hundred and two clinical isolates from a region of high malaria transmission in Uganda, we analyzed extent of polymorphism and genetic diversity in four recently reported novel blood-stage malaria vaccine candidate proteins: Rh5 interacting protein (PfRipr), GPI anchored micronemal antigen (PfGAMA), rhoptry-associated leucine zipper-like protein 1 (PfRALP1) and Duffy binding-like merozoite surface protein 1 (PfMSPDBL1). In addition, utilizing the wheat germ cell-free system, we expressed recombinant proteins for the four candidates based on P. falciparum laboratory strain 3D7 sequences, immunized rabbits to obtain specific antibodies (Abs) and performed functional growth inhibition assay (GIA). The GIA activity of the raised Abs was demonstrated using both homologous 3D7 and heterologous FVO strains in vitro. Both pfripr and pfralp1 are less polymorphic but the latter is comparatively more diverse, with varied number of regions having insertions and deletions, asparagine and 6-mer repeats in the coding sequences. Pfgama and pfmspdbl1 are polymorphic and genetically diverse among the isolates with antibodies against the 3D7-based recombinant PfGAMA and PfMSPDBL1 inhibiting merozoite invasion only in the 3D7 but not FVO strain. Moreover, although Abs against the 3D7-based recombinant PfRipr and PfRALP1 proteins potently inhibited merozoite invasion of both 3D7 and FVO, the GIA activity of anti-PfRipr was much higher than that of anti-PfRALP1. Thus, PfRipr is regarded as a promising blood-stage vaccine

  2. A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis.

    Science.gov (United States)

    Dietrich, Nicholas; Schneider, Daniel L; Kornfeld, Kerry

    2017-11-16

    The essential element zinc plays critical roles in biology. High zinc homeostasis mechanisms are beginning to be defined in animals, but low zinc homeostasis is poorly characterized. We investigated low zinc homeostasis in Caenorhabditis elegans because the genome encodes 14 evolutionarily conserved Zrt, Irt-like protein (ZIP) zinc transporter family members. Three C. elegans zipt genes were regulated in zinc-deficient conditions; these promoters contained an evolutionarily conserved motif that we named the low zinc activation (LZA) element that was both necessary and sufficient for activation of transcription in response to zinc deficiency. These results demonstrated that the LZA element is a critical part of the low zinc homeostasis pathway. Transcriptional regulation of the LZA element required the transcription factor ELT-2 and mediator complex member MDT-15. We investigated conservation in mammals by analyzing LZA element function in human cultured cells; the LZA element-mediated transcriptional activation in response to zinc deficiency in cells, suggesting a conserved pathway of low zinc homeostasis. We propose that the pathway for low zinc homeostasis, which includes the LZA element and ZIP transporters, acts in parallel to the pathway for high zinc homeostasis, which includes the HZA element, HIZR-1 transcription factor and cation diffusion facilitator transporters. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Comparative Genomics Identifies a Novel Conserved Protein, HpaT, in Proteobacterial Type III Secretion Systems that Do Not Possess the Putative Translocon Protein HrpF

    Directory of Open Access Journals (Sweden)

    Céline Pesce

    2017-06-01

    Full Text Available Xanthomonas translucens is the causal agent of bacterial leaf streak, the most common bacterial disease of wheat and barley. To cause disease, most xanthomonads depend on a highly conserved type III secretion system, which translocates type III effectors into host plant cells. Mutagenesis of the conserved type III secretion gene hrcT confirmed that the X. translucens type III secretion system is required to cause disease on the host plant barley and to trigger a non-host hypersensitive response (HR in pepper leaves. Type III effectors are delivered to the host cell by a surface appendage, the Hrp pilus, and a translocon protein complex that inserts into the plant cell plasma membrane. Homologs of the Xanthomonas HrpF protein, including PopF from Ralstonia solanacearum and NolX from rhizobia, are thought to act as a translocon protein. Comparative genomics revealed that X. translucens strains harbor a noncanonical hrp gene cluster, which rather shares features with type III secretion systems from Ralstonia solanacearum, Paraburkholderia andropogonis, Collimonas fungivorans, and Uliginosibacterium gangwonense than other Xanthomonas spp. Surprisingly, none of these bacteria, except R. solanacearum, encode a homolog of the HrpF translocon. Here, we aimed at identifying a candidate translocon from X. translucens. Notably, genomes from strains that lacked hrpF/popF/nolX instead encode another gene, called hpaT, adjacent to and co-regulated with the type III secretion system gene cluster. An insertional mutant in the X. translucens hpaT gene, which is the first gene of a two-gene operon, hpaT-hpaH, was non-pathogenic on barley and did not cause the HR or programmed cell death in non-host pepper similar to the hrcT mutant. The hpaT mutant phenotypes were partially complemented by either hpaT or the downstream gene, hpaH, which has been described as a facilitator of translocation in Xanthomonas oryzae. Interestingly, the hpaT mutant was also complemented

  4. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants

    Directory of Open Access Journals (Sweden)

    Colasanti Joseph

    2006-06-01

    Full Text Available Abstract Background The maize INDETERMINATE1 gene, ID1, is a key regulator of the transition to flowering and the founding member of a transcription factor gene family that encodes a protein with a distinct arrangement of zinc finger motifs. The zinc fingers and surrounding sequence make up the signature ID domain (IDD, which appears to be found in all higher plant genomes. The presence of zinc finger domains and previous biochemical studies showing that ID1 binds to DNA suggests that members of this gene family are involved in transcriptional regulation. Results Comparison of IDD genes identified in Arabidopsis and rice genomes, and all IDD genes discovered in maize EST and genomic databases, suggest that ID1 is a unique member of this gene family. High levels of sequence similarity amongst all IDD genes from maize, rice and Arabidopsis suggest that they are derived from a common ancestor. Several unique features of ID1 suggest that it is a divergent member of the maize IDD family. Although no clear ID1 ortholog was identified in the Arabidopsis genome, highly similar genes that encode proteins with identity extending beyond the ID domain were isolated from rice and sorghum. Phylogenetic comparisons show that these putative orthologs, along with maize ID1, form a group separate from other IDD genes. In contrast to ID1 mRNA, which is detected exclusively in immature leaves, several maize IDD genes showed a broad range of expression in various tissues. Further, Western analysis with an antibody that cross-reacts with ID1 protein and potential orthologs from rice and sorghum shows that all three proteins are detected in immature leaves only. Conclusion Comparative genomic analysis shows that the IDD zinc finger family is highly conserved among both monocots and dicots. The leaf-specific ID1 expression pattern distinguishes it from other maize IDD genes examined. A similar leaf-specific localization pattern was observed for the putative ID1 protein

  5. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    Energy Technology Data Exchange (ETDEWEB)

    Gelinas, A.; Paschini, M; Reyes, F; Heroux, A; Batey, R; Lundblad, V; Wuttke, D

    2009-01-01

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  6. The wing-patterning network in the wingless castes of Myrmicine and Formicine ant species is a mix of evolutionarily labile and non-labile genes.

    Science.gov (United States)

    Shbailat, Seba Jamal; Abouheif, Ehab

    2013-03-01

    Wing polyphenism in ants is the ability of a single genome to produce winged or wingless castes in a colony in response to environmental cues. Although wing polyphenism is a universal and homologous feature of ants, the gene network underlying wing polyphenism is conserved in the winged castes, but is labile in the wingless castes, that is, the network is interrupted at different points in the wingless castes of different ant species. Because the expression of all genes sampled so far in this network in the wingless castes is evolutionarily labile across species, an important question is whether all "interruption points" in the network are evolutionarily labile or are there interruption points that are evolutionarily non-labile. Here we show that in the wingless castes, the expression of the gene brinker (brk), which mediates growth, patterning, and apoptosis in the Drosophila wing disc, is non-labile; it is absent in vestigial wing discs of four ants species. In contrast, the expression of engrailed (en), a gene upstream of brk is labile; it is present in some species but absent in others. In the winged castes, both brk and en expression are conserved relative to their expression in Drosophila wing discs. The differential lability of genes in the network in wingless castes may be a general feature of networks underlying polyphenic traits. This raises the possibility that some genes, like brk, may be under stabilizing selection while most others, like en, may be evolving via directional selection or neutral drift. Copyright © 2012 Wiley Periodicals, Inc.

  7. The Conserved Mitochondrial Twin Cx9C Protein Cmc2 Is a Cmc1 Homologue Essential for Cytochrome c Oxidase Biogenesis*

    OpenAIRE

    Horn, Darryl; Zhou, Wen; Trevisson, Eva; Al-Ali, Hassan; Harris, Thomas K.; Salviati, Leonardo; Barrientos, Antoni

    2010-01-01

    Mitochondrial copper metabolism and delivery to cytochrome c oxidase and mitochondrially localized CuZn-superoxide dismutase (Sod1) requires a growing number of intermembrane space proteins containing a twin Cx9C motif. Among them, Cmc1 was recently identified by our group. Here we describe another conserved mitochondrial metallochaperone-like protein, Cmc2, a close homologue of Cmc1, whose function affects both cytochrome c oxidase and Sod1. In the yeast Saccharomyces cerevisiae, Cmc2 locali...

  8. Porcine B-cells recognize epitopes that are conserved between the structural proteins of American- and European-type porcine reproductive and respiratory syndrome virus

    DEFF Research Database (Denmark)

    Oleksiewicz, Martin B.; Bøtner, Anette; Normann, Preben

    2002-01-01

    By selecting phage display libraries with immune sera from experimentally infected pigs, porcine B-cell epitopes in the open reading frame (ORF) 2, 3, 5 and 6 proteins of European-type porcine reproductive and respiratory syndrome virus (PRRSV) were identified. The sequences of all the epitopes...... were well conserved in European-type PRRSV and even between European- and American-type PRRSV. Accordingly, sera from pigs infected with American-type PRRSV cross-reacted with the European-type epitopes. Thus, this study showed, for the first time, the presence of highly conserved epitopes...... epitopes was subjected to closer scrutiny. A heptad motif, VSRRIYQ, which is present in a single copy in ORF2 and 3 proteins, was identified; this arrangement is completely conserved in all European-type PRRSV sequences available. The VSRRIYQ repeat motif colocalized closely with one of the ORF2 epitopes...

  9. A nuclear DNA perspective on delineating evolutionarily significant lineages in polyploids: the case of the endangered shortnose sturgeon (Acipenser brevirostrum)

    Science.gov (United States)

    King, Timothy L.; Henderson, Anne P.; Kynard, Boyd E.; Kieffer, Micah C.; Peterson, Douglas L.; Aunins, Aaron W.; Brown, Bonnie L.

    2014-01-01

    The shortnose sturgeon, Acipenser brevirostrum, oft considered a phylogenetic relic, is listed as an “endangered species threatened with extinction” in the US and “Vulnerable” on the IUCN Red List. Effective conservation of A. brevirostrum depends on understanding its diversity and evolutionary processes, yet challenges associated with the polyploid nature of its nuclear genome have heretofore limited population genetic analysis to maternally inherited haploid characters. We developed a suite of polysomic microsatellite DNA markers and characterized a sample of 561 shortnose sturgeon collected from major extant populations along the North American Atlantic coast. The 181 alleles observed at 11 loci were scored as binary loci and the data were subjected to multivariate ordination, Bayesian clustering, hierarchical partitioning of variance, and among-population distance metric tests. The methods uncovered moderately high levels of gene diversity suggesting population structuring across and within three metapopulations (Northeast, Mid-Atlantic, and Southeast) that encompass seven demographically discrete and evolutionarily distinct lineages. The predicted groups are consistent with previously described behavioral patterns, especially dispersal and migration, supporting the interpretation that A. brevirostrum exhibit adaptive differences based on watershed. Combined with results of prior genetic (mitochondrial DNA) and behavioral studies, the current work suggests that dispersal is an important factor in maintaining genetic diversity in A. brevirostrum and that the basic unit for conservation management is arguably the local population.

  10. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2 is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers. METHODOLOGY/PRINCIPAL FINDINGS: We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity. CONCLUSIONS/SIGNIFICANCE: These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits

  11. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  12. Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2011-05-01

    Full Text Available Abstract Background The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. Results We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (pppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (pppGpp - abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. Conclusions Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (pppGpp, and to a termination of cell division. The combination of single-cell timelapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes.

  13. Insights into the molecular evolution of the PDZ/LIM family and identification of a novel conserved protein motif.

    Directory of Open Access Journals (Sweden)

    Aartjan J W Te Velthuis

    Full Text Available The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36, Mystique, Enigma (LMP-1, Enigma homologue (ENH, ZASP (Cypher, Oracle, LMO7 and the two LIM domain kinases (LIMK1 and LIMK2. As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call 'ALP-like motif' (AM. This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family.

  14. The Conserved G-Protein Coupled Receptor FSHR-1 Regulates Protective Host Responses to Infection and Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Elizabeth V Miller

    Full Text Available The innate immune system's ability to sense an infection is critical so that it can rapidly respond if pathogenic microorganisms threaten the host, but otherwise maintain a quiescent baseline state to avoid causing damage to the host or to commensal microorganisms. One important mechanism for discriminating between pathogenic and non-pathogenic bacteria is the recognition of cellular damage caused by a pathogen during the course of infection. In Caenorhabditis elegans, the conserved G-protein coupled receptor FSHR-1 is an important constituent of the innate immune response. FSHR-1 activates the expression of antimicrobial infection response genes in infected worms and delays accumulation of the ingested pathogen Pseudomonas aeruginosa. FSHR-1 is central not only to the worm's survival of infection by multiple pathogens, but also to the worm's survival of xenobiotic cadmium and oxidative stresses. Infected worms produce reactive oxygen species to fight off the pathogens; FSHR-1 is required at the site of infection for the expression of detoxifying genes that protect the host from collateral damage caused by this defense response. Finally, the FSHR-1 pathway is important for the ability of worms to discriminate pathogenic from benign bacteria and subsequently initiate an aversive learning program that promotes selective pathogen avoidance.

  15. FEM1 proteins are ancient regulators of SLBP degradation.

    Science.gov (United States)

    Dankert, John F; Pagan, Julia K; Starostina, Natalia G; Kipreos, Edward T; Pagano, Michele

    2017-03-19

    FEM1A, FEM1B, and FEM1C are evolutionarily-conserved VHL-box proteins, the substrate recognition subunits of CUL2-RING E3 ubiquitin ligase complexes. Here, we report that FEM1 proteins are ancient regulators of Stem-Loop Binding Protein (SLBP), a conserved protein that interacts with the stem loop structure located in the 3' end of canonical histone mRNAs and functions in mRNA cleavage, translation and degradation. SLBP levels are highest during S-phase coinciding with histone synthesis. The ubiquitin ligase complex SCF(cyclin F) targets SLBP for degradation in G2 phase; however, the regulation of SLBP during other stages of the cell cycle is poorly understood. We provide evidence that FEM1A, FEM1B, and FEM1C interact with and mediate the degradation of SLBP. Cyclin F, FEM1A, FEM1B and FEM1C all interact with a region in SLBP's N-terminus using distinct degrons. An SLBP mutant that is unable to interact with all 4 ligases is expressed at higher levels than wild type SLBP and does not oscillate during the cell cycle. We demonstrate that orthologues of SLBP and FEM1 proteins interact in C. elegans and D. melanogaster, suggesting that the pathway is evolutionarily conserved. Furthermore, we show that FEM1 depletion in C. elegans results in the upregulation of SLBP ortholog CDL-1 in oocytes. Notably, cyclin F is absent in flies and worms, suggesting that FEM1 proteins play an important role in SLBP targeting in lower eukaryotes.

  16. Rv0216, a Conserved Hypothetical Protein from Myocbacterium Tuberculosis that is Essential for Bacterial Survival During Infection, has a Double Hotdog Fold

    Energy Technology Data Exchange (ETDEWEB)

    Castell,A.; Johansson, P.; Unge, T.; Jones, T.; Backbro, K.

    2005-01-01

    The Mycobacterium tuberculosis genome contains about 4000 genes, of which approximately a third code for proteins of unknown function or are classified as conserved hypothetical proteins. We have determined the three-dimensional structure of one of these, the rv0216 gene product, which has been shown to be essential for M. tuberculosis growth in vivo. The structure exhibits the greatest similarity to bacterial and eukaryotic hydratases that catalyse the R-specific hydration of 2-enoyl coenzyme A. However, only part of the catalytic machinery is conserved in Rv0216 and it showed no activity for the substrate crotonyl-CoA. The structure of Rv0216 allows us to assign new functional annotations to a family of seven other M. tuberculosis proteins, a number if which are essential for bacterial survival during infection and growth.

  17. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family.

    Science.gov (United States)

    Zhao, Nan; Ferrer, Jean-Luc; Ross, Jeannine; Guan, Ju; Yang, Yue; Pichersky, Eran; Noel, Joseph P; Chen, Feng

    2008-02-01

    The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 A resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA

  18. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer.

    Science.gov (United States)

    Fujisawa, Takao; Filippakopoulos, Panagis

    2017-04-01

    Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.

  19. Evolutionary Conservation of ABA Signaling for Stomatal Closure1[OPEN

    Science.gov (United States)

    Huang, Yuqing; Dai, Fei; Franks, Peter J.; Nevo, Eviatar; Soltis, Douglas E.; Soltis, Pamela S.; Xue, Dawei; Zhang, Guoping; Pogson, Barry J.

    2017-01-01

    Abscisic acid (ABA)-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 million years ago. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis (Arabidopsis thaliana) and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA-responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report, to our knowledge, new molecular and physiological evidence for the presence of active stomatal control in ferns. PMID:28232585

  20. An insulator element located at the cyclin B1 interacting protein 1 gene locus is highly conserved among mammalian species.

    Science.gov (United States)

    Yoshida, Wataru; Tomikawa, Junko; Inaki, Makoto; Kimura, Hiroshi; Onodera, Masafumi; Hata, Kenichiro; Nakabayashi, Kazuhiko

    2015-01-01

    Insulators are cis-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse Ccnb1ip1 (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the Ccnb1ip1 insulator and the Ccnb1ip1 enhancer. The Ccnb1ip1 insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the Ccnb1ip1 locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of Ccnb1ip1. These newly identified cis-elements may be involved in transcriptional regulation of Ccnb1ip1, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle.

  1. An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species

    Science.gov (United States)

    Yoshida, Wataru; Tomikawa, Junko; Inaki, Makoto; Kimura, Hiroshi; Onodera, Masafumi; Hata, Kenichiro; Nakabayashi, Kazuhiko

    2015-01-01

    Insulators are cis-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse Ccnb1ip1 (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the Ccnb1ip1 insulator and the Ccnb1ip1 enhancer. The Ccnb1ip1 insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the Ccnb1ip1 locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of Ccnb1ip1. These newly identified cis-elements may be involved in transcriptional regulation of Ccnb1ip1, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle. PMID:26110280

  2. The roles of the conserved tyrosine in the β2-α2 loop of the prion protein.

    Science.gov (United States)

    Huang, Danzhi; Caflisch, Amedeo

    2015-01-01

    Prions cause neurodegenerative diseases for which no cure exists. Despite decades of research activities the function of the prion protein (PrP) in mammalians is not known. Moreover, little is known on the molecular mechanisms of the self-assembly of the PrP from its monomeric state (cellular PrP, PrP(C)) to the multimeric state. The latter state includes the toxic species (scrapie PrP, PrP(Sc)) knowledge of which would facilitate the development of drugs against prion diseases. Here we analyze the role of a tyrosine residue (Y169) which is strictly conserved in mammalian PrPs. Nuclear magnetic resonance (NMR) spectroscopy studies of many mammalian PrP(C) proteins have provided evidence of a conformational equilibrium between a 3(10)-helical turn and a type I β turn conformation in the β2-α2 loop (residues 165-175). In vitro cell-free experiments of the seeded conversion of PrP(C) indicate that non-aromatic residues at position 169 reduce the formation of proteinase K-resistant PrP. Recent molecular dynamics (MD) simulations of monomeric PrP and several single-point mutants show that Y169 stabilizes the 3(10)-helical turn conformation more than single-point mutants at position 169 or residues in contact with it. In the 3(10)-helical turn conformation the hydrophobic and aggregation-prone segment 169-YSNQNNF-175 is buried and thus not-available for self-assembly. From the combined analysis of simulation and experimental results it emerges that Y169 is an aggregation gatekeeper with a twofold role. Mutations related to 3 human prion diseases are interpreted on the basis of the gatekeeper role in the monomeric state. Another potential role of the Y169 side chain is the stabilization of the ordered aggregates, i.e., reduction of frangibility of filamentous protofibrils and fibrils, which is likely to reduce the generation of toxic species.

  3. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins.

    Science.gov (United States)

    Khadka, Bijendra; Adeolu, Mobolaji; Blankenship, Robert E; Gupta, Radhey S

    2017-02-01

    The evolution and diversification of different types of photosynthetic reaction centers (RCs) remains an important unresolved problem. We report here novel sequence features of the core proteins from Type I RCs (RC-I) and Type II RCs (RC-II) whose analyses provide important insights into the evolution of the RCs. The sequence alignments of the RC-I core proteins contain two conserved inserts or deletions (indels), a 3 amino acid (aa) indel that is uniquely found in all RC-I homologs from Cyanobacteria (both PsaA and PsaB) and a 1 aa indel that is specifically shared by the Chlorobi and Acidobacteria homologs. Ancestral sequence reconstruction provides evidence that the RC-I core protein from Heliobacteriaceae (PshA), lacking these indels, is most closely related to the ancestral RC-I protein. Thus, the identified 3 aa and 1 aa indels in the RC-I protein sequences must have been deletions, which occurred, respectively, in an ancestor of the modern Cyanobacteria containing a homodimeric form of RC-I and in a common ancestor of the RC-I core protein from Chlorobi and Acidobacteria. We also report a conserved 1 aa indel in the RC-II protein sequences that is commonly shared by all homologs from Cyanobacteria but not found in the homologs from Chloroflexi, Proteobacteria and Gemmatimonadetes. Ancestral sequence reconstruction provides evidence that the RC-II subunits lacking this indel are more similar to the ancestral RC-II protein. The results of flexible structural alignments of the indel-containing region of the RC-II protein with the homologous region in the RC-I core protein, which shares structural similarity with the RC-II homologs, support the view that the 1 aa indel present in the RC-II homologs from Cyanobacteria is a deletion, which was not present in the ancestral form of the RC-II protein. Our analyses of the conserved indels found in the RC-I and RC-II proteins, thus, support the view that the earliest photosynthetic lineages with living descendants

  4. Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification.

    Science.gov (United States)

    Villarroya, Magda; Prado, Silvia; Esteve, Juan M; Soriano, Miguel A; Aguado, Carmen; Pérez-Martínez, David; Martínez-Ferrandis, José I; Yim, Lucía; Victor, Victor M; Cebolla, Elvira; Montaner, Asunción; Knecht, Erwin; Armengod, M-Eugenia

    2008-12-01

    Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases.

  5. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily.

    Science.gov (United States)

    Dunwell, J M; Khuri, S; Gane, P J

    2000-03-01

    This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.

  6. Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP) expressed in both the preerythrocytic and erythrocytic stages of the vertebrate life cycle

    DEFF Research Database (Denmark)

    Borre, Mette; Dziegiel, M; Høgh, B

    1991-01-01

    A gene coding for a 220-kDa glutamate rich protein (GLURP), an exoantigen of Plasmodium falciparum, was isolated and its nucleotide sequence was determined. The deduced amino acid sequence contains 2 repeat regions. The sequence of one of these was shown to be conserved among geographically dispe...... dispersed isolates, and a fusion protein containing that sequence was able to stimulate B- and T-cells. Antibodies against GLURP stained erythrocytic stages of the parasite as well as the hepatic stage as detected by electron microscopy....

  7. The methionine-rich low-molecular-weight chloroplast heat-shock protein: evolutionary conservation and accumulation in relation to thermotolerance.

    Science.gov (United States)

    Downs, C; Heckathorn, S; Bryan, J; Coleman, J

    1998-02-01

    The evolutionary conservation of the low-molecular-weight chloroplast-localized heat-shock protein (LMW chlpHsp) in vascular plants was examined using immunological methods. An antibody (Abmet) specific to the LMW chlpHsp was produced using a synthetic 28-residue peptide containing the most conserved elements of its unique "methionine-rich domain" as an antigen. This antibody detected a heat-inducible low-molecular-weight chloroplast protein in plants of six divergent Anthophyta species, including C3, C4, CAM, monocot, and dicot species. Abmet also detected a LMW chlpHsp in species from the Divisions Psilotophyta, Equisetophyta, Polypodiophyta, and Ginkgophyta. A preliminary examination of the relationship between accumulation of the LMW chlpHsp and habitat was also conducted. Seven Anthophyta species originating from both warm- and cool-temperature habitats were grown at 28C and then heat stressed at 40C. A positive qualitative relationship between the accumulation of the LMW chlpHsp and organismal thermotolerance in these species was observed; similar results were obtained separately with four nonAnthophyta species. The strong evolutionary conservation of this LMW Hsp and its localization to the chloroplast, and the correlation between production of this protein and plant thermotolerance, suggest that the LMW chlpHsp plays an important role in adaptation to heat stress.

  8. Generation of monoclonal antibodies reactive against subtype specific conserved B-cell epitopes on haemagglutinin protein of influenza virus H5N1.

    Science.gov (United States)

    Fiebig, Petra; Shehata, Awad A; Liebert, Uwe G

    2015-03-02

    H5-specific monoclonal antibodies may serve as valuable tools for rapid diagnosis of H5N1 avian influenza virus. Therefore, conserved H5-specific sequences of the haemagglutinin (HA) protein were expressed in Pichia pastoris and used for generation of monoclonal antibodies (mAbs). The two mAbs, FD6 and HE4, were strongly reactive against native HA protein and exhibited specificity for subtype H5. By epitope mapping linear epitopes of mAbs were identified that are highly conserved among influenza A virus of subtype H5. Additionally no sequence similarities to homologous regions on HA proteins of other influenza A virus subtypes (i.e. H1, H3, H7, H9) were detected by sequence alignment analysis. Both mAbs did not cross react with native or denatured HA proteins of other influenza A virus subtypes. Furthermore, using ELISA and immunofluorescence test mAb FD6 reacted only to the native H5 protein of recently circulating highly pathogenic H5N1 influenza viruses but not to low pathogenic H5N1 isolates. In conclusion, the use of the two mAbs in non-molecular tests like antigen-capture-ELISA appears promising for detecting influenza A H5N1 virus. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Inverse statistical physics of protein sequences: a key issues review

    Science.gov (United States)

    Cocco, Simona; Feinauer, Christoph; Figliuzzi, Matteo; Monasson, Rémi; Weigt, Martin

    2018-03-01

    In the course of evolution, proteins undergo important changes in their amino acid sequences, while their three-dimensional folded structure and their biological function remain remarkably conserved. Thanks to modern sequencing techniques, sequence data accumulate at unprecedented pace. This provides large sets of so-called homologous, i.e. evolutionarily related protein sequences, to which methods of inverse statistical physics can be applied. Using sequence data as the basis for the inference of Boltzmann distributions from samples of microscopic configurations or observables, it is possible to extract information about evolutionary constraints and thus protein function and structure. Here we give an overview over some biologically important questions, and how statistical-mechanics inspired modeling approaches can help to answer them. Finally, we discuss some open questions, which we expect to be addressed over the next years.

  10. Inverse Statistical Physics of Protein Sequences: A Key Issues Review.

    Science.gov (United States)

    Cocco, S; Feinauer, Christoph; Figliuzzi, Matteo; Monasson, Remi; Weigt, Martin

    2017-11-09

    In the course of evolution, proteins undergo important changes in their amino-acid sequences, while their three-dimensional folded structure and their biological function remain remarkably conserved. Thanks to modern sequencing techniques, sequence data accumulate at unprecedented pace. This provides large sets of so-called homologous, i.e.~evolutionarily related protein sequences, to which methods of inverse statistical physics can be applied. Using sequence data as the basis for the inference of Boltzmann distributions from samples of microscopic configurations or observables, it is possible to extract information about evolutionary constraints and thus protein function and structure. Here we give an overview over some biologically important questions, and how statistical-mechanics inspired modeling approaches can help to answer them. Finally, we discuss some open questions, which we expect to be addressed over the next years. © 2017 IOP Publishing Ltd.

  11. Considering Protonation as a Post-translational Modification Regulating Protein Structure and Function

    Science.gov (United States)

    Schönichen, André; Webb, Bradley A.; Jacobson, Matthew P.; Barber, Diane L.

    2014-01-01

    Post-translational modification of proteins is an evolutionarily conserved mechanism for regulating activity, binding affinities and stability. Compared with established post-translational modifications such as phosphorylation or uniquitination, post-translational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, post-translational modification by protons can drive dynamical changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and in contrast to most other post-translational modifications does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton post-translational modification of pH-sensing proteins regulating different cellular processes. PMID:23451893

  12. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins

    NARCIS (Netherlands)

    Kralt, Annemarie; Jagalur, Noorjahan B.; van den Boom, Vincent; Lokareddy, Ravi K.; Steen, Anton; Cingolani, Gino; Fornerod, Maarten; Veenhoff, Liesbeth M.

    2015-01-01

    Endoplasmic reticulum-synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a

  13. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines

    Directory of Open Access Journals (Sweden)

    Tatjana P Kristensen

    2014-03-01

    Full Text Available The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural

  14. TATA binding protein associated factor 3 (TAF3 interacts with p53 and inhibits its function

    Directory of Open Access Journals (Sweden)

    Tora Laszlo

    2008-06-01

    Full Text Available Abstract Background The tumour suppressor protein p53 is a sequence specific DNA-binding transcription regulator, which exerts its versatile roles in genome protection and apoptosis by affecting the expression of a large number of genes. In an attempt to obtain a better understanding of the mechanisms by which p53 transcription function is regulated, we studied p53 interactions. Results We identified BIP2 (Bric-à-brac interacting protein 2, the fly homolog of TAF3, a histone fold and a plant homeodomain containing subunit of TFIID, as an interacting partner of Drosophila melanogaster p53 (Dmp53. We detected physical interaction between the C terminus of Dmp53 and the central region of TAF3 both in yeast two hybrid assays and in vitro. Interestingly, DmTAF3 can also interact with human p53, and mammalian TAF3 can bind to both Dmp53 and human p53. This evolutionarily conserved interaction is functionally significant, since elevated TAF3 expression severely and selectively inhibits transcription activation by p53 in human cell lines, and it decreases the level of the p53 protein as well. Conclusion We identified TAF3 as an evolutionarily conserved negative regulator of p53 transcription activation function.

  15. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem.

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    Full Text Available In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games.

  16. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem

    Science.gov (United States)

    Li, Jiawei; Kendall, Graham

    2015-01-01

    In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games. PMID:26288088

  17. Structural Analysis of the G-Box Domain of the Microcephaly Protein CPAP Suggests a Role in Centriole Architecture

    Science.gov (United States)

    Hatzopoulos, Georgios N.; Erat, Michèle C.; Cutts, Erin; Rogala, Kacper B.; Slater, Leanne M.; Stansfeld, Philip J.; Vakonakis, Ioannis

    2013-01-01

    Summary Centrioles are evolutionarily conserved eukaryotic organelles composed of a protein scaffold surrounded by sets of microtubules organized with a 9-fold radial symmetry. CPAP, a centriolar protein essential for microtubule recruitment, features a C-terminal domain of unknown structure, the G-box. A missense mutation in the G-box reduces affinity for the centriolar shuttling protein STIL and causes primary microcephaly. Here, we characterize the molecular architecture of CPAP and determine the G-box structure alone and in complex with a STIL fragment. The G-box comprises a single elongated β sheet capable of forming supramolecular assemblies. Structural and biophysical studies highlight the conserved nature of the CPAP-STIL complex. We propose that CPAP acts as a horizontal “strut” that joins the centriolar scaffold with microtubules, whereas G-box domains form perpendicular connections. PMID:24076405

  18. Protein-protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery

    Directory of Open Access Journals (Sweden)

    Lynn eRichardson

    2011-06-01

    Full Text Available The Endosomal Sorting Complex Required for Transport (ESCRT consists of several multi-protein subcomplexes which assemble sequentially at the endosomal surface and function in multivesicular body (MVB biogenesis. While ESCRT has been relatively well characterized in yeasts and mammals, comparably little is known about ESCRT in plants. Here we explored the yeast two-hybrid protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. We show that Arabidopsis ESCRT interactome possess a number of protein-protein interactions that are either conserved in yeasts and mammals or distinct to plants. We show also that most of the Arabidopsis ESCRT proteins examined at least partially localize to MVBs in plant cells when ectopically expressed on their own or co-expressed with other interacting ESCRT proteins, and some also induce abnormal MVB phenotypes, consistent with their proposed functional roles in MVB biogenesis. Overall, our results help define the plant ESCRT machinery by highlighting both conserved and unique features when compared to ESCRT in other evolutionarily diverse organisms, providing a foundation for further exploration of ESCRT in plants.

  19. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Belmont, Martin; Cazzamali, Giuseppe; Williamson, Michael

    2006-01-01

    The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four...

  20. Evolutionarily stable learning schedules and cumulative culture in discrete generation models.

    Science.gov (United States)

    Aoki, Kenichi; Wakano, Joe Yuichiro; Lehmann, Laurent

    2012-06-01

    Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities

    Directory of Open Access Journals (Sweden)

    Maréchal Eric

    2005-03-01

    Full Text Available Abstract Background Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons and be the basis for a novel method of consistent and stable phylogenetic reconstruction. Results We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. Conclusion The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.

  2. The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus

    NARCIS (Netherlands)

    Boot, H.J.; Kolen, C.P.A.M.; Pot, B.; Kersters, K.; Pouwels, P.H.

    1996-01-01

    Previously we have shown that the type strain of Lactobacillus acidophilus possesses two S-protein-encoding genes, one of which is silent, on a chromosomal segment of 6 kb. The S-protein-encoding gene in the expression site can be exchanged for the silent S-protein-encoding gene by inversion of this

  3. Phylogenetically Conserved Sequences Around Myelin P0 Stop Codon are Essential for Translational Readthrough to Produce L-MPZ.

    Science.gov (United States)

    Yamaguchi, Yoshihide; Baba, Hiroko

    2018-01-01

    Myelin protein zero (P0, MPZ) is the main cell adhesion molecule in peripheral myelin, the sequence of which is evolutionarily highly conserved. Large myelin protein zero (L-MPZ) is a novel translational readthrough molecule in mammals in a physiological status and is encoded by the P0 mRNA with an extra domain. The sequence similarities in the L-MPZ-specific region are found in humans and frogs but not in fish P0 cDNA. Actual synthesis of L-MPZ has been detected in rat and mouse sciatic nerve but not yet evaluated in frogs and humans. The production mechanism and physiological functions of L-MPZ remain unknown. Additionally, the sequence context around the canonical stop codon is significant for readthrough in viruses and yeast, but the correlation between the sequence around P0 stop codon and L-MPZ synthesis is unclear. Here, we focused on the phylogenetic pathways in L-MPZ synthesis. We have shown that L-MPZ is widely produced from frogs to humans using western blotting against L-MPZ. Mutation analysis of the sequence around the stop codon for L-MPZ synthesis using a mammalian in vitro transcription/translation system revealed that the evolutionarily conserved sequence around P0 stop codon is susceptible to readthrough and is similar to the consensus motif in viruses and yeast UAG stop codon type molecules. Our results demonstrate that the phylogenetically conserved sequence around the canonical P0 stop codon is essential for L-MPZ synthesis, suggesting that phylogenetic emergence of L-MPZ in amphibians may be related to particular distribution and/or function in the PNS myelin.

  4. Crystal Structure of a Conserved Hypothetical Protein MJ0927 from Methanocaldococcus jannaschii Reveals a Novel Quaternary Assembly in the Nif3 Family

    Directory of Open Access Journals (Sweden)

    Sheng-Chia Chen

    2014-01-01

    Full Text Available A Nif3 family protein of Methanocaldococcus jannaschii, MJ0927, is highly conserved from bacteria to humans. Although several structures of bacterial Nif3 proteins are known, no structure representing archaeal Nif3 has yet been reported. The crystal structure of Methanocaldococcus jannaschii MJ0927 was determined at 2.47 Å resolution to understand the structural differences between the bacterial and archaeal Nif3 proteins. Intriguingly, MJ0927 is found to adopt an unusual assembly comprising a trimer of dimers that forms a cage-like architecture. Electrophoretic mobility-shift assays indicate that MJ0927 binds to both single-stranded and double-stranded DNA. Structural analysis of MJ0927 reveals a positively charged region that can potentially explain its DNA-binding capability. Taken together, these data suggest that MJ0927 adopts a novel quartenary architecture that could play various DNA-binding roles in Methanocaldococcus jannaschii.

  5. Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics.

    Directory of Open Access Journals (Sweden)

    Ram H Nagaraj

    Full Text Available Methylglyoxal (MGO is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12 is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2-10 µM, R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation.

  6. REIL proteins of Arabidopsis thaliana interact in yeast-2-hybrid assays with homologs of the yeast Rlp24, Rpl24A, Rlp24B, Arx1, and Jjj1 proteins

    Science.gov (United States)

    Schmidt, Stefanie; Dethloff, Frederik; Beine-Golovchuk, Olga; Kopka, Joachim

    2014-01-01

    The REIL1 and REIL2 proteins of Arabidopsis thaliana are evolutionarily conserved homologs of the cytosolic 60S ribosomal maturation factors Rei1 and its paralog Reh1 of Saccharomyces cerevisiae. We previously demonstrated that the REIL proteins like the yeast homologs are required for the growth of both organisms at suboptimal temperatures. In addition, the cold sensitivity of the yeast Δrei1 mutant was almost fully rescued by heterologous expression of the REIL1 protein. These phenomena and conservation of co-expressed genes linked the function of REIL proteins to the maturation of the eukaryotic ribosome in A. thaliana. Here we demonstrate that REIL proteins interact in yeast-2-hybrid assays with A. thaliana homologs of the yeast proteins, Rlp24, Rpl24A, Rlp24B, Arx1, and Jjj1. These proteins take part in the cytosolic 60S ribosomal maturation process within yeast and physically interact with Rei1. Our study does not provide proof but is consistent with a conserved role of the A. thaliana REIL proteins in ribosomal maturation and demonstrates the potential of future investigations that aim to unravel the protein interactions of REIL proteins in planta. PMID:24603461

  7. Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases.

    Directory of Open Access Journals (Sweden)

    Chad V Kuny

    2010-09-01

    Full Text Available The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5, is a kinase that phosphorylates the cellular retinoblastoma (Rb tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks. A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97. These UL97-homologous proteins have been termed the conserved herpesvirus protein kinases (CHPKs to distinguish them from other human herpesvirus-encoded kinases. To determine if the Cdk-like activities of UL97 were shared by all of the CHPKs, we individually expressed epitope-tagged alleles of each protein in human Saos-2 cells to test for Rb phosphorylation, human U-2 OS cells to monitor nuclear lamina disruption and lamin A phosphorylation, or S. cerevisiae cdc28-13 mutant cells to directly assay for Cdk function. We found that the ability to phosphorylate Rb and lamin A, and to disrupt the nuclear lamina, was shared by all CHPKs from the beta- and gamma-herpesvirus families, but not by their alpha-herpesvirus homologs. Similarly, all but one of the beta and gamma CHPKs displayed bona fide Cdk activity in S. cerevisiae, while the alpha proteins did not. Thus, we have identified novel virally-encoded Cdk-like kinases, a nomenclature we abbreviate as v-Cdks. Interestingly, we found that other, non-Cdk-related activities reported for UL97 (dispersion of promyelocytic leukemia protein nuclear bodies (PML-NBs and disruption of cytoplasmic or nuclear aggresomes showed weak conservation among the CHPKs that, in general, did not segregate to specific viral families. Therefore, the genomic and evolutionary conservation of these kinases has not been fully maintained at the functional level. Our data indicate that these related kinases, some of which are targets of approved or developmental antiviral drugs

  8. The Central Conserved Region (CCR) of Respiratory Syncytial Virus (RSV) G Protein Modulates Host miRNA Expression and Alters the Cellular Response to Infection

    Science.gov (United States)

    Haynes, Lia M.; Anderson, Larry J.

    2017-01-01

    Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182–186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting. PMID:28671606

  9. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  10. Essential protein discovery based on a combination of modularity and conservatism.

    Science.gov (United States)

    Zhao, Bihai; Wang, Jianxin; Li, Xueyong; Wu, Fang-Xiang

    2016-11-01

    Essential proteins are indispensable for the survival of a living organism and play important roles in the emerging field of synthetic biology. Many computational methods have been proposed to identify essential proteins by using the topological features of interactome networks. However, most of these methods ignored intrinsic biological meaning of proteins. Researches show that essentiality is tied not only to the protein or gene itself, but also to the molecular modules to which that protein belongs. The results of this study reveal the modularity of essential proteins. On the other hand, essential proteins are more evolutionarily conserved than nonessential proteins and frequently bind each other. That is to say, conservatism is another important feature of essential proteins. Multiple networks are constructed by integrating protein-protein interaction (PPI) networks, time course gene expression data and protein domain information. Based on these networks, a new essential protein identification method is proposed based on a combination of modularity and conservatism of proteins. Experimental results show that the proposed method outperforms other essential protein identification methods in terms of a number essential protein out of top ranked candidates. Copyright © 2016. Published by Elsevier Inc.

  11. Immune regulatory functions of DOCK family proteins in health and disease.

    Science.gov (United States)

    Nishikimi, Akihiko; Kukimoto-Niino, Mutsuko; Yokoyama, Shigeyuki; Fukui, Yoshinori

    2013-09-10

    DOCK proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in GEFs, they mediate the GTP-GDP exchange reaction through DHR-2 domain. Accumulating evidence indicates that the DOCK proteins act as major GEFs in varied biological settings. For example, DOCK2, which is predominantly expressed in hematopoietic cells, regulates migration and activation of leukocytes through Rac activation. On the other hand, it was recently reported that mutations of DOCK8, another member of the DOCK family proteins, cause a combined immunodeficiency syndrome in humans. This article reviews the structure, functions and signaling of DOCK2 and DOCK8, especially focusing on their roles in immune responses. © 2013 Elsevier Inc. All rights reserved.

  12. Data from "Crossing to safety: Dispersal, colonization and mate choice in evolutionarily distinct populations of Steller sea lions, Eumetopias jubatus."

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data sets used to support analysis published by O'Corry-Crowe et al (2014) Crossing to safety: Dispersal, colonization and mate choice in evolutionarily distinct...

  13. Amino acids conserved at the C-terminal half of the ribonuclease T2 family contribute to protein stability of the enzymes.

    Science.gov (United States)

    Kimura, Kazumi; Numata, Tomoyuki; Kakuta, Yoshimitsu; Kimura, Makoto

    2004-08-01

    The ribonuclease MC1 (RNase MC1) from the seeds of the bitter gourd belongs to the RNase T2 family. We evaluated the contribution of 11 amino acids conserved in the RNase T2 family to protein folding of RNase MC1. Thermal unfolding experiments showed that substitution of Tyr(101), Phe(102), Ala(105), and Phe(190) resulted in a significant decrease in themostability; the T(m) values were 47-58 degrees C compared to that for the wild type (64 degrees C). Mutations of Pro(125), Gly(127), Gly(144), and Val(165) caused a moderate decrease in thermostability (T(m): 60-62 degrees C). In contrast, mutations of Asp(107) and Gly(173) did little effect on thermostability. The contribution of Tyr(101), Phe(102), Pro(125), and Gly(127) to protein stability was further corroborated by means of Gdn-HCl unfolding and protease digestions. Taken together, it appeared that Tyr(101), Phe(102), Ala(105), Pro(125), Gly(127), Gly(144), Leu(162), Val(165), and Phe(190) conserved in the RNase T2 family play an important role in the stability of the proteins.

  14. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially.

    Science.gov (United States)

    Mujahid, Hana; Meng, Xiaoxi; Xing, Shihai; Peng, Xiaojun; Wang, Cailin; Peng, Zhaohua

    2018-01-06

    In recent years, lysine malonylation has garnered wide spread interest due to its potential regulatory roles. While studies have been performed in bacteria, mouse, and human, the involvement and the biological function of this modification in plant are still largely unknown. We examined the global proteome profile of lysine malonylation in developing rice seeds using affinity enrichment followed by LC-MS/MS analysis. We identified 421 malonylated lysine sites across 247 proteins. Functional analyses showed predominant presence of malonylated proteins in metabolic processes, including carbon metabolism, glycolysis/gluconeogenesis, TCA cycle, as well as photosynthesis. Malonylation was also detected on enzymes in starch biosynthesis pathway in developing rice seeds. In addition, we found a remarkable overlap among the malonylated, succinylated and acetylated sites identified in rice. Furthermore, malonylation at conserved sites of homologous proteins was observed across organisms of different kingdoms, including mouse, human, and bacteria. Finally, distinct motifs were identified when the rice malonylation sites were analyzed and conserved motifs were observed from bacterium to human and rice. Our results provide an initial understanding of the lysine malonylome in plants. The study has critical reference value for future understanding of the biological function of protein lysine malonylation in plants. Lysine malonylation is a newly discovered acylation with functional potential in regulating cellular metabolisms and activities. However, the malonylation status has not been reported in plants. Grain yield and quality, mainly determined during cereal seed development, are closely related to food security, human health and economic value. To evaluate malonylation level in plants and the possible regulatory functions of malonylation in seed development, we conducted comprehensive analyses of malonylome in developing rice seeds. A total of 421 malonylated lysine sites

  15. Causes of evolutionary rate variation among protein sites.

    Science.gov (United States)

    Echave, Julian; Spielman, Stephanie J; Wilke, Claus O

    2016-02-01

    It has long been recognized that certain sites within a protein, such as sites in the protein core or catalytic residues in enzymes, are evolutionarily more conserved than other sites. However, our understanding of rate variation among sites remains surprisingly limited. Recent progress to address this includes the development of a wide array of reliable methods to estimate site-specific substitution rates from sequence alignments. In addition, several molecular traits have been identified that correlate with site-specific mutation rates, and novel mechanistic biophysical models have been proposed to explain the observed correlations. Nonetheless, current models explain, at best, approximately 60% of the observed variance, highlighting the limitations of current methods and models and the need for new research directions.

  16. Computational analysis of perturbations in the post-fusion Dengue virus envelope protein highlights known epitopes and conserved residues in the Zika virus [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2016-09-01

    Full Text Available The dramatic transformation of the Zika virus (ZIKV from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV, finally culminating in a vaccine registered for use in endemic regions (CYD-TDV in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV, a member of the family Flaviviridae, the causal agent of the self-limiting Dengue fever and the potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE has provided key insights into the structure of the envelope (E and membrane (M proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc. (MEPPitope. These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288 that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40, with

  17. Computational analysis of perturbations in the post-fusion Dengue virus envelope protein highlights known epitopes and conserved residues in the Zika virus.

    Science.gov (United States)

    Chakraborty, Sandeep

    2016-01-01

    The dramatic transformation of the Zika virus (ZIKV) from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV), finally culminating in a vaccine registered for use in endemic regions (CYD-TDV) in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV), a member of the family Flaviviridae, the causal agent of the self-limiting Dengue fever and the potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE) has provided key insights into the structure of the envelope (E) and membrane (M) proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E) protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc.) (MEPPitope). These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288) that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40), with little

  18. Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores.

    Directory of Open Access Journals (Sweden)

    Stephen J Goodswen

    Full Text Available Given thousands of proteins constituting a eukaryotic pathogen, the principal objective for a high-throughput in silico vaccine discovery pipeline is to select those proteins worthy of laboratory validation. Accurate prediction of T-cell epitopes on protein antigens is one crucial piece of evidence that would aid in this selection. Prediction of peptides recognised by T-cell receptors have to date proved to be of insufficient accuracy. The in silico approach is consequently reliant on an indirect method, which involves the prediction of peptides binding to major histocompatibility complex (MHC molecules. There is no guarantee nevertheless that predicted peptide-MHC complexes will be presented by antigen-presenting cells and/or recognised by cognate T-cell receptors. The aim of this study was to determine if predicted peptide-MHC binding scores could provide contributing evidence to establish a protein's potential as a vaccine. Using T-Cell MHC class I binding prediction tools provided by the Immune Epitope Database and Analysis Resource, peptide binding affinity to 76 common MHC I alleles were predicted for 160 Toxoplasma gondii proteins: 75 taken from published studies represented proteins known or expected to induce T-cell immune responses and 85 considered less likely vaccine candidates. The results show there is no universal set of rules that can be applied directly to binding scores to distinguish a vaccine from a non-vaccine candidate. We present, however, two proposed strategies exploiting binding scores that provide supporting evidence that a protein is likely to induce a T-cell immune response-one using random forest (a machine learning algorithm with a 72% sensitivity and 82.4% specificity and the other, using amino acid conservation scores with a 74.6% sensitivity and 70.5% specificity when applied to the 160 benchmark proteins. More importantly, the binding score strategies are valuable evidence contributors to the overall in silico

  19. A Conserved Tripeptide Sequence at the C Terminus of the Poxvirus DNA Processivity Factor D4 Is Essential for Protein Integrity and Function.

    Science.gov (United States)

    Nuth, Manunya; Guan, Hancheng; Ricciardi, Robert P

    2016-12-30

    Vaccinia virus (VACV) is a poxvirus, and the VACV D4 protein serves both as a uracil-DNA glycosylase and as an essential component required for processive DNA synthesis. The VACV A20 protein has no known catalytic function itself but associates with D4 to form the D4-A20 heterodimer that functions as the poxvirus DNA processivity factor. The heterodimer enables the DNA polymerase to efficiently synthesize extended strands of DNA. Upon characterizing the interaction between D4 and A20, we observed that the C terminus of D4 is susceptible to perturbation. Further analysis demonstrated that a conserved hexapeptide stretch at the extreme C terminus of D4 is essential for maintaining protein integrity, as assessed by its requirement for the production of soluble recombinant protein that is functional in processive DNA synthesis. From the known crystal structures of D4, the C-terminal hexapeptide is shown to make intramolecular contact with residues spanning the inner core of the protein. Our mutational analysis revealed that a tripeptide motif ((215)GFI(217)) within the hexapeptide comprises apparent residues necessary for the contact. Prediction of protein disorder identified the hexapeptide and several regions upstream of Gly(215) that comprise residues of the interface surfaces of the D4-A20 heterodimer. Our study suggests that (215)GFI(217) anchors these potentially dynamic upstream regions of the protein to maintain protein integrity. Unlike uracil-DNA glycosylases from diverse sources, where the C termini are disordered and do not form comparable intramolecular contacts, this feature may be unique to orthopoxviruses. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Conserved patterns hidden within group A Streptococcus M protein hypervariability are responsible for recognition of human C4b-binding protein

    OpenAIRE

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Sophia P Hirakis; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-01-01

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of...

  1. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  2. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  3. Sequencing and genomic annotation of the chicken (Gallus gallus) hox clusters and mapping of evolutionarily conserved regions

    NARCIS (Netherlands)

    Richardson, M.K.; Crooijmans, R.P.M.A.; Groenen, M.A.M.

    2007-01-01

    Hox genes encode transcription factors that are involved in the regulation of normal development and are mutated in some diseases and malformations. Chicken HOX genes have been extensively studied in the chick limb and other developmental models. To date while the chicken HOXA cluster has been

  4. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center

    Directory of Open Access Journals (Sweden)

    Elena Sena

    2016-10-01

    Full Text Available Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli. The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN.

  5. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function

    Science.gov (United States)

    Lijun Liu; Matthew S. Zinkgraf; H. Earl Petzold; Eric P. Beers; Vladimir Filkov; Andrew Groover

    2014-01-01

    The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome.

  6. Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria

    DEFF Research Database (Denmark)

    Dodoo, D; Theander, T G; Kurtzhals, J A

    1999-01-01

    The 19-kDa conserved C-terminal part of the Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is a malaria vaccine candidate antigen, and human antibody responses to PfMSP119 have been associated with protection against clinical malaria. In this longitudinal study carried out in an area...... malaria season in April and after the season in November. Using enzyme-linked immunosorbent assay, we measured antibody responses to recombinant gluthathione S-transferase-PfMSP119 fusion proteins corresponding to the Wellcome and MAD20 allelic variants in these samples. Prevalence of antibodies...... recognizing the Wellcome 19 construct containing both epidermal growth factor (EGF)-like motifs in Wellcome type PfMSP119 was about 30%. Prevalence of antibodies to constructs containing only the first EGF domain from either Wellcome or MAD20 type PfMSP119 was about 15%, whereas antibodies recognizing...

  7. High degree of conservancy among secreted salivary gland